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ON THE SET OF MAXIMAL NILPOTENT SUPPORTS
OF SUPERCUSPIDAL REPRESENTATIONS

QIN YUJUN

Let G be a quasisplit reductive group over a p-adic field £, T a maximal
unramified anisotropic torus of G(k), and y a character of T (k) satisfying
certain conditions. Assume the residue characteristic p of & is large enough.
It was shown by DeBacker and Reeder that the irreducible supercuspidal
representation 7, of G(k) associated to (7' (k), x) is generic if and only if
B(T, k) is a special vertex of B(G, k). We compute the set of maximal
nilpotent support Nyh max (7, ) when 3B(T, k) is not a special point in B(G, k).

1. Introduction

Let k be a p-adic field and ¥ a nontrivial character of k. Let G be a split orthogonal
or symplectic group over k, g the Lie algebra of G, G = G (k), and g = g(k).
Let gni1 be the set of nilpotent elements in g upon which G acts by the adjoint
action. Let O be an orbit in gn;/G, z € O, and let ¢ : sl — g be a Lie algebra

homomorphism with
00
() =+

Identify a scalar 7 € k with the diagonal matrix diag(¢,7™!) € sl5(k). For j € Z, let
gj ={Y €g|Adog(r)(Y)=itY forall t € k}.

Then g has a decomposition g = QB]- c79j,Z € g—2.

Let N>; (resp. N>1) be the unipotent subgroup of G with Lie algebra n>, =
@D, 9/ (resp. n>1 = P, 9j) and Yz (n) = ¥ (tr(zlogn)) be a character of
N>»>. Let §; be the irreducible representation of Nx; whose restriction to N>, is
a multiple of ¥,. Let & be an irreducible representation of G; following [Mceglin
and Waldspurger 1987], let Nyh(;r) be the subset of nilpotent orbits such that
O € Nyp(m) if and only if Homy_, (7, S;) # O for any z € O. Let Nyh,max(7) be
the subset of maximal elements in Ny (r) with respect to the inclusion relation of
closure of orbits.
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On the other hand, let T be a maximal K-split anisotropic torus of G; here, K is
the maximal unramified extension of k. Then T = T'(k) is a maximal unramified
anisotropic torus of G. Let y be a character of T satisfying certain conditions
described in [Adler 1998] or [Reeder 2008]. There is a supercuspidal irreducible
representation 7, of G associated to (7, y). Identify SB(T, k) as a point in B(G , k).
In [DeBacker and Reeder 2010], it was shown that m, is generic (that is, Nyh(77y)
contains a regular nilpotent orbit) if and only if 9B(T, k) is a special point in B(G, k).
In [Barbasch and Moy 1997], it was shown that if y is of depth zero, the character
of m, can be expanded as linear combination of orbital integrals over elements in
Nyn (7[ X) .

For those (T, y) with B(T, k) nonspecial (that is, when rank(G) is large enough
for B(G) to contain nonspecial vertices), we show in Theorem 3.2 that if y is of
positive depth, there is one element in Ny max(77y) Which is related to B(T, k).
Note that in this case the supercuspidal representation y is of positive integral
depth. We also apply this theorem to irreducible representations in I1/ , the L-packet
of ¢, where ¢ is the Langlands parameter of .

This article is organized as follows: in Section 2, preliminary notation are recalled,
including vertices in Bruhat-Tits building, L-packet of positive-depth supercuspidal
representations [Reeder 2008], classification of maximal unramified anisotropic tori
[DeBacker 2006], and classification of rational nilpotent orbits [Waldspurger 2001].
We also show by example in the Appendix how to choose a particular element from
a rational nilpotent orbit. The main theorems are stated and proved in Section 3.

2. Preliminary

2A. Notation. Let k be a nonarchimedean local field of characteristic 0 with
residue field f, and let p be the characteristic of §. Let O be the ring of integers of
k and ‘B the maximal ideal of O. Let K be the maximal unramified field extension
of k and § the residue field of K. Let v be the normalized valuation of k and vg
the extension of v to K. Let 1 be an additive character of k with conductor 3, and
denote the character of f = O/ derived from ¥ by v also.

Throughout this paper, assume p is large enough that p is a good prime in the
sense in [Carter 1972].

Let W be a finite-dimensional vector space over &, ( -, - } a nondegenerate bilinear
form on W, and d = dimy (W). Assume that

(v,w) =ew(w,v) forallv,welW,

with eyy = £1. Let G be the reductive group defined over k£ with

SO(W) ifew =1,

G=\spw) ifew =—1.
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Throughout this paper, assume that W has a k-basis {e1, ..., eq} satisfying

0 ifj+k#d+1,

€)=\ ik —d 1) <k

Then G is a connected split reductive group over k with finite center. Where no
confusion will result, denote G by SO(d), Sp(d) for ey = 1, —1, respectively.
Let Jw = (a;,;) be the matrix of degree d such that ‘Jy = ey Jy and

aj ik = 8j,d+1—k for j <k.

Let k be the algebraic closure of k and R C k a commutative k-algebra. Then
G (R), the set of R-rational points of G, is identified with the set of R-valued
matrices g of degree d satisfying

‘eIwg=Jw. det(g) =1

Let g be the Lie algebra of G; then g(R) is identified with the set of R-valued
matrices g of degree d satisfying

thW + Jwg =0.

2B. Vertices of Bruhat-Tits building of G. Let G = G (k) and g = g(k). Let
B(G) = B(G, k) be the Bruhat-Tits building of G. For x € B(G), let G be the
parahoric subgroup attached to x and G 4+ the prounipotent radical of G. Let Gy
be the connected reductive group defined over f such that G /Gy 4+ is the group
of f-rational points of Gx. If F is a G-facet of B(G) and x € F, let GF = Gy,
GF,0+ = Fx,0+,and Gp = Gy.

Let S be the maximal k-split torus of G containing all diagonal matrices in G, B
the Borel subgroup of G containing all upper triangular matrices in G, S = S (k),
and B = B (k). Let ® be the set of roots of G with respect to S, ®T the set of
positive roots of G with respect to B, and A C ®* the subset of simple roots of
®*. Let s be the Lie algebra of S'; then s = §(k) consists of all diagonal matrices
in g. By taking differentials, roots in ® are identified with linear functions on s.

Identify s with k” by the following isomorphism:

s =diag(cy,...,cq) €5 (c1,...,cn) €K™,

here,n =[d/2]. Fori =1,...,n, the i-th coordinate function e; on k" is identified
with a linear function on s, still denoted by e;. Let y,«; (i = 1,...,n) be positive
roots as follows:

o =e —ei+1, i=1,...,n;

Un = €n, y=e1+e, ifG=S02n+1);
or ap=-ep_1+e,, y=ej+e, if G =S02n);
or on =2ey, y =2ey, if G = Sp(2n).



172 QIN YUJUN

Then A = {u,...,a,} and y is the highest root in & with respect A.
Let @, be the set of affine roots of G with respect to S. As a subset of affine
functions on s,

by={a+m|acdmeZ}.

Letag =1—y € Oy and ¥ = A U {ap}. Then every affine root is an integral
combination of elements in X.
Let X *(S) be the character group of S, X«(S) the dual group of X*(S), and

Let A = A(S) be the underlying affine space of a. Then A is an apartment in B(G).
By fixing a hyperspecial point o € A, one can identify 4 with a and elements in
&, with affine functions on a.

Let C be the fundamental chamber of A defined by

C={z€A|0<a(z)<lforalla € X}.

For o € @y, let Hy = {z € A|a(z) = 0}. Then the Hy (« € ) are walls of C.
For0<i <n,lety; C, such that it= N Hy; . Then the y; (i=0,...,n)
are vertices of C. Let a2

{2,...,n} if G =SO(2n + 1),
(1) Lsp = 1{2,...,n =2} if G =S0(2n),
{I,....,n—1} if G =Sp(2n).

Then y; is not a special vertex (see [Tits 1979]) for all i € I,5p, and

SO(2i,f) x SOQ2n —2i +1,f) if G =SO2n + 1),
Gy, () ~ 4 SO(2i,f) x SO(2n —2i. ) if G = S0(2n),
Sp(2i, ) x Sp(2n —2i.) if G = Sp(2n).

