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REPRESENTATION THEORY OF TYPE B AND C
STANDARD LEVI W -ALGEBRAS

JONATHAN BROWN AND SIMON M. GOODWIN

We classify the finite-dimensional irreducible representations with integral
central character of finite W -algebras U(g, e) associated to standard Levi
nilpotent orbits in classical Lie algebras of types B and C. This classification
is given explicitly in terms of the highest weight theory for finite W -algebras.

1. Introduction

Let e be a nilpotent element in the Lie algebra g of a reductive algebraic group G
over C. The finite W -algebra U (g, e) associated to the pair (g, e) is an associative
algebra obtained from U (g) by a certain quantum Hamiltonian reduction. There
has been a great deal of recent interest in finite W -algebras and their representation
theory; for an overview, see the survey article [Losev 2011b].

In [Brown and Goodwin 2013a; 2013b], we gave a combinatorial classification
of the finite-dimensional irreducible U (g, e)-modules, where g is a classical Lie
algebra and e is an even-multiplicity nilpotent element; we recall that e is said to be
even multiplicity if all parts of the Jordan type of e occur with even multiplicity. This
classification is given in terms of the highest weight theory for finite W -algebras
from [Brundan et al. 2008].

Now recall that a nilpotent element e of g is said to be of standard Levi type if e is
in the regular nilpotent orbit of a Levi subalgebra of g. It is easy to check that if g is
of classical type and e is even multiplicity, then e is standard Levi. In this paper, we
extend the results of [Brown and Goodwin 2013a] to classify the finite-dimensional
irreducible U (g, e)-modules with integral central character, where g is of type B
or C and e is any standard Levi nilpotent element; see Theorem 1.2. We plan to
deal with the case of any (not necessarily integral) central characters in future work,
where different methods will be required. We recall (see, for example, the footnote
to [Premet 2007, Question 5.1]) that the centre of U (g, e) is canonically identified
with the centre of U (g), which allows one to define integral central characters.

The situation for g of type D and e standard Levi, but not even-multiplicity, is
more awkward. In this case the combinatorics become more complicated and the
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statement of the classification of finite-dimensional irreducible U (g, e)-modules
cannot be given simply in terms of a row-equivalent to column-strict condition as
in Theorem 1.2.

We remark here that finite W -algebras corresponding to nilpotent elements of
standard Levi type are a natural class to consider. This is because such finite W -
algebras are particularly amenable to the highest weight theory from [Brundan et al.
2008], as explained in Section 2C.

Losev and Ostrik [2013] have achieved a classification of the finite-dimensional
U (g, e)-modules of integral central character for any reductive Lie algebra g in
the following manner: Losev [2010] gave a surjection from the primitive ideals
of finite codimension of U (g, e) to the primitive ideals of U (g) having associated
variety equal to the closure G · e of the G-orbit of e. There is a natural action of
the component group C of the centralizer of e in G on the set of primitive ideals
of U (g, e), as explained, for example, in the introduction to [Losev 2011a]. This
last paper extends the results of [Losev 2010] to show that the fibres of the above
surjection are precisely C-orbits. The classification in [Losev and Ostrik 2013] is
accomplished by describing the fibres of this map, i.e., determining the stabiliser
of the C-orbit for each fibre. The primitive ideals with associated variety equal to
G · e can be described thanks to the methods of a variety of mathematicians in the
1970s and 1980s; see for example [Jantzen 1983] and the references therein for
details.

We go on to explain the results of this paper in more detail, so we take g to be
of type B or C; that is, g = so2n+1 or g = sp2n for some n ∈ Z≥2. We recall that
nilpotent orbits in g are parametrized by their Jordan type. Thus they are given by
partitions of 2n+ 1 (respectively 2n) where all even (respectively odd) parts occur
with even multiplicity when g= so2n+1 (respectively g= sp2n). In this paper we
consider only nilpotent orbits which are standard Levi but not even-multiplicity, as
the latter are dealt with in [Brown and Goodwin 2013a; 2013c]. This means that
the Jordan type of e is given by a partition of the form

p= (p2a1
1 < p2a2

2 < · · ·< p2ad−1
d−1 < p2ad+1

d < p2ad+1
d+1 < · · ·< p2ar

r );

that is, all parts of p occur with even multiplicity except for one part pd , which
occurs with odd multiplicity. This description of partitions corresponding to standard
Levi nilpotent orbits follows, for example, from the explicit description of Levi
subgroups regular nilpotent elements given in [Jantzen 2004, §4.5, §6.3]. It will be
more convenient for us to reindex this partition and write it as

p= (p2
1 ≤ p2

2 ≤ · · · ≤ p2
d−1 < p0 ≤ p2

d ≤ · · · ≤ p2
r ).

In this paper, we only consider finite-dimensional irreducible representations
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for U (g, e) with integral central character. As we explain in Section 2C, such
representations occur only when e is a special nilpotent element in the sense of
[Lusztig 1979]. In terms of the partition p, this means that the dual partition of p
is the Jordan type of a nilpotent orbit in g. Explicitly, this means that pi must be
odd for all i ≥ d when g= so2n+1 or pi must be even for all i ≤ d when g= sp2n .
This can be deduced from the description of special symbols in [Lusztig 1979] and
[Barbasch and Vogan 1982, Theorem 18]; see also [Collingwood and McGovern
1993, Proposition 6.3.7]. For the remainder of the paper we assume that p is a
partition satisfying these conditions.

We use symmetric pyramids to describe much of the combinatorics underlying
U (g, e)-modules. The symmetric pyramid for p, denoted by P , is a finite connected
collection of boxes in the plane such that

• the boxes are arranged in connected rows;

• the boxes are symmetric with respect to both the y-axis and the x-axis;

• each box is 2 units by 2 units;

• the lengths of the rows from top to bottom are given by

p1 . . . , pr , p0, pr , . . . , p1.

An s-table with underlying symmetric pyramid P is a skew-symmetric (with
respect to the origin) filling of P with complex numbers. We define sTab(P) to be a
certain set of s-tables depending on whether g= so2n+1 or sp2n . For g= sp2n we let
sTab(P) denote the set of s-tables with underlying symmetric pyramid P such that
all entries are integers, whereas for g= so2n+1 we define sTab(P) to be the s-tables
such that either all entries are in Z or all entries are in 1

2+Z. Let sTab≤(P) denote the
elements of sTab(P) that have nondecreasing rows. As explained in Section 3C, the
elements of sTab≤(P) parametrize the irreducible highest weight U (g, e)-modules;
given A ∈ sTab(P), we write L(A) for the corresponding irreducible highest weight
U (g, e)-module.

An example of an s-table in sTab≤(P), when g= sp2n , p= (22, 4, 52) and P is
the symmetric pyramid for p, is this:

(1.1)

–7 –6

–9 –8 –5 –4 –2

–3 –1 1 3

2 4 5 8 9

6 7
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The left justification of an s-table is the diagram created by left-justifying all of
the s-table’s rows. We say an s-table is justified row-equivalent to column-strict if
the row equivalence class of its left justification contains a table in which every
column is strictly decreasing; we note that there can be a gap in the middle of
some columns, and we require entries to be strictly decreasing across this gap. We
write sTabc(P) for the set of all A ∈ sTab(P) that are justified row-equivalent to
column-strict. It is easy to see that the example of the s-table above is an element
of sTabc(P).

Recall that C denotes the component group of the centralizer of e in G. In
Section 7A, we define an action of C on the subset of sTab≤(P) corresponding to
finite-dimensional U (g, e)-modules.

Now we can state the main theorem of this paper:

Theorem 1.2. Let g = so2n+1 or sp2n , let p be a partition corresponding to a
standard Levi special nilpotent orbit in g, let e be an element of this orbit and let P
be the symmetric pyramid for p. Then

{L(A) | A ∈ sTab≤(P), A is C-conjugate to some B ∈ sTabc(P)}

is a complete set of isomorphism classes of finite-dimensional irreducible U (g, e)-
modules with integral central character. Moreover, the C-action on s-tables agrees
with the C-action on finite-dimensional irreducible U (g, e)-modules.

Analogous results to [Brown and Goodwin 2013a, Corollaries 5.17 and 5.18]
hold in the present situation. So when all parts of p have the same parity, if L(A)
is finite-dimensional, then, in fact, A is row-equivalent to column-strict as an s-
table. Thus in this case L(A) can be obtained as a subquotient of the restriction
of a finite-dimensional U (g(0))-module via the Miura map. We refer the reader
to the discussion before Corollary 5.18 in that reference for more details, and to
Section 2A below for the definition of g(0).

Theorem 1.2 and the correspondence of finite-dimensional irreducible U (g, e)-
modules and primitive ideals of U (g) with associated variety G · e discussed above
allow us to deduce the following corollary. It gives an explicit description of
the primitive ideals of U (g) having associated variety equal to G · e and integral
central character. A method to classify these primitive ideals was originally given in
[Barbasch and Vogan 1982]. In the corollary, L(λA) denotes the irreducible highest
weight U (g)-module defined from an s-table A as explained in Section 3C below.

Corollary 1.3. The set of primitive ideals with integral central character and
associated variety G · e is equal to

{AnnU (g) L(λA) | A ∈ sTabc(P)∩ sTab≤(P)}.

Below we give an outline of the proof of Theorem 1.2.
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The key step is to deal with the case where p has three parts. We deal with this
case using the relationship between finite-dimensional irreducible representations of
U (g, e) and primitive ideals of U (g) with associated variety equal to G · e. Using
this and results of Barbasch and Vogan and Garfinkle on primitive ideals, we are
able to classify finite-dimensional irreducible modules for U (g, e) and explicitly
describe the component group action. These results are stated in Theorems 5.4
and 6.17.

In Section 7, we use inductive methods to deduce Theorem 1.2. The important
ingredients here are “Levi subalgebras” of U (g, e) as defined in [Brown and Good-
win 2013a, §3] and changing highest weight theories. The latter is dealt with in
[Brown and Goodwin 2013c] for the case of an even-multiplicity nilpotent orbit,
and we observe here that there is an analogous theory in the present situation; see
Proposition 4.6.

We note that if we were able to deal with the case where p has three parts by
other means, for example from an explicit presentation of the finite W -algebras,
then we would be able to remove the dependence on the results of Losev, Barbasch
and Vogan, and Garfinkle. It would, therefore, be interesting and useful to have a
presentation of such finite W -algebras.

2. Overview of finite W -algebras

2A. Definition of the finite W-algebra U(g, e). Let G be a reductive algebraic
group over C with Lie algebra g. The finite W -algebra U (g, e) is defined in terms
of a nilpotent element e ∈ g. By the Jacobson–Morozov Theorem, e embeds into
an sl2-triple (e, h, f ). The ad h eigenspace decomposition gives a grading on g:

(2.1) g=
⊕
j∈Z

g( j),

where g( j)={x ∈ g | [h, x] = j x}. Define the character χ : g→C by χ(x)= (x, e),
where ( · , · ) is a nondegenerate symmetric invariant bilinear form on g. Then we
can define a nondegenerate symplectic form 〈 · , · 〉 on g(−1) by 〈x, y〉 = χ([y, x]).
Choose a Lagrangian subspace l ⊆ g(−1) with respect to 〈 · , · 〉, and let m =
l⊕

⊕
j≤−2 g( j). Let mχ = {m−χ(m) | m ∈m}. The adjoint action of m on U (g)

leaves the left ideal U (g)mχ invariant, so there is an induced adjoint action of m
on Qχ = U (g)/U (g)mχ . The space of fixed points Qm

χ inherits a well-defined
multiplication from U (g), making it an associative algebra, and we define the finite
W -algebra to be

U (g, e)= Qm
χ = {u+U (g)mχ ∈ Qχ | [x, u] ∈U (g)mχ for all x ∈m}.

We also recall here that the centre Z(g) of U (g) maps into U (g, e) via the inclu-
sion Z(g)⊆U (g). Moreover, it is known that this defines an isomorphism between
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Z(g) and the centre of U (g, e); see the footnote to [Premet 2007, Question 5.1].
We use this isomorphism to identify the centre of U (g, e) with Z(g), which in
particular allows us to define integral central characters for U (g, e)-modules.

Remark 2.2. There are different equivalent definitions of the finite W -algebra in
the literature. Above we have given the Whittaker model definition, as it is the
shortest and most convenient for our purposes here.

2B. Skryabin’s equivalence and Losev’s map of primitive ideals. The left U (g)-
module Qχ is also a right U (g, e)-module, so there is a functor

S :U (g, e)-mod→U (g)-mod, M 7→ Qχ ⊗U (g,e) M,

where M is a U (g, e)-module. Skryabin [2002] showed that S is an equivalence of
categories between U (g, e)-mod and the category of Whittaker modules for e, the
category of U (g)-modules on which mχ acts locally nilpotently.

