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ON THE CONCIRCULAR CURVATURE
OF A (κ, µ, ν)-MANIFOLD

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We study (κ,µ,ν)-contact metric 3-manifolds (a notion introduced by Koufo-
giorgos, Markellos and Papantoniou) that are Ricci flat, or are Einstein but
not Sasakian, or satisfy∇Z= 0, where Z is the concircular curvature tensor,
or satisfy Z(ξ, X)·Z= 0, where ξ is the Reeb field, or satisfy Z(ξ, X)·S= 0,
where S is the Ricci tensor, or finally satisfy R(ξ, X) · Z = 0, where R is the
Riemannian curvature tensor.

1. Introduction

A contact metric manifold (M, ξ) is Sasakian if and only if

(1-1) R(X, Y )ξ = η(Y )X − η(X)Y = R0(X, Y )ξ,

where

(1-2) R0(X, Y )U = g(Y,U )X − g(X,U )Y, X, Y, U ∈ X (M).

There exist contact metric manifolds that satisfy the condition R(X, Y )ξ = 0; for
example, the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric satisfying this condition. D. E. Blair, Th. Koufogiorgos and B. Papantoniou
[Blair et al. 1995] generalized both this condition and the Sasakian case introducing
the (κ, µ)-nullity distribution on a contact metric manifold

N (κ, µ) : p→ Np(κ, µ)= {U ∈ Tp M | R(X, Y )U = (κ I +µh)R0(X, Y )U }

for all X, Y ∈ X (M), and (κ, µ) ∈ R2. A contact metric manifold M2n+1 with
ξ ∈ N (κ, µ) is called a (κ, µ)-contact metric manifold. In particular we have

(1-3) R(X, Y )ξ = (κ I +µh)R0(X, Y )ξ, X, Y ∈ X (M),

with κ ≤ 1 and if κ = 1 the structure is Sasakian. The full classification of
these manifolds was given by E. Boeckx [2000]. If µ = 0 we have the κ-nullity
distribution and if ξ ∈ N (κ) we have a N (κ)-contact metric manifold. Koufogiorgos
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and Ch. Tsichlias [2000] introduced the generalized (κ, µ)-contact metric mani-
folds, where κ and µ are real functions, and they gave several examples. Finally,
the (κ, µ, ν)-contact metric manifolds have been introduced by Koufogiorgos,
M. Markellos and V. Papantoniou [Koufogiorgos et al. 2008] where κ, µ, ν are
smooth functions and the curvature tensor satisfies, for every X, Y ∈ X (M), the
condition

(1-4) R(X, Y )ξ = κ
(
η(Y )X − η(X)Y

)
+µ

(
η(Y )h X − η(X)hY

)
+ ν

(
η(Y )φh X − η(X)φhY

)
.

D. Perrone defined a H -contact metric manifold as a (2n+1)-dimensional contact
metric manifold M whose characteristic vector field (or the Reeb vector field) ξ is
a harmonic vector field. In [Perrone 2004], it was proved that M(η, ξ, φ, g) is an
H -contact metric manifold if and only if ξ is an eigenvector of the Ricci operator
Q. The class of H -contact metric manifolds includes several classes of contact
metric manifolds such as Sasakian, η-Einstein, or even generalized (κ, µ)-contact
metric manifolds. Perrone [2003] also showed that a contact metric 3-manifold
M is a generalized (κ, µ)-contact metric manifold on an everywhere dense open
subset of M if and only if its Reeb vector field ξ determines a harmonic map. In
turn, Koufogiorgos, Markellos and Papantoniou proved that the (κ, µ, ν)-condition
on a 3-dimensional contact metric manifold is equivalent to the Reeb vector field
ξ being a harmonic vector field, at least on an open dense subset of the manifold
[Koufogiorgos et al. 2008]. They proved also that these manifolds exist only in the
dimension 3, whereas such a manifold does not exist in dimension greater than 3;
hence, we restrict ourselves to dimension 3.

On the other hand, many geometers have studied the contact manifolds of constant
curvature and their generalizations like the locally symmetric spaces (∇R = 0),
Einstein spaces, the semisymmetric spaces (R(ξ, X) · R = 0), Ricci semisymmetric
spaces (R(X, Y ) · S = 0), Weyl semisymmetric spaces (R(X, Y ) ·C = 0), where
R(X, Y ) acts as a derivation respectively on R, S, C etc. For example, a contact
metric manifold of constant curvature is necessarily a Sasakian manifold of constant
curvature +1 or is 3-dimensional and flat [Blair 2002, pages 98–99; Olszak 1979].
S. Tanno [1969] showed that a semisymmetric K -contact manifold M2n+1 is locally
isometric to the unit sphere S2n+1(1), and that for a K -contact manifold M2n+1

the following conditions are equivalent: (i) M is an Einstein manifold; (ii) M is
Ricci-symmetric, that is, its Ricci tensor is parallel; (iii) M is Ricci semisymmetric,
i.e., it satisfies the condition R(X, Y ) · S = 0; (iv) M is ξ -Ricci semisymmetric,
that is, R(ξ, Y ) · S = 0.

Perrone [1992] showed that if ξ belongs to the κ-nullity distribution and if
R(ξ, Y )·S=0, then the contact metric manifold is locally isometric to En+1

×Sn(4)
or is Sasaki–Einstein. M. M. Tripathi [2006] proved that a contact metric manifold
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M2n+1 such that ξ belongs to the (κ, µ)-nullity distribution and R(ξ, Y )·S vanishes
is either flat and 3-dimensional, or is locally isometric to En+1

× Sn(4), or is a
Sasaki–Einstein manifold. Finally, we studied in [Gouli-Andreou et al. 2012],
together with Ph. J. Xenos, the (κ, µ, ν)-contact 3-manifolds in which certain
curvature conditions are satisfied; for instance the Ricci tensor S is cyclic parallel,
or η-parallel or R(ξ, Y ) · S = 0.