2C. On the stable conjugacy classes of maximal tori. If T is a maximal K-split
k-torus of G defined over k, then T = T(k) is a maximal unramified torus of G
[DeBacker 2006]. In this case, let B(T) = B(T, k). By [Adler 1998], choose a
Gal(K / k)-equivariant embedding of B(T, K) into B(G, K); then B(T) is identi-
fied with a subset of B(G):

B(T) =B(T, K)' c B(G, K)T =B(G).

DeBacker [2006] defines a set /" and an equivalence relation “~” on 1™, so
that there is a one-to-one and onto correspondence between /" / ~ and the set
of G-conjugacy classes of unramified maximal tori in G. Elements in /™ are of
the form (F, T), where F is an arbitrary G-facet in B(G) and T is a maximal
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minisotropic f-torus in Gg. Let C(F,T) be the G-conjugacy class of maximal
unramified tori in G corresponding to the equivalence class in /™ containing (F, T).

Let 0 € B(G) be one of the special points chosen in Section 2B, to which we
associate a conjugacy class of a maximal anisotropic f-torus in G, and a conjugacy
class in W (G,) (see [DeBacker 2006; Carter 1985]). Here W (G,) is the Weyl group
of G,. Let T, (resp. w,) be a representative of the conjugacy class of a maximal
anisotropic f torus (resp. the W (G,)-conjugacy class). Then ({0}, T,) € I™. Take
T =T(k) e C({o},Ty); then T is a maximal unramified anisotropic k-torus in G
(see [DeBacker 2006]).

Let ¥(T,) be the subset of /™ consisting of elements (F, T) such that if W (GF)
is identified with a subgroup of W (G,), then W(GF)y FN W(G”)wo # &, where wp
is a representative of the W (G r)-conjugacy class corresponding to T. Then ¥(T,)
depends only on the conjugacy class of w, in W (G,). In fact, $(T,) is the set of
G-conjugacy classes of maximal unramified anisotropic tori in the stable conjugacy
class of 7' in G, which is the stable conjugacy class of maximal unramified tori in
G corresponding to w, [ibid., Corollary 4.3.2]. Let “~” be the equivalence relation
on ¥(T,) inherited from /™.

We briefly recall the classification of conjugacy classes in W (G,). Since G, is
split special orthogonal group or symplectic group over f,

Sy x(Z2/22)" if G, =SO(2n + 1) or Sp(2n),

S, x(Z2/27)*~' if G, =SO0(2n),n > 2.

Here S, is the n-th symmetric group. Conjugacy classes in W (G,) are parametrized
by the set of pairs of partitions (A, u) with S(1) 4+ S(u) = n; moreover, if G, =
SO(2n), c(w) is even [Carter 1972, Propositions 24, 25]. Here, terminology in
[Waldspurger 2001] is used: for a partition A = (A1,...,4,,...),

W (Gy) ~

SA) =3 A ) =1l = 1|4 £0}].

i=1
In particular, conjugacy classes of anisotropic maximal tori in G, () are parametrized
by the subset consisting of (&, u), with S(p) = n; if G, = SO(2n), c(p) is even.
Assume (&, u) corresponds to the conjugacy class of w, in W(G,), and write
IL=(/~'L1$--'$MS)’ MIZ"'EMSZL

so that S(p) = n, and s is even if G = SO(2n). Let
P)={m" =Wjs- - 1j,_s,) | for some 1 < j1 < jo<++ < js—om,0<2m <s},
if G =S0O(2n 4+ 1) or SO(2n);
) ={p = (Wjy- s js_,,) |forsome 1 < j1 < jo <-++ < js—m,0 <m <5},
if G = Sp(2n);
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For u’ € (), define
=iy =i(p)):=S(p)—Sk).

Then W o)y, N W (Gy,) # @. Here W(Go)y, is the conjugacy class of w, and
W (Gy,) is the Weyl group of Gy, identified as a subgroup of W (G,). By [DeBacker
2006, Corollary 4.3.2], there is a maximal anisotropic torus T’ in Gy, (f) that is
Go (f)-conjugate to To. Hence ({y;(uy}. Tu') € F(To).

Take Ty € C({yi(u')}> Tu’); then Ty is a maximal unramified anisotropic torus
in G stably conjugate to 7" and B(Ty’) = {yi, }. In particular, p € ¥(p). Take
Ty = T. Conversely, all G-conjugacy classes in the stable conjugacy class of T
have a representative of this form.

Lemma 2.1. The set {({yiu, W) n'e EP(;L)} is a complete set of representatives
of F(To)/~.

Proof. It remains to show that the pairs ({yi,, }, Tu’) are not equivalent to one
another, for u’ € ¥(p). If iy, =i, for distinct ', u” € (), then by the choice
of Ty’ and Ty, T, is not conjugate to Ty~ in Gyl.u/; therefore ({yi,, }, Tp) is
not equivalent to ({yi,, }, Tu”)-

Ifiy #igr for p',n"” € F(p), we will show y; , is not associated to y;,,. As
a consequence, ({yi,, }, Tu’) is not equivalent to ({yi,, }, Tu~).

The case for G = Sp(2n) is trivial, since the vertices yg, y1,..., yn of C are
not associated to each other.

If G = SO(2n + 1), among all vertices yg, 1. .., yn of C, yo is associated to
y1,and yo, y2, ..., yn are not associated to each other. For ' € $(p), if i,y # 0,
then iy’ > 2. As aresult, ({yi,, }, Tu’) is not equivalent to ({yi,, }, Tu").

If G = SO(2n), among all vertices yg, y1,..., Yn, Yo is associated to y1, y,—1

is associated to y,, and yg, y2,..., Y¥n—2, Vn are not associated to each other. For
p'eP(pn),ifiy #0, theniy #1,i, #n—1. Then ({yi, }» Tu’) is not equivalent
to ({yiu//}’TIL”)~ O

2D. L-packet. Keep the notation of the previous subsection. Let t; (resp. t, (K))
be the Lie algebra of T, (resp. Ty (K)). For s € Z, let t; s (resp. Ty s) be the s-th
filtration of t, (resp. T),) [Adler 1998]. Let r be a positive integer, X, a good
elementin t, _, (i.e., X, €t_;), and for every root & of T, (K) in G (K), assume
da(Xy) # 0. Let xy be a character of T), satisfying yul7, . =1,

xunEexp,(Y)) = ¢ (tr(X,Y)) forall Y €ty ,.

Here exp,, is the mock exponential map defined in [Adler 1998].
Let 7y, ;u be the supercuspidal representation constructed by using y, and X,
¢: Wi — LG bethe L-parameter of 7y, . (see [Adler 1998; Reeder 2008]), where
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W is the Weil group of k. For u’ € ¥(n), let g € G (K), be an element such that
Ty (k) =8Ty(k); then X, = 8X, is a good element in t,’ . Define a depth r
character y - of Ty by xu/ :=€yy; then,

)(,L/(expyi(u,)(Y)) =y(trX,Y) forallY €ty ,.

Let 7y, ;u’ be the supercuspidal representation of G constructed by using y, and
Xy . Then:

Theorem 2.2 [Reeder 2008]. The set I (@) = {7y, ;u’ | B’ € F(p)} is the L-packet
associated to .

The main result of this paper concerns nilpotent orbits supporting representations
in IT'(¢). Prior to the statement of the main theorems, we recall the classification
of k-rational nilpotent orbits in g [Waldspurger 2001, §1.6] and define a partition
Al for every i € Iygp.

2E. Nilpotent orbits. Let A = (1;);en be a sequence of nonnegative integers such
that A; = 0 for j sufficiently large. Define

SA)=) A, cQ)=[{j=1[A;#0}, ¢(A)=[{j|A;=i}|forallieN.
Jj=1

If Ay > Ay >---, A is called a partition. Let P be the set of all partitions and P (n)
the subset of all A € % such that S(A) =n. For A, u € %, let A U u be the unique
partition such that ¢;(A U ) =c;(A) +c; () forall i € N.

Let W be the vector space defined in Section 2A and d = dimy W. If ey =1,
let (W) be the set of partitions A € P(d) such that ¢; is even for all even i. If
ew = —1, let (W) be the set of partitions A € P(d) so that ¢; is even for all odd i.
Let Nil; (W) be the set of (A, (¢;)) with A € P(W), and let ¢;, i € N, be quadratic
forms satisfying these conditions:

e If ey = 1, g; is a nondegenerate quadratic form on k¢ for i odd, g; = O for i
even, moreover the quadratic form €0, ¢; has the same anisotropic kernel
as qw; here, qw is the quadratic form on W defined by gw (v) = (v, v).

e If ey = —1, ¢; is a nondegenerate quadratic form on k¢ for i even, g; =0
for i odd.

