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ON THE SET OF MAXIMAL NILPOTENT SUPPORTS
OF SUPERCUSPIDAL REPRESENTATIONS

QIN YUJUN

Let G be a quasisplit reductive group over a p-adic field k, T a maximal
unramified anisotropic torus of G.k/, and � a character of T.k/ satisfying
certain conditions. Assume the residue characteristic p of k is large enough.
It was shown by DeBacker and Reeder that the irreducible supercuspidal
representation �� of G.k/ associated to .T.k/; �/ is generic if and only if
B.T; k/ is a special vertex of B.G; k/. We compute the set of maximal
nilpotent support Nwh;max.��/ when B.T;k/ is not a special point in B.G;k/.

1. Introduction

Let k be a p-adic field and  a nontrivial character of k. LetG be a split orthogonal
or symplectic group over k, ggg the Lie algebra of G , G D G .k/, and g D ggg.k/.
Let gnil be the set of nilpotent elements in g upon which G acts by the adjoint
action. Let O be an orbit in gnil=G, z 2 O , and let � W sl2! g be a Lie algebra
homomorphism with

�

��
0 0

1 0

��
D z:

Identify a scalar t 2 k with the diagonal matrix diag.t; t�1/ 2 sl2.k/. For j 2 Z, let

gj D fY 2 g jAd ı�.t/.Y /D i tY for all t 2 kg:

Then g has a decomposition gD
L
j2Z gj , z 2 g�2.

Let N�2 (resp. N�1) be the unipotent subgroup of G with Lie algebra n�2 DL
j�2 gj (resp. n�1 D

L
j�1 gj ) and  z.n/ D  .tr.z logn// be a character of

N�2. Let Sz be the irreducible representation of N�1 whose restriction to N�2 is
a multiple of  z . Let � be an irreducible representation of G; following [Mœglin
and Waldspurger 1987], let Nwh.�/ be the subset of nilpotent orbits such that
O 2Nwh.�/ if and only if HomN�1.�; Sz/ 6D 0 for any z 2O . Let Nwh;max.�/ be
the subset of maximal elements in Nwh.�/ with respect to the inclusion relation of
closure of orbits.
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On the other hand, let T be a maximal K-split anisotropic torus of G ; here, K is
the maximal unramified extension of k. Then T D T.k/ is a maximal unramified
anisotropic torus of G. Let � be a character of T satisfying certain conditions
described in [Adler 1998] or [Reeder 2008]. There is a supercuspidal irreducible
representation �� of G associated to .T; �/. Identify B.T ; k/ as a point in B.G ; k/.
In [DeBacker and Reeder 2010], it was shown that �� is generic (that is, Nwh.��/

contains a regular nilpotent orbit) if and only if B.T; k/ is a special point in B.G; k/.
In [Barbasch and Moy 1997], it was shown that if � is of depth zero, the character
of �� can be expanded as linear combination of orbital integrals over elements in
Nwh.��/.

For those .T; �/ with B.T ; k/ nonspecial (that is, when rank.G/ is large enough
for B.G/ to contain nonspecial vertices), we show in Theorem 3.2 that if � is of
positive depth, there is one element in Nwh;max.��/ which is related to B.T ; k/.
Note that in this case the supercuspidal representation �� is of positive integral
depth. We also apply this theorem to irreducible representations in…0' , theL-packet
of ', where ' is the Langlands parameter of ��.

This article is organized as follows: in Section 2, preliminary notation are recalled,
including vertices in Bruhat–Tits building, L-packet of positive-depth supercuspidal
representations [Reeder 2008], classification of maximal unramified anisotropic tori
[DeBacker 2006], and classification of rational nilpotent orbits [Waldspurger 2001].
We also show by example in the Appendix how to choose a particular element from
a rational nilpotent orbit. The main theorems are stated and proved in Section 3.

2. Preliminary

2A. Notation. Let k be a nonarchimedean local field of characteristic 0 with
residue field f, and let p be the characteristic of f. Let O be the ring of integers of
k and P the maximal ideal of O. Let K be the maximal unramified field extension
of k and F the residue field of K. Let � be the normalized valuation of k and �K
the extension of � to K. Let  be an additive character of k with conductor P, and
denote the character of fDO=P derived from  by  also.

Throughout this paper, assume p is large enough that p is a good prime in the
sense in [Carter 1972].

LetW be a finite-dimensional vector space over k, h � ; � i a nondegenerate bilinear
form on W , and d D dimk.W /. Assume that

hv;wi D �W hw; vi for all v;w 2W;

with �W D˙1. Let G be the reductive group defined over k with

G D

�
SO.W / if �W D 1;
Sp.W / if �W D�1:
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Throughout this paper, assume that W has a k-basis fe1; : : : ; ed g satisfying

hej ; eki D

�
0 if j C k 6D d C 1;
1 if j C k D d C 1; j � k:

Then G is a connected split reductive group over k with finite center. Where no
confusion will result, denote G by SO.d/;Sp.d/ for �W D 1;�1, respectively.

Let JW D .ai;j / be the matrix of degree d such that tJW D �W JW and

aj;k D ıj;dC1�k for j � k:

Let k be the algebraic closure of k and R � k a commutative k-algebra. Then
G .R/, the set of R-rational points of G , is identified with the set of R-valued
matrices g of degree d satisfying

tgJW g D JW ; det.g/D 1:

Let ggg be the Lie algebra of G ; then ggg.R/ is identified with the set of R-valued
matrices g of degree d satisfying

tgJW CJW g D 0:

2B. Vertices of Bruhat–Tits building of G . Let G D G .k/ and g D ggg.k/. Let
B.G/DB.G ; k/ be the Bruhat–Tits building of G. For x 2B.G/, let Gx be the
parahoric subgroup attached to x and Gx;C the prounipotent radical of Gx . Let Gx
be the connected reductive group defined over f such that Gx=Gx;C is the group
of f-rational points of Gx . If F is a G-facet of B.G/ and x 2 F , let GF D Gx ,
GF;0C D Fx;0C, and GF D Gx .

Let S be the maximal k-split torus ofG containing all diagonal matrices inG ,B
the Borel subgroup of G containing all upper triangular matrices in G , S D S .k/,
and B D B.k/. Let ˆ be the set of roots of G with respect to S , ˆC the set of
positive roots of G with respect to B , and ��ˆC the subset of simple roots of
ˆC. Let sss be the Lie algebra of S ; then sD sss.k/ consists of all diagonal matrices
in g. By taking differentials, roots in ˆ are identified with linear functions on s.

Identify s with kn by the following isomorphism:

s D diag.c1; : : : ; cd / 2 s 7! .c1; : : : ; cn/ 2 k
n
I

here, nD Œd=2�. For i D 1; : : : ; n, the i -th coordinate function ei on kn is identified
with a linear function on s, still denoted by ei . Let ; ˛i .i D 1; : : : ; n/ be positive
roots as follows:

˛i D ei � eiC1; i D 1; : : : ; nI

˛n D en;  D e1C e2; if G D SO.2nC 1/I
or ˛n D en�1C en;  D e1C e2; if G D SO.2n/I
or ˛n D 2en;  D 2e1; if G D Sp.2n/:
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Then �D f˛1; : : : ; ˛ng and  is the highest root in ˆ with respect �.
Let ˆaf be the set of affine roots of G with respect to S . As a subset of affine

functions on s,
ˆaf D f˛Cm j˛ 2ˆ;m 2 Zg:

Let ˛0 D 1�  2 ˆaf and † D �[ f˛0g. Then every affine root is an integral
combination of elements in †.

Let X�.S/ be the character group of S , X�.S/ the dual group of X�.S/, and

a WDX�.S/˝Z R:

Let ADA.S/ be the underlying affine space of a. Then A is an apartment in B.G/.
By fixing a hyperspecial point o 2 A, one can identify A with a and elements in
ˆaf with affine functions on a.

Let C be the fundamental chamber of A defined by

C D fz 2 A j 0 < ˛.z/ < 1 for all ˛ 2†g:

For ˛ 2 ˆaf, let H˛ D fz 2 A j˛.z/ D 0g. Then the H˛ .˛ 2 †/ are walls of C .
For 0� i � n, let yi 2 C , such that fyig D

T
˛2†
˛ 6D˛i

H
j̨

. Then the yi .i D 0; : : : ; n/
are vertices of C . Let

(1) Insp D

8̂<̂
:
f2; : : : ; ng if G D SO.2nC 1/;
f2; : : : ; n� 2g if G D SO.2n/;
f1; : : : ; n� 1g if G D Sp.2n/:

Then yi is not a special vertex (see [Tits 1979]) for all i 2 Insp, and

Gyi .f/'

8<:
SO.2i; f/�SO.2n� 2i C 1; f/ if G D SO.2nC 1/;
SO.2i; f/�SO.2n� 2i; f/ if G D SO.2n/;
Sp.2i; f/�Sp.2n� 2i; f/ if G D Sp.2n/:

2C. On the stable conjugacy classes of maximal tori. If T is a maximal K-split
k-torus of G defined over k, then T D T.k/ is a maximal unramified torus of G
[DeBacker 2006]. In this case, let B.T / D B.T ; k/. By [Adler 1998], choose a
Gal.K=k/-equivariant embedding of B.T ; K/ into B.G ; K/; then B.T / is identi-
fied with a subset of B.G/:

B.T /DB.T ; K/� �B.G ; K/� DB.G/:

DeBacker [2006] defines a set Im and an equivalence relation “�” on Im, so
that there is a one-to-one and onto correspondence between Im= � and the set
of G-conjugacy classes of unramified maximal tori in G. Elements in Im are of
the form .F;T/, where F is an arbitrary G-facet in B.G/ and T is a maximal
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minisotropic f-torus in GF . Let C.F;T/ be the G-conjugacy class of maximal
unramified tori in G corresponding to the equivalence class in Im containing .F;T/.

