
Pacific
Journal of
Mathematics

TAUT FOLIATIONS IN KNOT COMPLEMENTS

TAO LI AND RACHEL ROBERTS

Volume 269 No. 1 May 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 269, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.269.149

TAUT FOLIATIONS IN KNOT COMPLEMENTS

TAO LI AND RACHEL ROBERTS

We show that for any nontrivial knot in S3, there is an open interval con-
taining zero such that a Dehn surgery on any slope in this interval yields a
3-manifold with taut foliations. This generalizes a theorem of Gabai on zero
frame surgery.

1. Introduction

A transversely orientable codimension-one foliation F of a 3-manifold M is called
taut [Gabai 1991] if every leaf of F intersects some closed transverse curve. The
existence of a taut foliation in a 3-manifold M provides much interesting topological
information about both M and objects embedded in M . If a closed 3-manifold M
contains a taut foliation, either M is finitely covered by S2

× S1 or M is irreducible
[Novikov 1965; Reeb 1952; Rosenberg 1968]. If a closed 3-manifold M contains
a taut foliation, then its fundamental group is infinite [Haefliger 1962; Novikov
1965; Gabai and Oertel 1989] and acts nontrivially on interesting 1-dimensional
objects (see, for example, [Thurston 1998; Calegari and Dunfield 2003; Palmeira
1978; Roberts et al. 2003]), and its universal cover is R3 [Palmeira 1978]. Taut
foliations can be perturbed to interesting contact structures [Eliashberg and Thurston
1998; Kazez and Roberts 2014] and hence can be used to obtain Heegaard–Floer
information [Ozsváth and Szabó 2004b]. In this paper we seek to add to the
understanding of the existence of taut foliations by describing a new construction
of taut foliations.

Let k be a nontrivial knot in S3. In his proof of the Property R conjecture, Gabai
[1987b] showed that the knot exterior M = S3

\ int N (k) has a taut foliation whose
restriction to the torus ∂M is a collection of circles of slope 0. Thus a zero frame
Dehn surgery on k yields a closed 3-manifold that admits a taut foliation obtained
by adding disks along the boundary circles of the taut foliation of M . In this paper,
we extend Gabai’s theorem from zero frame surgery to any slope in an interval that
contains 0. Although we restrict attention to knots in S3, the approach described in
this paper applies more generally to manifolds (M, ∂M) with boundary a nonempty
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union of tori and for which there exists a well-groomed sutured manifold hierarchy
which meets each component of ∂M only in essential simple closed curves.

Theorem 1.1. Let k be a nontrivial knot in S3. Then there is an interval (−a, b),
where a > 0 and b > 0, such that for any slope s ∈ (−a, b), the knot exterior
M = S3

\ int(N (k)) has a taut foliation whose restriction to the torus ∂M is a
collection of circles of slope s. Moreover, by attaching disks along the boundary
circles, the foliation can be extended to a taut foliation in M(s), where M(s) is the
manifold obtained by performing Dehn surgery to k with surgery slope s.

A group G is called left-orderable if there is a total order on G which is invariant
under left multiplication. We thank Liam Watson for calling our attention to the
following results.

Corollary 1.2. Let k be a hyperbolic knot in S3 and let M(1/n) denote the manifold
obtained by 1/n Dehn filling along k. Then there is some number N = N (k) such
that π1(M(1/n)) is left-orderable whenever |n|> N.

Proof. The surgered manifold M(1/n) is a homology S3 and, by Thurston’s
hyperbolic Dehn surgery theorem [Thurston 1982], atoroidal when |n| is sufficiently
large (or, equivalently, when 1/n is sufficiently small). Moreover, by Theorem 1.1,
M(1/n) contains a transversely oriented taut foliation whenever 1/n is sufficiently
close to 0. It therefore follows from [Calegari and Dunfield 2003, Corollary 7.6]
that π1(M(1/n)) is left-orderable. �

Ozsváth and Szabó [2004c; 2004d] defined the Heegaard–Floer homology group
ĤF(Y ) of a 3-manifold Y . In [Ozsváth and Szabó 2005], they define L-spaces as
follows.

Definition 1.3 [Ozsváth and Szabó 2005, Definition 1.1]. A closed three-manifold
is called an L-space if H1(Y ;Q) = 0 and ĤF(Y ) is a free abelian group of rank
|H1(Y ;Z)|.

L-spaces are therefore the closed 3-manifolds with the simplest possible Hee-
gaard–Floer homology groups and the following is an important open question:

Question 1.4 [Ozsváth and Szabó 2004a, Question 11]. Is there a topological
characterization of L-spaces (i.e., one that makes no reference to Floer homology)?

Ozsváth and Szabó proposed the following partial answer to this question:

Conjecture 1.5 [Hedden and Levine 2012, Conjecture 1]. If Y is an irreducible
homology sphere that is an L-space, then Y is homeomorphic to either S3 or the
Poincaré homology sphere.

Approaches to understanding L-spaces have included investigations into the
following two questions. Are L-spaces exactly those irreducible rational homology
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3-spheres which contain no transversely oriented taut foliation? Are L-spaces
exactly those irreducible rational homology 3-spheres which have non-left-orderable
fundamental groups? (See [Boyer et al. 2012] for a nice survey.)

Conjecture 1.6 [Boyer et al. 2012, Conjecture 1]. An irreducible rational homology
3-sphere is an L-space if and only if its fundamental group is not left-orderable.

With Conjecture 1.6 in mind, we compare Corollary 1.2 with the following
result, which appears in various contexts [Ozsváth and Szabó 2004b, Corollary 1.3;
Ghiggini 2008, Corollary 1.5], but is stated most conveniently as [Hedden and
Watson 2010, Proposition 5].