After the curvature tensor R and the Weyl conformal curvature tensor C , the
concircular curvature tensor Z is the next most important (1,3)-type curvature
tensor. It is defined on a Riemannian manifold (Mn, g) by Yano [1940a] (see also
[Yano and Bochner 1953]) as

(1-5) Z = R−
r

n(n− 1)
R0,

where R is the curvature tensor, R0 is given by (1-2) and r the scalar curvature.
We remark that Riemannian manifolds with vanishing Z are of constant curvature;
thus the concircular curvature tensor is a measure of the failure of a Riemannian
manifold to be of constant curvature. Z is an invariant of concircular transformations,
which have important geometric and algebraic applications; see [Yano 1940a;
1940b; 1940c; 1940d; 1942; Vanhecke 1977]. Hence, Blair, J. S. Kim and Tripathi
[Blair et al. 2005] started a study of the concircular curvature tensor on M2n+1

contact metric manifolds. They classified N (κ)-contact metric manifolds satisfying
Z(ξ, X) · Z = 0, Z(ξ, X) · R = 0 or R(ξ, X) · Z = 0. Similarly, Tripathi and Kim
[2004] classified M2n+1 (κ, µ)-contact manifolds with Z(ξ, X) · S = 0.

This article is motivated by these studies, and is organized in the following way.
In Section 2 we give some preliminaries on contact manifolds and the concircular
curvature tensor. In Section 3 we present a brief account of (κ, µ, ν)-contact 3-
manifolds while Section 4 contains some basic results. Finally, in Section 5 we
study (κ, µ, ν)-contact metric 3-manifolds M satisfying any of these conditions:

(i) M is Ricci flat.

(ii) M is Einstein but not Sasakian.

(iii) ∇Z = 0, where Z is the concircular curvature tensor.

(iv) Z(ξ, X) · Z = 0, where Z(ξ, X) acts as a derivation on Z .

(v) Z(ξ, X) · S = 0, where Z(ξ, X) acts as a derivation on S.

(vi) R(ξ, X) · Z = 0, where R(ξ, X) acts as a derivation on Z .

2. Preliminaries

By a contact manifold we mean a smooth manifold M2n+1, endowed with a global
1-form η such that η∧ (dη)n 6= 0 everywhere. Then there is an underlying contact
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metric structure (η, ξ, φ, g) where g is a Riemannian metric (the associated metric),
φ a global tensor of type (1,1) and ξ a unique global vector field (the characteristic
or Reeb vector field). These structure tensors satisfy the equations

φ2
=−I + η⊗ ξ, η(X)= g(X, ξ), η(ξ)= 1,(2-1)

dη(X,Y )= g(X,φY )=−g(φX,Y ), g(φX,φY )= g(X,Y )− η(X)η(Y )(2-2)

for all X, Y ∈X (M). The associated metrics can be constructed by the polarization
of dη on the contact subbundle defined by η = 0. Denoting Lie differentiation by
L, we define for all X ∈ X (M) the (1,1)-tensor field

h X = 1
2(Lξφ)X.

We give some basic equations for these tensor fields:

(2-3) φξ = hξ = 0, η ◦φ = η ◦ h = 0, ∇ξφ = 0,

Tr h = Tr(hφ)= 0, hφ =−φh.

If X is an eigenvector of h corresponding to the eigenvalue λ, then φX is also an
eigenvector of h corresponding to the eigenvalue −λ since h anticommutes with φ:

h X = λX ⇒ hφX =−λφX,(2-4)

∇Xξ =−φX −φh X,(2-5)

(∇Xη)(Y )=−g(φX +φh X, Y ),(2-6)

where ∇ is the Levi-Civita connection of g. We also denote by R the corresponding
Riemann curvature tensor field given by R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ], by S the
Ricci tensor field of type (0, 2), by Q the Ricci operator, which is the corresponding
endomorphism field, by r the scalar curvature and by H the φ-sectional curvature.

A contact metric manifold for which ξ is a Killing field is called a K-contact
manifold. A contact metric manifold is K-contact if and only if h = 0. A contact
structure on M2n+1 implies an almost complex structure on the product manifold
M2n+1

×R. If this structure is integrable, then the contact metric manifold is said
to be Sasakian. A K-contact structure is Sasakian only in dimension 3, and this
fails in higher dimensions. More details on contact manifolds can be found in [Blair
2002].

We restrict ourselves to the 3-dimensional case. Let (M, φ, ξ, η, g) be a 3-
dimensional contact metric manifold and U the open subset of points p ∈ M where
h 6=0 in a neighborhood of p and U0 the open subset of points p∈M such that h=0
in a neighborhood of p. For any point p ∈U ∪U0 there exists a local orthonormal
basis {e, φe, ξ} of smooth eigenvectors of h in a neighborhood of p. On U we put
he = λe, where λ is a nonvanishing smooth function which is supposed positive.
From (2-4) we have hφe =−λφe.
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Lemma 2.1 [Gouli-Andreou and Xenos 1998]. On U we have

∇ξe = aφe, ∇ee = bφe, ∇φee =−cφe+ (λ− 1)ξ,

∇ξφe =−ae, ∇eφe =−be+ (1+ λ)ξ, ∇φeφe = ce,

∇ξξ = 0, ∇eξ =−(1+ λ)φe, ∇φeξ = (1− λ)e,

where a is a smooth function and

(2-7)
b = 1

2λ
[(φe · λ)+ A] with A = S(ξ, e),

c = 1
2λ
[(e · λ)+ B] with B = S(ξ, φe).

Lemma 2.1 and the formula [X, Y ] = ∇X Y −∇Y X yield

(2-8)

[e, φe] =∇eφe−∇φee =−be+ cφe+ 2ξ,

[e, ξ ] =∇eξ −∇ξe =−(a+ λ+ 1)φe,

[φe, ξ ] =∇φeξ −∇ξφe= (a− λ+ 1)e.