Let o 2B.G/ be one of the special points chosen in Section 2B, to which we
associate a conjugacy class of a maximal anisotropic f-torus in Go and a conjugacy
class inW .Go/ (see [DeBacker 2006; Carter 1985]). HereW .Go/ is the Weyl group
of Go. Let To (resp. wo) be a representative of the conjugacy class of a maximal
anisotropic f torus (resp. the W .Go/-conjugacy class). Then .fog;To/ 2 Im. Take
T D T.k/ 2 C.fog;To/; then T is a maximal unramified anisotropic k-torus in G
(see [DeBacker 2006]).

Let S.To/ be the subset of Im consisting of elements .F;T/ such that ifW .GF /

is identified with a subgroup ofW .Go/, then W .GF /wF \
W .Go/wo 6D∅, where wF

is a representative of the W .GF /-conjugacy class corresponding to T. Then S.To/

depends only on the conjugacy class of wo in W .Go/. In fact, S.To/ is the set of
G-conjugacy classes of maximal unramified anisotropic tori in the stable conjugacy
class of T in G, which is the stable conjugacy class of maximal unramified tori in
G corresponding to wo [ibid., Corollary 4.3.2]. Let “�” be the equivalence relation
on S.To/ inherited from Im.

We briefly recall the classification of conjugacy classes in W .Go/. Since Go is
split special orthogonal group or symplectic group over f,

W .Go/'

�
Sn Ì .Z=2Z/n if Go D SO.2nC 1/ or Sp.2n/;
Sn Ì .Z=2Z/n�1 if Go D SO.2n/; n� 2:

Here Sn is the n-th symmetric group. Conjugacy classes inW .Go/ are parametrized
by the set of pairs of partitions .�;�/ with S.�/CS.�/D n; moreover, if Go D
SO.2n/, c.�/ is even [Carter 1972, Propositions 24, 25]. Here, terminology in
[Waldspurger 2001] is used: for a partition �D .�1; : : : ; �n; : : : /,

S.�/D
1P
iD1

�i ; c.�/D jfi � 1 j�i 6D 0gj:

In particular, conjugacy classes of anisotropic maximal tori in Go.f/ are parametrized
by the subset consisting of .∅;�/, with S.�/D n; if Go D SO.2n/, c.�/ is even.

Assume .∅;�/ corresponds to the conjugacy class of wo in W.Go/, and write

�D .�1; : : : ; �s/; �1 � � � � � �s � 1;

so that S.�/D n, and s is even if G D SO.2n/. Let

S.�/Df�0D .�j1 ; : : : ; �js�2m/ j for some 1�j1<j2< � � �<js�2m; 0�2m� sg;

if G D SO.2nC 1/ or SO.2n/I

S.�/D f�0 D .�j1 ; : : : ; �js�m/ j for some 1� j1 < j2 < � � �< js�m; 0�m� sg;

if G D Sp.2n/I
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For �0 2 S.�/, define

i WD i�0 WD i.�
0/ WD S.�/�S.�0/:

Then W .Go/wo \W .Gyi / 6D ∅. Here W .Go/wo is the conjugacy class of wo and
W .Gyi / is the Weyl group of Gyi identified as a subgroup ofW .Go/. By [DeBacker
2006, Corollary 4.3.2], there is a maximal anisotropic torus T�0 in Gyi .f/ that is
Go.f/-conjugate to To. Hence .fyi.�0/g;T�0/ 2 S.To/.

Take T�0 2C.fyi.�0/g;T�0/; then T�0 is a maximal unramified anisotropic torus
in G stably conjugate to T and B.T�0/ D fyi�0 g. In particular, � 2 S.�/. Take
T� D T . Conversely, all G-conjugacy classes in the stable conjugacy class of T
have a representative of this form.

Lemma 2.1. The set
˚
.fyi�0 g;T�0/ j�

02S.�/
	

is a complete set of representatives
of S.To/=� .

Proof. It remains to show that the pairs .fyi�0 g;T�0/ are not equivalent to one
another, for �0 2 S.�/. If i�0 D i�00 for distinct �0;�00 2 S.�/, then by the choice
of T�0 and T�00 , T�0 is not conjugate to T�00 in Gyi�0

; therefore .fyi�0 g;T�0/ is
not equivalent to .fyi�00 g;T�00/.

If i�0 6D i�00 for �0;�00 2 S.�/, we will show yi�0 is not associated to yi�00 . As
a consequence, .fyi�0 g;T�0/ is not equivalent to .fyi�00 g;T�00/.

The case for G D Sp.2n/ is trivial, since the vertices y0; y1; : : : ; yn of C are
not associated to each other.

If G D SO.2nC 1/, among all vertices y0; y1; : : : ; yn of C , y0 is associated to
y1, and y0; y2; : : : ; yn are not associated to each other. For �0 2 S.�/, if i�0 6D 0,
then i�0 � 2. As a result, .fyi�0 g;T�0/ is not equivalent to .fyi�00 g;T�00/.

If G D SO.2n/, among all vertices y0; y1; : : : ; yn, y0 is associated to y1, yn�1
is associated to yn, and y0; y2; : : : ; yn�2; yn are not associated to each other. For
�0 2S.�/, if i�0 6D 0, then i�0 6D 1; i�0 6Dn�1. Then .fyi�0 g;T�0/ is not equivalent
to .fyi�00 g;T�00/. �

2D. L-packet. Keep the notation of the previous subsection. Let t� (resp. t�.K/)
be the Lie algebra of T� (resp. T�.K/). For s 2 Z, let t�;s (resp. T�;s) be the s-th
filtration of t� (resp. T�) [Adler 1998]. Let r be a positive integer, X� a good
element in t�;�r (i.e., X� 2 t�r ), and for every root ˛ of T�.K/ in G .K/, assume
d˛.X�/ 6D 0. Let �� be a character of T� satisfying ��jT�;rC1

D 1,

��.expo.Y //D  .tr.X�Y // for all Y 2 t�;r :

Here expo is the mock exponential map defined in [Adler 1998].
Let ���I� be the supercuspidal representation constructed by using �� and X�,

' WWk!
LG be the L-parameter of ���I� (see [Adler 1998; Reeder 2008]), where
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Wk is the Weil group of k. For �0 2 S.�/, let g 2G .K/o be an element such that
T�0.k/D

gT�.k/; then X�0 D gX� is a good element in t�0;�r . Define a depth r
character ��0 of T�0 by ��0 WD g��0 ; then,

��0.expyi.�0/.Y //D  .trX�0Y / for all Y 2 t�0;r :

Let ���I�0 be the supercuspidal representation of G constructed by using ��0 and
X�0 . Then:

Theorem 2.2 [Reeder 2008]. The set…0.'/Df���I�0 j�
0 2S.�/g is theL-packet

associated to '.

The main result of this paper concerns nilpotent orbits supporting representations
in …0.'/. Prior to the statement of the main theorems, we recall the classification
of k-rational nilpotent orbits in g [Waldspurger 2001, §I.6] and define a partition
�i for every i 2 Insp.

2E. Nilpotent orbits. Let �D .�i /i2N be a sequence of nonnegative integers such
that �j D 0 for j sufficiently large. Define

S.�/D
X
j�1

�j ; c.�/D jfj � 1 j�j 6D 0gj; ci .�/D jfj j�j D igj for all i 2N:

If �1 � �2 � � � � , � is called a partition. Let P be the set of all partitions and P.n/

the subset of all � 2 P such that S.�/D n. For �;� 2 P, let �[� be the unique
partition such that ci .�[�/D ci .�/C ci .�/ for all i 2 N.

Let W be the vector space defined in Section 2A and d D dimk W . If �W D 1,
let P.W / be the set of partitions � 2 P.d/ such that ci is even for all even i . If
�W D�1, let P.W / be the set of partitions �2P.d/ so that ci is even for all odd i .
Let NilI .W / be the set of .�; .qi // with � 2P.W /, and let qi , i 2N, be quadratic
forms satisfying these conditions:

� If �W D 1, qi is a nondegenerate quadratic form on kci for i odd, qi D 0 for i
even, moreover the quadratic form

L
i2N qi has the same anisotropic kernel

as qW ; here, qW is the quadratic form on W defined by qW .v/D hv; vi.

� If �W D�1, qi is a nondegenerate quadratic form on kci for i even, qi D 0
for i odd.

