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FREE BROWNIAN MOTION AND FREE CONVOLUTION
SEMIGROUPS: MULTIPLICATIVE CASE

PING ZHONG

We consider a pair of probability measures µ, ν on the unit circle such that
6λ(ην(z)) = z/ηµ(z). We prove that the same type of equation holds for
any t ≥ 0 when we replace ν by ν � λt and µ by Mt(µ), where λt is the
free multiplicative analogue of the normal distribution on the unit circle of
C and Mt is the map defined by Arizmendi and Hasebe. These equations
are a multiplicative analogue of equations studied by Belinschi and Nica.
In order to achieve this result, we study infinite divisibility of the measures
associated with subordination functions in multiplicative free Brownian mo-
tion and multiplicative free convolution semigroups. We use the modified
S-transform introduced by Raj Rao and Speicher to deal with the case that
ν has mean zero. The same type of the result holds for convolutions on the
positive real line. In the end, we give a new proof for some Biane’s results on
the densities of the free multiplicative analogue of the normal distributions.

1. Introduction

Let MR be the set of probability measures on R. For every t ≥ 0, Belinschi and
Nica [2008b] defined a family of maps Bt :MR→MR by setting

Bt(µ)= (µ
�(t+1))]1/(t+1), µ ∈MR.

These maps have several remarkable properties. For any t ≥ 0, Bt is an endomor-
phism of (MR+,�), where MR+ is the set of probability measures on [0,+∞) and
� is free multiplicative convolution. {Bt }t≥0 is a semigroup and B1 is the Boolean
to free Bercovici–Pata bijective map.

The maps Bt have strong connections with �-infinite divisibility. They are also
connected to free Brownian motion and additive free convolution semigroups. For
µ ∈ MR, we denote by Gµ the Cauchy transform of µ and by Fµ the reciprocal
Cauchy transform of µ. Given a pair of probability measures µ, ν ∈MR such that

Gν(z)= z−Fµ(z), z ∈ C+,
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we have

(1-1) Gν�γt (z)= z−FBt (µ)(z), t > 0, z ∈ C+,

where γt is the semicircular distribution with variance t . This result was generalized
to the multi-variable case in [Belinschi and Nica 2008a; 2009; Nica 2009]. An
equivalent form of (1-1) was used to prove the superconvergence theorem in [Wang
2010]. Anshelevich [2010; 2011a; 2011b; 2012] generalized the above correspon-
dence of µ↔ ν and Bt(µ)↔ ν� γt to the context of two-state probability spaces.
Motivated by these generalizations and applications, we study in this article the
analogue of these equations for multiplicative free convolution.

Throughout this article, we denote by T the unit circle of C, by MT the set of
probability measures on T, and by M∗ the set of probability measures on C with
nonzero mean. We also set

M∗T = {µ ∈MT ∩M∗ : ηµ(z) 6= 0 for all z ∈ D\{0}}.

It was shown in [Belinschi and Bercovici 2005] that one can define multiplicative
free convolution power µ�t for µ ∈M∗T and t > 1.

In [Arizmendi and Hasebe 2013], a family of maps Mt , which is the analogue of
the semigroup Bt , was defined for the probability measures in M∗T. The definition
of Mt there was more general; we only need a simpler form defined as follows.
Given µ ∈M∗T having positive mean, then for t ≥ 0, the map Mt is defined by

Mt(µ)= (µ
�(t+1)) ×∪1/(t+1),

where the convolution power µ�(t+1) and the measure Mt(µ) are chosen in a way
such that they have positive means.

We then state one of our main theorems.

Theorem 1.1. Given a pair of probability measures µ ∈M∗T and ν ∈MT such that

(1-2) 6λ(ην(z))=
z

ηµ(z)
, z ∈ D,

we have

(1-3) 6λ(ην�λt (z))=
z

ηMt (µ)(z)
, z ∈ D,

where λt is the analogue of the normal distribution on T with6λt (z)=exp((t/2)(1+
z)/(1− z)) and λ= λ1.

In order to prove Theorem 1.1, we consider two semigroups ν� λt and µ�(t+1)

for all t ≥ 0. It is well-known that ην�λt and ηµ�(t+1) are subordinated to ην and
ηµ respectively. We prove that the subordination functions are η-transforms of
some �-infinitely divisible probability measures on T. It turns out that the equation
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6λ(ην(z))= z/ηµ(z) means that the subordination function of ην�λt with respect
to ην and the subordination function of ηµ�(t+1) with respect to ηµ are the same.
The proof of Theorem 1.1 will be given in Subsection 3.5.

Given µ ∈MT, we prove that if µ�t can be defined and ηµ�t is subordinated to
ηµ for all t > 1, then µ ∈M∗T; in addition, we prove that for nontrivial measures
µ ∈MT and ν ∈ ID(�,T), the density functions of the measures µ� νt and µ�t

converge to 1/2π uniformly as t→∞.
To deal with the case that ν ∈MT\M∗, we use the modified S-transform [Ariz-

mendi 2012; Rao and Speicher 2007] to study subordination functions. In this
case, the subordination function of ην�λt with respect to ην is generally not unique.
However, we can prove that there exists a unique subordination function satisfying
certain properties (see Theorem 3.11). Let ρt be the measure associated with this
subordination function of ην�λt with respect to ην , we have that6ρt (z)=6λt (ην(z)).

Similar results to Theorem 1.1 for multiplicative convolution on MR+ are also
valid. The proof for this case is much simpler because of the uniqueness of multi-
plicative convolution powers and the uniqueness of subordination functions.

Finally, we give a new proof for some results concerning the density functions of
the free multiplicative analogue of the normal distributions studied by Biane [1997c],
and we obtain some new results. For example, for λt (t > 0) the free multiplicative
analogue of the normal distributions on T, we prove that λt is unimodal.

This article is organized as follows. After this introductory section, we describe
some backgrounds in the additive case in Section 2. In Section 3, we consider mul-
tiplicative free and multiplicative Boolean convolution on MT, and prove our main
theorems. Section 4 is devoted to studying multiplicative free and multiplicative
Boolean convolution on MR+ . The regularity properties of the free multiplicative
analogue of the normal distributions are discussed in Section 5.

2. Background: additive case

Additive free convolution and additive Boolean convolution. For a measure µ ∈
MR, we define the Cauchy transform Gµ : C

+
→ C− by

Gµ(z)=
∫
+∞

−∞

1
z− t

dµ(t), z ∈ C+.

We set

Fµ(z)=
1

gµ(z)
, z ∈ C+,

so that Fµ : C+→ C+ is analytic.
The following result characterizes those functions which are reciprocal Cauchy

transforms of probability measures.
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Proposition 2.1 [Bercovici and Voiculescu 1993]. Let F :C+→C+ be an analytic
function. The following assertions are equivalent:

(1) There exists a probability measure µ on R such that F(z)= Fµ(z) in C+.

(2) There exists a ∈ R, and a finite positive measure ρ on R such that

F(z)= a+ z+
∫
+∞

−∞

1+ t z
t − z

dρ(t) for all z ∈ C+.

(3) limy→+∞ F(iy)/ iy = 1.

It was proved in [Bercovici and Voiculescu 1993] that Fµ is invertible in some
domain. More precisely, for two positive numbers M and N , we set

0M,N = {z ∈ C+ : |x |< My, y > N }.

Then for any M > 0, there exists N > 0 such that the left inverse F−1
µ of Fµ is

defined in 0M,N , and then we can define the Voiculescu transform of µ by

ϕµ(z)= F−1
µ (z)− z,

for z ∈ 0M,N . For any two measures µ, ν ∈MR, we have

(2-1) ϕµ�ν(z)= ϕµ(z)+ϕν(z)

in any truncated cone 0M,N where ϕµ, ϕν and ϕµ�ν are defined. This remarkable
result was proved in [Voiculescu 1986] for compactly supported measures and then
extended to general cases in [Bercovici and Voiculescu 1993; Maassen 1992].

Given ν ∈MR, we say that ν is �-infinitely divisible if for every positive integer
n, there exists a probability measure ν1/n ∈MR such that

ν = ν1/n � ν1/n � · · ·� ν1/n︸ ︷︷ ︸
n times

.

It is known [Bercovici and Voiculescu 1993; Maassen 1992; Voiculescu 1986] that
a probability measure ν on R is �-infinitely divisible if and only if its Voiculescu
transform ϕν has an analytic extension defined on C+ with values in C− ∪R. We
denote by ID(�,R) the set of all �-infinitely divisible probability measures on the
real line. If ν ∈ ID(�,R), then for every t > 0, there exists a probability measure
νt such that ϕνt (z)= tϕν(z) for z in the common domain of ϕν and ϕνt .

Proposition 2.2. Let ν is �-infinitely divisible, and let H(z)= z+ϕν(z). Then

(2-2) H(Fν(z))= z

for z ∈ C+. The set U := {z ∈ C+ : =H(z) > 0} is a simply connected domain with
boundary which is a simple curve and H maps C+ conformally onto U. Moreover,
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the boundary ∂U is the graph of a function and the function H is continuous up to
the real axis.

Proof. The first part of the assertion appears in [Bercovici and Voiculescu 1993;
Voiculescu 1986], and the second part of the assertion follows from the fact that H
satisfies the conditions of [Belinschi and Bercovici 2005, Proposition 4.7]. The last
part of the assertion is due to [Chistyakov and Götze 2013, Lemma 3.3; Belinschi
and Bercovici 2005, Proposition 4.7]. �

Additive Boolean convolution was introduced in [Speicher and Woroudi 1997].
For µ ∈ MR, we set Eµ(z) = z − Fµ(z). For µ, ν ∈ MR, the additive Boolean
convolution µ] ν is characterized by the identity

Eρ(z)= Eµ(z)+Eν(z) for z ∈ C+.

We can also consider the infinite divisibility with respect to additive Boolean
convolution. It turns out that every µ ∈MR is ]-infinitely divisible; see [Speicher
and Woroudi 1997]. We denote by ID(],R) the set of all ]-infinitely divisible
probability measures on the real line.

Infinite divisibility and subordination functions. Given µ, ν ∈ MR, it is known
that Fµ�ν is subordinated to Fµ and Fν , and by Proposition 2.1, we can also regard
these subordination functions as the reciprocal Cauchy transforms of probability
measures on R.

Definition 2.3. For µ, ν ∈MR, the subordination distribution [Anshelevich 2012;
Lenczewski 2007; Nica 2009] µ ν is defined to be the unique probability measure
in MR such that Fµ�ν(z)= Fν(Fµ ν(z)).

Many subordination distributions in semigroups related to free convolution are
infinitely divisible; see [Anshelevich 2012; Nica 2009].

Proposition 2.4. Let µ, ν ∈MR.

