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THE NATURAL FILTRATIONS OF FINITE-DIMENSIONAL
MODULAR LIE SUPERALGEBRAS OF WITT AND

HAMILTONIAN TYPE

KELI ZHENG, YONGZHENG ZHANG AND WEI SONG

We study the natural filtrations of the finite-dimensional modular Lie super-
algebras W(n, m) and H(n, m). In particular, the natural filtrations which
are invariant relative to the automorphisms of the Lie superalgebras are
employed in order to characterize the Lie superalgebras themselves.

1. Introduction

In mathematics, a Lie superalgebra is a generalization of a Lie algebra including
a Z2-grading. Lie superalgebras are also important in theoretical physics where
they are used to describe the mathematics of supersymmetry [Varadarajan 2004].
Although many structural features of Lie superalgebras over fields of characteristic
zero (see [Kac 1977; Scheunert 1979]) are well understood, there seem to be very
few general results on modular Lie superalgebras. In particular, the classification
problem is still open for the finite-dimensional simple Lie superalgebras over
fields of positive characteristic (see [Bouarroudj and Leites 2006; Zhang 1997]
for example). The treatment of modular Lie superalgebras necessitates different
techniques which are set forth in [Kochetkov and Leites 1992; Petrogradski 1992].
Elduque [2007] obtained two new simple modular Lie superalgebras. These Lie
superalgebras share the property that their even parts are orthogonal Lie algebras
and the odd parts are their spin modules. In [Zhao 2010] modular representations
of basic classical Lie superalgebras were studied. The Lie superalgebras of Cartan
type play an extremely important role in the study of modular Lie superalgebras.
Recent works on them can be found in [Chen and Liu 2011; Yuan et al. 2011; Zhang
and Fu 2002].

It is well known that filtration techniques are of great importance in the struc-
ture and the classification theories of Lie (super)algebras (see [Block and Wilson
1988; Strade 1993; Kac 1977; Scheunert 1979]). We know that the simple Lie
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(super)algebras of Cartan type possess various natural filtration structures. For
the filtration structures, the invariance may be used to make an insight for the
intrinsic properties and the automorphism groups of those Lie (super)algebras. The
natural filtrations of finite-dimensional modular Lie algebras of Cartan type were
proved to be invariant in [Kac 1974; Kostrikin and Shafarevich 1969]. The finite-
dimensional simple modular Lie superalgebras W , S, and H of Cartan type were
defined in [Zhang 1997] and their natural filtrations were investigated in [Zhang and
Fu 2002; Zhang and Nan 1998]. Recently, the natural filtrations of odd Hamiltonian
superalgebras and special odd Hamiltonian superalgebras of formal vector fields
were investigated in [Ren et al. 2012].

The finite-dimensional modular Lie superalgebras W (n,m) and H(n,m) were
first introduced in [Awuti and Zhang 2008] and [Ren et al. 2011], respectively. In
these papers, their derivation superalgebras were also determined. The starting
point of our studies is the investigation of the ad-nilpotent elements of W (n,m).
Then the natural filtration of W (n,m) is proved to be invariant by the determined
ad-nilpotent elements. In the case of H(n,m), the invariance of the natural filtration
is studied by the methods of minimal dimension of image spaces and the derivation
superalgebras. In view of the above invariance of the natural filtrations we describe
the intrinsic properties of these modular Lie superalgebras.

This paper is arranged as follows. A brief summary of the relevant concepts and
notations in finite-dimensional modular Lie superalgebras W (n,m) and H(n,m) is
presented in Section 2. In Section 3, by using the ad-nilpotent elements of the Lie
superalgebras W (n,m), we show that the natural filtration of W (n,m) is invariant
under their automorphisms. In Section 4, the intrinsic properties with respect to
the natural filtration of finite-dimensional modular Lie superalgebras H(n,m) are
investigated. Besides, the isomorphic relation between H(n,m) and H(n′,m′) is
also proved by the method of the natural filtration.

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of characteristic p > 2,
n is an integer greater than 1. Let Z, N and N0 denote the sets of integers, positive
integers and nonnegative integers. Let Z2 = {0̄, 1̄} be the residue class ring of
integers modulo 2.

Let 3(n) be the Grassmann algebra over F in n variables x1, x2, . . . , xn . Set
Bk = {〈i1, i2, . . . , ik〉 | 1 ≤ i1 < i2 < · · · < ik ≤ n} and B(n) =

⋃n
k=0 Bk , where

B0 = ∅. For u = 〈i1, i2, . . . , ik〉 ∈ B(k), set |u| = k, {u} = {i1, i2, . . . , ik}, and
xu
= xi1 xi2 · · · xik (|∅| = 0, x∅

= 1). Then {xu
|u ∈ B(n)} is an F-basis of 3(n).

Let 5 denote the prime field of F, that is, 5 = {0, 1, . . . , p − 1}. Suppose
that {z1, z2, . . . , zm} is a 5-linearly independent finite subset of F. Let G =
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i=1 λi zi |λi ∈5

}
. Then G is an additive subgroup of F. Let F[y1, y2, . . . , ym] be

the truncated polynomial algebra satisfying y p
i = 1 for all i = 1, 2, . . . ,m. For every

element λ=
∑m

i=1 λi zi ∈ G, define yλ = yλ1
1 yλ2

2 · · · y
λm
m . Then yλyη = yλ+η for all

λ, η ∈ G. Let T(m) denote F[y1, y2, . . . , ym]. Then T(m)=
{∑

λ∈G aλyλ | aλ ∈ F
}
.

We denote the tensor product by U = 3(n)⊗ T(m). Then U is an associative
superalgebra with Z2-gradation induced by the trivial Z2-gradation of T(m) and the
natural Z2-gradation of 3(n), that is, U = U0̄⊕U1̄, where U0̄ = 3(n)0̄⊗T(m)
and U1̄ =3(n)1̄⊗T(m).

