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THE ASYMPTOTIC BEHAVIOR OF PALAIS–SMALE
SEQUENCES ON MANIFOLDS WITH BOUNDARY

SÉRGIO ALMARAZ

We describe the asymptotic behavior of Palais–Smale sequences associated
to certain Yamabe-type equations on manifolds with boundary. We prove
that each of those sequences converges to a solution of the limit equation
plus a finite number of “bubbles” which are obtained by rescaling funda-
mental solutions of the corresponding Euclidean equations.

1. Introduction

Let .M n; g/ be a compact Riemannian manifold with boundary @M and dimension
n� 3. For u 2H 1.M/, we consider the following family of equations, indexed by
� 2 N:

(1-1)

8<:
�guD 0 in M;
@

@�g
u� h�uCu

n
n�2 D 0 on @M;

and their associated functionals

(1-2) I �g .u/D
1

2

Z
M

jduj2g dvgC
1

2

Z
@M

h�u
2 d�g�

n� 2

2.n� 1/

Z
@M

juj
2.n�1/
n�2 d�g :

Here, fh�g�2N is a sequence of functions in C1.@M/, �g is the Laplace–Beltrami
operator, and �g is the inward unit normal vector to @M . Moreover, dvg and d�g
are the volume forms of M and @M respectively and H 1.M/ is the Sobolev space
H 1.M/D fu 2 L2.M/ W du 2 L2.M/g.

Definition 1.1. We say that fu�g�2N � H
1.M/ is a Palais–Smale sequence for

fI �g g if

(i) fI �g .u�/g�2N is bounded, and

(ii) dI �g .u�/! 0 strongly in H 1.M/0 as �!1.

Supported by CAPES and FAPERJ (Brazil).
MSC2010: primary 35J65; secondary 53C21.
Keywords: Riemannian manifold, Palais–Smale sequence, manifold with boundary, blow-up.
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In this paper we establish a result describing the asymptotic behavior of those
Palais–Smale sequences. This work is inspired by Struwe’s theorem [1984] for
equations �uC�uCjuj4=.n�2/uD 0 on Euclidean domains. We refer the reader
to [Druet et al. 2004, Chapter 3] for a version of Struwe’s theorem on closed
Riemannian manifolds, and to [Cao et al. 2001; Chabrowski and Girão 2002;
Pierotti and Terracini 1995] for similar equations with boundary conditions.

Roughly speaking, as �!1 and h�! h1, we prove that each Palais–Smale
sequence fu� � 0g�2N is H 1.M/-asymptotic to a nonnegative solution of the limit
equations

(1-3)

8<:
�guD 0 in M;
@

@�g
u� h1uCu

n
n�2 D 0 on @M;

plus a finite number of “bubbles” obtained by rescaling fundamental positive
solutions of the Euclidean equations

(1-4)

8<:�uD 0 in Rn
C
;

@

@yn
uCu

n
n�2 D 0 on @Rn

C
;

where Rn
C
D f.y1; : : : ; yn/ 2 Rn W yn � 0g.

Palais–Smale sequences frequently appear in the blow-up analysis of geometric
problems. In the particular case when h1 is .n� 2/=2 times the boundary mean
curvature, the equations (1-3) are satisfied by a positive smooth function u repre-
senting a conformal scalar-flat Riemannian metric u4=.n�2/g with positive constant
boundary mean curvature. The existence of those metrics is the Yamabe-type
problem for manifolds with boundary introduced in [Escobar 1992].

An application of our result is the blow-up analysis performed in [Almaraz
2012] for the proof of a convergence theorem for a Yamabe-type flow introduced
in [Brendle 2002].

We now begin to state our theorem more precisely.

Convention. We assume that there is some h1 2 C1.@M/ and C > 0 such that
h� ! h1 in L2.@M/ as � !1 and jh�.x/j � C for all x 2 @M , � 2 N. This
obviously implies that h�! h1 in Lp.@M/ as �!1, for any p � 1.

Notation. If .M; g/ is a Riemannian manifold with boundary @M , we will denote
by Dr.x/ the metric ball in @M with center at x 2 @M and radius r .

If z0 2 Rn
C

, we set BCr .z0/D fz 2 Rn
C
W jz� z0j< rg. We define

@CBCr .z0/D @B
C
r .z0/\RnC; and @0BCr .z0/D B

C
r .z0/\ @RnC:

Thus, @0BCr .z0/D∅ if z0 D .z10 ; : : : ; z
n
0 / satisfies zn0 > r .
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We define the Sobolev spaceD1.Rn
C
/ as the completion ofC10 .R

n
C
/with respect

to the norm

kukD1.Rn
C
/ D

sZ
Rn
C

jdu.y/j2 dy:

It follows from a Liouville-type theorem established in [Li and Zhu 1995] (see
also [Escobar 1990] and [Chipot et al. 1996]) that any nonnegative solution in
D1.Rn

C
/ to the equations (1-4) is of the form

(1-5) U�;a.y/D

�
�

.ynC �=.n� 2//2Cj Ny � aj2

�n�2
2

; a 2 Rn�1; � > 0;

or is identically zero; see Remark 2.5. By [Escobar 1988] or [Beckner 1993] we
have the sharp Euclidean Sobolev inequality

(1-6)
�Z

@Rn
C

ju.y/j
2.n�1/
n�2 dy

�n�2
n�1

�K2n

Z
Rn
C

jdu.y/j2 dy;

for u 2 D1.Rn
C
/, which has the family of functions (1-5) as extremal functions.

Here,

Kn D
�
n�2

2

��1=2
�
� 1
2.n�1/

n�1 ;

where �n�1 is the area of the unit .n� 1/-sphere in Rn. Up to a multiplicative
constant, the functions defined by (1-5) are the only nontrivial extremal ones for
the inequality (1-6).

Definition 1.2. Fix x0 2 @M and geodesic normal coordinates for @M centered at
x0. Let .x1; : : : ; xn�1/ be the coordinates of x 2 @M and �g.x/ be the inward unit
vector normal to @M at x. For small xn � 0, the point expx.xn�g.x// 2M is said
to have Fermi coordinates .x1; : : : ; xn/ (centered at x0).

For small � > 0 the Fermi coordinates centered at x0 2 @M define a smooth map
 x0 W B

C
� .0/� Rn

C
!M .

We define the functional I1g by the same expression as I �g , with h� D h1 for
all �, and state our main theorem as follows:

Theorem 1.3. Let .M n; g/ be a compact Riemannian manifold with boundary @M
and dimension n� 3. Suppose fu� � 0g�2N is a Palais–Smale sequence for fI �g g.
Then there exist m 2 f0; 1; 2; : : : g, a nonnegative solution u0 2 H 1.M/ of (1-3),
andm nontrivial nonnegative solutions Uj DU�j ;aj 2D

1.Rn
C
/ of (1-4), sequences

fR
j
� > 0g�2N, and sequences fxj� g�2N � @M , 1� j �m, the whole satisfying the

following conditions for 1� j �m, possibly after taking subsequences:

(i) Rj� !1 as �!1.

(ii) xj� converges as �!1.
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(iii)
u� �u0� mP

jD1

�
j
�u
j
�


H1.M/

! 0 as �!1, where

uj� .x/D .R
j
� /
.n�2/=2Uj .Rj� 

�1

x
j
�

.x// for x 2  
x
j
�
.BC2r0.0//:

Here, r0 > 0 is small, the

 
x
j
�
W BC2r0.0/� RnC!M

are Fermi coordinates centered at xj� 2 @M , and the �j� are smooth cutoff functions
such that �j� � 1 in  

x
j
�
.BCr0.0// and �j� � 0 in Mn 

x
j
�
.BC2r0.0//.

Moreover,

I �g .u�/� I
1
g .u

0/�
m

2.n� 1/
K�2.n�1/n ! 0 as �!1;

and we can assume that for all i ¤ j

(1-7)
Ri�

R
j
�

C
R
j
�

R
i
�

CRi�R
j
�dg.x

i
� ; x

j
� /
2
!1 as �!1:

Remark 1.4. Relations of the type (1-7) were previously obtained in [Bahri and
Coron 1988; Brezis and Coron 1985].

2. Proof of the main theorem

The rest of this paper is devoted to the proof of Theorem 1.3, which will be carried
out in several lemmas. Our presentation will follow the same steps as Chapter 3 of
[Druet et al. 2004], with the necessary modifications.

Lemma 2.1. Let fu�g be a Palais–Smale sequence for fI �g g. Then there exists
C > 0 such that ku�kH1.M/ � C for all �.

Proof. It suffices to prove that kdu�kL2.M/ and ku�kL2.@M/ are uniformly bounded.
The proof follows the same arguments as [Druet et al. 2004, p. 27]. �

Define Ig as the functional in (1-2) when h� � 0 for all �.

Lemma 2.2. Let fu� � 0g be a Palais–Smale sequence for fI �g g such that u� *
u0 � 0 in H 1.M/, and set Ou� D u� �u0. Then f Ou�g is a Palais–Smale sequence
for fIgg and satisfies

(2-1) Ig. Ou�/� I
�
g .u�/C I

1
g .u

0/! 0 as �!1:

Moreover, u0 is a (weak) solution of (1-3).

Proof. First, observe that u�*u0 in H 1.M/ implies that u�! u0 in L
n
n�2 .@M/

and a.e. in @M . Using the facts that dI �g .u�/� ! 0 for any � 2 C1.M/ and
h�! h1 in Lp.@M/ for any p � 1, it is not difficult to see that the last assertion
of Lemma 2.2 follows.
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In order to prove (2-1), we first observe that

I �g .u�/D Ig. Ou�/C I
1
g .u

0/�
.n� 2/

2.n� 1/

Z
@M

ˆ� d�g C o.1/;

where ˆ� D j Ou� C u0j
2.n�1/
n�2 � j Ou� j

2.n�1/
n�2 � ju0j

2.n�1/
n�2 and o.1/! 0 as � !1.

Then (2-1) follows from the fact that there exists C > 0 such thatZ
@M

ˆ� d�g � C

Z
@M

j Ou� j
n
n�2 ju0j d�g CC

Z
@M

ju0j
n
n�2 j Ou� j d�g for all �;

and, by basic integration theory, the right side of this last inequality goes to 0 as
�!1.

Now we prove that f Ou�g is a Palais–Smale sequence for Ig . Let � 2 C1.M/.
Observe thatˇ̌̌̌ Z
@M

h�u�� d�g �

Z
@M

h1u�� d�g

ˇ̌̌̌
� ku�kL2.@M/kh� � h1kL2.n�1/.@M/k�k

L
2.n�1/
n�2 .@M/

by Hölder’s inequality. Then, by the Sobolev embedding theorem,Z
@M

h�u�� d�g D

Z
@M

h1u
0� d�g C o.k�kH1.M//;

from which follows that

(2-2) dI �g .u�/� D dIg. Ou�/� �

Z
@M

 �� d�g C o.k�kH1.M//;

where  � D j Ou� Cu0j
2
n�2 . Ou� Cu

0/� j Ou� j
2
n�2 Ou� � ju

0j
2
n�2u0.

Next we observe that there exists C > 0 such thatZ
@M

j ��j d�g � C

Z
@M

j Ou� j
2
n�2 ju0jj�j d�g CC

Z
@M

ju0j
2
n�2 j Ou� jj�j d�g

for all �, and use Hölder’s inequality and basic integration theory to obtainZ
@M

j ��j d�g

�
�j Ou� j 2n�2 u0

L
2.n�1/
n .@M/

C
ju0j 2n�2 Ou�

L
2.n�1/
n .@M/

�
k�k

L
2.n�1/
n�2 .@M/

D o
�
k�k

L
2.n�1/
n�2 .@M/

�
:

We can use this and the Sobolev embedding theorem in (2-2) to conclude that

dI �g .u�/� D dIg. Ou�/�C o.k�kH1.M//;

finishing the proof. �
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Lemma 2.3. Let f Ou�g�2N be a Palais–Smale sequence for Ig such that Ou� * 0

in H 1.M/ and Ig. Ou�/! ˇ as �!1 for some ˇ <K�2.n�1/n =.2.n� 1//. Then
Ou�! 0 in H 1.M/ as �!1.

Proof. SinceZ
M

jd Ou� j
2 dvg �

Z
@M

j Ou� j
2.n�1/
n�2 d�g D dIg. Ou�/ � Ou� D o.k Ou�kH1.M//

and fk Ou�kH1.M/g is uniformly bounded due to Lemma 2.1, we can see that

(2-3) ˇC o.1/D Ig. Ou�/D
1

2.n� 1/

Z
@M

j Ou� j
2.n�1/
n�2 d�g C o.1/

D
1

2.n� 1/

Z
M

jd Ou� j
2
g dvg C o.1/;

which already implies ˇ � 0. At the same time, as proved in [Li and Zhu 1997],
there exists B D B.M; g/ > 0 such that�Z

@M

j Ou� j
2.n�1/
n�2 d�g

�n�2
n�1

�K2n

Z
M

jd Ou� j
2
g dvg CB

Z
@M

j Ou� j
2 d�g :

SinceH 1.M/ is compactly embedded inL2.@M/, we have k Ou�kL2.@M/!0. Then

.2.n� 1/ˇC o.1//
n�2
n�1 � 2.n� 1/K2nˇC o.1/;

from which we conclude that either

K
�2.n�1/
n

2.n� 1/
� ˇC o.1/

or ˇ D 0. Hence, our hypotheses imply ˇ D 0. Using (2-3) finishes the proof. �

Define the functional

E.u/D 1
2

Z
Rn
C

jdu.y/j2 dy �
n� 2

2.n� 1/

Z
@Rn
C

ju.y/j
2.n�1/
n�2 dy

for u 2D1.Rn
C
/ and observe that E.U�;a/D

K
�2.n�1/
n

2.n�1/
for any a 2 Rn�1, � > 0.

Lemma 2.4. Let f Ou�g�2N be a Palais–Smale sequence for Ig . Suppose Ou�*0 in
H 1.M/, but not strongly. Then there exist a sequence fR� > 0g�2N with R�!1,
a convergent sequence fx�g�2N � @M , and a nontrivial solution u 2D1.Rn

C
/ of

(2-4)

8<:�uD 0 in Rn
C
;

@

@yn
u� juj2=.n�2/uD 0 on @Rn

C
;
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the whole such that, up to a subsequence, the following holds: If

Ov�.x/D Ou�.x/� ��.x/R
n�2
2

� u.R� 
�1
x�
.x//;

then f Ov�g�2N is a Palais–Smale sequence for Ig satisfying Ov�*0 in H 1.M/ and

lim
�!1

�
Ig. Ou�/� Ig. Ov�/

�
DE.u/:

Here, the  x� W B
C
2r0
.0/� Rn

C
!M are Fermi coordinates centered at x� and the

��.x/ are smooth cutoff functions such that �� � 1 in  x� .B
C
r0
.0// and �� � 0 in

Mn x� .B
C
2r0
.0//.

Proof. By the density of C1.M/ inH 1.M/ we can assume that Ou� 2C1.M/. We
can also assume that Ig. Ou�/! ˇ as �!1 and, since dIg. Ou�/! 0 in H 1.M/0,
we obtain

lim
�!1

Z
@M

j Ou� j
2.n�1/
n�2 d�g D 2.n� 1/ˇ �K

�2.n�1/
n ;

as in the proof of Lemma 2.3. Hence, given t0 > 0 small we can choose x0 2 @M
and �0 > 0 such that Z

Dt0.x0/

j Ou� j
2.n�1/
n�2 d�g � �0

up to a subsequence. Now we set

��.t/D max
x2@M

Z
Dt .x/

j Ou� j
2.n�1/
n�2 d�g

for t > 0, and, for any � 2 .0; �0/, choose sequences ft�g � .0; t0/ and fx�g � @M
such that

(2-5) �D ��.t�/D

Z
Dt�.x�/

j Ou� j
2.n�1/
n�2 d�g :

We can also assume that x� converges. Now, we choose r0 > 0 small such that
for any x0 2 @M the Fermi coordinates  x0.z/ centered at x0 are defined for all
z 2 BC2r0.0/� Rn

C
and satisfy

1
2
jz� z0j � dg. x0.z/;  x0.z

0//� 2jz� z0j for any z; z0 2 BCr0.0/:

For each � we consider Fermi coordinates

 � D  x� W B
C
2r0
.0/!M:

For any R� � 1 and y 2 BCR�r0.0/, we set

Qu�.y/DR
�n�2

2
� Ou�. �.R

�1
� y// and Qg�.y/D . 

�
� g/.R

�1
� y/:
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Let us consider z 2 Rn
C

and r > 0 such that jzjC r < R�r0. Then we haveZ
B
C
r .z/

jd Qu� j
2
Qg�
dv Qg� D

Z
 �.R

�1
� B

C
r .z//

jd Ou� j
2
g dvg ;

and, if in addition z 2 @Rn
C

,

(2-6)
Z
@0B
C
r .z/

j Qu� j
2.n�1/
n�2 d� Qg� D

Z
 �.R

�1
� @0B

C
r .z//

j Ou� j
2.n�1/
n�2 d�g

�

Z
D
2R�1� r

. �.R
�1
� z//

j Ou� j
2.n�1/
n�2 d�g ;

where we have used the fact that

 �
�
R�1� @0BCr .z/

�
D  �

�
@0BC

R�1� r
.R�1� z/

�
�D2R�1� r

�
 �.R

�1
� z/

�
:

Given r 2 .0; r0/ we fix t0 � 2r . Then, given a � 2 .0; �0/ to be fixed later, we
set R� D 2rt�1� � 2rt

�1
0 � 1. It follows from (2-5) and (2-6) that

(2-7)
Z
@0B
C
r .z/

j Qu� j
2.n�1/
n�2 d� Qg� � �:

Moreover, since  �.@0BC
2R�1� r

.0//DDt� .x�/, we have

(2-8)
Z
@0B
C

2r .0/

j Qu� j
2.n�1/
n�2 d� Qg� D

Z
Dt� .x�/

j Ou� j
2.n�1/
n�2 d�g D �:

Choosing r0 smaller if necessary, we can suppose that

(2-9) 1

2

Z
Rn
C

jduj2 dy �

Z
Rn
C

jduj2
Qgx0;R

dv Qgx0;R
� 2

Z
Rn
C

jduj2 dy

for anyR�1 and any u2D1.Rn
C
/ such that supp.u/�BC2r0R.0/. Here, Qgx0;R.y/D

. �x0g/.R
�1y/. We can also assume that

(2-10) 1

2

Z
@Rn
C

juj dy �

Z
@Rn
C

juj d� Qgx0;R
� 2

Z
@Rn
C

juj dy

for all u 2 L1.@Rn
C
/ such that supp.u/� @0BC2r0R.0/.

Let Q� be a smooth cutoff function on Rn such that 0� Q�� 1, Q�.z/D 1 for jzj � 1
4

,
and Q�.z/D 0 for jzj � 3

4
. We set Q��.y/D Q�.r�10 R�1� y/.

It is easy to check that �Z
Rn
C

jd. Q�� Qu�/j
2
Qg�
dv Qg�

�
is uniformly bounded. Then the inequality (2-9) implies that f Q�� Qu�g is uniformly
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bounded in D1.Rn
C
/ and we can assume that Q�� Qu�*u in D1.Rn

C
/ for some u.

Claim 1. Let us set r1D r0=24. There exists �1D�1.n/ such that for any 0<r <r1
and 0 < � <minf�1; �0g we have

Q�� Qu�! u in H 1.BC2Rr.0// as �!1;

for any R � 1 satisfying R �R� for all � large.

Proof. We consider r 2 .0; r1/, � 2 .0; �0/ and choose z0 2 @Rn
C

such that jz0j<
3.2R� 1/r1. By Fatou’s lemma,Z 2r

r

lim inf
�!1

�Z
@CB

C
� .z0/

�
jd. Q�� Qu�/j

2
CjQ�� Qu� j

2
�
d��

�
d�

� lim inf
�!1

Z
B
C

2r .z0/

�
jd. Q�� Qu�/j

2
CjQ�� Qu� j

2
�
dy � C;

where d�� is the volume form on @CBC� .z0/ induced by the Euclidean metric.
Thus there exists � 2 Œr; 2r� such that, up to a subsequence,Z

@CB
C
� .z0/

�
jd. Q�� Qu�/j

2
CjQ�� Qu� j

2
�
d�� � C for all �:

Hence,
˚
k Q�� Qu�kH1.@CB

C
� .z0//

	
is uniformly bounded, and, since the embedding

H 1.@CBC� .z0//�H
1=2.@CBC� .z0//

is compact, we can assume that

Q�� Qu�! u in H 1=2.@CBC� .z0// as �!1:

We set AD BC3r.z0/�B
C
� .z0/, and let f��g �D1.RnC/ be such that

�� D

�
Q�� Qu� �u; in BC�C�.z0/;

0; in Rn
C
nBC3r��.z0/;

with � > 0 small. Then

k Q�� Qu� �ukH1=2.@CB
C
� .z0//

D k��kH1=2.@CB
C
� .z0//

! 0 as �!1;

and there exists f�0� g �D
1.A/ such that

k�� C�
0
�kH1.A/ � Ck��kH1=2.@CA/ D Ck��kH1=2.@CB

C
� .z0//

for some C >0 independent of �. Here,D1.A/ is the closure of C10 .A/ inH 1.A/,
and we have set @CAD @A\ .Rn

C
n@Rn

C
/ and @0AD @A\ @Rn

C
.

The sequence of functions f��g D f�� C�0� g �D
1.Rn
C
/ satisfies
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�� D

8̂<̂
:
Q�� Qu� �u in BC� .z0/;
�� C�

0
� in BC3r.z0/nB

C
� .z0/;

0 in Rn
C
nBC3r.z0/:

In particular, ��! 0 in H 1.A/. We set

Q��.x/DR
n�2
2

� ��.R� 
�1
� .x// if x 2  �.BC6r1.0//;

and Q��.x/D 0 otherwise. Since we are assuming jz0j<3.2R�1/r1� 3.2R��1/r1
for all � large, BC3r.z0/� B

C

6r1R�
.0/. Hence,

Q��.x/D

8<:R
n�2
2

� . Q�� Qu� �u/.R� 
�1
� .x// if x 2  �.R�1� BC� .z0//;

R
n�2
2

� .�� C�
0
� /.R� 

�1
� .x// if x 2  �

�
R�1� .BC3r.z0/nB

C
� .z0//

�
;

and Q��.x/D 0 otherwise, and

(2-11) dIg. Ou�/ � Q��
D dIg. O�� Ou�/ � Q��

D

Z
B
C

3r .z0/

hd. Q�� Qu�/; d��i Qg� dv Qg��

Z
@0B
C

3r .z0/

j Q�� Qu� j
2
n�2 . Q�� Qu�/�� d� Qg� ;

where O��.x/D Q�.r�10  �1� .x//.
Since there exists C > 0 such that kQ��kH1.M/ � Ck��kD1.Rn

C
/, the sequence

f Q��g is uniformly bounded in H 1.M/. Hence,

(2-12) dIg. Ou�/ � Q��! 0 as �!1:

Noting that ��! 0 in H 1.A/ and ��*0 in D1.Rn
C
/, we obtain

(2-13)
Z
B
C

3r .z0/

hd. Q�� Qu�/; d��i Qg� dv Qg�D

Z
B
C
� .z0/

hd.��Cu/; d��i Qg� dv Qg�Co.1/

D

Z
Rn
C

jd�� j
2
Qg�
dv Qg�Co.1/:

Similarly,

(2-14)
Z
@0B
C

3r .z0/

j Q�� Qu� j
2
n�2 . Q�� Qu�/�� d� Qg� D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� C o.1/:

Using (2-11), (2-12), (2-13) and (2-14) we conclude that

(2-15)
Z

Rn
C

jd�� j
2
Qg�
dv Qg� D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� C o.1/:



PALAIS–SMALE SEQUENCES ON MANIFOLDS WITH BOUNDARY 11

Using again the facts that ��! 0 in H 1.A/ and ��*0 in D1.Rn
C
/, we can apply

the inequalityˇ̌
j Q�� Qu� �uj

2.n�1/
n�2 � j Q�� Qu� j

2.n�1/
n�2 Cjuj

2.n�1/
n�2

ˇ̌
� C juj

n
n�2 j Q�� Qu� �ujCC j Q�� Qu� �uj

n
n�2 juj

to see thatZ
@Rn
C

j�� j
2.n�1/
n�2 d� Qg�D

Z
@0B
C
� .z0/

j Q�� Qu� j
2.n�1/
n�2 d� Qg��

Z
@0B
C
� .z0/

juj
2.n�1/
n�2 d� Qg�Co.1/:

This implies

(2-16)
Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� �

Z
@0B
C
� .z0/

j Q�� Qu� j
2.n�1/
n�2 d� Qg� C o.1/

D

Z
@0B
C
� .z0/

j Qu� j
2.n�1/
n�2 d� Qg� C o.1/;

where we have used the fact that Q��.z/D 1 for all z 2 BC� .z0/.
If N DN.n/ 2N is such that @0BC2 .0/ is covered by N discs in @Rn

C
of radius 1

with center in @0BC2 .0/, then we can choose points zi 2 @0BC2r.z0/, i D 1; : : : ; N ,
satisfying

@0BC� .z0/� @
0BC2r.z0/�

N[
iD1

@0BCr .zi /:

Hence, using (2-7), (2-15) and (2-16), we see that

(2-17)
Z

Rn
C

jd�� j
2
Qg�
dv Qg� C o.1/D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� �N�C o.1/:

It follows from (2-9), (2-10) and the Sobolev inequality (1-6) that�Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg�

�n�2
n�1

� 2
n�2
n�1

�Z
@Rn
C

j�� j
2.n�1/
n�2 dx

�n�2
n�1

� 2
n�2
n�1K2n

Z
Rn
C

jd�� j
2 dx

� 21C
n�2
n�1K2n

Z
Rn
C

jd�� j
2
Qg�
dv Qg� :

Then using (2-15) and (2-17) we obtain
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Rn
C

jd�� j
2
Qg�
dv Qg� D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� C o.1/

�

�
21C

n�2
n�1K2n

�n�1
n�2

�Z
Rn
C

jd�� j
2
Qg�
dv Qg�

�n�1
n�2

C o.1/

� 21C
n�1
n�2K

2.n�1/
n�2

n .N�C o.1//
1
n�2

Z
Rn
C

jd�� j
2
Qg�
dv Qg� C o.1/:

Now we set �1 D
K
�2.n�1/
n

22n�3N
and assume that � < �1. Then

21C
n�1
n�2 .N�/

1
n�2K

2.n�1/
n�2

n < 1;

and we conclude that

lim
�!1

Z
Rn
C

jd�� j
2
Qg�
dv Qg� D 0:

Hence, ��! 0 in D1.Rn
C
/. Since r � �, we have

(2-18) Q�� Qu�! u in H 1.BCr .z0//:

Now let us choose any z0 D ..z0/1; : : : ; .z0/n/ 2 Rn
C

satisfying .z0/n > r=2
and jz0j < 3.2R � 1/r1. Using this choice of z0 and r 0 D r=6 replacing r , the
process above can be performed with some obvious modifications. In this case, we
have @0BC3r 0.z0/D∅ and the boundary integrals vanish. Hence, the equality (2-15)
already implies that Q�� Qu�! u in H 1.BCr 0 .z0//.