Definition 2.2. Let M3 be a 3-dimensional contact metric manifold and let h =
λh+− λh− be the spectral decomposition of h on U . If

∇h−X h−X = [ξ, h+X ]

for all vector fields X on M3 and all points of an open subset W of U , and if h = 0
on the points of M3 which do not belong to W , then the manifold is said to be a
semi-K contact manifold.

From Lemma 2.1 and the relations (2-8), the condition above leads to [ξ, e] = 0
when X = e and to ∇φeφe= 0 when X = φe. Hence on a semi-K contact manifold
we have a+λ+1= c= 0. If we apply the deformation e→ φe, φe→ e, ξ →−ξ,
λ→−λ, b→ c and c→ b then the contact metric structure remains the same.
Hence the condition for a 3-dimensional contact metric manifold to be semi-K
contact is equivalent to a− λ+ 1= b = 0.

Definition 2.3 [Blair 2002, page 105; Okumura 1962]. A contact metric manifold
M is said to be η-Einstein if the Ricci tensor S satisfies the condition S=αg+βη⊗η,
where α and β are smooth functions on M . In particular, if β = 0, then M becomes
an Einstein manifold.

Definition 2.4. A Riemannian manifold (Mn, g) is called Ricci flat if its Ricci
tensor vanishes identically.

Since the Ricci operator Q in dimension 3 determines completely the curvature
of the contact manifold, the vanishing of Q implies the vanishing of the Riemannian
curvature tensor. Hence, the class of Ricci flat manifolds is a hyperclass of the flat
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manifolds, or equivalently a flat manifold is certainly Ricci flat, while a Ricci flat
manifold is an Einstein manifold.

Definition 2.5. A Riemannian manifold (Mm, g),m≥ 3, is called pseudosymmetric
in the sense of R. Deszcz [1992] if at every point of M the curvature tensor R satisfies
the equation R(X, Y )·R= L{(X∧Y )·R} where (X∧Y )Z = g(Y, Z)X−g(Z , X)Y
for all vectors fields X, Y, Z on M , the dot means that R(X, Y ) and X ∧ Y act as
derivations on R, and L is a smooth function.

If L is constant, then M is a pseudosymmetric manifold of constant type while
if L = 0 then M is a semisymmetric manifold.

Definition 2.6. A Riemannian manifold (Mn, g) is called concircularly symmetric
if the concircular tensor Z satisfies the condition ∇Z = 0.

All manifolds are assumed connected and all manifolds and maps are assumed
smooth (class C∞) unless otherwise stated. Finally, differentiation will be denoted
by “( )”.

3. (κ, µ, ν)-contact metric manifolds

A (κ, µ, ν)-contact metric manifold is defined in [Koufogiorgos et al. 2008] by (1-4)
where κ, µ, ν are smooth functions on M . If ν = 0 we have a generalized (κ, µ)-
contact metric manifold [Koufogiorgos and Tsichlias 2000] and if additionally
κ, µ are constants then the manifold is a contact metric (κ, µ)-space [Blair et al.
1995; Boeckx 2000]. Moreover in [Koufogiorgos et al. 2008] and [Koufogiorgos
and Tsichlias 2000] it is proved respectively that for a (κ, µ, ν) or a generalized
(κ, µ)-contact metric manifold M2n+1 of dimension greater than 3, the functions
κ, µ are constants and ν is the zero function. We recall some lemmas and equations:

Lemma 3.1 [Koufogiorgos et al. 2008]. For every point p of a (κ, µ, ν)-contact
metric manifold M2n+1 with κ(p) < 1, there exists an open neighborhood U of p
and orthonormal local vector fields X i , φX i , ξ , i = 1, . . . , n, defined on U such
that

h X i = λX i , hφX i =−λφX i , hξ = 0

for i = 1, . . . , n, where λ=
√

1− κ .

From now on, we will call the vector fields of Lemma 3.1 a local h-basis.
On any (κ, µ, ν)-contact metric manifold we have

h2
= (κ − 1)φ2, κ ≤ 1,(3-1)

(ξ · κ)= 2ν(κ − 1).(3-2)
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For the 3-dimensional case we have for the Ricci operator Q

Q =
( 1

2r − κ
)
I +

(
−

1
2r + 3κ

)
η⊗ ξ +µh+ νφh,(3-3)

Qφ−φQ = 2νh− 2µφh,(3-4)

r = 4κ + 2H,(3-5)

where r is the scalar curvature and H is the φ-sectional curvature. From now on, we
suppose κ < 1 everywhere on M3 and we use X, Y,U to denote arbitrary elements
of X (M). We have

(3-6) r = 1
λ
1λ− (ξ · ν)−

‖grad λ‖2

λ2 + 2(κ −µ),

where 1 is the Laplace operator and for the gradient of a function f we have

g(grad f, X)= X ( f )= d f (X),(3-7)

(ξ · r)= 2(ξ · κ), (ξ · H)=−(ξ · κ).(3-8)

For a 3-dimensional (κ, µ)-contact metric manifold, that is, for constant κ , µ we
have (see [Blair et al. 1995] and [Markellos 2009])

(3-9) r = 2(κ −µ),

R(X, Y )U = µ[g(Y,U )h X − g(X,U )hY + g(hY,U )X − g(h X,U )Y ]
(3-10)

+ ν[g(Y,U )φh X − g(X,U )φhY + g(φhY,U )X − g(φh X,U )Y ]

+ (κ − H)[g(Y,U )η(X)− g(X,U )η(Y )]ξ

+ (κ − H)[η(Y )η(U )X − η(X)η(U )Y ]

+ H [g(Y,U )X − g(X,U )Y ],

(∇X h)Y =− 1
2(1−κ)g(h X, Y ) grad κ − 1

2(1−κ)g(h X, φY )φ(grad κ)(3-11)