For f ∈3(n) and α ∈T(m), we abbreviate f ⊗α as f α. Then the elements xu yλ

with u∈B(n) and λ∈G form an F-basis of U. It is easy to see that U=
⊕n

i=0 Ui is a
Z-graded superalgebra, where Ui = spanF{x

u yλ | u ∈ B(n), |u| = i, λ ∈ G}. In par-
ticular, U0=T(m) and Un = spanF{x

π yλ |λ∈G}, where π := 〈1, 2, . . . , n〉 ∈B(n).
In this paper, if A = A0̄⊕ A1̄ is a superalgebra (or Z2-graded linear space), let

hg(A)= A0̄ ∪ A1̄; that is, hg(A) is the set of all Z2-homogeneous elements of A.
If deg x occurs in some expression, we regard x as a Z2-homogeneous element and
deg x as the Z2-degree of x . Let A =

⊕n
i=−r Ai be a Z-graded superalgebra. If

x ∈ Ai , we call x a Z-homogeneous element, i the Z-degree of x and set zd(x)= i .
If y ∈ A, let µ(y) denote the nonzero Z-homogeneous part of y with the least
Z-degree.

Let pl(A)= pl0̄(A)⊕ pl1̄(A) denote the general linear Lie superalgebra of the
Z2-graded space A. For ϕ ∈ plθ (A) with θ ∈ Z2, if

ϕ(xy)= ϕ(x)y+ (−1)θ deg x xϕ(y)

for all x ∈ hg(A) and y ∈ A, then ϕ is called a derivation of A with Z2-degree θ .
Let Derθ A denote the set of all derivations of A with Z2-degree θ . Then Der A =
Der0̄ A⊕Der1̄ A is a subalgebra of pl(A) (see [Scheunert 1979]), which is called
the derivation superalgebra of A.

Set Y= {1, 2, . . . , n}. Given i ∈ Y, let ∂/∂xi be the partial derivative on 3(n)
with respect to xi . For i ∈ Y , let Di be the linear transformation on U such that
Di (xu yλ) = (∂xu/∂xi )yλ for all u ∈ B(n) and λ ∈ G. Then Di ∈ Der1̄ U for all
i ∈ Y since ∂/∂xi ∈ Der1̄(3(n)).

Suppose that u ∈ Bk ⊆ B(n) and i ∈ Y. When i ∈ {u}, we denote the uniquely
determined element of Bk−1 satisfying {u−〈i〉} = {u} \ {i} by u−〈i〉, and denote
the number of integers less than i in {u} by τ(u, i). When i 6∈ {u}, we set τ(u, i)= 0
and xu−〈i〉

= 0. Therefore, Di (xu)= (−1)τ(u,i)xu−〈i〉 for any i ∈ Y and u ∈ B(n).
We define ( f D)(g) = f D(g) for f, g ∈ hg(U) and D ∈ hg(Der U). Since the

multiplication of U is supercommutative, it follows that f D is a derivation of U.
Let

W (n,m)= spanF{x
u yλDi | u ∈ B(n), λ ∈ G, i ∈ Y}.



202 KELI ZHENG, YONGZHENG ZHANG AND WEI SONG

Then W (n,m) is a finite-dimensional Lie superalgebra contained in Der U. A direct
computation shows that

(2-1) [ f Di , gD j ] = f Di (g)D j − (−1)deg f Di deg gD j gD j ( f )Di ,

where f, g ∈ hg(U) and i, j ∈ Y.
Let DH :U→ W (n,m) be the linear mapping such that for every f ∈ hg(U),

DH ( f ) =
∑n

i=1 fi Di , where fi = (−1)deg f Di ( f ). It is easy to see that DH is
an even linear mapping and Di ( f j ) = −D j ( fi ) for all i, j ∈ Y. Let H(n,m) =
{DH ( f ) | f ∈ U} and H(n,m) =

{
DH ( f ) | f ∈

⊕n−1
i=0 Ui i

}
. Then H(n,m) is a

finite-dimensional Hamiltonian Lie superalgebra, with a Z-gradation H(n,m)=⊕n−3
i=−1 Hi (n,m), where Hi (n,m)= {DH (xu yλ) | u ∈ B(n), |u| = i +2, λ ∈ G}. It

was shown in [Ren et al. 2011] that H(n,m) is a subalgebra of W (n,m) and that

[DH ( f ), DH (g)] = DH

( n∑
i=1

(−1)deg f Di ( f )Di (g)
)
,(2-2)

[D j , DH ( f )] = DH (D j ( f )),(2-3)

where f, g ∈ hg(U) and j ∈ Y .
Let 2 := T (m)m = T (m)×· · ·×T (m). For every θ = (h1(y), . . . , hm(y)) ∈2,

we define θ̃ : G → T (m) by θ̃ (λ) =
∑m

j=1 λ j h j (y) for λ =
∑m

j=1 λ j z j ∈ G. It
is easy to check that θ̃ (λ + η) = θ̃ (λ) + θ̃ (η) for λ, η ∈ G. For every θ ∈ 2,
let Dθ : H(n,m) → H(n,m) be the linear mapping given by Dθ DH (xu yλ) =
θ̃ (λ)DH (xu yλ) for xu yλ ∈U. A direct verification shows that Dθ ∈ Der0̄ H for all
θ ∈2. Put � := {Dθ | θ ∈2}.

3. The natural filtration of W(n, m)

In this section, W always denotes Lie superalgebras W (n,m). Then W =
⊕n−1

k=−1 Wk

is Z-graded, where Wk = spanF{x
u yλD j | |u| = k+ 1, j ∈ Y}.

Adopting the notion of [Jin 1992], the element x of Lie superalgebra L is called
ad-nilpotent if ad x is a nilpotent linear transformation. The set of all ad-nilpotent
elements of L is denoted by nil(L). Let L( j)=

⊕
k≥ j Lk ; then {L( j) | j ≥−1} is the

natural filtration of L . If L is Z-graded and finite-dimensional, then L−1 ⊆ nil(L)
and L(1) ⊆ nil(L).

Let Mn(F) denote the set of all n×n matrices over F. Notice that dim T (m)= pm .
Without loss of generality, we may suppose that {y1, . . . , ypm } is a standard F-basis
of T (m). If

z =
n∑

i, j=1

pm∑
q=1

ai jq xi yq D j ∈W0,

where ai jq ∈ F, let
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ρ(z)=

(
A1

...
Apm

)
npm×npm

where Aq = (ai jq)n×n ∈ Mn(F).

Lemma 3.1. Suppose that z =
∑n

i, j=1
∑pm

q=1 ai jq xi yq D j ∈W0. If z is ad-nilpotent,
then ρ(z) is a nilpotent matrix.