IfN1DN1.R; n/2N andN2DN2.R; n/2N are such that the half-ball BC2R.0/
is covered by N1 half-balls of radius 1 with centers in @0BC2R.0/, plus N2 balls
of radius 1=6 with centers in fz D .z1; : : : ; zn/ 2 BC2R.0/ W z

n > 1=2g, then the
half-ball BC2Rr.0/ is covered by N1 half-balls of radius r with centers in @0BC2Rr.0/,
plus N2 balls of radius r=6 with center in fzD .z1; : : : ; zn/2BC2Rr.0/ W z

n>r=2g.
Hence, Q�� Qu�! u in H 1.BC2Rr.0//, finishing the proof of Claim 1. �

Using (2-8), (2-10) and Claim 1 with RD 1, we see that

(2-19) �D

Z
@0B
C
r .0/

j Qu� j
2.n�1/
n�2 d� Qg�

D

Z
@0B
C
r .0/

j Q�� Qu� j
2.n�1/
n�2 d� Qg�

� 2

Z
@0B
C
r .0/

juj
2.n�1/
n�2 dxC o.1/:

It follows that u 6� 0, due to (1-6).
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Claim 2. We have lim�!1R� D1. In particular, Claim 1 can be stated for any
R � 1.

Proof. Suppose for a contradiction that, up to a subsequence, R�!R0 as �!1,
for some 1 � R0 < 1. Then, since Ou� * 0 in H 1.M/, we have Qu� * 0 in
H 1.BC2r.0//. This contradicts the fact that

Qu� Q��! u 6� 0 in H 1.BC2r.0//;

which is obtained by applying Claim 1 with RD 1. This proves Claim 2. �

That u is a (weak) solution of (2-4) follows easily from the fact that f Ou�g is a
Palais–Smale sequence for Ig and Q�� Qu�! u in D1.Rn

C
/.

Now, we set

V�.x/D ��.x/R
n�2
2

� u.R� 
�1
x�
.x//

for x 2  x� .B
C
2r0
.0//, and 0 otherwise. The proof of the following claim is totally

analogous to step 3 on p. 37 of [Druet et al. 2004] with some obvious modifications.

Claim 3. We have Ou� �V�*0, as �!1, in H 1.M/. Moreover, as �!1,

dIg.V�/! 0 and dIg. Ou� �V�/! 0

strongly in H 1.M/0, and

Ig. Ou�/� Ig. Ou� �V�/!E.u/:

We finally observe that if r 00 >0 is also sufficiently small then j.����0�/V� j! 0

as �!1, where �0� is a smooth cutoff function such that �0� � 1 in  x� .B
C

r 00
.0//

and �0� � 0 in Mn x� .B
C

2r 00
.0//. Hence, the statement of Lemma 2.4 holds for any

r0 > 0 sufficiently small, finishing the proof. �

Proof of Theorem 1.3. According to Lemma 2.1, the Palais–Smale sequence fu�g
for I �g is uniformly bounded in H 1.M/. Hence, we can assume that u�*u0 in
H 1.M/, and u�! u0 a.e. in M , for some 0� u0 2H 1.M/. By Lemma 2.2, u0

is a solution to the equations (1-3). Moreover, Ou� D u� �u0 is Palais–Smale for
Ig and satisfies

Ig. Ou�/D I
�
g .u�/� I

1
g .u

0/C o.1/:

If Ou�! 0 in H 1.M/, then the theorem is proved. If Ou�*0 in H 1.M/ but not
strongly, then we apply Lemma 2.4 to obtain a new Palais–Smale sequence f Ou1�g
satisfying

Ig. Ou
1
�/� Ig. Ou�/�ˇ

�
C o.1/D I �g .u�/� I

1
g .u

0/�ˇ�C o.1/;

where ˇ�D K
�2.n�1/
n

2.n�1/
. The term ˇ� appears in this inequality because E.u/� ˇ�
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for any nontrivial solution u 2D1.Rn
C
/ to the equations (1-1). This can be seen

using the Sobolev inequality (1-6).
Now we again have either Ou1� ! 0 in H 1.M/, in which case the theorem is

proved, or we apply Lemma 2.4 to obtain a new Palais–Smale sequence f Ou2�g. The
process follows by induction and stops, by virtue of Lemma 2.3, once we obtain a
Palais–Smale sequence f Oum� g with Ig. Oum� / converging to some ˇ < ˇ�.

We are now left with the proof of (1-7) and the fact that the Uj obtained by
the process above are of the form (1-5). To that end, we can follow the proof of
Lemma 3.3 in [Druet et al. 2004], with some simple changes, to obtain the relation
(1-7) and to prove that the Uj are nonnegative. For the reader’s convenience this is
outlined below.

Claim. The functions u0 and Uj obtained above are nonnegative. Moreover, the
identity (1-7) holds.

Proof. That u0 is nonnegative is straightforward. To prove that the Uj are also
nonnegative, set Ou� D u� �u0 and �j� D 1=R

j
� .

Given integers N 2 Œ1;m� and s 2 Œ0; N � 1�, we will prove that there exist an
integer p and sequences f Qxk� g�2N � @M and f�k� > 0g�2N for each k D 1; : : : ; p,
such that dg.xN� ; Qx

k
� /=�

N
� is bounded and lim�!1 �k�=�

N
� D 0, and such that

(2-20)
Z
�N� .R/n

Sp
kD1
z�k�.R0/

ˇ̌̌̌
Ou� �

sX
jD1

uj� �u
N
�

ˇ̌̌̌ 2n
n�2

dvg D o.1/C �.R
0/

for any R;R0 > 0. Here, �N� .R/ D  xN� .B
C

R�N�
.0//, z�k� .R

0/ D  
Qxk�
.BC
R0�k�

.0//

and �.R0/! 0 as R0!1.
We prove (2-20) by reverse induction on s. It follows from Claim 2 in the proof

of Lemma 2.4 thatZ
�N� .R/

ˇ̌̌̌
Ou� �

N�1X
jD1

uj� �u
N
�

ˇ̌̌̌ 2n
n�2

dvg D o.1/;

so that (2-20) holds for s DN � 1.
Assuming (2-20) holds for some s 2 Œ1; N � 1�, let us prove it does for s� 1.
We first consider the case when dg.xs� ; x

N
� / does not converge to zero as �!1.

In this case, we can assume �N� .R/ \�
s
�.
zR/ D ∅ for any zR > 0. Then after

rescaling we have

(2-21)
Z
�N� .R/n

Sp
kD1
z�k�.R0/

jus� j
2n
n�2 dvg � C

Z
Rn
C
nB
C

zR
.0/

jU sj
2n
n�2 dy:

Since zR > 0 is arbitrary and U s 2 L
2n
n�2 .Rn

C
/, the left side of (2-21) converges to

zero as �!1. Hence, (2-20) still holds replacing s by s� 1.
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Now consider the case when dg.xs� ; x
N
� /! 0 as �!1. According to Claim 2

in the proof of Lemma 2.4, given zR > 0, we haveZ
�s�. zR/

ˇ̌̌̌
Ou� �

sX
jD1

uj�

ˇ̌̌̌ 2n
n�2

dvg D o.1/:

Using the induction hypothesis (2-20), we then conclude thatZ
.�N� .R/n

Sp
kD1
z�k�.R0//\�

s
�. zR/

juN� j
2n
n�2 dvg D o.1/C �.R

0/:

First assume that dg.xs� ; x
N
� /=�

N
� !1. Rescaling by �N� and using coordinates

centered at xN� , it’s not difficult to see that dg.xs� ; x
N
� /=�

s
�!1. Hence we can

assume that �N� .R/\�
s
�.
zR/D∅ for any zR > 0, and we proceed as in the case

when dg.xs� ; x
N
� / does not converge to 0 to conclude that (2-20) holds for s� 1.

If dg.xs� ; x
N
� /=�

N
� does not go to infinity, we can assume that it converges. One

can then check that �s�=�
N
� ! 0. We set QxpC1� D xs� and �pC1� D �s� , so that

�
pC1
� =�N� ! 0 as �!1. Observing thatZ

�N� .R/n
SpC1
kD1

z�k�.R0/

jus� j
2n
n�2 dvg �

Z
Mn�s�.R0/

jus� j
2n
n�2 dvg � �.R

0/;

it follows that (2-20) holds when we replace p by pC 1 and s by s� 1.
This proves (2-20). The above also proves (1-7).
We fix an integer N 2 Œ1;m� and s D 0. Let Qyk� 2 @Rn

C
be such that Qxk� D

 N
xN�
.�N� Qy

k
� /, for k D 1; : : : ; p. For each k, the sequence f Qyk� g�2N is bounded,

so there exists Qyk 2 @Rn
C

such that lim�!1 Qyk� D Qy
k , possibly after taking a

subsequence. We set QX D
Sp

kD1
Qyk and

QuN� .y/D .�
N
� /

n�2
2 OuN� . xN� .�

N
� y// :

It follows from (2-20) that

QuN� ! UN in L
2n
n�2

loc .BCR .0/n
zX/ as �!1:

Therefore we can assume that Qu�! UN a.e. in Rn
C

as �!1.
If we set

Qu0;N� .y/D .�N� /
n�2
2 u0. xN� .�

N
� y//;

it’s easy to prove that

Qu0;N� ! 0 in L
2n
n�2

loc .BCR .0// as �!1:
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Hence, Qu0;N� ! 0 a.e. in Rn
C

as �!1. Setting

vN� .y/D .�
N
� /

n�2
2 uN� . xN� .�

N
� y//;

we see that vN� ! UN a.e. in Rn
C

as � !1. In particular, UN is nonnegative.
This proves the claim. �

Remark 2.5. For the regularity of the Uj we can use [Cherrier 1984, théorème 1].
Although that theorem was established for compact manifolds, we can use the
conformal equivalence between Rn

C
and Bnnfpointg and a removable singularities

theorem (see Lemma 2.7 on p. 1821 of [Almaraz 2011]) to apply it in Bn.
Thus we are able to use the result in [Li and Zhu 1995] to conclude that the Uj

are of the form (1-5), so we can write Uj D U�j ;aj .

This finishes the proof of Theorem 1.3. �
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THE CUP SUBALGEBRA OF A II1 FACTOR GIVEN BY A
SUBFACTOR PLANAR ALGEBRA IS MAXIMAL AMENABLE

ARNAUD BROTHIER

To every subfactor planar algebra was associated a II1 factor with a canon-
ical abelian subalgebra generated by the cup tangle. Using Popa’s approxi-
mative orthogonality property, we show that this cup subalgebra is maximal
amenable.

Introduction

The study of maximal abelian subalgebras (MASAs) was initiated by Dixmier
[1954], who introduced an invariant coming from the normalizer. Other invariants
were provided later, such as the Takesaki equivalence relation [1963], the Tauer
length [1965], the Pukánszky invariant [1960] or the δ-invariant [Popa 1983b].

Popa [1983a] exhibited an example of a MASA A ⊂ M in a II1 factor that is
maximal amenable.

This example answers negatively a question of Kadison asking if every abelian
subalgebra of a II1 factor (with separable predual) is included in a copy of the
hyperfinite II1 factor. We recall that a von Neumann algebra is hyperfinite if and
only if it is amenable by the famous theorem of Connes [1976]. Popa introduced the
notion of approximative orthogonality property (AOP) and showed that any singular
MASA with the AOP is maximal amenable. Then he proved that the generator
MASA in a free group factor is singular and has the AOP.

Using the same scheme of proof, Cameron et al. [2010] showed that the radial
MASA in the free group factor is maximal amenable. Shen [2006], Jolissaint [2010]
and Houdayer [2012] provided other examples of maximal amenable MASAs.

In this paper, we provide maximal amenable MASAs in II1 factors using subfactor
planar algebras. The theory of subfactors has been initiated by Jones [1983]. He
introduced the standard invariant that has been formalized as a Popa system by
Popa [1995] and as a subfactor planar algebra by Jones [1999; 2011]. Popa [1993;
1995; 2002] proved that any standard invariant comes from a subfactor. Popa
and Shlyakhtenko [2003] proved that the subfactor can be realized in the infinite
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free group factor L(F∞). Using planar algebras, random matrix models and free
probability, Guionnet et al. [2010; 2011] (see also [Jones et al. 2010]) showed that
any finite depth standard invariant can be realized as a subfactor of an interpolated
free group factor. Using the same construction, Hartglass [2013] proved that any
infinite depth subfactor is realized in L(F∞).

The construction in [Jones et al. 2010] associated a II1 factor M to a subfactor
planar algebra P. This II1 factor contains a generic MASA A ⊂ M that we call the
cup subalgebra (see page 22). We now state our main theorem:

Theorem 0.1. For any nontrivial subfactor planar algebra P, the cup subalgebra
is maximal amenable.

The construction of Jones et al. has been extended for unshaded planar algebras
in [Brothier 2012; Brothier et al. 2012]. In those constructions, we have proven that
the cup subalgebra is still a MASA. It seems very plausible that it is also maximal
amenable. Note that the cup subalgebra is analogous to the radial MASA in a free
group factor. We don’t know if for a certain subfactor planar algebra those two
subalgebras are isomorphic or not.

1. Approximative orthogonality property and maximal amenability

We briefly recall Popa’s approximative orthogonality property for an abelian subal-
gebra A ⊂ M and how it implies the maximal amenability of A, whenever A ⊂ M
is a singular MASA.

Definition 1.1 [Popa 1983a, Lemma 2.1]. Consider a tracial von Neumann algebra
(M, tr) and a subalgebra A ⊂ M . Let ω be a free ultrafilter on N. Then A ⊂ M
has the approximative orthogonality property if for any x ∈ Mω

	 Aω ∩ A′ and any
b ∈ M 	 A we have xb ⊥ bx in L2(Mω), that is, limn→ω tr(xnbx∗n b∗)= 0, where
(xn)n is a representative of x .

Remark 1.2. By polarization, the definition of AOP is equivalent to asking that
for any x1, x2 ∈ Mω

	 Aω ∩ A′ and any b1, b2 ∈ M 	 A we have x1b1 ⊥ b2x2.

We recall the fundamental theorem of Popa that is contained in the proof of
[Popa 1983a, Theorem 3.2]. A more detailed explanation of it has been given in
[Cameron et al. 2010, Lemma 2.2 and Corollary 2.3].

Theorem 1.3 [Popa 1983a]. Let A ⊂ M be a singular MASA with the AOP in a II1

factor M. Then A ⊂ M is maximal amenable.

2. Construction of the cup subalgebra

Construction of a II1 factor from a subfactor planar algebra. Consider a subfac-
tor planar algebra P= (Pn)n>0 with modulus δ > 1. Let us recall the construction
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given in [Jones et al. 2010]. We assume that the reader is familiar with planar
algebras. For more details on planar algebras, see [Jones 1999; 2011] or the
introduction of [Peters 2010]. Let Gr(P) be the graded vector space equal to the
algebraic direct sum

⊕
n>0 Pn . We decorate strands in a planar tangle with natural

numbers to represent cabling of that strand. For example:

k =

k︷︸︸︷
·

An element a ∈ Pn will be represented as a box:

a =

2n

a

We assume that the distinguished first interval is at the top left of the box. We
consider the inner product 〈 · , · 〉 on each Pn:

〈a, b〉 = a b∗
2n for all a, b ∈ Pn.

We extend this inner product on Gr(P) in such a way that the spaces Pn are pairwise
orthogonal. We still write Pn when it is considered as the n-graded part of Gr(P).
Let H be the Hilbert space equal to the completion of Gr(P) for its pre-Hilbert
structure. Note that H is the Hilbert space equal to the orthogonal direct sum of the
spaces Pn . We define a multiplication on Gr(P) given by the tangle

ab =
min(2n,2m)∑

j=0
a b

2n− j 2m− j
j

for all a ∈ Pn, b ∈ Pm .

For a fixed a ∈ Gr(P), the map b ∈ Gr(P) 7→ ab ∈ Gr(P) is bounded for the
inner product 〈 · , · 〉. This gives us a representation of the ∗-algebra Gr(P) on H.
We denote by M the von Neumann algebra equal to the bicommutant of this
representation. It is a II1 factor by [Jones et al. 2010]. We identify the graded
algebra Gr(P) and its image in the von Neumann algebra M . The unique faithful
normal trace tr of M is the one coming from the planar algebra structure of P. It is
equal to the formula tr(a)= 〈a, 1〉, where 1 is the unity of Gr(P). Let L2(M) be
the Hilbert space coming from the Gelfand–Naimark–Segal construction over the
trace tr. Note that the standard representation of the von Neumann algebra M on
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the Hilbert space L2(M) is conjugate to the action of M on the Hilbert space H.
We will identify those two representations. Also, we identify M with its image in
L2(M). The left and right actions of M on the Hilbert space L2(M) are denoted
by π and ρ, so π(x)ρ(y)z = xzy, for x, y, z ∈ M . The norm of M is denoted by
‖ · ‖ and that of L2(M) by ‖ · ‖2, or by ‖ · ‖ if the context is clear. We define a
multiplication on Gr(P) by requiring that if a ∈Pn and b ∈Pm , then a • b ∈Pn+m

is given by

a • b = a b

2n 2m

We remark that ‖a • b‖2 = ‖a‖2‖b‖2, for all a ∈ Pn and b ∈ Pm . By the triangle
inequality, the bilinear function

Gr(P)×Gr(P)→ Gr(P), (a, b) 7→ a • b,

is continuous for the norm ‖ · ‖2. We extend this operation to L2(M)× L2(M) and
still denote it by •.

The cup subalgebra. The cup subalgebra A ⊂ M is the abelian von Neumann
algebra generated by the self-adjoint element cup:

We denote cup by the symbol ∪. Also we use the following notation:

∪
•k
=

k cups︷ ︸︸ ︷
· · ·

We use the convention that 0=∪•k for k < 0 and 1=∪•0. Let n > 1 and Vn be the
subspace of Pn of elements which vanish when a cap is placed at the top right and
vanish when a cap is placed at the top left, i.e.,

Vn =

a ∈ Pn,

2n− 2

a =

2n− 2

a = 0

 .
We denote by V the orthogonal direct sum of the Vn:

V =
∞⊕

n=1

Vn.
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Let `2(N) be the separable Hilbert space with orthonormal basis {en, n > 0} and
S ∈ B(`2(N)) the unilateral shift operator.

Proposition 2.1 [Jones et al. 2010, Theorem 4.9]. The map

2 : L2(M)→ `2(N)⊕ (`2(N)⊗ V ⊗ `2(N))

defined by

δ−k/2
∪
•k
7→ ek ⊕ 0, δ−(l+r)/2

∪
•l
•v •∪

•r
7→ 0⊕ el ⊗ v⊗ er ,

defines a unitary transformation, where k, l, r > 0, v ∈ V and δ is the modulus of
the planar algebra. We have

2π

(
∪− 1
δ1/2

)
2∗ =

(
S+S∗− qe0 0

0 (S+ S∗)⊗ 1V ⊗ 1`2(N)

)
and

2ρ

(
∪− 1
δ1/2

)
2∗ =

(
S+S∗− qe0 0

0 1`2(N)⊗ 1V ⊗ (S+S∗)

)
,

where qe0 is the rank-one projection on Ce0 and 1V , 1`2(N) are the identity operators
of the Hilbert spaces V and `2(N).

Corollary 2.2. The cup subalgebra is a singular MASA.

Proof. The A-bimodule L2(M)	 L2(A) is isomorphic to an infinite direct sum of
the coarse bimodule L2(A)⊗ L2(A). This implies that A ⊂ M is maximal abelian.
See [Jones et al. 2010] for more details. Suppose that there exists a unitary u in the
normalizer of A inside M which is orthogonal to A. It generates a A-subbimodule

(1) K⊂

∞⊕
j=0

L2(A)⊗ L2(A).

We have the inclusion (1) if and only if the automorphism a ∈ A 7→ uau∗ is trivial.
This implies that u ∈ A′ ∩M . Hence u ∈ A, a contradiction. Therefore, A ⊂ M is
singular. �

Basic facts on the unilateral shift operator. Consider the semicircular measure

dν(t)=

√
4− t2

2π
dt

defined on the interval [−2; 2]. Let Pi ∈ R[X ] be the family of polynomials such
that

(2) P0(X)= 1, P1(X)= X, Pi (X)= X Pi−1(X)− Pi−2(X) for i > 2.
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By [Voiculescu et al. 1992, Example 3.4.2], the map

(3) 9 : `2(N)→ L2([−2; 2], ν), ei 7→ Pi ,

defines a unitary transformation. Further, for any continuous function f ∈C([−2; 2])
we have (9∗ f (S+S∗)9)(t)= t f (t) for almost every t ∈ [−2; 2].

Lemma 2.3. For I > 0, let RI : [−2; 2] → R be given by RI (t) =
I∑

i=0
Pi (t)2. The

sequence (RI )I>0 converges uniformly to +∞.

Proof. Let us prove the simple convergence to+∞. Suppose there exists t0∈[−2; 2]
such that the sequence (RI (t0))k does not converge to +∞. The polynomials Pi

have real coefficient. Hence, for any t ∈ [−2; 2], Pi (t) is real; thus, (RI (t0))k is an
increasing sequence in R. If this sequence does not diverge, then it is bounded. Then,
the sequence (Pi (t0))i is square summable. In particular we have limi→∞ Pi (t0)= 0.
We put εi = Pi (t0). We have that εi+1= t0εi−εi−1 and limi→∞ εi = 0. There is only
one sequence that satisfies those axioms and it is the sequence equal to zero. Since
0 6= 1 = P0(t0) = ε0, we arrive at a contradiction and thus, limI→∞ SI (t) = +∞
for any t ∈ [−2; 2]. To conclude we use the following well known result due to
Dini: Let ( f I )I be a sequence of continuous functions from a compact topological
space K to R such that f I 6 f I+1. If for any t ∈ K , limI→∞ f I (t)=+∞, then the
sequence ( f I )I converges uniformly to +∞. �

Proof of Theorem 0.1. According to Theorem 1.3 and Corollary 2.2, it is sufficient
to show that the cup subalgebra has the AOP. Fix x ∈Mω

	 Aω∩ A′ and b ∈M	 A.
Let us show that xb ⊥ bx . By the Kaplansky density theorem we can assume that
there exists J > 1 such that b ∈

⊕J
j=0 P j . Suppose that ‖x‖6 1 and fix a sequence

xn ∈ M which is a representative of x such that xn ∈ M 	 A and ‖xn‖6 1 for all
n > 0.

Consider the closed subspaces of L2(M) given by

YL = span{∪•l • v •∪•r , l, r 6 L , v ∈ V },

ZL = span{∪•l • v •∪•r , l or r 6 L , v ∈ V },

for all L > 0. Note that b is in YJ−1.
We claim that for any z ∈ M which is orthogonal to A and Z J−1 we have

(4) zb ⊥ bz.

The element z is a weak limit of finite linear combinations of ∪•i • v •∪• j , where
i, j > J and v ∈ V . The element b is a finite linear combination of ∪•k • ṽ •∪•r ,
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where k, r 6 J − 1 and ṽ ∈ V . We have

(∪
•i
• v •∪

• j )(∪
•k
• ṽ •∪

•r )

= (∪
•i
• v •∪

• j+k
• ṽ •∪

•r )+ (∪
•i
• v •∪

• j+k−1
• ṽ •∪

•r )+ · · ·

+ δk(∪
•i
• v •∪

• j−k
• ṽ •∪

•r )+ δk(∪
•i
• v •∪

• j−k−1
• ṽ •∪

•r ),

for any i, j > J and k, r 6 J − 1. It is easy to see that v •∪•n • ṽ is an element of
V for any n. Hence, the product (∪•i • v •∪• j )(∪

•k
• ṽ •∪

•r ) is in the vector space

span{∪•l •w •∪•r , l > J, w ∈ V, r 6 J − 1}

and so is zb. A similar computation shows that bz is in the closed vector space

span{∪•l • v •∪•r , l 6 J − 1, w ∈ V, r > J }.

Therefore, we have zb ⊥ bz. This proves (4). Hence, if we show that x is in
the orthogonal of ZωJ−1 then we would have proven that xb is orthogonal to bx .
Consider Q J : L2(M) → Z J−1, the orthogonal projection of range Z J−1. We
remark that

2Q J2
∗
=

J−1⊕
j=0

(
(qe j ⊗ 1V ⊗ 1`2(N))⊕ (1`2(N)⊗ 1V ⊗ qe j )

)
,

where 2 is the unitary transformation defined in Proposition 2.1 and 1V , 1`2(N) are
the identity operators of V and `2(N). By symmetry, it is sufficient to show that

(5) lim
n→ω
‖(qe j ⊗ 1V ⊗ 1`2(N))ξn‖ = 0 for any j > 0,

where ξn :=2(xn). We know that x ∈ Mω
∩ A′. Hence by conjugation by 2 we

obtain the equation

(6) lim
n→ω
‖((S+S∗)⊗ 1V ⊗ 1`2(N)− 1`2(N)⊗ 1V ⊗ (S+S∗))ξn‖ = 0.

We will show that (6) implies (5).
All the operators involved in our context act trivially on the factor V . For

simplicity of the notations we stop writing the extra “⊗1V⊗” in the formula and
denote the identity operator 1`2(N) by 1. Therefore, we assume that ξn is a vector of
`2(N)⊗ `2(N). Equations (5) and (6) become

(7) lim
n→ω
‖(qei ⊗ 1)ξn‖ = 0 for any i > 0

and

(8) lim
n→ω
‖((S+S∗)⊗ 1− 1⊗ (S+S∗))ξn‖ = 0.
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Consider the partial isometry vi ∈ B(`2(N)) such that v∗i vi = qei and viv
∗

i = qe0 .
We claim that for all i > 0 we have

(9) lim
n→ω
‖((vi ⊗ 1)− (qe0 ⊗ Pi (S+S∗)))ξn‖ = 0,

where {Pi }i is the family of polynomials defined in (2). For all k > 2 we have

(S+S∗)k ⊗ 1− 1⊗ (S+S∗)k

= ((S+S∗)⊗ 1− 1⊗ (S+S∗)) ◦
(k−1∑

j=0

(S+S∗) j
⊗ (S+S∗)k−1− j

)
.

Therefore, (8) implies that

lim
n→ω
‖(P(S+S∗)⊗ 1− 1⊗ P(S+S∗))ξn‖ = 0 for all polynomials P.

In particular,

lim
n→ω
‖(Pi (S+S∗)⊗ 1− 1⊗ Pi (S+S∗))ξn‖ = 0 for all i > 0.

Note that Pi (S+S∗)(e0) = ei for all i > 0. Furthermore, Pi has real coefficients.
Therefore, the operator Pi (S+S∗) is self-adjoint. We have

〈qe0 ◦ Pi (S+S∗)el, er 〉 = 〈Pi (S+S∗)el, qe0er 〉 = δr,0〈Pi (S+S∗)el, e0〉

= δr,0〈el, Pi (S+S∗)e0〉 = δr,0δl,i ,

where i, l, r > 0 and δn,m is the Kronecker symbol. Hence qe0 ◦ Pi (S+S∗) = vi ,
for all i > 0. We have

lim
n→ω
‖(qe0 ⊗ 1) ◦ (Pi (S+S∗)⊗ 1− 1⊗ Pi (S+S∗))ξn‖ = 0.