(1) ϕµ ν(z)= (ϕµ ◦Fν)(z).

(2) If µ∈ID(�,R), then µ ν ∈ID(�,R). In particular, γt ν ∈ID(�,R) and
ϕγt ν(z)= tGν(z), where γt is the semicircular distribution with variance t.

(3) If ν = µ� ν ′ for ν ′ ∈ MR, then µ ν ∈ ID(�,R). In particular, µ µ ∈

ID(�,R), and ϕµ µ(z)= z−Fµ(z).

Proof. Part (1) is Lemma 1 of [Anshelevich 2012]. Note that ϕγt (z) = t/z and
(ϕµ ◦ Fµ)(z) = z − Fµ(z); parts (2) and (3) follow from part 1 and Lemma 2 of
[Anshelevich 2012]. See also [Chistyakov and Götze 2011, Corollary 2.3]. �

The following result was inspired by a question of Michael Anshelevich [2012],
to whom I am grateful for sending me an updated version of his paper.
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Lemma 2.5. Given τ, ρ ∈MR, if τ ρ ∈ ID(�,R), then ρ� τ�t is defined for all
t ≥ 0 in the sense that ϕρ + tϕτ is the Voiculescu transform of a positive measure.
Moreover, Fρ�(τ�t ) = Fρ(F(τ ρ)�t (z)).

Proof. Let σ = τ ρ and σt = σ
�t . By Proposition 2.1, there exists a unique

probability measure µt ∈MR such that

Fµt = Fρ(Fσt (z)).

We claim that ϕµt (z)= ϕρ(z)+ tϕτ (z). Indeed, by Proposition 2.4, we have

F−1
σt
(z)− z = t ·ϕσ (z)= t ·ϕτ (Fρ(z)),

and we thus obtain

ϕµt (Fρ(z))= F−1
µt
(Fρ(z))−Fρ(z)= F−1

σt
(z)−Fρ(z)= F−1

σt
(z)− z+ z−Fρ(z)

= t ·ϕτ (Fρ(z))+F−1
ρ (Fρ(z))−Fρ(z).

By analytic continuation, we conclude that

ϕµt (z)= t ·ϕτ (z)+F−1
ρ (z)− z = ϕρ(z)+ t ·ϕτ (z),

which completes the proof. �

Remark. There are examples ρ, τ ∈MR such that τ ρ ∈ ID(�,R) but τ does
not lie in ID(�,R) and is not a summand of ρ; see [Anshelevich 2012].

Combining Proposition 2.4 and Lemma 2.5, we can reconstruct Nica–Speicher
free convolution semigroups [Belinschi and Bercovici 2004; Nica and Speicher
1996] as follows.

Theorem 2.6. Given µ∈MR, the measure µ�t
∈MR is defined by ϕµ�t (z)= tϕµ(z)

for all t > 1. Moreover, there exists an analytic map ωt : C
+
→ C+ such that for

z ∈ C+ the following conditions are satisfied:

• Fµ�t (z)= Fµ(ωt(z)).

• ωt = F(µ µ)�(t−1)(z).

• ϕ(µ µ)�(t−1) = (t − 1)(z−Fµ(z)) for all t > 1.

Let Ht(z) = z+ (t − 1)(z−Fµ(z)). By Proposition 2.2 and Theorem 2.6, we
know that Ht is the left inverse of ωt such that Ht(ωt(z))= z for z ∈C+. Therefore,
for t > 1, we can write

(2-3) ωt(z)= z+
(

1− 1
t

)
(Fµ�t (z)− z), z ∈ C+.

We deduce from (2-3) and the definition of ωt in Theorem 2.6 that, for t > 0,

z−F(µ µ)�t (z)=
(

1− 1
t+1

)
(z−Fµ�(t+1)(z)),
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which implies that

(2-4) (µ µ)�t(z)= (µ�(t+1))](t/(t+1)).

Two formulas related to free Brownian motion. Given µ ∈ MR, we construct
subordination functions ωt as in Theorem 2.6. Let σt = (µ µ)�t

∈ MR; then
ωt+1 = Fσt (z) for t > 0. Given ν ∈ MR, let ρt = γt ν and let Ft = Fρt (z) for
all t > 0. From Proposition 2.4 and Theorem 2.6, we know that ρt and σt are
�-infinitely divisible and their Voiculescu transforms are given by ϕρt (z)= tGν and
ϕσt (z)= t (z−Fµ(z)). By comparing Voiculescu transform of ρt with Voiculescu
transform of σt , we deduce that Ft = ωt+1 for some t > 0 if and only if Gν(z)=
z−Fµ(z).

For t>0, Belinschi and Nica [2008b] constructed a transformation Bt :MR→MR

such that
Bt(µ)= (µ

�(1+t))]1/(1+t) for µ ∈MR.

They also showed that Bt is a semigroup and B2 = B, where

B : ID(],R)→ ID(�,R)

is the bijective map from the ]-infinitely divisible distributions to the �-infinitely
divisible distributions, discovered in the seminal [Bercovici and Pata 1999].

Theorem 2.7 [Belinschi and Nica 2008b]. Let µ and ν be a pair of probability
measures on the real line such that

(2-5) Gν(z)= z−Fµ(z), z ∈ C+.

Then we have
Gν�γt (z)= z−FBt (µ)(z), t > 0, z ∈ C+.

Remark. Maassen [1992] has shown that, given µ, ν ∈MR satisfying (2-5), µ has
mean zero and variance one. Conversely, if µ ∈MR has mean zero and variance
one, then there exists a unique ν ∈MR satisfying (2-5).

Given τ ∈ ID(�,R) and µ, ν ∈ MR, we compare free Lévy process ν � τ�t

and free convolution semigroup µ�(t+1). If ϕτ (Fν(z))= z−Fµ(z), then τ ν =

µ µ, which implies that subordination function of Fν�(τ�t ) to Fν is the same as
the subordination function of Fµ�(t+1) to Fµ. The following theorem generalizes
Theorem 2.7. The argument is similar to the proof of Theorem 1.6 in [Belinschi
and Nica 2008b] (see also the proof of Lemma 3 in [Anshelevich 2012]); therefore
we omit the proof.

Theorem 2.8. Given τ ∈ ID(�,R), and let µ and ν be a pair of probability
measures on the real line such that

ϕτ (Fν(z))= z−Fµ(z), z ∈ C+.
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Then we have

ϕτ (Fν�(τ�t )(z))= z−FBt (µ)(z), t > 0, z ∈ C+.

Remark. Let τ = γa,b be the semicircular distribution with mean a and variance
b, and let µ, ν be a pair of probability measures on the real line such that

ϕτ (Fν(z))= z−Fµ(z).

We first compute

(2-6) Fµ(z)= z−ϕτ (Fν(z))= z−
(

a+ b
z

)
◦Fν(z)= z− a− bGν(z).

Then, by Theorem 2.8,

(2-7) FBt (µ)(z)= z−ϕτ (Fν�τ�t (z))

= z−
((

a+ b
z

)
◦Fν�γ�t

a,b

)
(z)= z− a− bGν�γ�t

a,b
(z).

By (2-7) and the definition of Boolean convolution, we obtain

(2-8) F(Bt (µ))]t (z)= z− ta− tbGν�γ�t
a,b
(z).

Equations (2-6), (2-7) and (2-8) were studied in [Anshelevich 2012]. As shown there
(Proposition 1 and Example 1), we have (Bt(µ))

]t
∈ ID(�,R), and (Bt(µ))

]t
=

(τ ν)�t
= (µ µ)�t . In fact, for all µ ∈MR, we can deduce from (2-4) and the

identity (Bt(µ))
]t
= (µ�(1+t))]t/(1+t) that (Bt(µ))

]t is the measure associated with
the subordination function of µ�(1+t) with respect to µ: (Bt(µ))

]t
= (µ µ)�t .

3. Multiplicative free convolution and
multiplicative Boolean convolution on MT

Given any two probability measures µ, ν on T, the unit circle of C, we can define
their multiplicative free convolution. We first recall the calculation of the multiplica-
tive free convolution of two measures on T with nonzero means. Given µ ∈MT,
we define

ψµ(z)=
∫

T

t z
1− t z

dµ(t)

and set ηµ(z)= ψµ(z)/(1+ψµ(z)). The following proposition characterizes the
η-transforms of probability measures on T.

Proposition 3.1 [Belinschi and Bercovici 2005]. If η :D→C is an analytic function,
the following assertions are equivalent.

(1) There exists a probability measure µ ∈MT such that η = ηµ.

(2) η(0)= 0, and |η(z)|< 1 holds for all z ∈ D.
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Ifµ∈MT∩M∗, then η′µ(0)=
∫

T t dµ(t) 6=0. Therefore, the inverse η−1
µ is defined

in a neighborhood of zero. We set 6µ(z)= η−1
µ (z)/z. Given µ, ν ∈MT∩M∗, their

multiplicative free convolution, which is denoted by µ�ν, is the unique probability
measure in MT ∩M∗ such that

(3-1) 6µ�ν(z)=6µ(z)6ν(z)

for z in a neighborhood of zero.
It is known (see [Biane 1998; Belinschi and Bercovici 2007]) that there exist

two analytic functions ω1, ω2 : D→ D such that

(1) ω1(0)= ω2(0)= 0,

(2) ηµ�ν(z)= ηµ(ω1(z))= ην(ω2(z)).

A probability measure µ ∈ MT is said to be �-infinitely divisible if for any
positive integer n, there exists µn ∈ MT such that µ = (µn)

�n
= µn � · · ·�µn .

It is shown in [Bercovici and Voiculescu 1992] that if µ ∈MT\M∗ is �-infinitely
divisible, then µ is the Haar measure on T; and µ∈MT∩M∗ is �-infinitely divisible
if and only if there exists a function

(3-2) u(z)= αi +
∫

T

1+ t z
1− t z

dσ(t),

such that 6µ(z)= exp(u(z)), where α ∈ R and σ is a finite positive measure on T.
Equation (3-2) is the analogue of the Lévy–Khintchine formula for multiplicative
free convolution on T. The analogue of the normal distribution in this context is
given by 6λt (z) = exp((t/2)(1+ z)/(1− z)). Denote by ID(�,T) the set of all
�-infinitely divisible measures on T.

Lemma 3.2. Let µ ∈MT ∩M∗ be �-infinitely divisible.

(1) The function H(z)= z6µ(z) is the left inverse of ηµ(z), that is H(ηµ(z))= z
for all z ∈ D.

(2) The function ηµ extends to be a continuous function on D, and ηµ is one-to-one
on D.

(3) The set {z ∈ D : |z6µ(z)|< 1} is a simply connected domain which coincides
with {ηµ(z) : z ∈D}, and its boundary is ηµ(T) which is a simple closed curve.