Proof. Let 0 be the representation of W0 with values in W−1. Then 0(z) = ad z
and the matrix of 0(z) over the basis {y1 D1, . . . , y1 Dn, . . . , ypm D1, . . . , ypm Dn}

of W−1 is

A =

(
−(A1)

t

...
−(Apm )t

)
npm×npm

where Aq = (ai jq)n×n ∈ Mn(F). Since z is ad-nilpotent, the representation 0(z)
is a nilpotent linear transformation. This implies that A is nilpotent. Therefore,
ρ(z)=−At is a nilpotent matrix. �

Lemma 3.2. Let z =
∑n−1

i=k zi , where zi ∈ Wi and k ≤ n − 1. If z ∈ nil(W ) and
k ≥ 0, then zk ∈ nil(W ).

Proof. Suppose that z = zk + z′, where zk ∈ Wk and z′ ∈
⊕n−1

i=k+1 Wi ⊆ W(k+1).
Since z ∈ nil(W ), we may assume that (ad z)t = 0. Let x is a Z-homogeneous
element of W with Z-degree i . Then (ad z)t(x)= 0. On the other hand,

(ad z)t(x)= (ad(zk + z′))t(x)= (ad zk)
t(x)+ h,

which implies (ad zk)
t(x)+ h = 0. It is easy to see that (ad zk)

t(x) ∈ W(kt+i) and
h ∈ W(kt+i+1) =

⊕
j≥kt+i+1 W j . Thus (ad zk)

t(x) = 0. Since x is an arbitrary
Z-homogeneous element of W , we have (ad zk)

t(W )= 0. Then (ad zk)
t
= 0, that

is, zk ∈ nil(W ). �

Suppose that Ei j denotes the n×n matrix whose (i, j) element is 1 and otherwise
are zero. Obviously,

(3-1) Ei j Ekl = δ jk Eil,

where δ jk is the Kronecker delta.
If z =

∑n
i, j=1

∑pm

q=1 ai jq xi yq D j ∈W0, where ai jq ∈ F, then

(3-2) ρ(z)=
n∑

i, j=1

ai j1 Ei j +

2n∑
i, j=n+1

ai j2 Ei j + · · ·+

npm∑
i, j=n(pm−1)+1

ai j pm Ei j .

Let 1= {z ∈ nil(W ) | ad z(W )⊆ nil(W )}.
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Lemma 3.3. Suppose that z=
∑n−1

i=−1 zi , where zi ∈Wi . If z ∈1, then z−1= z0= 0.

Proof. Suppose that 0 6= z−1 =
∑n

i=1
∑pm

q=1 aiq yq Di , where aiq ∈ F. Let a jq 6= 0
and j, l ∈ Y such that j, l are distinct. We may assume that d = [z−1, xl x j Dl]. A
direct calculation shows that

d =
[ n∑

i=1

pm∑
q=1

aiq yq Di , xl x j Dl

]
=

pm∑
q=1

(alq x j yq Dl − a jq xl yq Dl).

By (3-1) and (3-2), we have

(ρ(d))t = (−1)t(a j1)
t Ell + (−1)t−1al1(a j1)

t−1 E jl

+ (−1)t(a( j+n)2)
t E(l+n)(l+n)+ (−1)t−1a(l+n)2(a( j+n)1)

t−1 E( j+n)(l+n)

+ · · ·

+ (−1)t(a( j+pm−n)pm )t E(l+pm−n)(l+pm−n)

+ (−1)t−1a(l+pm−n)pm (a( j+pm−n)pm )t−1 E( j+pm−n)(l+pm−n).

Since (a j1)
t
6= 0, we have (ρ(d))t 6= 0. So ρ(d) is not a nilpotent matrix. By

Lemma 3.1, it shows that d 6∈ nil(W ). By Lemma 3.2, we have [z, xl x j Dl] 6∈ nil(W ).
Then z 6∈1. This contradicts z ∈1, and proves our assertion that z−1 = 0.

Assume that z0 6= 0. Let z0 =
∑n

i, j=1
∑pm

q=1 ai jq xi yq D j , ai jq ∈ F and

l =min{i | ai jλ 6= 0, i, j ∈ Y},(3-3)

t =min{ j | ai jλ 6= 0, i, j ∈ Y}.(3-4)

(i) Suppose that l ≤ t . Let

(3-5) k =max{ j | al jλ 6= 0, j ∈ Y}.

Then alkq 6= 0. It is easy to see that t ≤ k. Since l ≤ t , we have l ≤ k. Therefore,

z0 =

k∑
j=t

pm∑
q=1

al jq xl yq D j +

n∑
i=l+1

n∑
j=t

pm∑
q=1

ai jq xi yq D j .

Assume that l = k. It follows from t ≤ k that t ≤ l. Then t = l, which implies
that

z0 =

pm∑
q=1

allq xl yq Dl +

n∑
i=l+1

n∑
j=t

pm∑
q=1

ai jq xi yq D j .
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Therefore,

ρ(z0)= all1 Ell +

n∑
i=l+1

n∑
j=t

ai j1 Ei j

+a(l+n)(l+n)2 E(l+n)(l+n)+

2n∑
i=l+1+n

2n∑
j=t+n

ai j2 Ei j

+ · · ·

+a(l+n(pm−1))(l+n(pm−1))pm E(l+n)(l+n)

+

npm∑
i=l+1+n(pm−1)

npm∑
j=t+n(pm−1)

ai j pm Ei j

=


A1
B1 C1

...
Apm

Bpm C pm


npm×npm

,

where Ak = a(l+(k−1)n)(l+(k−1)n)q E(l+(k−1)n)(l+(k−1)n) is an (l + (k− 1)n)-by-
(l + (k − 1)n) matrix and q ∈ {1, . . . , pm

}. Since all1 6= 0, we have A1 is
not a nilpotent matrix. Then ρ(z0) is not a nilpotent matrix and z0 6∈ nil(W ).
Lemma 3.2 shows that z 6∈ nil(W ). This is in contradiction with z ∈1; thus
l < k.

Suppose that h ∈Y and h 6= l, k. Let d = [z0, xk Dl]. From (2-1), we obtain

d =
pm∑

q=1

(
alkq xl yq Dl +

n∑
i=l+1

aikq xi yq Dl −

k∑
j=t

al jq xk yq D j

)
.

Since l < k, ρ(d) also has the form
A1
B1 C1

...
Apm

Bpm C pm


npm×npm

.

It follows from alkq 6= 0 that A1 is not a nilpotent matrix. Then ρ(d) is not
nilpotent. So z 6∈ nil(W ) and [z, xk Dl] 6∈ nil(W ). This is in contradiction with
z ∈1.