Definition 2.3. .�; .qi // 2 NilI .W / is called exceptional if �W D 1, 4 j d , and �i
is even for all i 2 N. In this case, qi D 0 for all i 2 N.

Definition 2.4. � If �W D�1, let Nil.W /D NilI .W /;

� If �W D 1, 4 − d , let Nil.W /D NilI .W /;

� If �W D 1, 4 jd , let Nil.W / be the set consisting all nonexceptional .�; .qi //2
NilI .W / and .�; .qi /; "/ with .�; .qi // exceptional, "D˙1.
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By [Waldspurger 2001], there is a bijective correspondence between Nil.W / and
gnil=G, the set of k-rational nilpotent orbits. Define a partial order on P.n/: for
�;� 2 P.n/, �� � if and only if for all j � 1,

Pj
iD1 �i �

Pj
iD1 �i .

Definition 2.5. Define a partial order on the set of nilpotent orbits in g: O1 �O2 if
and only if O1 �O2. Here the closure is taken with respect to the usual topology
in g.

Lemma 2.6. Let O1; O2 be nilpotent orbits in g corresponding to .�; .qi // or
.�;∅; "/ and .�; .q0i // or .�;∅; "0/ respectively. If O1 >O2, then �> �.

Proof. The proof is similar to that of Theorem 6.2.5 of [Collingwood and McGovern
1993]. Take arbitrary X 2O1, Y 2O2, with O1; O2 corresponding to .�; .qi // or
.�;∅; "/ and .�; .q0i // or .�;∅; "0/ respectively. If O1 >O2, then O1 ¥O2,

rank.Xk/ > rank.Y k/ for all k � 1;

since the condition that rank of a matrix be strictly less than a fixed number is a
closed condition for the usual topology. Now �>� by of [ibid., Lemma 6.2.2], �

Example 2.7. Regular nilpotent orbits in gnil are those corresponding to:

� .Œ2nC 1�; q2nC1/, if �W D 1, d D 2nC 1. Here q2nC1 is the nondegenerate
quadratic form on k defined by q2nC1.x/D x2.

� .Œ2n�1; 1�; .q2n�1; q1//, if �W D1, dD2n. Here q2n�1; q1 are nondegenerate
quadratic forms on k such that q2n�1˚ q1 ' q0, where q0 is the quadratic
form on k2 defined by q0.x; y/D 2xy for all x; y 2 k.

� .Œ2n�; q2n/, if �W D�1, d D 2n. Here q2n is a nondegenerate quadratic form
on k.

Let Insp be the set defined in (1). For i 2 Insp, let �i D �0[�00 with

�0 D Œ2i � 1; 1�; �00 D Œ2n� 2i C 1�; if �W D 1; d D 2nC 1I

�0 D Œ2i � 1; 1�; �00 D Œ2n� 2i � 1; 1�; if �W D 1; d D 2nI

�0 D Œ2i �; �00 D Œ2n� 2i�; if �W D�1; d D 2n:

For i 62 Insp, let

�i D

8<:
Œd � if �W D 1; d D 2nC 1;
Œd�1; 1� if �W D 1; d D 2n;
Œd � if �W D�1; d D 2n:

Lemma 2.8. Let i 2 Insp. Let O 0; O i be nilpotent orbits in gnil corresponding to
.�0; .q0j // or .�0;∅; "/ and .�i ; .qj //. Assume O 0 >O i . Then:
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� If G D SO.2n C 1/, then �0 D Œ2n C 1� or Œm; 2n � m; 1� for some odd
m>max.2i � 1; 2n� 2i C 1/.

� If G D SO.2n/ and i 6D n=2, then �0 D Œm; 2n � m� for some odd m �
max.2i � 1; 2n � 2i � 1/, or �0 D Œm; 2n �m � 2; 12� for some odd m >

max.2i � 1; 2n� 2i � 1/.

� If G D SO.2n/ and i D n=2, then �0 D Œn2�, or

�0 D Œm; 2n�m� or Œm; 2n�m� 2; 12�

for some odd m>max.2i � 1; 2n� 2i � 1/.

� If G D Sp.2n/, then �0 D Œm; 2n�m� for some even m>max.2i; 2n� 2i/.

Proof. Assume �0 D Œ�01; �
0
2; : : : � 2 P.W /, with �01 � �

0
2 � � � � . By Lemma 2.6, if

O 0 >O i , then �0 > �i .
Assume G D SO.2nC 1/, �i D Œ2i � 1; 1� [ Œ2n � 2i C 1�. First, assume

2i � 1� 2n� 2i C 1, �i D Œ2i � 1; 2n� 2i C 1; 1�.
By definition, �0 > �i if and only if �0 6D �i and

�01 � 2i � 1; �01C�
0
2 � 2n; �01C�

0
2C�

0
3 D 2nC 1:

Then �03 D 0 or �03 D 1. If �03 D 0, �02 D 0, then �0 D Œ2nC 1� > �i . If �03 D 0,
�02 6D 0, then �0 D Œ�01; 2nC 1� �

0
1� 62 P.W /, which contradicts the assumption

�0 2 P.W /.
If �03D 1, �0D Œm; 2n�m; 1� for some m� 2i�1. If mD 2i�1, then �0D �i ,

which contradicts the assumption �0 6D �i . Hence m> 2i � 1. If m is even, then
cm.�

0/ is even and 2n�m D m; hence m D n, and �0 D Œn2; 1�. On the other
hand, �0 > �i , 2i � 1D 2n� 2i C 1D nDm, which contradicts m> 2i � 1. In
conclusion, �0 D Œm; 2n�m; 1� for some odd m> 2i � 1.

Similarly, if 2n � 2i � 1 � 2i � 1, �0 > �i D Œ2n � 2i � 1; 2i � 1; 1�, then
�0 D Œm; 2n�m; 1� for some odd m> 2n� 2i C 1. This concludes the proof for
G D SO.2nC 1/.

Assume G D SO.2n/, �i D Œ2i �1; 1�[ Œ2n�2i �1; 1�. First, assume 2i �1 >
2n� 2i � 1, �i D Œ2i � 1; 2n� 2i � 1; 12�.

By definition, �0 > �i if and only if �0 6D �i and

�01�2i�1; �01C�
0
2�2n�2; �01C�

0
2C�

0
3�2n�1; �01C�

0
2C�

0
3C�

0
4D2n:

Then �04 D 0 or �04 D 1. Assume �04 D 0; then, �03 D 0 or �03 D 1. If �03 D 1,
�04 D 0, then �01 and �02 have different parity, so �0 62 P.W /. If �03 D �

0
4 D 0, then

�0D Œm; 2n�m�withm�2i�1. Ifm is even, then cm.�0/ is even,mD2n�mDn.
Hence m D n > 2i � 1 > 2n � 2i � 1, which has no solution since the second
inequality requires 2i � 1 > n� 1. In conclusion, if �04 D 0, then �0 D Œm; 2n�m�
for some odd m� 2i � 1.



178 QIN YUJUN

If �04 D 1, then �03 D 1, �0 D Œm; 2n �m � 2; 12� for some m � 2i � 1. If
m D 2i � 1, then �0 D �i which contradicts the assumption �0 6D �i . Hence
m > 2i � 1. If m is even, then cm.�0/ is even, m D 2n�m� 2 D n� 1. Hence
mD n�1> 2i�1> 2n�2i�1, which has no solution since the second inequality
requires 2i �1 > n�1. In conclusion, if �04D 1, then �0D Œm; 2n�m�2; 12� for
some odd m> 2i � 1.

Similarly, if 2n � 2i � 1 > 2i � 1, then �0 D Œm; 2n � m� for some odd
m � max.2i � 1; 2n � 2i � 1/, or �0 D Œm; 2n �m � 2; 12� for some odd m >

max.2i � 1; 2n� 2i � 1/.
Assume now 2i�1D2n�2i�1. Then n is even, iDn=2, and�i D Œ.n�1/2; 12�.

Assume �0 > �i , � 2 P.W /. Then

�01�n�1; �01C�
0
2�2n�2; �01C�

0
2C�

0
3�2n�1; �01C�

0
2C�

0
3C�

0
4D2n:

If �01Dn�1, then �02Dn�1, �0D Œ.n�1/2; 12�D�i , contradicting the assumption
�0 6D�i . Hence �01 � n. If �01 is even, then c�01 is even, �01D �

0
2D n, and �D Œn2�.

IfmD�01>n is odd, thenm>max.2i�1; 2n�2i�1/Dn�1 and �0D Œm; 2n�m�
or Œm; 2n�m� 2; 12�. This concludes the proof for G D SO.2n/.

Assume G D Sp.2n/. Without loss of generality, assume 2i � 2n� 2i ; i.e.,
i � n=2. Then �i D Œ2i; 2n�2i�. By definition, �0 >�i if and only if �0 6D�i and

�01 � 2i; �01C�
0
2 D 2n:

Hence �D Œ�01; 2n��
0
1�. If �01D 2i , then �02D 2n�2i;�

0D�i , which contradicts
the assumption �0 6D �i . Hence �01 > 2i � n. If �01 is odd, then c�01�

0 is even,
�01 D �02 D n, which contradicts �01 > n. As a result, �0 D Œm; 2n � m� with
mD �01 > 2i even. This concludes the proof for G D Sp.2n/. �

2F. Nilpotent support. Let O 0 be a rational nilpotent orbit in g=G and fix an
element z 2O 0. Let fz; h; z0g be an sl2 triple in g; i.e., let there be a Lie algebra
homomorphism � W sl2! g such that

z D �

��
0 0

1 0

��
; hD �

��
1 0

0 �1

��
; z0 D �

��
0 1

1 0

��
:

For i 2 Z, let gi D fZ 2 g jAd.h/.Z/D iZg. Then z 2 g�2 and gD
L
i2Z gi .

