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In this paper, we study the distribution of the genuses of cluster quivers
of finite mutation type. First, we prove that in the 11 exceptional cases,
the distribution of genuses is 0 or 1. Next, we consider the relationship
between the genus of an oriented surface and that of cluster quivers from
this surface. It is verified that the genus of an oriented surface is an upper
bound for the genuses of cluster quivers from this surface. Furthermore,
for any nonnegative integer n and a closed oriented surface of genus n, we
show that there always exist a set of punctures and a triangulation of this
surface such that the corresponding cluster quiver from this triangulation
is exactly of genus n.

1. Introduction

Cluster quivers are a valuable notion in the theory of cluster algebras, first introduced
in the famous paper [Fomin and Zelevinsky 2002]. Since then this subject has been
studied extensively by many mathematicians. The original motivation was to give a
combinatorial characterization of dual canonical bases in the theory of quantum
groups, and for the study of total positivity for algebraic groups. Now cluster
algebras are connected to various fields of mathematics such as representation
theory, Poisson geometry, algebraic geometry, Lie theory, combinatorics and so
on. One knows that cluster algebras are commutative algebras equipped with a
distinguished set of generators, i.e., cluster variables.

Two types of cluster algebras are of special interest: those of finite type, and those
of finite mutation type. The former is a special case of the latter. Cluster algebras
of finite type were completely classified in [Fomin and Zelevinsky 2003], and skew-
symmetric cluster algebras of finite mutation type were completely classified in
[Felikson et al. 2012]. The classification of cluster algebras of finite type is identical
to the Cartan–Killing classification of semisimple Lie algebras and finite root
systems. For a cluster algebra of finite type, there is a one-to-one correspondence
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between the set of cluster variables and the set of almost positive roots (consisting
of positive roots and negative simple roots). Additionally, the classification of
skew-symmetric cluster algebras (equivalently, the classification of cluster quivers)
of finite mutation type tells us that almost all skew-symmetric cluster algebras
(equivalently, cluster quivers) of this type come from triangulations of surfaces,
except for 11 exceptional cases.

Given an oriented 2-dimensional Riemann surface S with boundary ∂S, let M ⊂ S
be a finite set of marked points such that each connected boundary component
contains at least one such point. Marked points in the interior of S are called
punctures. The pair (S,M) is simply called a surface. An arc [Fomin et al. 2008]
is the homotopy class of a curve γ in S whose endpoints come from M , such that:

• γ does not intersect itself, except that its endpoints may coincide;

• except for the endpoints, γ is disjoint from M and ∂S;

• γ does not cut out an unpunctured monogon or an unpunctured digon.

An ideal triangulation T is a maximal set of noncrossing (i.e., there are no
intersections in the interior of S) arcs. For the details of the construction of cluster
quivers from triangulations of surfaces, see Section 2B.

In this paper, all surfaces we consider are oriented surfaces; all subgraphs and
subquivers are full.

In topological graph theory, the genus of a graph is the minimal genus of the
surfaces where the graph can be drawn without crossings. The genus of a quiver is
defined to be that of its underlying graph. When discussing the genus of a quiver,
one only needs to consider its simple underlying graph (without multiple edges and
orientation). A graph (respectively, quiver) is planar if it is of genus 0. It is well
known that genus is a topological invariant for surfaces, as well as for topological
graphs. A natural question is to find out the relation between the genus of a surface
and that of a cluster quiver from this surface. As an answer, we have the main
conclusion in this paper:

Theorem 1.1. (i) For a triangulation T of a surface S with genus g, let g′ be the
genus of the cluster quiver Q associated with T . Then g′ ≤ g.

(ii) Furthermore, for any nonnegative integer n and a closed oriented surface Sn of
genus n, there exists a set of marked points M on Sn and an ideal triangulation
Pn of Sn such that the corresponding cluster quiver Tn of Pn has genus n.