Therefore, we have

lim
n→ω
‖(vi ⊗ 1− qe0 ⊗ Pi (S+S∗))ξn‖ = 0.

This proves the claim. We have

lim
n→ω
‖(qei ⊗ 1− v∗i qe0 ⊗ Pi (S+ S∗))ξn‖ = 0.

This means that

lim
n→ω
‖(qei ⊗ 1)ξn − (v

∗

i ⊗ Pi (S+S∗)) ◦ (qe0 ⊗ 1)ξn‖ = 0.

Hence, we have

lim
n→ω
‖(qei ⊗ 1)ξn‖6 lim

n→ω
‖(v∗i ⊗ Pi (S+S∗)) ◦ (qe0 ⊗ 1)ξn‖

6 ‖v∗i ⊗ Pi (S+S∗)‖ lim
n→ω
‖(qe0 ⊗ 1)ξn‖.
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Therefore, to prove (7) it is sufficient to show that

lim
n→ω
‖(qe0 ⊗ 1)ξn‖ = 0.

Let us fix ε > 0; we have to find an element of the ultrafilter E ∈ ω such that
‖(qe0 ⊗ 1)ξn‖< ε for any n ∈ E . By the triangle inequality, we have

‖(qe0 ⊗ Pi (S+S∗))ξn‖6 ‖(qe0 ⊗ Pi (S+S∗))ξn − (vi ⊗ 1)ξn‖+‖(vi ⊗ 1)ξn‖,

for all i > 0. We have ‖(vi ⊗ 1)ξn‖6 ‖ξn‖6 1; thus,

(10) ‖(vi⊗1)ξn‖
2>‖(qe0⊗Pi (S+S∗))ξn‖

2
−‖(qe0⊗Pi (S+S∗))ξn−(vi⊗1)ξn‖

2

− 2‖(qe0 ⊗ Pi (S+S∗))ξn − (vi ⊗ 1)ξn‖.

By Lemma 2.3, there exists an integer I ∈ N such that inf
t∈[−2;2]

SI (t) >
2
ε

. We have

I∑
i=0

‖(qe0 ⊗ Pi (S+S∗))ξn‖
2
=

I∑
i=0

‖(1⊗ Pi (S+S∗)) ◦ (qe0 ⊗ 1)ξn‖
2(11)

=

I∑
i=0

∫
[−2;2]

‖Pi (t)((qe0 ⊗9)ξn)(t)‖2 dν(t)

=

∫
[−2;2]

‖((qe0⊗9)ξn)(t)‖2
I∑

i=0

Pi (t)2 dν(t)

> 2
ε
‖(qe0 ⊗9)ξn‖

2
=

2
ε
‖(qe0 ⊗ 1)ξn‖

2,

where 9 is the unitary transformation defined in (3).
By (9), there exists an element of the ultrafilter E ∈ ω such that for any n ∈ E

and i ∈ {0, . . . , I } we have

(12) ‖((qe0 ⊗ Pi (S+S∗))− (vi ⊗ 1))ξn‖<
1
4 .

By Pythagoras’ theorem and the inequalities (10), (11) and (12) we have

1> ‖ξn‖
2
=

∑
i>0

‖(qei ⊗ 1)ξn‖
2 >

I∑
i=0

‖(qei ⊗ 1)ξn‖
2
=

I∑
i=0

‖(vi ⊗ 1)ξn‖
2

>
I∑

i=0

‖(qe0 ⊗ Pi (S+S∗))ξn‖
2
− (I + 1)

( 1
42 + 2 · 1

4

)
> 2(I+1)

ε
‖(qe0 ⊗ 1)ξn‖− (I + 1).

This implies
‖(qe0 ⊗ 1)ξn‖6 ε for all n ∈ E .
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We have proved that
lim
n→ω
‖(qe0 ⊗ 1)ξn‖2 = 0.

Therefore, limn→ω ‖Q J (xn)‖ = 0 which implies that x is orthogonal to ZωJ−1. The
equality (4) implies that xb ⊥ bx . Thus, the cup subalgebra A ⊂ M has the AOP.
By Corollary 2.2, A ⊂ M is a singular MASA. Hence, by Theorem 1.3, the cup
subalgebra is maximal amenable.
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REPRESENTATION THEORY OF TYPE B AND C
STANDARD LEVI W -ALGEBRAS

JONATHAN BROWN AND SIMON M. GOODWIN

We classify the finite-dimensional irreducible representations with integral
central character of finite W -algebras U(g, e) associated to standard Levi
nilpotent orbits in classical Lie algebras of types B and C. This classification
is given explicitly in terms of the highest weight theory for finite W -algebras.

1. Introduction

Let e be a nilpotent element in the Lie algebra g of a reductive algebraic group G
over C. The finite W -algebra U (g, e) associated to the pair (g, e) is an associative
algebra obtained from U (g) by a certain quantum Hamiltonian reduction. There
has been a great deal of recent interest in finite W -algebras and their representation
theory; for an overview, see the survey article [Losev 2011b].

In [Brown and Goodwin 2013a; 2013b], we gave a combinatorial classification
of the finite-dimensional irreducible U (g, e)-modules, where g is a classical Lie
algebra and e is an even-multiplicity nilpotent element; we recall that e is said to be
even multiplicity if all parts of the Jordan type of e occur with even multiplicity. This
classification is given in terms of the highest weight theory for finite W -algebras
from [Brundan et al. 2008].

Now recall that a nilpotent element e of g is said to be of standard Levi type if e is
in the regular nilpotent orbit of a Levi subalgebra of g. It is easy to check that if g is
of classical type and e is even multiplicity, then e is standard Levi. In this paper, we
extend the results of [Brown and Goodwin 2013a] to classify the finite-dimensional
irreducible U (g, e)-modules with integral central character, where g is of type B
or C and e is any standard Levi nilpotent element; see Theorem 1.2. We plan to
deal with the case of any (not necessarily integral) central characters in future work,
where different methods will be required. We recall (see, for example, the footnote
to [Premet 2007, Question 5.1]) that the centre of U (g, e) is canonically identified
with the centre of U (g), which allows one to define integral central characters.

The situation for g of type D and e standard Levi, but not even-multiplicity, is
more awkward. In this case the combinatorics become more complicated and the
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statement of the classification of finite-dimensional irreducible U (g, e)-modules
cannot be given simply in terms of a row-equivalent to column-strict condition as
in Theorem 1.2.

We remark here that finite W -algebras corresponding to nilpotent elements of
standard Levi type are a natural class to consider. This is because such finite W -
algebras are particularly amenable to the highest weight theory from [Brundan et al.
2008], as explained in Section 2C.

Losev and Ostrik [2013] have achieved a classification of the finite-dimensional
U (g, e)-modules of integral central character for any reductive Lie algebra g in
the following manner: Losev [2010] gave a surjection from the primitive ideals
of finite codimension of U (g, e) to the primitive ideals of U (g) having associated
variety equal to the closure G · e of the G-orbit of e. There is a natural action of
the component group C of the centralizer of e in G on the set of primitive ideals
of U (g, e), as explained, for example, in the introduction to [Losev 2011a]. This
last paper extends the results of [Losev 2010] to show that the fibres of the above
surjection are precisely C-orbits. The classification in [Losev and Ostrik 2013] is
accomplished by describing the fibres of this map, i.e., determining the stabiliser
of the C-orbit for each fibre. The primitive ideals with associated variety equal to
G · e can be described thanks to the methods of a variety of mathematicians in the
1970s and 1980s; see for example [Jantzen 1983] and the references therein for
details.

We go on to explain the results of this paper in more detail, so we take g to be
of type B or C; that is, g = so2n+1 or g = sp2n for some n ∈ Z≥2. We recall that
nilpotent orbits in g are parametrized by their Jordan type. Thus they are given by
partitions of 2n+ 1 (respectively 2n) where all even (respectively odd) parts occur
with even multiplicity when g= so2n+1 (respectively g= sp2n). In this paper we
consider only nilpotent orbits which are standard Levi but not even-multiplicity, as
the latter are dealt with in [Brown and Goodwin 2013a; 2013c]. This means that
the Jordan type of e is given by a partition of the form

p= (p2a1
1 < p2a2

2 < · · ·< p2ad−1
d−1 < p2ad+1

d < p2ad+1
d+1 < · · ·< p2ar

r );

that is, all parts of p occur with even multiplicity except for one part pd , which
occurs with odd multiplicity. This description of partitions corresponding to standard
Levi nilpotent orbits follows, for example, from the explicit description of Levi
subgroups regular nilpotent elements given in [Jantzen 2004, §4.5, §6.3]. It will be
more convenient for us to reindex this partition and write it as

p= (p2
1 ≤ p2

2 ≤ · · · ≤ p2
d−1 < p0 ≤ p2

d ≤ · · · ≤ p2
r ).

In this paper, we only consider finite-dimensional irreducible representations
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for U (g, e) with integral central character. As we explain in Section 2C, such
representations occur only when e is a special nilpotent element in the sense of
[Lusztig 1979]. In terms of the partition p, this means that the dual partition of p
is the Jordan type of a nilpotent orbit in g. Explicitly, this means that pi must be
odd for all i ≥ d when g= so2n+1 or pi must be even for all i ≤ d when g= sp2n .
This can be deduced from the description of special symbols in [Lusztig 1979] and
[Barbasch and Vogan 1982, Theorem 18]; see also [Collingwood and McGovern
1993, Proposition 6.3.7]. For the remainder of the paper we assume that p is a
partition satisfying these conditions.

We use symmetric pyramids to describe much of the combinatorics underlying
U (g, e)-modules. The symmetric pyramid for p, denoted by P , is a finite connected
collection of boxes in the plane such that

• the boxes are arranged in connected rows;

• the boxes are symmetric with respect to both the y-axis and the x-axis;

• each box is 2 units by 2 units;

• the lengths of the rows from top to bottom are given by

p1 . . . , pr , p0, pr , . . . , p1.

An s-table with underlying symmetric pyramid P is a skew-symmetric (with
respect to the origin) filling of P with complex numbers. We define sTab(P) to be a
certain set of s-tables depending on whether g= so2n+1 or sp2n . For g= sp2n we let
sTab(P) denote the set of s-tables with underlying symmetric pyramid P such that
all entries are integers, whereas for g= so2n+1 we define sTab(P) to be the s-tables
such that either all entries are in Z or all entries are in 1

2+Z. Let sTab≤(P) denote the
elements of sTab(P) that have nondecreasing rows. As explained in Section 3C, the
elements of sTab≤(P) parametrize the irreducible highest weight U (g, e)-modules;
given A ∈ sTab(P), we write L(A) for the corresponding irreducible highest weight
U (g, e)-module.

An example of an s-table in sTab≤(P), when g= sp2n , p= (22, 4, 52) and P is
the symmetric pyramid for p, is this:

(1.1)

–7 –6

–9 –8 –5 –4 –2

–3 –1 1 3

2 4 5 8 9

6 7
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The left justification of an s-table is the diagram created by left-justifying all of
the s-table’s rows. We say an s-table is justified row-equivalent to column-strict if
the row equivalence class of its left justification contains a table in which every
column is strictly decreasing; we note that there can be a gap in the middle of
some columns, and we require entries to be strictly decreasing across this gap. We
write sTabc(P) for the set of all A ∈ sTab(P) that are justified row-equivalent to
column-strict. It is easy to see that the example of the s-table above is an element
of sTabc(P).

Recall that C denotes the component group of the centralizer of e in G. In
Section 7A, we define an action of C on the subset of sTab≤(P) corresponding to
finite-dimensional U (g, e)-modules.

Now we can state the main theorem of this paper:

Theorem 1.2. Let g = so2n+1 or sp2n , let p be a partition corresponding to a
standard Levi special nilpotent orbit in g, let e be an element of this orbit and let P
be the symmetric pyramid for p. Then

{L(A) | A ∈ sTab≤(P), A is C-conjugate to some B ∈ sTabc(P)}

is a complete set of isomorphism classes of finite-dimensional irreducible U (g, e)-
modules with integral central character. Moreover, the C-action on s-tables agrees
with the C-action on finite-dimensional irreducible U (g, e)-modules.

Analogous results to [Brown and Goodwin 2013a, Corollaries 5.17 and 5.18]
hold in the present situation. So when all parts of p have the same parity, if L(A)
is finite-dimensional, then, in fact, A is row-equivalent to column-strict as an s-
table. Thus in this case L(A) can be obtained as a subquotient of the restriction
of a finite-dimensional U (g(0))-module via the Miura map. We refer the reader
to the discussion before Corollary 5.18 in that reference for more details, and to
Section 2A below for the definition of g(0).

Theorem 1.2 and the correspondence of finite-dimensional irreducible U (g, e)-
modules and primitive ideals of U (g) with associated variety G · e discussed above
allow us to deduce the following corollary. It gives an explicit description of
the primitive ideals of U (g) having associated variety equal to G · e and integral
central character. A method to classify these primitive ideals was originally given in
[Barbasch and Vogan 1982]. In the corollary, L(λA) denotes the irreducible highest
weight U (g)-module defined from an s-table A as explained in Section 3C below.

Corollary 1.3. The set of primitive ideals with integral central character and
associated variety G · e is equal to

{AnnU (g) L(λA) | A ∈ sTabc(P)∩ sTab≤(P)}.

Below we give an outline of the proof of Theorem 1.2.
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The key step is to deal with the case where p has three parts. We deal with this
case using the relationship between finite-dimensional irreducible representations of
U (g, e) and primitive ideals of U (g) with associated variety equal to G · e. Using
this and results of Barbasch and Vogan and Garfinkle on primitive ideals, we are
able to classify finite-dimensional irreducible modules for U (g, e) and explicitly
describe the component group action. These results are stated in Theorems 5.4
and 6.17.

In Section 7, we use inductive methods to deduce Theorem 1.2. The important
ingredients here are “Levi subalgebras” of U (g, e) as defined in [Brown and Good-
win 2013a, §3] and changing highest weight theories. The latter is dealt with in
[Brown and Goodwin 2013c] for the case of an even-multiplicity nilpotent orbit,
and we observe here that there is an analogous theory in the present situation; see
Proposition 4.6.

We note that if we were able to deal with the case where p has three parts by
other means, for example from an explicit presentation of the finite W -algebras,
then we would be able to remove the dependence on the results of Losev, Barbasch
and Vogan, and Garfinkle. It would, therefore, be interesting and useful to have a
presentation of such finite W -algebras.

2. Overview of finite W -algebras

2A. Definition of the finite W-algebra U(g, e). Let G be a reductive algebraic
group over C with Lie algebra g. The finite W -algebra U (g, e) is defined in terms
of a nilpotent element e ∈ g. By the Jacobson–Morozov Theorem, e embeds into
an sl2-triple (e, h, f ). The ad h eigenspace decomposition gives a grading on g:

(2.1) g=
⊕
j∈Z

g( j),

where g( j)={x ∈ g | [h, x] = j x}. Define the character χ : g→C by χ(x)= (x, e),
where ( · , · ) is a nondegenerate symmetric invariant bilinear form on g. Then we
can define a nondegenerate symplectic form 〈 · , · 〉 on g(−1) by 〈x, y〉 = χ([y, x]).
Choose a Lagrangian subspace l ⊆ g(−1) with respect to 〈 · , · 〉, and let m =
l⊕

⊕
j≤−2 g( j). Let mχ = {m−χ(m) | m ∈m}. The adjoint action of m on U (g)

leaves the left ideal U (g)mχ invariant, so there is an induced adjoint action of m
on Qχ = U (g)/U (g)mχ . The space of fixed points Qm

χ inherits a well-defined
multiplication from U (g), making it an associative algebra, and we define the finite
W -algebra to be

U (g, e)= Qm
χ = {u+U (g)mχ ∈ Qχ | [x, u] ∈U (g)mχ for all x ∈m}.

We also recall here that the centre Z(g) of U (g) maps into U (g, e) via the inclu-
sion Z(g)⊆U (g). Moreover, it is known that this defines an isomorphism between
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Z(g) and the centre of U (g, e); see the footnote to [Premet 2007, Question 5.1].
We use this isomorphism to identify the centre of U (g, e) with Z(g), which in
particular allows us to define integral central characters for U (g, e)-modules.

Remark 2.2. There are different equivalent definitions of the finite W -algebra in
the literature. Above we have given the Whittaker model definition, as it is the
shortest and most convenient for our purposes here.

2B. Skryabin’s equivalence and Losev’s map of primitive ideals. The left U (g)-
module Qχ is also a right U (g, e)-module, so there is a functor

S :U (g, e)-mod→U (g)-mod, M 7→ Qχ ⊗U (g,e) M,

where M is a U (g, e)-module. Skryabin [2002] showed that S is an equivalence of
categories between U (g, e)-mod and the category of Whittaker modules for e, the
category of U (g)-modules on which mχ acts locally nilpotently.

For an algebra A, let Prim A denote the set of primitive ideals of A. Losev
[2011a] showed that there exists a map

·
†
: Prim U (g, e)→ Prim U (g), I 7→ I †

with the following properties:

(1) It preserves central characters: I ∩Z(g)= I †
∩Z(g) for any I ∈Prim(U (g, e)),

under the identification of the centre of U (g, e) with Z(g).

(2) It behaves well with respect to Skryabin’s equivalence in the sense that

AnnU (g) S(M)= (AnnU (g,e) M)†

for every irreducible U (g, e)-module M .

(3) Its restriction to Prim0 U (g, e), the set of primitive ideals of U (g, e) of finite
codimension, is a surjection onto Prime U (g), the set of primitive ideals of
U (g) with associated variety equal to G · e.

(4) Its fibres restricted to Prim0 U (g, e) are C-orbits, where C is the component
group of the centralizer of e. See, for example, the introduction to [Losev
2011a] for an explanation of the action of C on Prim0 U (g, e).

2C. Highest weight theory and Losev’s map. By using the highest weight theory
for finite W -algebras developed by Brundan, Kleshchev and Goodwin in [Brundan
et al. 2008] (abbreviated [BGK] in this section), the map ·† from the previous
subsection can be explicitly calculated in terms of highest weight modules for
U (g, e) and U (g).

The key part of this highest weight theory is the use of a minimal Levi subalgebra
g0 that contains e. In [BGK, Theorem 4.3] it is proved that there is a certain
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subquotient of U (g, e) that is isomorphic to U (g0, e). Then, in [BGK, §4.2], it is
explained how a choice of a parabolic subalgebra q with Levi factor g0 leads to a
highest weight theory for U (g, e) in which U (g0, e) plays the role of the Cartan
subalgebra in the usual highest weight theory for reductive Lie algebras. This leads
to a definition of Verma modules for U (g, e) by “parabolically inducing” U (g0, e)-
modules up to U (g, e)-modules. Then [BGK, Theorem 4.5] says that these Verma
modules have irreducible heads, and that any finite-dimensional irreducible U (g, e)-
module is isomorphic to one of these irreducible heads. This gives a method to
explicitly parametrize finite-dimensional irreducible U (g, e)-modules, though a
classification of U (g0, e)-modules in general is unknown at present.

When e is of standard Levi type, the classification of U (g0, e)-modules is known.
By a theorem of Kostant [1978] and the Harish-Chandra isomorphism, we have that
U (g0, e)∼= Z(g0)∼= S(t)W0 , where t is a maximal toral subalgebra of g and W0 is
the Weyl group of g0. Hence the finite-dimensional irreducible U (g0, e)-modules
are all one-dimensional, and they are parametrized by the W0-orbits on t∗. We
choose t as specified in [BGK, §5.1], and let3∈ t∗/W0 be a W0-orbit. In [BGK] an
explicit isomorphism U (g0, e)→ S(t)W0 is given. Using this isomorphism and our
choice of q, we let M(3, q) denote the Verma module for U (g, e) induced from 3,
and we write L(3, q) for the irreducible head of M(3, q). We note that there are
“shifts” involved in the isomorphisms above and thus in the definition of M(3, q)
in [BGK, Sections 4 and 5].

Let u be the nilradical of q and let b0 be a Borel subalgebra of g0 containing t,
so that b = b0⊕ u is a Borel subalgebra of g. For λ ∈ t∗, let L(λ, b) denote the
highest weight irreducible g-module defined in terms of b, with highest weight
λ− ρ (where ρ is the half-sum of the positive roots for b).

The theorem below allows us to explicitly calculate Losev’s map ·† on primitive
ideals in terms of highest weight modules. In [BGK, §5.1] it was shown that this
theorem follows from [Miličić and Soergel 1997, Theorem 5.1] and [BGK, Conjec-
ture 5.3]. Also this last conjecture was verified in [Losev 2012, Theorem 5.1.1],
except for a technical point which was resolved in [Brown and Goodwin 2013a,
Proposition 3.10].

Theorem 2.3. Let 3 ∈ t∗/W0 and let λ ∈3 be antidominant for b0. Then

(AnnU (g,e) L(3, q))† = AnnU (g) L(λ, b).

One consequence of this theorem is that if e is not a special nilpotent element,
then U (g, e) has no finite-dimensional irreducible representations of integral central
character. This is due to results of Barbasch and Vogan [1982; 1983], which imply
that the associated variety of AnnU (g) L(λ, b) is a special nilpotent orbit if and only
if λ is integral.
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The following theorem is Conjecture 5.2 of [BGK], which follows from Conjec-
ture 5.3 of the same paper, as is explained in there.

Theorem 2.4. Let 3 ∈ t∗/W0 and let λ ∈3 be antidominant for b0. Then L(3, q)
is finite-dimensional if and only if the associated variety of AnnU (g) L(λ, b) is equal
to G · e.

3. Combinatorics of s-tables and finite W -algebras

3A. Realizations of so2n+1 and sp2n. In the case g= so2n+1, we realize g in the
following way: Let V = C2n+1 have basis {e1, . . . , en, e0, e−n, . . . , e−1}. Then
we take gl2n+1 = End(V ) as having basis {ei, j | i, j = 0,±1, . . . ,±n}, where
ei, j ∈ End(V ) is defined via ei, j (ek)= δ j,kei . We define the bilinear form ( · , · ) on
V by declaring that (ei , e j )= δi,− j . Then we set

g= so2n+1 = {x ∈ gl2n+1 | (xv,w)=−(v, xw) for all v,w ∈ V }.

Note that g has basis { fi, j | i, j = 0,±1, . . . ,±n, i + j > 0}, where fi, j =

ei, j − e− j,−i . We choose t= { fi,i | i = 1, . . . , n} as a maximal toral subalgebra, so
that t∗ has basis {εi | i = 1, . . . , n}, where εi ∈ t

∗ is defined via εi ( f j, j )= δi, j for
i, j > 0. We write 8 for the root system of g with respect to t. Let b= 〈 fi, j | i ≤ j〉
be the Borel subalgebra of upper-triangular matrices in g. Then the corresponding
system of positive roots is given by

8+ = {εi ± ε j | 1≤ i < j ≤ n} ∪ {εi | i = 1, . . . , n}.

For g = sp2n , we let V = C2n have basis {e1, . . . , en, e−n, . . . , e−1}. Then we
realize gl2n = End(V ) as having basis {ei, j | i, j = ±1, . . . ,±n}, where ei, j ∈

End(V ) is defined via ei, j (ek)= δ j,kei . We define the bilinear form ( · , · ) on V by
declaring that (ei , e j )= sign(i)δi,− j , and set

g= sp2n = {x ∈ gl2n | (xv,w)=−(v, xw) for all v,w ∈ V }.

Then g has basis { fi, j | i, j = ±1, . . . ,±n, i + j ≥ 0}, where fi, j = ei, j −

sign(i) sign( j)e− j,−i . We choose t = { fi,i | i = 1, . . . , n} as a maximal toral
subalgebra, so that t∗ has basis {εi | i = 1, . . . , n}, where εi ∈ t∗ is defined via
εi ( f j, j )= δi, j for i, j > 0. We write 8 for the root system of g with respect to t.
We choose the Borel subalgebra b= 〈 fi, j | i ≤ j〉 of upper-triangular matrices in g.
Then the corresponding system of positive roots is given by

8+ = {εi ± ε j | 1≤ i < j ≤ n} ∪ {2εi | i = 1, . . . , n}.

3B. Standard Levi nilpotent elements and symmetric pyramids. Recall from the
introduction that we are considering nilpotent orbits in g that are special and standard
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Levi, but not even-multiplicity. The Jordan type for such a nilpotent orbit is of the
form

(3.1) p= (p2
1 ≤ · · · ≤ p2

d−1 < p0 ≤ p2
d ≤ · · · ≤ p2

r ).

Moreover, pi must be odd for all i ≥ d when g= so2n+1 or pi must be even for all
i < d when g = sp2n . As explained in the introduction, the condition that p has
only one part of odd multiplicity is due to the standard Levi assumption, and the
parity conditions are due to the assumption that the corresponding orbit is special.

Also recall from the introduction the definition of the symmetric pyramid P for p.
We form a diagram K called the coordinate pyramid for p by filling the boxes of P
with 1, . . . , n,−n, . . . ,−1 if g= sp2n or with 1, . . . , n, 0,−n, . . . ,−1 if g= so2n ,
across rows from top to bottom. For example, for g= sp18 and p= (22, 4, 52), we
have

K =

–2 –1

–7 –6 –5 –4 –3

8 9 –9 –8

3 4 5 6 7

1 2

We let col(i) denote the x-coordinate of the centre of the box of K that contains i .
However, we use row(i) to denote the row of K that contains i when we label the
rows of K by 1, . . . , r, 0,−r, . . . ,−1 from top to bottom, so that pi is the length
of row i .

We define e ∈ g by

(3.2) e =
∑
i, j

fi, j ,

where the sum is over all adjacent pairs i j in K , so that e is in the nilpotent
G-orbit with Jordan type p.

We also use K to conveniently define many of the objects required for the
definition of U (g, e) and the highest weight theory.

Let h =
∑n

i=1− col(i) fi,i ; then (e, h, f ) is an sl2-triple for some f ∈ g. Fur-
thermore, the grading from (2.1) on g is given by g(k)= 〈 fi, j | col( j)−col(i)= k〉.
For our Lagrangian subspace of g(−1), we let

l= 〈 fi, j | col(i)− col( j)= 1, row(i) < row( j)〉.

Then we have that m= l⊕〈 fi, j | col(i)− col( j) > 1〉, and we use these choices of
e and m to form the finite W -algebra U (g, e) as in Section 2A.
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We take g0 = 〈 fi, j | row(i) = row( j)〉. So g0 is a minimal Levi subalgebra
which contains e, and e is a regular nilpotent element of g0. In the case g= so2n+1,
we have

g0 ∼= sop0 ⊕

r⊕
i=1

glpi

and in the case g= sp2n we have

g0 ∼= spp0
⊕

r⊕
i=1

glpi
.

We choose q=〈 fi, j | the row containing i is above or equal to the row containing j〉.
Then q is a parabolic subalgebra of g with Levi factor g0. Let b0= b∩g0, so that b0

is a Borel subalgebra of g0 that satisfies b= b0⊕ u, where u is the nilradical of q.

3C. Tables and s-tables. We use the definitions and notation regarding frames,
tables, s-frames and s-tables from [Brown and Goodwin 2013a, §4]. Below we
explain how these are used to label highest weight modules for U (g, e).