Definition 2.3. (4, (¢;)) € Nil; (W) is called exceptional if ey =1, 4 | d, and A;
is even for all i € N. In this case, g; = 0 forall i € N.

Definition 2.4. o« If eyy = —1, let Nil(W) = Nil; (W);
e Ifew = 1,44 d, let Nil(W) = Nil; (W);

e If ey =1,4]|d,let Nil(W) be the set consisting all nonexceptional (4, (¢;)) €
Nily (W) and (4, (g;), &) with (4, (g;)) exceptional, ¢ = +1.



176 QIN YUJUN

By [Waldspurger 2001], there is a bijective correspondence between Nil(W) and
gnil/ G, the set of k-rational nilpotent orbits. Define a partial order on % (n): for
A, pu€P(n), A > p if and only if for all j > 1, Z{zl Ai > Z{zl Wi

Definition 2.5. Define a partial order on the set of nilpotent orbits in g: O1 > O if
and only if O; D O,. Here the closure is taken with respect to the usual topology
in g.

Lemma 2.6. Let Oy, O be nilpotent orbits in g corresponding to (A, (q;)) or
(A, D,¢) and (., (q})) or (., D, €) respectively. If Oy > O, then A > p.

Proof. The proof is similar to that of Theorem 6.2.5 of [Collingwood and McGovern
1993]. Take arbitrary X € Oy, Y € O,, with Oy, O, corresponding to (A, (¢;)) or
(A, 2,¢) and (. (¢q})) or (., @, &’) respectively. If O1 > O, then O1 2 O3,

rank(Xk) > rank(Yk) forallk > 1,

since the condition that rank of a matrix be strictly less than a fixed number is a
closed condition for the usual topology. Now A > u by of [ibid., Lemma 6.2.2], O

Example 2.7. Regular nilpotent orbits in gy are those corresponding to:

e (2n+1],92n+1),ifew =1,d =2n + 1. Here g2, +1 is the nondegenerate
quadratic form on k defined by g2,,41(x) = x2.

e ([2n—1,1],(q2n-1,91)),ifew =1,d =2n. Here g2,—1, ¢1 are nondegenerate
quadratic forms on k such that g2,—1 @ ¢1 >~ ¢, where ¢’ is the quadratic
form on k? defined by ¢’(x, y) = 2xy for all x, y € k.

e ([2n],q2n), if ew = —1, d = 2n. Here g2, is a nondegenerate quadratic form
on k.

Let Iyp be the set defined in (1). For i € Iy, let Al =p Up” with
W =0Ri—-1,1], u’"=[2n-2i+1], ifew =1,d =2n+1;
W =Ri—1,1, p'=2n-2i—-1,1], ifew =1,d =2n;
w = 2i], w = [2n—2i], if e =—1,d =2n.

For i & Ingp, let

[d] ifew=1,d=2n+1,
A ={[d=1,1] ifew=1,d=2n,
[d] ifew =—1, d =2n.

Lemma 2.8. Leti € Iy, Let 0’, 0! be nilpotent orbits in g corresponding to
(A, (q;)) or (A, 2, ¢) and (A, (q;)). Assume O' > O'. Then:
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e If G =SO(2n + 1), then A" = [2n + 1] or [m,2n — m, 1] for some odd
m >max(2i —1,2n—2i + 1).

e If G = SO(2n) and i # n/2, then A’ = [m,2n — m] for some odd m >
max(2i — 1,2n —2i — 1), or A = [m,2n —m — 2,1?] for some odd m >
max(2i —1,2n —2i —1).

o IfG =SOQ2n) andi =n/2, then A' = [n?], or

A =[m,2n—m]or[m,2n—m—2,1?]

for some odd m > max(2i —1,2n —2i —1).
e If G = Sp(2n), then A" = [m, 2n — m] for some even m > max(2i,2n — 2i).

Proof. Assume A" = [A],A},...] € P(W), with A] > A} > --.. By Lemma 2.6, if
O’ > O, then A’ > A%,

Assume G = SO(2n + 1), A' = [2i —1,1] U [2n — 2i + 1]. First, assume
2i —1>2n—=2i+1, A" =[2i —1,2n—2i +1,1].

By definition, A’ > A’ if and only if A’ # A’ and

AMp=2i—1, M +A,>2n, A +A+A=2n+1.

Then Ay =0o0rA; = 1. If A, =0,1, =0,then A’ = 2n + 1] > A’. If 1}, =0,
Ay #0, then A" = [A],2n + 1 —A)] & P(W), which contradicts the assumption
A epP(W).

IfA,=1,1"=[m,2n—m, 1] for some m >2i —1. If m =2i — 1, then A’ = A',
which contradicts the assumption A’ # A’. Hence m > 2i — 1. If m is even, then
cm(A') is even and 2n —m = m; hence m = n, and A’ = [n2,1]. On the other
hand, A’ > A%, 2i —1 =2n —2i + 1 = n = m, which contradicts m > 2i — 1. In
conclusion, A’ = [m, 2n — m, 1] for some odd m > 2i — 1.

Similarly, if 2n —2i —1>2i — 1, A" > Al = [2n —2i —1,2i — 1, 1], then

= [m,2n —m, 1] for some odd m > 2n — 2i + 1. This concludes the proof for
G =S0(2n +1).

Assume G =SO(2n), A' =[2i —1,1]U[2n —2i — 1, 1]. First, assume 2i — 1 >
2n—2i—1,A =[2i —1,2n—2i —1,1?].

By definition, A’ > A’ if and only if A’ # A’ and

M =2i—1, Aj+A,>2n-2, M +A,+A5>2n—1, A|+A5+A5+4, =2n.

Then Ay =0 or A, = 1. Assume A), = 0; then, Ay =0 or A5 = 1. If A} =1,
Ay = 0, then A and A/, have different parity, so A’ ¢ P(W). If A5 = 1), =0, then
A =[m,2n— m] with m >2i —1. If m is even, then ¢;, (') is even, m =2n—m =n.
Hence m = n > 2i —1 > 2n — 2i — 1, which has no solution since the second
inequality requires 2i —1 > n — 1. In conclusion, if ), = 0, then A" = [m, 2n —m]
for some odd m > 2i — 1.
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If Ay =1,then Ay =1, A =[m,2n —m —2, 12] for some m > 2i — 1. If
m = 2i — 1, then A’ = A’ which contradicts the assumption A’ # A’. Hence
m > 2i — 1. If m is even, then ¢, (A’) is even, m = 2n —m —2 = n — 1. Hence
m=n—1>2i—1>2n—2i—1, which has no solution since the second inequality
requires 2i —1 > n — 1. In conclusion, if A, = 1, then A" = [m, 2n —m —2, 1?] for
some odd m > 2i — 1.

Similarly, if 2n —2i — 1 > 2i — 1, then A’ = [m,2n — m] for some odd
m > max(2i —1,2n —2i — 1), or A’ = [m,2n —m — 2, 1?] for some odd m >
max(2i —1,2n—2i —1).

Assume now 2i —1 =2n—2i—1. Thenniseven,i =n/2,and A’ =[(n—1)2, 12].
Assume A’ > A%, A € P(W). Then

M=n—1, A +A>2n-2, Aj+A,4+A5>2n—1, A|+A5+A5+A, =2n.

IfA] =n—1,then Ay =n—1, A" =[(n—1)%,12] = A!, contradicting the assumption
A’ # A%, Hence A} > n. If A is even, then ¢y iseven, Ay =1, =n,and A = [n 2].
If m = A >nisodd, thenm >max(2i —1,2n—2i—1)=n—1and A’ =[m, 2n—m]
or [m, 2n —m — 2, 12]. This concludes the proof for G = SO(2n).

Assume G = Sp(2n). Without loss of generality, assume 2i > 2n — 2i; i.e.,
i >n/2. Then A’ =[2i,2n—2i]. By definition, A’ > A’ if and only if A’ # A’ and

Ao=2i A+ AL =2n.