From this result, we know that the genus of a surface is in fact an upper bound
for the genuses of cluster quivers from the triangulations of this surface; moreover,
any nonnegative integer n can be reached as the genus of some cluster quiver
from surface.
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The paper is organized as follows. The requisite background on cluster quiv-
ers, their mutation, and triangulations of surfaces are presented in Section 2. In
Section 2A, we give the basic definitions of matrix mutation and quiver mutation.
We mention the fact that skew-symmetric matrices are in bijection with cluster
quivers, and also that matrix mutation and quiver mutation are compatible. In
Section 2B, we recall some basic definitions and properties of triangulations of
surfaces from [Fomin et al. 2008]. We recapitulate how to obtain a cluster quiver
from a surface triangulation and the compatibility between quiver mutations and
flips of triangulations. A cluster quiver comes from a surface if and only if it is
block-decomposable. At the end of this subsection, we restate the classification of
skew-symmetric cluster algebras of finite mutation type.

Section 3 mainly deals with the genuses of cluster quivers of finite mutation type.
In Section 3A, we give the table of genus distribution of the 11 exceptional quivers
by utilizing Keller’s quiver mutation in Java [Keller 2006]. In Section 3B, we first
prove Theorem 1.1(i) which states that the genus of a surface is an upper bound for
the genuses of cluster quivers obtained by triangulations of this surface. From this
result, one can easily see that genus is a mutation invariant for cluster quivers from
the surface of genus 0. As another application of this result, we give a sufficient
condition for two quivers not to be mutation equivalent. Part (ii) of Theorem 1.1 is
proved by constructing a graph Rn , using topological graph theory for genus n and
the classification theorem of compact surfaces in algebraic topology.

2. Preliminaries

2A. Cluster quiver and its mutation. The notion of skew-symmetric matrix or
equivalently of cluster quiver is crucial in the theory of cluster algebras. In the
definition of cluster algebras, the most important ingredient is the so-called seed
mutation. For our purpose in this paper, we only introduce matrix mutation (an
important part of seed mutation) so as to understand the motivation of cluster
quivers. For the details of the definitions of seed mutation and cluster algebras, we
refer to [Fomin and Zelevinsky 2003].

Suppose B= (bi j ) is an n×n integer matrix. For 1≤ k≤ n, a matrix mutation µk

at direction k transforms B into a new matrix B ′ = (b′i j ) where b′i j is defined by

b′i j =

−bi j if i = k or j = k,

bi j +
|bik |bk j + bik |bk j |

2
otherwise.

Here, all matrices we consider are skew-symmetric. It is easy to see that matrix
mutation transforms a skew-symmetric matrix into another one.

Given an n× n skew-symmetric matrix B = (bi j ), we can construct a quiver Q
without loops and 2-cycles as follows: the vertex set is {1, 2, . . . , n} (the set of



136 FANG LI, JICHUN LIU AND YICHAO YANG

row and column indices of the matrix B), and the number of arrows from i to j is
defined to be bi j if bi j > 0.

Definition 2.1. A quiver without loops and 2-cycles is said to be a cluster quiver.

There is a one-to-one correspondence between the set of skew-symmetric matrices
and the set of cluster quivers. In fact, given a cluster quiver Q with n vertices, one can
construct a skew-symmetric matrix B = (bi j ) defined by bi j = #{i→ j}−#{ j→ i},
where #{i → j} denotes the number of arrows from i to j . According to this
one-to-one correspondence, quiver mutation can be deduced from matrix mutation.

Definition 2.2. Suppose Q is a cluster quiver with vertex set Q0 = {1, 2, . . . , n}.
For k ∈ Q0, a quiver mutation µk at vertex k transforms Q into Q′, where Q′ is
obtained by the following three steps:

(1) For every path i→ k→ j , add a new arrow i→ j .

(2) Reverse all arrows incident with k.

(3) Delete all 2-cycles.

One can easily see that the resulting quiver Q′ is also a cluster quiver. Matrix
mutation and quiver mutation are compatible in the following sense: given any
k ∈ {1, 2, . . . , n}, µk(Q B)= Qµk(B) and µk(BQ)= Bµk(Q).

It is easy to verify that both matrix mutation and quiver mutation are involu-
tions, i.e., µ2

k = 1. If Q′=µk1µk2 . . . µkl (Q) for some k1, k2, . . . , kl ∈ {1, 2, . . . , n},
we will say that Q and Q′ are mutation equivalent. Obviously, this is an equivalence
relation on the set of isomorphism classes of cluster quivers with n vertices. A
cluster quiver (respectively, skew-symmetric cluster algebra constructed from this
quiver) is said to be of finite mutation type if the number of quivers in its mutation-
equivalence class is finite. Cluster quivers of this type were completely classified
in [Felikson et al. 2012]. We will restate this classification theorem in Section 2B.