+ [(1− κ)g(X, φY )+ g(h X, φY )− νg(h X, Y )]ξ

+ η(Y )[(κ − 1)φX + hφX ] + η(X)[µhφY + νhY ],

(3-12) (∇Xφ)Y = g(X + h X, Y )ξ − η(Y )(X + h X),

while (∇Xφh)Y = (∇Xφ)hY +φ(∇X h)Y is calculated from (3-11) and (3-12):

(∇Xφh)Y =[g(X + h X, hY )+ νg(h X, φY )]ξ(3-13)

−
1

2(1−κ)g(h X, Y )φ(grad κ)+ 1
2(1−κ)g(h X, φY ) grad κ

+ η(Y )[(κ − 1)φ2 X + h X ] + η(X)[µhY + νφhY ].
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From (3-3) and (3-5) we calculate the Ricci tensor S(X, Y )= g(Q X, Y ):

(3-14) S(X, Y )= (κ + H)g(X, Y )+ (κ − H)η(X)η(Y )+µg(h X, Y )
+ νg(φh X, Y );

hence,

(3-15) S(h X, Y )= (κ + H)g(h X, Y )−µ(κ − 1)[g(X, Y )− η(X)η(Y )]
+ ν(κ − 1)g(X, φY ),

(3-16) S(φh X, Y )= (κ + H)g(φh X, Y )− ν(κ − 1)[g(X, Y )− η(X)η(Y )]
+µ(κ − 1)g(φX, Y ).

4. Some auxiliary results

Equation (1-5) gives for the 3-dimensional case and for all X, Y,U ∈ X (M)

(4-1) Z(X, Y )U = R(X, Y )U − 1
6r R0(X, Y )U,

where R0 is given by (1-2) and hence

(4-2) R0(ξ, X)Y = g(X, Y )ξ − η(Y )X,

while (1-4) for a (κ, µ, ν)-contact metric manifold is written in the form

(4-3) R(X, Y )ξ = (κ I +µh+ νφh)R0(X, Y )ξ,

which is equivalent to

(4-4) R(ξ, X)= R0(ξ, (κ I +µh+ νφh)X).

From (4-3) we get

(4-5) R(ξ, X)ξ = κ(η(X)ξ − X)−µh X − νφh X.

Proposition 4.1. In a (κ, µ, ν)-contact metric manifold M3, the concircular curva-
ture tensor Z satisfies

Z(X, Y )ξ =
((
κ− 1

6r
)
I +µh+ νφh

)
R0(X, Y )ξ,(4-6)

Z(ξ, X)=
(
κ− 1

6r
)
R0(ξ, X)+µR0(ξ, h X)+ νR0(ξ, φh X).(4-7)

Consequently, we have

Z(ξ, X)ξ =
(
κ− 1

6r
)
(η(X)ξ − X)−µh X − νφh X,(4-8)

η(Z(X, Y )ξ)= 0,(4-9)

η(Z(ξ, X)Y )=
(
κ− 1

6r
)(

g(X,Y )−η(X)η(Y )
)
+µg(h X,Y )+νg(φh X,Y ).(4-10)
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Proof. Equations (4-1), (4-3), (4-4) lead us to conclude equations (4-6) and (4-7).
Equation (4-7) implies (4-8) while (4-6) and (4-7) imply (4-9) and (4-10) respectively
by virtue of (2-3). �

Proposition 4.2. In a (κ, µ, ν)-contact metric manifold M3 we have

(4-11) S(Z(ξ, X)Y, ξ)= 2κ
(
κ− 1

6r
)
(g(X, Y )− η(X)η(Y ))+ 2κµg(h X, Y )

+2κνg(φh X, Y ),

(4-12) S(Z(ξ, X)ξ, Y )= 2κ
(
κ− 1

6r
)
η(X)η(Y )−

(
κ− 1

6r
)
S(X, Y )

−µS(h X, Y )− νS(φh X, Y ).

Proof. For a (κ, µ, ν)-contact metric manifold M3 we obtain from (3-14)

(4-13) S(X, ξ)= 2κη(X).

From (4-7), (4-10), (4-13) we get (4-11), while (4-8) and (4-13) yield (4-12). �

Proposition 4.3. Let M3 be a non-Sasakian (κ, µ, ν)-contact metric manifold.

(i) If M3 satisfies

ν(κ − H)= 0,(4-14)

µ(κ − H)= 0,(4-15)
1
3(κ − H)2+ (κ − 1)(µ2

+ ν2)= 0,(4-16)

then the manifold is either flat or locally isometric to SU(2) or SL(2, R), where
these two Lie groups are equipped with a left invariant metric.

(ii) If M3 satisfies

νH = 0,(4-17)

µH = 0,(4-18)

κ(κ − H)+ (κ − 1)(µ2
+ ν2)= 0,(4-19)

then the manifold is a generalized (κ, µ)-contact metric manifold with (ξ ·µ)= 0.

Proof. (i) Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold with κ < 1
everywhere. We suppose that there is a point p ∈ M where ν 6= 0. The continuity
of this function implies that there is a neighborhood Fp ⊆ M of p, where ν 6= 0
everywhere in Fp or by virtue of (4-14), κ − H = 0. Differentiating this equation
with respect to ξ and using (3-8) and (3-2) we conclude that κ = 1 everywhere in
Fp, which is a contradiction since Fp ⊆ M . Hence, ν = 0 everywhere in M and M
is a generalized (κ, µ)-contact metric manifold.

Similarly we suppose that there is a point p ∈ M where κ − H 6= 0. There is a
neighborhood Fp ⊆ M of p, where κ − H 6= 0 everywhere in Fp or by virtue of
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(4-15), µ= 0. Setting µ= ν = 0 in (4-16) we are led to 1
3(κ − H)2 = 0 which is a

contradiction in Fp. Hence κ − H = 0 everywhere in M and from (4-16), µ= 0.
Since in a generalized (κ, µ)-contact metric manifold the constancy of one of the
κ or µ implies the constancy of the other [Koufogiorgos and Tsichlias 2000], we
can conclude that κ is constant in this N (κ)-contact metric manifold. From (3-4)
and because µ= ν = 0 we get Qφ = φQ; by [Blair et al. 1990, Theorem 3.3] and
the main theorem of [Blair and Chen 1992] such a manifold is either Sasakian, flat,
locally isometric to a left invariant metric on the Lie group SU(2) with κ > 0, or
SL(2, R) with κ < 0. Finally, we can remark that the equations κ − H = 0 and
(3-5) give r = 6κ , κ < 1, and hence r is constant.