Hence A = [A},2n—A]]. If A} =2i, then A, =2n—2i, A’ = A?, which contradicts
the assumption A’ # A’. Hence Ay >2i = n. If A is odd, then C;L/IA’ is even,
A = A, = n, which contradicts A] > n. As a result, A’ = [m,2n — m] with
m = A’ > 2i even. This concludes the proof for G = Sp(2n). O

2F. Nilpotent support. Let O’ be a rational nilpotent orbit in g/G and fix an
element z € O’. Let {z, h, z'} be an s, triple in g; i.e., let there be a Lie algebra
homomorphism ¢ : sl — g such that

o((00) o0 #el(00)

ForieZ letg, ={Z e g|Ad(h)(Z)=iZ}. Thenz € g and g = P; 7 9i-
Define nilpotent subalgebras nl, |, n'>> of g and unipotent subgroups N, N,
of G as follows:

n/zl = @gla Nél = exp(nlzl)v
i>1
(2) / / /
Nso = @gi, N3, =exp(n'>2).

i>2
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Let v, be the character of Néz defined by

3) V:(Z) =Y otr(z-logZ) (Z € NL,).

Then Ker(y;) is a subgroup of N.,. If nl; =n'>3,s0 N,| = N.,, let S; be the
character ¥, of N, . If n | #n' >2, then g # 0 and N;17 Ker(V,) is isomorphic
to a Heisenberg group over f with center N.,/ Ker(v/,). In this case, let S, be the
irreducible representation of N, whose restriction to N. L, is a multiple of V.

Definition 2.9. Keep the notation above. Following [Moeglin and Waldspurger
1987], denote by Ny () the set of all nilpotent orbits O’ in g/G such that, for
some smooth irreducible representation 7w of G, we have Hom N., (m,S;) #0.
Let Nwh,max (77) be the subset of maximal elements in Ny, () with respect to the
inclusion relation of closure of orbits.

3. Main theorems

The main results of this paper are the following theorems, whose proofs are given
starting on page 185 and page 192, respectively.

Theorem 3.1. Let w € T1'(¢). Assume 1w = 7y, ;u for some p’ € F(p), i =iy
Let O', O be nilpotent orbits in g corresponding to (A’, (qj/-)) or (A, ¢,¢€) and
(A%, (g))) respectively, with O’ > O'. Take arbitrary z € O'. Then

Homy/ (m,S;)=0.

Theorem 3.2. Let w € I1'(p). Assume 1w = 1y, ;u for some p' € $(p),i =

iy. Then there is a nilpotent orbit O' corresponding to (A, (q;)) such that
O'e Nwh,max(”)'

Ifi ¢ Isp, then y; is special. In this case, Theorem 3.1 is void and Theorem 3.2
is proved in [DeBacker and Reeder 2010].

The subset T, of ®*. Assume now i € Isp; that is, rank(G) is large enough for
Insp to be nonempty. Let O’, O be nilpotent orbits in g corresponding to (1, (4}))
or (A, ¢, €) and (X', (g;)) respectively, with O’ > O'. In this subsection, we will
choose a particular element z € O such that

“4) N.,CB, Ni,CB.

Here B is the Borel subgroup consisting of upper triangular matrices in G and N. j
is the object defined in Section 2F for any sl, triple {z, &, z’} attached to z in g.
Let ', C @ be the subset of positive roots such that & € I', if and only if the root
space ug C n’,, and let

(5) I, :=oM\T..
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The following notation is used frequently: let v = (vq, ..., vs) be a sequence
of positive integers such that d = Zj‘=1 v;. Then every matrix a € gl(d, k) can
be written in blocks @ = (a; ¢); ¢<s, With a;; € gl(v;, k). Let A; be an arbitrary
vj+1 X v; matrix for 1 < j <s—1,andlet z(v; Ay, ..., As—1) = (z;¢), 4<s be the
nilpotent element in gl(d, k) such that

Ay J ={+1,
Ovj)(vl j #E"‘ 1.
Assume G = SO(2n + 1). By Lemma 2.8, A’ = [2n + 1] or [m, 2n —m, 1] with

m odd and m > max(2i —1,2n —2i + 1).
First, assume A" = [2n + 1], g5, .1 = g2n+1 as in Example 2.7. Let

Zjt =

(6) z=zWw:1,...,1,—1,...,—1),

with v = (12"t1) a regular nilpotent element in g. Let {z, i, z’} be an s, triple
attached to z in g and g;, > It N; i the objects defined in Section 2F. Then, we
naturally have

>2 - {n - (njﬁ)jﬁ<2n+1 € glnjﬁ —Ov,sz lfJ >£} C B,
NLy={n=j4)je<on+1 €0Injg =0y xy, if j =L -1} CB.
Let I, be the subset of ®T defined in (5); then,
@) I; ={a;|j=1,...,n}.

Second, assume m = 2n — 1. Then A’ = [2n — 1, 1?], q5,_, is a nondegenerate
quadratic form on k, identified with a nonzero element in k>, and ¢/ is a nonde-
generate quadratic form on k2, such that g5, _, @ ¢ is isometric to the quadratic
form on k3

(u,v,w) > 2uw +v%  (u,v, wek).

Let
(8) z=zw;1,1,...,1,A4% A, —1,...,—1),
with v = (1771,3,1771),

A* = (am.bm.cm)'. A= —(cm,bm,am),

such that AA* = —¢g5,_,. Then z € O’, as shown in the Appendix
Let {z,h,z'} be an s, triple attached to z in g and g;,n >j , N/ the objects
defined in Section 2F. Let s = s(v) = 2n — 1 = m. It is shown in the / Appendlx that
NL,={n=j0)je<s €9|nje=0yxp, if j > £},

>4—{n—(nj€)j€<s€9|njﬁ—Ovjxve if j >€—1};
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that is, (4) is satisfied. Let ', be the subset of ®* defined in (5); then,
©)] I;={aj|j=1,....n =2} U{ep—1 T en} U{en—1,€n}.

Here the ; (j =0, 1,...n) are simple roots defined in Section 2B.

Third, assume m < 2n — 1. Then A’ = [m,2n —m, 1], and q,,.¢5,_,,. 4} are
nondegenerate quadratic forms on k such that ¢;, ® ¢5,_,, ® ¢ is isometric to
quadratic form (u, v, w) > 2uw + v? (u, v, w € k). Let

(10) z=z(v;1...,1,a*,15,...,15, A%, A, —15,...,—12,a,—1,...,—1),
with v = (lm—n’zn—(m—i-l)/Z’ 3, 2n—(m+1)/2’ 1m—n)’ a* = (1’ O)t, a= _(0’ 1)’

Am A2pn—m s by as
m n—m | > m b A )

Cm C2n—m

such that

T ]
9m O

Working as in the Appendix, given z € O’, let {z, h, z’} be an s, triple attached to
z in g and let g;, n’ N;j be the objects defined in Section 2F. Let s = s(v) = m;

>j’
then, (4) is satisfied:
Néz ={n= (nj,lf)j,lffs €gl nje= Ov_;XVg if j >4} C B,
Let I'; C ®* be the subset of positive roots defined in (5); then,

U{O{m_n+2j_1 lj=1,....,.n—(m+1)/2}

_m+3
n——

U U {em—nt2j—1—€m—n+t2j+1,€m—nt2j—1—€m—nt2j+2}
j=1
n_mT-H

U U {em—n+2j —€m—n+2j+1,€m—n+2j —€m—n+2j+2}
Jj=1

Ufen— tentU{en—1 e} Ulen—a,en—1,6€n}.

Assume G = SO(2n). By Lemma 2.8, A’ is one of [n?], [m,2n — m], or
[m,2n —m —2, 1?] for some odd m > max(2i —1,2n —2i —1).

First, assume m = 2n —3 and A’ = [m,2n —m —2,1?] = [2n — 3, 13]. Then
45,3 and ¢} are nondegenerate quadratic forms on k and k3, respectively, such
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that g5, @ ¢ is isometric to the quadratic form on k* defined by (u,v,w,x) =
2ux +2vw (U, v, w,x €k). Letv = (1"72,4,1"2), s =s(v) =2n—3 = m, and
z=z(w;1,...,1,A* A,—1,...,—1), with

* t
A" =(azn—3,bon—3.c2n-3,don-3)", A=—(dan—3,c2n—3,b2n—-3,a2n-3)

satisfying AA* = —g/, 5. Similar to that in the Appendix, z € O’. Let {z, h, z'} be
an sl triple attached to z in g and g;, n N ! the objects defined in Section 2F.
Then

Néz ={n=njg)je<s €0lnjg=0yxy,if j =L} C B,
Né4 = {n = (nj,e)j,efs €g|nj’g :OVjXVg if j >{— 1} C B.