For this purpose, we let Wr be the Weyl group of type Br , which acts on
{0,±1, . . . ,±r} in the natural way. We denote the standard generators of Wr by
si = (i, i + 1)(−i,−i − 1), for i = 1, . . . , r − 1. Let Sr be the subgroup of Wr

generated by si for i = 1, . . . , r − 1.
Given σ ∈Wr , we define σ · P to be the diagram obtained from P by permuting

rows according to σ , so that σ ·P is an s-frame (recall that an s-frame is a collection
of connected rows of boxes in the plane arranged symmetrically around the origin).
We recall that by an s-table with frame σ · P , we mean a skew-symmetric (with
respect to the origin) filling of σ · P with complex numbers. Then we define
sTab(σ ·P) to be the set of s-tables with frame σ ·P such that all entries are integers
if g= sp2n , and either all entries are in Z or all entries are in 1

2 +Z if g= so2n+1.
We let σ · K be the s-table obtained from K by permuting rows according to σ .

Now given A ∈ sTab(σ · P), we define λA =
∑n

i=1 aiεi , where ai is the entry of A
in the same box as i in σ · K . In this way we get an identification of sTab(σ · P)
with the set of integral weights in t∗; we write t∗Z for the set of integral weights of t.

The row equivalence class of an s-table is the set of s-tables that can be created by
permuting entries within rows. We let sRow(σ ·P) denote the set of row equivalence
classes of sTab(σ · P). Then sRow(σ · P) is identified naturally with t∗Z/W0, where
W0 is the Weyl group of g0. Let sTab≤(σ · P) denote the elements of sTab(σ · P)
that have nondecreasing rows. Then every element of that sRow(σ · P) contains a
unique element of sTab≤(σ · P).

We label the rows of σ · K with 1, . . . , r, 0,−r, . . . ,−1 from top to bottom.
Now, we define qσ to be generated by the by fi j for which the row of σ · K in
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which i appears is above or equal to the row containing j . Then qσ is a parabolic
subalgebra of g with Levi factor g0, so we can use it to define the irreducible highest
weight modules L(3, qσ ), for 3 ∈ t∗/W0 as defined in Section 2C.

Given 3 ∈ t∗Z/W0, there is a unique A ∈ sTab≤(σ · P) whose row equivalence
class A ∈ sRow(P) is identified with 3 as above. We let Lσ (A) denote L(3, qσ ).

Let uσ be the nilradical of qσ , and define bσ = b0 ⊕ uσ , which is a Borel
subalgebra of g. We write Lσ (λA) for the irreducible highest weight U (g)-module
with respect to bσ , with highest weight λA−ρσ , where ρσ is the half-sum of positive
roots for bσ .

Now Theorem 2.3 can be restated in our present notation as follows:

Theorem 3.3. Let σ ∈ Wr and A ∈ sTab≤(σ · P). Then (AnnU (g,e) Lσ (A))† =
AnnU (g) Lσ (λA).

We are mainly interested in the case where σ = 1. Here we have qσ = q, and we
write L(A) instead of L1(A) and L(λA) instead of L1(λA) for A ∈ sTab(P).

Thanks to Theorem 3.3, our goal of classifying the finite-dimensional irreducible
U (g, e)-modules and understanding the component group action on these modules
can be broken down to answering the following questions:

(1) For which A ∈ sTab≤(P) is the associated variety of AnnU (g) L(λA) equal to
G · e?

(2) Given A∈ sTab≤(P) such that L(A) is finite-dimensional, which B∈ sTab≤(P)
satisfy AnnU (g) L(λA)= AnnU (g) L(λB)?

In the case that p has three parts, we answer these two questions in Sections 5 and 6.
The key ingredients in answering the first question are the Robinson–Schensted
and Barbasch–Vogan algorithms explained in Section 4A and Section 4C. For the
second question, we use Vogan’s τ -equivalence on integral weights of g, which is
explained in Section 4D.

In moving from the three row case to the general case, a key role is played by the
different choices of highest weight theories determined by the different parabolic
subalgebras qσ for σ ∈Wr . This dependence follows easily from the results for the
case of even-multiplicity nilpotent elements established in [Brown and Goodwin
2013c], which hold in the present situation; the key result for us is Proposition 4.6.
We also require the explicit description of the action of the component group on the
set of finite-dimensional irreducible U (g, e)-modules in terms of s-tables, which
is given in Proposition 7.1. The proof of Theorem 1.2 for the general case is then
dealt with in Section 7B.

3D. The component group. Recall that C denotes the component group of the
centralizer of e in G. Here we take G to be the adjoint group of g, so G is either
SO2n+1 or PSp2n .
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A specific realization of C is given as follows: Let 0 < pi1 < · · · < pis be the
maximal distinct parts of p such that pi j 6= p0 and pi j is odd (respectively even)
when g= so2n+1 (respectively sp2n); by maximal, we mean that if pk = pi j , then
k ≤ i j . Define the matrices c1, . . . , cs corresponding to pi1, . . . , pis for pik 6= p0

by setting

ck =
∑

−n≤i, j≤n
col(i)=col( j)

row(i)=ik
row( j)=−ik

sign(col(i))(ei, j + e j,i )+
∑
−n≤i≤n

row(i) 6=±ik

ei,i .

Then one can calculate that ck centralizes e. Furthermore, the argument used in
[Brown 2011, Section 6] can be adapted to show that the images of c1, . . . , cs in C
generate C ∼= Zs

2.
As mentioned in Section 2B, there is an action of C on Prim U (g, e), and thus

on isomorphism classes of irreducible modules, and, as explained in [Brown and
Goodwin 2013a, §2.3], this can be seen as “twisting” modules by elements of C
(up to isomorphism). Given an irreducible U (g, e)-module L and b ∈ C , we write
b · L for the twisted module; we note that this is a minor abuse of notation as b · L
is only defined up to isomorphism.

4. Some combinatorics for s-tables

4A. The Robinson–Schensted algorithm. We use the formulation of the Rob-
inson–Schensted algorithm from [Brown and Goodwin 2013a, §4]. We denote the
Robinson–Schensted algorithm by RS and recall that it takes as input a word of
integers (or more generally complex numbers) or a table and outputs a tableau.

There are two lemmas about the Robinson–Schensted algorithm that we use
repeatedly in the sequel. We state them below for convenience; they can be found
in [Fulton 1997, §3]. For a word w, we define `(w, k) to be the maximum possible
sum of the lengths of k disjoint weakly increasing subsequences of w, and C(w, k)
to be the maximum possible sum of the lengths of k disjoint strictly decreasing
subsequences of w. We write part(T ) to denote the partition underlying a tableau T .

Lemma 4.1. Letw be a word of integers and let q= (q1≥ · · ·≥ qn)= part(RS(w)).
Then for all k ≥ 1, `(w, k)= q1+ · · ·+ qk .

Lemma 4.2. Let w be a word of integers and let qT
= (q∗1 ≥ · · · ≥ q∗n ) be the dual

partition to q = part(RS(w)). Then for all k ≥ 1, C(w, k)= q∗1 + · · ·+ q∗k .

An elementary fact about the Robinson–Schensted algorithm, required later, is
stated in Lemma 4.3 below; it is easily deduced from Lemma 4.1. Suppose u, w are
words of integers and a, b are integers such that a> b; then we say the transposition



REPRESENTATION THEORY OF TYPE B AND C STANDARD LEVI W -ALGEBRAS 43

of the word uabw to ubaw is a larger-smaller transposition. Also, we refer the
reader to [Fulton 1997, §2] for the definition of Knuth equivalences.

Lemma 4.3. If u and w are words of integers and w can be obtained from u
by a sequence of Knuth equivalences and larger-smaller transpositions, then
part(RS(u))≤ part(RS(w)).

The following theorem extends Theorem 4.6 of [Brown and Goodwin 2013a]
and is important for us later. In the statement, P is the symmetric pyramid for
the partition p, as in the previous section. Also, recall we defined the notion of a
justified row-equivalent to column-strict s-table in the introduction.

Theorem 4.4. Let A, B ∈ sTab≤(P). Then:

(i) A is justified row-equivalent to column-strict if and only if part(RS(A))= p.

(ii) If part(RS(A))= p, then RS(A)= RS(B) if and only if A = B.

Proof. Part (i) can be proved in the same way as [Brown and Goodwin 2013a,
Theorem 4.6]. We just need to check the proof still holds if A has an odd number
of rows and the middle row of A is not A’s longest row. The only thing to check is
that there is a sequence of row swaps that transforms A into a tableau such that the
convexity conditions required by Lemma 4.9 of the same reference are satisfied,
which is clear.

To prove (ii), we simply note that each row swap from the sequence of row swaps
from (i) which turns A into a tableau is invertible. �

Lastly in this section we give the following theorem, which is important later on:

Theorem 4.5. Let A, B∈sTabc(P). Suppose that AnnU (g) L(λA)=AnnU (g) L(λB).
Then A = B.

Proof. First, we need to briefly explain some of the results of Garfinkle [1990;
1993]. Section 2 of [Garfinkle 1990] defines the map L : Wn → Domn , where
Domn denotes the set of domino tableaux for Wn (see the appendix to this paper
for more information on domino tableaux). Section 5 of the same work defines the
map S :Domn→ sDomn , where sDomn denotes the set of domino tableaux for Wn

of special shape (a domino tableau has special shape if its underlying partition is
the Jordan type of a special nilpotent element of g). Furthermore, S restricted to
sDom is the identity map.

For λ ∈ t∗, let Primλ U (g) denote the primitive ideals of U (g) of central char-
acter λ. Suppose λ ∈ t∗ is antidominant and integral. Now, Theorem 3.5.11
of [Garfinkle 1993] states that the map cl : Primλ U (g) → sDom(n) given by
cl(Ann L(wλ))= S(L(w)) is a bijection.

Next we need to know that Garfinkle’s map L gives the same result as the
Robinson–Schensted algorithm. This is provided in the appendix by Proposition A.4,
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which is simply a rephrasing of [van Leeuwen 1996, Proposition 4.2.3]. More specif-
ically, the Robinson–Schensted algorithm outputs a tableau. There is a canonical
way to associate a tableau that has been outputted by the Robinson–Schensted
algorithm with a domino tableau (namely the algorithm DT from the appendix).
Now, Proposition A.4 says that if we identify the output of the Robinson–Schensted
algorithm with a domino tableau, then the result is the same as we would get from
Garfinkle’s L algorithm.

Now, to prove the theorem, note that since A and B are justified row-equivalent
to column-strict, by Theorem 4.4, part(RS(A))= part(RS(B))= p. Since

AnnU (g) L(λA)= AnnU (g) L(λB),

the above discussion allows us to deduce that RS(A)= RS(B). Now, the theorem
follows from Theorem 4.4. �

4B. Row swapping. In the proof of Theorem 4.4 above, we have mentioned the
row swapping operations si? on tables, as defined in [Brown and Goodwin 2013a,
§4;2013c, §4]. An important ingredient for the definition of these row swapping
operations is the notion of best fitting as defined in [Brown and Goodwin 2013a,
§4], which we use repeatedly in the following.

We also require the operations si? for s-tables, and we use the notation from
[Brown and Goodwin 2013c, §5]. Recall that for σ ∈ Wr and an s-table A ∈
sTab≤(σ · P), either si ? A is undefined or it is an element of sTab≤(siσ · P).
These operations can be extended to operations by elements of Sr ; the proof of
Proposition 5.5(i) of the same reference goes through in our situation to show that
this is well defined.

The following proposition is a version of [Brown and Goodwin 2013c, Proposi-
tion 5.3(ii)] in the present setting, and its proof adapts immediately:

Proposition 4.6. Let σ ∈Wr , τ ∈ Sr and A ∈ sTab≤(σ · P). Suppose that τ ? A is
defined. Then Lσ (A)∼= Lτσ (τ ? A).

Also, we state the following lemma, as it is key in the proof of Theorem 1.2. It is
[Brown and Goodwin 2013a, Lemma 5.11], adapted to our situation, and the same
proof holds. In the statement, A1

r denotes the table formed by rows 1 to r of A.

Lemma 4.7. For A ∈ sTab≤(P), suppose that L(A) is finite-dimensional, and let
τ ∈ Sr . Then A1

r is justified row-equivalent to column-strict and τ ? A is defined.

4C. The Barbasch–Vogan algorithm. The Barbasch–Vogan algorithm [1982] takes
as input λ, an integral weight for a classical Lie algebra of type B or C, and outputs
BV(λ), the Jordan type of the associated variety of AnnU (g) L(λ). Below we recall
the description of it given in [Brown and Goodwin 2013a, §5.2]. We note that there
is a version of it for type D, but we do not require that here.
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We need to define the content of a partition. Let q = (q1 ≤ q2 ≤ · · · ≤ qm) be a
partition. By inserting 0 at the beginning if necessary, we may assume that m is
odd. Let (s1, . . . , sk), (t1, . . . , tl) be such that

{q1, q2+ 1, q3+ 2, . . . , qr + r − 1} = {2s1, . . . , 2sk, 2t1+ 1, . . . , 2tl + 1}

(as unordered lists). Now, we define the content of q to be the unordered list

content(q)= {s1, . . . , sk, t1, . . . , tl}.

Algorithm:

Input: λ=
n∑

i=1
aiεi an integral weight in t∗.

Step 1: Calculate q = part(RS(a1, . . . , an,−an, . . . ,−a1)).

Step 2: Calculate content(q).
Let (u1 ≤ · · · ≤ u2k+1) be the sorted list with the same entries as content(q).
For i = 1, . . . , k+ 1, let si = u2i−1.
For i = 1, . . . , k, let ti = u2i .

Step 3: Form the list (2s1+ 1, . . . , 2sk+1+ 1, 2t1, . . . , 2tk).
In either case, let (v1 < · · ·< vk) be this list after sorting.

Output: BV(λ)= q ′ = (v1, v2− 1, . . . , v2k+1− 2k).

We note that the output partition q ′ (potentially with an extraneous zero at the
beginning) is the Jordan type of a special nilpotent orbit of g; this was proved in
[Barbasch and Vogan 1982].

For our purposes in this paper, we also need a modified version of the algo-
rithm to use in the case g = so2n+1. This modified version is denoted by BV′. It
works in exactly the same way as BV, except that in Step 1 instead of calculating
RS(a1, . . . , an,−an, . . . ,−a1) we calculate RS(a1, . . . , an, 0,−an, . . . ,−a1).

In Corollary A.7, in the appendix to this paper, it is proved that

BV(λ)= BV′(λ)

for λ ∈ t∗ in the case g= so2n+1. This proof of this is entirely combinatorial and
may be of independent interest so it is has been placed in an appendix. In light
of this, we redefine BV(λ), so that it is the old BV(λ) in the case g= sp2n and is
BV′(λ) in the case g= so2n+1.

For convenience of reference later in this paper we state the following theorem
from [Barbasch and Vogan 1982]:

Theorem 4.8. Let λ ∈ t∗Z. Then the associated variety to AnnU (g) L(λ) is equal to
the nilpotent G-orbit with Jordan type given by BV(λ).
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4D. The τ -equivalence. The Barbasch–Vogan algorithm is used to find the associ-
ated variety of AnnU (g)(L(λ)); however, in order to determine the action of the com-
ponent group we need to be able to determine when AnnU (g) L(µ)=AnnU (g) L(λ).
This can be done using the τ -equivalence. This is an equivalence relation on the
set of integral weights of t.

Recall our realization of g and its Borel subalgebra b defined in Section 3A, and
recall that 8+ is the system of positive roots for g defined from b and t. Let 1
be the base of 8 corresponding to 8+. Also, for α ∈ 8, let sα ∈ W denote the
corresponding reflection in the Weyl group W of g with respect to t. For w ∈W , let

S(w)= {α ∈8+ | wα 6∈8+}.

Now let
τ(w)= S(w)∩1.

Suppose that λ ∈ t∗ is an integral antidominant weight. Let α ∈1 and w ∈W .
Suppose that α ∈ τ(w−1) satisfies τ(w−1sα) 6⊆ τ(w−1). Then

AnnU (g) L(sαwλ)= AnnU (g) L(wλ)

by [Joseph 1977, Theorem 5.1]; see also [Barbasch and Vogan 1982, Proposition 15].
With this in mind, we define the τ -equivalence on integral weights to be the
equivalence relation generated by declaring that

λ1 ∼
τ λ2

if there exist an antidominant integral weight λ′, and elements w ∈W and α ∈1
such that λ1 =wλ

′, λ2 = sαwλ′ and τ(w−1sα) 6⊆ τ(w−1). In fact, the next theorem
states that the τ -equivalence is a complete invariant on primitive ideals:

Theorem 4.9 [Garfinkle 1993, Theorem 3.5.9]. Let λ,µ ∈ t∗ be integral weights.
Then λ∼τ µ if and only if AnnU (g) L(λ)= AnnU (g) L(µ).

We identify the weight
∑n

i=1 aiεi ∈ t
∗ with the list (a1, . . . , an). Then one can

check that the τ -equivalence is generated by the following three relations:

(R1) (a1, . . . , an)∼
τ (b1, . . . , bn) if (a1, . . . , an)∼

K (b1, . . . , bn);

(R2) (a1, . . . , an)∼
τ (a1, . . . , an−1,−an) if |an−1|< |an|;

(R3) (a1, . . . , an)∼
τ (a1, . . . , an−2, an, an−1) if an−1an < 0.

In (R1), ∼K denotes Knuth equivalence, as defined in [Fulton 1997, §2].
The references for the results in this section often only deal with the case of

regular weights. However, [Jantzen 1983, Lemma 5.6] implies that they are valid
for nonregular weights too.
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5. The three row case for g = sp2n

Let g= sp2n and suppose that p has three parts. Then we write p= (l2,m), where
l must be even if l < m. In this section we classify the finite-dimensional U (g, e)-
modules, and we use the τ -equivalence to describe the component group action on
these modules.

Let C be the component group of e, so

C =
{
〈c〉 ∼= Z2 if l is even and l 6= m,
1 otherwise.

The lemma below deals with the (easy) cases where l is even and l ≤ m, or l is
odd (in which case l > m):

Lemma 5.1. Suppose that A ∈ sTab≤(P) and l is even and l ≤m, or l is odd. Then
L(A) is finite-dimensional if and only if A is justified row-equivalent to column-
strict. Furthermore, in the case that l is even and l<m, if L(A) is finite-dimensional,
then c · L(A)∼= L(A).

Proof. First, we consider the case where l is even and l ≤ m. So content(l, l,m)=
(l/2, l/2, m/2+ 1). It is easy to see that the only partition with this content is
(l, l,m). Therefore by Theorem 2.4 and Theorem 4.4 we have L(A) is finite-
dimensional if and only part(RS(A)) = (l, l,m) if and only if A is justified row-
equivalent to column-strict. Now the statement about the action of C follows
from 4.5.

The case where l is odd is similar. �

So we are left to consider the case where l > m and l is even. Below we explain
the action of c on the s-tables corresponding to finite-dimensional U (g, e)-modules.
We need to use the definition of the ]-special element of a list of integers, which is
given in [Brown 2011, §6].

Let B ∈ sTab≤(P ′) be an s-table for some s-frame P ′ with an even number of
rows. If the ]-element of the upper-middle row of B is defined, then we let c′B
denote the s-table B ′ ∈ sTab≤(P ′) where all the rows of B ′ are the same as B,
except that in the upper-middle row the ]-element is replaced by its negative, and
the corresponding change to the lower-middle row is also made; otherwise we say
the c′B is undefined.

Let a1, . . . , al be the entries in the top row, and let b1, . . . , bm/2 be the entries in
the first half of the middle row of A. Let A′ be the s-table with 4 rows of lengths
l,m/2,m/2, l, where the top row has entries a1, . . . , al and the row below the top
row has entries b1, . . . , bm/2.

The rows of A′ are labelled by 1, 2,−2,−1 from top to bottom. We have the
row swapping operators si from Section 4B acting on A′; for convenience in this
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section we do not include the ? in the notation. Let B = s1c′s1 A′, provided that it
is defined; otherwise, c · A is undefined.

Let d1, . . . , dl be the entries in the top row of B and let e1, . . . , em be the entries
in the row below the top row of B. If e1, . . . , em are not all negative, then we say
that c · A is undefined. Otherwise we declare that c · A is the s-table with row lengths
(l,m, l) where the top row has entries d1, . . . , dl and the middle row has entries
e1, . . . , em,−em, . . . ,−e1.

For example, if

A =

–5 –4 –3 –2

–1 1

2 3 4 5

then A′ =

–5 –4 –3 –2

1

–1

2 3 4 5

So,

s1 A′ =

–2

–5 –4 –3 1

–1

2

3 4 5
and c′s1 A′ =

–2

–4 –3 1 5

–5

2

–1 3 4

Hence

s1c′s1 A′ =

–4 –3 –2 5

1

–1

–5 2 3 4

so c · A =

–4 –3 –2 5

–1 1

–5 2 3 4

The next lemma follows from [Brown and Goodwin 2013a, Remark 5.8]:

Lemma 5.2. Let A ∈ sTab≤(P) and suppose c · A is defined. Then word(A) ∼τ

word(c · A).

Our next goal is to prove that c · A is defined when A corresponds to a finite-
dimensional U (g, e)-module:

Lemma 5.3. Let A ∈ sTab≤(P). If L(A) is finite-dimensional, then c · A is defined.

Proof. Let a1, . . . , al be the top row of A and let b1, . . . , bm/2 be the first half
of the middle row of A. Since L(A) is finite-dimensional, we must have that
content

(
part(RS(A))

)
= content(l, l,m) = (m/2, l/2, l + 2/2). This gives that
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part(RS(A)) must be (l, l,m), (l+1, l−1,m), or (l, l−1,m+1). The last of these
we can rule out by Lemma 4.1. Thus, part(RS(A)) = (l, l,m) or (l + 1, l − 1,m).
In either case, we note that s1 A′ is defined; otherwise we would have for some
i ≥ 0 that al/2−i < bm/2−i , in which case we have the increasing subword

a1, . . . , al/2−i , bm/2−i , . . . , bm/2,−bm/2, . . . ,−bm/2−i ,−al/2−i , . . . ,−a1

of length l + 2, which contradicts Lemma 4.1.
Now, suppose that part(RS(A)) = (l, l,m). Then by Theorem 4.4, A is row-

equivalent to column-strict, so we have ai+am−i+1>0 for all i . Let a′1≤· · ·≤a′m be
the elements from the top row that best fit over b1, . . . , bm/2,−bm/2, . . . ,−b1. Let
a′′1 , . . . , a′′l−m be the remaining elements of the top row. Then, for i = 1, . . . ,m/2
we have that −a′m−i+1 < bi < a′i . Since A is row-equivalent to column-strict,
we also have that a′′i + a′′l−m+1−i > 0 for all i . This shows that the ]-element of
a′′1 , . . . , a′′l−m, b1, . . . , bm/2, a′m/2+1, . . . , a′m is defined and is greater than or equal to
0. It also implies that the elements of (a′′1 , . . . , a′′l−m, b1, . . . , bm/2, a′m/2+1, . . . , a′m)

]

that best fit under a′1, . . . , a′m/2 are all negative. Thus c · A is defined.
Now, suppose that part(RS(A)) = (l + 1, l − 1,m). By [Brown and Goodwin

2013a, Lemma 5.6] the ]-element of row 2 of s1 A′ is defined; otherwise, we could
find an increasing subword of length l + 2. Also, the ]-element must be negative;
otherwise, we could not find an increasing subword of length l + 1 in word(s1 A′),
since the middle two rows of s1 A′ would then be column-strict.

Next, we need to prove that the action of s1 is defined on c′s1 A′. If it was not,
then we could find two disjoint increasing strings of length l + 1 in word(c′s1 A′),
which is a contradiction since word(c′s1 A′) is τ -equivalent to word(A); compare
Theorem 4.9.

Finally, we need to argue why the elements of row 2 of c′s1 A′ that best fit under
row 1 are all negative. If one the best-fitting elements, say b, was positive, then we
could form the decreasing chain a, b,−b,−a, where a is any element of row 1 of
A′ that is larger than b. This contradicts the fact that part(RS(s1c′s1 A′))= (l, l,m)
or (l + 1, l − 1,m). �

We are now ready for the main theorem of this section:

Theorem 5.4. Suppose that l is even and l >m, and let A ∈ sTab≤(P). Then L(A)
is finite-dimensional if and only if A is C-conjugate to an s-table that is justified
row-equivalent to column-strict. Furthermore, if L(A) is finite-dimensional, then
c · L(A)∼= L(c · A).

Proof. From the proof of the previous lemma we know that if L(A) is finite-
dimensional, then part(RS(B)) is (l, l,m) or (l + 1, l − 1,m). In the former case,
A is row-equivalent to column-strict by Theorem 4.4. In the latter case we can see
that c · A is row-equivalent to column-strict immediately from Lemma 5.3 and the
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following observation: Suppose B ∈ sTab≤(P) is such that part(RS(B))= (l, l,m)
or (l+1, l−1,m) and the middle two rows of B ′ are row-equivalent to column-strict.
Then part(RS(B))= (l, l,m). Indeed, if we left-justify the top two rows of B ′ and
right-justify the bottom two rows then the resulting diagram is column-strict, so it
is impossible to find an increasing chain of length l + 1.

Now we prove the statement about the action of c. Suppose that L(A) is finite-
dimensional and assume that part(RS(A))= (l, l,m). We have that c ·L(A)∼= L(B)
for some B. If part(RS(B)) = (l, l,m), then A = B by Theorem 4.4, and in this
case it follows that we have c · A = B. If part(RS(B)) = (l + 1, l − 1,m), then
part(RS(c · B)) = (l, l,m). So by Lemma 5.2, L(c · B) and L(A) are associated
to the same primitive ideal of U (g). Now from this and the fact that c · B and A
are both row-equivalent to column-strict, we can deduce, using Section 2B and
Theorem 4.5, that A = c · B. �

Last in this section we give the following lemma, which we need in the proof of
Theorem 1.2:

Lemma 5.5. If A ∈ sTab≤(P) is row-equivalent to column-strict, then word(c · A)
can be obtained from word(A) through a series of Knuth equivalences and larger-
smaller transpositions. In particular, part(RS(A))≤ part(RS(c · A)).

Proof. This is proven in [Brown and Goodwin 2013a, Remark 5.8]. �

6. The three row case for g = so2n+1

Let g= so2n and suppose that p has three parts. Then we write p= (l2,m), where
l must be odd if l > m. In this section, we classify the finite-dimensional U (g, e)-
modules, and we use the τ -equivalence to describe the component group action on
these modules.

Let C be the component group of e, so

C =
{
〈c〉 ∼= Z2 if l is odd and l 6= m,
1 otherwise.

The lemma below deals with the (easy) cases where l >m (in which case l must
be odd) or l ≤ m and is even. The proof is very similar to that of Lemma 5.1, so it
is omitted.

Lemma 6.1. Suppose that l is even, or l is odd and l ≥m. Let A ∈ sTab≤(P). Then
L(A) is finite-dimensional if and only if A is justified row-equivalent to column-
strict. Furthermore, in the case that l is odd and l >m, if L(A) is finite-dimensional,
then c · L(A)∼= L(A).