Proof. Observing that H(ηµ(z))= z is valid in a neighborhood of zero, we obtain
assertion (1) by analytic continuation.

Note that H :D→ C satisfies the conditions in [Belinschi and Bercovici 2005,
Proposition 4.5] and thus assertions (2) and (3) hold. �
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Multiplicative free Brownian motion. For µ ∈ MT and t > 0, we study the mul-
tiplicative free convolution µ� λt . We first concentrate on the case when µ has
nonzero mean. The case when µ has mean zero will be studied in Subsection 3.2.

We start with the following result which is the multiplicative version of [Biane
1997b, Lemma 1].

Lemma 3.3. Given µ, ν ∈MT ∩M∗, we have

ηµ(z)= ηµ�ν(z ·6ν(ηµ(z)))

for z in a neighborhood of zero.

Proof. From (3-1), we find that

(3-3)
η−1
µ�ν(z)

z
=
η−1
µ (z)

z
·
η−1
ν (z)

z

for z in a neighborhood of zero, which we denote by D0. We choose a subdomain
D1 ⊂ D0 such that ηµ(D1)⊂ D0. Replacing z by ηµ(z) in (3-3), we obtain

(3-4)
η−1
µ�ν(ηµ(z))

ηµ(z)
=
η−1
µ (ηµ(z))

ηµ(z)
·
η−1
ν (ηµ(z))
ηµ(z)

=
z

ηµ(z)
·
η−1
ν (ηµ(z))
ηµ(z)

for z ∈ D1. Note that η−1
ν (z)= z6ν(z) for z ∈ D0, and we then rewrite (3-4) as

(3-5) η−1
µ�ν(ηµ(z))= z6ν(ηµ(z)).

Applying ηµ�ν on both sides of (3-5) yields

ηµ(z)= ηµ�ν(z6ν(ηµ(z)))

for z in a neighborhood of zero D1. �

For any t > 0, we denote by ηt : D→ D the subordination function of µ� λt

with respect to µ. Since ηt : D→ D is analytic and ηt(0) = 0, Proposition 3.1
implies the existence of a probability measure ρt such that ηρt (z)= ηt(z).

Lemma 3.4. The measure ρt is �-infinitely divisible and its 6-transform is

6ρt (z)=6λt (ηµ(z)).

Proof. Define analytic function 8t : D→ C by 8t(z) := z6λt (ηµ(z)) for all t > 0.
By Lemma 3.3, we have

ηµ(z)= ηµ�λt (z6λt (ηµ(z)))= ηµ�λt (8t(z))

which implies that

ηµ�λt (z)= ηµ(ηt(z))= ηµ�λt (8t(ηt(z))).
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Since ηµ�λt is invertible in a neighborhood of zero, we have 8t(ηt(z)) = z in a
neighborhood of zero.

We thus obtain η−1
ρt
(z)= η−1

t (z)=8t(z) holds for z in a neighborhood of zero,
which yields that

(3-6) 6ρt (z)=
η−1
ρt
(z)

z
=6λt (ηµ(z)).

By the definition of the ψ- and η-transforms, we have

(3-7) 6λt (ηµ(z))= exp
(

t
2

∫
T

1+ ξ z
1− ξ z

dµ(ξ)
)
.

The real part of the integrand in (3-7) is positive for all z ∈ D; thus the assertion
follows from (3-6) and [Bercovici and Voiculescu 1992, Theorem 6.7]. �

By (3-6), the right hand side of (3-7) is the Lévy–Khintchine representation of
ρt . We can also write ηt in terms of λt and µ� λt . Replacing z by ηµ�λt (z) in the
equation

η−1
µ�λt

(z)

z
=
η−1
µ (z)

z
·
η−1
λt
(z)

z
,

we obtain
z

ηµ�λt (z)
=

ηt(z)
ηµ�λt (z)

·6λt (ηµ�λt (z)),

which shows that

(3-8) ηt(z)=
z

6λt (ηµ�λt (z))
.

Modified S-transform and subordination functions. Given µ ∈MT\M∗ and ν ∈
MT ∩M∗, it is known from [Biane 1998] that ηµ�ν is subordinated to ηµ and ην .
The subordination function for this case is generally not unique (see Example 3.5
below). However, we show that there is a nice subordination function, which we
call the principal subordination function, uniquely determined by certain conditions.
Using the principal subordination function, results related to subordination function
in the case µ, ν ∈ MT ∩M∗ can be extended to the case where µ ∈ MT\M∗ and
ν ∈MT ∩M∗.

Let us first give an example which illustrates the non-uniqueness of subordination
functions.

Example 3.5. For k ∈ N, and let λ(k) = 1/k
∑k−1

n=0 δzn , where zn = e2π in/k . We
have ψλ(k)(z)= zk/(1− zk) and ηλ(k)(z)= zk . Given ν ∈MT∩M∗, if ω :D→D is a
subordination function of ηλ(k)�ν with respect to ηλ(k) , then ω(n)(z) := e2π in/kω(z) is
also a subordination function of ηλ(k)�ν with respect to ηλ(k) for all integer 0< n< k.
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We now introduce the modified S-transform. Given two free random variables
x and y in a W*-probability space (A, φ), such that φ(x) = 0 and φ(y) 6= 0, we
can not directly apply Voiculescu’s S-transform (6-transform) to calculate the
distribution of xy. N. Raj Rao and R. Speicher [2007] introduce a new transform,
which we call the modified S-transform, to deal with this case. They apply the
modified S-transform to study the distribution of xy where x, y are free self-adjoint
random variables such that φ(x)= 0, φ(y) 6= 0. For nonzero self-adjoint operator
x , we have φ(x2) 6= 0. Assume that φ(x) = · · · = φ(xk−1) = 0 and φ(xk) 6= 0.
Arizmendi [2012] observe that we can calculate the distribution of xy using the
idea in [Rao and Speicher 2007]. We present the details of their work for reader’s
convenience.

We first recall some definitions. For µ ∈ MT ∩M∗, we have ψµ(0) = 0 and
ψ ′µ(0) 6= 0. It follows that there exists a function χµ(z), which is analytic in a
neighborhood of zero, such that

ψµ(χµ(z))= χµ(ψµ(z))= z

for sufficiently small z. The usual S-transform is defined by

Sµ(z)=
z+ 1

z
χµ(z).

We then have

6µ(z)= Sµ

(
z

1− z

)
, η−1

µ (z)= χ
(

z
1− z

)
.

We set

Mk
T =

{
µ ∈MT :

∫
T

tn dµ(t)= 0 for 1≤ n < k, and
∫

T
tk dµ(t) 6= 0

}
.

Then, for µ ∈Mk
T, we have

(3-9)
{
ψ ′µ(0)= · · · = ψ

(k−1)
µ (0)= 0= η′µ(0)= · · · = η

(k−1)
µ (0),

ψ
(k)
µ (0) 6= 0 and η(k)µ 6= 0.

For µ ∈ Mk
T, ν ∈ MT ∩M∗, from the definition of free independence, we deduce

that µ� ν ∈Mk
T.

We recall the following classical result in complex analysis; see, for example,
[Hille 1959].

Theorem 3.6. If f (z) is holomorphic in |z|< R, and suppose that

f (0)= f ′(0)= · · · = f (k−1)(0)= 0, f (k) 6= 0.

Then for small values of w 6= 0 the equation

f (z)= w
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has k roots z1(w), . . . , zk(w), which tend to zero when w tends to zero. Moreover,
there exists a function g(w), holomorphic for w sufficiently small with g(0)= 0 and
g′(0) 6= 0, such that for any fixed small values w 6= 0,

z j (w)= g(ω jw1/k), ω = e2π i/k, 0≤ argω1/k <
2π
k
,

if we put those roots in a certain order.

Remark. The converse of Theorem 3.6 is also true. More precisely, given a function
g(w) that is holomorphic for small enough w and satisfies g(0)= 0 and g′(0) 6= 0,
if we set

z j (w)= g(ω jw1/k), ω = e2π i/k, 0≤ argω1/k <
2π
k

for j = 1, . . . , k, then z1(w), . . . , zk(w) are the roots of the equation

Fk(z)= w,

where F is a holomorphic function defined in a neighborhood of the zero such that
F(g(w))= w.

For j = 1, . . . , k, denote D j,r = {ω
j z : 0≤ arg(z) < 2π/k, |z|< r}. We record

the following result for convenience.

Proposition 3.7. Under the assumption of Theorem 3.6, we have z j ( f (z))= z for
z ∈ g(D j,r ) for r sufficiently small.

Given µ ∈ Mk
T, and by Theorem 3.6, we know that there exist k functions

represented by the power series in z1/k such that

(3-10) ψµ(χ
( j)
µ (z))= z,

for z sufficiently small. Moreover, there exists a function gµ(w) holomorphic in a
neighborhood of the zero, such that for j = 1, . . . , k,

χ ( j)
µ (z)= gµ(ω j z1/k),

where ω = e2π i/k , 0≤ arg z1/k < 2π/k.

Definition 3.8. Given µ ∈ Mk
T. Let χ ( j)

µ be the inverse function of ψµ in (3-10),
the modified S-transform of µ is k functions S(1)µ (z), . . . ,S(k)µ (z), such that for
j = 1, . . . , k,

S( j)
µ (z)= χ

( j)
µ (z) ·

1+ z
z
.

Given µ ∈Mk
T and ν ∈MT ∩M∗, we set

S( j)(z)= S( j)
µ (z) ·Sν(z)
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and compute

(3-11) χ ( j)(z)= S( j)(z) ·
z

1+ z
= S( j)

µ (z) ·Sν(z) ·
z

1+ z
= χ ( j)

µ (z) ·Sν(z)= gµ(ω j z1/k) ·Sν(z)= g(ω j z1/k),

where g(z)= gµ(z) ·Sν(zk) is a function such that g(0)= 0, g′(0) 6= 0. From the
remark after Theorem 3.6, we deduce that for different j , there exists the same left
inverse ψ such that ψ(χ ( j)(z))= z. Therefore, we have the following proposition.

Proposition 3.9. Given µ ∈Mk
T and ν ∈MT ∩M∗, for 1≤ j ≤ k, let

S( j)(z)= S( j)
µ (z) ·Sν(z), χ ( j)(z)= S( j)(z) ·

z
1+ z

.

Then there exists a unique holomorphic function ψ defined in a neighborhood of the
zero such that

ψ((χ ( j))(z))= z.

Theorem 3.10 [Rao and Speicher 2007; Arizmendi 2012]. Given µ ∈ Mk
T and

ν ∈MT ∩M∗, we have

(3-12) S
( j)
µ�ν(z)= S( j)

µ (z) ·Sν(z), j = 1, . . . , k,

where the modified S-transforms are listed in a certain order.