Define nilpotent subalgebras n0
�1; n

0
�2 of g and unipotent subgroups N 0

�1; N
0
�2

of G as follows:

(2)

n0�1 D
M
i�1

gi ; N 0�1 D exp.n0�1/;

n0�2 D
M
i�2

gi ; N 0�2 D exp.n0�2/:
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Let  z be the character of N 0
�2 defined by

(3)  z.Z/D  ı tr.z � logZ/ .Z 2N 0�2/:

Then Ker. z/ is a subgroup of N 0
�2. If n0

�1 D n0�2, so N 0
�1 DN

0
�2, let Sz be the

character  z of N 0
�1. If n0

�1 6D n0�2, then g1 6D 0 and N 0
�1=Ker. z/ is isomorphic

to a Heisenberg group over f with center N 0
�2=Ker. z/. In this case, let Sz be the

irreducible representation of N 0
�1 whose restriction to N 0

�2 is a multiple of  z .

Definition 2.9. Keep the notation above. Following [Mœglin and Waldspurger
1987], denote by Nwh.�/ the set of all nilpotent orbits O 0 in g=G such that, for
some smooth irreducible representation � of G, we have HomN 0

�1
.�; Sz/ 6D 0.

Let Nwh;max.�/ be the subset of maximal elements in Nwh.�/ with respect to the
inclusion relation of closure of orbits.

3. Main theorems

The main results of this paper are the following theorems, whose proofs are given
starting on page 185 and page 192, respectively.

Theorem 3.1. Let � 2…0.'/. Assume � D ���I�0 for some �0 2 S.�/, i D i�0 .
Let O 0; O i be nilpotent orbits in g corresponding to .�0; .q0j // or .�0; �; �/ and
.�i ; .qj // respectively, with O 0 >O i . Take arbitrary z 2O 0. Then

HomN 0
�1
.�; Sz/D 0:

Theorem 3.2. Let � 2 …0.'/. Assume � D ���I�0 for some �0 2 S.�/; i D

i�0 . Then there is a nilpotent orbit O i corresponding to .�i ; .qj // such that
O i 2 Nwh;max.�/.

If i 62 Insp, then yi is special. In this case, Theorem 3.1 is void and Theorem 3.2
is proved in [DeBacker and Reeder 2010].

The subset �z of ˆC. Assume now i 2 Insp; that is, rank.G/ is large enough for
Insp to be nonempty. Let O 0, O i be nilpotent orbits in g corresponding to .�0; .q0j //
or .�0; �; �/ and .�i ; .qj // respectively, with O 0 >O i . In this subsection, we will
choose a particular element z 2O 0 such that

(4) N 0�2 � B; N 0�4 � B:

Here B is the Borel subgroup consisting of upper triangular matrices in G and N 0
�j

is the object defined in Section 2F for any sl2 triple fz; h; z0g attached to z in g.
Let � 0z �ˆ

C be the subset of positive roots such that ˛ 2 � 0z if and only if the root
space u˛ � n0

�4, and let

(5) �z WDˆ
C
n� 0z :
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The following notation is used frequently: let � D .�1; : : : ; �s/ be a sequence
of positive integers such that d D

Ps
jD1 �j . Then every matrix a 2 gl.d; k/ can

be written in blocks a D .aj;`/j;`�s , with ajj 2 gl.�j ; k/. Let Aj be an arbitrary
�jC1��j matrix for 1� j � s�1, and let z.�IA1; : : : ; As�1/D .zj;`/j;`�s be the
nilpotent element in gl.d; k/ such that

zj;` D

�
A` j D `C 1;

0�j��` j 6D `C 1:

Assume G D SO.2nC1/. By Lemma 2.8, �0D Œ2nC1� or Œm; 2n�m; 1� with
m odd and m>max.2i � 1; 2n� 2i C 1/.

First, assume �0 D Œ2nC 1�, q02nC1 D q2nC1 as in Example 2.7. Let

(6) z D z.�I 1; : : : ; 1;�1; : : : ;�1/;

with � D .12nC1/ a regular nilpotent element in g. Let fz; h; z0g be an sl2 triple
attached to z in g and gj ; n

0
�j ; N

0
�j the objects defined in Section 2F. Then, we

naturally have

N 0�2 D fnD .nj;`/j;`�2nC1 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�2nC1 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z be the subset of ˆC defined in (5); then,

(7) �z D f j̨ j j D 1; : : : ; ng:

Second, assume mD 2n� 1. Then �0 D Œ2n� 1; 12�, q02n�1 is a nondegenerate
quadratic form on k, identified with a nonzero element in k�, and q01 is a nonde-
generate quadratic form on k2, such that q02n�1˚ q

0
1 is isometric to the quadratic

form on k3

.u; v; w/ 7! 2uwC v2 .u; v; w 2 k/:

Let

(8) z D z.�I 1; 1; : : : ; 1; A�; A;�1; : : : ;�1/;

with � D .1n�1; 3; 1n�1/,

A� D .am; bm; cm/
t ; AD�.cm; bm; am/;

such that AA� D�q02n�1. Then z 2O 0, as shown in the Appendix.
Let fz; h; z0g be an sl2 triple attached to z in g and gj ; n

0
�j ; N

0
�j the objects

defined in Section 2F. Let sD s.�/D 2n�1Dm. It is shown in the Appendix that

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1gI
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that is, (4) is satisfied. Let �z be the subset of ˆC defined in (5); then,

(9) �z D f j̨ j j D 1; : : : ; n� 2g[ fen�1˙ eng[ fen�1; eng:

Here the j̨ .j D 0; 1; : : : n/ are simple roots defined in Section 2B.
Third, assume m < 2n� 1. Then �0 D Œm; 2n�m; 1�, and q0m; q

0
2n�m; q

0
1 are

nondegenerate quadratic forms on k such that q0m˚ q
0
2n�m˚ q

0
1 is isometric to

quadratic form .u; v; w/ 7! 2uwC v2 .u; v; w 2 k/. Let

(10) z D z.�I 1 : : : ; 1; a�; 12; : : : ; 12; A
�; A;�12; : : : ;�12; a;�1; : : : ;�1/;

with � D .1m�n; 2n�.mC1/=2; 3; 2n�.mC1/=2; 1m�n/, a� D .1; 0/t , aD�.0; 1/,

A� D

0@am a2n�m
bm b2n�m
cm c2n�m

1A ; AD�

�
c2n�m b2n�m a2n�m
cm bm am

�
;

such that

AA� D�

�
0 q02n�m
q0m 0

�
:

Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached to
z in g and let gj ; n0�j ; N

0
�j be the objects defined in Section 2F. Let sD s.�/Dm;

then, (4) is satisfied:

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,

(11) �z Df j̨ j j D 1; : : : ; m�ng[ fem�n� em�nC2g

[ f˛m�nC2j�1 j j D 1; : : : ; n� .mC 1/=2g

[

n�mC3
2[

jD1

fem�nC2j�1� em�nC2jC1; em�nC2j�1� em�nC2jC2g

[

n�mC3
2[

jD1

fem�nC2j � em�nC2jC1; em�nC2j � em�nC2jC2g

[ fen�2˙ eng[ fen�1˙ eng[ fen�2; en�1; eng:

Assume G D SO.2n/. By Lemma 2.8, �0 is one of Œn2�, Œm; 2n � m�, or
Œm; 2n�m� 2; 12� for some odd m�max.2i � 1; 2n� 2i � 1/.

First, assume m D 2n� 3 and �0 D Œm; 2n�m� 2; 12� D Œ2n� 3; 13�. Then
q02n�3 and q01 are nondegenerate quadratic forms on k and k3, respectively, such
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that q02n�3˚ q
0
1 is isometric to the quadratic form on k4 defined by .u; v; w; x/D

2uxC2vw .u; v; w; x 2 k/. Let �D .1n�2; 4; 1n�2/, sD s.�/D 2n�3Dm, and
z D z.�I 1; : : : ; 1; A�; A;�1; : : : ;�1/, with

A� D .a2n�3; b2n�3; c2n�3; d2n�3/
t ; AD�.d2n�3; c2n�3; b2n�3; a2n�3/

satisfying AA�D�q02n�3. Similar to that in the Appendix, z 2O 0. Let fz; h; z0g be
an sl2 triple attached to z in g and gj ; n

0
�j ; N

0
�j the objects defined in Section 2F.