Let I'; C ®* be the subset of positive roots defined in (5); then,
(12) T, ={a;|j=1,....n=3}U{en—2Ees_1}U{en—2tent U{en—1 ey}

Second, assume A’ = [m,2n —m — 2, 1?] for some odd m < 2n — 3, m >
max(2i —1,2n—2i —1). Since m >2n—m—2> 1, q,,.q5,_,._, are quadratic
forms on k and g} is a quadratic form on k? such that g, & g5, _,,_, ® ¢} is
isometric to the quadratic form on k* defined by

(u,v,w,x) =2ux+2vw (u,v,w,x €k).
Letv = (1" "+l 2"_M .4, 2"_mT+3, 1m=n+1y s = s(v) = m, and
z=z(Ww;1,...,1,a% 15,..., 15, A% A, ~15,...,—13,a,—1,...,—1),
with a* = (1,0)!,a = —(0, 1),

am A2n—m—2

A* bm ban-m—2 A =— don—m—2 C2n-m-2 ban—-m—2 A2n—m—2
cm Con—m—2 |’ dm Cm bm am '
dm Con—m—2
such that

AA* = — (0 q2nm2)
dm O

Working as in the Appendix given z € O, let {z, h, z’} be an s, triple attached to
zingandletg;,n N be the objects defined in Section 2F. Then

>2—{n—(njé)j€<s€9|njﬁ—ovjxve if j >4} C B,
>4—{n—(nj€)j€<s€g|”j£—0v,><ve if j=£—1} CB.

Let I, C @1 be the subset of positive roots defined in (5); then,
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(13) Iy ={a;|j=1,....m—n+1}U{em_nt1—€m—n+3}
Ulm—n+1+2j-117 =1,....,n—(m+3)/2}
n—"%s

U U tem—n+142j—1—€m—n+1+2/+1: em—n-+14+2—1—€m—n+1+2j+2}
j=1

n—’”T“‘S

U U {em—nt142j—€m—nt142j+1:€m—n+142j—Cm—n+1+2j+2}
j=1

Ulen—3Een—1.en—3FenjUlen—2te,—1,en—2Fe,}

U{en—1Een}.

Third, assume A" = [m, 2n —m] for some odd m > n. If m > n, then q,,,q5,,_,.
are quadratic forms on k such that ¢,, ®¢5,_,, is isometric to the quadratic form on
k? defined by (4, w) > 2uw. If m =n is odd, then A’ = [n?], and ¢/, is the quadratic
form on k2 isometric to the quadratic form on k2 defined by (u, w) — 2uw.

Let v = (1" 22n—m [m=n) ¢ —s(v) = m, and

Z(v;12,...,12,A*,A,—12,...,—12), m=n,
7=
zw:;1,...,1,a%1,,...,15, A% A, —15,...,—13,a,—1,...,—1), m>n,

with a* = (1,0)!,a = —(0, 1),

- bon—m Gan—
A* = Am A2n—m A =— 2n—m A2n—m
(bm b2n—m ' bm am ’

((,) qé”—m) if m>n,
dm 0

(%0 ifm=n
02 )

Working as in the Appendix, given z € O’, let {z, h, z'} be an s, triple attached to
zingandletg;,nl ., N, ; be the objects defined in Section 2F. Then

=j’

satisfying

AA* = —

Néz = {n = (nj,e)j,efs €g|nj,g =OvaVg if j ZE} C B,

é4 == {n == (nj’e)j’eSs €g|nj’£ =OVjXV( lf] 26_ 1} C B

Let I, C @1 be the subset of positive roots defined in (5); then,
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(14) T, ={aj|j=1,....m—=n}U{em—n—emni2}
Ulam—n+2j—11j=1,....n—(m+1)/2}

U U em—n+2j—1—€m—n+2j+1:Cm—n+2j—1—€m—n+2j+2}
j=1

+3

n—mt3

U U {em—n+2j —€m—n+2j+1+Cm—n+142j —€m—n+2j+2}
j=1

Ulen—1 £entUlen—2 ten}.
Fourth, assume 7 is even and A’ = [n?]. Let v = (27),
(15) z=z(w;ly,...,12,A4,—15,...,—13),

with A = diag(1, —1). Working as in the Appendix, take z, € O/, where O] is the
nilpotent orbit corresponding to (A, &, €) for some ¢ = 1 or —1. Let {z¢, h¢, z¢} be
an sl triple attached to z, in g, and g;, nl ;, N ; the objects defined in Section 2F.
Then
Ny ={u=(ujg)je<n €9lujg=0yxy, if j > £} C B,
LetI';, C ®* be the subset of positive roots defined in (5) for z; then,
(16) Tz ={azj—1|j=1,...,n/2—1}U{es—1£en}
14
U U {ezj—1—ezj41.€2j—1—€2j+2.€2j —€2j+1,€2j —€2j+2}.
j=1
Let wo = (ag,¢)2nx2n be the element in O(2n) satisfying
Anp+1 =dp1n =4a;,; =1 ifl1<j<2n,j#n,j#n+1,
agy =0 otherwise.
Let z_o = wozew, . thenz_, € O ¢» Where o’ ¢ 18 the nilpotent orbit correspond-
ing to (A', ¢, —¢). Let {z—¢, h—¢, z—¢} be an sl, triple attached to z— in g and g/,
n’é IL Né’ j the objects defined in Section 2F. Then
LetI',_, C ®T be the subset of positive roots defined in (5) for z_, then

(17) Fz_s ={en—3+en,en—2+enU 1—128\ {en—3 —en,en—2—en}.



MAXIMAL NILPOTENT SUPPORTS OF SUPERCUSPIDAL REPRESENTATIONS 185

Assume G = Sp(2n). By Lemma 2.8, A’ = [m, 2n — m] for some even m >
max(2i,2n —2i). Then m >2n —m, and q,,, g5, _,, are nondegenerate quadratic
forms on k. Let v = (177" 227=™m 1M=1) ¢ — s(v) = m, and

z=z(w;1,...,1,a% 15,...,15, A, —15,...,—13,a,—1,...,—1),

with a* = (1,0)!,a = —(0,1), A = (Z ‘C’), such that g}, @ g5, _,, is isometric to
the quadratic form given by the symmetric matrix 4.

Working as in the Appendix, given z € O’, let {z, h, z'} be an s, triple attached
to z in g and let g;, nl, e N ; be the objects defined in Section 2F. Then

éz ={u= (”j,e)j,efs €g| Ujp = Ov_,-xvg if j >4} C B,
N£4 ={u=(uj)je<s €9lUj=0y;xy if j >€—1}CB.

Let ', € &7 be the subset of positive roots defined in (5) for z; then,

Ufom—nt2j—1]j=1,....n—(m)/2}

n—"2-1
U U {em—n+2j—1 —C€m—n+2j+1,m—n+2;—1 — €m—n+2j+2}
j=1
n—"2-1
U U {em—n+2j —€m—n+2j+1,€m—n+142j —€m—n+2j+2}
j=1
U{en—1 +en,2en—1,2en}.

Proof of Theorem 3.1. We keep the notation used so far in this section and in
Section 2B. For i € Iy, let

Si={ojlj=1....nj#i}U{-yp}

which is a set of simple roots of a root subsystem of ®. Let O’, O’ be nilpotent
orbits in g corresponding to (A, (qj’.)) or (A',¢,€) and (A%, (q;)) respectively,
with O’ > O'. Let z € O’,T, C ®1 be as defined (6), (8), (10), (15), and set
[, = ®1\TI;.

Lemma 3.3. Let w be a Weyl element of G such that w™'(2;) C ®T. Then
w(Z)NT. # 2.

Proof. First assume G =SO(2n+1). Then —y = —e1 —ez, aj =ej—e; 11 for j =
1,...,n—1, and o, = e,. Let w be a Weyl element of G such that w_l(E,') c ot
then, there is a permutation o of {1, 2,...,n} satisfying o(1) > o (2) > --- > 0 (i),
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o(i+1)<o(i+2)<---<ao(n),such that

*esqy ifj=1,
(19) wl(e)) = —ep(y if2<j <i,
eq(jy ifi+1=j=<n.