Because of Proposition 3.9 and Theorem 3.10, for fixed µ∈Mk
T and ν ∈MT∩M∗,

we denote

(3-13) ψ(z)= ψµ�ν(z) and χ ( j)(z)= χ ( j)
µ�ν(z),

and we also denote g(z)= gµ(z) ·Sν(zk) as in (3-11).
Given µ ∈ Mk

T, ν ∈ MT ∩ M∗, we set ι( j)
µ (z) = χ

( j)
µ (z/(1 − z)) and ιν(z) =

χν(z/(1− z)). Theorem 3.10 implies that

(3-14) χ
( j)
µ�ν(z)= χ

( j)
µ (z) ·χν(z) ·

1+ z
z
.

We also have χ ( j)
µ (z)= gµ(ω j z1/k) and χ ( j)

µ�ν(z)= gµ(ω j z1/k) ·Sν(z)= g(ω j z1/k).
Substituting z by ψµ�ν(z) in (3-14), and applying Proposition 3.7, we find that

z = χ ( j)
µ�ν(ψµ�ν(z))= χ

( j)
µ (ψµ�ν(z)) ·χν(ψµ�ν(z)) ·

1+ψµ�ν(z)
ψµ�ν(z)

,

where z ∈ g(D j,r ) for r sufficiently small. Thus

(3-15) zηµ�ν = ι( j)
µ (ηµ�ν) · ιν(ηµ�ν)

holds in the same domain.
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We can now utilize the argument in [Belinschi and Bercovici 2007] to prove the
existence of subordination function of ηµ�ν with respect to ηµ for µ ∈ Mk

T, ν ∈

MT ∩M∗. Note that part of the following result is known in [Biane 1998].

Theorem 3.11. Given µ ∈ Mk
T, ν ∈ MT ∩M∗, there exists two unique analytic

functions ω1, ω2 : D→ D such that

(1) ω1(0)= ω2(0)= 0;

(2) ηµ�ν(z)= ηµ(ω1(z))= ην(ω2(z)),

(3) ω1(z)ω2(z)= zηµ�ν(z) for all z ∈ D.

Proof. Since ηµ(0)= 0, ην(0)= 0, we can write ηµ(z)= z f1(z), ην(z)= z f2(z) for
two analytic functions f1, f2 : D→ D. Fix 1 ≤ j ≤ k, set ω1(z) = ι

( j)
µ (ηµ�ν(z)),

ω2(z)= ιν(ηµ�ν(z)) defined in g(D j,r ) for r sufficiently small.
By (3-15), we have

zηµ�ν(z)= ω1(z)ω2(z)

for z ∈ g(D j,r ). We thus obtain

ω1(z)=
zηµ�ν
ω2(z)

=
zην(ω2(z))
ω2(z)

= z f2(ω2(z)).

Similarly, we have ω2(z) = z f1(ω1(z)) for z ∈ g(D j,r ). Regarding ω1(z), ω2(z)
as Denjoy–Wolff points, the same argument as in [Belinschi and Bercovici 2007]
implies ω1, ω2 can be extended analytically to D. By the uniqueness of Denjoy–
Wolff points, ω1, ω2 does not depend on the choice of j .

By the definitions of ι( j)
µ , ιν , we have ηµ(ω1(z)) = ην(ω2(z)) = ηµ�ν for z in

g(D j,r ). Thus (2) and (3) hold by analytic continuation. Since η′ν(0) 6= 0, ην is
locally invertible near the origin and therefore ω2 is unique. Finally (3) implies the
uniqueness of ω1. �

Since µ ∈ Mk
T and µ � ν ∈ Mk

T, we have ω′1(0) 6= 0, where ω1 is given in
Theorem 3.11.

Definition 3.12. For µ ∈ Mk
T, ν ∈ MT ∩M∗, the subordination ω1 satisfying the

relations (1), (2) and (3) in Theorem 3.11 is called the principal subordination
function of ηµ�ν with respect to ηµ. The measure ρ ∈MT ∩M∗ satisfying ηρ(z)=
ω1(z) is called the principal subordination distribution of ηµ�ν with respect to ηµ.

Note that for µ, ν ∈MT ∩M∗, the principal subordination function of ηµ�ν with
respect to ηµ is the usual subordination function.

The following result might be obtained by approximation. We provide a direct
proof.



234 PING ZHONG

Corollary 3.13. Given µ ∈Mk
T, ν ∈MT ∩M∗, let ρ be the principal subordination

distribution of ηµ�ν with respect to ηµ, we have

6ρ(z)=6ν(ηµ(z)).

In particular, if ν ∈ ID(�,T), we have ρ ∈ ID(�,T).

Proof. By choosing a sequence µn ∈MT ∩M∗ such that µn converges to µ weakly,
Lemma 3.3 implies

ηµ(z)= ηµ�ν(z6ν(ηµ(z)))

for z in a neighborhood of zero.
Set 8(z)= z6ν(ηµ(z))= z ·Sν(ψµ(z)), and we thus have

(3-16) ηµ�ν(z)= ηµ(ω1(z))= ηµ�ν(8(ω1(z)))= ηµ�ν(8(ηρ(z))).

Fix 1 ≤ j ≤ k, we claim that if z ∈ g(D j,r ), then 8(ω1(z)) = z. Indeed, for
0≤ arg(w1/k) < 2π/k and z = g(ω jw1/k)= χ ( j)(w), using the construction of ω1

in Theorem 3.11, we have

(3-17) ω1(z)= ι( j)
µ (ηµ�ν(z))= χ

( j)
µ (ψµ�ν(z)).

From (3-11) and (3-13), we have

(3-18) χ ( j)(w)= g(ω jw1/k)) and ψµ�ν(χ
( j)(w))= w.

Equations (3-17) and (3-18) imply that ω1(g(ω jw1/k)))= χ
( j)
µ (w).

Note that ψµ(ω1(g(ω jw1/k)))= ψµ�ν(g(ω jw1/k))= w. Thus we obtain

8(ω1(z))=8(ω1(g(ω jw1/k)))= χ ( j)
µ (w)Sν(w)= χ

( j)(w)= z.

The above claim, (3-16) and Proposition 3.7 imply

z =8(ω1(z))=8(ηρ(z))

for z ∈ g(D j,r ). We conclude that 6ρ(z) = 8(z)/z = 6ν(ηµ(z)) for z in a small
neighborhood of zero by applying the above argument for all 1≤ j ≤ k.

If ν ∈ ID(�,T), then by [Bercovici and Voiculescu 1993, Theorem 6.7], there
exists an analytic function u(z) defined in D such that 6ν(z) = exp(u(z)) and
<u(z) ≥ 0 for all z ∈ D. Thus 6ν(ηµ(z)) = exp(u(ηµ(z))) and <(u(ηµ(z))) ≥ 0
for all z ∈D, and then the second assertion follows from [Bercovici and Voiculescu
1993, Theorem 6.7]. �

Remark. If k = 1, noticing that Mk
T =MT ∩M∗, the modified S-transform is the

usual S-transform. We see that Corollary 3.14 holds when µ, ν ∈MT ∩M∗.

The following result is the multiplicative analogue of Lemma 2.6.
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Proposition 3.14. Given ρ, τ ∈MT∩M∗, let σ be a measure in MT∩M∗ such that
ηρ�τ (z)= ηρ(ησ (z)). If σ ∈ ID(�,T), then ρ� τ�t can be defined for all t ≥ 0 in
the sense that 6ρ�(τ�t )(z)=6ρ(z)(6τ (z))

t .

Proof. For t > 0, there exists µt ∈MT ∩M∗ such that

ηµt (z)= ηρ(ησ�t ).

Using a similar argument as in the proof of Lemma 2.6 and applying Corollary 3.13,
we can find that 6µt (z)=6ρ(z)(6τ (z))

t . �

Semigroups related to multiplicative free convolution. Recall that

M∗T = {µ ∈MT ∩M∗ : ηµ(z) 6= 0 for all z ∈ D\{0}}.

Letµ∈M∗T and t>1 be given, and let u be an analytic function such that z/(ηµ(z))=
eu(z) for z in a neighborhood of zero. Set Ht(z)= ze(t−1)u(z)

= z[z/(ηµ(z))]t−1. It
is shown in [Belinschi and Bercovici 2005] that Ht has a right inverse ωt : D→ D

such that Ht(ω(z))= z, and there exists a probability measure µ�t
∈M∗T such that

(1) ηµ�t (z)= ηµ(ωt(z)) and 6µ�t (z)= (6µ(z))t ,

(2) ωt(z) = ηµ�t (z)[z/ηµ�t (z)]1/t for z ∈ D, where the power is chosen so that
the equation holds.

Observe that for each t > 0, by Proposition 3.1, there exists a probability measure
σt ∈ MT such that ησt (z) = ωt+1(z). It turns out that σt is �-infinitely divisible
and its 6-transform is 6σt (z)= [z/ηµ(z)]

t , which can be obtained by applying the
same argument as in the proof of Lemma 3.4.

The following result is a partial converse of [Belinschi and Bercovici 2005,
Theorem 3.5].

Theorem 3.15. Given µ ∈ MT ∩M∗, assume that for any t > 1, there exists a
probability measure µt ∈MT such that

(3-19) 6µt (z)= (6µ(z))
t .

Assume in addition that µt is subordinated with respect to µ for all t > 1. Then
ηµ(z) 6= 0 for all z ∈ D\{0}, that is µ ∈M∗T.

Proof. For each t > 1, we denote by ωt the subordination function of µt to µ.
Observing that µt ∈M∗ and ω′t(0) 6= 0, for each t > 1, there exists a probability
measure σt−1 ∈MT ∩M∗ such that ησt−1(z)= ωt(z). We rewrite (3-19) as

(3-20)
η−1
µt
(z)

z
=

[
η−1
µ (z)

z

]t

for z in a neighborhood of zero.
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Note that ω−1
t (z)= η−1

µt
(ηµ(z)) for z in a neighborhood of zero. Replacing z by

ηµ(z) in (3-20), we obtain

ω−1
t (z)
ηµ(z)

=
η−1
µt
(ηµ(z))

ηµ(z)
=

[
η−1
µ (ηµ(z))

ηµ(z)

]t

=

[
z

ηµ(z)

]t

,

which implies
ω−1

t (z)
z
=

[
z

ηµ(z)

]t−1

.

Given t > 0, we thus have 6σt (z) = [z/ηµ(z)]
t for z in a neighborhood of zero.