(ii) We suppose that there is a point p ∈ M where ν 6= 0. Then there is a
neighborhood Fp ⊆ M of p, where ν 6= 0 everywhere in Fp or by virtue of (4-17),
H = 0. Differentiating this equation with respect to ξ and using (3-8) and (3-2)
we conclude that κ = 1 everywhere in Fp, which is a contradiction since Fp ⊆ M .
Hence, ν = 0 everywhere in M and M is a generalized (κ, µ)-contact metric
manifold.

For (4-18), we suppose that there is a point p ∈ M where H 6= 0. There is a
neighborhood Fp ⊆ M of p, where H 6= 0 everywhere in Fp or by virtue of (4-18),
µ = 0. Since µ is constant, κ is also constant and hence from (3-5) and (3-9),
H = −κ −µ or more explicitly H = −κ . From (4-19) and because µ = ν = 0
we get κ = 0 and obviously H = 0, which is a contradiction in Fp. Hence H = 0
everywhere in M and from (4-19), κ2

+(κ−1)µ2
= 0. Differentiating this equation

with respect to ξ and by virtue of (3-2) and ν = 0 we conclude (ξ ·µ)= 0, while
(3-5) implies r = 4κ with κ < 1. �

Remark 4.4. The generalized (κ, µ)-contact metric manifolds in dimension 3 with
κ < 1 (equivalently λ 6= 0) and (ξ ·µ)= 0 have been studied by T. Koufogiorgos
and C. Tsichlias [2008]. They proved in [2008, Theorem 4.1] that at any point of
P ∈ M , precisely one of the following relations is valid: µ = 2(1+

√
1− κ), or

µ = 2(1−
√

1− κ), while there exists a chart (U,(x,y,z)) with P ∈ U ⊆ M such
that the functions κ , µ depend only on z and the tensors fields η, ξ , φ, g take a
suitable form. We can also add that such a manifold according to Definition 2.2 is
a semi-K contact manifold.

Theorem 4.5 [Blair 2002, page 101]. Let M2n+1 be a contact metric manifold satis-
fying the condition R(X, Y )ξ = 0. Then M2n+1 is locally isometric to En+1

× Sn(4)
for n > 1 and flat for n = 1.

5. Main results

Theorem 5.1. A non-Sasakian Ricci flat 3-dimensional (κ, µ, ν)-contact metric
manifold is flat.
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Proof. Since the manifold M is Ricci flat, from (4-13) we have

0= S(ξ, ξ)= 2κ,

or κ = 0. Then, (3-2) yields ν = 0, so M is a generalized (κ, µ)-contact metric
manifold with κ = 0. In a generalized (κ, µ)-contact metric manifold the constancy
of one of κ or µ implies the constancy of the other [Koufogiorgos and Tsichlias
2000], so µ is also constant. We set κ = ν = 0 in (3-14) and by virtue of (3-5) and
(3-9) we have

(5-1) S(X, Y )= µ[g(h X, Y )− g(X, Y )+ η(X)η(Y )]

for all X, Y ∈X (M). For any point p ∈ M we consider a local orthonormal h-basis
as in Lemma 3.1. In the last equation we set (i) X = Y = e and (ii) X = Y = φe
and since we have a Ricci flat manifold we get respectively

0= S(e, e)= µ(λ− 1),

0= S(φe, φe)= µ(−λ− 1).

By adding these equations we see that µ = 0, and Theorem 4.5 completes the
proof. �

Remark 5.2. For a Sasakian 3-manifold, from Equation (3-14) with κ = 1 and
h = 0, setting X = Y = ξ yields S(ξ, ξ)= 2 and hence a Sasakian manifold cannot
be Ricci flat.

Theorem 5.3. A non-Sasakian Einstein 3-dimensional (κ, µ, ν)-contact metric
manifold is flat.

Proof. Since the manifold is Einstein, Equation (3-3) gives

(5-2)
( 1

2r − κ
)
X +

(
−

1
2r + 3κ

)
η(X)ξ +µh X + νφh X = aX.

For any point p ∈U as in Lemma 3.1 we consider a local orthonormal h-basis and
we set in (5-2) X = ξ , X = e and X = φe. We obtain respectively

2κ = a, ν = 0,
1
2r − κ + λµ= a, 1

2r − κ − λµ= a.

We have a generalized (κ, µ)-contact metric manifold with κ < 1 or equivalently
λ 6= 0. From the two last equations we get µ= 0 and hence κ is constant [Koufo-
giorgos and Tsichlias 2000]. In a 3-dimensional (κ, µ)-contact metric manifold
r = 2(κ−µ). By substituting r in the last equation we obtain a = 0 or equivalently
κ = 0, and Theorem 4.5 completes the proof. �
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Remark 5.4. According to [Yano and Kon 1984, Proposition 3.3, page 38], a
3-dimensional Einstein manifold M is a space of constant curvature. Hence, a
Sasaki–Einstein 3-manifold, since it has constant curvature, must have curvature 1.

Theorem 5.5. If M is a 3-dimensional concircularly symmetric (κ, µ, ν)-contact
metric manifold, then M is either flat or locally isometric to the sphere S3(1).