So we are left to consider the case where l is odd and m > l; in this case, we let
l = 2p+ 1 and m = 2q+ 1, where q > p. In the next few paragraphs we set up the
combinatorics to describe the action of c on elements of sTab≤(P) corresponding
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to finite-dimensional representations.
Let A ∈ sTab≤(P). Let a1, . . . , a2p+1 be the top row of A and let b1, . . . , bq , 0,
−bq , . . . ,−b1 be the middle row. From A, we define two tables, AL+ and AL− , in
the following manner: AL+ is the left-justified three row table with row 1 equal to
a1, . . . , ap+1, row 2 equal to b1, . . . , bq , and row 3 equal to −a2p+1, . . . ,−ap+2.
AL− is the left-justified three row table with row 1 equal to a1, . . . , ap, row 2 equal
to b1, . . . , bq , and row 3 equal to −a2p+1, . . . ,−ap+1.

We define the C-action on A in the following manner depending on the cases
below. Here we use the row swapping operations for tables mentioned in Section 4B,
and we omit the ? in the notation for convenience.

Case 1: If AL− is row-equivalent to column-strict, then we define c · A= B, where
B is the unique s-table in sTab≤(P) such that BL+

= s2s1s2 AL− .

Case 2: If AL− is not row-equivalent to column-strict but AL+ is row-equivalent to
column-strict, then we define c · A= B, where B is the unique s-table in sTab≤(P)
such that BL−

= s2s1s2 AL+ , provided that such an s-table exists; note that B exists
precisely when s1s2 AL+ contains only negative numbers in row 2, and this will not
happen if AL− is row-equivalent to column-strict. If such a B does not exist, then
we say that c · A is not defined.

Case 3: If neither AL− nor AL+ is row-equivalent to column-strict, then we say
that c · A is undefined.

For example, suppose that

A =

–6 –5 2

–3 –1 0 1 3

–2 5 6

Then

AL+
=

–6

–3 –1

–2 5

and AL−
=

–6 –5

–3 –1

–2

Since AL− is column-strict, we are in Case 1. Now

s2s1s2 AL−
=

–5

–6 –3

–2 –1
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so

c · A =

–5 1 2

–6 –3 0 3 6

–2 –1 5

We need to prove that word(A) is τ -equivalent to word(c · A). To do this, we
need the following lemmas:

Lemma 6.2. Let a, b1, . . . , bm be such that a> 0, b1 < · · ·< bm < 0 and−a< bm .
Then

(a, b1, . . . , bm)∼
τ (b1, , . . . , bm,−a).

Proof. By applying the Robinson–Schensted algorithm we see that (a, b1, . . . , bm)

is Knuth-equivalent to (b1, . . . , bm−1, a, bm). By applying the relations (R3) then
(R2) from the definition of the τ -equivalence, we get that this is τ -equivalent to
(b1, . . . , bm,−a). �

For positive integers k,m, we define an operation LTk,m on certain lists. Suppose
that (a1, . . . , al, b1, . . . , bm) is a list such that l ≥ 2k−1, m ≥ k, bm < 0, al−k > 0,
and the table

(6.3) B =
al−2k+2 al−2k+1 . . . al−k

b1 b2 . . . bk−1 bk . . . bm

−al −al−1 . . . −al−k+2 −al−k+1

is row-equivalent to column-strict with increasing rows. We define

LTk,m(a1, . . . , al, b1, . . . , bm)

to be the list (a1, . . . , al−2k+1) concatenated with word(B). For example, if A ∈
sTab≤(P) is justified row-equivalent to column-strict, P has row lengths (2p+
1, 2q + 1, 2p+ 1), and

word(A)=(a1, . . . ,a2p+1,b1, . . . ,b2q+1,0,−b2q+1, . . . ,−b1,−a2p+1, . . . ,−a1),

then LTp+1,2q+1(a1, . . . , a2p+1, b1, . . . , b2q+1)= word(AL−).
We would also like to explicitly describe LT−1

k,m . This will be defined on lists
of the form (a1, . . . , al, b1, . . . , bm, c1, . . . , ck), where m ≥ k, l ≥ k − 1, ck < 0,
−ck > al , bm < 0, and the following table is row-equivalent to column-strict with
increasing rows:

(6.4) B =
al−k+2 al−k+1 . . . al

b1 b2 . . . bk−1 bk . . . bm

c1 c2 . . . ck−1 ck
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Now

LT−1
k,m(a1, . . . ,al, c1, . . . , ck,b1, . . . ,bm)=(a1, . . . ,al,−ck, . . . ,−c1,b1, . . . ,bm).

We say that LT−1
k,m(a1, . . . , al, b1, . . . , bm, c1, . . . , ck) is undefined if any of the

above conditions is not met.

Lemma 6.5. Let (a1, . . . , al, b1, . . . , bm) be a list on which LTk,m is defined. Then

(a1, . . . , al, b1, . . . , bm)∼
τ LTk,m(a1, . . . , al, b1, . . . , bm).

Proof. We may assume that l = 2k− 1. We proceed by induction on k. The case
k = 1 is given by Lemma 6.2. Now, since

(6.6)
a1 a2 . . . ak−1

b1 b2 . . . bk−1 bk . . . bm

−a2k−1 −a2k−2 . . . −ak+1 −ak

is row-equivalent to column-strict, we also have that

a3 a4 . . . ak

b1 b2 . . . bk−2 bk−1 . . . bm

−a2k−1 −a2k−2 . . . −ak+2 −ak+1

is row-equivalent to column-strict. So by induction (a1, . . . , al, b1, . . . , bm) is τ -
equivalent to LTk−1,m(a1, . . . , al)= (a1, . . . , ak, b1, . . . , bm,−a2k−1, . . . ,−ak+1).
Now let bi1, . . . , bik−1 be the elements of b1, . . . , bm that best fit over −a2k−1, . . . ,

−ak+1. Thus

(6.7) (a1, . . . , ak, b1, . . . , bm,−a2k−1, . . . ,−ak+1)

∼
K (a1, . . . , ak, bi1, . . . , bik−1, a′1, . . . , a′m),

where ∼K denotes Knuth equivalence and (a′1, . . . , a′m) is the sorted list consisting
of −a2k−1, . . . ,−ak+1 and {bl | l 6= i j for j = 1, . . . , k− 1}. Now, from (6.6) we
can see that bi1, . . . , bik−1 best fits under a1, . . . , ak−1, so

(a1, . . . , ak, bi1, . . . , bik−1, a′1, . . . , a′m)

∼
K (a1, . . . , ak−1, bi1, . . . , bik−1, ak, a′1, . . . , a′m).

We also get from (6.6) that a′m =−bm , so by Lemma 6.2 we have that

(a1, . . . , ak−1, bi1, . . . , bik−1, ak, a′1, . . . , a′m)

∼
τ (a1, . . . , ak−1, bi1, . . . , bik−1, a′1, . . . , a′m,−ak).

Finally we can use the Knuth equivalence in (6.7) to get that this is Knuth-equivalent
to

(a1, . . . , ak−1, b1, . . . , bm,−a2k−1, . . . ,−ak). �
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Lemma 6.8. Suppose that we are given a skew-symmetric word

w = (a, b1, . . . , bm, c, 0,−c,−bm, . . . ,−b1,−a)

such that part(RS(a, b1, . . . , bm, c)) = (m, 1, 1), b1 < b2 < · · · < bm < 0, c < 0,
and −c > a. Then

w ∼K (a, b1, . . . , bm,−c, 0, c,−bm, . . . ,−b1,−a).

Proof. Calculate

RS(a, b1, . . . , bm, c, 0,−c,−bm) and RS(a, b1, . . . , bm,−c, 0, c,−bm),

then observe that they are equal. �

Lemma 6.9. Suppose that we are given a skew-symmetric word

w= (a1, . . . ,al,b1, . . . ,bm,c1, . . . ,ck,0,−ck, . . . ,−c1,−bm, . . . ,−b1,−al, . . . ,−a1)

such that k≤ l≤m, a1<a2< · · ·<al , b1<b2< · · ·<bm<0, c1<c2< · · ·<ck<0,
−ck > al , and part(RS(a1, . . . , al, b1, . . . , bm, c1, . . . , ck))= (m, l, k). Then

w∼K (a1,...,al,b1,...,bm,−ck,...,−c1,0,c1,...,ck,−bm,...,−b1,−al,...,−a1)

and

(a1, . . . , al, b1, . . . , bm, c1, . . . , ck)∼
τ (a1, . . . , al, b1, . . . , bm,−ck, . . . ,−c1).

Proof. We prove this by induction on k. The case k = 1 is given by Lemma 6.8 and
condition (R2) in the definition of the τ -equivalence.

To prove the general case, first we best-fit c1, . . . , ck−1 under b1, . . . , bm , which
gives that

(6.10) (b1, . . . , bm, c1, . . . , ck−1)∼
K (bi1, . . . , bik−1, c′1, . . . , c′m).

Now we can best fit bi1, . . . , bik−1 under a1, . . . , al to get that

(6.11) (a1, . . . , al, bi1, . . . , bik−1)∼
K (ai ′1, . . . , ai ′k−1

, b′1, . . . , b′l).

Putting this all together, we get that w is Knuth-equivalent to

(ai ′1, . . . , ai ′k−1
, b′1, . . . , b′l, c′1, . . . , c′m, ck, 0,

−ck,−c′m, . . . ,−c′1,−b′l, . . . ,−b′1,−ai ′k−1
, . . . ,−ai ′1).

Since part(RS(a1, . . . , al, b1, . . . , bm, c1, . . . , ck)) = (m, l, k), we can deduce
that b′l = al and c′m = bm . We can also use this to deduce that the element of
(b1, . . . , bm) that best fits over ck is an element of (c′1, . . . , c′m). Now, we apply
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Lemma 6.8 to the part of this word between b′l and −b′l to get that this is Knuth-
equivalent to

(ai ′1, . . . , ai ′k−1
, b′1, . . . , b′l, c′1, . . . , c′m,−ck, 0,

ck,−c′m, . . . ,−c′1,−b′l, . . . ,−b′1,−ai ′k−1
, . . . ,−ai ′1).

We can apply the Knuth equivalences in (6.10) and (6.11) to get that this is Knuth-
equivalent to

(a1, . . . , al, b1, . . . , bm, c1, . . . , ck−1,−ck, 0,
ck,−ck−1, . . . ,−c1,−bm, . . . ,−b1,−al, . . . ,−a1).

Now, we can best fit bm−k+2, . . . , bm over c1, . . . , ck−1,−ck to get

(bm−k+2, . . . , bm, c1, . . . , ck−1,−ck)∼
K (bm−k+2, . . . , bm,−ck, c1, . . . , ck−1).

Next, we can best fit a1, . . . , al over b1, . . . , bm,−ck to get that

(6.12) (a1, . . . , al, b1, . . . , bm,−ck)∼
K (a′1, . . . , a′m,−ck, b j1, . . . , b jl ).

So we have that

(a1, . . . , al, b1, . . . , bm, c1, . . . , ck−1,−ck, 0,
ck,−ck−1, . . . ,−c1,−bm, . . . ,−b1,−al, . . . ,−a1),

and therefore w, is Knuth-equivalent to

(a′1, . . . , a′m,−ck, b j1, . . . , b jl , c1, . . . , ck−1, 0,
−ck−1, . . . ,−c1,−b jl , . . . ,−b j1, ck,−a′m, . . . ,−a′1).

By induction this is Knuth-equivalent to

(a′1, . . . , a′m,−ck, b j1, . . . , b jl ,−ck−1, . . . ,−c1, 0,
c1, . . . , ck−1,−b jl , . . . ,−b j1, ck,−a′m, . . . ,−a′1).

Finally, by applying the Knuth equivalence (6.12), we get that this is Knuth-
equivalent to

(a1, . . . ,al, ,b1, . . . ,bm,−ck, . . . ,−c1,0,c1, . . . ,ck,−bm, . . . ,−b1,−al, . . . ,−a1).

�

Theorem 6.13. Let A ∈ sTab≤(P) be justified row-equivalent to column-strict. Let

(a1, . . . , aq+1, b1, . . . , bp,−a2q+1, . . . ,−aq+2)= word(s2s1s2 AL−).

Then

(a1, . . . , aq+1, b1, . . . , bp,−a2q+1, . . . ,−aq+2, 0,
aq+2, . . . , a2q+1,−bp, . . . ,−b1,−aq+1, . . . ,−a1)
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is Knuth-equivalent to word(c · A). In particular, this implies that word(A) is
τ -equivalent to word(c · A).

Proof. By Lemma 6.9 we have that

(a1, . . . , aq+1, b1, . . . , bp,−a2q+1, . . . ,−aq+2, 0,
aq+2, . . . , a2q+1,−bp, . . . ,−b1,−aq+1, . . . ,−a1)

is Knuth-equivalent to

(a1, . . . , aq+1, b1, . . . , bp, aq+2, . . . , a2q+1, 0,
−a2q+1, . . . ,−aq+2,−bp, . . . ,−b1,−aq+1, . . . ,−a1).

Now, if bi1, . . . , biq+1 best fits under a1, . . . , aq+1, then we get that this is Knuth-
equivalent to

(a′1, . . . , a′p, aq+2, . . . , a2q+1, bi1, . . . , biq+1, 0,
−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1).

Note that a′p = aq+1 or a′p = b j < 0 for some j , so in either case we can best fit

bi1, . . . , biq+1, 0,−biq+1, . . . ,−bi3 under a′1, . . . , a′p, aq+2, . . . , a2q+1

to get that

(a′1, . . . , a′p, aq+2, . . . , a2q+1, bi1, . . . , biq+1, 0,
−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1)

is Knuth-equivalent to

(a1, . . . ,a2q+1,b1, . . . ,bm,0,−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1).

Now we can best fit

bm−q+2, . . . , bm, 0,−biq+1, . . . ,−bi1 over −a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1

to get that

(a1, . . . ,a2q+1,b1, . . . ,bm,0,−biq+1, . . . ,−bi1,−a2q+1, . . . ,−aq+2,−a′p, . . . ,−a′1)

is Knuth-equivalent to

(a1, . . . , a2q+1, b1, . . . , bm, 0,−bm, . . . ,−b1,−a2q+1, . . . ,−a1). �

Our goal is to prove that L(A) is finite-dimensional if and only if A is C-conjugate
to a row-equivalent to column-strict diagram. The following lemmas build up to
this:

Lemma 6.14. Let A ∈ sTab≤(P). If AL− is row-equivalent to column-strict, then
so is A.
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Proof. Recall that A has row lengths given by (2p+1, 2q+1, 2p+1). By permuting
entries within rows, we can find p strictly decreasing columns of AL− Furthermore,
the entry in the bottom row of AL− that is not in one of these columns must be
negative. By putting this entry below 0 in A and its negation above 0, we can find
a row equivalence class of A where every column left of 0 contains one of the
decreasing columns from AL− , and every column right of zero is the reverse of the
negation of one of the columns left of 0. Thus, every column in this element of the
row equivalence class of A is strictly decreasing. �

Lemma 6.15. Let A ∈ sTab≤(P), and let q = part(RS(A)). If content(q) =
content( p), then q = (2q + 1, 2p+ 1, 2p+ 1) or q = (2q + 1, 2p+ 2, 2p).

Proof. Note that content(2q + 1, 2p + 1, 2p + 1) = (p, p + 1, q + 1), and the
only other partition with this content is (2q, 2p+ 2, 2p+ 1). Now, by Lemma 4.1,
part(RS(A))≥ (2q+1, 2p+1, 2p+1), thus part(RS(A)) 6= (2q, 2p+2, 2p+1). �

By Theorem 4.4 we have that if part(RS(A))= (2q + 1, 2p+ 1, 2p+ 1), then
A is row-equivalent to column-strict. So we need only consider the case that
part(RS(A))= (2q + 1, 2p+ 2, 2p).

Lemma 6.16. Let A ∈ sTab≤(P) with part(RS(A))= (2q + 1, 2p+ 2, 2p). Then:

(1) AL+ is row-equivalent to column-strict.

(2) The middle row of s2s1s2 AL+ contains only negative numbers.

(3) The negation of the element in the bottom-right position of s2s1s2 AL+ is larger
than the element in the upper-right position of s2s1s2 AL+ . Thus c · A is defined.

(4) c · A is row-equivalent to column-strict.

Proof. Let a−p, . . . , a−1, a0, a1, . . . , ap be the increasing entries in the first row of
A, and let −bq , . . . ,−b1, 0, b1, . . . , bq be the middle row of A.

First we prove that a−p, . . . , a0 must best fit over −bq , . . . ,−b1. If it does not,
then there must exists i ∈ {0, . . . , p} such that a−(p−i) <−bq−i . Thus we can form
the following increasing string in word(A):

a−p, . . . , a−(p−i),−bq−i , . . . ,−b1, 0, b1, . . . , bq−i ,−a−(p−i), . . . ,−a−p.

This string has length 2q+3, which contradicts part(RS(A))= (2q+1, 2p+2, 2p).
Next we prove that a1, . . . , ap best fits over b1, . . . , bq . If it does not, then there

exists i ∈ {1, . . . , p} such that ai < bi . Thus we can form the following increasing
string in word(A):

a−p, . . . , a0, . . . , ai , bi , . . . , bq .

This string has length p+ q + 2, and we can use it to find the following increasing
string of length 2p+ 2q + 4 in word(A):

a−p, . . . , a0, . . . , ai , bi , . . . , bq ,−bq , . . . ,−bi ,−a1, . . . ,−a0, . . . ,−a−p.
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This contradicts part(RS(A))= (2q + 1, 2p+ 2, 2p).
Now, we assume for a contradiction that AL+ is not row-equivalent to column-

strict. Let j0, . . . , jp be positive integers such that −b jp , . . . ,−b j0 best fit under
a−p, . . . , a0. Let i be the smallest nonnegative integer such that −b ji < −ai+1.
Such an i must exist, since otherwise AL+ will be row-equivalent to column-strict.
Define b0 = 0. Now let k be the smallest integer such that

(1) 0≤ k ≤ i ;

(2) ji−l = ji − l if 0< l ≤ k;

(3) ji−k−1 6= ji−k − 1.

This implies that a−(i−k) < −b ji−k−1. So we can form the following two disjoint
increasing substrings in word(A):

a−p, . . . , a−(i−k),−b ji−k−1, . . . , b−1, 0, b1, . . . , bq

and
−bq , . . . ,−b ji ,−ai+1, . . . ,−a1,−a0,−a−1, . . . ,−a−p.

The first string has length p− i+k+1+ ji−k−1+1+q = p+q− i+k+ ji−k+1.
The second string has length q − ji + 1+ i + 1+ p + 1 = q + p − ji + i + 3.
Thus, using the fact that ji−k = ji − k, the combined length of these two strings is
2q + 2p+ 4, which contradicts part(RS(A))= (2q + 1, 2p+ 2, 2p). Thus AL+ is
row-equivalent to column-strict.

Finally we need to prove that the middle row of s2s1s2 AL+ contains only negative
numbers. Let j1, . . . , jp be such that −b jp , . . . ,−b j1 best fit over −ap, . . . ,−a1.
Now it is clear that all the numbers in the last row of s2 AL+ are negative. Now let
a′ be the entry in the first row of AL+ that does not best fit over −b jp , . . . ,−b j1 .
If a′ > 0, then since all the −bi are negative we must have that a′ = a0. In this
case, for i = 1, . . . , p, (a−i ,−b ji ,−ai ) is a decreasing string in word(AL+) and
in word(A). Furthermore, reversing and negating these strings yields a further p
disjoint deceasing strings of length 3 in word(A). These and the string (a0, 0,−a0)

show that part(RS(A))T is larger than a partition of the form (32p+1, ∗). This
contradicts part(RS(A)) = (2q + 1, 2p + 2, 2p). So we have that a′ < 0, and
furthermore the middle row of s1s2 AL+ contains only negative numbers. Now since
the last row of s1s2 AL+ also contains all negative numbers, we have that the middle
row of s2s1s2 AL+ contains only negative numbers.

Now, let x be the element in the upper-right position of s2s1s2 AL+ and let y be
the element in the lower-right position. We need to show that x <−y. If a0< 0 then
this is clear, since in this case every element of AL+ is negative. When a0 > 0, we
need to consider the bottom row of s2s1s2 AL+ . This row will contain −an, . . . ,−a1

and also −bi , where −bi is not one of the elements of −bm, . . . ,−b1 that best fits
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over −an, . . . ,−a1. Let −bkn , . . . ,−bk1 be as above, i.e., the elements which best
fit over −an, . . . ,−a1. Note that −bkn , . . . ,−bk1 are the elements in the middle
row of s2 AL+ . Now, let a′ be the element in the first row of AL+ that is one of
the elements which best fit over −bkn , . . . ,−bk1 , so the middle row of s1ss AL+

contains −a′,−bkn , . . . ,−bk1 . We have already proved that since a0 > 0, a′ < 0.
So a′ < −bk1 , since otherwise a0 would be the element that did not best fit over
−bkn , . . . ,−bk1 . So−bi < a′<−bk1 . This implies that−bi <−a1, since otherwise
−bk1 would not be the element that best fits over −a1. Thus −a1 is the element
in the bottom-right position of s2s1s2 AL+ , and a0 is the element in the upper-right
position of s2s1s2 AL+ , and we already have that a0 < a1.

To see that c · A is row-equivalent to column-strict, simply note that (c · A)L−
=

s2s1s2 AL+ is row-equivalent to column-strict and apply Lemma 6.14. �

Now we can state the main theorem of this section, which is analogous to
Theorem 5.4. The proof is very similar, where Lemma 6.16 plays the role of
Lemma 5.3, and so is omitted.

Theorem 6.17. Suppose that l is odd and l >m, and let A ∈ sTab≤(P). Then L(A)
is finite-dimensional if and only if A is C-conjugate to an s-table that is justified
row-equivalent to column-strict. Furthermore, if L(A) is finite-dimensional, then
c · L(A)∼= L(c · A).

Last in this section, we give the following technical lemma, which is needed in
the proof of Theorem 1.2:

Lemma 6.18. If A ∈ sTab≤(P) is row-equivalent to column-strict, then word(c · A)
can be obtained from word(A) through a series of Knuth equivalences and larger-
smaller transpositions. In particular, part(RS(A))≤ part(RS(c · A)).

Proof. Let

(a1, . . . , a2q+1, b1, . . . , bp, 0,−bp, . . . ,−b1,−a2q+1, . . . ,−a1)= word(A).

Due to Theorem 6.13, since

word(AL−)= (a1, . . . , aq , b1, . . . , bp,−a2q+1, . . . ,−aq+1),

it suffices to show that

(a1, . . . , aq , b1, . . . , bp,−a2q+1, . . . ,−aq+1, 0,
aq+1, . . . , a2q+1,−bp, . . . ,−b1,−aq , . . . ,−a1)

can be obtained from word(A) by a sequence of larger-smaller transpositions and
Knuth equivalences. First, we can swap a2q+1 with its right neighbour and −a2q+1

with its left neighbour repeatedly until we get a word with a2q+1, 0,−a2q+1 in the
middle; then, we can swap a2q+1 with 0, then swap a2q+1 with −a2q+1, then swap
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0 with −a2q+1 so that we have −a2q+1, 0, a2q+1 in the middle of our word. Now
we can repeat this process with a2q and a2q , then a2q−1 and −a2q−1, and so on.
Eventually, since aq+1 > 0, we will get

(a1, . . . , aq , b1, . . . , bp,−a2q+1, . . . ,−aq+1, 0,
aq+1, . . . , a2q+1,−bp, . . . ,−b1,−aq , . . . ,−a1). �

7. The general case

Now we return to the case of general p as in (3.1). As usual, P is the symmetric
pyramid of p, with rows labelled 1, . . . , r, 0,−r, . . . ,−1 from top to bottom.

7A. The component group action. In this section, we describe the action of the
component group C on the subset of sTab≤(P) corresponding to finite-dimensional
U (g, e)-modules. The discussion here is completely analogous to the situation for
even multiplicity nilpotent elements as described in [Brown and Goodwin 2013c,
§5.5], so we are quite brief. We use the notation for the component group C from
Section 3D.

The operation of c has been defined on three row s-tables in Section 5 and
Section 6, and this can be extended to any s-table by just acting on the middle three
rows. To define the action of the ck , we proceed in exact analogy with [Brown
and Goodwin 2013c, §5.5]. That is, we use row swapping operations si? to move
row ik to row r , then we apply c, and then we apply the reverse row swaps. So for
A ∈ sTab≤(P) and τ = sik sik+1 . . . sr−1 ∈ Sr we have

ck · A = τ−1 ? (c · (τ ? A)).

Of course, this will not be defined for all A∈sTab≤(P), but the following proposition
can be proved in the same way as Proposition 5.5 of the same reference, and we
require Proposition 4.6 for the proof:

Proposition 7.1. Let A ∈ sTab≤(P), and suppose that L(A) is finite-dimensional.
Then ck · A is defined and L(ck · A)∼= ck · L(A).

7B. Proof of main theorem. Now we are in a position to prove Theorem 1.2:

Proof of Theorem 1.2. The statement in the theorem about the component group
action is given by Proposition 7.1.

Suppose that A is justified row-equivalent to column-strict. Then L(A) is finite-
dimensional by Theorems 4.4, 4.8 and 2.4, and thus b · L(A) is finite-dimensional
for any b ∈ C by Proposition 7.1.

We are left to prove that if L(A) is finite-dimensional, then A ∈ sTabc(P). We
prove this by induction on r . The case r = 0 is trivial, and the case r = 1 is given
by Lemmas 5.1 and 6.1 and Theorems 5.4 and 6.17.



REPRESENTATION THEORY OF TYPE B AND C STANDARD LEVI W -ALGEBRAS 61

Now, assume that L(A) is finite-dimensional and r ≥ 2. Using an inductive
argument based on “Levi subalgebras” of U (g, e), just as in the proof of [Brown
and Goodwin 2013a, Theorem 5.13], we may assume that A2

−2 is justified row-
equivalent to column-strict, where A2

−2 denotes the s-table obtained from A by
removing rows 1 and −1. Also by Lemma 4.7 we have that A1

r is justified row-
equivalent to column-strict, where A1

r is the table formed by rows 1 to r of A.
Therefore, we can permute entries in the left justification of A2

−2 so that all the
columns are strictly decreasing. Furthermore, we can place each of the entries in
row 1 of A over a column so each entry is larger than the entry immediately below
it. Then we can place each of the entries of row −1 of A under a column in the
left justification of A2

−2 so that each entry is smaller than the entry above it, and
we can do this skew-symmetrically in the sense that if a is an entry in row 1 of A
and a is placed over a column whose top entry is b, then we can place −a under a
column whose bottom entry is −b. Let Al denote the resulting diagram.

Let q = part(RS(A)). As explained below, the conditions above along with
Theorem 4.8 give restrictions on the possibilities for q. The proof is completed
with combinatorial arguments that show that either q = p or i1 = 1, and that
part(RS(c1 · A)) = p. So by Theorem 4.4, either A or c1 · A is row-equivalent to
column-strict.

In the diagram Al , let x be the number of columns that go through all the rows,
let y be the number of columns that go through all the rows except the top row (so
y is also the number of columns that go through all the rows except the bottom
row), and let z be the number of columns that go through all the rows except the
top and bottom row. Further, let u be the number of columns that go through all the
rows except the middle row, let v be the number of columns that go through all the
rows except the top row and the middle row (so v is also the number of columns
that go through all the rows except the middle row and the bottom row), and let w
be the number of columns that go through all the rows except the top, middle and
bottom rows. Note that x + y+ u+ v = p1 and x + 2y+ z+ u+ 2v+w = p2. So
we have x strictly decreasing columns of length 2r + 1, 2y+ u strictly decreasing
columns of length 2r , z+ 2v strictly decreasing columns of length 2r − 1, and w
strictly decreasing columns of length 2r − 2.