Assume on the contrary that w™!(Z;) N T, = @; then
(20) w (T C Ty.

Ifi =n, then A’ =[2n—1, 1%, , = {a; | 1 < j <n}U{—y}. Thenby Lemma 2.8,
A'=[2n+1]and g5, = g2n+1.and by (1), T; ={a; |j =1.....n}. Ifw
satisfies (19) and (20), theno(j)=n+1—7,

w(e) = tep, w_l(ej) =—ept1—; (I<j=<n).

Asaresult, w1 (Z,) = {oj |1 <j <n}U{ep—1+en} ¢ I'z, which contradicts (20).
Hence w™1(Z,)NT. # 2.

If i <n, by Lemma 2.8, A’ = [2n + 1] or [m,2n — m, 1] for some odd m >
max(2i —1,2n—2i + 1). Let w be a Weyl element satisfying (19) and (20). Since
te1—ep, e, € X;, we have

(21) w_l(:tel —e2) = e5(2) T eg(1) € 'z, w_l(en) =eon) €1z

If A'=[2n+ 1], then T'; ={a; |1 < j < n} and es2) + e5(1) & I'z, which
contradicts (21).

If A'=[m,2n—m, 1], m =2n—1, then I'; is the setin (9). By (21),0(2) =n—1,
o (1) =n, while o(n) = n or n — 1, which is impossible since ¢ is a permutation.

If A’ =[m,2n—m, 1], m <2n—1, then I', is the setin (11). By (21), o (1) = n,
{0(2),0(n)}={n—2,n—1}. If e —e3,e,—1 —en € X;, then by (20),

u)_l(ez — €3) =e€5(3) —€u(2) (S Fz, w_l(en_l — en) =€s(n—1) —€o(n) S Fz-

Then {cd(3),0(n—1)} ={n—4,n—3}. Since m > max(2i —1,2n —2i + 1), we
have

1
n—m+ <min(n —i,i —1),
so the procedure can be repeated n — m;—l times. Then, for{ =2,...,n— mT—l’
{o),c(n+2—-0)}={n-20—1),n—-204—1)+1}.
m—1 m+3

In particular, for £y =n — andn+2—4g=——,

2

(6(Lo), o (n +2—Lo)} = {0(60),0<m;3)} —m—n+1lm—n+2).
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Since m > 2i — 1, we have m > 2n —2i + 1,

m—1 m-+3
<i, i+1<

lo=n— =n+2—4lo, eg,—€ry+1,€mt1—€ms3 €.
2 2

By (20), 1
W (egy —€ry+1) = €a(to+1) — €o(lo) € L'z,

-1
w (e —e =e —e el,.
( m;—l m;—3) o(mz—l) U(mil-?a) z

Then o(bo + 1) = 0(%(m + 1)) = m — n, which contradicts the assumption that o
is a permutation, for £y +1<i,(m+1)/2>i+ 1,890+ 1 # (m + 1)/2. Hence
w™1(Z;) N T, # @, concluding the proof for G = SO(2n + 1).

Assume now G = SO(2n); then we have —y = —ej —e3, @ = ej —¢€j 11
for j =1,...,n—1, and o, = e,—1 + €4. Let w be a Weyl element of G
such that w_l(Ei) C ®T; then, there is a permutation o of {1,2,...,n} and
£1,82 €{*£1} satisfyingo (1) >0 (2)>--->0(i),0(@(+1)<o(@+2)<---<a(n),
(—l)i_lslez =1, such that
8160(1) ifj = 1,

—eq() f2=<j =i,

eg(jy i+l1=j=<n-—1,

&85y if j =n.

(22) wl(ey) =

Assume on the contrary that w1 (%) NI, = @; then
(23) w(Z) CTy.

By Lemma 2.8, A’ is of the form [m,2n —m —2,1%] or [m,2n —ml].

Assume first m =2n—3 > max(2i —1,2n—2i — 1), A’ =[2n -3, 13]; then I',
is the set in (12). Since i € Iygp, Iysp is nonempty and n > 4. Hence 1,2,n—1,n
are four distinct numbers. On the other hand, e —e3, 4,1 £ €, € X;, so by (23),

w! (fe1—ez)= es2)te€1es(1) €1z, w! (en—1Een) =egm-1yLe2esm) €Iz

Hence the cardinality of {o(1),0(2),0(n —1),0(n)} is 3, which contradicts the
assumption that ¢ is a permutation.

Second, assume A’ = [m, 2n —m —2, 1?] for some odd m with m <2n—3, m >
max(2i —1,2n—2i —1). Then I'; is the setin (13). Since e —en,ey—1 L€, € X,
we have, by (23),

w! (er1—ez) = 60(2):|:€1€a(1) el’;, w™! (en—1Een) = ea(n—l):l:GZea(n) el;.

Then {o(1),0(n)} ={n—1,n} and {6(2),0(n—1) ={n—2,n—3}. If ex —e3,
eén—n —en—1 € Xj, then by (23),

w_l(eZ_e?’) =é€5(3)—"¢€s(2) € Iz, w™! (en—2—en—1) = €s(n—2) —€s(n—1) € r,.
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Then {6 (3),0(n —2)} ={n—5,n—4}. Sincem > 2i — 1, m > 2n —2i — 1,

3
S minG—ln—i—1),
the procedure can be repeated n — m;—3 times. Then for £ =1,2,...,n— mT-i-l’
{oc@),ocn+1—-0)}={n-20—-1),n—2L—1)—1}.
In particular, for £y =n — mT—H’ wehaven +1—4{o = mT+3

{0(Lo). 0(n + 1)} = {o(t), "3

Since m > 2i — 1, wehave m > 2n —2i — 1,

}={m—n+3,m—n+2}.

m+1 . m+3
<i, Ii+1<

=n+1-Ly, ep,—€gy+1,€m+1—€m+3 €X;.
2 2

-1
w (660 —e£0+1) = Co(lo+1) —Co(ly) € Iz,

—1
w (e —e =e —e el;.
( 1 m;—3) o (L) T €q(mi3) 2

Then c({g + 1) = U(%(m + 1)) = m —n + 1, which contradicts the assumption

that ¢ is a permutation, for £o + 1 <1i, %(m +D)=i+ 1,4+ 1+# %(m +1).
Third, assume A" = [m, 2n — m] for some odd m > max(2i —1,2n —2i + 1).

Then I'; is the set in (14). Since +e; —e2,e,—1 £ e, € X;, we have, by (23),

wl (tej—ep) = es2)Lereq) €1z, W (eq_1ten) = es(n—1)E€2e5m) €T2.

Then o (1) = o(n) = n, which contradicts the assumption that ¢ is a permutation.
Fourth, assume 7 is even and A’ = [n2]. Then I'; is either the set in (16) or the
setin (17). Since +e; —e3, ep—1 £ e, belong to X;, by (23),

wl (tej—ep) = es2)Lereq) €1z, wl (en_1ten) = es(n—1)E€2e5m) €T2.

Then o (1) = 6(n) = n, which contradicts the assumption that ¢ is a permutation.
Hence w™!(Z;) N T, # @. This concludes the proof for G = SO(2n).

Assume now G = Sp(2n); then we have —y = —2e1, oj = ej —ej41 for
j=1,....,n—1,and ay = 2e,. Since w™!(Z;) C ®T, there is a permutation o of
{1,2,...,n}, satisfyingo (1) >0(2) >--->0(i),0(@+1)<a(i+2) <---<a(n),
such that

e
(24) wle) =] "t0wr =T =0
; eg(jy i+l1=j=<n.

By Lemma 2.8, A’ = [m, 2n — m] for some even m > max(2i,2n —2i). Then I',
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is the set in (18). Assume on the contrary that w™!(Z;) N I', = @; then
wl(Z) C I
Since —2e¢1,2e, € X;, we have
wl(=2e1) =2e,1) €Tz, w1 (2en) = 2€5(n) € T
Then {o(1),0(n)} ={n—1,n}. If e; —ea,en—1 — ey € Xj,
wl(e1—e2) = €52y —€o(1) €T W (en—1—€n) = €g(n—1) — o(n) € Tor.
Then {o(2),0(n —1)} = {n —3,n —2}. Since m > 2i and m > 2n —2i, we have

m . .
n—; <max(i,n—1),

the above procedure can be repeated n — % times. Then for £ =1,2,...,n— %
{o@),on+1-0)}={n-20—-1),n—2£—-1)—1}.