2B. Cluster quivers from surfaces. Given a surface (S,M), the number of arcs in
any triangulation of (S,M) is a constant. The following lemma gives the formula
to calculate the number of arcs in a triangulation.

Lemma 2.3 [Fomin et al. 2008]. For a triangulation of a surface, the following
formula holds:

(1) n = 6g+ 3b+ 3p+ c− 6,

where n is the number of arcs, g is the genus of the surface, b is the number of
connected boundary components, p is the number of punctures, and c is the number
of marked points on the boundary.
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The arcs of an ideal triangulation cut the surface S into ideal triangles. The
three sides of an ideal triangle do not have to be distinct, i.e., we allow self-folded
triangles, like this:

i

Given an ideal triangulation T , there is an associated signed adjacency ma-
trix B(T ) (see [Fomin et al. 2008, §4]). Suppose the arcs in T are labeled by the
numbers 1, 2, . . . , n, and let the rows and columns of B(T ) be numbered from 1
to n. For an arc i , let πT (i) denote the arc defined as follows: if there is a self-folded
ideal triangle in T folded along i (see figure above), then πT (i) is its remaining
side; otherwise, we set πT (i)= i .

For each non-self-folded triangle 4, define the n× n integer matrix B4 = (b4i j )

by setting

b4i j =


1 if side πT ( j) immediately follows πT (i) in 4 going clockwise;

−1 if side πT (i) immediately follows πT ( j) in 4 going clockwise;

0 otherwise.

The matrix B = B(T )= (bi j ) is defined by

(2) B =
∑
4

B4,

where the sum is taken over all non-self-folded triangles 4. It is easy to verify
that B(T ) is skew-symmetric, and that all its entries are equal to 0, 1, −1, 2
or −2. Therefore, given a triangulation T , we can first associate a skew-symmetric
matrix B(T ) to T and then obtain a cluster quiver Q corresponding to B(T ), just as
in Section 2A. The corresponding cluster quiver Q B of B = B(T ) is said to come
from a surface. Correspondingly, the cluster algebra defined by Q B is also said to
come from a surface.

A flip is a transformation of an ideal triangulation T into a new triangulation T ′

obtained by replacing an arc γ with a unique different arc γ ′ and leaving other arcs
unchanged. Flips of triangulation and matrix mutation are compatible in the sense
of the following proposition.

Proposition 2.4 [Fomin et al. 2008, Proposition 4.8]. Suppose that the triangula-
tion T is obtained from T by a flip replacing an arc k. Then B(T )= µk(B(T )).

According to [Fomin et al. 2008, Remark 4.2], all triangulations that we are
interested in can be obtained by gluing together a number of puzzle pieces, except
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for one case: the triangulation of the 4-punctured sphere obtained by gluing three
self-folded triangles to respective sides of an ordinary triangle:

There are three types of puzzle pieces:

1 2

3

3

4

21
24

1

35

Figure 1. The three types of puzzle pieces.

These three types of puzzle pieces correspond to blocks of type I–V below,
depending on whether the outer sides are lying on the boundary (for the details, see
the proof of Theorem 13.3 in [Fomin et al. 2008]).

III
b

III IV V
a

III

The vertices marked by open circles in this figure are called outlets.

Definition 2.5 [Fomin et al. 2008]. A quiver is said to be block-decomposable if it
can be obtained from a collection of disjoint blocks by the following procedure:

(1) Take a partial matching of the combined set of outlets (matching an outlet to
itself or to another outlet from the same block is not allowed).

(2) Glue the outlets in each pair of the matching.

(3) Remove all 2-cycles.

According to [Fomin et al. 2008, Theorem 13.3], a cluster quiver comes from a
surface if and only if it is block-decomposable.

The following theorem gives a complete classification of skew-symmetric cluster
algebras of finite mutation type.