For an algebra A, let Prim A denote the set of primitive ideals of A. Losev
[2011a] showed that there exists a map

·
†
: Prim U (g, e)→ Prim U (g), I 7→ I †

with the following properties:

(1) It preserves central characters: I ∩Z(g)= I †
∩Z(g) for any I ∈Prim(U (g, e)),

under the identification of the centre of U (g, e) with Z(g).

(2) It behaves well with respect to Skryabin’s equivalence in the sense that

AnnU (g) S(M)= (AnnU (g,e) M)†

for every irreducible U (g, e)-module M .

(3) Its restriction to Prim0 U (g, e), the set of primitive ideals of U (g, e) of finite
codimension, is a surjection onto Prime U (g), the set of primitive ideals of
U (g) with associated variety equal to G · e.

(4) Its fibres restricted to Prim0 U (g, e) are C-orbits, where C is the component
group of the centralizer of e. See, for example, the introduction to [Losev
2011a] for an explanation of the action of C on Prim0 U (g, e).

2C. Highest weight theory and Losev’s map. By using the highest weight theory
for finite W -algebras developed by Brundan, Kleshchev and Goodwin in [Brundan
et al. 2008] (abbreviated [BGK] in this section), the map ·† from the previous
subsection can be explicitly calculated in terms of highest weight modules for
U (g, e) and U (g).

The key part of this highest weight theory is the use of a minimal Levi subalgebra
g0 that contains e. In [BGK, Theorem 4.3] it is proved that there is a certain
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subquotient of U (g, e) that is isomorphic to U (g0, e). Then, in [BGK, §4.2], it is
explained how a choice of a parabolic subalgebra q with Levi factor g0 leads to a
highest weight theory for U (g, e) in which U (g0, e) plays the role of the Cartan
subalgebra in the usual highest weight theory for reductive Lie algebras. This leads
to a definition of Verma modules for U (g, e) by “parabolically inducing” U (g0, e)-
modules up to U (g, e)-modules. Then [BGK, Theorem 4.5] says that these Verma
modules have irreducible heads, and that any finite-dimensional irreducible U (g, e)-
module is isomorphic to one of these irreducible heads. This gives a method to
explicitly parametrize finite-dimensional irreducible U (g, e)-modules, though a
classification of U (g0, e)-modules in general is unknown at present.

When e is of standard Levi type, the classification of U (g0, e)-modules is known.
By a theorem of Kostant [1978] and the Harish-Chandra isomorphism, we have that
U (g0, e)∼= Z(g0)∼= S(t)W0 , where t is a maximal toral subalgebra of g and W0 is
the Weyl group of g0. Hence the finite-dimensional irreducible U (g0, e)-modules
are all one-dimensional, and they are parametrized by the W0-orbits on t∗. We
choose t as specified in [BGK, §5.1], and let3∈ t∗/W0 be a W0-orbit. In [BGK] an
explicit isomorphism U (g0, e)→ S(t)W0 is given. Using this isomorphism and our
choice of q, we let M(3, q) denote the Verma module for U (g, e) induced from 3,
and we write L(3, q) for the irreducible head of M(3, q). We note that there are
“shifts” involved in the isomorphisms above and thus in the definition of M(3, q)
in [BGK, Sections 4 and 5].

Let u be the nilradical of q and let b0 be a Borel subalgebra of g0 containing t,
so that b = b0⊕ u is a Borel subalgebra of g. For λ ∈ t∗, let L(λ, b) denote the
highest weight irreducible g-module defined in terms of b, with highest weight
λ− ρ (where ρ is the half-sum of the positive roots for b).

The theorem below allows us to explicitly calculate Losev’s map ·† on primitive
ideals in terms of highest weight modules. In [BGK, §5.1] it was shown that this
theorem follows from [Miličić and Soergel 1997, Theorem 5.1] and [BGK, Conjec-
ture 5.3]. Also this last conjecture was verified in [Losev 2012, Theorem 5.1.1],
except for a technical point which was resolved in [Brown and Goodwin 2013a,
Proposition 3.10].

Theorem 2.3. Let 3 ∈ t∗/W0 and let λ ∈3 be antidominant for b0. Then

(AnnU (g,e) L(3, q))† = AnnU (g) L(λ, b).

One consequence of this theorem is that if e is not a special nilpotent element,
then U (g, e) has no finite-dimensional irreducible representations of integral central
character. This is due to results of Barbasch and Vogan [1982; 1983], which imply
that the associated variety of AnnU (g) L(λ, b) is a special nilpotent orbit if and only
if λ is integral.
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The following theorem is Conjecture 5.2 of [BGK], which follows from Conjec-
ture 5.3 of the same paper, as is explained in there.

Theorem 2.4. Let 3 ∈ t∗/W0 and let λ ∈3 be antidominant for b0. Then L(3, q)
is finite-dimensional if and only if the associated variety of AnnU (g) L(λ, b) is equal
to G · e.

3. Combinatorics of s-tables and finite W -algebras

3A. Realizations of so2n+1 and sp2n. In the case g= so2n+1, we realize g in the
following way: Let V = C2n+1 have basis {e1, . . . , en, e0, e−n, . . . , e−1}. Then
we take gl2n+1 = End(V ) as having basis {ei, j | i, j = 0,±1, . . . ,±n}, where
ei, j ∈ End(V ) is defined via ei, j (ek)= δ j,kei . We define the bilinear form ( · , · ) on
V by declaring that (ei , e j )= δi,− j . Then we set

g= so2n+1 = {x ∈ gl2n+1 | (xv,w)=−(v, xw) for all v,w ∈ V }.

Note that g has basis { fi, j | i, j = 0,±1, . . . ,±n, i + j > 0}, where fi, j =

ei, j − e− j,−i . We choose t= { fi,i | i = 1, . . . , n} as a maximal toral subalgebra, so
that t∗ has basis {εi | i = 1, . . . , n}, where εi ∈ t

∗ is defined via εi ( f j, j )= δi, j for
i, j > 0. We write 8 for the root system of g with respect to t. Let b= 〈 fi, j | i ≤ j〉
be the Borel subalgebra of upper-triangular matrices in g. Then the corresponding
system of positive roots is given by

8+ = {εi ± ε j | 1≤ i < j ≤ n} ∪ {εi | i = 1, . . . , n}.

For g = sp2n , we let V = C2n have basis {e1, . . . , en, e−n, . . . , e−1}. Then we
realize gl2n = End(V ) as having basis {ei, j | i, j = ±1, . . . ,±n}, where ei, j ∈

End(V ) is defined via ei, j (ek)= δ j,kei . We define the bilinear form ( · , · ) on V by
declaring that (ei , e j )= sign(i)δi,− j , and set

g= sp2n = {x ∈ gl2n | (xv,w)=−(v, xw) for all v,w ∈ V }.

Then g has basis { fi, j | i, j = ±1, . . . ,±n, i + j ≥ 0}, where fi, j = ei, j −

sign(i) sign( j)e− j,−i . We choose t = { fi,i | i = 1, . . . , n} as a maximal toral
subalgebra, so that t∗ has basis {εi | i = 1, . . . , n}, where εi ∈ t∗ is defined via
εi ( f j, j )= δi, j for i, j > 0. We write 8 for the root system of g with respect to t.
We choose the Borel subalgebra b= 〈 fi, j | i ≤ j〉 of upper-triangular matrices in g.
Then the corresponding system of positive roots is given by

8+ = {εi ± ε j | 1≤ i < j ≤ n} ∪ {2εi | i = 1, . . . , n}.

3B. Standard Levi nilpotent elements and symmetric pyramids. Recall from the
introduction that we are considering nilpotent orbits in g that are special and standard
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Levi, but not even-multiplicity. The Jordan type for such a nilpotent orbit is of the
form

(3.1) p= (p2
1 ≤ · · · ≤ p2

d−1 < p0 ≤ p2
d ≤ · · · ≤ p2

r ).

Moreover, pi must be odd for all i ≥ d when g= so2n+1 or pi must be even for all
i < d when g = sp2n . As explained in the introduction, the condition that p has
only one part of odd multiplicity is due to the standard Levi assumption, and the
parity conditions are due to the assumption that the corresponding orbit is special.

Also recall from the introduction the definition of the symmetric pyramid P for p.
We form a diagram K called the coordinate pyramid for p by filling the boxes of P
with 1, . . . , n,−n, . . . ,−1 if g= sp2n or with 1, . . . , n, 0,−n, . . . ,−1 if g= so2n ,
across rows from top to bottom. For example, for g= sp18 and p= (22, 4, 52), we
have

K =

–2 –1

–7 –6 –5 –4 –3

8 9 –9 –8

3 4 5 6 7

1 2

We let col(i) denote the x-coordinate of the centre of the box of K that contains i .
However, we use row(i) to denote the row of K that contains i when we label the
rows of K by 1, . . . , r, 0,−r, . . . ,−1 from top to bottom, so that pi is the length
of row i .

We define e ∈ g by

(3.2) e =
∑
i, j

fi, j ,

where the sum is over all adjacent pairs i j in K , so that e is in the nilpotent
G-orbit with Jordan type p.

We also use K to conveniently define many of the objects required for the
definition of U (g, e) and the highest weight theory.

Let h =
∑n

i=1− col(i) fi,i ; then (e, h, f ) is an sl2-triple for some f ∈ g. Fur-
thermore, the grading from (2.1) on g is given by g(k)= 〈 fi, j | col( j)−col(i)= k〉.
For our Lagrangian subspace of g(−1), we let

l= 〈 fi, j | col(i)− col( j)= 1, row(i) < row( j)〉.

Then we have that m= l⊕〈 fi, j | col(i)− col( j) > 1〉, and we use these choices of
e and m to form the finite W -algebra U (g, e) as in Section 2A.
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We take g0 = 〈 fi, j | row(i) = row( j)〉. So g0 is a minimal Levi subalgebra
which contains e, and e is a regular nilpotent element of g0. In the case g= so2n+1,
we have

g0 ∼= sop0 ⊕

r⊕
i=1

glpi

and in the case g= sp2n we have

g0 ∼= spp0
⊕

r⊕
i=1

glpi
.

We choose q=〈 fi, j | the row containing i is above or equal to the row containing j〉.
Then q is a parabolic subalgebra of g with Levi factor g0. Let b0= b∩g0, so that b0

is a Borel subalgebra of g0 that satisfies b= b0⊕ u, where u is the nilradical of q.

3C. Tables and s-tables. We use the definitions and notation regarding frames,
tables, s-frames and s-tables from [Brown and Goodwin 2013a, §4]. Below we
explain how these are used to label highest weight modules for U (g, e).

For this purpose, we let Wr be the Weyl group of type Br , which acts on
{0,±1, . . . ,±r} in the natural way. We denote the standard generators of Wr by
si = (i, i + 1)(−i,−i − 1), for i = 1, . . . , r − 1. Let Sr be the subgroup of Wr

generated by si for i = 1, . . . , r − 1.
Given σ ∈Wr , we define σ · P to be the diagram obtained from P by permuting

rows according to σ , so that σ ·P is an s-frame (recall that an s-frame is a collection
of connected rows of boxes in the plane arranged symmetrically around the origin).
We recall that by an s-table with frame σ · P , we mean a skew-symmetric (with
respect to the origin) filling of σ · P with complex numbers. Then we define
sTab(σ ·P) to be the set of s-tables with frame σ ·P such that all entries are integers
if g= sp2n , and either all entries are in Z or all entries are in 1

2 +Z if g= so2n+1.
We let σ · K be the s-table obtained from K by permuting rows according to σ .

Now given A ∈ sTab(σ · P), we define λA =
∑n

i=1 aiεi , where ai is the entry of A
in the same box as i in σ · K . In this way we get an identification of sTab(σ · P)
with the set of integral weights in t∗; we write t∗Z for the set of integral weights of t.

The row equivalence class of an s-table is the set of s-tables that can be created by
permuting entries within rows. We let sRow(σ ·P) denote the set of row equivalence
classes of sTab(σ · P). Then sRow(σ · P) is identified naturally with t∗Z/W0, where
W0 is the Weyl group of g0. Let sTab≤(σ · P) denote the elements of sTab(σ · P)
that have nondecreasing rows. Then every element of that sRow(σ · P) contains a
unique element of sTab≤(σ · P).

We label the rows of σ · K with 1, . . . , r, 0,−r, . . . ,−1 from top to bottom.
Now, we define qσ to be generated by the by fi j for which the row of σ · K in
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which i appears is above or equal to the row containing j . Then qσ is a parabolic
subalgebra of g with Levi factor g0, so we can use it to define the irreducible highest
weight modules L(3, qσ ), for 3 ∈ t∗/W0 as defined in Section 2C.