In particular, for £y =n — % andn+1—4{y = % + 1, we have

(0(Lo),o(n+1—1Lg)} = {0(6@,0(% + 1)} —{m—n+1,m—n+2)
Since m > 2i,m >2n —2i,

Eozn—%<i, i+1<%+1:n+1—€0, ego—egoﬂ,e%—e%HeEi.

By assumption,
-1
W (egy —ego+1) = €olo+1) ~€o(lo) € Lo’
-1
w (e% —e%_,_l) =€o(Z) —Co(Z+1) elo.

Then o(bo+ 1) =0(m/2) =m—n. Buti > £y + 1 # m/2 > i, which contradicts
the assumption that o is a permutation. Hence w~!(%;) c ®*. This conclude the
proof for G = Sp(2n). O

Let A = A(S) be the apartment of %B(G) defined by the maximal split torus S
of G; see Section 2B. Let r be a positive integer. F' C A is called an r-facet if F is
connected and there is a finite subset ® g of ®,¢ such that

Y(x)=r forallxeF, y € OF.

Here ®,f is the set of affine roots associated to S. For more details on r-facets, see
[DeBacker 2002]. Since r is integer, the r-facet is in fact the usual facet.
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Lemma 3.4. For i € Iy, let w be a Weyl element satisfying w(Z;) C o
Let O', O be nilpotent orbits in g corresponding to (A’, (q]/)) or (A, ¢,¢€) and
(AL, (q))) respectively, with O’ > O'. Let z € O’ be the nilpotent element in (6),
(8), (10), (15), and let r > 0 a positive integer. Then there is an r-facet F such that
y;i € OF and

(WNL4w™' N Gy, r)Gy,r+ D GF s

Here y; is the vertex of the fundamental chamber C defined in Section 2B and N j
is the object defined in Section 2F for any sl triple {z, h, z'} attached to z in g.

Proof. Let T'; C @ be the set defined in (7), (9), (11), (13), and set I', = ®T\TI;.
By Lemma 3.3, w™1(¥;) NI, # @. Take B € ¥; such that w™!(B) € '} and, let
xg be an arbitrary point in the apartment s¢ such that 0 < B(xg) < % and a(xg) =0
for all « € ¥; distinct from B. Let F be the smallest r-facet containing xg. Then
yi € OF and F satisfies the requirement of the lemma.

In fact, let ®; be the root subsystem generated by %; and <I>l.Jr the subset of
positive roots of ®; generated by 3;. Then by definition

9F,r+ = Oxg,r+ = ( 1_[ u5,r) + 8y r+ C Byir-
8€d>l-
§(xp)>8(yi)

Note that the following sets are the same:

{8 |8(xp) >8(yi)} ={8 € d |5 cd}f}
={§c®l|5ep+ o]}
= {w() € & e e w™(B) +w™ (")}

By Lemma 3.3, w™!(B) € I'; that is, the root space i1 () C n%4- On the other

hand, since w~1(%;) C &7, w_l(CI>l.+) C ®*. For all § € ®*, ug € nl, (see

Appendix), so uq Cnl, foralla € N w (B +w™(Z))). -
Hence g+ C u)n/_>4u)_1 N @y, r + Gy, .r+. and thus

(WNLyw™ ' NGy, )Gy rt DGR prg. O

Proposition 3.5. Let m = 1y,.u’ € T1'(¢) be an irreducible representation defined
in Section 2D such that i = i(p') € Iyp. Let O', 0" be nilpotent orbits in g
corresponding to (A, (q})) or (A',¢.€) and (A", (q;)) respectively, with O' > O'.
Let z € O’ be the nilpotent element in (6), (8), (10), (15), and let Néj be the object
defined in Section 2F for any s, triple {z, h, z'} attached to z in g.

Let N' = N., and \; the character of N' defined in (3). Let v be a representative

of a double coset in Gy,\G/N' and y? the character of vN'v=' N Gy, defined as
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follows: for all x € vN'v™1 N Gy,

(25) Yl (x) 1= Y (v xv).

Let r > 0 be a positive integer. Then there is an r-facet F such that y; € oF and
NV NGy, )Gyt Gyirt DGRt/ Gyprts VElGr,q = 1.

Proof. Let S, B be the split torus and the Borel subgroup of G defined in Section 2B
and U the unipotent subgroup of B. Let v be a representative of G,,\G/N’; then,

v=w-a-u

for some Weyl element w of G such that w=1(Z;) C ®T,a e S,andu € U/N’,
where X; is the set defined in Lemma 3.3 (see [Reeder 1997]).

Note that a, u normalize N’, and let ' = 2%, the character of N’ defined in
(25) with v replaced by au. By Lemma 3.4, there is an r-facet F' with y; € 0F
such that

(WN'v' NGy, )Gy, r e D (WNLw ' NGy, )Gy, rs D Gy
Forall x € GF 4,
v lxv e (au)_lw_l[wNé“w_l]wau C (au)_1N£4au = N>4.
By the definition of ¥z, Y2 (x) = ¥ (v 1xv) = 1. d

We can now conclude the proof of Theorem 3.1. By the discreteness criterion in
[DeBacker and Reeder 2010, Lemma 2.4],

A7) = {x € B(G) | Vi ™"F £0} = Gy,

Gyt . . . .
and the Gy, /Gy, r+-module V; " * is cuspidal; i.e., for any r-facet F with
Yi € oF,

Gy, s
(26) (V2" =0,

Here LF =G F,r+/Gy,; r+ and Vg is the representation space of 7.

Assume on the contrary Homy- (7, ¥;) 7 0. By the construction of 7 in [Adler
1998], m =c— Indgyi (2) for some irreducible representation & of Gy,. Let Vg
be the space of E. Then

Homy/(m,yz) =[]  Homyyn-ing, (E.¥1),
veGy;\G/N’

and there is some v € Gy, \G/N’ such that Hom, y,-1ng,. (E,¥7) # 0. Then

HomvN’v—'ﬂGyi_,(E’ W;)) # 0.
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Applying Proposition 3.5, there is an r-facet F such that y; € dF and VEG Frt £,

Then V,TG £r+ £ 0, which contradicts the discreteness criterion (26). O

Proof of Theorem 3.2. Let f be the algebraic closure of f. Assume the characteristic
p of f is large enough that p is a good prime in the sense of [Carter 1972].

Keep the notation of Proposition 3.5. Then i =i(p') € Iysp and Gy, /Gy, r+ =
g1(f) x g.(), with g1 = s0(2i, f) or sp(2i, f) (see Section 2B). Let E,- € g;(§)
(j = 1,2) be regular nilpotent elements and {gj,i_z i E;} an sl triple in g; (f)
attached to § j. Let

=162, h=(h1.h), & =(1.62).
Then (£, h, &) is an sl triple in g1 (f) X g2(f).

Recall that if " € F(p), i =iy € Ingp, then T := Ty =Ty x T is a maximal

anisotropic torus in Gy,. Let 7' := T}/ be the maximal anisotropic unramified torus

in G associated to (y;, Ty’) in Section 2C. Let X = X - € t = Lie(T') be the good
element of depth —r defining 7y, ;u’, Whose image under the natural projection

Gyi—r = Byi,—r/ Gy —r+ = 91 X g2.
is denoted by X = (X1, X»). Since X is a good element in t with Cg(X) =T,
X ;j is a regular semisimple element in Lie(T;)(f) for j =1,2.
Let Oyj be the orbit of X ; in g (})/G; (f). By [Slodowy 1980, §7.4, Corollary 2],
the Slodowy slice

(27) Vji=§& +Cy &)
intersects Oyj at a unique f-rational point X ; €g;(f).

Since X is good, CG,- () (X ;) is connected [Carter 1985, Theorem 3.5.3]. Then
there is a g; € G; (f) such that Ad(g;)(X;) = X} [Digne and Michel 1991, §3.25].
Moreover T} =Cg,; (X ;) = Ad(g,)(T;) is a maximal anisotropic torus of G; (f),
with G; (f)-conjugate to T;. Let g = (g1. g2) € G(f); then, Ad(g)(T1 xT2) =T :=
T xT,.