Lemma 2.6 [Felikson et al. 2012]. A skew-symmetric cluster algebra A of rank n
is of finite mutation type if and only if A comes from a surface (n ≥ 3), or n ≤ 2,
or A is one of the 11 exceptional types shown in Figure 2 (that is, A has a cluster
quiver at one of these types).
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E6 E7 E8

E6
(1) (1) (1)

E7 E8

E
6

2 2
2 2

(1,1)
E
(1,1)

7
X
6

E
8

2

(1,1)

2 2

2X
7

Figure 2. The eleven exceptional types.

3. Genus distribution of cluster quivers of finite mutation type

3A. Genuses of exceptional cluster quivers. Table 1 in this section gives the genus
distribution of the 11 exceptional cluster quivers in the classification of cluster
quivers of finite mutation type. Our main tool is Keller’s quiver mutation in Java
[Keller 2006]. To obtain the table, we note the following facts:

(1) E6, E7, E8, E (1)6 , E (1)7 and E (1)8 are trees. According to Lemma 1.1 of [Vatne
2010], any orientations on the same tree are mutation equivalent.

(2) E6, E7, E8 and E (1)8 are full subgraphs of the underlying graph of E (1,1)8 ; E (1)6
is a full subgraph of the underlying graph of E (1,1)6 ; E (1)7 is a full subgraph of
the underlying graph of E (1,1)7 . Since any quiver mutation-equivalent to a full
subquiver of Q must be a full subquiver of some Q′ that is mutation-equivalent
to Q, we first test the mutation classes of E (1,1)6 , E (1,1)7 and E (1,1)8 in order to
see their genus distribution.

(3) To see the genus of a quiver, we only need to see its underlying graph. Hence
when doing the quiver mutation in Java due to Keller [2006], we can choose
the mutation class under graph isomorphism. This can greatly cut down the
number of quivers in the mutation class that we have to consider.

(4) We check the quivers in the mutation classes of E (1,1)6 , E (1,1)7 and E (1,1)8 and
find they are all planar. So are the other exceptional cluster quivers of type E .
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Type Total number Number of genus 0 Number of genus 1

E6 21 21 0
E7 112 112 0
E8 391 391 0
E (1)

6 52 52 0
E (1)

7 338 338 0
E (1)

8 1935 1935 0
E (1,1)

6 27 27 0
E (1,1)

7 217 217 0
E (1,1)

8 1886 1886 0
X6 4 1 3
X7 2 1 1

Table 1. Statistics on exceptional cluster quivers of different types.

In Table 1, the total number means the number of quivers in the mutation class
up to quiver isomorphism, and the number of genus 0 (respectively, 1) means the
number of quivers (up to quiver isomorphism) in the mutation class whose genus
is 0 (respectively, 1).

From the table, one can easily see that the genus of the quiver of type E is
invariant under quiver mutation, but the genus of the quiver of type X will vary
under quiver mutation.

Proposition 3.1. There are exactly four nonplanar cluster quivers of exceptional
finite mutation types that have genus 1:

(1) (2) (3) (4)

Quivers (1), (2), and (3) are in the mutation-equivalence class of X6, and quiver (4)
is in the mutation-equivalence class of X7.

Proof.

• Quiver (1) is obtained from X6 by mutation on the vertices x4 and x6, the
vertex labeling being as shown on the top of the next page.

• Quiver (2) is obtained from X6 by mutation on the vertex x4.

• Quiver (3) is obtained from X6 by mutation on the vertices x4 and x3.
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2 2

2

4
y

1
y

3
y

2
y

5
y

6
y

7
y

X7

2 2
4
x

1
x

3
x

2
x

5
x

6
x

X6

• Quiver (4) is obtained from X7 by mutation on the vertex y4. �

3B. Proof of the main conclusion. We will begin by proving the first part of the
theorem, i.e., that the genuses of cluster quivers obtained from the triangulations of
a surface are not greater than that of the surface.

Proof of Theorem 1.1(i). By the correspondence of puzzle pieces and blocks, each
puzzle piece corresponds to a block of type I–V. For each puzzle piece, we put
its corresponding block into the face bounded by it. If two puzzle pieces have a
common edge, then we glue the two vertices corresponding to the common edge
between these two blocks. Hence we obtain the quiver Q of T in this way, and
moreover the underlying graph of Q can be drawn without self-crossings on the
surface S. We then have g′ ≤ g by definition of the genus of a quiver.