Given 3 ∈ t∗Z/W0, there is a unique A ∈ sTab≤(σ · P) whose row equivalence
class A ∈ sRow(P) is identified with 3 as above. We let Lσ (A) denote L(3, qσ ).

Let uσ be the nilradical of qσ , and define bσ = b0 ⊕ uσ , which is a Borel
subalgebra of g. We write Lσ (λA) for the irreducible highest weight U (g)-module
with respect to bσ , with highest weight λA−ρσ , where ρσ is the half-sum of positive
roots for bσ .

Now Theorem 2.3 can be restated in our present notation as follows:

Theorem 3.3. Let σ ∈ Wr and A ∈ sTab≤(σ · P). Then (AnnU (g,e) Lσ (A))† =
AnnU (g) Lσ (λA).

We are mainly interested in the case where σ = 1. Here we have qσ = q, and we
write L(A) instead of L1(A) and L(λA) instead of L1(λA) for A ∈ sTab(P).

Thanks to Theorem 3.3, our goal of classifying the finite-dimensional irreducible
U (g, e)-modules and understanding the component group action on these modules
can be broken down to answering the following questions:

(1) For which A ∈ sTab≤(P) is the associated variety of AnnU (g) L(λA) equal to
G · e?

(2) Given A∈ sTab≤(P) such that L(A) is finite-dimensional, which B∈ sTab≤(P)
satisfy AnnU (g) L(λA)= AnnU (g) L(λB)?

In the case that p has three parts, we answer these two questions in Sections 5 and 6.
The key ingredients in answering the first question are the Robinson–Schensted
and Barbasch–Vogan algorithms explained in Section 4A and Section 4C. For the
second question, we use Vogan’s τ -equivalence on integral weights of g, which is
explained in Section 4D.

In moving from the three row case to the general case, a key role is played by the
different choices of highest weight theories determined by the different parabolic
subalgebras qσ for σ ∈Wr . This dependence follows easily from the results for the
case of even-multiplicity nilpotent elements established in [Brown and Goodwin
2013c], which hold in the present situation; the key result for us is Proposition 4.6.
We also require the explicit description of the action of the component group on the
set of finite-dimensional irreducible U (g, e)-modules in terms of s-tables, which
is given in Proposition 7.1. The proof of Theorem 1.2 for the general case is then
dealt with in Section 7B.

3D. The component group. Recall that C denotes the component group of the
centralizer of e in G. Here we take G to be the adjoint group of g, so G is either
SO2n+1 or PSp2n .
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A specific realization of C is given as follows: Let 0 < pi1 < · · · < pis be the
maximal distinct parts of p such that pi j 6= p0 and pi j is odd (respectively even)
when g= so2n+1 (respectively sp2n); by maximal, we mean that if pk = pi j , then
k ≤ i j . Define the matrices c1, . . . , cs corresponding to pi1, . . . , pis for pik 6= p0

by setting

ck =
∑

−n≤i, j≤n
col(i)=col( j)

row(i)=ik
row( j)=−ik

sign(col(i))(ei, j + e j,i )+
∑
−n≤i≤n

row(i) 6=±ik

ei,i .

Then one can calculate that ck centralizes e. Furthermore, the argument used in
[Brown 2011, Section 6] can be adapted to show that the images of c1, . . . , cs in C
generate C ∼= Zs

2.
As mentioned in Section 2B, there is an action of C on Prim U (g, e), and thus

on isomorphism classes of irreducible modules, and, as explained in [Brown and
Goodwin 2013a, §2.3], this can be seen as “twisting” modules by elements of C
(up to isomorphism). Given an irreducible U (g, e)-module L and b ∈ C , we write
b · L for the twisted module; we note that this is a minor abuse of notation as b · L
is only defined up to isomorphism.

4. Some combinatorics for s-tables

4A. The Robinson–Schensted algorithm. We use the formulation of the Rob-
inson–Schensted algorithm from [Brown and Goodwin 2013a, §4]. We denote the
Robinson–Schensted algorithm by RS and recall that it takes as input a word of
integers (or more generally complex numbers) or a table and outputs a tableau.

There are two lemmas about the Robinson–Schensted algorithm that we use
repeatedly in the sequel. We state them below for convenience; they can be found
in [Fulton 1997, §3]. For a word w, we define `(w, k) to be the maximum possible
sum of the lengths of k disjoint weakly increasing subsequences of w, and C(w, k)
to be the maximum possible sum of the lengths of k disjoint strictly decreasing
subsequences of w. We write part(T ) to denote the partition underlying a tableau T .

Lemma 4.1. Letw be a word of integers and let q= (q1≥ · · ·≥ qn)= part(RS(w)).
Then for all k ≥ 1, `(w, k)= q1+ · · ·+ qk .

Lemma 4.2. Let w be a word of integers and let qT
= (q∗1 ≥ · · · ≥ q∗n ) be the dual

partition to q = part(RS(w)). Then for all k ≥ 1, C(w, k)= q∗1 + · · ·+ q∗k .

An elementary fact about the Robinson–Schensted algorithm, required later, is
stated in Lemma 4.3 below; it is easily deduced from Lemma 4.1. Suppose u, w are
words of integers and a, b are integers such that a> b; then we say the transposition
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of the word uabw to ubaw is a larger-smaller transposition. Also, we refer the
reader to [Fulton 1997, §2] for the definition of Knuth equivalences.

Lemma 4.3. If u and w are words of integers and w can be obtained from u
by a sequence of Knuth equivalences and larger-smaller transpositions, then
part(RS(u))≤ part(RS(w)).

The following theorem extends Theorem 4.6 of [Brown and Goodwin 2013a]
and is important for us later. In the statement, P is the symmetric pyramid for
the partition p, as in the previous section. Also, recall we defined the notion of a
justified row-equivalent to column-strict s-table in the introduction.

Theorem 4.4. Let A, B ∈ sTab≤(P). Then:

(i) A is justified row-equivalent to column-strict if and only if part(RS(A))= p.

(ii) If part(RS(A))= p, then RS(A)= RS(B) if and only if A = B.

Proof. Part (i) can be proved in the same way as [Brown and Goodwin 2013a,
Theorem 4.6]. We just need to check the proof still holds if A has an odd number
of rows and the middle row of A is not A’s longest row. The only thing to check is
that there is a sequence of row swaps that transforms A into a tableau such that the
convexity conditions required by Lemma 4.9 of the same reference are satisfied,
which is clear.

To prove (ii), we simply note that each row swap from the sequence of row swaps
from (i) which turns A into a tableau is invertible. �

Lastly in this section we give the following theorem, which is important later on:

Theorem 4.5. Let A, B∈sTabc(P). Suppose that AnnU (g) L(λA)=AnnU (g) L(λB).
Then A = B.

Proof. First, we need to briefly explain some of the results of Garfinkle [1990;
1993]. Section 2 of [Garfinkle 1990] defines the map L : Wn → Domn , where
Domn denotes the set of domino tableaux for Wn (see the appendix to this paper
for more information on domino tableaux). Section 5 of the same work defines the
map S :Domn→ sDomn , where sDomn denotes the set of domino tableaux for Wn

of special shape (a domino tableau has special shape if its underlying partition is
the Jordan type of a special nilpotent element of g). Furthermore, S restricted to
sDom is the identity map.

For λ ∈ t∗, let Primλ U (g) denote the primitive ideals of U (g) of central char-
acter λ. Suppose λ ∈ t∗ is antidominant and integral. Now, Theorem 3.5.11
of [Garfinkle 1993] states that the map cl : Primλ U (g) → sDom(n) given by
cl(Ann L(wλ))= S(L(w)) is a bijection.

Next we need to know that Garfinkle’s map L gives the same result as the
Robinson–Schensted algorithm. This is provided in the appendix by Proposition A.4,
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which is simply a rephrasing of [van Leeuwen 1996, Proposition 4.2.3]. More specif-
ically, the Robinson–Schensted algorithm outputs a tableau. There is a canonical
way to associate a tableau that has been outputted by the Robinson–Schensted
algorithm with a domino tableau (namely the algorithm DT from the appendix).
Now, Proposition A.4 says that if we identify the output of the Robinson–Schensted
algorithm with a domino tableau, then the result is the same as we would get from
Garfinkle’s L algorithm.

Now, to prove the theorem, note that since A and B are justified row-equivalent
to column-strict, by Theorem 4.4, part(RS(A))= part(RS(B))= p. Since

AnnU (g) L(λA)= AnnU (g) L(λB),

the above discussion allows us to deduce that RS(A)= RS(B). Now, the theorem
follows from Theorem 4.4. �

4B. Row swapping. In the proof of Theorem 4.4 above, we have mentioned the
row swapping operations si? on tables, as defined in [Brown and Goodwin 2013a,
§4;2013c, §4]. An important ingredient for the definition of these row swapping
operations is the notion of best fitting as defined in [Brown and Goodwin 2013a,
§4], which we use repeatedly in the following.

We also require the operations si? for s-tables, and we use the notation from
[Brown and Goodwin 2013c, §5]. Recall that for σ ∈ Wr and an s-table A ∈
sTab≤(σ · P), either si ? A is undefined or it is an element of sTab≤(siσ · P).
These operations can be extended to operations by elements of Sr ; the proof of
Proposition 5.5(i) of the same reference goes through in our situation to show that
this is well defined.

The following proposition is a version of [Brown and Goodwin 2013c, Proposi-
tion 5.3(ii)] in the present setting, and its proof adapts immediately:

Proposition 4.6. Let σ ∈Wr , τ ∈ Sr and A ∈ sTab≤(σ · P). Suppose that τ ? A is
defined. Then Lσ (A)∼= Lτσ (τ ? A).

Also, we state the following lemma, as it is key in the proof of Theorem 1.2. It is
[Brown and Goodwin 2013a, Lemma 5.11], adapted to our situation, and the same
proof holds. In the statement, A1

r denotes the table formed by rows 1 to r of A.

Lemma 4.7. For A ∈ sTab≤(P), suppose that L(A) is finite-dimensional, and let
τ ∈ Sr . Then A1

r is justified row-equivalent to column-strict and τ ? A is defined.

4C. The Barbasch–Vogan algorithm. The Barbasch–Vogan algorithm [1982] takes
as input λ, an integral weight for a classical Lie algebra of type B or C, and outputs
BV(λ), the Jordan type of the associated variety of AnnU (g) L(λ). Below we recall
the description of it given in [Brown and Goodwin 2013a, §5.2]. We note that there
is a version of it for type D, but we do not require that here.
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We need to define the content of a partition. Let q = (q1 ≤ q2 ≤ · · · ≤ qm) be a
partition. By inserting 0 at the beginning if necessary, we may assume that m is
odd. Let (s1, . . . , sk), (t1, . . . , tl) be such that

{q1, q2+ 1, q3+ 2, . . . , qr + r − 1} = {2s1, . . . , 2sk, 2t1+ 1, . . . , 2tl + 1}

(as unordered lists). Now, we define the content of q to be the unordered list

content(q)= {s1, . . . , sk, t1, . . . , tl}.

Algorithm:

Input: λ=
n∑

i=1
aiεi an integral weight in t∗.

Step 1: Calculate q = part(RS(a1, . . . , an,−an, . . . ,−a1)).

Step 2: Calculate content(q).
Let (u1 ≤ · · · ≤ u2k+1) be the sorted list with the same entries as content(q).
For i = 1, . . . , k+ 1, let si = u2i−1.
For i = 1, . . . , k, let ti = u2i .

Step 3: Form the list (2s1+ 1, . . . , 2sk+1+ 1, 2t1, . . . , 2tk).
In either case, let (v1 < · · ·< vk) be this list after sorting.

Output: BV(λ)= q ′ = (v1, v2− 1, . . . , v2k+1− 2k).

We note that the output partition q ′ (potentially with an extraneous zero at the
beginning) is the Jordan type of a special nilpotent orbit of g; this was proved in
[Barbasch and Vogan 1982].

For our purposes in this paper, we also need a modified version of the algo-
rithm to use in the case g = so2n+1. This modified version is denoted by BV′. It
works in exactly the same way as BV, except that in Step 1 instead of calculating
RS(a1, . . . , an,−an, . . . ,−a1) we calculate RS(a1, . . . , an, 0,−an, . . . ,−a1).

In Corollary A.7, in the appendix to this paper, it is proved that

BV(λ)= BV′(λ)

for λ ∈ t∗ in the case g= so2n+1. This proof of this is entirely combinatorial and
may be of independent interest so it is has been placed in an appendix. In light
of this, we redefine BV(λ), so that it is the old BV(λ) in the case g= sp2n and is
BV′(λ) in the case g= so2n+1.