Then

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,

(12) �z D f j̨ j j D 1; : : : ; n�3g[fen�2˙en�1g[fen�2˙eng[fen�1˙eng:

Second, assume �0 D Œm; 2n � m � 2; 12� for some odd m < 2n � 3, m >

max.2i � 1; 2n� 2i � 1/. Since m> 2n�m� 2 > 1, q0m; q
0
2n�m�2 are quadratic

forms on k and q01 is a quadratic form on k2 such that q0m ˚ q
0
2n�m�2 ˚ q

0
1 is

isometric to the quadratic form on k4 defined by

.u; v; w; x/D 2uxC 2vw .u; v; w; x 2 k/:

Let � D .1m�nC1; 2n�
mC3
2 ; 4; 2n�

mC3
2 ; 1m�nC1/, s D s.�/Dm, and

z D z.�I 1; : : : ; 1; a�; 12; : : : ; 12; A
�; A;�12; : : : ;�12; a;�1; : : : ;�1/;

with a� D .1; 0/t ; aD�.0; 1/,

A� D

0BB@
am a2n�m�2
bm b2n�m�2
cm c2n�m�2
dm c2n�m�2

1CCA ; AD��d2n�m�2 c2n�m�2 b2n�m�2 a2n�m�2dm cm bm am

�
;

such that

AA� D�

�
0 q02n�m�2
q0m 0

�
:

Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached to
z in g and let gj ; n0�j ; N

0
�j be the objects defined in Section 2F. Then

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,
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(13) �z Df j̨ j j D 1; : : : ; m�nC1g[fem�nC1�em�nC3g

[ f˛m�nC1C2j�1 j j D 1; : : : ; n�.mC3/=2g

[

n�mC5
2[

jD1

fem�nC1C2j�1�em�nC1C2jC1; em�nC1C2j�1�em�nC1C2jC2g

[

n�mC5
2[

jD1

fem�nC1C2j�em�nC1C2jC1; em�nC1C2j�em�nC1C2jC2g

[ fen�3˙en�1; en�3˙eng[fen�2˙en�1; en�2˙eng

[fen�1˙eng:

Third, assume �0D Œm; 2n�m� for some odd m� n. If m> n, then q0m; q
0
2n�m

are quadratic forms on k such that q0m˚q
0
2n�m is isometric to the quadratic form on

k2 defined by .u;w/ 7!2uw. IfmDn is odd, then�0D Œn2�, and q0n is the quadratic
form on k2 isometric to the quadratic form on k2 defined by .u;w/ 7! 2uw.

Let � D .1m�n; 22n�m; 1m�n/, s D s.�/Dm, and

zD

�
z.�I 12; : : : ; 12; A

�; A;�12; : : : ;�12/; mD n;

z.�I 1; : : : ; 1; a�; 12; : : : ; 12; A
�; A;�12; : : : ;�12; a;�1; : : : ;�1/; m > n;

with a� D .1; 0/t ; aD�.0; 1/,

A� D

�
am a2n�m
bm b2n�m

�
; AD�

�
b2n�m a2n�m
bm am

�
;

satisfying

AA� D�

8̂̂̂̂
<̂
ˆ̂̂:

�
0 q02n�m
q0m 0

�
if m> n;

�

�
2 0

0 2

�
if mD n:

Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached to
z in g and let gj ; n0�j ; N

0
�j be the objects defined in Section 2F. Then

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,
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(14) �z Df j̨ j j D 1; : : : ; m�ng[ fem�n� em�nC2g

[ f˛m�nC2j�1 j j D 1; : : : ; n� .mC 1/=2g

[

n�mC3
2[

jD1

fem�nC2j�1� em�nC2jC1; em�nC2j�1� em�nC2jC2g

[

n�mC3
2[

jD1

fem�nC2j � em�nC2jC1; em�nC1C2j � em�nC2jC2g

[ fen�1˙ eng[ fen�2˙ eng:

Fourth, assume n is even and �0 D Œn2�. Let � D .2n/,

(15) z D z.�I 12; : : : ; 12; A;�12; : : : ;�12/;

with AD diag.1;�1/. Working as in the Appendix, take z" 2O 0", where O 0" is the
nilpotent orbit corresponding to .�0;∅; "/ for some "D 1 or �1. Let fz"; h"; z"g be
an sl2 triple attached to z" in g, and gj ; n

0
�j ; N

0
�j the objects defined in Section 2F.

Then

N 0�2 D fuD .uj;`/j;`�n 2 g juj;` D 0�j��` if j � `g � B;

N 0�4 D fuD .uj;`/j;`�n 2 g juj;` D 0�j��` if j � `� 1g � B:

Let �z" �ˆ
C be the subset of positive roots defined in (5) for z"; then,

(16) �z�Df˛2j�1 j j D 1; : : : ; n=2�1g[fen�1˙eng

[

n
2
�1[

jD1

fe2j�1�e2jC1; e2j�1�e2jC2; e2j �e2jC1; e2j �e2jC2g:

Let w0 D .a`;`0/2n�2n be the element in OOO.2n/ satisfying�
an;nC1 D anC1;n D aj;j D 1 if 1� j � 2n; j 6D n; j 6D nC 1;
a`;`0 D 0 otherwise.

Let z�"Dw0z"w�10 ; then z�" 2O 0�� , where O 0�� is the nilpotent orbit correspond-
ing to .�0; �;�"/. Let fz�"; h�"; z�"g be an sl2 triple attached to z�" in g and g00j ,
n00
�j , N 00

�j the objects defined in Section 2F. Then

N 00�2 D w0N
0
�2w

�1
0 � B; N 00�4 D w0N

0
�4w

�1
0 � B:

Let �z�" �ˆ
C be the subset of positive roots defined in (5) for z�", then

(17) �z�" D fen�3C en; en�2C eng[�z"n fen�3� en; en�2� eng:
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Assume G D Sp.2n/. By Lemma 2.8, �0 D Œm; 2n�m� for some even m >

max.2i; 2n� 2i/. Then m> 2n�m, and q0m; q
0
2n�m are nondegenerate quadratic

forms on k. Let � D .1m�n; 22n�m; 1m�n/, s D s.�/Dm, and

z D z.�I 1; : : : ; 1; a�; 12; : : : ; 12; A;�12; : : : ;�12; a;�1; : : : ;�1/;

with a� D .1; 0/t ; a D �.0; 1/, AD
�
b
a
a
c

�
; such that q0m˚ q

0
2n�m is isometric to

the quadratic form given by the symmetric matrix A.
Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached

to z in g and let gj ; n0�j ; N
0
�j be the objects defined in Section 2F. Then

N 0�2 D fuD .uj;`/j;`�s 2 g juj;` D 0�j��` if j � `g � B;

N 0�4 D fuD .uj;`/j;`�s 2 g juj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5) for z; then,

(18) �z Df j̨ j j D 1; : : : ; m�ng[ fem�n� em�nC2g

[ f˛m�nC2j�1 j j D 1; : : : ; n� .m/=2g

[

n�m
2
�1[

jD1

fem�nC2j�1� em�nC2jC1; em�nC2j�1� em�nC2jC2g

[

n�m
2
�1[

jD1

fem�nC2j � em�nC2jC1; em�nC1C2j � em�nC2jC2g

[ fen�1C en; 2en�1; 2eng:

Proof of Theorem 3.1. We keep the notation used so far in this section and in
Section 2B. For i 2 Insp, let

†i D f j̨ j j D 1; : : : ; n; j 6D ig[ f�g;

which is a set of simple roots of a root subsystem of ˆ. Let O 0; O i be nilpotent
orbits in g corresponding to .�0; .q0j // or .�0; �; �/ and .�i ; .qj // respectively,
with O 0 > O i . Let z 2 O 0; �z � ˆC be as defined (6), (8), (10), (15), and set
� 0z Dˆ

Cn�z .

Lemma 3.3. Let w be a Weyl element of G such that w�1.†i / � ˆC. Then
w�1.†i /\�

0
z 6D∅.

Proof. First assumeG DSO.2nC1/. Then � D�e1�e2, j̨ D ej �ejC1 for j D
1; : : : ; n�1, and ˛nD en. Let w be a Weyl element of G such that w�1.†i /�ˆC;
then, there is a permutation � of f1; 2; : : : ; ng satisfying �.1/ > �.2/ > � � �> �.i/,
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�.i C 1/ < �.i C 2/ < � � �< �.n/, such that

(19) w�1.ej /D

8<:
˙e�.1/ if j D 1;
�e�.j / if 2� j � i;
e�.j / if i C 1� j � n:

Assume on the contrary that w�1.†i /\� 0z D∅; then

(20) w�1.†i /� �z :

If iDn, then�iD Œ2n�1; 12�,†nDf j̨ j 1�j <ng[f�g. Then by Lemma 2.8,
�0 D Œ2nC 1� and q02nC1 D q2nC1, and by (7), �z D f j̨ j j D 1; : : : ; ng. If w
satisfies (19) and (20), then �.j /D nC 1� j ,

w�1.e1/D˙en; w�1.ej /D�enC1�j .1 < j � n/:

As a result, w�1.†n/Df j̨ j 1� j <ng[fen�1Ceng 6��z , which contradicts (20).
Hence w�1.†n/\� 0z 6D∅.