(ii) Suppose that t < l. Let k =max{i | ai tλ 6= 0} and d ′ = [z, xt Dk]. Imitating (i),
we may prove that ρ(d ′) is also not nilpotent. The desired result follows. �

Lemma 3.4. (i) If z ∈W0 ∩ nil(W ) and h ∈W(1), then z+ h ∈ nil(W ).

(ii) If i , j are distinct elements of Y, then xi yλD j ∈ nil(W ) for all λ ∈ G.
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(iii) If i , j , k are distinct elements of Y, then ax j yλDk + bxi yηDk ∈ nil(W ) and
xi x j yλDk ∈1, where a, b ∈ F and λ, η are arbitrary elements of G.

Proof. (i) A direct verification shows that {ad z} ∪ {ad W(1)} is a weakly closed
subset of nilpotent elements of pl(W ). It was shown in [Jacobson 1962, Theorem 1
of Chapter II] that each element of spanF({ad z} ∪ {ad W(1)}) is a nilpotent linear
transformation of W . Then ad z+ ad h is nilpotent. So z+ h is ad-nilpotent.

(ii) To prove (ad xi yλD j )
p
= 0, we may assume without loss of generality that

i < j . Set η is an arbitrary element of G. If k 6= i , then

(ad xi yλD j )
2(xu yηDk)= [xi yλD j , [xi yλD j , xu yηDk]]

= (−1)τ(u, j)
[xi yλD j , xi xu−〈 j〉yλ+ηDk]

= 0.

In the case of k = i , we have

(adxi yλD j )
3(xu yηDk)= [xi yλD j ,[xi yλD j ,[xi yλD j ,xu yηDi ]]]

= [xi yλD j ,[xi yλD j ,(−1)τ(u, j)xi xu−〈 j〉yλDi−xu yλ+ηD j ]]

= (−1)τ(u, j)
[xi yλD j ,−xi xu−〈 j〉yλD j−xi xu−〈 j〉y2λ+ηD j ]

= 0.

For p > 2 we get (ad xi yλD j )
p(xu yηDk) = 0. Therefore (ad xi yλD j )

p(W ) = 0.
This yields (ad xi yλD j )

p
= 0. Thus xi yλD j ∈ nil(W ).

(iii) According to (ii) and [x j yλDk, xi yηDk] = 0, {ad x j yλDk, ad xi yηDk} is a
weakly closed subset of nilpotent elements of pl(W). So ax j yλDk + bxi yηDk ∈

nil(W ), where a, b ∈ F.
Suppose that l ∈Y\{i, j, k}. Then xi x j yλDk ∈W(1)⊆ nil(W ). Let z=

∑n−1
i=−1 zi ,

where zi ∈Wi . Without loss, we may assume that [xi x j yλDk, z] = f0+ f1, where
f0 = [xi x j yλDk, z−1] ∈W0 and f1 ∈W(1). Let z−1 =

∑n
l=1

∑
η∈G alηyηDl . Then

f0 = [xi x j yλDk,

n∑
l=1

∑
η∈G

alηyηDl] = −
∑
η∈G

(aiηx j yλ+ηDk + a jηxi yλ+ηDk).

It follows that f0 ∈ W0 ∩ nil(W ). Statement (i) shows that f0+ f1 ∈ nil(W ). We
finally obtain xi x j yλDk ∈1 for all λ ∈ G. �

Let Q = {z ∈ nil(W ) | ad z(1)⊆1}.

Lemma 3.5. Q =W(1).

Proof. By the definition of 1, we have W(2) ⊆1. Lemma 3.3 show that 1⊆W(1).
Then [W(1),1] ⊆ [W(1),W(1)] ⊆W(2) ⊆1. Thus W(1) ⊆ Q.
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Next we will prove Q ⊆ W(1). Let z ∈ Q and z =
∑n−1

i=−1 zi , where zi ∈ Wi .
Assume that z−1 =

∑n
l=1

∑
λ∈G alλyλDl 6= 0, alλ ∈ F. Without loss of generality,

we may suppose that ai 6= 0. Let d = xi x j yηDk , where i, j, k are distinct elements
of Y and η is an arbitrary element of G. By Lemma 3.4 (iii), we have d ∈ 1.
Let [z, d] = h0 + h1, where h0 = [z−1, d] ∈ W0 and h1 ∈ W(1). Since ai 6= 0,
we have h0 =

∑
λ∈G(aiλx j yλ+ηDk − a jλxi yλ+ηDk) 6= 0. Lemma 3.3 implies that

h0+ h1 6∈1. It is a contradiction to z ∈ Q. Hence z−1 = 0.
Assume that 0 6= z0 =

∑n
i, j=1

∑pm

q=1 ai jλxi yq D j , ai jq ∈ F and suppose that l and
t are as the definitions in (3-3) and (3-4). We may suppose that l ≤ t (the proof
is similar to the case t < l) and let k be as definition in (3-5). Similar to the first
part of the proof in Lemma 3.3, we have l < k. Suppose that h ∈ Y \ {l, k, t} and
d1 = xk xh Dl . Lemma 3.4 (iii) shows that d1 ∈ 1. Let [z, d1] = g1 + g2, where
g1 = [z0, d1] ∈W1 and g2 ∈W(2). Using (2-1), we have

g1 =

pm∑
q=1

(
alkq xl xh yq Dl −

n∑
i=l+1

aihq xi xk yq Dl −

k∑
j=t

al jq xk xh yq D j

)
.

If h < t , then aihq = 0 in the above equality, where i ∈ Y \ {1, . . . , l − 1}. Thus

[Dh, g1] = −

pm∑
q=1

(
alkq xl yq Dl +

n∑
i=l+1

aihq xi yq Dl + ahhq xk yq Dl − al jq xk yq D j

)
.

By (3-2), the matrix ρ([Dh, g1]) has the form
A1
B1 C1

...
Apm

Bpm C pm


npm×npm

as in Lemma 3.3. Since alkq 6= 0, A1 is not a nilpotent matrix. This implies that
ρ([Dh, g1]) is not nilpotent. Hence [Dh, g1] 6∈ nil(W ). Lemma 3.2 shows that
[Dh, g1+g2] 6∈ nil(W ), that is, [Dh, g1+g2] 6∈1. It is contradict with z ∈ Q. Thus
z0 = 0. Therefore, z ∈W(1) and Q ⊆W(1). �

It is easy to verify that1 and Q are invariant subspaces under the automorphisms
of W . According to Lemma 3.5, W(1) is also invariant under the automorphisms
of W . Since

W(0) = {x ∈W | [x,W(1)] ⊆W(1)},(3-6)

W(i) = {x ∈Wi−1 | [x,W ] ⊆W(i−1)}, i ≥ 1,(3-7)

we easily obtain the following theorem.