For convenience of reference later in this paper we state the following theorem
from [Barbasch and Vogan 1982]:

Theorem 4.8. Let λ ∈ t∗Z. Then the associated variety to AnnU (g) L(λ) is equal to
the nilpotent G-orbit with Jordan type given by BV(λ).
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4D. The τ -equivalence. The Barbasch–Vogan algorithm is used to find the associ-
ated variety of AnnU (g)(L(λ)); however, in order to determine the action of the com-
ponent group we need to be able to determine when AnnU (g) L(µ)=AnnU (g) L(λ).
This can be done using the τ -equivalence. This is an equivalence relation on the
set of integral weights of t.

Recall our realization of g and its Borel subalgebra b defined in Section 3A, and
recall that 8+ is the system of positive roots for g defined from b and t. Let 1
be the base of 8 corresponding to 8+. Also, for α ∈ 8, let sα ∈ W denote the
corresponding reflection in the Weyl group W of g with respect to t. For w ∈W , let

S(w)= {α ∈8+ | wα 6∈8+}.

Now let
τ(w)= S(w)∩1.

Suppose that λ ∈ t∗ is an integral antidominant weight. Let α ∈1 and w ∈W .
Suppose that α ∈ τ(w−1) satisfies τ(w−1sα) 6⊆ τ(w−1). Then

AnnU (g) L(sαwλ)= AnnU (g) L(wλ)

by [Joseph 1977, Theorem 5.1]; see also [Barbasch and Vogan 1982, Proposition 15].
With this in mind, we define the τ -equivalence on integral weights to be the
equivalence relation generated by declaring that

λ1 ∼
τ λ2

if there exist an antidominant integral weight λ′, and elements w ∈W and α ∈1
such that λ1 =wλ

′, λ2 = sαwλ′ and τ(w−1sα) 6⊆ τ(w−1). In fact, the next theorem
states that the τ -equivalence is a complete invariant on primitive ideals:

Theorem 4.9 [Garfinkle 1993, Theorem 3.5.9]. Let λ,µ ∈ t∗ be integral weights.
Then λ∼τ µ if and only if AnnU (g) L(λ)= AnnU (g) L(µ).

We identify the weight
∑n

i=1 aiεi ∈ t
∗ with the list (a1, . . . , an). Then one can

check that the τ -equivalence is generated by the following three relations:

(R1) (a1, . . . , an)∼
τ (b1, . . . , bn) if (a1, . . . , an)∼

K (b1, . . . , bn);

(R2) (a1, . . . , an)∼
τ (a1, . . . , an−1,−an) if |an−1|< |an|;

(R3) (a1, . . . , an)∼
τ (a1, . . . , an−2, an, an−1) if an−1an < 0.

In (R1), ∼K denotes Knuth equivalence, as defined in [Fulton 1997, §2].
The references for the results in this section often only deal with the case of

regular weights. However, [Jantzen 1983, Lemma 5.6] implies that they are valid
for nonregular weights too.
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5. The three row case for g = sp2n

Let g= sp2n and suppose that p has three parts. Then we write p= (l2,m), where
l must be even if l < m. In this section we classify the finite-dimensional U (g, e)-
modules, and we use the τ -equivalence to describe the component group action on
these modules.

Let C be the component group of e, so

C =
{
〈c〉 ∼= Z2 if l is even and l 6= m,
1 otherwise.

The lemma below deals with the (easy) cases where l is even and l ≤ m, or l is
odd (in which case l > m):

Lemma 5.1. Suppose that A ∈ sTab≤(P) and l is even and l ≤m, or l is odd. Then
L(A) is finite-dimensional if and only if A is justified row-equivalent to column-
strict. Furthermore, in the case that l is even and l<m, if L(A) is finite-dimensional,
then c · L(A)∼= L(A).

Proof. First, we consider the case where l is even and l ≤ m. So content(l, l,m)=
(l/2, l/2, m/2+ 1). It is easy to see that the only partition with this content is
(l, l,m). Therefore by Theorem 2.4 and Theorem 4.4 we have L(A) is finite-
dimensional if and only part(RS(A)) = (l, l,m) if and only if A is justified row-
equivalent to column-strict. Now the statement about the action of C follows
from 4.5.

The case where l is odd is similar. �

So we are left to consider the case where l > m and l is even. Below we explain
the action of c on the s-tables corresponding to finite-dimensional U (g, e)-modules.
We need to use the definition of the ]-special element of a list of integers, which is
given in [Brown 2011, §6].

Let B ∈ sTab≤(P ′) be an s-table for some s-frame P ′ with an even number of
rows. If the ]-element of the upper-middle row of B is defined, then we let c′B
denote the s-table B ′ ∈ sTab≤(P ′) where all the rows of B ′ are the same as B,
except that in the upper-middle row the ]-element is replaced by its negative, and
the corresponding change to the lower-middle row is also made; otherwise we say
the c′B is undefined.

Let a1, . . . , al be the entries in the top row, and let b1, . . . , bm/2 be the entries in
the first half of the middle row of A. Let A′ be the s-table with 4 rows of lengths
l,m/2,m/2, l, where the top row has entries a1, . . . , al and the row below the top
row has entries b1, . . . , bm/2.

The rows of A′ are labelled by 1, 2,−2,−1 from top to bottom. We have the
row swapping operators si from Section 4B acting on A′; for convenience in this
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section we do not include the ? in the notation. Let B = s1c′s1 A′, provided that it
is defined; otherwise, c · A is undefined.

Let d1, . . . , dl be the entries in the top row of B and let e1, . . . , em be the entries
in the row below the top row of B. If e1, . . . , em are not all negative, then we say
that c · A is undefined. Otherwise we declare that c · A is the s-table with row lengths
(l,m, l) where the top row has entries d1, . . . , dl and the middle row has entries
e1, . . . , em,−em, . . . ,−e1.

For example, if

A =

–5 –4 –3 –2

–1 1

2 3 4 5

then A′ =

–5 –4 –3 –2

1

–1

2 3 4 5

So,

s1 A′ =

–2

–5 –4 –3 1

–1

2

3 4 5
and c′s1 A′ =

–2

–4 –3 1 5

–5

2

–1 3 4

Hence

s1c′s1 A′ =

–4 –3 –2 5

1

–1

–5 2 3 4

so c · A =

–4 –3 –2 5

–1 1

–5 2 3 4

The next lemma follows from [Brown and Goodwin 2013a, Remark 5.8]:

Lemma 5.2. Let A ∈ sTab≤(P) and suppose c · A is defined. Then word(A) ∼τ

word(c · A).

Our next goal is to prove that c · A is defined when A corresponds to a finite-
dimensional U (g, e)-module:

Lemma 5.3. Let A ∈ sTab≤(P). If L(A) is finite-dimensional, then c · A is defined.

Proof. Let a1, . . . , al be the top row of A and let b1, . . . , bm/2 be the first half
of the middle row of A. Since L(A) is finite-dimensional, we must have that
content

(
part(RS(A))

)
= content(l, l,m) = (m/2, l/2, l + 2/2). This gives that



REPRESENTATION THEORY OF TYPE B AND C STANDARD LEVI W -ALGEBRAS 49

part(RS(A)) must be (l, l,m), (l+1, l−1,m), or (l, l−1,m+1). The last of these
we can rule out by Lemma 4.1. Thus, part(RS(A)) = (l, l,m) or (l + 1, l − 1,m).
In either case, we note that s1 A′ is defined; otherwise we would have for some
i ≥ 0 that al/2−i < bm/2−i , in which case we have the increasing subword

a1, . . . , al/2−i , bm/2−i , . . . , bm/2,−bm/2, . . . ,−bm/2−i ,−al/2−i , . . . ,−a1

of length l + 2, which contradicts Lemma 4.1.
Now, suppose that part(RS(A)) = (l, l,m). Then by Theorem 4.4, A is row-

equivalent to column-strict, so we have ai+am−i+1>0 for all i . Let a′1≤· · ·≤a′m be
the elements from the top row that best fit over b1, . . . , bm/2,−bm/2, . . . ,−b1. Let
a′′1 , . . . , a′′l−m be the remaining elements of the top row. Then, for i = 1, . . . ,m/2
we have that −a′m−i+1 < bi < a′i . Since A is row-equivalent to column-strict,
we also have that a′′i + a′′l−m+1−i > 0 for all i . This shows that the ]-element of
a′′1 , . . . , a′′l−m, b1, . . . , bm/2, a′m/2+1, . . . , a′m is defined and is greater than or equal to
0. It also implies that the elements of (a′′1 , . . . , a′′l−m, b1, . . . , bm/2, a′m/2+1, . . . , a′m)

]

that best fit under a′1, . . . , a′m/2 are all negative. Thus c · A is defined.
Now, suppose that part(RS(A)) = (l + 1, l − 1,m). By [Brown and Goodwin

2013a, Lemma 5.6] the ]-element of row 2 of s1 A′ is defined; otherwise, we could
find an increasing subword of length l + 2. Also, the ]-element must be negative;
otherwise, we could not find an increasing subword of length l + 1 in word(s1 A′),
since the middle two rows of s1 A′ would then be column-strict.

Next, we need to prove that the action of s1 is defined on c′s1 A′. If it was not,
then we could find two disjoint increasing strings of length l + 1 in word(c′s1 A′),
which is a contradiction since word(c′s1 A′) is τ -equivalent to word(A); compare
Theorem 4.9.

Finally, we need to argue why the elements of row 2 of c′s1 A′ that best fit under
row 1 are all negative. If one the best-fitting elements, say b, was positive, then we
could form the decreasing chain a, b,−b,−a, where a is any element of row 1 of
A′ that is larger than b. This contradicts the fact that part(RS(s1c′s1 A′))= (l, l,m)
or (l + 1, l − 1,m). �

We are now ready for the main theorem of this section:

Theorem 5.4. Suppose that l is even and l >m, and let A ∈ sTab≤(P). Then L(A)
is finite-dimensional if and only if A is C-conjugate to an s-table that is justified
row-equivalent to column-strict. Furthermore, if L(A) is finite-dimensional, then
c · L(A)∼= L(c · A).

Proof. From the proof of the previous lemma we know that if L(A) is finite-
dimensional, then part(RS(B)) is (l, l,m) or (l + 1, l − 1,m). In the former case,
A is row-equivalent to column-strict by Theorem 4.4. In the latter case we can see
that c · A is row-equivalent to column-strict immediately from Lemma 5.3 and the
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following observation: Suppose B ∈ sTab≤(P) is such that part(RS(B))= (l, l,m)
or (l+1, l−1,m) and the middle two rows of B ′ are row-equivalent to column-strict.
Then part(RS(B))= (l, l,m). Indeed, if we left-justify the top two rows of B ′ and
right-justify the bottom two rows then the resulting diagram is column-strict, so it
is impossible to find an increasing chain of length l + 1.

Now we prove the statement about the action of c. Suppose that L(A) is finite-
dimensional and assume that part(RS(A))= (l, l,m). We have that c ·L(A)∼= L(B)
for some B. If part(RS(B)) = (l, l,m), then A = B by Theorem 4.4, and in this
case it follows that we have c · A = B. If part(RS(B)) = (l + 1, l − 1,m), then
part(RS(c · B)) = (l, l,m). So by Lemma 5.2, L(c · B) and L(A) are associated
to the same primitive ideal of U (g). Now from this and the fact that c · B and A
are both row-equivalent to column-strict, we can deduce, using Section 2B and
Theorem 4.5, that A = c · B. �

Last in this section we give the following lemma, which we need in the proof of
Theorem 1.2:

Lemma 5.5. If A ∈ sTab≤(P) is row-equivalent to column-strict, then word(c · A)
can be obtained from word(A) through a series of Knuth equivalences and larger-
smaller transpositions. In particular, part(RS(A))≤ part(RS(c · A)).

Proof. This is proven in [Brown and Goodwin 2013a, Remark 5.8]. �

6. The three row case for g = so2n+1

Let g= so2n and suppose that p has three parts. Then we write p= (l2,m), where
l must be odd if l > m. In this section, we classify the finite-dimensional U (g, e)-
modules, and we use the τ -equivalence to describe the component group action on
these modules.

Let C be the component group of e, so

C =
{
〈c〉 ∼= Z2 if l is odd and l 6= m,
1 otherwise.

The lemma below deals with the (easy) cases where l >m (in which case l must
be odd) or l ≤ m and is even. The proof is very similar to that of Lemma 5.1, so it
is omitted.

Lemma 6.1. Suppose that l is even, or l is odd and l ≥m. Let A ∈ sTab≤(P). Then
L(A) is finite-dimensional if and only if A is justified row-equivalent to column-
strict. Furthermore, in the case that l is odd and l >m, if L(A) is finite-dimensional,
then c · L(A)∼= L(A).