If i < n, by Lemma 2.8, �0 D Œ2nC 1� or Œm; 2n�m; 1� for some odd m >

max.2i � 1; 2n� 2iC 1/. Let w be a Weyl element satisfying (19) and (20). Since
˙e1� e2; en 2†i , we have

(21) w�1.˙e1� e2/D e�.2/˙ e�.1/ 2 �z; w�1.en/D e�.n/ 2 �z :

If �0 D Œ2nC 1�, then �z D f j̨ j 1 � j � ng and e�.2/ C e�.1/ 62 �z , which
contradicts (21).

If �0D Œm; 2n�m; 1�,mD2n�1, then �z is the set in (9). By (21), �.2/Dn�1,
�.1/D n, while �.n/D n or n� 1, which is impossible since � is a permutation.

If �0D Œm; 2n�m; 1�, m< 2n�1, then �z is the set in (11). By (21), �.1/D n,
f�.2/; �.n/g D fn� 2; n� 1g. If e2� e3; en�1� en 2†i , then by (20),

w�1.e2� e3/D e�.3/� e�.2/ 2 �z; w�1.en�1� en/D e�.n�1/� e�.n/ 2 �z :

Then f�.3/; �.n� 1/g D fn� 4; n� 3g. Since m>max.2i � 1; 2n� 2i C 1/, we
have

n�
mC 1

2
<min.n� i; i � 1/;

so the procedure can be repeated n� mC1
2

times. Then, for `D 2; : : : ; n� m�1
2

,

f�.`/; �.nC 2� `/g D fn� 2.`� 1/; n� 2.`� 1/C 1g:

In particular, for `0 D n�
m�1

2
and nC 2� `0 D

mC3

2
,

f�.`0/; �.nC 2� `0/g D
n
�.`0/; �

�
mC3

2

�o
D fm�nC 1;m�nC 2g:



MAXIMAL NILPOTENT SUPPORTS OF SUPERCUSPIDAL REPRESENTATIONS 187

Since m> 2i � 1, we have m> 2n� 2i C 1,

`0Dn�
m� 1

2
<i; iC1<

mC 3

2
DnC2�`0; e`0�e`0C1; emC1

2

�emC3
2

2†i :

By (20),
w�1.e`0 � e`0C1/D e�.`0C1/� e�.`0/ 2 �z;

w�1.emC1
2

� emC3
2

/D e
�.mC1

2
/
� e

�.mC3
2
/
2 �z :

Then �.`0C 1/D �.12.mC 1//Dm�n, which contradicts the assumption that �
is a permutation, for `0C 1 � i , .mC 1/=2 � i C 1, `0C 1 6D .mC 1/=2. Hence
w�1.†i /\�

0
z 6D∅, concluding the proof for G D SO.2nC 1/.

Assume now G D SO.2n/; then we have � D �e1 � e2, j̨ D ej � ejC1
for j D 1; : : : ; n � 1, and ˛n D en�1 C en. Let w be a Weyl element of G
such that w�1.†i / � ˆC; then, there is a permutation � of f1; 2; : : : ; ng and
"1; "2 2 f˙1g satisfying �.1/>�.2/> � � �>�.i/, �.iC1/<�.iC2/< � � �<�.n/,
.�1/i�1"1"2 D 1, such that

(22) w�1.ej /D

8̂̂̂<̂
ˆ̂:
"1e�.1/ if j D 1;
�e�.j / if 2� j � i;
e�.j / if i C 1� j � n� 1;

"2e�.n/ if j D n:

Assume on the contrary that w�1.†i /\� 0z D∅; then

(23) w�1.†i /� �z :

By Lemma 2.8, �0 is of the form Œm; 2n�m� 2; 12� or Œm; 2n�m�.
Assume first mD 2n�3 >max.2i �1; 2n�2i �1/, �0D Œ2n�3; 13�; then �z

is the set in (12). Since i 2 Insp, Insp is nonempty and n� 4. Hence 1; 2; n� 1; n
are four distinct numbers. On the other hand, ˙e1�e2; en�1˙en 2†i , so by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Hence the cardinality of f�.1/; �.2/; �.n� 1/; �.n/g is 3, which contradicts the
assumption that � is a permutation.

Second, assume �0D Œm; 2n�m�2; 12� for some odd m with m< 2n�3, m>
max.2i�1; 2n�2i�1/. Then �z is the set in (13). Since˙e1�e2; en�1˙en 2†i ,
we have, by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Then f�.1/; �.n/g D fn� 1; ng and f�.2/; �.n� 1/D fn� 2; n� 3g. If e2 � e3;
en�2� en�1 2†i , then by (23),

w�1.e2�e3/D e�.3/�e�.2/ 2�z; w�1.en�2�en�1/D e�.n�2/�e�.n�1/ 2�z :
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Then f�.3/; �.n� 2/g D fn� 5; n� 4g. Since m> 2i � 1, m> 2n� 2i � 1,

n�
mC 3

2
<min.i � 1; n� i � 1/;

the procedure can be repeated n� mC3
2

times. Then for `D 1; 2; : : : ; n� mC1
2

,

f�.`/; �.nC 1� `/g D fn� 2.`� 1/; n� 2.`� 1/� 1g:

In particular, for `0 D n�
mC1

2
, we have nC 1� `0 D

mC3

2
,

f�.`0/; �.nC 1� `0/g D
n
�.`0/;

mC3

2

o
D fm�nC 3;m�nC 2g:

Since m> 2i � 1, we have m> 2n� 2i � 1,

`0Dn�
mC 1

2
<i; iC1<

mC 3

2
DnC1�`0; e`0�e`0C1; emC1

2

�emC3
2

2†i :

By (23),
w�1.e`0 � e`0C1/D e�.`0C1/� e�.`0/ 2 �z;

w�1.emC1
2

� emC3
2

/D e
�.mC1

2
/
� e

�.mC3
2
/
2 �z :

Then �.`0C 1/ D �.12.mC 1// D m� nC 1, which contradicts the assumption
that � is a permutation, for `0C 1� i , 12.mC 1/� i C 1, `0C 1 6D 1

2
.mC 1/.

Third, assume �0 D Œm; 2n�m� for some odd m � max.2i � 1; 2n� 2i C 1/.
Then �z is the set in (14). Since ˙e1� e2; en�1˙ en 2†i , we have, by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Then �.1/D �.n/D n, which contradicts the assumption that � is a permutation.
Fourth, assume n is even and �0 D Œn2�. Then �z is either the set in (16) or the

set in (17). Since ˙e1� e2; en�1˙ en belong to †i , by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Then �.1/D �.n/D n, which contradicts the assumption that � is a permutation.
Hence w�1.†i /\� 0z 6D∅. This concludes the proof for G D SO.2n/.

Assume now G D Sp.2n/; then we have � D �2e1, j̨ D ej � ejC1 for
j D 1; : : : ; n�1, and ˛nD 2en. Since w�1.†i /�ˆC, there is a permutation � of
f1; 2; : : : ; ng, satisfying �.1/>�.2/> � � �>�.i/, �.iC1/<�.iC2/< � � �<�.n/,
such that

(24) w�1.ej /D

�
�e�.j / if 1� j � i;
e�.j / if i C 1� j � n:

By Lemma 2.8, �0 D Œm; 2n�m� for some even m>max.2i; 2n� 2i/. Then �z
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is the set in (18). Assume on the contrary that w�1.†i /\� 0z D∅; then

w�1.†i /� �z :

Since �2e1; 2en 2†i , we have

w�1.�2e1/D 2e�.1/ 2 �z; w�1.2en/D 2e�.n/ 2 �z :

Then f�.1/; �.n/g D fn� 1; ng. If e1� e2; en�1� en 2†i ,

w�1.e1� e2/D e�.2/� e�.1/ 2 �O 0 ; w�1.en�1� en/D e�.n�1/� e�.n/ 2 �O 0 :

Then f�.2/; �.n� 1/g D fn� 3; n� 2g. Since m> 2i and m> 2n� 2i , we have

n�
m

2
<max.i; n� i/;

the above procedure can be repeated n� m
2

times. Then for `D 1; 2; : : : ; n� m
2

,

f�.`/; �.nC 1� `/g D fn� 2.`� 1/; n� 2.`� 1/� 1g:

In particular, for `0 D n�
m

2
and nC 1� `0 D

m

2
C 1, we have

f�.`0/; �.nC 1� `0/g D
n
�.`0/; �

�
m

2
C 1

�o
D fm�nC 1;m�nC 2g:

Since m> 2i , m> 2n� 2i ,

`0 D n�
m

2
< i; i C 1 <

m

2
C 1D nC 1� `0; e`0 � e`0C1; em2

� em
2
C1 2†i :

By assumption,

w�1.e`0 � e`0C1/D e�.`0C1/� e�.`0/ 2 �O 0 ;

w�1.em
2
� em

2
C1/D e�.m

2
/� e�.m

2
C1/ 2 �O 0 :

Then �.`0C 1/D �.m=2/Dm�n. But i � `0C 1 6Dm=2 > i , which contradicts
the assumption that � is a permutation. Hence w�1.†i /�ˆC. This conclude the
proof for G D Sp.2n/. �

Let AD A.S/ be the apartment of B.G/ defined by the maximal split torus S
of G; see Section 2B. Let r be a positive integer. F �A is called an r-facet if F is
connected and there is a finite subset ˆF of ˆaf such that

 .x/D r for all x 2 F;  2ˆF :

Here ˆaf is the set of affine roots associated to S . For more details on r-facets, see
[DeBacker 2002]. Since r is integer, the r-facet is in fact the usual facet.
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Lemma 3.4. For i 2 Insp, let w be a Weyl element satisfying w�1.†i / � ˆC.
Let O 0; O i be nilpotent orbits in g corresponding to .�0; .q0j // or .�0; �; �/ and
.�i ; .qj // respectively, with O 0 > O i . Let z 2 O 0 be the nilpotent element in (6),
(8), (10), (15), and let r > 0 a positive integer. Then there is an r-facet F such that
yi 2 @F and

.wN 0�4w
�1
\Gyi ;r/Gyi ;rC �GF;rC:

Here yi is the vertex of the fundamental chamber C defined in Section 2B and N 0
�j

is the object defined in Section 2F for any sl2 triple fz; h; z0g attached to z in g.