Therefore σt is �-infinitely divisible.
By [Bercovici and Voiculescu 1992, Theorem 6.7], there exists an analytic

function u(z) in D such that <u(z)≥ 0 if z ∈ D and 6σ1(z)= exp(u(z)). We thus
obtain z/ηµ(z)= exp(u(z)), which implies that ηµ(z) 6= 0 for all z ∈ D. �

It was pointed out in [Belinschi and Bercovici 2005] that µ�t is only determined
up to a rotation by a multiple of 2π t . Note that ωt and σt are determined by the
choice of µ�t .

Multiplicative Boolean convolution and the Bercovici–Pata bijection. Multiplica-
tive Boolean convolution on T was studied by Franz [2008]. Let µ∈MT, and we set
kµ(z)= z/ηµ(z). Given two probability measures µ, ν ∈MT, their multiplicative
Boolean convolution µ×∪ν is a probability measure on T such that

kµ ×∪ν(z)= kµ(z)kν(z)

for all z ∈ D.
A probability µ ∈ MT is said to be ×∪-infinitely divisible, if for any positive

integer n, there exists µn ∈MT such that µ= (µn)
×∪n . Let P0 be the Haar measure.

It is shown in [Franz 2008] that µ ∈MT\{P0} is ×∪-infinitely divisible if and only if
η′µ(0) 6= 0 and ηµ 6= 0 for all z ∈ D\{0}, that is µ ∈M∗T, which is equivalent to

(3-21) kµ(z)= exp
(

bi +
∫

T

1+ ξ z
1− ξ z

d τµ(ξ)
)
,

where b ∈ R and τµ is a finite measure on T. Equation (3-21) is the analogue of the
Lévy–Khintchine formula in this context.

The multiplicative Bercovici–Pata bijection from ×∪ to � was studied in [Wang
2008]. Denote the set of all ×∪-infinitely divisible measures on T by ID(×∪,T),
and the multiplicative Bercovici–Pata bijection from ×∪ to � by M. Then we have
kµ(z)=6M(µ)(z).

Given µ∈ID(×∪,T)\P0=M∗T, let ω2 be the subordination function of µ�2 with
respect to µ, and let σ be the probability measure on T such that ησ (z) = ω2(z).
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Then σ is �-infinitely divisible and its 6-transform is 6σ (z)= z/ηµ(z)= kµ(z).
Therefore, σ is the same as M(µ). Since P0�P0= P0 and ηP0= z, the subordination
function of P0 � P0 with respect to P0 is the identity map z, and the measure
associated with the identity map z is P0. To summarize:

Corollary 3.16. Given µ ∈ ID(×∪,T), let ω2 be the subordination function of µ�2

with respect to µ, and let σ be the probability measure on T such that ησ (z)=ω2(z).
Then σ =M(µ), where M is the multiplicative Bercovici–Pata bijection from ×∪

to �.

Proposition 3.17. If µ ∈MT, the following are equivalent.

(1) µ ∈ ID(T,�).

(2) δβ ×∪µ ∈ ID(T,�) for any β ∈ T.

Proof. It is enough to prove that (1) implies (2) for µ ∈MT ∩M∗. Observing that
ηδβ ×∪µ(z)= β · ηµ(z), we thus have

6δβ ×∪µ(z)=
η−1
δβ ×∪µ

(z)

z
=
η−1
µ (βz)

z
= β ·6µ(βz).

The result follows from the Lévy–Khintchine formula for the multiplicative free
convolution on T. �

An analogue of equations studied by Belinschi and Nica. In this subsection, we
prove our Theorem 1.1. Recall that λt is the free multiplicative analogue of the
normal distribution on T, the unit circle of C, with6λt (z)=exp((t/2)(1+z)/(1−z))
and we set λ= λ1. For µ ∈MT, we denote m1(µ)=

∫
T ξdµ(ξ).

Proposition 3.18. Given µ ∈M∗T and a finite measure τ on T, define an analytic
map u by

(3-22) u(z)= bi +
∫

T

1+ ξ z
1− ξ z

dτ(ξ), z ∈ D,

where b ∈ [0, 2π). If kµ(z)= z/ηµ(z)= exp u(z), then b = arg 1/m1(µ) ∈ [0, 2π)
and τ(T)= ln |1/m1(µ)|. In particular, there exists a probability measure ν ∈MT

such that kµ(z)=6λ(ην(z)) if and only if m1(µ)= e−1/2.

Proof. By definition, we have

(3-23) kµ(0)= lim
z→0

z
ηµ(z)

=
1

η′µ(0)
=

1
m1(µ)

.

Since u(0)= bi + τ(T), we obtain

(3-24) b = arg
(

1
m1(µ)

)
and τ(T)= ln

∣∣∣∣ 1
m1(µ)

∣∣∣∣.
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The first assertion follows.
By (3-7), we have

6λ(ην(z))= exp
(

1
2

∫
T

1+ ξ z
1− ξ z

dν(ξ)
)
.

Noticing that kµ has the Herglotz representation as (3-21), we conclude that kµ(z)
can be written in the form of 6λ(ην(z)) for a probability measure ν on T if and
only if ln(1/m1(µ))= 1/2. This implies the second half of the assertion. �

For µ ∈ ID(×∪,T)\P0 =M∗T with m1(µ) > 0, let u(z) be the analytic function
satisfying kµ(z) = exp(u(z)) and u(0) > 0. Given t > 1, let Ht(z) = z exp((t −
1)u(z)), and denote its right inverse by ωt :D→D with ωt(0)= 0. We define (see
[Belinschi and Bercovici 2005]) µ�t by the relation

(3-25) ηµ�t (z)= ηµ(ωt(z)).

Then we see that H ′t (0) > 0, ω′t(0) > 0 and that

m1(µ
�t)= η′

µ�t (0) > 0.

For t > 0, we also define µ ×∪t by the relation

(3-26) kµ×∪ t (z)= exp(tu(z)).

For this choice of the Boolean convolution power, we have

m1(µ
×∪t) > 0.

Definition 3.19. Given µ ∈M∗T such that m1(µ) > 0, we define a family of maps
{Mt }t 6=0 by

Mt(µ)= (µ
�(t+1)) ×∪1/(t+1),

where we choose µ�(t+1) and Mt(µ) in a way such that they have positive means.

The next result is a special case of [Arizmendi and Hasebe 2013, Theorem 4.4].

Lemma 3.20. Given µ ∈M∗T with m1(µ) > 0, the following assertions are true.

(1) Mt+s(µ)=Mt(Ms(µ)) for all t, s ≥ 0.

(2) M1(µ)=M(µ).

Proof of Theorem 1.1. We set

(3-27) u(z)= 1
2

∫
T

1+ ξ z
1− ξ z

dν(ξ).

By (3-7) and the assumption (1-2), we have

(3-28)
z

ηµ(z)
=6λ(ην(z))= exp(u(z)).
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By Proposition 3.18, we see that m1(µ) > 0. We therefore can choose the multi-
plicative convolution power µ�(t+1) such that m1(µ

�(t+1)) > 0.
Let ηt be the principal subordination function of ν � λt with respect to ν and

ωt+1 be the subordination function of µ�(t+1) with respect to µ. Let ρt , σt ∈MT

such that ηρt = ηt and ησt = ωt+1.
By Corollary 3.13, (1-2) implies that 6ρt (z)=6λt (ηµ(z))= exp(tu(z)). From

the choice of µ�(t+1), the function Ht+1(z) := z exp(tu(z)) is the left inverse of
ωt+1 such that Ht+1(ωt+1(z))= z for all z ∈ D, which implies that

(3-29) 6σt (z)= exp(tu(z)).

We thus obtain that ρt = σt and ηt = ωt+1.
Replacing z by ηt in (1-2), we obtain

(3-30) 6λ(ην�λt (z))=6λ(ην((ηt(z))))=
ηt(z)

ηµ(ηt(z))

=
ωt+1(z)

ηµ(ωt+1(z))
=

ωt+1(z)
ηµ�(t+1)(z))

=

(
z

ηµ�(t+1)(z)

)1/t+1

.

On the other hand, by the definition of Mt , we have

z
ηMt (µ)(z)

=
z

η(µ�(t+1)) ×∪ (1/(t+1))(z)
=

(
z

ηµ�(t+1)(z)

)1/t+1

,

completing the proof of Theorem 1.1. �

Some examples and applications. We start with the multiplicative analogues of ex-
amples studied in [Anshelevich 2010; 2012; Arizmendi and Hasebe 2013; Belinschi
and Nica 2008b]. We define the set

(A)= {µ ∈M∗T : m1(µ)= e−1/2
}.

By (3-22), the set MT is in one-to-one correspondence with the set (A) via the
bijection ν↔ µ, such that 6λ(ην(z))= z/ηµ(z).

Definition 3.21. The bijective map 3 :MT→ (A) is defined by

6λ(ην(z))=
z

η3[ν](z)
for all ν ∈MT.

Using the 3 notation, Theorem 1.1 implies that

3[ν� λt ] =Mt [3(ν)] for all ν ∈MT.
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Example 3.22. Let δ1 be the Dirac measure at 1, and let µ = 3[δ1], we have
z/ηµ(z)=6λ(ηδ1(z))= exp(1

2(1+ z)/(1− z)). For t ≥ 0, Theorem 1.1 implies that

z
ηMt (µ)(z)

=6λ(ηδ1�λt (z))=6λ(ηλt (z)).

In particular, when t = 1,

ηM1(µ)(z)=
z

6λ(ηλ1(z))
= ηλ1(z),

where we used the equality ((z6λ) ◦ ηλ)(z)= z and λ= λ1. Therefore, M1(µ) is
the free multiplicative analogue of the normal distribution on T.

Example 3.23. More generally, we consider λb,t = δb � λt and µb,t = 3[λb,t ].
Then

6λ(ηλb,t (z))=
z

ηµb,t (z)
for t 6= 0.

On the other hand, Theorem 1.1 implies that

6λ(ηλb,t1+t2
(z))=6λ(ηλb,t1�λ2(z))=

z
ηMt2 (µb,t1 )

(z)
for t1, t2 ≥ 0,

which yields that µb,t1+t2 =Mt2(µb,t1) for t1, t2 ≥ 0.

We would like to provide another example which covers part of [Arizmendi and
Hasebe 2013, Example 4.10].

Example 3.24. Let P0 be the Haar measure on T. Then by the free independence,
P0 � λt = P0. We set µ=3[P0], and we have

6λ(ηP0�λt (z))=6λ(ηP0(z))=
z

ηµ(z)
,

which implies that Mt(µ)= µ for all t ≥ 0. To calculate the distribution of µ, we
note that ηP0 ≡ 0, which shows that ηµ = e−1z, and thus ψµ(z)= z/e− z. Using
the identity

1
π

(
ψµ(z)+

1
2

)
=

1
2π

∫ 2π

0

ei t
+ z

ei t − z
dµ(e−i t),

and Stieltjes’s inversion formula, we obtain

µ(dt)=
1

2π
1− e−2

1+ e−2− 2e−1 cos(t)
dt, 0≤ t ≤ 2π.