Proposition 1.7 [Ozsváth and Szabó 2004b; Hedden and Watson 2010]. Suppose k
is a nontrivial knot in S3 and let M(1/n) denote the manifold obtained by 1/n Dehn
filling along k. If M(1/n) is an L-space, then either n = 1 and k is the right-handed
trefoil or n =−1 and k is the left-handed trefoil.

It follows that Conjecture 1.5 holds for 3-manifolds obtained by surgery on knots
in S3. And it follows from Corollary 1.2 and Proposition 1.7 that Conjecture 1.6
holds for 3-manifolds obtained by 1/n surgery on the complement of hyperbolic
knots when |n| is sufficiently large.

In Theorem 1.1, the interval (−a, b) depends both on the knot k and on the
sutured manifold decomposition in [Gabai 1987b]. In [Roberts 2001a; 2001b],
it is shown that if k is a fibered hyperbolic knot (not necessarily in S3), then
this interval can always be chosen to contain (−1,∞), (−∞, 1), or (−∞,∞).
Related results appear in [Dasbach and Li 2004; Delman and Roberts 1999; Roberts
1995]. Moreover, the values of a and b in a maximal such interval (−a, b) reveal
information about the pseudo-Anosov monodromy and hence the geometry of M .

Question 1.8. Let k be a nontrivial knot in S3, and let a > 0 and b > 0. What is
the maximal interval (−a, b) such that for any slope s ∈ (−a, b), the knot exterior
M = S3

\ int(N (k)) has a taut foliation whose restriction to the torus ∂M is a
collection of circles of slope s, and the foliation can be extended to a taut foliation
in M(s) by attaching disks along the boundary circles, where M(s) is the manifold
obtained by performing Dehn surgery to k with surgery slope s?

Conjecture 1.9. Such a maximal interval will always contain (−1, 1).

The proof of the main theorem uses theorems in [Li 2002; 2003] on branched
surfaces to generalize the approach of [Roberts 2001a] to nonfibered knots. We
first use Gabai’s [1983; 1987a; 1987b] sutured manifold decomposition to construct
a branched surface B. Then, after first splitting B as necessary, we add in some
product disks to get a new branched surface that carries more laminations which



152 TAO LI AND RACHEL ROBERTS

extend to taut foliations. The key point in the construction is to add branch sectors
so that the new branched surface does not contain any sink disk. By [Li 2002;
2003], this means that the branched surface carries a lamination.

2. Laminar branched surfaces

Definition 2.1. A branched surface B in M is a union of finitely many compact
smooth surfaces, glued together to form a compact subspace (of M) locally modeled
on Figure 1, left (ignore the arrows in the picture for now).

Given a branched surface B embedded in a 3-manifold M , we denote by N (B)
a regular neighborhood of B, as shown in Figure 1, right. One can regard N (B)
as an interval bundle over B. We denote by π : N (B)→ B the projection that
collapses every interval fiber to a point. As shown in Figure 1, right, the boundary
of N (B) consists of two parts: the horizontal boundary ∂h N (B) which is transverse
to the I -fibers of N (B), and the vertical boundary ∂vN (B) which is the union of
subarcs of the I -fibers. The branch locus of B is L = {b ∈ B : b does not have
a neighborhood in B homeomorphic to R2

}. We call the closure (under the path
metric) of each component of B\L a branch sector of B. L is a collection of smooth
immersed curves in B. Let Z be the union of double points of L . We associate
with every component of L\Z a normal vector (in B) pointing in the direction of
the cusp, as shown in Figure 1, left. We call it the branch direction of this arc. Let
D be a disk branch sector of B. We call D a sink disk if the branch direction of
every smooth arc in its boundary points into the disk and D ∩ ∂M =∅. We call D
a half sink disk if ∂D ∩ ∂M 6=∅ and the branch direction of each arc in ∂D\∂M
points into D. Note that ∂D ∩ ∂M might not be connected.

Laminar branched surfaces were introduced in [Li 2002] as a branched surface
with the usual properties in [Gabai and Oertel 1989] plus a condition that there
is no sink disk. The notion of laminar branched surface was slightly extended to

horizontal
v

∂h N (B)∂vN (B)

Figure 1. Left: a branched surface B. Right: a regular neighbor-
hood N (B).
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branched surfaces with boundary, by adding a requirement that there is no half
sink disk [Li 2003]. Note that if a branched surface has no half sink disk, then
one can arbitrarily split the branched surface near its boundary train track without
creating any sink disk. This plus Theorem 1 of [Li 2002] implies the following
theorem from [Li 2003]. Note that the condition that there is no sink disk basically
guarantees that the branched surface carries a lamination and the other conditions
in [Gabai and Oertel 1989] imply that the lamination is an essential lamination.

Theorem 2.2 [Li 2003, Theorem 2.2]. Let M be an irreducible and orientable
3-manifold whose boundary is an incompressible torus. Suppose B is a laminar
branched surface and ∂M\∂B is a union of bigons. Then, for any rational slope
s ∈Q∪∞ that can be realized by the train track ∂B, if B does not carry a torus that
bounds a solid torus in M(s), then B fully carries a lamination L whose boundary
consists of loops of slope s and L can be extended to an essential lamination
in M(s).