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is an open and dense subset of M .
In the case where M =U1 the manifold is a Sasakian concircularly symmetric

manifold.
Next, we assume that U2 is not empty. Differentiating (4-1) and using (1-2),

(2-1), (2-2), (2-5), (2-6), (3-7), (3-10), (3-11), (3-13), with κ < 1 everywhere, it
follows that

(∇W Z)(X, Y )U = [(W · H)− 1
6(W · r)][g(Y,U )X − g(X,U )Y ]

+ [(W · κ)− (W · H)][g(Y,U )η(X)− g(X,U )η(Y )]ξ

+ [(W · κ)− (W · H)][η(Y )η(U )X − η(X)η(U )Y ]

+ (W ·µ)[g(Y,U )h X − g(X,U )hY + g(hY,U )X − g(h X,U )Y ]

+(W ·ν)[g(Y,U )φh X−g(X,U )φhY +g(φhY,U )X−g(φh X,U )Y ]

+ (κ − H)
{
[g(Y,U )g(W + hW, φX)− g(X,U )g(W + hW, φY )]ξ

+ [η(Y )X − η(X)Y ]g(W + hW, φU )

+ [g(W + hW, φY )X − g(W + hW, φX)Y ]η(U )

− [g(Y,U )η(X)− g(X,U )η(Y )](φW +φhW )
}

+µ
[{ 1

2(κ−1)g(hW, X) grad κ + 1
2(κ−1)g(hW, φX)φ(grad κ)

+ [(1− κ)g(W, φX)+ g(hW, φX)− νg(hW, X)]ξ

+ η(X)[(κ − 1)φW + hφW ] + η(W )(µhφX + νh X)
}
g(Y,U )

−
{ 1

2(κ−1)g(hW, Y ) grad κ + 1
2(κ−1)g(hW, φY )φ(grad κ)

+ [(1− κ)g(W, φY )+ g(hW, φY )− νg(hW, Y )]ξ

+ η(Y )[(κ − 1)φW + hφW ] + η(W )(µhφY + νhY )
}
g(X,U )

+
{ 1

2(κ−1)g(hW, Y )(U · κ)− 1
2(κ−1)g(hW, φY )(φU · κ)

+ [(1− κ)g(W, φY )+ g(hW, φY )− νg(hW, Y )]η(U )

+η(Y )g((κ−1)φW +hφW,U )+η(W )g(µhφY +νhY,U )
}

X
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−
{ 1

2(κ−1)g(hW, X)(U · κ)− 1
2(κ−1)g(hW, φX)(φU · κ)

+ [(1− κ)g(W, φX)+ g(hW, φX)− νg(hW, X)]η(U )

+η(X)g((κ−1)φW+hφW,U )+η(W )g(µhφX+νh X,U )
}
Y
]

+ ν
[{ 1

2(κ−1)g(hW, X)φ(grad κ)− 1
2(κ−1)g(hW, φX) grad κ

+ [g(W + hW, h X)+ νg(hW, φX)]ξ

+ η(X)[(κ − 1)φ2W + hW ] + η(W )[µh X + νφh X ]
}
g(Y,U )

−
{ 1

2(κ−1)g(hW, Y )φ(grad κ)− 1
2(κ−1)g(hW, φY ) grad κ

+ [g(W + hW, hY )+ νg(hW, φY )]ξ

+ η(Y )[(κ − 1)φ2W + hW ] + η(W )[µhY + νφhY ]
}
g(X,U )

+
{
−1

2(κ−1)g(hW, Y )(φU · κ)− 1
2(κ−1)g(hW, φY )(U · κ)

+ [g(W + hW, hY )+ νg(hW, φY )]η(U )

+η(Y )g((κ−1)φ2W +hW,U )+η(W )g(µhY +νφhY,U )
}

X

−
{
−1

2(κ−1)g(hW, X)(φU · κ)− 1
2(κ−1)g(hW, φX)(U · κ)

+ [g(W + hW, h X)+ νg(hW, φX)]η(U )

+η(X)g((κ−1)φ2W+hW,U )+η(W )g(µh X+νφh X,U )
}
Y
]
.

In this equation, we set W = ξ and by virtue of (2-1), (2-3), (3-8) we obtain

(5-3) (∇ξ Z)(X, Y )U = 2(ξ · κ)[g(Y,U )η(X)− g(X,U )η(Y )]ξ

−
4
3(ξ · κ)[g(Y,U )X − g(X,U )Y ]

+(ξ ·µ)[g(Y,U )h X − g(X,U )hY + g(hY,U )X − g(h X,U )Y ]

+(ξ ·ν)[g(Y,U )φh X−g(X,U )φhY+g(φhY,U )X−g(φh X,U )Y ]

+µ
{
g(Y,U )(µhφX + νh X)− g(X,U )(µhφY + νhY )

+g(µhφY + νhY,U )X − g(µhφX + νh X,U )Y
}

+ν
{
g(Y,U )(µh X + νφh X)− g(X,U )(µhY + νφhY )

+g(µhY + νφhY,U )X − g(µh X + νφh X,U )Y
}
.

For any point p ∈U2 we consider a local orthonormal h-basis as in Lemma 3.1.
We set in (5-3): X =U = e, Y = φe which yields

(∇ξ Z)(e, φe)e = 4
3(ξ · κ)φe.

Since the manifold is concircularly symmetric we conclude that

(ξ · κ)= 0,
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or equivalently, by virtue of (3-2), ν = 0. We set in (5-3): X = e, Y =U = ξ and
ν = 0, and get

(∇ξ Z)(e, ξ)ξ = λ[(ξ ·µ)e−µ2φe].

The manifold is concircularly symmetric and hence µ = 0. The constancy of µ
implies the constancy of κ [Koufogiorgos and Tsichlias 2000] and finally [Blair
et al. 2005, Theorem 5.2] completes the proof. �

Theorem 5.6. Let M a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · Z = 0, then M
is either Sasakian (κ = 1), flat or locally isometric to either SU(2) or SL(2, R),
where these two Lie groups are equipped with a left invariant metric and they have
constant scalar curvature r = 6κ (κ < 1).