We then give some applications of results concerning infinity divisibility of
the measures associated with subordination functions. For µ ∈ MT, we say µ is
nontrivial if it is not a Dirac measure at a point on T.
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Lemma 3.25. Given σ ∈ID(�,T) which is non-trivial, and 0< ε < 1, there exists
a positive number n(ε) such that

ησt (D)⊂ Dε = {z = reiθ
: 0≤ r ≤ ε, 0≤ θ < 2π}

for any t > n(ε), where σt = σ
�t .

Proof. If σ = P0, the Haar measure on T, the result is trivial. If σ 6= P0 is nontrivial,
then by [Bercovici and Voiculescu 1992, Theorem 6.7], there exists a finite positive
measure ν on T with ν(T) > 0, α ∈ R, and an analytic function u defined by

u(z)= iα+
∫

T

1+ ξ z
1− ξ z

dν(ξ) for z ∈ D,

such that 6σ (z)= exp(u(z)). We choose σt ∈MT satisfying 6σt (z)= exp(tu(z)).
Noticing that other choices of the multiplicative free convolution power of σ can
be obtained from σt by a rotation of a multiple of 2π t , it is enough to prove the
assertion for σt .

We set 8σt = z6σt (z); then, by Lemma 3.2, we have

8−1
σt
(D)= ησt (D).

For z = reiθ
∈ D, we calculate

(3-31) |8σt (z)| = r exp
(

t
∫

T

1− r2

|1− ξ z|2
dν(ξ)

)
≥ r exp

(
t
∫

T

1− r2

|1+ r |2
dν(ξ)

)
= r exp

(
t · ν(T)

1− r
1+ r

)
.

Since

lim
t→∞

r exp
(

t · ν(T)
1− r
(1+ r)

)
=∞,

we deduce that for any 0< ε < 1, there exists a positive number n(ε) such that, for
all t > n(ε), we have

|8σt (z)|> 1 for |z| = ε.

By Lemma 3.2, 8σt (D) is a simply connected domain which contains zero, which
implies that

ησt (D)=8
−1
σt
(D)⊂ Dε, for t > n(ε).

The assertion follows because ησt extends to a continuous function on D. �

For µ ∈MT, we have

1
2π

(
1+ ηµ(z)
1− ηµ(z)

)
=

1
2π

∫ 2π

0

eiθ
+ z

eiθ − z
dµ(e−iθ ), z ∈ D.
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The real part of this function is the Poisson integral of the measure dµ(e−iθ ), we
can recover µ by Stieltjes’s inversion formula. The functions

(3-32)
1

2π
<

(
1+ ηµ(reiθ )

1− ηµ(reiθ )

)
=

1
2π

1− |ηµ(reiθ )|2

|1− ηµ(reiθ )|2

converge to the density of µ(e−iθ ) a.e. relative to Lebesgue measure, and they
converge to infinity a.e. relative to the singular part of this measure.

Proposition 3.26. Given µ ∈MT and σ ∈ ID(�,T) which is nontrivial, let µt be
the unique probability measure on T such that

ηµt (z)= ηµ(ησt (z)).

Then we have

lim
t→∞

sup
θ∈[0,2π ]

∣∣∣∣dµt(eiθ )

dθ
−

1
2π

∣∣∣∣= 0,

where dµt(eiθ )/dθ is the density function of µt at eiθ with respect to Lebesgue
measure.

Proof. Given 0< ε < 1, by Lemma 3.25, there exists n(ε) > 0 such that ησt (e
iθ ) < ε

for t ≥ n(ε), which yields that ηµt (z) extends continuously to D. Thus

|ηµt (e
iθ )| = |ηµ(ησt (e

iθ ))| ≤ |ησt (e
iθ )|< ε,

which implies that

(3-33)
1− ε
1+ ε

=
1− ε2

|1+ ε|2
≤

1− |ηµt (e
iθ )|2

|1− ηµt (eiθ )|2
≤

1
|1− ε|2

.

Since ε is arbitrary, combining (3-32) with (3-33), we prove our assertion. �

Corollary 3.27. Given µ∈MT and a nontrivial measure ν ∈ID(�,T), the density
functions of the measures µ� νt converge to 1/2π uniformly as t→∞; if µ ∈MT

is nontrivial, the density functions of the measures µ�t converge to 1/2π uniformly
as t→∞.

Proof. Noticing Corollary 3.13, Propositions 3.14, 3.26 and Subsection 3.3, we
only need to prove the case of µ�t for µ /∈M∗T. We point out that the measures are
nontrivial imply that the subordination distributions involved are nontrivial.

For µ ∈MT\M∗, we have µ�n
= P0, where P0 is the Haar measure on T. Thus

the assertion is true for this case. For µ ∈ MT ∩M∗, but µ /∈ M∗T, it is shown in
[Belinschi and Bercovici 2005] that µ�µ ∈M∗T; thus this case reduces to the case
when µ ∈M∗T. This finishes the proof. �
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4. Multiplicative convolution on MR+

Multiplicative free convolution on MR+ . We are interested in the probability mea-
sures on the positive real line R+, which are different from the Dirac measure at
zero, we thus set

M∗R+ =MR+\{δ0}.

Given µ ∈M∗
R+

, we define

ψµ(z)=
∫
+∞

0

t z
1− t z

dµ(t),

and ηµ(z)=ψµ(z)/(1+ψµ(z)). The transform ηµ is characterized by the following
proposition; see [Belinschi and Bercovici 2005].

Proposition 4.1. Let η : C\R+→ C be an analytic function such that η(z̄)= η(z)
for all z ∈ C\R+. Then the following two conditions are equivalent.

(1) η = ηµ for some µ ∈M∗
R+

.

(2) η(0−)= 0 and arg(η(z)) ∈ [arg z, π) for all z ∈ C+.

It can be shown that ηµ is invertible in some neighborhood of (−∞, 0), and we
set 6µ(z)= η−1

µ (z)/z where η−1
µ is defined in some neighborhood of (α, 0). Given

two measures µ, ν ∈ M∗
R+

, the multiplicative free convolution of µ and ν is the
probability measure µ� ν in M∗

R+
such that

6µ�ν(z)=6µ(z)6ν(z)

in some neighborhood of (α, 0), where these functions are defined.
It is known from [Belinschi and Bercovici 2007; Biane 1998] that there exist

two analytic functions ω1, ω2 : C\R
+
→ C\R+ such that

(1) ω j (0−)= 0 for j = 1, 2,

(2) for any λ ∈ C+, we have ω j (λ̄)= ω j (λ) for j = 1, 2,

(3) ηµ�ν(z)= ηµ(ω1(z))= ην(ω2(z)) for z ∈ C\R+.

For simplicity, we say that ω1 (resp. ω2) is the subordination function of µ�ν with
respect to µ (resp. ν), and µ� ν is subordinated to µ and ν.

The analogy of the Lévy–Khintchine in this setting was proved in [Bercovici
and Voiculescu 1992; 1993]. A measure µ ∈MR+ is �-infinitely divisible if and
only if 6µ(z)= exp(u(z)), with

u(z)= a− bz+
∫
+∞

0

1+ t z
z− t

dσ(t),

where b ∈ R and σ is a finite positive measure on R+. The analogue of the normal
distribution in this context is given by 6λt (z)= exp((t/2)(z+ 1)/(z− 1)).
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Lemma 4.2. If µ, ν ∈M∗
R+

, we have

ηµ(z)= ηµ�ν(z6ν(ηµ(z)))

in some neighborhood of interval (α, 0).

The proof of Lemma 4.2 is identical to the proof of Lemma 3.3, therefore we omit
the details.

For any t > 0, assume that ηt : D→ D is the subordination function of µ� λt

with respect to µ, by Lemma 4.2 and the characterization of η-transform, there
exists a probability measure ρt in M∗

R+
such that ηρt (z)= ηt(z). The argument in

the proof of Lemma 3.4 implies the following result.

Proposition 4.3. The measure ρt is �-infinitely divisible and its 6-transform is
6ρt (z)=6λt (ηµ(z)), and

6λt (ηµ(z))= exp
(

t
2

∫
+∞

0

1+ ξ z
ξ z− 1

dµ(ξ)
)
.

We now discuss free convolution semigroups. Given t > 1, it is proved in
[Belinschi and Bercovici 2005] that one can define µ�t

∈M∗
R+

such that 6µ�t (z)=
(6µ(z))t for z < 0 sufficiently close to zero. Similar to the case of MT, µ�t is
subordinated with respect to µ and we denote the subordination function by ωt .
By [Belinschi and Bercovici 2005, Theorem 2.6] and the characterization of η-
transform, there exists a probability σt ∈M∗

R+
such that ησt (z)= ωt+1 for all t > 0.

Moreover, σt is �-infinitely divisible and its 6-transform is 6σt (z)= [z/ηµ(z)]
t .

Multiplicative Boolean convolution on MR+ and the semigroup Mt . Bercovici
[2006] proved that the multiplicative Boolean convolution does not preserve MR+ .
But we can still define µ ×∪t for µ ∈ MR+ and 0 ≤ t ≤ 1 as follows. Let kµ(z) =
z/ηµ(z), the Boolean convolution power µ ×∪t is defined by

kµ×∪ t (z)= (kµ(z))t .

Definition 4.4 [Arizmendi and Hasebe 2013]. A family of maps from MR+ to itself
is defined by

Mt(µ)= (µ
�(t+1)) ×∪(1/(t+1)).

It is also shown in [Arizmendi and Hasebe 2013] that Mt+s =Mt ◦Ms for t, s ≥ 0.

Analogous equations. Given a pair of probability measures ν, µ ∈MR+ , we also
consider, as in the case MT, the semigroups ν� λt and µ�(t+1), the subordination
functions ηt and ωt+1, and their associated probability measures ρt , σt for all t > 0.
Since 6ρt (z) = 6λt (ην(z)) and 6σt (z) = [z/ηµ(z)]

t , we deduce that ηt = ωt+1 if
and only if

6λ(ην(z))=
z

ηµ(z)
.
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Applying the same argument as in the proof of the Theorem 1.1, we obtain the
following result.

Theorem 4.5. Given a pair of probability measures µ, ν ∈MR+ such that

(4-1) 6λ(ην(z))=
z

ηµ(z)
, z ∈ C+,

we have 6λ(ην�λt (z))=
z

ηMt (µ)(z)
, z ∈ C+.