3. Sutured manifold decompositions

Gabai [1983] introduced the notions of sutured manifold and sutured manifold
decomposition. We will state basic definitions and theorems as needed for this
paper but we refer the reader to [Gabai 1983; 1987a; 1987b] for a more detailed
description. The papers [Altman 2012; Cantwell and Conlon 2012; Juhász 2008]
and book [Candel and Conlon 2003] also provide nice descriptions of some of
Gabai’s sutured manifold theory. In this paper, we will use branched surfaces to
describe sutured manifolds and sutured manifold decompositions.

Definition 3.1 [Gabai 1983, Definition 2.6]. A sutured manifold (M, γ ) is a com-
pact oriented 3-manifold M together with a set γ ⊂ ∂M of pairwise disjoint annuli
A(γ ) and tori T (γ ). Furthermore, the interior of each component of A(γ ) contains
a suture, that is, a homologically nontrivial oriented simple closed curve. We denote
the set of sutures by s(γ ).

Finally, every component of R(γ )= ∂M\ int(γ ) is oriented. Define R+(γ ) (or
R−(γ )) to be those components of ∂M\ int(γ ) whose normal vectors point out of
(into) M . The orientations on R(γ ) must be coherent with respect to s(γ ); that is,
if δ is a component of ∂R(γ ) and is given the boundary orientation, then δ must
represent the same homology class in H1(γ ) as some suture.

Roughly speaking, a sutured manifold is a 3-manifold together with extra infor-
mation about ∂M . Given a sufficiently nice surface S properly embedded in a
sutured manifold (M, γ ), it is important to be able to cut M open along S while
keeping track of corresponding boundary information. This is captured in the
following definition.
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Definition 3.2 [Gabai 1983, Definition 3.1]. Let (M, γ ) be a sutured manifold and
S a properly embedded surface in M such that every component λ of S∩γ satisfies
one of these three conditions:

(1) λ is a properly embedded nonseparating arc in γ .

(2) λ is a simple closed curve in an annular component A of γ in the same
homology class as A∩ s(γ ).

(3) λ is a homotopically nontrivial curve in a toral component T of γ , and if δ is
another component of T ∩ S, then λ and δ represent the same homology class
in H1(T ).

The surface S defines a sutured manifold decomposition

(M, γ ) S
 (M ′, γ ′),

where M ′ = M\ int(N (S)) and

γ ′ = (γ ∩M ′)∪ N (S′
+
∩ R−(γ ))∪ N (S′

−
∩ R+(γ )),

R′
+
(γ ′)=

(
(R+(γ )∩M ′)∪ S′

+

)
\ int(γ ′),

R′
−
(γ ′)=

(
(R−(γ )∩M ′)∪ S′

−

)
\ int(γ ′),

where S′
+

and S′
−

are those components of ∂N (S)∩M ′ whose normal vectors point
out of and into M ′, respectively.

Definition 3.3 [Gabai 1987a, Definition 0.2]. A sutured manifold decomposition

(M, γ ) S
 (M ′, γ ′)

is called well-groomed if for each component V of R(γ ), S ∩ V is a union of
parallel, coherently oriented, nonseparating closed curves and arcs.

Definition 3.4 [Gabai 1987b, Definition 3.2]. Let

(M, ∂M)
S1 (M1, γ1)

S2 · · ·
Sn (Mn, γn)

be a sequence of sutured manifold decompositions where ∂M is a nonempty union
of tori. Define E0 = ∂M . Define Ei to be the union of those components of
Ei−1\ int(N (Si )) which are annuli and tori (i.e., if Mi is viewed as a submanifold
of M , then Ei consists of those components of γi which are contained in ∂M). The
components of Ei are called the boundary sutures of γi .

Definition 3.5. Let (M, γ ) and (N , τ ) be sutured manifolds. We will call (M, γ )
a sutured submanifold of (N , τ ), and write (M, γ ) ⊂ (N , τ ), if M is a union of
components of N and γ = τ ∩M .

If (M, γ )⊂ (N , τ ), then we write (N , τ )\(M, γ ) to denote the sutured manifold
(N\M, τ\γ ).
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Theorem 3.6 [Gabai 1987b, Lemmas 3.6 and 5.1]. Let k be a knot in S3. There is
a well-groomed sutured manifold sequence

(M, γ )
S1 (M1, γ1)

S2 · · ·
Sn (Mn, γn)= (S× I, ∂S× I )

of
(M, γ )= (S3

\ int(N (k)), ∂N (k))

such that ∂Si ∩∂N (k) is a (possibly empty) union of circles for each i, 1≤ i ≤ n, S1

is a minimal genus Seifert surface, and S is a compact (not necessarily connected)
oriented surface.

Sutured manifold decompositions determine branched surfaces. As described by
Gabai in [1987b, Construction 4.6] (and detailed further in [Cantwell and Conlon
2012]), a sutured manifold decomposition sequence corresponds to building a (finite
depth) branched surface, starting with S1 and successively adding the Si ’s. To see
this, inductively construct a sequence of transversely oriented branched surfaces.
Let B1 = S1. So we may view M1 as M\ int(N (B1)), where N (B1) is a fibered
neighborhood of B1. As a sutured manifold (M1, γ1), its suture γ1 is the annulus
∂M\N (B1) and the two components of ∂h N (B1) are the plus and minus boundaries
R+(γ1) and R−(γ1) of the sutured manifold. We may view R+(γ1) and R−(γ1)

as lying on the plus and minus sides of S1 respectively and we assign a normal
direction for B1 = S1 pointing from the plus side to the minus side.

Suppose we have constructed a branched surface Bk using the surfaces S1, . . . , Sk

in the sutured manifold decomposition, such that M\ int(N (Bk)) = Mk and the
suture γk of (Mk, γk) consists of ∂vN (Bk) and a collection of annuli in the boundary
torus ∂M . Now we consider the sutured manifold decomposition

(Mk, γk)
Sk+1 (Mk+1, γk+1).