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is open and dense subset of M .
In the case where M =U1 the manifold is Sasakian and then according to [Blair

et al. 2005, Theorem 4.1], it has constant curvature 1.
Next, we assume that U2 is not empty. Note that the condition Z(ξ, X) · Z = 0

implies (Z(ξ,U ) · Z)(X, Y )ξ = 0 or more explicitly

Z(ξ,U )Z(X, Y )ξ−Z(Z(ξ,U )X, Y )ξ−Z(X, Z(ξ,U )Y )ξ−Z(X, Y )Z(ξ,U )ξ=0

which by virtue of (1-1), (1-4), (2-3), (4-1), (4-6), (4-7), (4-8), (4-9), (4-10) yields

(5-4) 0=µ
(
κ−1

6r
)
[η(Y )g(hU, X)−η(X)g(hU,Y )]ξ

+µ2
[η(Y )g(hU,h X)−η(X)g(hU,hY )]ξ

+ν
(
κ−1

6r
)
[η(Y )g(φhU, X)−η(X)g(φhU,Y )]ξ

+ν2
[η(Y )g(φhU,φh X)−η(X)g(φhU,φhY )]ξ

+
(
κ− 1

6r
)2g(U, X)Y +µ

(
κ− 1

6r
)
g(hU, X)Y +ν

(
κ−1

6r
)
g(φhU, X)Y

+µ
(
κ−1

6r
)
g(U, X)hY +µ2g(hU, X)hY +µνg(φhU, X)hY

+ν
(
κ−1

6r
)
g(U, X)φhY +µνg(hU, X)φhY +ν2g(φhU, X)φhY

−
(
κ− 1

6r
)2g(U,Y )X−µ

(
κ− 1

6r
)
g(hU,Y )X−ν

(
κ−1

6r
)
g(φhU,Y )X

−µ
(
κ−1

6r
)
g(U,Y )h X−µ2g(hU,Y )h X−µνg(φhU,Y )h X

−ν
(
κ−1

6r
)
g(U,Y )φh X−µνg(hU,Y )φh X−ν2g(φhU,Y )φh X

+
(
κ− 1

6r
)
Z(X,Y )U+µZ(X,Y )hU+νZ(X,Y )φhU.
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For any point p ∈U2 we consider a local orthonormal h-basis as in Lemma 3.1. In
(5-4) we set X =U = e, Y = φe, and by virtue of (2-3), (2-4) we obtain

(5-5)
[(
κ− 1

6r
)2
− λ2(µ2

+ ν2)
]
φe+

(
κ− 1

6r
)
Z(e, φe)e+µZ(e, φe)he

+νZ(e, φe)φhe = 0.

Equation (4-1) by virtue of (1-2), (2-4) and (3-10) yields

(5-6)

Z(e, φe)e =
(
−H+ 1

6r
)
φe,

Z(e, φe)he = λ
(
−H+ 1

6r
)
φe,

Z(e, φe)φhe = λ
(
H− 1

6r
)
e.

Substituting (5-6) in (5-5) we obtain

νλ
(
H− 1

6r
)
e+

[(
κ− 1

6r
)
(κ − H)− λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)]
φe = 0,

and hence

νλ
(
H− 1

6r
)
= 0,(5-7) (

κ− 1
6r
)
(κ − H)− λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)
= 0.(5-8)

In (5-4) we set X = e, Y =U = φe, and by virtue of (2-3), (2-4) we obtain

(5-9)
[
−
(
κ− 1

6r
)2
+ λ2(µ2

+ ν2)
]
e+

(
κ− 1

6r
)
Z(e, φe)φe

+µZ(e, φe)hφe+ νZ(e, φe)φhφe = 0.

Equation (4-1) by virtue of (1-2), (2-4) and (3-10) yields

(5-10)

Z(e, φe)φe =
(
H− 1

6r
)
e,

Z(e, φe)hφe = λ
(
−H+ 1

6r
)
e,

Z(e, φe)φhφe = λ
(
−H+ 1

6r
)
e.

Substituting the equations (5-10) in (5-9) we obtain[
−
(
κ− 1

6r
)
(κ − H)+ λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)]

e− νλ
(
H− 1

6r
)
φe = 0,

and hence, in addition to (5-7), we get

(5-11) −
(
κ− 1

6r
)
(κ − H)+ λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)
= 0.

Since we work in U2 where κ 6= 1 (more precisely κ < 1) or equivalently λ 6= 0,
the equations (5-7), (5-8) and (5-11) by virtue of (3-5) yield the equations (4-14),
(4-15) and (4-16). Finally Proposition 4.3 completes the proof. �

Corollary 5.7. Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · Z = 0, then M is a
pseudosymmetric manifold, in the sense of Deszcz, of constant type.
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Proof. From [Blair et al. 1990, Proposition 3.2] this manifold is an η-Einstein and
then [Cho and Inoguchi 2005, Proposition 1.2] completes the proof. �

Theorem 5.8. Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · S = 0, then M
is either Sasakian (κ = 1), flat or locally isometric to either SU(2) or SL(2, R),
where these two Lie groups are equipped with a left invariant metric and they have
constant scalar curvature r = 6κ (κ < 1).

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is an open and dense subset of M .
In the case where M =U1, the manifold is Sasakian and according to [Tripathi

and Kim 2004, Theorem 1.4], it has constant curvature 1.
Next, we assume that U2 is not empty; we work in U2 where κ < 1 everywhere.

The condition Z(ξ, X) · S = 0 or equivalently

0= (Z(ξ, X)·S)(Y,W )= Z(ξ, X)·S(Y,W )−S(Z(ξ, X)Y,W )−S(Y, Z(ξ, X)W )

implies

(5-12) S(Z(ξ, X)Y,W )+ S(Y, Z(ξ, X)W )= 0

which in view of (4-11) and (4-12) yields

(5-13)
(
κ− 1

6r
)
[S(X, Y )− 2κg(X, Y )] +µ[S(h X, Y )− 2κg(h X, Y )]

+ν[S(φh X, Y )− 2κg(φh X, Y )] = 0.