So we are left to consider the case where l is odd and m > l; in this case, we let
l = 2p+ 1 and m = 2q+ 1, where q > p. In the next few paragraphs we set up the
combinatorics to describe the action of c on elements of sTab≤(P) corresponding
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to finite-dimensional representations.
Let A ∈ sTab≤(P). Let a1, . . . , a2p+1 be the top row of A and let b1, . . . , bq , 0,
−bq , . . . ,−b1 be the middle row. From A, we define two tables, AL+ and AL− , in
the following manner: AL+ is the left-justified three row table with row 1 equal to
a1, . . . , ap+1, row 2 equal to b1, . . . , bq , and row 3 equal to −a2p+1, . . . ,−ap+2.
AL− is the left-justified three row table with row 1 equal to a1, . . . , ap, row 2 equal
to b1, . . . , bq , and row 3 equal to −a2p+1, . . . ,−ap+1.

We define the C-action on A in the following manner depending on the cases
below. Here we use the row swapping operations for tables mentioned in Section 4B,
and we omit the ? in the notation for convenience.

Case 1: If AL− is row-equivalent to column-strict, then we define c · A= B, where
B is the unique s-table in sTab≤(P) such that BL+

= s2s1s2 AL− .

Case 2: If AL− is not row-equivalent to column-strict but AL+ is row-equivalent to
column-strict, then we define c · A= B, where B is the unique s-table in sTab≤(P)
such that BL−

= s2s1s2 AL+ , provided that such an s-table exists; note that B exists
precisely when s1s2 AL+ contains only negative numbers in row 2, and this will not
happen if AL− is row-equivalent to column-strict. If such a B does not exist, then
we say that c · A is not defined.

Case 3: If neither AL− nor AL+ is row-equivalent to column-strict, then we say
that c · A is undefined.

For example, suppose that

A =

–6 –5 2

–3 –1 0 1 3

–2 5 6

Then

AL+
=

–6

–3 –1

–2 5

and AL−
=

–6 –5

–3 –1

–2

Since AL− is column-strict, we are in Case 1. Now

s2s1s2 AL−
=

–5

–6 –3

–2 –1
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so

c · A =

–5 1 2

–6 –3 0 3 6

–2 –1 5

We need to prove that word(A) is τ -equivalent to word(c · A). To do this, we
need the following lemmas:

Lemma 6.2. Let a, b1, . . . , bm be such that a> 0, b1 < · · ·< bm < 0 and−a< bm .
Then

(a, b1, . . . , bm)∼
τ (b1, , . . . , bm,−a).

Proof. By applying the Robinson–Schensted algorithm we see that (a, b1, . . . , bm)

is Knuth-equivalent to (b1, . . . , bm−1, a, bm). By applying the relations (R3) then
(R2) from the definition of the τ -equivalence, we get that this is τ -equivalent to
(b1, . . . , bm,−a). �

For positive integers k,m, we define an operation LTk,m on certain lists. Suppose
that (a1, . . . , al, b1, . . . , bm) is a list such that l ≥ 2k−1, m ≥ k, bm < 0, al−k > 0,
and the table

(6.3) B =
al−2k+2 al−2k+1 . . . al−k

b1 b2 . . . bk−1 bk . . . bm

−al −al−1 . . . −al−k+2 −al−k+1

is row-equivalent to column-strict with increasing rows. We define

LTk,m(a1, . . . , al, b1, . . . , bm)

to be the list (a1, . . . , al−2k+1) concatenated with word(B). For example, if A ∈
sTab≤(P) is justified row-equivalent to column-strict, P has row lengths (2p+
1, 2q + 1, 2p+ 1), and

word(A)=(a1, . . . ,a2p+1,b1, . . . ,b2q+1,0,−b2q+1, . . . ,−b1,−a2p+1, . . . ,−a1),

then LTp+1,2q+1(a1, . . . , a2p+1, b1, . . . , b2q+1)= word(AL−).
We would also like to explicitly describe LT−1

k,m . This will be defined on lists
of the form (a1, . . . , al, b1, . . . , bm, c1, . . . , ck), where m ≥ k, l ≥ k − 1, ck < 0,
−ck > al , bm < 0, and the following table is row-equivalent to column-strict with
increasing rows:

(6.4) B =
al−k+2 al−k+1 . . . al

b1 b2 . . . bk−1 bk . . . bm

c1 c2 . . . ck−1 ck
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Now

LT−1
k,m(a1, . . . ,al, c1, . . . , ck,b1, . . . ,bm)=(a1, . . . ,al,−ck, . . . ,−c1,b1, . . . ,bm).

We say that LT−1
k,m(a1, . . . , al, b1, . . . , bm, c1, . . . , ck) is undefined if any of the

above conditions is not met.

Lemma 6.5. Let (a1, . . . , al, b1, . . . , bm) be a list on which LTk,m is defined. Then

(a1, . . . , al, b1, . . . , bm)∼
τ LTk,m(a1, . . . , al, b1, . . . , bm).

Proof. We may assume that l = 2k− 1. We proceed by induction on k. The case
k = 1 is given by Lemma 6.2. Now, since

(6.6)
a1 a2 . . . ak−1

b1 b2 . . . bk−1 bk . . . bm

−a2k−1 −a2k−2 . . . −ak+1 −ak

is row-equivalent to column-strict, we also have that

a3 a4 . . . ak

b1 b2 . . . bk−2 bk−1 . . . bm

−a2k−1 −a2k−2 . . . −ak+2 −ak+1

is row-equivalent to column-strict. So by induction (a1, . . . , al, b1, . . . , bm) is τ -
equivalent to LTk−1,m(a1, . . . , al)= (a1, . . . , ak, b1, . . . , bm,−a2k−1, . . . ,−ak+1).
Now let bi1, . . . , bik−1 be the elements of b1, . . . , bm that best fit over −a2k−1, . . . ,

−ak+1. Thus

(6.7) (a1, . . . , ak, b1, . . . , bm,−a2k−1, . . . ,−ak+1)

∼
K (a1, . . . , ak, bi1, . . . , bik−1, a′1, . . . , a′m),

where ∼K denotes Knuth equivalence and (a′1, . . . , a′m) is the sorted list consisting
of −a2k−1, . . . ,−ak+1 and {bl | l 6= i j for j = 1, . . . , k− 1}. Now, from (6.6) we
can see that bi1, . . . , bik−1 best fits under a1, . . . , ak−1, so

(a1, . . . , ak, bi1, . . . , bik−1, a′1, . . . , a′m)

∼
K (a1, . . . , ak−1, bi1, . . . , bik−1, ak, a′1, . . . , a′m).

We also get from (6.6) that a′m =−bm , so by Lemma 6.2 we have that

(a1, . . . , ak−1, bi1, . . . , bik−1, ak, a′1, . . . , a′m)

∼
τ (a1, . . . , ak−1, bi1, . . . , bik−1, a′1, . . . , a′m,−ak).

Finally we can use the Knuth equivalence in (6.7) to get that this is Knuth-equivalent
to

(a1, . . . , ak−1, b1, . . . , bm,−a2k−1, . . . ,−ak). �
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Lemma 6.8. Suppose that we are given a skew-symmetric word

w = (a, b1, . . . , bm, c, 0,−c,−bm, . . . ,−b1,−a)

such that part(RS(a, b1, . . . , bm, c)) = (m, 1, 1), b1 < b2 < · · · < bm < 0, c < 0,
and −c > a. Then

w ∼K (a, b1, . . . , bm,−c, 0, c,−bm, . . . ,−b1,−a).

Proof. Calculate

RS(a, b1, . . . , bm, c, 0,−c,−bm) and RS(a, b1, . . . , bm,−c, 0, c,−bm),

then observe that they are equal. �

Lemma 6.9. Suppose that we are given a skew-symmetric word

w= (a1, . . . ,al,b1, . . . ,bm,c1, . . . ,ck,0,−ck, . . . ,−c1,−bm, . . . ,−b1,−al, . . . ,−a1)

such that k≤ l≤m, a1<a2< · · ·<al , b1<b2< · · ·<bm<0, c1<c2< · · ·<ck<0,
−ck > al , and part(RS(a1, . . . , al, b1, . . . , bm, c1, . . . , ck))= (m, l, k). Then

w∼K (a1,...,al,b1,...,bm,−ck,...,−c1,0,c1,...,ck,−bm,...,−b1,−al,...,−a1)

and

(a1, . . . , al, b1, . . . , bm, c1, . . . , ck)∼
τ (a1, . . . , al, b1, . . . , bm,−ck, . . . ,−c1).

Proof. We prove this by induction on k. The case k = 1 is given by Lemma 6.8 and
condition (R2) in the definition of the τ -equivalence.

To prove the general case, first we best-fit c1, . . . , ck−1 under b1, . . . , bm , which
gives that

(6.10) (b1, . . . , bm, c1, . . . , ck−1)∼
K (bi1, . . . , bik−1, c′1, . . . , c′m).

Now we can best fit bi1, . . . , bik−1 under a1, . . . , al to get that

(6.11) (a1, . . . , al, bi1, . . . , bik−1)∼
K (ai ′1, . . . , ai ′k−1

, b′1, . . . , b′l).

Putting this all together, we get that w is Knuth-equivalent to

(ai ′1, . . . , ai ′k−1
, b′1, . . . , b′l, c′1, . . . , c′m, ck, 0,

−ck,−c′m, . . . ,−c′1,−b′l, . . . ,−b′1,−ai ′k−1
, . . . ,−ai ′1).

Since part(RS(a1, . . . , al, b1, . . . , bm, c1, . . . , ck)) = (m, l, k), we can deduce
that b′l = al and c′m = bm . We can also use this to deduce that the element of
(b1, . . . , bm) that best fits over ck is an element of (c′1, . . . , c′m). Now, we apply



REPRESENTATION THEORY OF TYPE B AND C STANDARD LEVI W -ALGEBRAS 55

Lemma 6.8 to the part of this word between b′l and −b′l to get that this is Knuth-
equivalent to

(ai ′1, . . . , ai ′k−1
, b′1, . . . , b′l, c′1, . . . , c′m,−ck, 0,

ck,−c′m, . . . ,−c′1,−b′l, . . . ,−b′1,−ai ′k−1
, . . . ,−ai ′1).

We can apply the Knuth equivalences in (6.10) and (6.11) to get that this is Knuth-
equivalent to

(a1, . . . , al, b1, . . . , bm, c1, . . . , ck−1,−ck, 0,
ck,−ck−1, . . . ,−c1,−bm, . . . ,−b1,−al, . . . ,−a1).

Now, we can best fit bm−k+2, . . . , bm over c1, . . . , ck−1,−ck to get

(bm−k+2, . . . , bm, c1, . . . , ck−1,−ck)∼
K (bm−k+2, . . . , bm,−ck, c1, . . . , ck−1).

Next, we can best fit a1, . . . , al over b1, . . . , bm,−ck to get that

(6.12) (a1, . . . , al, b1, . . . , bm,−ck)∼
K (a′1, . . . , a′m,−ck, b j1, . . . , b jl ).

So we have that

(a1, . . . , al, b1, . . . , bm, c1, . . . , ck−1,−ck, 0,
ck,−ck−1, . . . ,−c1,−bm, . . . ,−b1,−al, . . . ,−a1),

and therefore w, is Knuth-equivalent to

(a′1, . . . , a′m,−ck, b j1, . . . , b jl , c1, . . . , ck−1, 0,
−ck−1, . . . ,−c1,−b jl , . . . ,−b j1, ck,−a′m, . . . ,−a′1).

By induction this is Knuth-equivalent to

(a′1, . . . , a′m,−ck, b j1, . . . , b jl ,−ck−1, . . . ,−c1, 0,
c1, . . . , ck−1,−b jl , . . . ,−b j1, ck,−a′m, . . . ,−a′1).

Finally, by applying the Knuth equivalence (6.12), we get that this is Knuth-
equivalent to

(a1, . . . ,al, ,b1, . . . ,bm,−ck, . . . ,−c1,0,c1, . . . ,ck,−bm, . . . ,−b1,−al, . . . ,−a1).

�

Theorem 6.13. Let A ∈ sTab≤(P) be justified row-equivalent to column-strict. Let

(a1, . . . , aq+1, b1, . . . , bp,−a2q+1, . . . ,−aq+2)= word(s2s1s2 AL−).

Then

(a1, . . . , aq+1, b1, . . . , bp,−a2q+1, . . . ,−aq+2, 0,
aq+2, . . . , a2q+1,−bp, . . . ,−b1,−aq+1, . . . ,−a1)
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is Knuth-equivalent to word(c · A). In particular, this implies that word(A) is
τ -equivalent to word(c · A).

Proof. By Lemma 6.9 we have that

(a1, . . . , aq+1, b1, . . . , bp,−a2q+1, . . . ,−aq+2, 0,
aq+2, . . . , a2q+1,−bp, . . . ,−b1,−aq+1, . . . ,−a1)

is Knuth-equivalent to

(a1, . . . , aq+1, b1, . . . , bp, aq+2, . . . , a2q+1, 0,
−a2q+1, . . . ,−aq+2,−bp, . . . ,−b1,−aq+1, . . . ,−a1).