The surface Sk+1 has a normal vector. Then we can deform Bk ∪ Sk+1 into a
branched surface Bk+1 as follows:

(1) For each component of ∂Sk+1 that is not totally inside ∂vN (Bk), we can deform
Bk ∪ Sk+1 near ∂Sk+1 as in Figure 2, left, so that the normal directions of Bk

and Sk+1 are compatible in the newly constructed branched surface.

(2) For each component c of ∂Sk+1 lying inside a suture ∂vN (Bk), we first slightly
isotope Sk+1 by pushing c into R±(γk)⊂ ∂h N (Bk), then as shown in Figure 2,
right, we can deform Bk ∪ Sk+1 near c into a branched surface. By the re-
quirement of the normal directions in the sutured manifold decomposition,
the normal directions of Bk and Sk+1 are compatible in the newly constructed
branched surface.
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S

BBk

Sk+1
S

BBkSk+1

Figure 2. Bk ∪ Sk+1 is deformed near ∂Sk+1. Left: the normal
directions of Bk and Sk+1 are compatible. Right: the neighborhoods
of each suture are branched surfaces.

It follows from the definition of sutured manifold decomposition [Gabai 1983]
that M\ int(N (Bk+1)) = Mk+1 and the suture γk+1 of (Mk+1, γk+1) consists of
∂vN (Bk+1) and a collection of annuli in the boundary torus ∂M . We will sometimes
use the notation

Bk+1 = B(Mk+1,γk+1) = B〈S1;S2;...;Sk+1〉.

In summary, there is a map from the set of sutured manifold decomposition
sequences to the set of properly embedded branched surfaces given by

(S1, S2, . . . , Sl) 7→ B〈S1;S2;...;Sl 〉,

and a (forgetful) map from the set of properly embedded branched surfaces to the
set of sutured 3-manifolds given by

B 7→ (MB, γB)= (M\ int(N (B)), ∂vN (B)∪ E ′),

where E ′ ⊂ ∂M satisfies E ′ = E , the set of boundary sutures, if B intersects ∂M
only in longitudes. For future reference, it is useful to highlight that under this
correspondence, ∂h N (B) corresponds naturally to R+(γB)∪ R−(γB).

4. The construction

Modifying the sutured manifold hierarchy. Given a well-groomed sutured mani-
fold hierarchy satisfying the conclusions of Theorem 3.6, we can inductively con-
struct the sequence of branched surfaces B1, . . . , Bn corresponding to the sutured
manifold decomposition. The branched surface Bn in the end has the properties
that (1) M\ int(N (Bn)) is a product and (2) ∂Bn is a collection of circles in ∂M
of slope 0. In particular, any taut foliation carried by Bn will also necessarily meet
∂M only in simple closed curves of slope 0.

To obtain a branched surface carrying taut foliations realizing an open interval of
boundary slopes about 0, it is necessary to modify the sutured manifold hierarchy,
or, equivalently, the sequence of branched surfaces Bk . In this section, we describe
one way of doing this. We break the process into two steps.
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As a first step, we slightly modify the sutured manifold hierarchy by adding
some parallel copies of the surfaces Sk . Equivalently, we modify the sequence
of branched surfaces Bk by adding some parallel copies of the surfaces Sk . This
operation is equivalent to a splitting of the branched surface. As a second (and
final) step, we further modify the sutured manifold hierarchy by adding carefully
chosen product disks.

Before giving a precise description of these steps, we introduce some terminology.
Let B be a transversely oriented branched surface and let F be a component of
∂h N (B). The boundary of F has two parts: ∂F ∩ ∂M and ∂F ∩ ∂vN (B). We call
∂F ∩ ∂vN (B) the internal boundary of F . Let L be the branch locus of B. Let
L F be the closure of π−1(L)∩ int(F), where π : N (B)→ B is the map collapsing
each interval fiber to a point. So L F is a trivalent graph properly embedded in F .
We call L F the projection of the branch locus to F . Each arc in L F has a normal
direction induced from the branch direction of L .

Definition 4.1. Let F be a component of ∂h N (B) with ∂F ∩ ∂M 6= ∅ and let
η be an arc properly embedded in F . If F has nonempty internal boundary, we
require that η connects ∂F ∩ ∂M to the internal boundary of F . Choose η so that it
intersects L F transversely and only at points in the interior of edges of L F (namely,
it misses all triple points). Since η is transverse to L F , the induced branch direction
of L F gives a direction along η for each point in η∩ L F . We say η is good if these
induced directions are coherent along η and all point away from an endpoint of η
that lies in ∂M .

We say F is good if F satisfies the following properties:

(1) The closure of each component D of F\L F has a boundary arc with induced
branch direction (from L F ) pointing out of D.

(2) If F has internal boundary, then there is a set of disjoint good arcs, denoted by
0F, connecting each component of ∂F ∩ ∂M to the internal boundary of F .

(3) If F has no internal boundary (in which case, F must be a Seifert surface of
the knot exterior), then there is a properly embedded nonseparating good arc
in F , which we also denote by 0F.

Lemma 4.2. Let B be a branched surface. If each component of ∂h N (B) is good,
then B does not contain any sink disk or half sink disk.