By counting the lengths of the other columns in Al similarly, and using Lemma 4.2,
we can conclude that

qT
≥ ((2r + 1)x , (2r)2y+u, (2r − 1)z+2v, (2r − 2)w, (2r − 4)p3−p2, . . . , 2pr−1−pr )

if p0 ≤ pr−1, and

qT
≥
(
(2r + 1)x , (2r)2y, (2r − 1)z, (2r − 3)p3−p2, . . . , (2r − 2k+ 5)pk−1−pk−2,

(2r − 2k+ 3)p0−pk−1, (2r − 2k+ 2)pk−p0, (2r − 2k)pk+1−pk , . . . , 2pr−1−pr
)
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if p0 > pr−1, where k is the number such that pi ≥ p0 if and only if i ≥ k (note
that in this case we have u = v = w = 0).

Thus we get that

q ≤ (p2
r , p2

r−1, . . . , p2
2, p2−w, x + 2y+ u, x) if p0 ≤ pr−1

and

q ≤ (p2
r , p2

r−1, . . . , p2
k−1, p0, p2

k , . . . , p2
2, p1− z, x) if p0 > pr−1.

Since we also have p as a lower bound of q, this implies that

q = (p2
r , p2

r−1, . . . , p2
2, a, b, c) if p0 ≤ pr−1

and
q = (p2

r , p2
r−1, . . . , p2

k , p0, p2
k−1, . . . , p2

2, a, b) if p0 > pr−1,

for positive integers a, b, c. Since content(q)= content( p), we get a very limited
number of possibilities for a, b, c, as explained below.

From now we restrict to the case g= sp2n in this proof, as the case g= so2n+1 is
entirely similar; in some places we would require references from Section 6 rather
than Section 5.

We know that p0 must be even. If p0 < p1 and p1 is even, then we must
have (a, b, c) = (p1, p1, p0) or (a, b, c) = (p1 + 1, p1 − 1, p0). If p0 < p1 and
p1 is odd, then (a, b, c) = (p1, p1, p0). If p1 < p0 < p2, then p1 is even and
(a, b, c)= (p0, p1, p1). Finally, if p0 > p2, then p1 is even and (b, c)= (p1, p1).

By Theorem 4.4, if q = p, then A is justified row-equivalent to column-strict,
and we are done. So for the rest of this proof we will assume that q 6= p; so, we
are assuming that p0 < pr , pr is even, and

(7.2) q = (p2
r , . . . , p2

2, p1+ 1, p1− 1, p0).

It is be useful to record that

(7.3) qT
=
(
(2r + 1)p0, (2r)p1−p0−1, (2r − 1)2,

(2r − 2)p2−p1−1, (2r − 4)p3−p2, . . . , 2pr−1−pr
)
.

Let σ = sr−1 . . . s2s1 and A′ = σ ? A; then RS(A′) = RS(A) by Proposition 4.6.
Then the lengths of the middle three rows of A′ are given by p1, p0, p1. Let B be
the middle three rows of A′.

We claim that part(RS(B))= (p1+ 1, p1− 1, p0). To see this, first we suppose
that part(RS(B)) = (pr , pr , p0). Then B is justified row-equivalent to column-
strict. Now, since (A′)1r is justified row-equivalent to column-strict, this allows
us to find p0 disjoint decreasing words of length 2r + 1 that are disjoint from
a further p1 − p0 disjoint decreasing words of length 2r . Thus, by Lemma 4.2,
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qT
≥ ((2r + 1)p0, (2r)p1−p0, ∗), which contradicts (7.3). Now we also cannot have

that any part of part(RS(B)) is larger than pr + 1, since then we could use the fact
that all the rows of A′ are increasing to conclude that part(q) would be strictly
larger than a partition of the form

(p2
1, p2

2, . . . , p2
r−1, pr + 1, ∗),

which contradicts (7.2).
Now, we have by Theorem 5.4 that part(RS(c · B))= (p0, p1, p1). We also have

by Lemma 5.5 that part(RS(c1 · A))≤ part(RS(A)).
We need to argue that we can find enough descending chains of maximal or near

maximal length in c · A′ to force RS(c1 · A) to have shape p. We have by Lemma 4.7
that (c · A′)1r is justified row-equivalent to column-strict. Further, by Theorem 4.4
we have that c · B is justified row-equivalent to column-strict.

We can find p0 descending strings of length 3 and p1− p0 strings of length 2,
and all these strings start in row r and end in row −r . Since (c · A′)1r is justified
row-equivalent to column-strict, it has p1 strings of length r ending in row r , and
(c · A′)−r

−1 has p1 strings of length r starting in row −1. So we can glue these strings
together along their entries in rows 1 and −1 to obtain p0 disjoint decreasing strings
of length 2r + 1 that are disjoint from p1− p0 disjoint decreasing strings of length
2r . So if q ′= part(RS(c ·A)), we can conclude that q ′T ≥ ((2r+1)p0, (2r)p1−p0, ∗),
which implies that q ′ = p, so c1 · A is justified row-equivalent to column-strict, as
required. �

Finally, this theorem along with Theorems 2.3 and 4.5 immediately imply the
following classification of the primitive ideals with associated variety equal to G · e:

Corollary 7.4. The set of primitive ideals with associated variety G · e is equal to

{AnnU (g) L(λA) | A ∈ sTabc(P)}.

Appendix: An alternative version of the Barbasch–Vogan algorithm

In this appendix, we consider the alternative version of the Barbasch–Vogan algo-
rithm for so2n+1, mentioned in Section 4C above. Our main result is Corollary A.7,
which shows that this adapted version gives the same output as the original version.
Below, we recall the algorithm, then, in the subsequent subsections construct the
machinery required to prove Corollary A.7.

Some terminology and notation used in this section are as follows. By a Young
diagram we mean a finite collection of boxes, or cells, arranged in left-justified
rows, with the row lengths weakly decreasing. We often identify a Young diagram
with its underlying partition. A tableau is a filling of a Young diagram by integers
with weakly increasing rows and strictly decreasing columns. We write part(T ) for
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the partition underlying a tableau T . The Robinson–Schensted algorithm is denoted
by RS.

The algorithms. Let q = (q1 ≤ q2 ≤ · · · ≤ qm) be a partition. By inserting 0 at the
beginning if necessary, we may assume that m is odd. Let (s1, . . . , sk), (t1, . . . , tl)
be such that

{q1, q2+ 1, q3+ 2, . . . , qr + r − 1} = {2s1, . . . , 2sk, 2t1+ 1, . . . , 2tl + 1}

(as unordered lists). Now we define the content of q to be the unordered list

content(q)= {s1, . . . , sk, t1, . . . , tl}.

We now state the Barbasch–Vogan algorithm [1982] for the case g= so2n+1 in
purely combinatorial terms:

Algorithm:

Input: a = (a1, . . . , an,−an, . . . ,−a1) a skew-symmetric string of integers.

Step 1: Calculate q = part(RS(a1, . . . , an,−an, . . . ,−a1)).

Step 2: Calculate content(q).
Let (u1 ≤ · · · ≤ u2k+1) be the sorted list with the same entries as content(q).
For i = 1, . . . , k+ 1 let si = u2i−1.
For i = 1, . . . , k let ti = u2i .

Step 3: Form the list (2s1+ 1, . . . , 2sk+1+ 1, 2t1, . . . , 2tk).
In either case, let (v1 < · · ·< vk) be this list after sorting.

Output: BV(a)= q ′ = (v1, v2− 1, . . . , v2k+1− 2k).

The modified version is denoted by BV′ and works in exactly the same way as
BV, except that in Step 1 it calculates RS(a1, . . . , an, 0,−an, . . . ,−a1) instead of
RS(a1, . . . , an,−an, . . . ,−a1).

Domino tableaux. We require some facts about domino tableaux, which we collate
below.

There are two types of domino tableaux: those with an even number of boxes
and those with an odd number of boxes. A domino tableau with an even number of
boxes is a Young diagram that has been tiled with 2× 1 and 1× 2 dominoes, where
each domino is labelled with a positive integer, such that the rows are increasing
and the columns are decreasing. A domino tableau with an odd number of boxes is
the same as a domino tableau with an even number of boxes, except it also has a
1× 1 box labelled with 0, which must necessarily occur in the lower-left position.
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For example,

1
2

4

3

and

0 1

2 3

are domino tableaux.
Given a domino tableau R, we let part(R) denote the partition underlying R, i.e.,

the partition given by the row lengths of R. We say that a partition has domino
shape if it is the underlying partition of a domino tableau.

The following lemma is straightforward to prove by induction:

Lemma A.1. Let p= (p1 ≤ p2 ≤ · · · ≤ pm) be a partition, where p1 may be 0 and
m is odd. Choose r1, . . . , rk and s1, . . . , sl so that

{p1, p2+ 1, . . . , pm +m− 1} = {2r1, . . . , 2rk, 2s1+ 1, . . . , 2sl + 1}

(as unordered lists). If p has domino shape and has an even number of boxes, then
k = l + 1. If p has domino shape and has an odd number of boxes, then k+ 1= l.

Let T be a tableau whose boxes are labelled by the integers−n, . . . ,−1, 1, . . . , n
or the integers −n, . . . ,−1, 0, 1, . . . , n. We recall an algorithm DT, which takes
as input such a tableau and outputs a domino tableau; it was defined in [Barbasch
and Vogan 1982]. To define DT(T ), first note that −n must occur in the lower-left
corner of T . Swap −n with the smaller of its neighbours that lie above or to the
right of −n. Continue swapping −n with its smaller neighbour that is either above
or right of it. If the last number that −n is swapped with is not n then we say that
DT(T ) is undefined. Otherwise, replace the squares with −n and n with a domino
containing n. Now repeat this procedure for 1− n, 2− n, . . . ,−1, treating any
squares that have been replaced with dominoes as if they were not present. If for
any i the last number that −i is replaced with is not i then DT(T ) is undefined.
Otherwise, we eventually get a domino tableau.

For example, suppose

T = RS(−2,−3, 1, 0,−1, 3, 2)=

–3 –1 2

–2 0 3

1

Now, when we apply the above algorithm we first swap −3 with −2, then with 0,
then with 3. Now, replace the boxes containing 3 and−3 with a domino containing 3.
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This results in the following diagram:

–2 –1 2

0 3

1

Now, −2 first swaps with −1, then 2, which results in the following diagram:

–1 2

0 3

1

Finally, −1 swaps with 0, then 1, and the resulting domino tableau is

(A.2) DT(T )=

0 2

3
1

Let Wn denote the Weyl group of type Bn acting on {±1, . . . ,±n} in the natural
way. Then the image of (−n, . . . ,−1, 1, . . . , n) under the action of some σ ∈Wn

is called a signed permutation of (−n, . . . ,−1, 1, . . . , n). A signed permutation of
(−n, . . . ,−1, 0, 1, . . . , n) is defined similarly.

The next lemma follows from Proposition 2.3.3 and Theorem 4.1.1 in [van
Leeuwen 1996]:

Lemma A.3. Let a = (a1, . . . , an,−an, . . . ,−a1) be a signed permutation of
(−n, . . . ,−1, 1, . . . , n) and b = (b1, . . . , bn, 0,−bn, . . . ,−b1) a signed permu-
tation of (−n, . . . ,−1, 0, 1, . . . , n). Then DT(RS(a)) and DT(RS(b)) are defined.

We may identify Wn with the signed permutations of (−n, . . . ,−1, 1, . . . , n) or
the signed permutations of (−n, . . . ,−1, 0, 1, . . . , n). Under this identification, we
consider the algorithms defined in [Garfinkle 1990, §2] to map a signed permutation
of (−n, . . . ,−1, 1, . . . , n) or (−n, . . . ,−1, 0, 1, . . . , n) to a domino tableau. We
denote these versions of Garfinkle’s algorithm by G0 and G1 respectively.

Proposition A.4 [van Leeuwen 1996, Proposition 4.2.3].

(i) If w is a signed permutation of (−n, . . . ,−1, 1, . . . , n), then DT(RS(w)) =
G0(w).

(ii) If w is a signed permutation of (−n, . . . ,−1, 0, 1, . . . , n), then DT(RS(w))=
G1(w).
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Our aim is to show that part(RS(a1, . . . , an,−an, . . . ,−a1)) has the same con-
tent as part(RS(a1, . . . , an, 0,−an, . . . ,−a1)). We do this by exploiting the results
in [Pietraho 2010], which explain how to relate G0(a1, . . . , an,−an, . . . ,−a1) and
G1(a1, . . . , an, 0,−an, . . . ,−a1). To explain these results, we need to define the
cycles of a standard domino tableau. This requires a few other definitions as well.

We define coordinates on a Young diagram by labelling its rows and columns.
We declare that the bottom row is row 1, the row above the bottom is row 2, and
so on. We declare that the left most column is column 1, the column to its right is
column 2, and so on. Now we say the box in position (i, j) is fixed if i + j is odd
and the diagram has an even number of boxes or if i + j is even and the diagram
has an odd number of boxes.

Let R be a domino tableau, and let D(k) be a domino with label k in R. If
the fixed coordinate of D(k) occurs in the lower box or right box of D(k), let E
denote the square below and to the right of the fixed coordinate of D(k). If the
fixed coordinate of D(k) occurs in the upper box or left box of D(k), let E denote
the square above and to the left of the fixed coordinate of D(k). We label E with
the integer m determined via

m =


l if E is a square in R and l is the label of E’s square in R,
−1 if either coordinate of E is 0,
∞ if E lies above or to the right of R.

Now, we define D′(k) to be a domino containing two squares, one in the fixed
position of D(k) and the other adjacent to E and such that the subdiagram containing
D′(k) and E has decreasing columns and increasing rows.

For example, if

R = 1 2
3

then D′(1) is a domino occupying positions (2, 1) and (3, 1), D′(2) is a domino
occupying positions (1, 2) and (1, 3), and D′(3) is a domino occupying positions
(1, 4) and (1, 5).

Suppose a domino tableau is labelled with {1, . . . , n}. We use this to generate
an equivalence relation on {1, . . . , n} via i ∼ j if D( j) and D′(i) share a box. The
cycles of a domino tableau are the equivalence classes of this equivalence relation.
For example, if R is as above, then the cycles of R are {1} and {2, 3}.

If R is a domino tableau with an even number of boxes and c is a cycle of R,
then we can define a new domino tableau R′ =MT(R, c) by replacing D(k) with
D′(k) for every k ∈ c. This will remove one box and add one box to the underlying
Young diagram of R. If the box removed is in position (1, 1), then we put a box
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with 0 in position (1, 1) of R′, so that we do in fact get another domino tableau.
For example, if R is as above, then

MT(R, {1})=

0

1

2
3

and

MT(R, {2, 3})= 1
2 3

Observe that the operator MT removes a box and adds a box to the Young
diagram underlying R, and that the removed box is either in position (1, 1), or is a
removable box of R; that is, if it is removed, you still have a valid Young diagram.

A key feature of MT is that is does not change the content of the underlying
partition:

Theorem A.5. Let R be a domino tableau with an even number of boxes, let c be
a cycle of R, and let p = part(R) and q = part(MT(R, c)). Then content( p) =
content(q).

Proof. First we rule out the case that p has an odd number (say, 2m+ 1) of parts
and q has one more part than p. Suppose for a contradiction that q has 2m+2 parts,
so the top row of MT(R, c) has one box. Let D′(k) be the domino in MT(S, c)
that covers this box. So the box in the fixed position of D′(k) must be the box in
position (2m+ 1, 1), which is a contradiction since 2m+ 1+ 1 is even.

Next we rule out the case that p has an even number (say, 2m) of parts and q
has one less part than p. Suppose this is the case, so the top row p has length one,
so there must be a domino D(k) which occupies positions (2m− 1, 1) and (2m, 1)
of p. Now, (2m, 1) is the fixed position of this domino, so D′(k) will also have a
box in position (2m, 1); hence, q has at least 2m parts, which is a contradiction.
Thus we have established that the number of integers in content(q) is the same as
the number of integers in content( p).

Let p= (p1 ≤ · · · ≤ p2m+1), where p1 may be 0. Now we consider the case that
MT(R, c) has the same number of boxes as R. Let q = (q1 ≤ · · · ≤ q2m+1), where
q1 may be 0. So we must have that qi = pi except for i = j and i = k for some
integers j, k where j 6= k, and q j = p j + 1 and qk = pk − 1. By Lemma A.1, we
have that one of p j + j −1, pk+ k−1 must be even and one must be odd, because
otherwise (q1, q2 + 1, . . . , q2m+1 + 2m) would not have one more even element
than odd elements. The box at position ( j, p j ) of MT(R, c) is the box that gets
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added to the Young diagram of R. Thus, this box is a box that is in D′(k) but not
in D(k). This implies that this box is not the box in fixed position in D′(k); thus,
p j + j is even, so p j + j − 1 must be odd, and pk + k − 1 is even. This implies
that p and q have the same content.

Now we consider the case that MT(R, c) has one more box than R. Let q =
(q1 ≤ · · · ≤ q2m+1), where q1 may be 0. So we must have that qi = pi except for
i = j for some integer j , where q j = p j + 1. Note that p j + j − 1 must be even
since (q1, q2 + 1, . . . , q2m+1 + 2m) must have one more odd number than even
number. This implies that p and q have the same content. �

For a list of cycles c1, . . . , cm of a domino tableau R with an even number of
boxes, let Ri =MT(Ri−1, ci ), where R0 = R. Now let MT(R, c1, . . . , cm)= Rm .

The following theorem is a less specific version of [Pietraho 2010, Theorem 3.1]:

Theorem A.6. Let

R = G0(a1, . . . , an,−an, . . . ,−a1)

and
R′ = G1(a1, . . . , an, 0,−an, . . . ,−a1),

where (a1, . . . ,an,−an, . . . ,−a1) is a signed permutation of (−n, . . . ,−1,1, . . . ,n).
Then there exist cycles c1, . . . , cm of R such that R′ =MT(R, c1, . . . , cm).

Now we get the following corollary:

Corollary A.7. Let a= (a1, . . . , an,−an, . . . ,−a1) be a skew-symmetric string of
integers. Then BV(a)= BV′(a).

Proof. This follows from Proposition A.4 and Theorems A.5 and A.6 when a is a
signed permutation of (−n, . . . ,−1, 1, . . . , n). The general case follows because
q = RS(a1, . . . , an,−an, . . . ,−a1) and q ′ = RS(a1, . . . , an, 0,−an, . . . ,−a1) de-
pend only on the relative order of the ai , so we may replace a by a signed permutation
without altering q or q ′. �
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Dedicated to Professor Stephen S.-T. Yau on the occasion of his sixtieth birthday.

Two new invariants f .1;1/ and g.1;1/ were introduced by Du and Yau for
solving the complex Plateau problem. These invariants measure in some
sense how far away the complex manifolds are from having global complex
coordinates. In this paper, we study these two invariants further for ratio-
nal surface singularities. We prove that these two invariants never vanish
for rational surface singularities, which confirms Yau’s conjecture for strict
positivity of these two invariants. As an application, we solve regularity
problem of the Harvey–Lawson solution to the complex Plateau problem
for a strongly pseudoconvex compact rational CR manifold of dimension 3.
We also construct resolution manifolds for rational triple points by means
of local coordinates and show that f .1;1/ D g.1;1/ D 1 for rational triple
points.

1. Introduction

LetM be a complex manifold of dimension n. It is a natural question to ask how far
away this complex manifold is from having global complex coordinates. Together
with Hing Sun Luk and Stephen Yau, the first author introduced in [Du et al. 2011]
new biholomorphic invariants that give some measurements for this purpose.

It is well-known that if M is a complex submanifold in CN , then, given any
global holomorphic p-form ˛ on M , there exists a holomorphic p-form Q̨ on CN

such that the restriction of Q̨ to M is ˛. Obviously, Q̨ is a p-th wedge product
of holomorphic 1-forms. However, for non-Stein complex manifolds, such as the
resolution manifolds of singularities, the situation is totally different. In particular,
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for surface singularities, we considered in [Du et al. 2011; Du and Yau 2012]
two invariants f .1;1/ and g.1;1/ and showed that these two invariants are strictly
positive for some special singularities. So the resolution manifolds of these special
singularities do not have the above properties.

A direct application of the positivity of g.1;1/ is for solving one of the most
fundamental questions in complex geometry: the complex Plateau problem [Du and
Yau 2012]. Given a strongly pseudoconvex CR manifoldX in CN , the problem asks
when X is the boundary of a complex manifold V in CN . By the beautiful work of
Harvey and Lawson [1975], as well as [Yau 1981b; Luk and Yau 1998a], X is a
boundary of a complex variety V with only isolated singularities if X is contained
in the boundary of a strictly pseudoconvex domain in CN . Thus from the complex
Plateau problem point of view, it is very desirable to introduce a numerical invariant
for isolated singularities which never vanishes. However many numerical invariants
such as the geometric genus pg , the arithmetic genus pa and the irregularity q
vanish on rational singularities. In [Du et al. 2011; Du and Yau 2012] this idea was
used to introduce two invariants f .1;1/ and g.1;1/ for isolated surface singularities.
The invariant g.1;1/ was used in the latter article to solve the regularity problem of
the Harvey–Lawson solution to the complex Plateau problem.

Those two articles provided a detailed study of f .1;1/ and g.1;1/. Yau has the
following conjecture:

Conjecture. For all normal surface singularities, the invariants f .1;1/ and g.1;1/

are strictly positive.

Du and Yau showed that these two numerical invariants are strictly positive when
the surface singularities have a C�-action. They also gave explicit calculations
for f .1;1/ and g.1;1/ for rational double points and cyclic quotient singularities
and proved that they are exactly 1. In this paper, we shall prove that for rational
surface singularities, f .1;1/ and g.1;1/ also never vanish. So, our results in this
paper confirm the conjecture.

Theorem 2.8. For rational surface singularities, f .1;1/ D g.1;1/ � 1.

As an application, we solve the regularity problem of the Harvey–Lawson solution
to the complex Plateau problem for a strongly pseudoconvex compact rational CR
manifold of dimension 3.

Theorem 3.9. Let X be a strongly pseudoconvex compact rational CR manifold of
dimension 3. Suppose that X is contained in the boundary of a strongly pseudocon-
vex bounded domain D in CN . Then X is a boundary of the complex submanifold
V �D�X with boundary regularity if and only if g.1;1/.X/D 0.

We also construct resolution manifolds for rational triple points by local coordi-
nates. By using these local coordinates, we give explicit calculations of f .1;1/ and
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g.1;1/ for rational triple points and prove that they are also 1.

Theorem 4.4. For 2-dimensional rational triple points, f .1;1/ D g.1;1/ D 1.

2. Invariants of singularities

Let V be a n-dimensional complex analytic subvariety in CN with only isolated
singularities. Yau [1982] considered four kinds of sheaves of germs of holomorphic
p-forms:

(1) �p
V WD ���

p
M , where � WM ! V is a resolution of singularities of V .

(2) �p
V WD ���

p

V nVsing
where � W V nVsing! V is the inclusion map and Vsing is

the singular set of V .

(3) �p
V WD�

p

CN =Kp , where KpDff ˛Cdg^ˇ W ˛ 2�
p

CN ; ˇ 2�
p�1

CN ; f; g 2Ig

and I is the ideal sheaf of V in CN .

(4) z�p
V WD�

p

CN =Hp, where Hp D f! 2�
p

CN W !jV nVsing D 0g.

�
p
V is the Grauert–Grothendieck sheaf of germs of holomorphic p-form on V .

In case V is a normal variety, the dualizing sheaf !V of Grothendieck is actually
the sheaf �n

V . Clearly �p
V , z�p

V are coherent. �p
V is a coherent sheaf because � is

a proper map. �p
V is also a coherent sheaf by Theorem A of [Siu 1970].

In [Du et al. 2011] and [Du and Yau 2012], another two sheaves �1;1
V and �1;1

V

were considered:

Definition 2.1. Let .V; 0/ be a 2-dimensional Stein analytic space with an isolated
singularity at 0. Let � W .M;A/! .V; 0/ be a resolution of the singularity with A
as its exceptional set. Define a sheaf of germs �1;1

V as the sheaf associated to the
presheaf

U 7! h�.��1.U /;�1
M /^�.�

�1.U /;�1
M /i;

where U is an open set of V and h�.��1.U /;�1
M /^�.�

�1.U /;�1
M /i represents

the module generated by elements in �.��1.U /;�1
M /^�.�

�1.U /;�1
M / over the

ring �.��1.U /;OM /.

Definition 2.2. Let .V; 0/ be a Stein germ of a 2-dimensional analytic space with
an isolated singularity at 0. Define a sheaf of germs �1;1

V by the sheaf associated
to the presheaf

U 7! h�.U;�1
V /^�.U;�

1
V /i;

where U is an open set of V .

Du and Yau showed that these two new sheaves are coherent and found the
relation between �1;1

V (respectively, �1;1
V ) and �2

V (respectively, �2
V ) by short

exact sequence as follows:
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Lemma 2.3 [Du and Yau 2012]. Let .V; 0/ be a 2-dimensional Stein space with an
isolated singularity at 0. Let � W .M;A/! .V; 0/ be a resolution of the singularity
with A as its exceptional set. Then �1;1

V is coherent and there is a short exact
sequence

(2-1) 0 �!�
1;1
V �!�2

V �! F.1;1/
�! 0;

where F.1;1/ is a sheaf supported on the singular point of V . Let

(2-2) F .1;1/.M/ WD �.M;�2
M /=h�.M;�

1
M /^�.M;�

1
M /iI

then, dim F
.1;1/
0 D dimF .1;1/.M/.

Lemma 2.4 [Du and Yau 2012]. Let V be a 2-dimensional Stein space with 0 as its
only singular point. Let � W .M;A/! .V; 0/ be a resolution of the singularity with
A as its exceptional set. Then �1;1

V is coherent and there is a short exact sequence

(2-3) 0 �!�
1;1
V �!�2

V �! G.1;1/
�! 0

where G.1;1/ is a sheaf supported on the singular point of V . Let

(2-4) G.1;1/.MnA/ WD �.MnA;�2
M /=h�.MnA;�

1
M /^�.MnA;�

1
M /iI

then, dim G
.1;1/
0 D dimG.1;1/.MnA/.

They defined local invariants of singularities which are independent of resolution:

Definition 2.5. Let V be a 2-dimensional Stein space with 0 as its only singular
point. Let � W .M;A/! .V; 0/ be a resolution of the singularity with A as its
exceptional set. Let

f .1;1/.0/ WD dim F
.1;1/
0 D dimF .1;1/.M/;(2-5)

g.1;1/.0/ WD dim G
.1;1/
0 D dimG.1;1/.MnA/:(2-6)

We will omit 0 in f .1;1/.0/ and g.1;1/.0/ if the context is clear.
The first author and Yau conjectured that for all normal surface singularities, the

invariants f .1;1/ and g.1;1/ are strictly positive. This conjecture was confirmed
when the singularities are with C�-action.

Theorem 2.6 [Du and Yau 2012]. Let V be a 2-dimensional Stein space with 0 as
its only normal singular point with C�-action. Then f .1;1/ � 1.