To complete the proof of the theorem, we should consider the only exceptional
case the triangulation of which cannot be obtained by gluing the puzzle pieces.
Let T be the triangulation of the 4-punctured sphere obtained by gluing three
self-folded triangles to respective sides of an ordinary triangle. The corresponding
cluster quiver of T can be obtained by gluing four blocks of type II, as follows:

3'

2'

2 3

1

1'

In this figure, for i = 1, 2 and 3, i and i ′ denote the corresponding vertices of two
arcs in the same self-folded triangles. Obviously it is a planar quiver, and hence in
this case g′ = g = 0. This completes the proof. �

To prove Theorem 1.1(ii), we need some preliminaries. First, we borrow from
[Gross and Tucker 1987, Example 3.4.2] a class of graphs with arbitrary large genus.
For each positive integer n, the graph Rn is constructed by taking n+ 1 concentric
cycles consisting of 4n edges each, together with 4n2 inner edges connecting the
n+ 1 cycles to each other and 2n outer edges adjoining antipodal vertices on the
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outermost cycle. Here is the graph R2:

8

1

2

3

4

5

to 5

to 6

to 8

to 7

6

7

It was shown in [Gross and Tucker 1987] that Rn is of genus n.
Secondly, recall that the classification theorem for compact (or closed) surfaces

(see, for example, [Massey 1977, Chapter 1, Theorem 5.1]) asserts that any compact
surface is homeomorphic to a sphere, a connected sum of tori, or a connected sum
of projective planes. Any compact surface can be considered as the quotient space
of a polygon with directed edges identified in pairs. There is a convenient way to
indicate which paired edges are to be identified in such a polygon. We give a letter
(for example, a, b, c, . . . ) to each pair of edges, different pairs receiving different
letters. Starting at a definite vertex, we traverse the boundary of the polygon either
clockwise or counterclockwise. If the arrow on an edge points in the same traversing
direction, we put no exponent (or the exponent +1) on the letter for that edge;
otherwise, we write the letter for that edge with the exponent −1. For example, the
string a1a1a2a−1

2 a3a−1
3 indicates the same identifications as this figure:

a3
−1

a2
−1

a1

a2a3

a1

The various surfaces can then be described by the following strings (see [Massey
1977, §5]):

(1) The sphere: aa−1.

(2) The connected sum of n tori: a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . . . anbna−1
n b−1

n .

(3) The connected sum of n projective planes: a1a1a2a2 . . . anan.

Given a polygon, if the letter designating a certain pair of edges occurs with
both exponents +1 and −1 in the symbol, then this pair of edges is said to be of
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the first kind; otherwise the pair is said to be of the second kind. From the proof of
Theorem 5.1 in [Massey 1977], we know that if all the pairs of edges are of the
first kind, then the resulting surface is oriented; if there exists a pair of edges of the
second kind, then the resulting surface is nonoriented. Moreover, since the pair of
adjacent edges of the first kind can be eliminated, the resulting surface of a 4n-gon
with pairs all of the first kind is an oriented surface with genus at most n.

To prepare for the proof of Theorem 1.1(ii), we first prove a lemma.

Lemma 3.2. For an arbitrary nonnegative integer n, there always exists a block-
decomposable cluster quiver Tn such that the genus g(Tn) of Tn satisfies g(Tn)≥ n.

Proof. Given a graph Rn as above, label the n+1 cycles from innermost to outermost
by 1 to n+ 1. For each i ∈ {1, 2, . . . , n}, there are 4n rectangles between the i-th
cycle and the (i+1)-st cycle. For the outermost cycle, there exist 2n rectangles
between the (n+1)-st cycle and itself. Two rectangles are said to be neighbors
if they share a common edge; otherwise, they are said to be distant. It is easy to
observe that there are 4n2

+ 2n rectangles in Rn . Given any rectangle A in Rn , we
first choose four rectangles distant from A but having a common vertex with A.
We repeat this process for each of these four rectangles; continuing this process,
we will obtain a maximal set of mutually distant rectangles. This is denoted by S.
This set contains 2n2

+ n rectangles. The other 2n2
+ n rectangles form another

maximal set of mutually distant rectangles. This is denoted by T.
Trivially, the two sets S and T are independent of the choice of the
original rectangle A. Consider the set S: each rectangle in S can
be obtained by gluing four blocks of type II as shown on the right.