5. A description of the analogue of the normal distribution

Biane [1997a; 1997c] studied free Brownian motion and proved many important
results. In this section, we give a new proof for the density functions of the free
multiplicative analogue of the normal distributions, which was first obtained in
[Biane 1997c] (See also [Demni and Hmidi 2012] for a different approach). Some
results are new. For example, we show that λt is unimodal for the circle case; and
we show that 8−1

λ (C
+) contains infinitely many connected components where λ is

the free multiplicative analogue of the normal distribution on the positive half line
with 6λ(z)= exp((z+ 1)/(z− 1)). We also give a description of the boundaries
�t , � (defined below), we observe that ∂�t can be parametrized by θ and ∂� can
be parametrized by r .

The circle case. Let λt ∈MT be the analogue of the normal distribution such that
6λt (z)= exp((t/2)(1+ z)/(1− z)). We set 8t(z)= z6λt (z), and let �t = {z ∈D :

|8t(z)|< 1}. By Lemma 3.2, ηλt extends continuously to the unit circle T, �t is
simply connected and bounded by a simple closed curve, and we have ∂�t = ηλt (T).

Observe that for t 6= 4, 8t has zeros of order one at z1(t)= (2− t+
√

t2− 4t)/2
and z2(t)= (2− t−

√
t2− 4t)/2. 84 has a zero of order two at−1; and for all t , 8t

has an essential singularity at 1, and no other zeros and singularities. For 0< t < 4,
z1(t), z2(t) ∈ T and z2(t) = z1(t), we let θ1(t) ∈ (0, π) and θ2(t) ∈ (π, 2π) such
that z1(t)= eiθ1(t) and z2(t)= eiθ2(t). We have z1(4)= z2(4)=−1 and for t > 4,
z1(t) ∈ (−1, 0) and z2(t) ∈ (−∞,−1).

We define

gt(r, θ)= r exp
(

t
2

1− r2

1− 2r cos θ + r2

)
= |8t(z)|

for z = reiθ . The unit circle is parametrized by T= {eiθ
: 0≤ θ < 2π}.

Lemma 5.1. For 0< t < 4, ∂�t = {z = eiθ
: θ1(t)≤ θ ≤ θ2(t)}∪L1,t ∪L2,t , where

L1,t is an analytic curve, and L1,t is in D∩C+ except one of its endpoints, and L2,t

is the reflection of L1,t about x-axis. L1,t can be parametrized by γt(u) (0≤ u ≤ 1)
such that γt(0) ∈ R, γt(1) = z1(t) and γt(u) ⊂ D∩C+ for 0 < u < 1. Moreover,
|γt(u)| is an increasing function of u on the interval [0, 1].
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Proof. Observing that 8t(z̄)=8t(z), we see that ∂�t is symmetric with respect
to x-axis. Since �t is simply connected and ∂�t is a simple closed curve, ∂�t

intersects x-axis at two points.
Restricting 8t to real numbers, we find that 8t(R) ⊂ R, and that 8t is an

increasing function on (−1, 1) since 8′t(z) is positive for z ∈ (−1, 1). From
8t(−1)=−1 and limz→1− 8t(z)=+∞, we deduce that

(5-1) 8−1
t ((−1, 1))= (−1, x(t)),

where x(t) is the unique solution of the equation 8t(z)= 1 for z ∈ (−1, 1). The
fact that 8′t(z) 6= 0 for z 6= zt(t), z2(t) implies that 8t is locally invertible for
z 6= z1(t), z2(t). Combining the fact that 8t(T\{1})⊂ T, we obtain that

{eiθ
: θ1(t)≤ θ ≤ θ2(t)} ⊂ ∂�t

and ∂�t has corners of opening π/2 at z1(t) and z2(t).
Since 8t is a conformal mapping from �t to D, by the symmetry 8t(z̄)=8t(z)

and (5-1), noticing that 8′t(0) = 1, we thus deduce that 8t(�t ∩C+) ⊂ D∩C+.
Since ∂�t is a simple closed curve, z1(t) and x(t) are connected by ∂�t . It is clear
that ∂�t\{eiθ

: θ1(t) ≤ θ ≤ θ2(t)} does not intersect with T, we thus assume the
curve γt = {γt(u) : 0≤ u ≤ 1} is the part of �t which connects z1(t) and x(t) such
that γt(0)= x(t), γt(1)= z1(t) and γt(u) ∈ D for 0< u < 1.

We claim that |γt(u)| is an increasing function of u on the interval [0, 1]. For
given 0< r < 1, we define the function of θ by

gt,r (θ)= gt(r, θ)= |8t(reiθ )|.

Then gt,r is a strictly decreasing function of θ on the interval [0, π]. From the fact
that �t is simply connected, we deduce that, for z0 ∈�t ∩D∩C+, the arc

(5-2) {reiθ
: |r | = |z0|, arg z0 < θ ≤ π} ⊂�t .

Given 0< u1 < u2 < 1, we need to prove that |γt(u1)|< |γt(u2)|. Since [0, x(t)] ⊂
�t , we obtain from (5-2) that

(5-3) {reiθ
: 0≤ r ≤ x(t), 0< θ ≤ π} ⊂�t ,

which shows that |γt(u1)| > x(t). Suppose that |γt(u1)| ≥ |γt(u2)|. There exists
0 < u′1 ≤ u1 such that |γt(u′1)| = |γt(u2)|. If arg(γt(u′1)) > arg(γt(u2)), then
by (5-2), γt(u2) ∈ �t and thus γt(u2) /∈ ∂�t ; if arg(γt(u′1)) < arg(γt(u2)), then
γt(u′1) ∈�t and thus γt(u′1) /∈ ∂�t . For both cases, we obtain a contradiction. Thus
|γt(u1)|< |γt(u2)| and our claim is proved. �
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For t > 0, we let x1(t) ∈ (0, 1) be the unique solution of the equation 8t(z)= 1
for z ∈ (0, 1). For 0< t ≤ 4 we let x2(t)=−1; for t > 4, we let x2(t) ∈ (−1, 0) be
the unique solution of the equation 8t(z)=−1 for z ∈ (−1, 0).

Lemma 5.2. For t ≥ 4, ∂�t =L1,t ∪L2,t , where L1,t is an analytic curve, and L1,t

is in D∩C+ except its endpoints, and L2,t is the reflection of L1,t about x-axis. L1,t

can be parametrized by γt(u) (0 ≤ u ≤ 1) such that γt(0) = x1(t), γt(1) = x2(t)
and γt(u)⊂D∩C+ for 0< u < 1. Moreover, |γt(u)| is an increasing function of u
on the interval [0, 1].

Proof. Recall that 84 has a zero of order two at −1. For all t > 4, z2(t) < −1
and z1 ∈ (−1, 0). The assertion follows from the similar arguments in the proof
Lemma 5.1. �

From the proof of Lemmas 5.1 and 5.2, for t > 0, we have 8−1
t ((−1, 1)) =

(x2(t), x1(t)). Moreover, x1(t)=min{|z| : z∈ ∂�t } and−x2(t)=max{|z| : z∈ ∂�t }.

Remark. In fact, for any t > 0, from the equation

gt(r, θ)= 0, 0< r < 1, 0≤ θ ≤ π,

we can prove that dr/dθ > 0 for 0<θ <π , which implies that if z ∈ ∂�t , the entire
radius {r z : 0≤ r < 1} is contained in �t . Therefore, ∂�t can be parametrized by θ .

Lemma 5.3. Using the same notations in Lemmas 5.1 and 5.2, for t > 0, the
function |1− γt(u)| is an increasing function of u on [0, 1].

Proof. We only prove the case when 0< t < 4, the proof for other cases are similar.
Noticing that |1− reiθ

|
2
= 1− 2 cos θ + r2, since |γt(u)| is an increasing function

of u, to prove the assertion, we only need to prove that for the implicit function
r exp((t/2)(1− r2)/h)= 1 of r and h, the value of h increases when r increases
on (0, 1). From this equation, we have h = h(r)=−(t/2)(1− r2)/(ln r). One can
check that h′(r) > 0 for 0< r < 1, therefore h is an increasing function of r . �

Theorem 5.4. Denote by At the support of λt .

(1) For t > 0, the measure λt has no singular part, and its density function is an
analytic function. At1 ⊂ At2 if t1 < t2 < 4. At ( T for 0 < t < 4 and At = T
for t ≥ 4.

(2) The measure λt is unimodal for all t > 0 and its density is maximal at z = 1
and is minimal at z =−1.

(3) The density fucntion dλt/dθ converges uniformly to 1/(2π) as t→∞.

Proof. Since z = 1 is not in the closure of �t = ηλt (D), the singular part of
λt vanishes. From the analyticity of 8t or a general theorem in [Belinschi and
Bercovici 2005], the density function is analytic.
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For 0< t < 4, set a1(t)=8t(z1(t)), a2(t)=8t(z2(t)). Note that ηλt (8t(z))= z
for z ∈ �t . From (3-32) we see that At is the closed arc on T with endpoints
a1(t), a2(t) which contains 1. Thus, to prove that At1 ⊂ At2 , it is enough to prove
that arg(a1(t)) is an increasing function of t . A direct computation shows that
|z1(t)− 1|2 = t and arg(6λt (z1(t)))= =z1(t)=

√
t (4− t)/2. We thus have

arg(a1(t))= =z1(t)+ arg(z1(t))= sin(θ1(t))+ θ1(t).

From z1(t)= (2− t +
√

t2− 4t)/2 we see that θ1(t) is an increasing function of t .
The function θ→ sin(θ)+ θ is an increasing function on (0, π). Thus arg(a1(t))
is an increasing function of t and (1) is proved.

To prove (2), recall that a probability measure is unimodal if its density with
respect to Lebesgue measure has a unique local maximum. ηλt extends continuously
to T, we thus have

(5-4)
dλt(e−iθ )

dθ
=

1
2π

1− |ηλt (e
iθ )|2

|1− ηλt (eiθ )|2
.

We first prove the case when 0 < t < 4. From ηλt (8t(z)) = z for z ∈ �t and
ηλt (1) = x(t), to prove λt is unimodal, by the boundary correspondence, it is
enough to show that the function ft of u defined by

ft(u) :=
1− |γt(u)|2

|1− γt(u)|2
,

is a decreasing function on [0, 1] and is maximal at 0. Since γt(u) ∈ ∂�t , we have
|8t(γt(u))| = 1. In other words, we have

(5-5) |γt(u)| exp
(

t
2

ft(u)
)
= |γt(u)| exp

(
t
2

1− |γt(u)|2

|1− γt(u)|2

)
= 1.