Proof. Let F be a component of ∂h N (B) and let L F be as above. Let P be the
closure (under path metric) of a component of F\L F . So P can be viewed as a
copy of a branch sector of B. It follows from part (1) of Definition 4.1 that B has
no sink disk or half sink disk. �
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Definition 4.3. We say the branched surface B is good if

(1) every component of ∂h N (B) is good, and

(2) the arc systems 0F as described in (2) and (3) in Definition 4.1 can be chosen
so that the projections π(0F), as F ranges over all components of ∂h N (B), are
disjoint in B.

Note that these good arcs 0F will be the arcs along which we will attach product
disks.

Step 1: Splitting Bn. Next we will describe the first modification of a sutured
manifold decomposition sequence satisfying the conclusions of Theorem 3.6.

Lemma 4.4. Let k be a nontrivial knot in S3 and M = S3
\ int(N (k)) the knot

exterior. Let

(M, ∂M)
S1 (M1, γ1)

S2 · · ·
Sn (Mn, γn)= (S× I, ∂S× I )

be a well-groomed sutured manifold hierarchy that satisfies the conclusions of
Theorem 3.6. Then there exists a well-groomed sutured manifold hierarchy

(M, γ )
S1 (M ′1, γ

′

1)
R′1 (M ′′1 , γ

′′

1 )
S2 (M ′2, γ

′

2)
R′2 (M ′′2 , γ

′′

2 )
S3 · · ·

Sn (M ′n, γ
′

n)

which also satisfies the conclusions of Theorem 3.6. Moreover, the branched
surfaces B ′l = B(M ′l ,γ ′l ), 1≤ l ≤ n, satisfy the conditions:

(1) ∂B ′l ∩ ∂M is a collection of simple closed curves of slope 0 in ∂M for each l.

(2) (Ml, γl) is a sutured submanifold of (M ′l , γ
′

l ) and (M ′l , γ
′

l )\(Ml, γl) is a prod-
uct sutured manifold for each l.

(3) Every branched surface B ′l is good.

(4) No B ′l carries a torus.

(5) (M ′n, γ
′
n) is a product sutured manifold (S′× I, ∂S′× I ).

Proof. First note that, in the sutured manifold hierarchy above, each R′i is a parallel
copy of some components of R+(γ ′i )∪ R−(γ ′i ).

We proceed by induction on l. Since k is nontrivial and hence S1 has genus at
least one, the branched surface B ′1 = S1 is easily seen to satisfy conditions (1)–(4).
So suppose we have constructed

(M, γ )
S1 (M ′1, γ

′

1)
R′1 (M ′′1 , γ

′′

1 )
S2 (M ′2, γ

′

2)
R′2 (M ′′2 , γ

′′

2 )
S3 · · ·

Sl (M ′l , γ
′

l )

satisfying the conclusions of Theorem 3.6 and such that the corresponding branched
surfaces B ′i = B(M ′i ,γ ′i ) satisfy the conditions (1)–(4) for all i , 1≤ i ≤ l.

By condition (2), (Ml, γl) is a sutured submanifold of (M ′l , γ
′

l ). Let R′
+
(γl) and

R′
−
(γl) be parallel copies of R+(γl) and R−(γl), chosen to be properly embedded in
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(Ml, γl)⊂ (M ′l , γ
′

l ) and with boundary lying in El ∪ A(γl) (see Definition 3.1 and
Definition 3.4). Set R′l = R′

+
(γl)∪ R′

−
(γl). We first consider the sutured manifold

decomposition (M ′l , γ
′

l )
R′l (M ′′l , γ

′′

l ). By the definition of R′l , this decomposition
only adds some product complementary regions. Set B ′′l = B(M ′′l ,γ ′′l ). The change
from B ′l to B ′′l is basically the addition of branch sectors corresponding to R′l , and
this operation creates some product complementary regions. See Figure 3, left, for
a schematic picture. We may view (Ml, γl) as a subset of (M ′′l , γ

′′

l ), and consider
the sutured manifold decompositions

(M ′l , γ
′

l )
R′l (M ′′l , γ

′′

l )
Sl+1 (M ′l+1, γ

′

l+1) ,

where we now view Sl+1 as lying in (Ml, γl)⊂ (M ′′l , γ
′′

l ). Certainly B ′l+1 satisfies
conditions (1) and (2).

Consider condition (3). We begin by considering a component F of ∂h N (B ′′l ).
The surface F can be classified as one of the following 3 types (see Figure 3, right):

(1) F can be viewed as a component G of ∂h N (B ′l ), as illustrated in Figure 3,
right. Since the new branch sectors are attached to B ′l along cusp circles, L F

is obtained from LG by adding curves parallel to curves in LG with coherent
induced branch direction, where LG is the projection of the branch locus of

M
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Figure 3. Left: adding branch sectors. Right: three different
classifications of a component of ∂h N (B ′′l ).
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B ′l to G. Since the branch directions are coherent, adding such parallel curves
to LG does not affect the good arcs in G. Thus in this case F is good with
respect to B ′′l with the same set of good arcs as G.

(2) F is a horizontal boundary component for a newly created product comple-
mentary region and π(F) contains part of the branch sectors added to B ′l , as
illustrated in Figure 3, right. In this case, each component of L F consists of a
circle C parallel to the internal boundary and with induced branch direction
pointing to the internal boundary and possibly a collection of essential arcs in
the annulus between C and the internal boundary.

(3) F is in the boundary of the sutured submanifold (Ml, γl)⊂ (M ′′l , γ
′′

l ). In this
case, L F =∅.

Next consider how ∂h N (B ′l+1) is related to ∂h N (B ′′l ). Let H be a component
of ∂h N (B ′l+1). Then either H can be viewed as a component of ∂h N (B ′′l ) or H
contains a subset of one side of Sl+1. Our goal is to find a set of good arcs for each
component H of ∂h N (B ′l+1), so that the projections of the good arcs in B ′l+1 are
disjoint.