Theorem 3.6. The natural filtration of W is invariant under automorphisms of W .
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Let Wi =W(i)/W(i+1) for−1≤ i ≤n−1. Then Wi is a Z-graded space. Suppose
that W :=

⊕n−1
i=−1 Wi ; then W is also a Z-graded space. Let x +W(i+1) ∈Wi and

y+W( j+1) ∈W j . Define

[x +W(i+1), y+W( j+1)] := [x, y] +W(i+ j+1).

It follows from [Wi ,W j ] ⊆ Wi+ j that the operator [ , ] on W is well-defined.
There exists a linear expansion such that W has a operator [ , ]. A direct verification
shows that W is a Lie superalgebra with respect to the operator [ , ]. The Lie
superalgebras W is called a Lie superalgebra induced by the natural filtration of W .

Lemma 3.7. W∼=W .

Proof. Let φ : W → W is a linear map such that φ(x) = x + W(i+1), where
x ∈ W(i) \W(i+1). A direct verification shows that φ is a homomorphism of Lie
superalgebras. Suppose that y ∈ kerφ. If y 6= 0, then there exists i ≥−1 such that
y ∈W(i) \W(i+1). Since φ(y)= 0, we have y+W(i+1)= 0. Hence y ∈W(i+1). That
shows that y = 0. Thus, kerφ = 0. Therefore, φ is a monomorphism. It follows
from W is finite-dimensional that φ is an isomorphism. �

The definition of φ shows that, for i ≥−1

(3-8) φ(Wi )= {x +W(i+1) | x ∈Wi } = {x +W(i+1) | x ∈W(i)}

=W(i)/W(i+1) =Wi .

Suppose that m, n, m′, n′ are elements of N greater than 1. Similar to W , the Lie
superalgebra W (n′,m′) will be simply denoted by W ′. According to the definitions
of 1, Q, and W in W , we define 1′, Q′, and W′ in W ′ using the same method.

Proposition 3.8. Suppose that W ∼= W ′ and σ is an isomorphism from W to W ′.
Then σ(W(i))=W ′(i) for all i ≥−1.

Proof. It is clear that σ(W(−1)) = W ′(−1) and σ(nil(W )) = nil(W ′). A direct
verification shows that σ(1) =1′. Hence σ(Q) = Q′. By virtue of Lemma 3.5,
we have Q = W(1) and Q′ = W ′(1). Thus σ(W(1))= W ′(1). By (3-6) and (3-7), the
desired result σ(W(i))=W ′(i) for all i ≥−1 is obtained. �

Lemma 3.9. Suppose that W ∼=W ′ and σ is an isomorphism from W to W ′. Then
σ induces an isomorphism σ̃ from W to W′ such that σ̃ (Wi )=W′i for all i ≥−1.

Proof. Define a linear map σ̃ : W→W′ such that

σ̃ (x +W(i+1))= σ(x)+W ′(i+1),

where x+W(i+1) ∈Wi . Because of Proposition 3.8, the definition of σ̃ is reasonable
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and

σ̃ ([x +W(i+1), y+W( j+1)])= σ([x, y])+W ′(i+ j+1)

= [σ(x)+W ′(i+1), σ (y)+W ′( j+1)]

= [σ̃ (x +W ′(i+1)), σ̃ (y+W ′( j+1))].

Thus σ̃ is a homomorphism from W to W′. Clearly, σ̃ (Wi )=W′i for all i ≥−1.
It shows that σ̃ is an epimorphism.

Suppose that y ∈ ker σ̃ ; then y ∈W. So we may suppose that y =
∑n−1

i=−1 yi

and yi ∈ Wi . Since Wi = W(i)/W(i+1), let yi = zi + W(i+1), where zi ∈ W(i).
Hence σ̃ (yi ) = σ(zi )+W ′(i+1). It follows from σ̃ (y) = 0 that

∑n−1
i=−1 σ̃ (yi ) = 0.

Thus σ̃ (yi ) = 0, that is, σ(zi ) + W ′(i+1) = 0. This shows σ(zi ) ∈ W ′(i+1). By
Proposition 3.8, we have zi ∈ σ

−1(W ′(i+1))=W(i+1). Then yi = zi +W(i+1) = 0 for
−1≤ i ≤ n−1. Therefore, y= 0 and ker σ̃ = 0. Consequently, σ̃ is an isomorphism
induced by σ such that σ̃ (Wi )=W′i for all i ≥−1. �

Theorem 3.10. W ∼=W ′ if and only if m = m′ and n = n′.

Proof. Since the sufficiency is obvious, it suffices to prove the necessity. Suppose
that φ : W →W is the isomorphism given in the proof of Lemma 3.7. Similarly,
there also exists the φ′ : W ′→W′. According to (3-8) and Lemma 3.9, we have

φ(Wi )=Wi , φ′(W ′i )=W′i , σ̃ (Wi )=W′i

for −1≤ i ≤ n− 1. Let ψ = (φ′)−1σ̃ φ. Then

ψ(Wi )= (φ
′)−1σ̃ φ(Wi )= (φ

′)−1σ̃ (Wi )= (φ
′)−1(W′i )=Wi .

In particular, ψ(W−1) = W ′
−1 and ψ(W0) = W ′0. Since dim W−1 = dim W ′

−1, we
get npm

= n′ pm′ . By virtue of the definition of Wi , we have

W0 = spanF{xi yλD j ∈W | i, j ∈ Y, λ ∈ G}.

Thus dim W0 = n2 pm . By the same method used in W0, we may obtain dim W ′0 =
n′2 pm′ . According to dim W0 = dim W ′0 and npm

= n′ pm′ , we have n = n′ and
m = m′. In conclusion, the proof is completed. �

4. The natural filtration of H(n, m)

In this section we will investigate the question of the natural filtration of the Lie
superalgebras H(n,m). For convenience, H(n,m), H(n,m) and Hi (n,m) will be
simply denoted by H , H and Hi .