As we shown in Lemma 5.1 that the function |γt(u)| is an increasing function of u,
from (5-5), we deduce that ft is a decreasing function of u and max{ ft } = ft(0).
By the symmetric property of the function 8t in Lemma 5.1, the density function
is symmetric with respect to x-axis as well. Thus the density of λt has only one
local maximum at 8t(γt(0))=8t(x1(t))= 1.

The proof for the case t ≥ 4 is similar. In this case At = T and max{ ft } = ft(0)
and min{ ft } = ft(1). Part (3) is a consequence of Corollary 3.27. �

Remark. From the proof of Theorem 5.4, we see that, for t < 4,

arg(a1(t))= θ1(t)+ sin(θ1(t))= 1
2

√
t (4− t)+ arccos

(
1− t

2

)
,

which implies a known result in [Biane 1997c], namely

At =

{
eiθ
: −

1
2

√
t (4− t)− arccos

(
1− t

2

)
≤ θ ≤ 1

2

√
t (4− t)+ arccos

(
1− t

2

)}
.
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The positive half line case. Let λ∈MR+ be the analogue of the normal distribution
such that 6λ(z)= exp((z+ 1)/(z− 1)).

We restate [Bercovici and Voiculescu 1993, Proposition 6.14] in terms of η and
6 transforms as follows.

Lemma 5.5. Let µ be a �-infinitely divisible measure on R+, and set 8µ(z) :=
z6µ(z).

(1) We have 8µ
(
ηµ(z)

)
= z for every z ∈ C+.

(2) The set {ηµ(z) : z ∈ C+} =�, where � is the component of the set {z ∈ C+ :

=(8µ(z)) > 0} whose boundary contains the left half line (−∞, 0). Moreover,
ηµ(8µ(z))= z for z ∈�.

We set 8λ(z)= z exp((z+ 1)/(z− 1)). The following lemma is elementary.

Lemma 5.6. 8λ has zero of order one at 2−
√

3 and 2+
√

3, and 8λ has an
essential singularity at 1. These are the only zeros and singularities of 8λ.

Theorem 5.7. The measure λ has no singular part. The support of this measure is
the closure of its interior, and this interior has only one connected component.

Proof. By [Bercovici and Voiculescu 1992, Theorem 7.5], the measure λ has
compact support on R+.

Let � be the component of {z ∈ C+ : =(8λ(z)) > 0} whose boundary contains
(−∞, 0). By Lemma 5.5, ηλ : C+→� is a conformal map and 8λ is its inverse
map; thus � is simply connected. By Lemma 5.6, ∂� is locally analytic. A general
theorem in complex analysis tells us that ηλ extends continuously to C+ ∪R and it
establishes a homeomorphism between the real axis and ∂�. We continue to denote
by ηλ and 8λ their extensions.

We claim that

∂�=
(
−∞, 2−

√
3
]
∪
[
2+
√

3,+∞
)
∪L,

where L is an analytic and open curve in C+ with endpoints 2−
√

3 and 2+
√

3.
We denote γ (t)= ηλ(t), t ∈R be a parametrization of ∂�. Set t1=8λ(2−

√
3)> 0

and t2 = 8λ(2 +
√

3) > 0. Then ηλ(t1) = 2 −
√

3 and ηλ(t2) = 2 +
√

3, and
L= {γ (t)}t1<t<t2 . Note that

(1) (−∞, 0)⊂ ∂�,

(2) 8′λ(x) > 0 for all x ∈ (−∞, 2−
√

3).

From this we deduce that (−∞, 2−
√

3)⊂ ∂�. Lemma 5.6 tells us 8λ has a zero
of order one at 2−

√
3, therefore ∂� has a corner of opening π/2 at 2−

√
3. Note

that 8′λ(x) > 0 for all x ∈ (2+
√

3,+∞), thus (2+
√

3,+∞)⊂ ∂�, and ∂� has
a corner of opening π/2 at 2+

√
3.



250 PING ZHONG

It remains to prove that L∩R = ∅. First we show 1 /∈ L. Suppose that is the
case, and suppose γ (t0)= 1 where t1 < t0 < t2, by continuity, we have

γ (t) exp
(
γ (t)+ 1
γ (t)− 1

)
=8λ(γ (t))=8λ(ηλ(t))= t

for all t ∈ R. Therefore in a small neighborhood of t0, we have

γ (t)+ 1
γ (t)− 1

= ln
t

γ (t)
.

The left side of the above equation blows up, while the right hand side is bounded.
This contradiction tells us that 1 /∈ L. Now suppose L touches the real axis at
x0 ∈ (2−

√
3, 1)∪ (1, 2+

√
3). Since � is connected, it is not hard to see that x0

must be a critical point of 8λ. This is not possible by Lemma 5.6. We therefore
proved that L⊂ C+ and the claim.

From the definitions of the Cauchy transform and η-transform, one can easily
check that

Gλ

(
1
z

)
=

z
1− ηλ(z)

.

From the above equation we know that Gλ extends to be a continuous function on
C∪R, and {x ∈ R : =(Gµ(x)) > 0} = (1/t2, 1/t1). By the Stieltjes inverse formula,
we deduce that the support of λ is (1/t2, 1/t1). From the analyticity of the curve
L⊂ C+, we conclude that λ has positive and analytic density in the interior of its
support. �

We are interested in the level curves of the function

(5-6) f (r, θ)= θ −
2r sin θ

1− 2r cos θ + r2 = arg(8λ(z)),

where z = r iθ
∈ C+. For t ≤ 0, set γt = {z = reiθ

∈ C+ : f (r, θ)= t}.

Proposition 5.8. (A) γ0 is a simple open curve with endpoints 2−
√

3, 2+
√

3
and γ0 = L.

(B) γt is a simple open curve which starts at z = 1 and ends at z = 1 as well for all
t < 0.

Denote by �0 the open domain bounded γ0 ∪ [2−
√

3, 2+
√

3]. For all t < 0,
denote by �t the open domain bounded γt ∪ {1}.

(C) For t1 < t2 ≤ 0, we have �t1 ⊂�t2 ; and for all t0 ≤ 0, �t0 = ∪t<t0�t .

Proof. Given θ ∈ (0, π), we define a function of r by fθ (r)= f (r, θ) for r ∈ (0,+∞).
We first note that f (r, θ) < θ < π and observe that

lim
r→+∞

fθ (r)= θ.
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Thus {z = reiθ
: f (r, θ) > 0, 0< θ < π} ⊂8−1(C+).

Given θ ∈ (0, π) and t ≤ 0, the equation f (r, θ)= t is equivalent to the quadratic
equation

(5-7) hθ (r) := (θ − t)r2
− (2(θ − t) cos θ + 2 sin θ)r + θ − t = 0

with discriminant d(θ, t)= [2(θ − t) cos θ + 2 sin θ ]2− 4(θ − t)2. We then rewrite
d(θ, t) as follows.

(5-8) d(θ, t)= 4(1− cos2(θ))

[
sin θ

1+ cos θ
+ θ − t

]
.

[
sin θ

1− cos θ
− θ + t

]
,

The first two factors in (5-8) are never zero for θ ∈ (0, π); thus only the last factor
in (5-8) matters to determine the sign of d(θ, t). We consider the function k by
k(θ)= sin θ/(1− cos θ)− θ for θ ∈ (0, π), and calculate

(5-9) k ′(θ)=
1

cos θ − 1
− 1< 0,

which implies that k is a decreasing function of θ . For t ≤ 0, we now set dt(θ) :=

d(θ, t). We then deduce that dt(θ)= 0 has exactly one solution, which we denote by
θt , and dt(θ) > 0 if and only if 0< θ < θt . Therefore, the half line r = θ intersects
with γt at two points if and only if 0< θ < θt and the half line r = θt is tangent to
γt . Moreover, θt1 < θt2 if t1 < t2 ≤ 0.

For the solutions of the equation f (r, θ)= 0, one can check as θ→ 0, r satisfying
the equation r2

− 4r + 1. Given t < 0, for the solutions of the equation f (r, θ)= t ,
we can easily see that r tend to 1 as θ → 0. Now (A) and (B) follow from this
observation.

Given θ ∈ (0, π), from (5-6), we see that the function fθ (r) defined by fθ (r)=
f (r, θ) has exactly one local minimum at r = 1. fθ (r) is a decreasing function of
r on (0, 1) and an increasing function of r on (1,∞). Therefore, if the half line
r = θ intersects γt at two points, one of them is inside the unit circle of C and the
other one is outside the unit circle. We conclude that (C) is valid. �

It is interesting to compare the next result with Proposition 2.2 and Lemma 3.2.

Corollary 5.9. We have 8−1
λ (C

+) = � ∪∞k=1 (�(2k−1)π\�(2k−2)π ). Moreover, �
and �(2k−1)π\�(2k−2)π (k = 1, 2, . . .) are all connected components of 8λ. In
particular, 8−1

λ (C
+) has infinitely many connected components.

We would like to point out that for z = reiθ
∈ L = γ0, the curve L can be

parametrized by r . Noticing (5-7) and (5-8), we first observe the following equiva-
lences:

(5-10) d(θ, 0)= 0 ⇐⇒ θ cos θ + sin θ = θ ⇐⇒ r = 1.



252 PING ZHONG

By (5-9), we see that (5-10) has exactly one solution θ0 for θ ∈ (0, π). By differen-
tiating the equation f (r, θ)= 0, we obtain

(5-11)
dθ
dr
=

2θ cos θ + 2 sin θ − 2θr
r2+ 2θ sin θ − 4 cos θ + 1

.

Thus, dθ/dr = 0 if and only if r = (θ cos θ+sin θ)/θ . Fix θ , the equation fθ (r)= 0
is equivalent to the quadratic equation θr2

− (2θ cos θ + 2 sin θ)r + θ = 0, from
which we deduce that r = (θ cos θ + sin θ)/θ if and only if d(r, 0) = 0. From
(5-11) and continuity of dθ/dr , we see that dθ/dr > 0 for 0< θ < θ0, r < 1 and
dθ/dr < 0 for 0 < θ < θ0, r > 1. Therefore, for the solutions of the equation
f (r, θ)= 0, θ is a function of r and the curve L can be parametrized by r .

Denote by g the density function of λ. From the equation Gλ(1/x)= x/(1−ηλ(x)),
we obtain the following formula for the density function of λ.

Proposition 5.10. Given z = reiθ
∈ γ0 = L, we have

g(1/x)= θ8λ(z)= rθ exp
(

r2
− 1

1− 2r cos θ + r2

)
,

where x =8λ(z).
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Figure 1. Level curves of g2(r, θ)= |82(reiθ )|. The vertical axis
indicates θ , and the horizontal axis indicates r .
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Figure 2. Level curves of g5(r, θ)= |85(reiθ )|. The vertical axis
indicates θ , and the horizontal axis indicates r .
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