Case (a). H is not a component of ∂h N (B ′′l )

In this case, H is contained in the union of one side of Sl+1 and F\∂Sl+1, where
F is a component of ∂h N (B ′′l ) of type (3). By our construction, L F =∅. Moreover,
on the other side of F , there is a corresponding component F ′ of ∂h N (B ′′l ) of
type (2) such that π(F)∩π(F ′) 6=∅ in the branched surface B ′′l . Adding Sl+1 to
B ′′l does not affect F ′, so we may also view F ′ as a component of ∂h N (B ′l+1). Next
we choose good arcs for both H and F ′.

First note that since the original sutured manifold decomposition is well-groomed,
∂Sl+1 is homologically nontrivial in H1(F, ∂F). There is a simple closed curve
η in F transverse to Sl+1, as shown in Figure 4 (note that the arrows in Figure 4
on ∂Sl+1 denote the branch direction at ∂Sl+1), such that the algebraic intersection
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Figure 4. Left: arcs connecting each component of ∂F ∩M to a
component of ∂Sl+1. Right: arcs connecting each component of
∂F ′ ∩ ∂M to the internal boundary of F ′.
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number of η and ∂Sl+1 is equal to |η∩ ∂Sl+1| (this is equivalent to saying that the
normal direction of ∂Sl+1 at η∩ ∂Sl+1, induced from the branch direction of B ′l+1,
are coherent along η).

Recall that H can be viewed as the union of one side of Sl+1 and F\∂Sl+1. We
first consider the components θ1, . . . , θp of ∂H ∩ ∂M that are not in F (i.e., each
θi can be viewed as a component of ∂Sl+1∩∂M). We can find an arc γi connecting
θi to the internal boundary of H such that γi either is totally in (one side of) Sl+1

or consists an arc in Sl+1 and an arc in F parallel to a subarc of η. Moreover, we
can choose these arcs γi to be disjoint in H .

Now we consider the components of ∂F ∩∂M (which are viewed as components
of ∂H ∩ ∂M). It is easy to see from our construction that there is a collection of
disjoint good arcs α1, . . . , αq in F (see the arcs α1 and α2 in Figure 4, left), such
that (1) these arcs α j connect each component of ∂F ∩ ∂M to a component of
∂Sl+1, and (2) these arcs α j are disjoint from the curve η describe above.

It follows from our construction that these arcs γi and α j form a set of good arcs
0H for H .

Next we consider the component F ′ of ∂h N (B ′′l ) on the other side of F . F ′ is a
type (2) component of ∂h N (B ′′l ), and we may view F ′ as a component of ∂h N (B ′l+1).
Moreover, we view F ′ as a parallel copy of F and view the curves ∂Sl+1, η and α j

described above as curves in F ′. We have two slightly different situations. The first
is that F ′ (and hence F) has nonempty internal boundary, and the second is that F ′

has no internal boundary.
If F ′ has nonempty internal boundary, then there are arcs β1, . . . , βr in F ′ (see

the arcs β1 and β2 in Figure 4, left), such that (1) the arcs βk connect each component
of ∂F ′ ∩ ∂M to the internal boundary of F ′, and (2) the arcs βk are disjoint from η,
∂Sl+1 and the arcs α j . The arcs βk form a set of good arcs 0F ′ for F ′. Moreover,
since each βk is disjoint from η and the arcs α j , the projections π(0H) and π(0F ′)

of the good arcs 0H and 0F ′ for H and F ′ respectively are disjoint in B ′l+1.
If F ′ does not have internal boundary (in which case F ′ must be a Seifert surface

of the knot exterior), then as shown in Figure 4, right, there is an arc β properly
embedded in F ′ such that (1) β is disjoint from η and the arcs α j and (2) the
intersection of β with ∂Sl+1 is minimal up to isotopy. Since the original sutured
manifold is well-groomed, the requirement (2) implies that the algebraic intersection
number of β and ∂Sl+1 is equal to |β ∩ ∂Sl+1|. Thus β is a good arc for F ′. Since
β is chosen to be disjoint from η and each α j , the projections of π(β) and π(0H)

on B ′l+1 are disjoint.

Case (b). H is a component of ∂h N (B ′′l )

In this case, either L H is unchanged by the decomposition by Sl+1 or H is
the surface F ′ of type (2) considered in Case (a). In Case (a), we have already
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constructed a set of good arcs for the type (2) surface F ′, so we may assume that
L H is unchanged by the decomposition by Sl+1. Since H (viewed as a component
of ∂h N (B ′′l )) is good in B ′′l , H is good in B ′l+1. Furthermore, the projections of the
good arcs in Case (a) and the good arcs (from the induction) of H in this case are
disjoint in B ′l+1.

So B ′l+1 is good. It remains to show that B ′l+1 does not carry any torus. Since B ′l
does not carry any torus and B ′′l can be obtained by splitting B ′l , B ′′l does not carry
any torus. Suppose B ′l+1 carries a torus T . Then T can be expressed as the union of
some copies of Sl+1 and a surface in N (B ′′l ) transverse to the I -fibers. Moreover,
the transverse orientation of the branched surface induces a compatible normal
orientation for T . Since the original sutured manifold decomposition sequence is
well-groomed, ∂Sl+1 ∩ R±(γl) is a collection of homologically nontrivial curves in
H1(R±(γl), ∂R±(γl)). Thus there is a component F of ∂h N (B ′′l ), such that T ∩ F
(with the induced orientation) is homologically nontrivial in F . However, since T
is a torus in S3, T is homologically trivial and this is impossible.