Let H( j) =
⊕
i≥ j

Hi . Then

H = H(−1) ⊇ H(0) ⊇ H(1) ⊇ · · · ⊇ H(n−3) ⊇ H(n−2) = 0
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is a descending filtration of H , which is called the natural filtration of H . We also
call {H(k) | k ∈Z} a filtration of H for short, where H(k)= H if k ≤−1 and H(k)= 0
if k ≥ n− 2.

Lemma 4.1. Let fi = gi + hi , where fi , gi , hi ∈ U and i = 1, . . . , k. If the set
{gi | i = 1, . . . , k} is linearly independent and

spanF{gi | i = 1, . . . , k} ∩ spanF{hi | i = 1, . . . , k} = 0,

then { fi | i = 1, . . . , k} is linearly independent.

Proof. If
k∑

i=1
ai fi = 0, ai ∈ F, then

k∑
i=1

ai gi =−
k∑

i=1
ai hi . This shows that

k∑
i=1

ai gi ∈ spanF{gi | i = 1, . . . , k} ∩ spanF{hi | i = 1, . . . , k} = 0.

Since {gi | i = 1, . . . , k} is linearly independent, we obtain ai = 0, i = 1, . . . , k. �

Lemma 4.2. If h1, h2, . . . , hk ∈ H \{0}. If {hi | i = 1, . . . , k} is linearly dependent,
then so is {µ(hi ) | i = 1, . . . , k}.

Proof. Since {hi | i = 1, . . . , k} is linearly dependent, there exist a1, . . . , ak ∈ F such
that

∑k
i=1 ai hi = 0 and some ai is not zero. We may suppose that a1, . . . , as 6= 0

and as+1 = · · · = ak = 0, where 1≤ s ≤ k. Let

ε =min{zd(µ(hi )) | i = 1, . . . , s}.

Without loss of generality, we may suppose that zd(µ(hi )) = ε for i = 1, . . . , t
and zd(µ(hi )) > ε for i = t + 1, . . . , s. It follows from

∑k
i=1 ai hi = 0 that∑k

i=1 aiµ(hi ) = 0. Since a1, . . . , at 6= 0, we obtain that {µ(hi ) | i = 1, . . . , t}
is linearly dependent. Hence so is {µ(hi ) | i = 1, . . . , k}. �

Lemma 4.3. Let g1, g2, . . . , gk ∈U. If zd(µ(gi ))≥ 1, i = 1, . . . , k, then {gi | i =
1, . . . , k} is linearly dependent if and only if {DH (gi ) | i = 1, . . . , k} is.

Proof. If {gi | i = 1, . . . , k} is linearly dependent, there exist a1, . . . , ak ∈ F, not
all zero, such that

∑k
i=1 ai gi = 0. Clearly, DH

(∑k
i=1 ai gi

)
=
∑k

i=1 ai DH (gi )= 0.
Hence {DH (gi ) | i = 1, . . . , k} is linearly dependent.

Conversely, we consider the sufficiency. Without loss of generality, we may
suppose that g = xu yλ for u ∈ B(n) and λ ∈ G such that DH (g)= 0. Then

DH (xu yλ)=
n∑

i=1

(−1)|u|Di (xu)yλDi .

Hence Di (xu) = 0, which shows that |u| = 0. Thus ker(DH ) = T(m). Since
the set {DH (gi ) | i = 1, . . . , k} is linearly dependent, there exist a1, . . . , ak ∈ F,
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not all zero, such that
∑k

i=1 ai DH (gi ) = 0. Then DH
(∑k

i=1 ai gi
)
= 0. Hence∑k

i=1 ai gi ∈ T(m). Notice that zd(µ(gi )) ≥ 1, i = 1, . . . , k; thus
∑k

i=1 ai gi = 0,
showing that {gi | i = 1, . . . , k} is linearly dependent. �

For a superderivation D of a Lie superalgebra L . Set I (D)= dim (Im(D)). If
T is a subset of superderivations of L , we define I (T )=min{I (D) | 0 6= D ∈ T }.

Theorem 4.4. Suppose that T = ad(hg(H))|H , then I (T ) ≥ npm . Besides,
I (ad DH (g))= npm if and only if 0 6= DH (g) ∈ spanF{DH (xπ yλ) | λ ∈ G}, where
DH (g) ∈ hg(H).

Proof. For any h ∈ hg(H) we write ad h|H simply as ad h. A direct calculation
shows that

[DH (xπ yλ), DH (xv yη)] = DH

( n∑
i=1

(−1)n Di (xπ yλ)Di (xv yη)
)

for v ∈ B(n) and λ, η ∈ G.
In the case of |v| ≥ 2 we have

Di (xv yη)= (−1)τ(v,i)xv−〈i〉yη, Di (xπ yλ)= (−1)τ(π,i)xπ−〈i〉yλ.

Clearly, {v−〈i〉} ∈ {π −〈i〉}. Then [DH (xπ yλ), DH (xv yη)] = 0 in this case.
In the case of |v| = 1 we may suppose that xv yη = xi yη for some i ∈ Y. Then

[DH (xπ yλ), DH (xi yη)] = DH

( n∑
j=1

(−1)n D j (xπ yλ)D j (xi yη)
)

= DH ((−1)n+τ(π,i)xπ−〈i〉yλ+η
)
.

Since {xπ−〈i〉yλ+η | i ∈Y, λ, η ∈G} is a linearly independent set, Lemma 4.3 shows
that {[DH (xπ yλ), DH (xi yη)] | i ∈ Y, λ, η ∈ G} is linearly independent. Thus
I (ad DH (g))= npm .

Next we will consider the converse inclusion. Assume that DH (g0) ∈ hg(H) and
DH (g0) 6∈ spanF{DH (xπ yλ) | λ ∈ G}. We want to prove that I (ad DH (g0)) > npm .
Suppose that µ(DH (g0)) = DH (g). By Lemma 4.2, it suffices to prove that
I (ad DH (g)) > npm .

Let g= xu yλ, where u ∈B(n) and λ∈G. Then 1≤ |u|< n. There exist v ∈B(n)
and η ∈ G such that DH (xv yη) ∈ H . Then

[DH (xu yλ), DH (xv yη)] = DH

( n∑
i=1

(−1)|u|Di (xu yλ)Di (xv yη)
)
.