Proof. Let �z �ˆC be the set defined in (7), (9), (11), (13), and set � 0z Dˆ
Cn�z .

By Lemma 3.3, w�1.†i /\� 0z 6D∅. Take ˇ 2†i such that w�1.ˇ/ 2 � 0z and, let
xˇ be an arbitrary point in the apartment A such that 0<ˇ.xˇ / < 1

2
and ˛.xˇ /D 0

for all ˛ 2†i distinct from ˇ. Let F be the smallest r-facet containing xˇ . Then
yi 2 @F and F satisfies the requirement of the lemma.

In fact, let ˆi be the root subsystem generated by †i and ˆCi the subset of
positive roots of ˆi generated by †i . Then by definition

gF;rC WD gxˇ;rC D

� Y
ı2ˆi

ı.xˇ/>ı.yi /

uı;r

�
C gyi ;rC � gyi ;r :

Note that the following sets are the same:

fı 2ˆi j ı.xˇ / > ı.yi /g D fı 2ˆ
C
i j ı�ˇ 2ˆ

C
i g

D fı 2ˆCi j ı 2 ˇCˆ
C
i g

D fw.˛/ 2ˆCi j˛ 2 w
�1.ˇ/Cw�1.ˆCi /g:

By Lemma 3.3, w�1.ˇ/ 2 � 0z; that is, the root space uw�1.ˇ/ � n0
�4. On the other

hand, since w�1.†i / � ˆC, w�1.ˆCi / � ˆ
C. For all ı 2 ˆC, uı 2 n0

�0 (see
Appendix), so u˛ � n0

�4 for all ˛ 2ˆC\ .w�1.ˇ/Cw�1.†i //.
Hence gF;rC � wn

0
�4w

�1\ gyi ;r C gyi ;rC, and thus

.wN 0�4w
�1
\Gyi ;r/Gyi ;rC �GF;rC: �

Proposition 3.5. Let � D ���I�0 2…
0.'/ be an irreducible representation defined

in Section 2D such that i D i.�0/ 2 Insp. Let O 0; O i be nilpotent orbits in g

corresponding to .�0; .q0j // or .�0; �; �/ and .�i ; .qj // respectively, with O 0 >O i .
Let z 2O 0 be the nilpotent element in (6), (8), (10), (15), and let N 0

�j be the object
defined in Section 2F for any sl2 triple fz; h; z0g attached to z in g.

LetN 0DN 0
�2 and z the character ofN 0 defined in (3). Let v be a representative

of a double coset in GyinG=N
0 and  vz the character of vN 0v�1\Gyi defined as



MAXIMAL NILPOTENT SUPPORTS OF SUPERCUSPIDAL REPRESENTATIONS 191

follows: for all x 2 vN 0v�1\Gyi ,

(25)  vz .x/ WD  z.v
�1xv/:

Let r > 0 be a positive integer. Then there is an r-facet F such that yi 2 @F and

.vN 0v�1\Gyi ;r/Gyi ;rC=Gyi ;rC �GF;rC=Gyi ;rC;  vz jGF;rC D 1:

Proof. Let S;B be the split torus and the Borel subgroup ofG defined in Section 2B
and U the unipotent subgroup of B . Let v be a representative of GyinG=N

0; then,

v D w � a �u

for some Weyl element w of G such that w�1.†i /�ˆC, a 2 S , and u 2 U=N 0,
where †i is the set defined in Lemma 3.3 (see [Reeder 1997]).

Note that a; u normalize N 0, and let  0 D  auz , the character of N 0 defined in
(25) with v replaced by au. By Lemma 3.4, there is an r-facet F with yi 2 @F
such that

.vN 0v�1\Gyi ;r/Gyi ;rC � .wN
0
�4w

�1
\Gyi ;r/Gyi ;rC �GF;rC:

For all x 2GF;rC,

v�1xv 2 .au/�1w�1ŒwN 0�4w
�1�wau� .au/�1N 0�4auDN�4:

By the definition of  z ,  vz .x/D  z.v
�1xv/D 1. �

We can now conclude the proof of Theorem 3.1. By the discreteness criterion in
[DeBacker and Reeder 2010, Lemma 2.4],

�.�/ WD fx 2B.G/ jV
Gx;rC
� 6D 0g DG:yi ;

and the Gyi ;r=Gyi ;rC-module V
Gyi ;rC
� is cuspidal; i.e., for any r-facet F with

yi 2 @F ,

(26) .V
Gyi ;rC
� /LF D 0:

Here LF DGF;rC=Gyi ;rC and V� is the representation space of � .
Assume on the contrary HomN 0.�;  z/ 6D 0. By the construction of � in [Adler

1998], � D c � IndGGyi
.„/ for some irreducible representation „ of Gyi . Let V„

be the space of „. Then

HomN 0.�;  z/D
Y

v2GyinG=N
0

HomvN 0v�1\Gyi .„; 
v
z /;

and there is some v 2GyinG=N
0 such that HomvN 0v�1\Gyi .„; 

v
z / 6D 0. Then

HomvN 0v�1\Gyi ;r .„; 
v
z / 6D 0:
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Applying Proposition 3.5, there is an r-facet F such that yi 2 @F and V GF;rC„ 6D 0.

Then V GF;rC� 6D 0, which contradicts the discreteness criterion (26). �

Proof of Theorem 3.2. Let f be the algebraic closure of f. Assume the characteristic
p of f is large enough that p is a good prime in the sense of [Carter 1972].

Keep the notation of Proposition 3.5. Then i D i.�0/2 Insp and Gyi ;r=Gyi ;rCD
g1.f/� g2.f/, with g1 D so.2i; f / or sp.2i; f / (see Section 2B). Let �j 2 gj .f/

.j D 1; 2/ be regular nilpotent elements and f�j ; hj ; � 0j g an sl2 triple in gj .f/

attached to �j . Let

� D .�1; �2/; hD .h1; h2/; � 0 D .�1; �2/:

Then .�; h; � 0/ is an sl2 triple in g1.f/� g2.f/.
Recall that if �0 2 S.�/, i D i�0 2 Insp, then T WD T�0 D T1 �T2 is a maximal

anisotropic torus in Gyi . Let T WD T�0 be the maximal anisotropic unramified torus
in G associated to .yi ;T�0/ in Section 2C. Let X DX�0 2 tD Lie.T / be the good
element of depth �r defining ���I�0 , whose image under the natural projection

gyi ;�r ! gyi ;�r=gyi ;�rC ' g1 � g2:

is denoted by X D .X1; X2/. Since X is a good element in t with CG.X/D T ,
Xj is a regular semisimple element in Lie.Tj /.f/ for j D 1; 2.

LetOXj be the orbit ofXj in gj .f/=Gj .f/. By [Slodowy 1980, §7.4, Corollary 2],
the Slodowy slice

(27) V j WD �j CCgj .f/
.� 0j /

intersects OXj at a unique f-rational point X 0j 2 gj .f/.

Since X is good, CGj .f/
.Xj / is connected [Carter 1985, Theorem 3.5.3]. Then

there is a gj 2 Gj .f/ such that Ad.gj /.Xj /DX 0j [Digne and Michel 1991, §3.25].
Moreover T0j D CGj .X

0
j /D Ad.gj /.Tj / is a maximal anisotropic torus of Gj .f/,

with Gj .f/-conjugate to Tj . Let gD .g1; g2/2G.f/; then, Ad.g/.T1�T2/DT0 WD

T01 �T02.
Let g 2 Gyi ;0 � gyi ;0C such that g projects to g, T 0 WD Ad.g/.T /, and X 0 WD

Ad.g/.X/2 t0. Then T 0 is the maximal unramified torus inG, associated to .yi ;T0/,
X 0 is a good element in gyi ;�rngyi ;�rC, whose image under the natural projection
in Gyi is X 0 D .X 01; X

0
2/. Note that X 0 2 V 1.f/�V 2.f/, where

V 1.f/D �1CCg1.f/.�
0
1/; V 2.f/D �2CCg2.f/.�

0
2/

are sets of f-rational points of V 1; V 2 respectively. Without loss of generality,
assume X D X 0. Then the natural image X of X in gyi ;�r=gyi ;�rC belongs to
V 1.f/�V 2.f/.
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By [DeBacker 2002, Corollary 4.3.2], let .�; h; � 0/ 2 gyi ;�r � gyi ;0� gyi ;r be an
sl2 triple in g such that f�; h; � 0g lifts f�; h; � 0g respectively and O 0 D Ad.G/.�/
the nilpotent orbit of � in g. By the choice of f�; h; � 0g, O 0DO i is a nilpotent orbit
corresponding to .�i ; .qj //. Let N 0

�j be the object defined in Section 2F for the
triple f�; h; � 0g attached to � in g.