Therefore, B ′l+1 satisfies properties (1)–(4) of the lemma and we can inductively
construct the sutured manifold hierarchy and corresponding sequence of branched
surfaces as claimed. �

Step 2: Adding product disks. Let B ′n be the good branched surface constructed
in the proof of Lemma 4.4. It follows from the conditions on the sutured manifold
hierarchy and our construction above that ∂B ′n consists of circles of slope 0 in the
torus ∂M . In this section, we will add some product disks and modify B ′n to get a
laminar branched surface carrying more laminations.

As M\ int(N (B ′n)) is a product, we may suppose M\ int(N (B ′n))= S× I , where
S is a compact and possibly disconnected surface. Let S+= S×{0} and S−= S×{1}.
So ∂h N (B ′n)= S+ ∪ S−. It is possible to decompose S× I as the disjoint union

S× I = (F × I )∪ (G× I ),

where F is the union of the components of S without internal boundary. Thus
∂F ⊂ ∂M and each component of G has nonempty internal boundary. Moreover,
each component of F must be a Seifert surface in the knot exterior. Note that, since
we take parallel copies of surfaces in the horizontal boundary in each step of the
sutured manifold decompositions (see Lemma 4.4), F 6=∅. Furthermore, G =∅
only if k is fibered.

Let m = |∂S± ∩ ∂M | be the number of components of the noninternal boundary
S± ∩ ∂M . Since B ′n is good, there is a collection of pairwise disjoint good arcs
in S+, denoted by η1, . . . , ηm , and a collection of pairwise disjoint good arcs in
S−, denoted by δ1, . . . , δm , such that π

(⋃
iηi
)
∩ π

(⋃
iδi
)
= ∅ (in B ′n) and each

component of ∂S± ∩ ∂M has exactly one incident good arc ηi and one incident
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good arc δi attached to it. After relabeling as necessary, we may assume that for
1 ≤ i ≤ r , ηi and δi lie in F × {0, 1}, while for r + 1 ≤ i ≤ m, ηi and δi lie in
G×{0, 1}. It follows that each ηi and each δi , 1≤ i ≤ r , has both endpoints lying
on ∂M while each ηi and δi , r + 1≤ i ≤ m, has exactly one endpoint lying on ∂M .

Consider first F ×[0, 1]. Recall that each component of F is a Seifert surface
of the knot exterior. Let F1 be any component of F and relabel as necessary so
that η1 ⊂ F1×{0} and δ1 ⊂ F1×{1}. By [Roberts 2001a, Lemma 4.4], there is a
sequence of simple arcs

α0 = η1, α1, . . . , αl = δ1

such that αi ∩αi+1 =∅ and a regular neighborhood of αi ∪αi+1 ∪ ∂F1 in F1 is a
twice-punctured torus for each i, 1≤ i ≤ l. For 1≤ i ≤ l, let F1 induce a consistent
orientation on each F1×

{ i
l+1

}
and orient the disks αi ×

[ i
l+1 ,

i+1
l+1

]
arbitrarily. Add

branch sectors to B ′n as prescribed by the following sequence of sutured manifold
decompositions:

(M ′n, γ
′

n)
A
 (M ′n+1, γ

′

n+1)
B
 (MF1, γF1) ,

where
A = F1×

{ 1
l+1 , . . . ,

l
l+1

}
and B =

⋃
i

(
αi ×

[ i
l+1 ,

i+1
l+1

])
.

Repeat for each remaining component of F and let (MF , γF ) denote the resulting
sutured manifold. Set BF = B(MF ,γF ). Notice that the conditions satisfied by the
arcs αi guarantee that BF is laminar.

Now consider G × I . Let G1 be a component of G and let p = |∂G1 ∩ ∂M |.
Let {C1, . . . ,C p} be a listing of the components of G1 ∩ ∂M . After relabeling as
necessary, we may assume ηr+1, . . . , ηr+p lie in G1×{0} and δr+1, . . . , δr+p lie
in G1×{1}, with {ηr+i (0), δr+i (0)} ⊂ Ci for each 1≤ i ≤ p.

Lemma 4.5. Let {α1, . . . , αp} and {β1, . . . , βp} each be a set of pairwise dis-
joint arcs properly embedded in G1 with {αi (0), βi (0)} ⊂ Ci and {αi (1), βi (1)} ⊂
∂G\{C1, . . . ,C p}, the internal boundary of G1. Let s=

∣∣⋃
iαi ∩

⋃
iβi
∣∣. Then either

s = 0 or there is a set {γ1, . . . , γp} of pairwise disjoint arcs properly embedded in
G1 with γi (0) ∈ Ci , γi (1) ∈ ∂G1\{C1, . . . ,C p}, such that

max
{∣∣⋃

iαi ∩
⋃

iγi
∣∣, ∣∣⋃iβi ∩

⋃
iγi
∣∣}< s.

Proof. Suppose s 6= 0. Relabeling as necessary, we may assume that α1 and
⋃

iβi

intersect. Choose z to be the point in α1 ∩
⋃

iβi that is furthest along α1. So
there are j, t0, t1 such that z = α1(t0) = β j (t1) and α1(t0, 1] ∩

⋃
iβi = ∅. Let γ j

be the concatenation of the two arcs β j [0, t1] and α1[t0, 1], perturbed slightly so
that it intersects α1 transversely and minimally. For i 6= j , set γi = βi . Then∣∣⋃

iαi ∩
⋃

iγi
∣∣< ∣∣⋃iαi ∩

⋃
iβi
∣∣ and |

⋃
iγi ∩

⋃
iβi
∣∣= 0. �
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The next corollary follows immediately.