(1) Suppose that |u| = 1 and xu yλ = xi yλ for some i ∈ Y, then

[DH (xi yλ), DH (xv yη)] = −(−1)τ(v,i)DH
(
xv−〈i〉yλ+η

)
.
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Considering xv−〈i〉, the following statements hold:

DH (xv−〈i〉yλ+η)= 0 if |v| = 0 or 1,

dim{xv−〈i〉} = C1
n−1 if |v| = 2,

dim{xv−〈i〉} = C2
n−1 if |v| = 3,

...

dim{xv−〈i〉} = Cn−1
n−1 if |v| = n.

Therefore,

dim{xv−〈i〉yλ+η} = (C1
n−1+C2

n−1+ · · ·+Cn−1
n−1)p

m
= (2n−1

− 1)pm > npm .

(2) If 1< |u|< n, then we suppose that |u| = l.
For |v| = 2 we may suppose that xv yη = x j xk yη, where j, k are distinct

elements of Y and η is an arbitrary element of G. A direct calculation shows
that [DH (xu yλ), DH (x j xk yη)] equals

DH
(
(−1)|u|((−1)τ(u, j)xu−〈 j〉xk − (−1)τ(u,k)xu−〈k〉x j )yλ+η

)
.

Consider ϒ = (−1)τ(u, j)xu−〈 j〉xk − (−1)τ(u,k)xu−〈k〉x j . Then the following
statements hold:

ϒ = 0 if j, k ∈ u or j, k 6∈ u,

ϒ = (−1)τ(u, j)x (u\{ j})∪{k} if j ∈ u and k 6∈ u,

ϒ = (−1)τ(u,k)x (u\{k})∪{ j} if k ∈ u and j 6∈ u.

Thus dimϒ = l(n− l).
For |v| = 1 we may suppose that xv yη = xi yη for some i ∈ Y. Then

[DH (xi yλ), DH (xi yη)] = (−1)|u|+τ(u,i)DH (xu−〈i〉yλ+η), i ∈ Y.

Hence dim(xu−〈i〉)= |u| = l. It is clear to see that l(n− l)+ l > n. Therefore,
I (ad DH (g))≥ (l(n− l)+ l)pm > npm . �

Theorem 4.5. I (hg(Der H)) = npm . Moreover, for D ∈ hg(Der(H)), we have
I (D)= npm if and only if D is nonzero and lies in spanF{adDH (xπ yλ) | λ ∈ G}.

Proof. By virtue of Theorem 4.4, we have I (ad DH (xπ yλ))= npm . By [Ren et al.
2011, Proposition 3.7], we obtain

Der H = ad(H + Fyλh)⊕�,

where h=
∑n

i=1 xi Di and λ∈G. Hence I (hg(Der H))≤ npm . Let D ∈ hg(Der H)
and I (D)≤ npm . Without loss of generality, we may suppose that

D = ad DH (g)+ a ad yλh+
∑
θ∈2

bθ Dθ ,
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where a, bθ ∈ F and DH (g) ∈ hg(H). Then

D(DH (xu yη))

= [DH (g), DH (xu yη)] + a
[ n∑

i=1

xi yλDi , DH (xu yη)
]
+

∑
θ∈2

bθ Dθ (DH (xu yη))

for all u ∈ B(n) and η ∈ G.
Next we will prove that a and bθ are all zero for all θ ∈2.
First of all we consider the coefficient a. A direct calculation shows that

a
[ n∑

i=1

xi yλDi , DH (xu yη)
]
=

n∑
i, j=1

(−1)|u|a[xi yλDi , D j (xu)yηD j ]

=

n∑
i, j=1

(−1)|u|a[xi yλDi , (−1)τ(u, j)xu−〈 j〉yηD j ]

=


−

n∑
j=1

(−1)|u|+τ(u, j)axu−〈 j〉yλ+ηD j if i = j,

(n−1)
n∑

j=1

(−1)|u|+τ(u, j)axu−〈 j〉yλ+ηD j if i 6= j.

Using the similar discussion in Theorem 4.4, we obtain

dim
(
spanF{x

u−〈 j〉yλ+ηD j }
)
> npm

for given j ∈ u. Since n > 1, we have a = 0.
Secondly, the other coefficient bθ will be considered. For any u ∈ B(n) and

η ∈ G, we have

bθ Dθ (DH (xu yη))= θ̃ (η)DH (bθ xu yη)

=

n∑
i=1

(−1)|u|bθ Di (xu)Di θ̃ (η)yη

= bθ
n∑

i=1

(−1)|u|+τ(u,i)xu−〈i〉Di θ̃ (η)yη.

By the equality above and the similar discussion in Theorem 4.4, we have

dim(spanF{x
u−〈i〉η̃(µ)yηD j }) > npm .

Hence bθ = 0 for all θ ∈2. Therefore, D= ad DH (g). It follows from Theorem 4.4
that I (hg(Der H))= npm . In particular, I (D)= npm if and only if

0 6= D ∈ spanF{ad DH (xπ yλ) | λ ∈ G}. �
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We adopt the notations n′,m′ in Section 3 and let H ′ = H(n′,m′) and G ′ ={∑m′
i=1 λi zi | λi ∈5, i = 1, . . . ,m′

}
.

Proposition 4.6. Let

R = spanF{DH (xu yλ) ∈ H | u ∈ B(n), |u| ≥ 2, λ ∈ G},

R′ = spanF{DH ′(xu yλ) ∈ H ′ | u ∈ B(n′), |u| ≥ 2, λ ∈ G ′}.

If σ is an isomorphism from H to H ′, then σ(R)= R′.

Proof. It is easy to see that the map ξ : D → σDσ−1 is a bijection. Then ξ
is an isomorphism from Der H to Der H ′. Thus I (hg(Der H)) = I (hg(Der H ′)).
According to Theorem 4.5, we have

σ(spanF{ad DH (xπ yλ)})σ−1
= spanF{ad DH (xπ

′

yλ
′

)},

where π ′ = {1, . . . , n′} ∈ B(n′), λ ∈ G, and λ′ ∈ G ′. Note that

[DH (xπ yλ), DH (xu yη)] = DH

( n∑
i=1

(−1)n Di (xπ yλ)Di (xu yη)
)
.

for u ∈ B(n) and λ, η ∈ G. If |u| ≥ 2, then Di (xu yη) = (−1)τ(u,i)xu−〈i〉yη and
Di (xπ yλ)= (−1)τ(π,i)xπ−〈i〉yλ. Since {u−〈i〉} ∈ {π −〈i〉}, we have

[DH (xπ yλ), DH (xu yη)] = 0.