Theorem 2.7 [Du et al. 2011]. Let V be a 2-dimensional Stein space with 0 as its
only normal singular point with C�-action. Then g.1;1/ � 1.

Theorem 2.7 is the crucial part for the solution of the classical complex Plateau
problem.
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We will show that these two invariants are strictly positive for rational surface
singularities. So these two invariants tell the difference between smoothness and
singularity more precisely than the geometry genus does in some sense.

Theorem 2.8. For rational surface singularities, f .1;1/ D g.1;1/ � 1.

Proof. Let .V; 0/ be a 2-dimensional Stein space with 0 as its only rational singularity.
So, the geometry genus pg and the irregularity q are both 0. Let � W .M;A/! .V; 0/

be a resolution of the singularity with A as its exceptional set. Then

�.MnA;�2
M /

h�.MnA;�1
M /^�.MnA;�

1
M /i
D

�.M;�2
M /

h�.M;�1
M /^�.M;�

1
M /i

;

and

g.1;1/
D f .1;1/

D dim
�.M;�2

M /

h�.M;�1
M /^�.M;�

1
M /i

:

From [Yau 1981a], the canonical bundle KM is generated by its global sections
in a neighborhood of the exceptional set for rational surface singularities. So, there
exists!2�.M;�2

M / such that! does not vanish along some irreducible component
Ak of A. As the singularity is rational, Ak is a smooth rational curve. Take a tubular
neighborhood U of Ak such that U �M . By the proof of Proposition 3.9 in [Du
et al. 2011], we know that the elements in h�.U;�1

U /^�.U;�
1
U /i vanish alongAk .

Since �.M;�1
M / � �.U;�

1
U /, the elements in h�.M;�1

M /^ �.M;�
1
M /i also

vanish along Ak . Therefore ! 2 �.M;�2
M /nh�.M;�

1
M /^�.M;�

1
M /i, i.e.,

g.1;1/
D dim

�.M;�2
M /

h�.M;�1
M /^�.M;�

1
M /i
� 1: �

3. The complex Plateau problem for 3-dimensional rational CR manifolds

Yau [1981b] solved the classical complex Plateau problem for the case n� 3.

Theorem 3.1 [ibid.]. Let X be a compact connected strongly pseudoconvex CR
manifold of real dimension 2n� 1 for n� 3 in the boundary of a bounded strongly
pseudoconvex domain D in CnC1. Then X is the boundary of the complex submani-
fold V �D �X if and only if the Kohn–Rossi cohomology groups Hp;q

KR .X/ are
zero for 1� q � n� 2.

Luk and Yau [2012] introduced the so-called s-invariant in order to solve the
complex Plateau problem as n D 2. But they could not give even a sufficient
condition on the boundary such that it decides the smoothness in the interior.

Theorem 3.2 [Luk and Yau 2007]. Let X be a strongly pseudoconvex compact
Calabi–Yau CR manifold of dimension 3. Suppose that X is contained in the
boundary of a strongly pseudoconvex bounded domainD in CN . If the holomorphic
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de Rham cohomology H 2
h
.X/ is 0, then X is a boundary of a complex variety V in

D with boundary regularity, and V has only isolated singularities in the interior
and the normalizations of these singularities are Gorenstein surface singularities
with vanishing s-invariant.

Corollary 3.3 [ibid.]. Let X be a strongly pseudoconvex compact CR manifold of
dimension 3. Suppose that X is contained in the boundary of a strongly pseudocon-
vex bounded domain D in C3. If the holomorphic De Rham cohomologyH 2

h
.X/ is 0,

then X is a boundary of a complex variety V in D with boundary regularity, and V
has only isolated quasihomogeneous singularities such that the dual graphs of the
exceptional sets in the resolution are star-shaped and all the curves are rational.

Du and Yau [2012] used a new invariant g.1;1/ for singularities to generate a
new CR invariant g.1;1/.X/.

Definition 3.4. Suppose X is a compact connected strongly pseudoconvex CR
manifold of real dimension 3. Put

(3-1) G.1;1/.X/ WD S2.X/=hS1.X/^S1.X/i;

where Sp denotes the holomorphic sections of
Vp
. yT .X/�/ and yT .X/� is the

holomorphic cotangent bundle of X . Then we set

(3-2) g.1;1/.X/ WD dimG.1;1/.X/:

Lemma 3.5 [Du and Yau 2012]. Let X be a compact connected strongly pseu-
doconvex CR manifold of real dimension 3, which bounds a bounded strongly
pseudoconvex variety V with only isolated singularities f01; : : : ; 0kg in CN . Then
g.1;1/.X/D

P
i g

.1;1/.0i /.

Note that this invariant g.1;1/.X/ can be calculated on X directly. In [ibid.], we
use this CR invariant to give the sufficient and necessary condition for the variety
bounded by X to be smooth if H 2

h
.X/D 0:

Theorem 3.6 [ibid.]. Let X be a strongly pseudoconvex compact Calabi–Yau CR
manifold of dimension 3. Suppose that X is contained in the boundary of a strongly
pseudoconvex bounded domainD in CN withH 2

h
.X/D 0. Then X is the boundary

of the complex submanifold up to normalization V �D�X with boundary regularity
if and only if g.1;1/.X/D 0.

Theorem 3.7 [ibid.]. Let X be a strongly pseudoconvex compact CR manifold of
dimension 3. Suppose that X is contained in the boundary of a strongly pseudo-
convex bounded domain D in C3 with H 2

h
.X/D 0. Then X is the boundary of the

complex submanifold V �D�X if and only if g.1;1/.X/D 0.
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In this paper, we solve the complex Plateau problem for a strongly pseudoconvex
compact rational CR manifold of dimension 3, as a corollary of Theorem 2.8.

Recall the definition of a 3-dimensional rational CR manifold [Luk and Yau
1998b]:

Definition 3.8. Let X be a connected compact strongly pseudoconvex CR manifold
of real dimension 3. Let V be the normal variety such that the boundary of V is X
and V has isolated singularities at f01; : : : ; 0mg. Let � WM ! V be a resolution of
the singularities of V . Let Ui be a strongly pseudoconvex neighborhood of 0i , for
1� i �m, such that the Ui are pairwise disjoint. Then

pg.X/D

mX
iD1

dim�.Ui �f0ig; �
2/=L2.Ui �f0ig; �

2/:

If pg.X/D 0, we call the CR manifold rational.

From the similar proof of Lemma 3.9 in [Du and Yau 2012], we know that
the invariant pg.X/ is also decided by the holomorphic sections of holomorphic
cotangent bundle of X . So it is also a CR invariant.

Theorem 3.9. Let X be a strongly pseudoconvex compact rational CR manifold of
dimension 3. Suppose that X is contained in the boundary of a strongly pseudocon-
vex bounded domain D in CN . Then X is a boundary of the complex submanifold
V �D�X if and only if g.1;1/.X/D 0.

Proof. It is clear that rational CR manifolds can bound varieties with only rational
singularities. Then from Theorem 2.8 and Lemma 3.5, we obtain our conclusion. �

4. Explicit calculation of new invariants for special rational triple points

Du et al. [2011] calculated f .1;1/ and g.1;1/ for rational double points and quotient
singularities. In this section we will calculate these two invariants for rational triple
points. We suppose that V is a 2-dimensional Stein space with 0 as its only normal
singularity and that V is contractible to 0.

Artin [1966] classified the dual graphs of rational triple points of dimension 2
into nine classes, and proved that each rational triple point can be embedded into C4.
Tyurina [1968a] gave explicitly three defining equations for each singularity. Tyurina
[1968b] also proved that a rational triple point is determined uniquely by its dual
graph ([Laufer 1973] totally gave all the dual graphs of singularities with such
property). So, isomorphically, there are nine rational triple points, for which we
use the notations defined in [Chen et al. 2007]:

Am;n;k: c c c cc csp p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p pm‚…„ƒ „ƒ‚…
n

k‚…„ƒ
Bm;n: c c c c cc csp p p p p p p p p p p p p p p p p p p p p pm‚…„ƒ n‚…„ƒ
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Cm;n: c c c c cc csp p p p p p p p p p p p p p p p p p p p p pn‚…„ƒ „ƒ‚…
m

Dn;5: c c c c c ccsp p p p p p p p p p pn‚…„ƒ
E6;0: c c c c scc E7;0: c c c c ccc s
E0;7: c c c c c ccs Fn;6: c c c c c c ccsp p p p p p p p p p pn‚…„ƒ
Gn;0: c c c c c c c csp p p p p p p p p p pn‚…„ƒ

where ı is a .�2/-curve and � is a .�3/-curve.
In the following computation, we shall use explicit resolutions � WM ! V of

Am;n;k , Bm;n, Cm;n, Dn;5, E6;0, E7;0, E0;7, Fn;6 and Gn;0 to compute our new
invariants. Note that for these rational singularities of dimension 2, the irregularity
q is 0, so f .1;1/ D g.1;1/. In order to calculate our new invariants for these
rational singularities, we must know all the holomorphic 1-forms and holomorphic
2-forms on M . In general, the difficulty for calculating these two invariants is
that the holomorphic 1-forms on the resolution manifolds are hard to express. But
for rational singularities, we can use the following proposition to simplify the
calculation. Campana and Flenner [2002] gave a proof of the following proposition
by using mixed Hodge structure theory, which is of independent interest. We give a
short proof here:

Proposition 4.1. If .V; 0/ is a rational isolated singularity of dimension 2 and M
is a resolution of the singularity, then H 1

h
.M/DH 2

h
.M/D 0.

Proof. We recall the similar proof in [Du and Yau 2010]. Let � WM ! V be a good
resolution of the singularity. Let ��1.0/DAD

S
Ai ; 1� i � n, be the irreducible

decomposition of the exceptional set A.
We have the spectral sequence

(4-1) E
p;q
1 DH q.M;�

p
M /)H pCq.M;��M /ŠH

pCq.M;C/:

The spectral sequence induces an exact sequence of small-order terms

(4-2) 0!H 1
h .M/!H 1.M;C/!E

0;1
2 !H 2

h .M/!H 2.M;C/!E
1;1
2 ! 0;

where

E
0;1
2 D ker.H 1.M;OM /!H 1.M;�1

M //;(4-3)

E
1;1
2 D coker.H 1.M;OM /!H 1.M;�1

M //:(4-4)

So

(4-5) h1
h.M/� h1.M/C dimE

0;1
2 � h2

h.M/C h2.M/� dimE
1;1
2 D 0:
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Since

(4-6) dimE
0;1
2 � dimE

1;1
2 D h1.M;OM /� h

1.M;�1
M /;

we have

(4-7) h1
h.M/� h1.M/� h2

h.M/C h2.M/C h1.M;OM /� h
1.M;�1

M /D 0:

From [Wahl 1985], we know that

(4-8) h1.M;�1
M /D  C qCnD pg �g� b�˛�ˇCn

and

h1.M/D dimH 1.A;C/D 2gC b; h2.M/D n; h1.M;OM /D pg :

So

(4-9) h2
h.M/� h1

h.M/D ˛Cˇ�g:

From [van Straten and Steenbrink 1985], we know that

pg D qCgC bC˛CˇC :

As pg D 0, q D g D b D ˛ D ˇ D  . So h1.M/D 2gC b D 0. From (4-2) and
(4-9), we get that h2

h
.M/D h1

h
.M/D 0. �

Remark 4.2. In fact, from the above proof, we can get h2
h
.M/D h1

h
.M/D 0 if

E
0;1
2 D ker.H 1.M;OM /!H 1.M;�1

M //D 0:

So, rational singularity is a special case.

Now we can use holomorphic functions and holomorphic 2-forms to express
holomorphic 1-forms on the resolution manifold from the following lemma:

Lemma 4.3. If .V; 0/ is rational isolated singularity of dimension 2 and � WM!V

is a resolution, then for any � 2 �.M;�1
M / and � 2 d�1.d�/, there exists an

f 2�.M;OM / such that �D �Cd.f /, where d is the exterior differential operator.

Proof. From Proposition 4.1 above, we have the exact sequence

0 ��! �.M;OM /
d
��! �.M;�1

M /
d
��! �.M;�2

M / ��! 0:

For � 2 �.M;�1
M / and any � 2 d�1.d�/, d.� � �/ D 0. So there exists

f 2 �.M;OM / such that � D �C d.f /. �

From the lemma above, we see that in order to get holomorphic 1-forms on M ,
we only need to calculate holomorphic functions and holomorphic 2-forms on M .

Laufer [1971] constructed local coordinates for the resolution manifolds of
cyclic quotient singularities such that one can calculate everything explicitly on
the manifolds. Now we are going to construct local coordinates for the resolution
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manifolds of rational triple points to calculate our new invariants because of the
tautness of rational triple points (“tautness” means that the singularity is determined
by its dual graph).

An explicit resolution � W M ! V can be given in terms of coordinates and
transition functions on M for each type as follows:

Type E6;0:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; 4;

Wt D f.ut ; vt / W u
2
t vt ¤�1g; t D 5; 6;

W7 D f.u7; v7/g W u
5
7v

2
7 ¤�1g:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t � 3;

�
u5D 1=.u4v4/;

v5D u4v
2
4.1�u4/;�

u6D 1=.v4.1�u4//;

v6D u4v
2
4.1�u4/;

�
u7D 1=v6;

v7D u6v
3
6 :

Exceptional set: AD ��1.0/D C1[ � � � [C7, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t � 4;

C5 D fv3 D 1g[ fu4 D 1g[ fv5 D 0g;

C6 D fu4 D 0g[ fv6 D 0g;

C7 D fu6 D 0g[ fv7 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
4v

b
4.1�u4/

c
D ub

3v
�aC2b�c
3 .v3� 1/

c

D u�aC2b�c
2 v�2aC3b�2c

2 .u2v
2
2 � 1/

c

D u�2aC3b�2c
1 v�3aC4b�3c

1 .u2
1v

3
1 � 1/

c

D u�3aC4b�3c
0 v�4aC5b�4c

0 .u3
0v

4
0 � 1/

c

D u�bC2c
5 vc

5.1Cu
2
5v5/

�aCb�c

D u2a�b
6 va

6 .1Cu
2
6v6/

�aCb�c

D u5a�3b
7 v2a�b

7 .1Cu5
7v

2
7/
�aCb�c ;
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such that

(4-10)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

5b � 4.aC c/;

2c � b;

5a � 3b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D du0 ^ dv0 D du1 ^ dv1 D � � � D du4 ^ dv4

D�
du5 ^ dv5

1Cu2
5v5

D
du6 ^ dv6

1Cu2
6v6

D
u7du7 ^ dv7

1Cu5
7v

2
7

;

such that

(4-11)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

5b � 4.aC c/;

2c � b;

5aC 1� 3b:

Type E7;0:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; 5;

Wt D f.ut ; vt / W u
2
t vt ¤�1g; t D 6; 7;

W8 D f.u8; v8/g W u
5
8v

2
8 ¤�1g:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t � 4;

�
u6D 1=.u5v5/;

v6D u5v
2
5.1�u5/;�

u7D 1=.v5.1�u5//;

v7D u5v
2
5.1�u5/;

�
u8D 1=v7;

v8D u7v
3
7 :

Exceptional set: AD ��1.0/D C1[ � � � [C8, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t � 5;

C6 D fv4 D 1g[ fu5 D 1g[ fv6 D 0g;

C7 D fu5 D 0g[ fv7 D 0g;

C8 D fu7 D 0g[ fv8 D 0g:
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A holomorphic function on M can be generated by the following forms:

ua
5v

b
5.1�u5/

c
D ub

4v
�aC2b�c
4 .v4� 1/

c

D u�aC2b�c
3 v�2aC3b�2c

3 .u3v
2
3 � 1/

c

D u�2aC3b�2c
2 v�3aC4b�3c

2 .u2
2v

3
2 � 1/

c

D u�3aC4b�3c
1 v�4aC5b�4c

1 .u3
1v

4
1 � 1/

c

D u�4aC5b�4c
0 v�5aC6b�5c

0 .u4
0v

5
0 � 1/

c

D u�bC2c
6 vc

6.1Cu
2
6v6/

�aCb�c

D u2a�b
7 va

7 .1Cu
2
7v7/

�aCb�c

D u5a�3b
8 v2a�b

8 .1Cu5
8v

2
8/
�aCb�c ;

such that

(4-12)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

6b � 5.aC c/;

2c � b;

5a � 3b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D du0 ^ dv0 D du1 ^ dv1 D � � � D du5 ^ dv5

D�
du6 ^ dv6

1Cu2
6v6

D
du7 ^ dv7

1Cu2
7v7

D
u8du8 ^ dv8

1Cu5
8v

2
8

;

such that

(4-13)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

6b � 5.aC c/;

2c � b;

5aC 1� 3b:

Type E0;7:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; 5;

Wt D f.ut ; vt / W u
2
t vt ¤�1g; t D 6; 7;

W8 D f.u8; v8/g W u
3
8v

2
8 ¤�1g:
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Transition functions:�
u1D 1=v0;

v1D u0v
3
0 ;

�
utC1D 1=vt ;

vtC1D utv
2
t ;

1� t � 4;

�
u6D 1=.u5v5/;

v6D u5v
2
5.1�u5/;

�
u7D 1=.v5.1�u5//;

v7D u5v
2
5.1�u5/;

�
u8D 1=v7;

v8D u7v
2
7 :

Exceptional set: AD ��1.0/D C1[ � � � [C8, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t � 5;

C6 D fv4 D 1g[ fu5 D 1g[ fv6 D 0g;

C7 D fu5 D 0g[ fv7 D 0g;

C8 D fu7 D 0g[ fv8 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
5v

b
5.1�u5/

c
D ub

4v
�aC2b�c
4 .v4� 1/

c

D u�aC2b�c
3 v�2aC3b�2c

3 .u3v
2
3 � 1/

c

D u�2aC3b�2c
2 v�3aC4b�3c

2 .u2
2v

3
2 � 1/

c

D u�3aC4b�3c
1 v�4aC5b�4c

1 .u3
1v

4
1 � 1/

c

D u�4aC5b�4c
0 v�9aC11b�9c

0 .u4
0v

9
0 � 1/

c

D u�bC2c
6 vc

6.1Cu
2
6v6/

�aCb�c

D u2a�b
7 va

7 .1Cu
2
7v7/

�aCb�c

D u3a�2b
8 v2a�b

8 .1Cu3
8v

2
8/
�aCb�c ;

such that

(4-14)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

11b � 9.aC c/;

2c � b;

3a � 2b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D v0du0 ^ dv0 D du1 ^ dv1 D � � � D du5 ^ dv5

D�
du6 ^ dv6

1Cu2
6v6

D
du7 ^ dv7

1Cu2
7v7

D
du8 ^ dv8

1Cu5
8v

2
8

;
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such that

(4-15)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

11bC 1� 9.aC c/;

2c � b;

3a � 2b:

Type Gn;0:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; nC 1;

Wt D f.ut ; vt / W u
3
t v

2
t ¤�1g; t D nC 2; nC 4;

WnC3 D f.unC3; vnC3/g W u
2
nC3vnC3 ¤�1g:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t � n;

�
unC2D 1=.unC1vnC1/;

vnC2D u
2
nC1v

3
nC1.1�unC1/;�

unC3D 1=.vnC1.1�unC1//;

vnC3D unC1v
2
nC1.1�unC1/;

�
unC4D 1=vnC3;

vnC4D unC3v
2
nC3:

Exceptional set: AD ��1.0/D C1[ � � � [CnC4, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t � nC 1;

CnC2 D fvn D 1g[ funC1 D 1g[ fvnC2 D 0g;

CnC3 D funC1 D 0g[ fvnC3 D 0g;

CnC4 D funC3 D 0g[ fvnC4 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
nC1v

b
nC1.1�unC1/

c
D u

.n�tC1/b�.n�t/.aCc/
t v

.n�tC2/b�.n�tC1/.aCc/
t

� .un�t
t vn�tC1

t � 1/c

D u�bC3c
nC2 vc

nC2.1Cu
3
nC2vnC2/

�aCb�c

D u2a�b
nC3 v

a
nC3.1Cu

2
nC3vnC3/

�aCb�c

D u3a�2b
nC4 v2a�b

nC4 .1Cu
3
nC4v

2
nC4/

�aCb�c ;
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where 0� t � n, such that

(4-16)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.nC 2/b � .nC 1/.aC c/;

3c � b;

3a � 2b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D du0 ^ dv0 D du1 ^ dv1 D � � � D dunC1 ^ dvnC1

D�
unC2dunC2 ^ dvnC2

1Cu3
nC2vnC2

D
dunC3 ^ dvnC3

1Cu2
nC3vnC3

D
dunC4 ^ dvnC4

1Cu3
nC4v

2
nC4

;

such that

(4-17)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.nC 2/b � .nC 1/.aC c/;

3cC 1� b;

3a � 2b:

Type Dn;5:
Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; nC 3;

Wt D f.ut ; vt / W u
2
t vt ¤�1g; t D nC 4; nC 5; nC 7;

WnC6 D f.unC6; vnC6/g W u
3
nC6v

2
nC6 ¤�1g:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t � n� 1 and t D nC 1; nC 2; nC 5; nC 6;

�
unC1D 1=vn;

vnC1D unv
3
n;

�
unC4D 1=.unC3vnC3/;

vnC4D unC3v
2
nC3.1�unC3/;�

unC5D 1=.vnC3.1�unC3//;

vnC5D unC3v
2
nC3.1�unC3/:

Exceptional set: AD ��1.0/D C1[ � � � [CnC7, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t � nC 3 and t D nC 6; nC 7;

CnC4 D fvnC2 D 1g[ funC3 D 1g[ fvnC4 D 0g;

CnC5 D funC3 D 0g[ fvnC5 D 0g:
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A holomorphic function on M can be generated by the following forms:

ua
nC3v

b
nC3.1�unC3/

c

D ub
nC2v

�aC2b�c
nC2 .vnC2� 1/

c

D u�aC2b�c
nC1 v�2aC3b�2c

nC1 .unC1v
2
nC1� 1/

c

D u
.4n�4tC3/b�.3n�3tC2/.aCc/
t v

.4n�4tC7/b�.3n�3tC5/.aCc/
t

� .u3n�3tC2
t v3n�3tC5

t � 1/c

D u�bC2c
nC4 vc

nC4.1Cu
2
nC4vnC4/

�aCb�c

D u2a�b
nC5 v

a
nC5.1Cu

2
nC5vnC5/

�aCb�c

D u3a�2b
nC6 v2a�b

nC6 .1Cu
3
nC6v

2
nC6/

�aCb�c

D u4a�3b
nC7 v3a�2b

nC7 .1Cu4
nC7v

3
nC7/

�aCb�c ;

where 0� t � n, such that

(4-18)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.4nC 7/b � .3nC 5/.aC c/;

2c � b;

4a � 3b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D u
n
0v

nC1
0 du0 ^ dv0 D u

n�1
1 vn

1du1 ^ dv1

D � � � D un�1v
2
n�1dun�1 ^ dvn�1 D undun ^ dvn D dunC1 ^ dvnC1

D dunC2 ^ dvnC2 D dunC3 ^ dvnC3 D�
dunC4 ^ dvnC4

1Cu3
nC4vnC4

D
dunC5 ^ dvnC5

1Cu2
nC5vnC5

D
dunC6 ^ dvnC6

1Cu3
nC6v

2
nC6

D
dunC7 ^ dvnC7

1Cu4
nC7v

3
nC7

;

such that

(4-19)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.4nC 7/bCnC 1� .3nC 5/.aC c/;

2c � b;

4a � 3b:

Type Fn;6:



NEW INVARIANTS FOR COMPLEX MANIFOLDS AND RATIONAL SINGULARITIES 89

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; nC 4;

Wt D f.ut ; vt / W u
2
t vt ¤�1g; t D nC 5; nC 6;

WnC7 D f.unC7; vnC7/g W u
3
nC7v

2
nC7 ¤�1g;

WnC8 D f.unC8; vnC8/g W u
4
nC8v

3
nC8 ¤�1g:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t � n� 1 and t D nC 1; nC 2; nC 3; nC 6; nC 7;

�
unC1D 1=vn;

vnC1D unv
3
n;

�
unC5D 1=.unC4vnC4/;

vnC5D unC4v
2
nC4.1�unC4/;�

unC6D 1=.vnC4.1�unC4//;

vnC6D unC4v
2
nC4.1�unC4/:

Exceptional set: AD ��1.0/D C1[ � � � [CnC8, where

Ct D fut�1 D 0g[ fvt D 0g 1� t � nC 4 and t D nC 7; nC 8;

CnC5 D fvnC3 D 1g[ funC4 D 1g[ fvnC5 D 0g;

CnC6 D funC4 D 0g[ fvnC6 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
nC4v

b
nC4.1�unC4/

c

D ub
nC3v

�aC2b�c
nC3 .vnC3� 1/

c

D u�aC2b�c
nC2 v�2aC3b�2c

nC2 .unC2v
2
nC2� 1/

c

D u�2aC3b�2c
nC1 v�3aC4b�3c

nC1 .u2
nC1v

3
nC1� 1/

c

D u
.5n�5tC4/b�.4n�4tC3/.aCc/
t v

.5n�5tC9/b�.4n�4tC7/.aCc/
t

� .u4n�4tC3
t v4n�4tC7

t � 1/c

D u�bC2c
nC5 vc

nC5.1Cu
2
nC5vnC5/

�aCb�c

D u2a�b
nC6 v

a
nC6.1Cu

2
nC6vnC6/

�aCb�c

D u3a�2b
nC7 v2a�b

nC7 .1Cu
3
nC7v

2
nC7/

�aCb�c

D u4a�3b
nC8 v3a�2b

nC8 .1Cu4
nC8v

3
nC8/

�aCb�c ;
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where 0� t � n, such that

(4-20)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.5nC 9/b � .4nC 7/.aC c/;

2c � b;

4a � 3b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D u
n
0v

nC1
0 du0 ^ dv0 D u

n�1
1 vn

1du1 ^ dv1

D � � � D un�1v
2
n�1dun�1 ^ dvn�1 D undun ^ dvn

D dunC1 ^ dvnC1 D � � � D dunC4 ^ dvnC4

D�
dunC5 ^ dvnC5

1Cu3
nC5vnC5

D
dunC6 ^ dvnC6

1Cu2
nC6vnC6

D
dunC7 ^ dvnC7

1Cu3
nC7v

2
nC7

D
dunC8 ^ dvnC8

1Cu4
nC8v

3
nC8

;

such that

(4-21)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.5nC 9/bCnC 1� .4nC 7/.aC c/;

2c � b;

4a � 3b:

Type Cm;n:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; mCnC 2;

Wt D f.ut ; vt / W u
2
t vt ¤�1g; t DmCnC 3;mCnC 4:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t � n� 1 and nC 1� t �mCnC 1;

�
unC1D 1=vn;

vnC1D unv
3
n;

�
umCnC3D 1=.umCnC2vmCnC2/;

vmCnC3D umCnC2v
2
mCnC2.1�umCnC2/;�

umCnC4D 1=.vmCnC2.1�umCnC2//;

vmCnC4D umCnC2v
2
mCnC2.1�umCnC2/:
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Exceptional set: AD ��1.0/D C1[ � � � [CmCnC4, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t �mCnC 2;