Now, if bi1, . . . , biq+1 best fits under a1, . . . , aq+1, then we get that this is Knuth-
equivalent to

(a′1, . . . , a′p, aq+2, . . . , a2q+1, bi1, . . . , biq+1, 0,
−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1).

Note that a′p = aq+1 or a′p = b j < 0 for some j , so in either case we can best fit

bi1, . . . , biq+1, 0,−biq+1, . . . ,−bi3 under a′1, . . . , a′p, aq+2, . . . , a2q+1

to get that

(a′1, . . . , a′p, aq+2, . . . , a2q+1, bi1, . . . , biq+1, 0,
−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1)

is Knuth-equivalent to

(a1, . . . ,a2q+1,b1, . . . ,bm,0,−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1).

Now we can best fit

bm−q+2, . . . , bm, 0,−biq+1, . . . ,−bi1 over −a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1

to get that

(a1, . . . ,a2q+1,b1, . . . ,bm,0,−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1)

is Knuth-equivalent to

(a1, . . . , a2q+1, b1, . . . , bm, 0,−bm, . . . ,−b1,−a2q+1, . . . ,−a1). �

Our goal is to prove that L(A) is finite-dimensional if and only if A is C-conjugate
to a row-equivalent to column-strict diagram. The following lemmas build up to
this:

Lemma 6.14. Let A ∈ sTab≤(P). If AL− is row-equivalent to column-strict, then
so is A.
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Proof. Recall that A has row lengths given by (2p+1, 2q+1, 2p+1). By permuting
entries within rows, we can find p strictly decreasing columns of AL− Furthermore,
the entry in the bottom row of AL− that is not in one of these columns must be
negative. By putting this entry below 0 in A and its negation above 0, we can find
a row equivalence class of A where every column left of 0 contains one of the
decreasing columns from AL− , and every column right of zero is the reverse of the
negation of one of the columns left of 0. Thus, every column in this element of the
row equivalence class of A is strictly decreasing. �

Lemma 6.15. Let A ∈ sTab≤(P), and let q = part(RS(A)). If content(q) =
content( p), then q = (2q + 1, 2p+ 1, 2p+ 1) or q = (2q + 1, 2p+ 2, 2p).

Proof. Note that content(2q + 1, 2p + 1, 2p + 1) = (p, p + 1, q + 1), and the
only other partition with this content is (2q, 2p+ 2, 2p+ 1). Now, by Lemma 4.1,
part(RS(A))≥ (2q+1, 2p+1, 2p+1), thus part(RS(A)) 6= (2q, 2p+2, 2p+1). �

By Theorem 4.4 we have that if part(RS(A))= (2q + 1, 2p+ 1, 2p+ 1), then
A is row-equivalent to column-strict. So we need only consider the case that
part(RS(A))= (2q + 1, 2p+ 2, 2p).

Lemma 6.16. Let A ∈ sTab≤(P) with part(RS(A))= (2q + 1, 2p+ 2, 2p). Then:

(1) AL+ is row-equivalent to column-strict.

(2) The middle row of s2s1s2 AL+ contains only negative numbers.

(3) The negation of the element in the bottom-right position of s2s1s2 AL+ is larger
than the element in the upper-right position of s2s1s2 AL+ . Thus c · A is defined.

(4) c · A is row-equivalent to column-strict.

Proof. Let a−p, . . . , a−1, a0, a1, . . . , ap be the increasing entries in the first row of
A, and let −bq , . . . ,−b1, 0, b1, . . . , bq be the middle row of A.

First we prove that a−p, . . . , a0 must best fit over −bq , . . . ,−b1. If it does not,
then there must exists i ∈ {0, . . . , p} such that a−(p−i) <−bq−i . Thus we can form
the following increasing string in word(A):

a−p, . . . , a−(p−i),−bq−i , . . . ,−b1, 0, b1, . . . , bq−i ,−a−(p−i), . . . ,−a−p.

This string has length 2q+3, which contradicts part(RS(A))= (2q+1, 2p+2, 2p).
Next we prove that a1, . . . , ap best fits over b1, . . . , bq . If it does not, then there

exists i ∈ {1, . . . , p} such that ai < bi . Thus we can form the following increasing
string in word(A):

a−p, . . . , a0, . . . , ai , bi , . . . , bq .

This string has length p+ q + 2, and we can use it to find the following increasing
string of length 2p+ 2q + 4 in word(A):

a−p, . . . , a0, . . . , ai , bi , . . . , bq ,−bq , . . . ,−bi ,−a1, . . . ,−a0, . . . ,−a−p.
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This contradicts part(RS(A))= (2q + 1, 2p+ 2, 2p).
Now, we assume for a contradiction that AL+ is not row-equivalent to column-

strict. Let j0, . . . , jp be positive integers such that −b jp , . . . ,−b j0 best fit under
a−p, . . . , a0. Let i be the smallest nonnegative integer such that −b ji < −ai+1.
Such an i must exist, since otherwise AL+ will be row-equivalent to column-strict.
Define b0 = 0. Now let k be the smallest integer such that

(1) 0≤ k ≤ i ;

(2) ji−l = ji − l if 0< l ≤ k;

(3) ji−k−1 6= ji−k − 1.

This implies that a−(i−k) < −b ji−k−1. So we can form the following two disjoint
increasing substrings in word(A):

a−p, . . . , a−(i−k),−b ji−k−1, . . . , b−1, 0, b1, . . . , bq

and
−bq , . . . ,−b ji ,−ai+1, . . . ,−a1,−a0,−a−1, . . . ,−a−p.

The first string has length p− i+k+1+ ji−k−1+1+q = p+q− i+k+ ji−k+1.
The second string has length q − ji + 1+ i + 1+ p + 1 = q + p − ji + i + 3.
Thus, using the fact that ji−k = ji − k, the combined length of these two strings is
2q + 2p+ 4, which contradicts part(RS(A))= (2q + 1, 2p+ 2, 2p). Thus AL+ is
row-equivalent to column-strict.

Finally we need to prove that the middle row of s2s1s2 AL+ contains only negative
numbers. Let j1, . . . , jp be such that −b jp , . . . ,−b j1 best fit over −ap, . . . ,−a1.
Now it is clear that all the numbers in the last row of s2 AL+ are negative. Now let
a′ be the entry in the first row of AL+ that does not best fit over −b jp , . . . ,−b j1 .
If a′ > 0, then since all the −bi are negative we must have that a′ = a0. In this
case, for i = 1, . . . , p, (a−i ,−b ji ,−ai ) is a decreasing string in word(AL+) and
in word(A). Furthermore, reversing and negating these strings yields a further p
disjoint deceasing strings of length 3 in word(A). These and the string (a0, 0,−a0)

show that part(RS(A))T is larger than a partition of the form (32p+1, ∗). This
contradicts part(RS(A)) = (2q + 1, 2p + 2, 2p). So we have that a′ < 0, and
furthermore the middle row of s1s2 AL+ contains only negative numbers. Now since
the last row of s1s2 AL+ also contains all negative numbers, we have that the middle
row of s2s1s2 AL+ contains only negative numbers.

Now, let x be the element in the upper-right position of s2s1s2 AL+ and let y be
the element in the lower-right position. We need to show that x <−y. If a0< 0 then
this is clear, since in this case every element of AL+ is negative. When a0 > 0, we
need to consider the bottom row of s2s1s2 AL+ . This row will contain −an, . . . ,−a1

and also −bi , where −bi is not one of the elements of −bm, . . . ,−b1 that best fits
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over −an, . . . ,−a1. Let −bkn , . . . ,−bk1 be as above, i.e., the elements which best
fit over −an, . . . ,−a1. Note that −bkn , . . . ,−bk1 are the elements in the middle
row of s2 AL+ . Now, let a′ be the element in the first row of AL+ that is one of
the elements which best fit over −bkn , . . . ,−bk1 , so the middle row of s1ss AL+

contains −a′,−bkn , . . . ,−bk1 . We have already proved that since a0 > 0, a′ < 0.
So a′ < −bk1 , since otherwise a0 would be the element that did not best fit over
−bkn , . . . ,−bk1 . So−bi < a′<−bk1 . This implies that−bi <−a1, since otherwise
−bk1 would not be the element that best fits over −a1. Thus −a1 is the element
in the bottom-right position of s2s1s2 AL+ , and a0 is the element in the upper-right
position of s2s1s2 AL+ , and we already have that a0 < a1.

To see that c · A is row-equivalent to column-strict, simply note that (c · A)L−
=

s2s1s2 AL+ is row-equivalent to column-strict and apply Lemma 6.14. �

Now we can state the main theorem of this section, which is analogous to
Theorem 5.4. The proof is very similar, where Lemma 6.16 plays the role of
Lemma 5.3, and so is omitted.

Theorem 6.17. Suppose that l is odd and l >m, and let A ∈ sTab≤(P). Then L(A)
is finite-dimensional if and only if A is C-conjugate to an s-table that is justified
row-equivalent to column-strict. Furthermore, if L(A) is finite-dimensional, then
c · L(A)∼= L(c · A).

Last in this section, we give the following technical lemma, which is needed in
the proof of Theorem 1.2:

Lemma 6.18. If A ∈ sTab≤(P) is row-equivalent to column-strict, then word(c · A)
can be obtained from word(A) through a series of Knuth equivalences and larger-
smaller transpositions. In particular, part(RS(A))≤ part(RS(c · A)).

Proof. Let

(a1, . . . , a2q+1, b1, . . . , bp, 0,−bp, . . . ,−b1,−a2q+1, . . . ,−a1)= word(A).

Due to Theorem 6.13, since

word(AL−)= (a1, . . . , aq , b1, . . . , bp,−a2q+1, . . . ,−aq+1),

it suffices to show that

(a1, . . . , aq , b1, . . . , bp,−a2q+1, . . . ,−aq+1, 0,
aq+1, . . . , a2q+1,−bp, . . . ,−b1,−aq , . . . ,−a1)

can be obtained from word(A) by a sequence of larger-smaller transpositions and
Knuth equivalences. First, we can swap a2q+1 with its right neighbour and −a2q+1

with its left neighbour repeatedly until we get a word with a2q+1, 0,−a2q+1 in the
middle; then, we can swap a2q+1 with 0, then swap a2q+1 with −a2q+1, then swap
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0 with −a2q+1 so that we have −a2q+1, 0, a2q+1 in the middle of our word. Now
we can repeat this process with a2q and a2q , then a2q−1 and −a2q−1, and so on.
Eventually, since aq+1 > 0, we will get

(a1, . . . , aq , b1, . . . , bp,−a2q+1, . . . ,−aq+1, 0,
aq+1, . . . , a2q+1,−bp, . . . ,−b1,−aq , . . . ,−a1). �

7. The general case

Now we return to the case of general p as in (3.1). As usual, P is the symmetric
pyramid of p, with rows labelled 1, . . . , r, 0,−r, . . . ,−1 from top to bottom.

7A. The component group action. In this section, we describe the action of the
component group C on the subset of sTab≤(P) corresponding to finite-dimensional
U (g, e)-modules. The discussion here is completely analogous to the situation for
even multiplicity nilpotent elements as described in [Brown and Goodwin 2013c,
§5.5], so we are quite brief. We use the notation for the component group C from
Section 3D.

The operation of c has been defined on three row s-tables in Section 5 and
Section 6, and this can be extended to any s-table by just acting on the middle three
rows. To define the action of the ck , we proceed in exact analogy with [Brown
and Goodwin 2013c, §5.5]. That is, we use row swapping operations si? to move
row ik to row r , then we apply c, and then we apply the reverse row swaps. So for
A ∈ sTab≤(P) and τ = sik sik+1 . . . sr−1 ∈ Sr we have

ck · A = τ−1 ? (c · (τ ? A)).

Of course, this will not be defined for all A∈sTab≤(P), but the following proposition
can be proved in the same way as Proposition 5.5 of the same reference, and we
require Proposition 4.6 for the proof:

Proposition 7.1. Let A ∈ sTab≤(P), and suppose that L(A) is finite-dimensional.
Then ck · A is defined and L(ck · A)∼= ck · L(A).

7B. Proof of main theorem. Now we are in a position to prove Theorem 1.2:

Proof of Theorem 1.2. The statement in the theorem about the component group
action is given by Proposition 7.1.

Suppose that A is justified row-equivalent to column-strict. Then L(A) is finite-
dimensional by Theorems 4.4, 4.8 and 2.4, and thus b · L(A) is finite-dimensional
for any b ∈ C by Proposition 7.1.