Corollary 4.6. There are sets of arcs Ai = {α
i
1, . . . , α

i
p}, 1≤ i ≤ q, such that

(1) for each i , the arcs in Ai are pairwise disjoint and properly embedded in G1,
αi

j (0) ∈ C j , and αi
j (1) ∈ ∂G1\{C1, . . . ,C p}, j = 1, . . . , p,

(2) A0 = {ηr+1, . . . , ηr+p} and Aq+1 = {δr+1, . . . , δr+p}, and

(3)
⋃

jα
i
j ∩

⋃
jα

i+1
j =∅ for each i .

For 1≤ i ≤ q , let G1 induce a consistent orientation on each G1×
{ i

q+1

}
. Orient

the disks αi
j ×
[ i

q+1 ,
i+1
q+1

]
so that the orientation induced on their boundaries agrees

with the orientation of αi
j (which is the orientation from its starting point in ∂M to

its ending point in the internal boundary). Add branch sectors to BF as given by
the following sequence of sutured manifold decompositions:

(MF , γF )
A
 (M ′F , γ

′

F )
B
 (MG1, γG1),

where

A = G1×
{ 1

q+1 , . . . ,
q

q+1

}
and B =

⋃
i, j

(
αi

j ×
[ i

q+1 ,
i+1
q+1

])
.

Repeat for each remaining component of G and let (MG, γG) denote the resulting
sutured manifold. Set BG = B(MG ,γG). Notice that the conditions satisfied by the
arcs αi

j guarantee that BG is laminar.
By Lemma 4.4, B ′n does not carry any torus. Therefore, any branched surface

obtained by splitting B ′n also cannot carry a torus. And finally, any (closed) torus
carried by BG but not by this splitting of B ′n would necessarily pass through one
of the added disk branches and hence would necessarily have nonempty boundary.
Thus BG does not carry a torus.

Noting that for each product disk in the above construction, its two normal
directions give two ways of deforming it into a branched surface, let B ′G denote
the branched surface obtained from BG by reversing the orientations of the disks
αi

j ×
[ i

q+1 ,
i+1
q+1

]
. Notice that B ′G is also laminar, has only product complementary

regions, and does not carry a torus.
Hence we have laminar branched surfaces BG and B ′G with only product com-

plementary regions and which do not carry a torus. We may therefore apply
Theorem 2.2 to conclude the existence of taut foliations realizing any boundary
slope carried by BG ∩ ∂M or B ′G ∩ ∂M . It remains to compute these boundary
slopes.

The boundary train tracks. Let τ denote the train track BG∩∂M and let τ ′ denote
the train track B ′G ∩ ∂M .

Lemma 4.7. Together, τ and τ ′ realize all slopes in (−a, b) for some a, b > 0.
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a b c(a)a b c(b)a b c(c)

Figure 5. Train tracks that realize all slopes in (−a, b) for a, b > 0.

Proof. Consider an annular component AG of ∂G1×
[ i

q+1 ,
i+1
q+1

]
. The train tracks τ

and τ ′ restricted to AG have the form indicated in parts (a) and (b), respectively, of
Figure 5. Similarly, consider an annular component AF of ∂F1×

[ i
l+1 ,

i+1
l+1

]
. Recall

that each F1×
{ i

l+1

}
is a Seifert surface and the good arc for F1 has both endpoints

on the circle ∂F1. Thus both τ and τ ′ restricted to AF have the form indicated in
Figure 5(c). Call all such nonlongitudinal branches of τ or τ ′ vertical.

Since all vertical branches of τ (or τ ′, respectively) are of one of the three types
shown in Figure 5, it follows that τ (or τ ′) is a train track obtained by concatenating
pieces of the types of Figure 5(a) or (c) (or (b) or (c), respectively). Examples are
shown in Figure 6. Notice that τ and τ ′ are orientable and measurable; namely,
they admit a transverse measure [Hatcher 1988, page 66; Penner and Harer 1992,
page 86]. Assign weights x , y, and x + y to the vertical branches of τ and τ ′ as
indicated in Figure 6; namely, vertical branches in G× I regions are weighted x ,
the compatibly oriented branches in F × I regions are weighted x + y, and the
remaining branches in F × I regions are weighted y. Then assign weights from
{1, 1 + x, 1 + y, 1 + x + y} to the remaining branches of τ and τ ′ to obtain a
measure µ on τ and a measure µ′ on τ ′.
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Figure 6. Examples of train tracks.
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Recall that if γ is a simple closed curve in a torus, then the slope of γ is given
in standard coordinates by

(1) slope(γ )=
〈λ, γ 〉

〈γ,m〉
,

where 〈 , 〉 denotes algebraic intersection number and λ is the longitude and m is
the meridian of the knot k in S3.

Applying (1) to the measured train tracks (τ, µ) and (τ ′, µ′) while letting x, y
range over all values 0< y� x , we see that (τ, µ) and (τ ′, µ′) together carry all
boundary slopes in some open interval (−a, b) about 0. �

By Theorem 2.2, if τ (or τ ′) fully carries a curve of slope s, then BG (or B ′G ,
respectively) fully carries an essential lamination whose boundary consists of loops
of slope s in ∂M . Moreover, this lamination extends to an essential lamination in
M(s). Since M\ int(N (BG)) and M\ int(N (B ′G)) consist of product regions, such
essential laminations can be extended to taut foliations. This proves Theorem 1.1.
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