For the innermost cycle, there are 2n edges which do not lie in any rectangles
of S. We can then substitute one block of type IV for each such edge. For all these
2n edges, we need 2n blocks of type IV.

In summary, we obtain a quiver Tn by gluing 8n2
+ 4n blocks of type II and 2n

blocks of type IV. According to the construction of Tn , obviously, Rn is a subgraph
of the underlying graph of Tn . Therefore, the genus g(Tn) is at least g(Rn) = n.
Figure 3 on the next page illustrates the case n = 2. �

Proof of Theorem 1.1(ii). We will use the fact that the quiver Tn given in the proof
of Lemma 3.2 can be obtained from a closed surface of genus n. By Lemma 3.2,
g(Tn) ≥ n. It is easy to check that Tn is a uniquely block-decomposable quiver
and hence Tn can be uniquely encoded by its corresponding triangulation, that is,
blocks of type II are encoded by puzzle pieces of the first type (see the left graph in
Figure 1) and blocks of type IV are encoded by puzzle pieces of the second type
(see the middle graph in Figure 1). In order to draw Tn , we first draw a planar quiver
T ′n which has 4n unglued outlets. After gluing these 4n outlets in pairs, one obtains
Tn , where each pair consists of one outlet and its opposite one. See Figure 3 for an
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1 2

12

3

4

4

3

Figure 3. Quiver corresponding to the graph T2. Vertices labeled
by the same numbers should be glued together.

illustration of the case n = 2. Now we will construct a closed surface Sn of genus
n and a triangulation Pn of Sn such that the corresponding cluster quiver is Tn .

We will chase Tn from innermost to outermost. Blocks of type II and type IV
are encoded by puzzle pieces of the first and second types, respectively. For the
outermost 4n oriented triangles in T ′n , we let each of them correspond to a puzzle
piece of the first type. Thus we obtain a 4n-
gon with a triangulation. Denote this 4n-gon
with triangulation by S′n . Then we can obtain
a closed oriented surface Sn by identifying the
edges of S′n in pairs and gluing all outermost
vertices into one, and then obtain a triangula-
tion Pn of Sn such that its corresponding quiver
is exactly Tn . For the case T2, its corresponding
S′2 is given on the right.

1

1

33

4

2

2

4To obtain S2 and P2, one only needs to glue
the edges labeled by the same number in pairs
and to glue all 8 outermost vertices into one.

By the proof of the classification theorem of compact surfaces in [Massey 1977],
the genus of Sn is at most n.

Since Tn is obtained from a triangulation of Sn , by Theorem 1.1(i), g(Tn)≤ n.
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On the other hand, by Lemma 3.2, g(Tn)≥ n. Hence, g(Tn)= n.
For the genus g(Sn) of Sn , since n= g(Tn)≤ g(Sn)≤ n, we also have g(Sn)= n.
Then Theorem 1.1(ii) easily follows from the fact that all closed oriented surfaces

with the same genus are homeomorphic. �

3C. Applications and further problems. As an application of Theorem 1.1(i), we
give two corollaries.

Corollary 3.3. Let S be a surface of genus 0 and M a set of marked points of S.
Given any triangulation T of (S,M), suppose Q is the associated cluster quiver.
Then all quivers in the mutation-equivalence class of Q are of genus 0.

Besides the cluster quivers of type E in Section 3A, this corollary gives another
class of cluster quivers of finite mutation type whose genuses are invariant under
mutation.

Corollary 3.4. Let S be a surface of genus g, with M its set of marked points.
For any triangulation T of (S,M), let Q be its corresponding quiver and let Q′

be another cluster quiver of genus g′ such that g′ > g. Then Q and Q′ are not
mutation equivalent.

Proof. According to Proposition 12.3 in [Fomin et al. 2008], all quivers in the
mutation-equivalence class of Q are the corresponding quivers of some triangula-
tions of (S,M). Hence, by Theorem 1.1(i), the genuses of these quivers are not
greater than g. Hence Q′ is not in the mutation-equivalence class of Q, that is, Q
and Q′ are not mutation equivalent. �

This corollary gives us a necessary condition for two quivers with the same
number of vertices, one coming from a triangulation of a surface and the other
nonplanar, to be mutation equivalent.