Let g € Gy, 0 — gy;,0+ such that g projects to g, 7’ := Ad(g)(T), and X' :=
Ad(g)(X) et'. Then T’ is the maximal unramified torus in G, associated to (y;, T’),

X' is a good element in gy, —\@y;,—r4, Whose image under the natural projection
in Gy, is X' = (X, X}). Note that X" € V1 (f) x V2(§), where

Vi(f) =&1 4 Cy)ED. Vo) =2+ Cyy(5) (E5)

are sets of f-rational points of V1,V respectively. Without loss of generality,
assume X = X’. Then the natural image X of X in gy, —»/gy, —r+ belongs to

Vi(H) x Va(§).
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By [DeBacker 2002, Corollary 4.3.2], let (§, h, &’) € gy, ,—r X @y;,0 X gy,,r be an
sl, triple in g such that {&, &, &'} lifts {€, h, €'} respectively and O’ = Ad(G)(§)
the nilpotent orbit of & in g. By the choice of {£, 1, £}, O’ = O' is a nilpotent orbit
corresponding to (A7, (¢;)). Let Né ; be the object defined in Section 2F for the
triple {&, h, £’} attached to & in g.

We can now conclude the proof of Theorem 3.2. Let N' = N, and let S¢ be
the character ¢ of N':

Sg(expY) =y otr(§Y), Y €Lie(N).

On the other hand, by the construction in [Adler 1998], 7y, ;u’ = ¢ — Indggc)(E),

Gy
while E = IndT;’ (0y). Here

_ ~ ~ 1
J - expyi (\j)’ ‘J - tyisr +ty,‘,%’

It =expy, 31), I =ty 4L,

with t+ the orthogonal complement of t in g with respect to the killing form. Here
TJ and TJ T are subgroups of G, since T normalizes J and J*, and oy is the
irreducible representation of 7'J such that oy |7+ is a multiple of y, where x is
the character of TJ * extending Xw on T, such that

x(exp,,Y) =y (tr(X -Y)) forall Y € J*.

Note that T is anisotropic and N'NTJ =N'NJ D N'NJ*, while N'NJ/N'NJ+
is an isotropic subspace over { with respect to the nondegenerate symplectic form
defined on J/J T by (n,n’) — Ve([logn,logn’]). On the other hand, since X e

Vi) x Vo). xls+an’ = Vel s+an-- By the definition of oy,
Homp'n7y(0y, Ye) = Hompyrny(oy, ¥g) # 0.

Apply Lemma 3.6 below with G; replaced by G,,, G, by N’ N G,,, and H; by
TJ ; then,

(28) Homy'ng,, (B, ¥¢) # 0.

Since Homp (7ry 507, S¢) = [veq,. \6/n Homynv-1ng,, (B, ¥¢). by (28),
Hompy/(7y,;u/, Ve) # 0.

Hence O’ € Nyn(7y,, ;). Combining with Theorem 3.1, O’ € Nyhmax (Ty, ;p7)- O

Lemma 3.6. Let G| be a compact subgroup, and Hy, G, open compact subgroups
of G1. Let (0, Vy) (resp. (£, Vg)) be a smooth representation of Hy (resp. G2). If
Hompg, ng, (0, &) # 0, then Homg, (Indg‘1 0,€) #0.
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Proof. The proof is similar to that of Proposition 2.1 in [Arthur 2008]. Consider a
nonzero A € Homg, ng, (0, §), and define J4 € Homg, (Indg,l1 o, &) as follows: for

arbitrary ¢ € Indgi o,

Jap= > E@)TA(p(g)) e V.

HiNG2\G>

For all g € G»,

Ja(ndo)()p= Y &g " A(Indo(g)$)(g)

HiNG2\G>

= ) £

H| NG2\G>

=£(8)Jad.
Take some v € V,; such that Av # 0. Define ¢, (g) = o(h)v if g =h € Hy and
¢v(g) =0if g & H;. Then ¢, € Indgia, and J4¢, = Av # 0, so J4 is a nonzero
element in Homg, (Indg'1 0,§). O

Appendix: Rational nilpotent orbits

In this section, we show by example how to choose a particular element from a
rational nilpotent orbit parametrized by (4, (¢;)).

Let W be a (2n + 1)-dimensional symmetric k-space as defined in Section 2A,
with bilinear form gy . Let z be a nonzero nilpotent element in g = so(W) C gl(W),
and set G = SO(k, W). Let ¢ : sl — g be a Lie algebra homomorphism with

(7)==

Identify a scalar ¢ € k with the diagonal matrix diag(z, ™) € sl (k). As in [Mceglin
1996], for i € Z, let

g(i)={Y €g|Ado¢(t)(Y)=itY forallt € k},
Wi)={veW|¢(t)(v)=itvforallt € k}.

Then g = Dz 9(1), W =Dz WO).
Assume the orbit O = Ad(G)(z) of z is parametrized by (A, (¢;)) with A =
[m,2n —m, 1], where m > n is an odd number. Fori =1,...,2n + 1, let

@) Wi = Ker(z')/(Ker(z'™") + z Ker(z"+1)).
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Then by [Waldspurger 2001, §1.6], dim W; = ¢;(A) and ¢; is the nondegenerate
quadratic form on W; defined by

(30) qi(@.7) = (DT g @ v.v)  @.7 e W),

where v (resp. v’) is an inverse image of ¥ (resp. v’) in Ker(z').

Assume m = 2n — 1; in this case A = [2n —1,1?], c1(A) =2, can—1(A) = 1.
Then dim W; = 2 and dim W}, = 1. By (29), let vy, v’1 € Ker z, v, € Ker z™ such
that

Kerz = z Kerz2 & kv; @ kvj,

Kerz™ = (Ker z™ ! + z Ker 2" 1) @ k.

Let v1, v be the natural images of vy, v} in Wi and v, that of vy, in W;,. Without
loss of generality, assume vy, V) are orthogonal to each other under ¢i; then

q1 = (g1 (01, V1), q1(v}.0))),

31) Im = (Gm @m, Bm)) = (=) qw (2" v, V).

In the following, identify g, with ¢ (Un, V).

Through ¢ : sl — so(W) C gl(W), W is a representation space of sl,. In
fact, since Ox corresponds to (A,(q;)), W =~ V; & V1 @ V1, where V; is the
irreducible representation of sl of dimension j. By the representation theory of
sly, v1,v] € W(0) and v, € W(m — 1). Modifying by elements in z Kerz2, we
can assume further that the subspace generated by vy, v} is V1 @ V1.

Then ¢z (vm) € W(m —1—2¢) forall=1,...,m—1, and

W(m —1) = kv,
W(m—13) =kzvy,,

W) =kz" v,
W) = kz" v, ® kvy ® kv,
W(=2) =kz"vp,

W(—(m—1)) = kz" Luy,.
For j =1,....m,let Fj = @y<_(m—_1)+2(;—1) W(£) be a subspace of W. Then

O=FhCFCFhC---CF,=W,
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and zF; = Fj_q for j =1,...,m. Take a basis of W such that

—1m1

€1 = Um, e_1=(— 1) 2 dm Um,
€2 = ZUp, en = (=1)"2 g 2" 2y,
) 1_n+1,
en—1=2"""vm, €_(n—1) = (- l)qm 2t Um

By (30), gw(ei,e;) =0 unless i + j =0, and gw (e;, e—;) = 1. Note that W(0)
has orthogonal decomposition
W(0) =kz" v, @ kv ® kv
under gww). By (30), qw (" vm. 2" 'vm) = qm(Um. Um), gw (v1,v1) =
q1(v1.v1), and gw (v}, v}) = q1(¥}. ). By 31),
awlwoy = (aw ("7 vm, 2T o), qw (1, v1), gw (V] V)

= (qm(Om,Vm),q1(V1. 1), 611(1_1/1, 1_)/1))

=qm D q1.
Because g1 @ g, has the same anisotropic kernel as W, let ey, eg, e—,, be a basis
of W(0) such that

qw(en.e—n) =1, qw(eo.e0) =1, qw(en,e0) =qw(e—n.e0) =0

Then ey, e5,...,e,,€0,6—5,...,e—1 is a basis of W, under which the matrix of
qw 1s Jw (defined in Section 2A), and the matrix of z is the lower triangular block
matrix

0
10
1 0
A* 03 ’
A 0
-1 0
with
am
A*=\bm|. A=—(cm bm am).
Cm

where (@, bm, cm) are the coordinates of z” vy, in the basis {e,, eg, e_,}. Note
that in this case, AA* = —qy,.
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