We are left to prove that if L(A) is finite-dimensional, then A ∈ sTabc(P). We
prove this by induction on r . The case r = 0 is trivial, and the case r = 1 is given
by Lemmas 5.1 and 6.1 and Theorems 5.4 and 6.17.
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Now, assume that L(A) is finite-dimensional and r ≥ 2. Using an inductive
argument based on “Levi subalgebras” of U (g, e), just as in the proof of [Brown
and Goodwin 2013a, Theorem 5.13], we may assume that A2

−2 is justified row-
equivalent to column-strict, where A2

−2 denotes the s-table obtained from A by
removing rows 1 and −1. Also by Lemma 4.7 we have that A1

r is justified row-
equivalent to column-strict, where A1

r is the table formed by rows 1 to r of A.
Therefore, we can permute entries in the left justification of A2

−2 so that all the
columns are strictly decreasing. Furthermore, we can place each of the entries in
row 1 of A over a column so each entry is larger than the entry immediately below
it. Then we can place each of the entries of row −1 of A under a column in the
left justification of A2

−2 so that each entry is smaller than the entry above it, and
we can do this skew-symmetrically in the sense that if a is an entry in row 1 of A
and a is placed over a column whose top entry is b, then we can place −a under a
column whose bottom entry is −b. Let Al denote the resulting diagram.

Let q = part(RS(A)). As explained below, the conditions above along with
Theorem 4.8 give restrictions on the possibilities for q. The proof is completed
with combinatorial arguments that show that either q = p or i1 = 1, and that
part(RS(c1 · A)) = p. So by Theorem 4.4, either A or c1 · A is row-equivalent to
column-strict.

In the diagram Al , let x be the number of columns that go through all the rows,
let y be the number of columns that go through all the rows except the top row (so
y is also the number of columns that go through all the rows except the bottom
row), and let z be the number of columns that go through all the rows except the
top and bottom row. Further, let u be the number of columns that go through all the
rows except the middle row, let v be the number of columns that go through all the
rows except the top row and the middle row (so v is also the number of columns
that go through all the rows except the middle row and the bottom row), and let w
be the number of columns that go through all the rows except the top, middle and
bottom rows. Note that x + y+ u+ v = p1 and x + 2y+ z+ u+ 2v+w = p2. So
we have x strictly decreasing columns of length 2r + 1, 2y+ u strictly decreasing
columns of length 2r , z+ 2v strictly decreasing columns of length 2r − 1, and w
strictly decreasing columns of length 2r − 2.

By counting the lengths of the other columns in Al similarly, and using Lemma 4.2,
we can conclude that

qT
≥ ((2r + 1)x , (2r)2y+u, (2r − 1)z+2v, (2r − 2)w, (2r − 4)p3−p2, . . . , 2pr−1−pr )

if p0 ≤ pr−1, and

qT
≥
(
(2r + 1)x , (2r)2y, (2r − 1)z, (2r − 3)p3−p2, . . . , (2r − 2k+ 5)pk−1−pk−2,

(2r − 2k+ 3)p0−pk−1, (2r − 2k+ 2)pk−p0, (2r − 2k)pk+1−pk , . . . , 2pr−1−pr
)
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if p0 > pr−1, where k is the number such that pi ≥ p0 if and only if i ≥ k (note
that in this case we have u = v = w = 0).

Thus we get that

q ≤ (p2
r , p2

r−1, . . . , p2
2, p2−w, x + 2y+ u, x) if p0 ≤ pr−1

and

q ≤ (p2
r , p2

r−1, . . . , p2
k−1, p0, p2

k , . . . , p2
2, p1− z, x) if p0 > pr−1.

Since we also have p as a lower bound of q, this implies that

q = (p2
r , p2

r−1, . . . , p2
2, a, b, c) if p0 ≤ pr−1

and
q = (p2

r , p2
r−1, . . . , p2

k , p0, p2
k−1, . . . , p2

2, a, b) if p0 > pr−1,

for positive integers a, b, c. Since content(q)= content( p), we get a very limited
number of possibilities for a, b, c, as explained below.

From now we restrict to the case g= sp2n in this proof, as the case g= so2n+1 is
entirely similar; in some places we would require references from Section 6 rather
than Section 5.

We know that p0 must be even. If p0 < p1 and p1 is even, then we must
have (a, b, c) = (p1, p1, p0) or (a, b, c) = (p1 + 1, p1 − 1, p0). If p0 < p1 and
p1 is odd, then (a, b, c) = (p1, p1, p0). If p1 < p0 < p2, then p1 is even and
(a, b, c)= (p0, p1, p1). Finally, if p0 > p2, then p1 is even and (b, c)= (p1, p1).

By Theorem 4.4, if q = p, then A is justified row-equivalent to column-strict,
and we are done. So for the rest of this proof we will assume that q 6= p; so, we
are assuming that p0 < pr , pr is even, and

(7.2) q = (p2
r , . . . , p2

2, p1+ 1, p1− 1, p0).

It is be useful to record that

(7.3) qT
=
(
(2r + 1)p0, (2r)p1−p0−1, (2r − 1)2,

(2r − 2)p2−p1−1, (2r − 4)p3−p2, . . . , 2pr−1−pr
)
.

Let σ = sr−1 . . . s2s1 and A′ = σ ? A; then RS(A′) = RS(A) by Proposition 4.6.
Then the lengths of the middle three rows of A′ are given by p1, p0, p1. Let B be
the middle three rows of A′.

We claim that part(RS(B))= (p1+ 1, p1− 1, p0). To see this, first we suppose
that part(RS(B)) = (pr , pr , p0). Then B is justified row-equivalent to column-
strict. Now, since (A′)1r is justified row-equivalent to column-strict, this allows
us to find p0 disjoint decreasing words of length 2r + 1 that are disjoint from
a further p1 − p0 disjoint decreasing words of length 2r . Thus, by Lemma 4.2,
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qT
≥ ((2r + 1)p0, (2r)p1−p0, ∗), which contradicts (7.3). Now we also cannot have

that any part of part(RS(B)) is larger than pr + 1, since then we could use the fact
that all the rows of A′ are increasing to conclude that part(q) would be strictly
larger than a partition of the form

(p2
1, p2

2, . . . , p2
r−1, pr + 1, ∗),

which contradicts (7.2).
Now, we have by Theorem 5.4 that part(RS(c · B))= (p0, p1, p1). We also have

by Lemma 5.5 that part(RS(c1 · A))≤ part(RS(A)).
We need to argue that we can find enough descending chains of maximal or near

maximal length in c · A′ to force RS(c1 · A) to have shape p. We have by Lemma 4.7
that (c · A′)1r is justified row-equivalent to column-strict. Further, by Theorem 4.4
we have that c · B is justified row-equivalent to column-strict.

We can find p0 descending strings of length 3 and p1− p0 strings of length 2,
and all these strings start in row r and end in row −r . Since (c · A′)1r is justified
row-equivalent to column-strict, it has p1 strings of length r ending in row r , and
(c · A′)−r

−1 has p1 strings of length r starting in row −1. So we can glue these strings
together along their entries in rows 1 and −1 to obtain p0 disjoint decreasing strings
of length 2r + 1 that are disjoint from p1− p0 disjoint decreasing strings of length
2r . So if q ′= part(RS(c ·A)), we can conclude that q ′T ≥ ((2r+1)p0, (2r)p1−p0, ∗),
which implies that q ′ = p, so c1 · A is justified row-equivalent to column-strict, as
required. �

Finally, this theorem along with Theorems 2.3 and 4.5 immediately imply the
following classification of the primitive ideals with associated variety equal to G · e:

Corollary 7.4. The set of primitive ideals with associated variety G · e is equal to

{AnnU (g) L(λA) | A ∈ sTabc(P)}.

Appendix: An alternative version of the Barbasch–Vogan algorithm

In this appendix, we consider the alternative version of the Barbasch–Vogan algo-
rithm for so2n+1, mentioned in Section 4C above. Our main result is Corollary A.7,
which shows that this adapted version gives the same output as the original version.
Below, we recall the algorithm, then, in the subsequent subsections construct the
machinery required to prove Corollary A.7.

Some terminology and notation used in this section are as follows. By a Young
diagram we mean a finite collection of boxes, or cells, arranged in left-justified
rows, with the row lengths weakly decreasing. We often identify a Young diagram
with its underlying partition. A tableau is a filling of a Young diagram by integers
with weakly increasing rows and strictly decreasing columns. We write part(T ) for
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the partition underlying a tableau T . The Robinson–Schensted algorithm is denoted
by RS.

The algorithms. Let q = (q1 ≤ q2 ≤ · · · ≤ qm) be a partition. By inserting 0 at the
beginning if necessary, we may assume that m is odd. Let (s1, . . . , sk), (t1, . . . , tl)
be such that

{q1, q2+ 1, q3+ 2, . . . , qr + r − 1} = {2s1, . . . , 2sk, 2t1+ 1, . . . , 2tl + 1}

(as unordered lists). Now we define the content of q to be the unordered list

content(q)= {s1, . . . , sk, t1, . . . , tl}.

We now state the Barbasch–Vogan algorithm [1982] for the case g= so2n+1 in
purely combinatorial terms:

Algorithm:

Input: a = (a1, . . . , an,−an, . . . ,−a1) a skew-symmetric string of integers.

Step 1: Calculate q = part(RS(a1, . . . , an,−an, . . . ,−a1)).

Step 2: Calculate content(q).
Let (u1 ≤ · · · ≤ u2k+1) be the sorted list with the same entries as content(q).
For i = 1, . . . , k+ 1 let si = u2i−1.
For i = 1, . . . , k let ti = u2i .

Step 3: Form the list (2s1+ 1, . . . , 2sk+1+ 1, 2t1, . . . , 2tk).
In either case, let (v1 < · · ·< vk) be this list after sorting.

Output: BV(a)= q ′ = (v1, v2− 1, . . . , v2k+1− 2k).

The modified version is denoted by BV′ and works in exactly the same way as
BV, except that in Step 1 it calculates RS(a1, . . . , an, 0,−an, . . . ,−a1) instead of
RS(a1, . . . , an,−an, . . . ,−a1).

Domino tableaux. We require some facts about domino tableaux, which we collate
below.

There are two types of domino tableaux: those with an even number of boxes
and those with an odd number of boxes. A domino tableau with an even number of
boxes is a Young diagram that has been tiled with 2× 1 and 1× 2 dominoes, where
each domino is labelled with a positive integer, such that the rows are increasing
and the columns are decreasing. A domino tableau with an odd number of boxes is
the same as a domino tableau with an even number of boxes, except it also has a
1× 1 box labelled with 0, which must necessarily occur in the lower-left position.
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For example,

1
2

4

3

and

0 1

2 3

are domino tableaux.
Given a domino tableau R, we let part(R) denote the partition underlying R, i.e.,

the partition given by the row lengths of R. We say that a partition has domino
shape if it is the underlying partition of a domino tableau.

The following lemma is straightforward to prove by induction:

Lemma A.1. Let p= (p1 ≤ p2 ≤ · · · ≤ pm) be a partition, where p1 may be 0 and
m is odd. Choose r1, . . . , rk and s1, . . . , sl so that

{p1, p2+ 1, . . . , pm +m− 1} = {2r1, . . . , 2rk, 2s1+ 1, . . . , 2sl + 1}

(as unordered lists). If p has domino shape and has an even number of boxes, then
k = l + 1. If p has domino shape and has an odd number of boxes, then k+ 1= l.

Let T be a tableau whose boxes are labelled by the integers−n, . . . ,−1, 1, . . . , n
or the integers −n, . . . ,−1, 0, 1, . . . , n. We recall an algorithm DT, which takes
as input such a tableau and outputs a domino tableau; it was defined in [Barbasch
and Vogan 1982]. To define DT(T ), first note that −n must occur in the lower-left
corner of T . Swap −n with the smaller of its neighbours that lie above or to the
right of −n. Continue swapping −n with its smaller neighbour that is either above
or right of it. If the last number that −n is swapped with is not n then we say that
DT(T ) is undefined. Otherwise, replace the squares with −n and n with a domino
containing n. Now repeat this procedure for 1− n, 2− n, . . . ,−1, treating any
squares that have been replaced with dominoes as if they were not present. If for
any i the last number that −i is replaced with is not i then DT(T ) is undefined.
Otherwise, we eventually get a domino tableau.

For example, suppose

T = RS(−2,−3, 1, 0,−1, 3, 2)=

–3 –1 2

–2 0 3

1

Now, when we apply the above algorithm we first swap −3 with −2, then with 0,
then with 3. Now, replace the boxes containing 3 and−3 with a domino containing 3.
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This results in the following diagram:

–2 –1 2

0 3

1

Now, −2 first swaps with −1, then 2, which results in the following diagram:

–1 2

0 3

1

Finally, −1 swaps with 0, then 1, and the resulting domino tableau is

(A.2) DT(T )=

0 2

3
1

Let Wn denote the Weyl group of type Bn acting on {±1, . . . ,±n} in the natural
way. Then the image of (−n, . . . ,−1, 1, . . . , n) under the action of some σ ∈Wn

is called a signed permutation of (−n, . . . ,−1, 1, . . . , n). A signed permutation of
(−n, . . . ,−1, 0, 1, . . . , n) is defined similarly.