We can now conclude the proof of Theorem 3.2. Let N 0 DN 0
�2 and let S� be

the character  � of N 0:

S�.expY /D  ı tr.�Y /; Y 2 Lie.N 0/:

On the other hand, by the construction in [Adler 1998], ���I�0 D c � IndG.k/Gyi
.„/,

while „D Ind
Gyi
TJ .��/. Here

J D expyi .J/; JD tyi ;r C t?
yi ;

r
2
;

JC D expyi .J
C/; JC D tyi ;r C t?

yi ;
r
2
C
;

with t? the orthogonal complement of t in g with respect to the killing form. Here
TJ and TJC are subgroups of G, since T normalizes J and JC, and �� is the
irreducible representation of TJ such that ��jTJC is a multiple of �, where � is
the character of TJC extending ��0 on T , such that

�.expyiY /D  .tr.X �Y // for all Y 2 JC:

Note that T is anisotropic andN 0\TJ DN 0\J �N 0\JC, whileN 0\J=N 0\JC

is an isotropic subspace over f with respect to the nondegenerate symplectic form
defined on J=JC by .n; n0/ 7!  �.Œlogn; logn0�/. On the other hand, since X 2
V 1.f/�V 2.f/, �jJC\N 0 D  � jJC\N 0 . By the definition of ��,

HomN 0\TJ .��;  �/D HomN 0\J .��;  �/ 6D 0:

Apply Lemma 3.6 below with G1 replaced by Gyi , G2 by N 0 \Gyi , and H1 by
TJ ; then,

(28) HomN 0\Gyi .„; �/ 6D 0:

Since HomN 0.���I�0 ; S�/D
Q
v2Gyi nG=N

0 HomvN 0v�1\Gyi .„; 
v
�
/, by (28),

HomN 0.���I�0 ;  �/ 6D 0:

HenceO 0 2Nwh.���I�0/. Combining with Theorem 3.1,O 0 2Nwh;max.���I�0/. �

Lemma 3.6. Let G1 be a compact subgroup, and H1; G2 open compact subgroups
of G1. Let .�; V� / (resp. .�; V�/) be a smooth representation of H1 (resp. G2). If
HomH1\G2.�; �/ 6D 0, then HomG2.IndG1H1�; �/ 6D 0.
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Proof. The proof is similar to that of Proposition 2.1 in [Arthur 2008]. Consider a
nonzero A 2HomH1\G2.�; �/, and define JA 2HomG2.IndG1H1�; �/ as follows: for

arbitrary � 2 IndG1H1� ,

JA� D
X

H1\G2nG2

�.g0/�1A.�.g0// 2 V� :

For all g 2G2,

JA.Ind�/.g/� D
X

H1\G2nG2

�.g0/�1A.Ind�.g/�/.g0/

D

X
H1\G2nG2

�.g0/�1A�.g0g/

D �.g/JA�:

Take some v 2 V� such that Av 6D 0. Define �v.g/ D �.h/v if g D h 2 H1 and
�v.g/D 0 if g 62H1. Then �v 2 IndG1H1� , and JA�v D Av 6D 0, so JA is a nonzero

element in HomG2.IndG1H1�; �/. �

Appendix: Rational nilpotent orbits

In this section, we show by example how to choose a particular element from a
rational nilpotent orbit parametrized by .�; .qj //.

Let W be a .2nC 1/-dimensional symmetric k-space as defined in Section 2A,
with bilinear form qW . Let z be a nonzero nilpotent element in gD so.W /� gl.W /,
and set G D SO.k;W /. Let � W sl2! g be a Lie algebra homomorphism with

�

��
0 0

1 0

��
D z:

Identify a scalar t 2k with the diagonal matrix diag.t; t�1/2 sl2.k/. As in [Mœglin
1996], for i 2 Z, let

g.i/D fY 2 g jAd ı�.t/.Y /D i tY for all t 2 kg;

W.i/D fv 2W j�.t/.v/D i tv for all t 2 kg:

Then gD
L
i2Z g.i/, W D

L
i2ZW.i/.

Assume the orbit O D Ad.G/.z/ of z is parametrized by .�; .qi // with � D
Œm; 2n�m; 1�, where m> n is an odd number. For i D 1; : : : ; 2nC 1, let

(29) Wi D Ker.zi /=.Ker.zi�1/C z Ker.ziC1//:
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Then by [Waldspurger 2001, §I.6], dimWi D ci .�/ and qi is the nondegenerate
quadratic form on Wi defined by

(30) qi .v; v
0/D .�1/Œ

i�1
2
�qW .z

i�1v; v0/ .v; v0 2Wi /;

where v (resp. v0) is an inverse image of v (resp. v0) in Ker.zi /.
Assume m D 2n� 1; in this case � D Œ2n� 1; 12�, c1.�/ D 2, c2n�1.�/ D 1.

Then dimW1 D 2 and dimWm D 1. By (29), let v1; v01 2 Ker z, vm 2 Ker zm such
that

Ker z D z Ker z2˚ kv1˚ kv01;

Ker zm D .Ker zm�1C z Ker zmC1/˚ kvm:

Let v1; v01 be the natural images of v1; v01 in W1 and vm that of vm in Wm. Without
loss of generality, assume v1; v01 are orthogonal to each other under q1; then
q1 D hq1.v1; v1/; q1.v

0
1; v
0
1/i,

(31) qm D hqm.vm; vm/i D .�1/
m�1
2 qW .z

m�1vm; vm/:

In the following, identify qm with qm.vm; vm/.
Through � W sl2 ! so.W / � gl.W /, W is a representation space of sl2. In

fact, since OX corresponds to .�; .qi //, W ' Vm ˚ V1 ˚ V1, where Vj is the
irreducible representation of sl2 of dimension j . By the representation theory of
sl2, v1; v01 2 W.0/ and vm 2 W.m� 1/. Modifying by elements in z Ker z2, we
can assume further that the subspace generated by v1; v01 is V1˚V1.

Then 06Dz`.vm/ 2W.m� 1� 2`/ for all `D 1; : : : ; m� 1, and

W.m� 1/D kvm;

W.m� 3/D kzvm;

:::
:::

W.2/D kzn�2vm;

W.0/D kzn�1vm˚ kv1˚ kv
0
1;

W.�2/D kznvm;

:::
:::

W.�.m� 1//D kzm�1vm:

For j D 1; : : : ; m, let Fj D
L
`��.m�1/C2.j�1/W.`/ be a subspace of W . Then

0D F0 � F1 � F2 � � � � � Fm DW;
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and zFj D Fj�1 for j D 1; : : : ; m. Take a basis of W such that

e1 D vm; e�1 D .�1/
m�1
2 q�1m zm�1vm;

e2 D zvm; e�2 D .�1/
m�3
2 q�1m zm�2vm;

:::
:::

en�1 D z
n�2vm; e�.n�1/ D .�1/q

�1
m znC1vm:

By (30), qW .ei ; ej /D 0 unless i C j D 0, and qW .ei ; e�i /D 1. Note that W.0/
has orthogonal decomposition

W.0/D kzn�1vm˚ kv1˚ kv
0
1

under qW jW.0/. By (30), qW .zn�1vm; zn�1vm/ D qm.vm; vm/, qW .v1; v1/ D
q1.v1; v1/, and qW .v01; v

0
1/D q1.v

0
1; v
0
1/. By (31),

qW jW.0/ D hqW .z
m�1
2 vm; z

m�1
2 vm/; qW .v1; v1/; qW .v

0
1; v
0
1/i

D hqm.vm; vm/; q1.v1; v1/; q1.v
0
1; v
0
1/i

D qm˚ q1:

Because q1˚ qm has the same anisotropic kernel as W , let en; e0; e�n be a basis
of W.0/ such that

qW .en; e�n/D 1; qW .e0; e0/D 1; qW .en; e0/D qW .e�n; e0/D 0:

Then e1; e2; : : : ; en; e0; e�n; : : : ; e�1 is a basis of W , under which the matrix of
qW is JW (defined in Section 2A), and the matrix of z is the lower triangular block
matrix 0BBBBBBBBBBBB@

0

1 0
: : :

: : :

1 0

A� 03
A 0

�1 0
: : :

: : :

1CCCCCCCCCCCCA
;

with

A� D

0@ambm
cm

1A ; AD�
�
cm bm am

�
;

where .am; bm; cm/ are the coordinates of zn�1vm in the basis fen; e0; e�ng. Note
that in this case, AA� D�qm.
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