Hence
R = {h ∈ H | (spanF{ad DH (xπ yλ)})(h)= 0}.

Similarly, R′ = {h ∈ H ′ | (spanF{ad DH ′(xπ
′

yλ
′

)})(h)= 0}. Then

(spanF{ad DH ′(xπ
′

yλ
′

)})(σ (R))= σ(spanF{ad DH (xπ yλ)})σ−1(σ (R))

= σ(spanF{ad DH (xπ yλ)})(R)

= σ(spanF{ad DH (xπ yλ)})(R)

= σ(0)

= 0.

Thus σ(R) ⊆ R′. By the same method above, we have σ−1(R′) ⊆ R. Hence
R′ ⊆ σ(R). In conclusion, σ(R)= R′. �

Lemma 4.7. Let H = H(−1) ⊇ H(0) ⊇ · · · ⊇ H(n−3) ⊇ H(n−2) = 0 be the natural
filtration of H. Then

H(0) = R, H(i) = {h ∈ H(i−1) | [h, H ] ⊆ H(i−1)} for i ≥ 1.
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Similarly, for the natural filtration of H ′,

H ′(0) = R′, H ′(i) = {h ∈ H ′(i−1) | [h, H ′] ⊆ H ′(i−1)} for i ≥ 1.

Proof. Suppose that M = {h ∈ H(i−1) | [h, H ] ⊆ H(i−1)}. Note that H(i) ⊆ H(i−1)

and [H(i), H ] = [H(i), H(−1)] ⊆ H(i−1). Then the inclusion relations show that
H(i) ⊆ M .

Conversely, if h ∈ M , then h ∈ H(i−1). So we may suppose that h =
∑n−3

j=i−1 h j ,
where h j ∈ H j . Let hi−1 =

∑
k ak D(xuk yλk ), where ak ∈ F, uk ∈ B(n), |uk | =

i − 1+ 2= i + 1≥ 2, and λk ∈ G.
If hi−1 = 0, then h ∈ H(i). Therefore, the desired result follows in this case.
If hi−1 6= 0, then it follows from h ∈ M that [h, H−1] ⊆ H(i−1). Hence
[hi−1, H−1] = 0, that is,[∑

k

ak D(xuk yλk ), DH (xi yη)
]
= 0

for all i ∈ Y and η ∈ G. As |uk | ≥ 2, there exists i ∈ Y such that

DH ((−1)|uk |Di (xuk yλk )) 6= 0.

Hence ak = 0 which is in contradiction with hi−1 6= 0.
The considerations above show that M ⊆ H(i). Therefore,

H(i) = {h ∈ H(i−1) | [h, H ] ⊆ H(i−1)} for i ≥ 1.

Similarly, H ′(i) = {h ∈ H ′(i−1) | [h, H ′] ⊆ H ′(i−1)} for i ≥ 1. �

Proposition 4.8. Suppose that H ∼= H ′ and σ is an isomorphism from H to H ′,
then σ(H(i))= H ′(i) for all i ≥−1.

Proof. If i = 0, then H(0) = R and H ′(0) = R′. Proposition 4.6 shows that
σ(H(0))= H ′(0).

If i =−1, then H(−1) = H and H ′(−1) = H ′. Hence σ(H(−1))= H ′(−1).
Next we use induction on i . Assume that σ(H(i))= H ′(i) for i ≥ 1. By Lemma 4.7,

for h ∈ H(i+1), we have h ∈ H(i) as well as [h, H ] ⊆ H(i). Since h ∈ H(i), the
induction hypothesis yields σ(h) ∈ H ′(i). Then

σ([h, H ])= [σ(h), σ (H)] ⊆ [H ′(i), H ′] ⊆ H ′(i).

By Lemma 4.7, we have σ(h) ∈ H ′(i+1). This implies that σ(H(i+1))⊆ H ′(i+1).
For any h′ ∈ H ′(i+1), we want to prove that h′ ∈ σ(H(i+1)). The fact h′ ∈ H ′(i) =

σ(H(i)) ensures that there exists h ∈ H(i) such that σ(h) = h′. It is easy to see
that [h′, H ′] ⊆ H ′(i) = σ(H(i)). Since [h′, H ′] = [σ(h), σ (H)] = σ [h, H ], we have
[h, H ]∈H(i). Then h∈H(i+1), that is, h′∈σ(H(i+1)). Consequently, σ(H(i))=H ′(i)
for all i ≥−1. �
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Theorem 4.9. The natural filtration of H is invariant under the automorphisms
of H.

Proof. It is a direct conclusion of Proposition 4.8. �

Imitating the definition of Wi in W , we let Hi = H(i)/H(i+1) for −1≤ i ≤ n−3.
Suppose that H :=

⊕n−3
i=−1 Hi , then H is a Z-graded space. Let x + H(i+1) ∈Hi and

y+ H( j+1) ∈ H j . We define

[x + H(i+1), y+ H( j+1)] := [x, y] + H(i+ j+1).

It is easy to see that the operator [ , ] on H is well-defined. There exists a linear
expansion such that H has a operator [ , ]. A direct verification shows that H is
a Lie superalgebra with respect to the operator [ , ]. The Lie superalgebras H is
called a Lie superalgebra induced by the natural filtration of H .

By the similar methods used to prove Propositions 3.7 and 3.9, the following
lemmas are easy to obtain.

Lemma 4.10. H∼= H.

Lemma 4.11. Suppose that H ∼= H ′ and σ is an isomorphism from H to H ′, then
σ induces an isomorphism σ̃ from H to H′ such that σ̃ (Hi )= H′i for all i ≥−1.

Theorem 4.12. H ∼= H ′ if and only if m = m′ and n = n′.

Proof. Since the sufficiency is obvious, it suffices to prove the necessity. Using the
similar methods in the proof of Theorem 3.10, we have dim H−1 = dim H ′

−1 and
dim H0 = dim H ′0. It follows from W−1 = H−1 that npm

= n′ pm′ . By virtue of the
definition of Hi , we have

H0 = spanF{DH (xi x j yλ) ∈ H | i, j ∈ Y, λ ∈ G}.

Thus dim H0=C2
n pm
=

1
2 n(n−1)pm . Similarly, dim H ′0=

1
2 n′(n′−1)pm′ . Accord-

ing to dim H0=dim H ′0 and npm
=n′ pm′ , we have n=n′ and m=m′. Consequently,

the desired result follows. �
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