The next lemma follows from Proposition 2.3.3 and Theorem 4.1.1 in [van
Leeuwen 1996]:

Lemma A.3. Let a = (a1, . . . , an,−an, . . . ,−a1) be a signed permutation of
(−n, . . . ,−1, 1, . . . , n) and b = (b1, . . . , bn, 0,−bn, . . . ,−b1) a signed permu-
tation of (−n, . . . ,−1, 0, 1, . . . , n). Then DT(RS(a)) and DT(RS(b)) are defined.

We may identify Wn with the signed permutations of (−n, . . . ,−1, 1, . . . , n) or
the signed permutations of (−n, . . . ,−1, 0, 1, . . . , n). Under this identification, we
consider the algorithms defined in [Garfinkle 1990, §2] to map a signed permutation
of (−n, . . . ,−1, 1, . . . , n) or (−n, . . . ,−1, 0, 1, . . . , n) to a domino tableau. We
denote these versions of Garfinkle’s algorithm by G0 and G1 respectively.

Proposition A.4 [van Leeuwen 1996, Proposition 4.2.3].

(i) If w is a signed permutation of (−n, . . . ,−1, 1, . . . , n), then DT(RS(w)) =
G0(w).

(ii) If w is a signed permutation of (−n, . . . ,−1, 0, 1, . . . , n), then DT(RS(w))=
G1(w).
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Our aim is to show that part(RS(a1, . . . , an,−an, . . . ,−a1)) has the same con-
tent as part(RS(a1, . . . , an, 0,−an, . . . ,−a1)). We do this by exploiting the results
in [Pietraho 2010], which explain how to relate G0(a1, . . . , an,−an, . . . ,−a1) and
G1(a1, . . . , an, 0,−an, . . . ,−a1). To explain these results, we need to define the
cycles of a standard domino tableau. This requires a few other definitions as well.

We define coordinates on a Young diagram by labelling its rows and columns.
We declare that the bottom row is row 1, the row above the bottom is row 2, and
so on. We declare that the left most column is column 1, the column to its right is
column 2, and so on. Now we say the box in position (i, j) is fixed if i + j is odd
and the diagram has an even number of boxes or if i + j is even and the diagram
has an odd number of boxes.

Let R be a domino tableau, and let D(k) be a domino with label k in R. If
the fixed coordinate of D(k) occurs in the lower box or right box of D(k), let E
denote the square below and to the right of the fixed coordinate of D(k). If the
fixed coordinate of D(k) occurs in the upper box or left box of D(k), let E denote
the square above and to the left of the fixed coordinate of D(k). We label E with
the integer m determined via

m =


l if E is a square in R and l is the label of E’s square in R,
−1 if either coordinate of E is 0,
∞ if E lies above or to the right of R.

Now, we define D′(k) to be a domino containing two squares, one in the fixed
position of D(k) and the other adjacent to E and such that the subdiagram containing
D′(k) and E has decreasing columns and increasing rows.

For example, if

R = 1 2
3

then D′(1) is a domino occupying positions (2, 1) and (3, 1), D′(2) is a domino
occupying positions (1, 2) and (1, 3), and D′(3) is a domino occupying positions
(1, 4) and (1, 5).

Suppose a domino tableau is labelled with {1, . . . , n}. We use this to generate
an equivalence relation on {1, . . . , n} via i ∼ j if D( j) and D′(i) share a box. The
cycles of a domino tableau are the equivalence classes of this equivalence relation.
For example, if R is as above, then the cycles of R are {1} and {2, 3}.

If R is a domino tableau with an even number of boxes and c is a cycle of R,
then we can define a new domino tableau R′ =MT(R, c) by replacing D(k) with
D′(k) for every k ∈ c. This will remove one box and add one box to the underlying
Young diagram of R. If the box removed is in position (1, 1), then we put a box
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with 0 in position (1, 1) of R′, so that we do in fact get another domino tableau.
For example, if R is as above, then

MT(R, {1})=

0

1

2
3

and

MT(R, {2, 3})= 1
2 3

Observe that the operator MT removes a box and adds a box to the Young
diagram underlying R, and that the removed box is either in position (1, 1), or is a
removable box of R; that is, if it is removed, you still have a valid Young diagram.

A key feature of MT is that is does not change the content of the underlying
partition:

Theorem A.5. Let R be a domino tableau with an even number of boxes, let c be
a cycle of R, and let p = part(R) and q = part(MT(R, c)). Then content( p) =
content(q).

Proof. First we rule out the case that p has an odd number (say, 2m+ 1) of parts
and q has one more part than p. Suppose for a contradiction that q has 2m+2 parts,
so the top row of MT(R, c) has one box. Let D′(k) be the domino in MT(S, c)
that covers this box. So the box in the fixed position of D′(k) must be the box in
position (2m+ 1, 1), which is a contradiction since 2m+ 1+ 1 is even.

Next we rule out the case that p has an even number (say, 2m) of parts and q
has one less part than p. Suppose this is the case, so the top row p has length one,
so there must be a domino D(k) which occupies positions (2m− 1, 1) and (2m, 1)
of p. Now, (2m, 1) is the fixed position of this domino, so D′(k) will also have a
box in position (2m, 1); hence, q has at least 2m parts, which is a contradiction.
Thus we have established that the number of integers in content(q) is the same as
the number of integers in content( p).

Let p= (p1 ≤ · · · ≤ p2m+1), where p1 may be 0. Now we consider the case that
MT(R, c) has the same number of boxes as R. Let q = (q1 ≤ · · · ≤ q2m+1), where
q1 may be 0. So we must have that qi = pi except for i = j and i = k for some
integers j, k where j 6= k, and q j = p j + 1 and qk = pk − 1. By Lemma A.1, we
have that one of p j + j −1, pk+ k−1 must be even and one must be odd, because
otherwise (q1, q2 + 1, . . . , q2m+1 + 2m) would not have one more even element
than odd elements. The box at position ( j, p j ) of MT(R, c) is the box that gets
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added to the Young diagram of R. Thus, this box is a box that is in D′(k) but not
in D(k). This implies that this box is not the box in fixed position in D′(k); thus,
p j + j is even, so p j + j − 1 must be odd, and pk + k − 1 is even. This implies
that p and q have the same content.

Now we consider the case that MT(R, c) has one more box than R. Let q =
(q1 ≤ · · · ≤ q2m+1), where q1 may be 0. So we must have that qi = pi except for
i = j for some integer j , where q j = p j + 1. Note that p j + j − 1 must be even
since (q1, q2 + 1, . . . , q2m+1 + 2m) must have one more odd number than even
number. This implies that p and q have the same content. �

For a list of cycles c1, . . . , cm of a domino tableau R with an even number of
boxes, let Ri =MT(Ri−1, ci ), where R0 = R. Now let MT(R, c1, . . . , cm)= Rm .

The following theorem is a less specific version of [Pietraho 2010, Theorem 3.1]:

Theorem A.6. Let

R = G0(a1, . . . , an,−an, . . . ,−a1)

and
R′ = G1(a1, . . . , an, 0,−an, . . . ,−a1),

where (a1, . . . ,an,−an, . . . ,−a1) is a signed permutation of (−n, . . . ,−1,1, . . . ,n).
Then there exist cycles c1, . . . , cm of R such that R′ =MT(R, c1, . . . , cm).

Now we get the following corollary:

Corollary A.7. Let a= (a1, . . . , an,−an, . . . ,−a1) be a skew-symmetric string of
integers. Then BV(a)= BV′(a).

Proof. This follows from Proposition A.4 and Theorems A.5 and A.6 when a is a
signed permutation of (−n, . . . ,−1, 1, . . . , n). The general case follows because
q = RS(a1, . . . , an,−an, . . . ,−a1) and q ′ = RS(a1, . . . , an, 0,−an, . . . ,−a1) de-
pend only on the relative order of the ai , so we may replace a by a signed permutation
without altering q or q ′. �
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[Miličić and Soergel 1997] D. Miličić and W. Soergel, “The composition series of modules in-
duced from Whittaker modules”, Comment. Math. Helv. 72:4 (1997), 503–520. MR 99e:17010
Zbl 0956.17004

[Pietraho 2010] T. Pietraho, “A relation for domino Robinson–Schensted algorithms”, Ann. Comb.
13:4 (2010), 519–532. MR 2011e:05280 Zbl 1229.05283

[Premet 2007] A. Premet, “Enveloping algebras of Slodowy slices and the Joseph ideal”, J. Eur. Math.
Soc. (JEMS) 9:3 (2007), 487–543. MR 2008c:17006 Zbl 1134.17307

[Skryabin 2002] S. Skryabin, “A category equivalence”, appendix (pp. 50–53) to A. Premet’s “Special
transverse slices and their enveloping algebras”, Adv. Math. 170:1 (2002), 1–55.

Received November 22, 2012. Revised October 15, 2013.

JONATHAN BROWN

DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE, AND STATISTICS

SUNY ONEONTA

ONEONTA, NY 13820
UNITED STATES

Jonathan.Brown@oneonta.edu

SIMON M. GOODWIN

SCHOOL OF MATHEMATICS

UNIVERSITY OF BIRMINGHAM

EDGBASTON

BIRMINGHAM

B15 2TT
UNITED KINGDOM

s.m.goodwin@bham.ac.uk

http://dx.doi.org/10.1016/1385-7258(79)90036-2
http://msp.org/idx/mr/81a:20052
http://msp.org/idx/zbl/0435.20021
http://dx.doi.org/10.1007/s000140050031
http://dx.doi.org/10.1007/s000140050031
http://msp.org/idx/mr/99e:17010
http://msp.org/idx/zbl/0956.17004
http://dx.doi.org/10.1007/s00026-009-0034-9
http://msp.org/idx/mr/2011e:05280
http://msp.org/idx/zbl/1229.05283
http://dx.doi.org/10.4171/JEMS/86
http://msp.org/idx/mr/2008c:17006
http://msp.org/idx/zbl/1134.17307
http://dx.doi.org/10.1006/aima.2001.2063
http://dx.doi.org/10.1006/aima.2001.2063
mailto:Jonathan.Brown@oneonta.edu
mailto:s.m.goodwin@bham.ac.uk


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 269 No. 1 May 2014

1The asymptotic behavior of Palais–Smale sequences on manifolds with
boundary

SÉRGIO ALMARAZ

19The cup subalgebra of a II1 factor given by a subfactor planar algebra is
maximal amenable

ARNAUD BROTHIER

31Representation theory of type B and C standard Levi W -algebras
JONATHAN BROWN and SIMON M. GOODWIN

73New invariants for complex manifolds and rational singularities
RONG DU and YUN GAO

99Homogeneity groups of ends of open 3-manifolds
DENNIS J. GARITY and DUŠAN REPOVŠ

113On the concircular curvature of a (κ, µ, ν)-manifold
FLORENCE GOULI-ANDREOU and EVAGGELIA MOUTAFI

133Genuses of cluster quivers of finite mutation type
FANG LI, JICHUN LIU and YICHAO YANG

149Taut foliations in knot complements
TAO LI and RACHEL ROBERTS

169On the set of maximal nilpotent supports of supercuspidal representations
QIN YUJUN

199The natural filtrations of finite-dimensional modular Lie superalgebras of
Witt and Hamiltonian type

KELI ZHENG, YONGZHENG ZHANG and WEI SONG

219Free Brownian motion and free convolution semigroups: multiplicative
case

PING ZHONG

Pacific
JournalofM

athem
atics

2014
Vol.269,N

o.1


	1. Introduction
	2. Overview of finite W-algebras
	2A. Definition of the finite W-algebra U(g,e)
	2B. Skryabin's equivalence and Losev's map of primitive ideals
	2C. Highest weight theory and Losev's map

	3. Combinatorics of s-tables and finite W-algebras
	3A. Realizations of so2n+1 and sp2n
	3B. Standard Levi nilpotent elements and symmetric pyramids
	3C. Tables and s-tables
	3D. The component group

	4. Some combinatorics for s-tables
	4A. The Robinson–Schensted algorithm
	4B. Row swapping
	4C. The Barbasch–Vogan algorithm
	4D. The -equivalence

	5. The three row case for g= sp2n
	6. The three row case for g= so2n+1
	7. The general case
	7A. The component group action
	7B. Proof of main theorem

	Appendix: An alternative version of the Barbasch–Vogan algorithm
	Acknowledgements
	References
	
	