For any point p ∈U2 we consider an h-basis. In (5-13) setting (i) X = Y = e, (ii)
X = Y = φe and (iii) X = e and Y = φe, and by virtue of (3-14), (3-15) and (3-16),
we obtain respectively(

κ− 1
6r
)
(H − κ + λµ)+µ(λH − λκ −µκ +µ)− ν2(κ − 1)= 0,(5-14) (

κ− 1
6r
)
(H − κ − λµ)+µ(−λH + λκ −µκ +µ)− ν2(κ − 1)= 0,(5-15)

and (4-14). By virtue of (3-5) and by subtracting (5-15) from (5-14) we obtain
(4-15), while by adding equations (5-14) and (5-15) we get (4-16). Proposition 4.3
completes the proof. �

Corollary 5.9. Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · S = 0, then M is a
pseudosymmetric manifold, in the sense of Deszcz, of constant type.
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Proof. From [Blair et al. 1990, Proposition 3.2] this manifold is an η-Einstein and
then [Cho and Inoguchi 2005, Proposition 1.2] completes the proof. �

Theorem 5.10. Let M3(η, ξ, φ, g) be a 3-dimensional (κ, µ, ν)-contact metric
manifold satisfying the condition R(ξ, X) · Z = 0. Then, there are at most two open
subsets of M3 for which their union is an open and dense subset of M3, and each
of them as an open submanifold of M3 is either (a) a Sasakian manifold or (b) a
semi-K generalized (κ, µ)-contact metric manifold with (ξ ·µ)= 0 and r = 4κ .

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is open and dense in M .
In the case where M =U1, the manifold is Sasakian and according to [Blair et al.

2005, Theorem 4.3], it has constant curvature 1.
Next, we assume that U2 is not empty. Firstly, we remark that the condition

R(ξ, X) · Z = 0 implies (R(ξ,U ) · Z)(X, Y )ξ = 0 or more explicitly

R(ξ,U )Z(X, Y )ξ−Z(R(ξ,U )X, Y )ξ−Z(X, R(ξ,U )Y )ξ−Z(X, Y )R(ξ,U )ξ=0

which by virtue of (1-1), (1-4), (2-3), (3-10), (4-1), (4-9) yields

(5-16) 0= µκ[η(Y )g(U, h X)− η(X)g(U, hY )]ξ

+ νκ[η(Y )g(U, φh X)− η(X)g(U, φhY )]ξ

+µ2
[η(Y )g(hU, h X)− η(X)g(hU, hY )]ξ

+ ν2
[η(Y )g(φhU, φh X)− η(X)g(φhU, φhY )]ξ

+ κ
(
κ− 1

6r
)
g(U, X)Y + κµg(U, X)hY + κνg(U, X)φhY

− κ
(
κ− 1

6r
)
g(U, Y )X − κµg(U, Y )h X − κνg(U, Y )φh X

+µ
(
κ− 1

6r
)
g(hU, X)Y +µ2g(hU, X)hY +µνg(hU, X)φhY

−µ
(
κ− 1

6r
)
g(hU, Y )X −µ2g(hU, Y )h X −µνg(hU, Y )φh X

+ ν
(
κ− 1

6r
)
g(φhU, X)Y +µνg(φhU, X)hY + ν2g(φhU, X)φhY

− ν
(
κ− 1

6r
)
g(φhU, Y )X −µνg(φhU, Y )h X − ν2g(φhU, Y )φh X

+ κZ(X, Y )U +µZ(X, Y )hU + νZ(X, Y )φhU.

For any point p ∈U2 we consider a local orthonormal h-basis as in Lemma 3.1. In
(5-16) we set X =U = e, Y = φe and by virtue of (2-3), (2-4) we obtain

1
6rνλe+

[
κ2
−

1
6rκ − λ2(µ2

+ ν2)− 1
6rλµ

]
φe+ κZ(e, φe)e

+µZ(e, φe)he+ νZ(e, φe)φhe = 0,
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which by (5-6) gives

νλHe+ [κ(κ − H)− λ2(µ2
+ ν2)− λµH ]φe = 0,

and hence

νλH = 0,(5-17)

κ(κ − H)− λ2(µ2
+ ν2)− λµH = 0.(5-18)

In (5-16) we set X = e, Y =U = φe, and by virtue of (2-3), (2-4) we obtain[
−κ2
+

1
6rκ + λ2(µ2

+ ν2)− 1
6rλµ

]
e− 1

6rλνφe+ κZ(e, φe)φe

+µZ(e, φe)hφe+ νZ(e, φe)φhφe = 0

which by virtue of (5-10) yields

[−κ(κ − H)+ λ2(µ2
+ ν2)− λµH ]e− νλHφe = 0,

and hence, in addition from (5-17), we get

(5-19) −κ(κ − H)+ λ2(µ2
+ ν2)− λµH = 0.

Since we work in U2 where κ < 1 or equivalently λ 6= 0, the equations (5-17), (5-18)
and (5-19) yield the equations (4-17), (4-18) and (4-19) and hence Proposition 4.3
completes the proof. Our open submanifold U2 is a generalized (κ, µ)-contact
metric 3-manifold with (ξ ·µ)= 0 and according to Remark 4.4 this submanifold
is a semi-K contact manifold.

We have proved:

(a) If M =U1 then M is Sasakian with κ = 1.

(b) If M = U2 then M is a semi-K generalized (κ, µ)-contact metric manifold
with κ < 1, (ξ ·µ) = 0 and r = 4κ .

(c) If U1 6=∅ and U2 6=∅, the union U1∪U2 is open and dense in M ; also, κ = 1
in U1 and κ < 1 in U2. The function κ is continuous in U1 and in U2. �

Remark 5.11. According to Proposition 4.3 and [Blair 2002, Theorem 7.5, p. 101].
U2 becomes flat when µ= 0 since Equation (4-19) yields κ = 0.
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