Remark 3.5. An easy calculation shows that the number of marked points on the
closed surface Sn in the proof of Theorem 1.1(ii) is 4n2

+ 2n+ 2. For example, in
the case n = 2, one can easily see that there are 22 marked points on S2; here the
outermost 8 marked points in S′2 (see figure at the bottom of page 144) are glued
into one.

Theorem 1.1(ii) tells us that, given a closed surface S of genus n, the upper bound
of genuses of quivers from triangulations of S given in part (i) of Theorem 1.1 can
be reached.

On the other hand, the lower bound 0 of genuses can also be reached; that is, given
any closed oriented surface S with genus n, there always exists a triangulation T
of S such that the corresponding cluster quiver Q of T is planar.

In fact, if the closed surface is a sphere, this obviously holds by Corollary 3.3;
whereas if the closed surface S is of genus n ≥ 1, it is homeomorphic to the
connected sum of n tori. In this case, the symbol of the corresponding polygon is
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a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . . . anbna−1
n b−1

n . A triangulation
T of S with two punctures is shown on the right. For
this triangulation, the outer 4n vertices in fact come from
the same puncture and the only inner vertex is the other
puncture. One can easily check that the corresponding
cluster quiver Q of T is planar. ...a1

a2
b2a1

−1

a2
−1

b2
−1

b1
−1

b1

Restricting the discussion to the torus, we reach the following conclusion:

Proposition 3.6. For a given cluster quiver Q from the torus S with p punctures,
there exists at least one planar quiver in the mutation-equivalence class of Q.

Proof. According to Proposition 12.3 in [Fomin et al. 2008], the corresponding
quivers from all triangulations of S are mutually mutation equivalent. Hence, we
only need to find a triangulation T of S such that its corresponding quiver is planar.

For the convenience of describing the desired triangulation, we first restate how a
torus is constructed. Given two circles C and C ′, assume the radius of C is greater
than that of C ′. Let the center of C ′ run along C for one round; then a torus is built.
The circle C is called a basic circle for this torus.

For the torus S with p punctures, we construct a triangulation T as follows:
For each puncture, construct a closed arc on S perpendicular to the basic circle

such that its two endpoints coincide at the puncture; we have p such arcs. These
p arcs cut down the torus into p pieces of cylinders. For each
cylinder, drawing an arc between two punctures, we obtain a
rectangle. Moreover, we draw a diagonal in this rectangle.
The corresponding quiver from such a rectangle with its
diagonal is shown on the right.

All p such rectangles with diagonal are arranged continuously together to form
a graph. The quiver Q of T is obtained by gluing p pieces of such quivers along
the outlets. Obviously, it is a planar quiver. �

For example, in the case p = 3, the triangulation and the corresponding cluster
quiver are as follows, where the numbers 1, . . . , 9 label the arcs:

2

(1)

2

1 13

4

4

5
6

9

9

7
8

(2)Since both the upper and lower bounds for genuses of cluster quivers from closed
surfaces can be attained, based on Theorem 1.1 and Proposition 3.6 we propose
these further interesting problems:
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Problem 3.7. For any closed surface S with genus n and 0 ≤ i ≤ n, does there
exist a certain number of punctures and an ideal triangulation T (i) of S such that
the corresponding cluster quiver Qi from T (i) is of genus i?

Problem 3.8. Given a closed surface S of genus n, find the minimal number of
punctures on S with the property that there exists an ideal triangulation T of S such
that the corresponding cluster quiver Qn of T is of genus exactly n.

For the case of the torus, we know at least one planar quiver in each mutation-
equivalence class according to Proposition 3.6. Hence, for a given number of
punctures we can check the corresponding mutation-equivalence class of this planar
quiver by Keller’s quiver mutation in Java [Keller 2006]. Since the genus of a
quiver has nothing to do with the orientations of the arrows, we can choose the
mutation-equivalence class under graph isomorphism when doing quiver mutation
in Java.

For the cases p = 1 and p = 2, all quivers in their two mutation-equivalence
classes are planar. When p = 3, there exists exactly one quiver of genus 1 in the
mutation class:

Therefore, the answer to Problem 3.8 for the case of the torus is p = 3, which
is much smaller than the number 4× 12

+ 2× 1+ 2 = 8 of punctures given in
Remark 3.5 when constructing T1 from the torus.
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