CmCnC3 D fvmCnC1 D 1g[ fumCnC2 D 1g[ fvmCnC3 D 0g;

CmCnC4 D fumCnC2 D 0g[ fvmCnC4 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
mCnC2v

b
mCnC2.1�umCnC2/

c

D u
.mCnC2�t/b�.mCnC1�t/.aCc/
t v

.mCnC3�t/b�.mCnC2�t/.aCc/
t

� .umCnC1�t
t vmCnC2�t

t � 1/c

D uŒ.mC3/.n�s/CmC2/�b�Œ.mC3/.n�s/CmC1/�.aCc/
s

� vŒ.mC3/.n�s/CmC2/�b�Œ.mC3/.n�s/CmC1/�.aCc/
s

� .u.mC3/.n�s/CmC2/
s v.mC3/.n�s/C2mC3/

s � 1/c

D u�bC2c
mCnC3v

c
mCnC3.1Cu

2
mCnC3vmCnC3/

�aCb�c

D u2a�b
mCnC4v

a
mCnC4.1Cu

2
mCnC4vmCnC4/

�aCb�c ;

where nC 1� t �mCnC 1, 0� s � n, such that

(4-22)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.mnC 3mC 2nC 5/b � .mnC 2mC 2nC 3/.aC c/;

2c � b;

2a � b:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D u
n
0v

nC1
0 du0 ^ dv0 D u

n�1
1 vn

1du1 ^ dv1

D � � � D un�1v
2
n�1dun�1 ^ dvn�1 D undun ^ dvn D dunC1 ^ dvnC1

D � � � D dumCnC2 ^ dvmCnC2 D�
dumCnC3 ^ dvmCnC3

1Cu2
mCnC3vmCnC3

D
dumCnC4 ^ dvmCnC4

1Cu2
mCnC4vmCnC4

;

such that

(4-23)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.mnC 3mC 2nC 5/bCnC 1� .mnC 2mC 2nC 3/.aC c/;

2c � b;

2a � b:
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Type Bm;n:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; mC 2;

WmC3 D f.umC3; vmC3/ W u
2
mC3vmC3 ¤�1g;

Wt D f.ut ; vt / W u
t�m�2
t vt�m�3

t ¤�1g; mC 4� t �mCnC 4:

Transition functions:�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t �m� 1; t DmC 1; and mC 4� t �mCnC 3;

�
umC1D 1=vm;

vmC1D umv
3
m;

�
umC3D 1=.umC2vmC2/;

vmC3D umC2v
2
mC2.1�umC2/;�

umC4D 1=.vmC2.1�umC2//;

vmC4D umC2v
2
mC2.1�umC2/:

Exceptional set: AD ��1.0/D C1[ � � � [CmCnC4, where

Ct D fut�1 D 0g[ fvt D 0g; 1� t �mC 2 and mC 5� t �mCnC 4;

CmC3 D fvmC1 D 1g[ fumC2 D 1g[ fvmC3 D 0g;

CmC4 D fumC2 D 0g[ fvmC4 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
mC2v

b
mC2.1�umC2/

c

D ub
mC1v

�aC2b�c
mC1 .vmC11/

c

D u
.3m�3tC2/b�.2m�2tC1/.aCc/
t v

.3m�3tC5/b�.2m�2tC3/.aCc/
t

� .u2m�2tC1
t v2m�2tC3

t � 1/c

D u�bC2c
mC3 vc

mC3.1Cu
2
mC3vmC3/

�aCb�c

D u.t�m�2/a�.t�m�3/b
s v.t�m�3/a�.t�m�4/b

s .ut�m�2
s vt�m�3

s � 1/c ;

where 0� t �m, mC 4� s �mCnC 4, such that

(4-24)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.3mC 5/b � .2mC 3/.aC c/;

2c � b;

.nC 2/a � .nC 1/b:
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A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D u
m
0 v

mC1
0 du0 ^ dv0 D u

m�1
1 vm

1 du1 ^ dv1

D � � � D um�1v
2
m�1dum�1 ^ dvm�1 D umdum ^ dvm

D dumC1 ^ dvmC1 D dumC2 ^ dvmC2

D�
dumC3 ^ dvmC3

1Cu2
mC3vmC3

D
dut ^ dvt

1Cut�m�2
t vt�m�3

t

;

where mC 4� t �mCnC 4, such that

(4-25)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.3mC 5/bCmC 1� .2mC 3/.aC c/;

2c � b;

.nC 2/a � .nC 1/b:

Type Am;n;k:

Coordinate charts:

Wt D f.ut ; vt /g; t D 0; 1; : : : ; mC 1;

Wt D f.ut ; vt / W u
t�m
t vt�m�1

t ¤�1g; mC 2� t �mCnC 1;

Wt D f.ut ; vt / W u
t�m�n
t vt�m�n�1

t ¤�1g; mCnC 2� t �mCnC kC 1:

Transition functions:

�
utC1D 1=vt ;

vtC1D utv
2
t ;

0� t �m� 1; mC 2� t �mCn; or
mCnC 2� t �mCnC k;�

umC1D 1=vm;

vmC1D umv
3
m;�

umC2D 1=.vmC1.1�umC1//;

vmC2D umC1v
2
mC1.1�umC1/;�

umCnC2D 1=.umC1vmC1/;

vmCnC2D umC1v
2
mC1.1�umC1/:
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Exceptional set: AD ��1.0/D C1[ � � � [CmCnCkC1, where

Ct D fut�1 D 0g[ fvt D 0g; t ¤mCnC 2;

CmCnC2 D fvm D 1g[ fumC1 D 1g[ fvmCnC2 D 0g:

A holomorphic function on M can be generated by the following forms:

ua
mC1v

b
mC1.1�umC1/

c

D u
.2m�2tC1/b�.m�t/.aCc/
t v

.2m�2tC3/b�.m�tC1/.aCc/
t .um�t

t vm�tC1
t � 1/c

D u.s�m/a�.s�m�1/b
s v.s�m�1/a�.s�m�2/b

s .us�m
s vs�m�1

s � 1/c ;

D u.r�m�n/c�.r�m�n�1/b
r v.r�m�n�1/c�.r�m�n�2/b

r

� .ur�m�n
r vr�m�n�1

r � 1/c ;

where 0� t �m, mC 2� s �mCnC 1, mCnC 2� r �mCnC kC 1, such
that

(4-26)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.2mC 3/b � .mC 1/.aC c/;

.nC 1/a � nb;

.kC 1/c � kb:

A holomorphic 2-form can be written as f '0, where f is a holomorphic function
on M and

'0 D u
m
0 v

mC1
0 du0 ^ dv0 D u

m�1
1 vm

1 du1 ^ dv1

D � � � D um�1v
2
m�1dum�1 ^ dvm�1 D umdum ^ dvm D dumC1 ^ dvmC1

D
dut ^ dvt

1Cut�m
t vt�m�1

t

D�
dus ^ dvs

1Cus�m�n
s vs�m�n�1

s

;

where mC 2� t �mCnC 1, mCnC 2� s �mCnC kC 1, such that

(4-27)

8̂̂̂<̂
ˆ̂:
a; b; c � 0;

.2mC 3/bCmC 1� .mC 1/.aC c/;

.nC 1/a � nb;

.kC 1/c � kb:

Theorem 4.4. For 2-dimensional rational triple points, f .1;1/ D g.1;1/ D 1.

Proof. We consider only type E6;0 as an example; the other singularities are similar.
From the above calculation, we know that the holomorphic functions on M are
generated by a base fua

4v
b
4.1�u4/

cg satisfying (4-10), and holomorphic 2-forms
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are generated by a base fua
4v

b
4.1� u4/

cdu4 ^ dv4g satisfying (4-11). For every
holomorphic 2-form ! D ua

4v
b
4.1�u4/

cdu4 ^ dv4 on M , we consider

� D�
ua

4v
bC1
4 .1�u4/

c

bC 1
du4:

So, � defines a holomorphic 1-form on W0 and d� D !. In fact, we need to check
that under all changes of coordinate charts, � transforms to define a holomorphic
1-form in each coordinate chart:

ua
4v

bC1
4 .1�u4/

cdu4 D �u
bC1
3 v�aC2b�c

3 .v3� 1/
cdv3

D �u�aC2b�c
2 v�2aC3b�2cC1

2 .u2v
2
2 � 1/

cdu2

� 2u�aC2b�cC1
2 v�2aC3b�2c

2 .u2v
2
2 � 1/

cdv2

D � 2u�2aC3b�2c
1 v�3aC4b�3cC1

1 .u2
1v

3
1 � 1/

cdu1

� 3u�2aC3b�2cC1
1 v�3aC4b�3c

1 .u2
1v

3
1 � 1/

cdv1

D � 3u�3aC4b�3c
0 v�4aC5b�4cC1

0 .u3
0v

4
0 � 1/

cdu0

� 4u�3aC4b�3cC1
0 v�4aC5b�4c

0 .u3
0v

4
0 � 1/

cdv0

D � 2u�bC2c
5 vcC1

5 .1Cu2
5v5/

�aCb�c�1du5

�u�bC2cC1
5 vc

5.1Cu
2
5v5/

�aCb�c�1dv5

D 2u2a�b
6 vaC1

6 .1Cu2
6v6/

�aCb�c�1du6

Cu2a�bC1
6 va

6 .1Cu
2
6v6/

�aCb�c�1dv6

D 5u5a�3bC1
7 v2a�bC1

7 .1Cu5
7v

2
7/
�aCb�c�1du7

C 2u5a�3bC2
7 v2a�b

7 .1Cu5
7v

2
7/
�aCb�c�1dv7:

By Lemma 4.3, we can get general expressions for elements in �.M;�1
M /.

Therefore
�.M;�2

M /

h�.M;�1
M /^�.M;�

1
M /i
D hu4 ^ v4i;

and

f .1;1/
D dim

�.M;�2
M /

h�.M;�1
M /^�.M;�

1
M /i
D 1: �

References

[Artin 1966] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math. 88 (1966),
129–136. MR 33 #7340 Zbl 0142.18602

[Campana and Flenner 2002] F. Campana and H. Flenner, “Contact singularities”, Manuscripta Math.
108:4 (2002), 529–541. MR 2003k:32041 Zbl 1026.32057

http://dx.doi.org/10.2307/2373050
http://msp.org/idx/mr/33:7340
http://msp.org/idx/zbl/0142.18602
http://dx.doi.org/10.1007/s002290200285
http://msp.org/idx/mr/2003k:32041
http://msp.org/idx/zbl/1026.32057


96 RONG DU AND YUN GAO

[Chen et al. 2007] Z. Chen, R. Du, S.-L. Tan, and F. Yu, “Cubic equations of rational triple points of
dimension two”, pp. 63–76 in Proceedings of the International Conference on Complex Geometry
and Related Fields (Shanghai, 2004), edited by Z. Chen et al., AMS/IP Stud. Adv. Math. 39, Amer.
Math. Soc., Providence, RI, 2007. MR 2008g:14056 Zbl 1127.14003

[Du and Yau 2010] R. Du and S. Yau, “Local holomorphic de Rham cohomology”, Comm. Anal.
Geom. 18:2 (2010), 365–374. MR 2011g:32039 Zbl 1216.32018

[Du and Yau 2012] R. Du and S. Yau, “Kohn–Rossi cohomology and its application to the complex
Plateau problem, III”, J. Differential Geom. 90:2 (2012), 251–266. MR 2899875 Zbl 1254.32051

[Du et al. 2011] R. Du, H. S. Luk, and S. Yau, “New invariants for complex manifolds and isolated
singularities”, Comm. Anal. Geom. 19:5 (2011), 991–1021. MR 2886715 Zbl 1243.32018

[Harvey and Lawson 1975] F. R. Harvey and H. B. Lawson, Jr., “On boundaries of complex analytic
varieties, I”, Ann. of Math. .2/ 102:2 (1975), 223–290. MR 54 #13130 Zbl 0317.32017

[Laufer 1971] H. B. Laufer, Normal two-dimensional singularities, Annals of Mathematics Studies
71, Princeton University Press, 1971. MR 47 #8904 Zbl 0245.32005

[Laufer 1973] H. B. Laufer, “Taut two-dimensional singularities”, Math. Ann. 205 (1973), 131–164.
MR 48 #11563 Zbl 0281.32010

[Luk and Yau 1998a] H. S. Luk and S. S.-T. Yau, “Counterexample to boundary regularity of a
strongly pseudoconvex CR submanifold: An addendum to the paper of Harvey–Lawson”, Ann. of
Math. .2/ 148:3 (1998), 1153–1154. MR 99j:32006 Zbl 0940.32014

[Luk and Yau 1998b] H. S. Luk and S. S. T. Yau, “Explicit construction of graph invariant for strongly
pseudoconvex compact 3-dimensional rational CR manifolds”, Compositio Math. 114:1 (1998),
77–111. MR 2000d:32054 Zbl 0917.32008

[Luk and Yau 2007] H. S. Luk and S. S.-T. Yau, “Kohn–Rossi cohomology and its application to
the complex Plateau problem, II”, J. Differential Geom. 77:1 (2007), 135–148. MR 2008k:32091
Zbl 1123.32020

[Siu 1970] Y.-t. Siu, “Analytic sheaves of local cohomology”, Trans. Amer. Math. Soc. 148 (1970),
347–366. MR 41 #2054 Zbl 0195.36802

[van Straten and Steenbrink 1985] D. van Straten and J. Steenbrink, “Extendability of holomorphic
differential forms near isolated hypersurface singularities”, Abh. Math. Sem. Univ. Hamburg 55
(1985), 97–110. MR 87j:32025 Zbl 0584.32018

[Tjurina 1968a] G. N. Tjurina, “Absolute isolatedness of rational singularities, and triple rational
points”, Funkcional. Anal. i Priložen. 2:4 (1968), 70–81. In Russian; translated in Func. Anal. Appl.
2:4 (1968), 324–333. MR 39 #7136 Zbl 0176.50804

[Tjurina 1968b] G. N. Tjurina, “The rigidity of rationally contractible curves on a surface”, Izv. Akad.
Nauk SSSR Ser. Mat. 32 (1968), 943–970. In Russian. MR 40 #149 Zbl 0186.26301

[Wahl 1985] J. M. Wahl, “A characterization of quasihomogeneous Gorenstein surface singularities”,
Compositio Math. 55:3 (1985), 269–288. MR 87e:32013 Zbl 0587.14024

[Yau 1981a] S. S. T. Yau, “Existence of L2-integrable holomorphic forms and lower estimates of
T 1

V
”, Duke Math. J. 48:3 (1981), 537–547. MR 83b:32009 Zbl 0474.14020

[Yau 1981b] S. S. T. Yau, “Kohn–Rossi cohomology and its application to the complex Plateau
problem, I”, Ann. of Math. .2/ 113:1 (1981), 67–110. MR 82k:32038 Zbl 0464.32012

[Yau 1982] S. S. T. Yau, “Various numerical invariants for isolated singularities”, Amer. J. Math.
104:5 (1982), 1063–1100. MR 84b:32012 Zbl 0523.14002

Received October 7, 2011.

http://msp.org/idx/mr/2008g:14056
http://msp.org/idx/zbl/1127.14003
http://dx.doi.org/10.4310/CAG.2010.v18.n2.a4
http://msp.org/idx/mr/2011g:32039
http://msp.org/idx/zbl/1216.32018
http://projecteuclid.org/euclid.jdg/1335230846
http://projecteuclid.org/euclid.jdg/1335230846
http://msp.org/idx/mr/2899875
http://msp.org/idx/zbl/1254.32051
http://dx.doi.org/10.4310/CAG.2011.v19.n5.a7
http://dx.doi.org/10.4310/CAG.2011.v19.n5.a7
http://msp.org/idx/mr/2886715
http://msp.org/idx/zbl/1243.32018
http://dx.doi.org/10.2307/1971032
http://dx.doi.org/10.2307/1971032
http://msp.org/idx/mr/54:13130
http://msp.org/idx/zbl/0317.32017
http://msp.org/idx/mr/47:8904
http://msp.org/idx/zbl/0245.32005
http://dx.doi.org/10.1007/BF01350842
http://msp.org/idx/mr/48:11563
http://msp.org/idx/zbl/0281.32010
http://dx.doi.org/10.2307/121038
http://dx.doi.org/10.2307/121038
http://msp.org/idx/mr/99j:32006
http://msp.org/idx/zbl/0940.32014
http://dx.doi.org/10.1023/A:1000476825608
http://dx.doi.org/10.1023/A:1000476825608
http://msp.org/idx/mr/2000d:32054
http://msp.org/idx/zbl/0917.32008
http://projecteuclid.org/euclid.jdg/1185550817
http://projecteuclid.org/euclid.jdg/1185550817
http://msp.org/idx/mr/2008k:32091
http://msp.org/idx/zbl/1123.32020
http://dx.doi.org/10.2307/1995376
http://msp.org/idx/mr/41:2054
http://msp.org/idx/zbl/0195.36802
http://dx.doi.org/10.1007/BF02941491
http://dx.doi.org/10.1007/BF02941491
http://msp.org/idx/mr/87j:32025
http://msp.org/idx/zbl/0584.32018
http://dx.doi.org/10.1007/BF01075685
http://dx.doi.org/10.1007/BF01075685
http://msp.org/idx/mr/39:7136
http://msp.org/idx/zbl/0176.50804
http://msp.org/idx/mr/40:149
http://msp.org/idx/zbl/0186.26301
http://www.numdam.org/item?id=CM_1985__55_3_269_0
http://msp.org/idx/mr/87e:32013
http://msp.org/idx/zbl/0587.14024
http://dx.doi.org/10.1215/S0012-7094-81-04830-4
http://dx.doi.org/10.1215/S0012-7094-81-04830-4
http://msp.org/idx/mr/83b:32009
http://msp.org/idx/zbl/0474.14020
http://dx.doi.org/10.2307/1971134
http://dx.doi.org/10.2307/1971134
http://msp.org/idx/mr/82k:32038
http://msp.org/idx/zbl/0464.32012
http://dx.doi.org/10.2307/2374084
http://msp.org/idx/mr/84b:32012
http://msp.org/idx/zbl/0523.14002


NEW INVARIANTS FOR COMPLEX MANIFOLDS AND RATIONAL SINGULARITIES 97

RONG DU

DEPARTMENT OF MATHEMATICS

EAST CHINA NORMAL UNIVERSITY

DONGCHUAN ROAD 500
SHANGHAI 200241
CHINA

rdu@math.ecnu.edu.cn

YUN GAO

DEPARTMENT OF MATHEMATICS

SHANGHAI JIAO TONG UNIVERSITY

DONGCHUAN ROAD 800
SHANGHAI 200240
CHINA

gaoyunmath@sjtu.edu.cn

mailto:rdu@math.ecnu.edu.cn
mailto:gaoyunmath@sjtu.edu.cn




PACIFIC JOURNAL OF MATHEMATICS
Vol. 269, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.269.99

HOMOGENEITY GROUPS OF ENDS OF OPEN 3-MANIFOLDS

DENNIS J. GARITY AND DUŠAN REPOVŠ

For every finitely generated abelian group G, we construct an irreducible
open 3-manifold MG whose end set is homeomorphic to a Cantor set and
whose homogeneity group is isomorphic to G. The end homogeneity group
is the group of self-homeomorphisms of the end set that extend to homeo-
morphisms of the 3-manifold. The techniques involve computing the embed-
ding homogeneity groups of carefully constructed Antoine-type Cantor sets
made up of rigid pieces. In addition, a generalization of an Antoine Cantor
set using infinite chains is needed to construct an example with integer ho-
mogeneity group. Results about the local genus of points in Cantor sets and
about the geometric index are also used.

1. Introduction

Each Cantor set C in S3 has for complement an open 3-manifold M3 with end
set C . Properties of the embedding of the Cantor set give rise to properties of
the corresponding complementary 3-manifold M3. See [Souto and Stover 2013],
[Garity and Repovš 2013], and [Garity et al. 2014] for examples of this.

We investigate possible group actions on the end set C of the open 3-manifold
M3 in the following sense: the homogeneity group of the end set is the group of
homeomorphisms of the end set C that extend to homeomorphisms of the open
3-manifold M3. Referring specifically to the embedding of the Cantor set, this
group can also be called the embedding homogeneity group of the Cantor set. See
[Dijkstra 2010] and [van Mill 2011] for some other types of homogeneity.

The standardly embedded Cantor set is at one extreme here. The embedding
homogeneity group is the full group of self-homeomorphisms of the Cantor set,
an extremely rich group (there is such a homeomorphism taking any countable
dense set to any other). Cantor sets with this full embedding homogeneity group are
called strongly homogeneously embedded. See [Daverman 1979] for an example of
a nonstandard Cantor set with this property.

At the other extreme are rigidly embedded Cantor sets, those Cantor sets for
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Keywords: open 3-manifold, rigidity, manifold end, geometric index, Cantor set, homogeneity group,
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which only the identity homeomorphism extends. Shilepsky [1974] constructed
Antoine-type [1920] rigid Cantor sets. Their rigidity is a consequence of Sher’s
result [1968] that if two Antoine Cantor sets are equivalently embedded, the stages
of their defining sequences must match up exactly. In the last decade, new examples
[Garity et al. 2006; 2011] of nonstandard Cantor sets were constructed that were
both rigidly embedded and had simply connected complement. See [Wright 1986]
for additional examples of rigidity.

These examples naturally lead to the question of which types of groups can
arise as end homogeneity groups between the two extremes mentioned above. In
this paper we show that for each finitely generated abelian group G, there is an
irreducible open 3-manifold with end set homeomorphic to a Cantor set and end
homogeneity group isomorphic to G. (See Corollary 6.3.)

The Cantor sets produced are unsplittable, in the sense that for each such C , no
2-sphere in the complement of C separates points of C . We produce these examples
by constructing, for each natural number m greater than one, 3-manifolds with
end homogeneity groups Zm , and by separately constructing 3-manifolds with end
homogeneity group Z. We then link the Cantor sets needed for a given abelian
group in an unsplittable manner.

In Section 2, we give definitions and the basic results needed for the rest of
the paper. In Section 3, we review the needed results about Antoine Cantor sets.
In Section 4 we produce Cantor sets with embedding homogeneity group Zm . In
Section 5 we produce Cantor sets with embedding homogeneity group Z. Section 6
ties together the previous results and lists and proves the main theorems. Section 7
lists some remaining questions.

2. Preliminaries

Background. Refer to [Garity et al. 2005; 2006; 2014] for a discussion of Cantor
sets in general and of rigid Cantor sets, and to [Željko 2005] for results about
the local genus of points in Cantor sets and defining sequences for Cantor sets.
The bibliographies in these papers contain additional references to results about
Cantor sets. Two Cantor sets X and Y in S3 are said to be equivalent if there is
a self-homeomorphism of S3 taking X to Y ; otherwise they are inequivalent, or
inequivalently embedded. A Cantor set C is rigidly embedded in S3 if the only
self-homeomorphism of C that extends to a homeomorphism of S3 is the identity.

Geometric index. We list the results we need on geometric index. See [Schubert
1953] and [Garity et al. 2011] for more details.

If K is a link in the interior of a solid torus T , the geometric index of K in T ,
denoted by N(K , T ), is defined as the minimum of |K ∩ D| over all meridional
disks D of T intersecting K transversely. If T is a solid torus and M is a finite
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union of disjoint solid tori such that M ⊂ Int(T ), then the geometric index N(M, T )
of M in T is N(K , T ), where K is a core of M .

Theorem 2.1 [Schubert 1953; Garity et al. 2011, Theorem 3.1]. Let T0 and T1 be
unknotted solid tori in S3 with T0 ⊂ Int(T1) and N(T0, T1)= 1. Then ∂T0 and ∂T1

are parallel; i.e., the manifold T1− Int(T0) is homeomorphic to ∂T0× I , where I is
the closed unit interval [0, 1].

Theorem 2.2 [Schubert 1953; Garity et al. 2011, Theorem 3.2]. Let T0 be a finite
union of disjoint solid tori. Let T1 and T2 be solid tori such that T0 ⊂ Int(T1) and
T1 ⊂ Int(T2). Then N(T0, T2)= N(T0, T1) ·N(T1, T2).

There is one additional result we will need:

Theorem 2.3 [Schubert 1953; Garity et al. 2011, Theorem 3.3]. Let T be a solid
torus in S3 and let T1, . . . , Tn be unknotted pairwise disjoint solid tori in T , each of
geometric index 0 in T . Then the geometric index of

⋃n
i=1 Ti in T is even.

Defining sequences and local genus. We review the definition and some basic
facts from [Željko 2005] about the local genus of points in a Cantor set. See that
work for a discussion of defining sequences.

Let D(X) be the set of all defining sequences for a Cantor set X ⊂ S3. Let
(Mi ) ∈ D(X) be a specific defining sequence for an X . For A ⊂ X , denote by M A

i
the union of those components of Mi which intersect A. The genus g(M A

i ) of M A
i

is the maximum genus of a component of M A
i . Define

gA(X; (Mi ))= sup{g(M A
i ) : i ≥ 0}, gA(X)= inf{gA(X; (Mi )) : (Mi )∈D(X)}.

The number gA(X) is called the genus of the Cantor set X with respect to the subset
A. For A = {x} we call the number g{x}(X) the local genus of the Cantor set X at
the point x and denote it by gx(X).

Let x be an arbitrary point of a Cantor set X and h : S3
→ S3 a homeomorphism.

Then the local genus gx(X) is the same as the local genus gh(x)(h(X)). Also note
that if x ∈ C ⊂ C ′, then the local genus of x in C is less than or equal to the local
genus of x in C ′. See [Željko 2005, Theorem 2.4].

The following result is needed to show that certain points in our examples have
local genus 2.

Theorem 2.4 [Željko 2005]. Let X, Y ⊂ S3 be Cantor sets and p ∈ X ∩Y . Suppose
there exists a 3-ball B and a 2-disk D ⊂ B such that

(1) p ∈ Int(B), ∂D = D ∩ ∂B, D ∩ (X ∪ Y )= {p}; and

(2) X∩B⊂ BX∪{p} and Y ∩B⊂ BY ∪{p}, where BX and BY are the components
of B− D.

Then gp(X ∪ Y )= gp(X)+ gp(Y ).
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Discussion and examples of ends and homogeneity groups. For background on
Freudenthal compactifications and theory of ends, see [Dickman 1968; Freudenthal
1942; Siebenmann 1965]. For an alternate proof using defining sequences of the
result that every homeomorphism of the open 3-manifold extends to a homeomor-
phism of its Freudenthal compactification, see [Garity and Repovš 2013].

At the end of the next section, we will discuss elements of the homogeneity group
of a standard self-similar Antoine Cantor set. Note that removing n points from
S3 yields a reducible open 3-manifold with end homogeneity group the symmetric
group on n elements. It is not immediately obvious how to produce examples that
are irreducible, have a rich end structure (for example a Cantor set), and at the same
time have specified abelian end homogeneity groups.

3. Properties of the Antoine Cantor set

An Antoine Cantor set is described by a defining sequence (Mi ) as follows: Let M0

be an unknotted solid torus in S3. Let M1 be a chain of at least four linked, pairwise
disjoint, unknotted solid tori in M0, as in Figure 1. Inductively, Mi consists of
pairwise disjoint solid tori in S3 and Mi+1 is obtained from Mi by placing a chain
of at least four linked, pairwise disjoint, unknotted solid tori in each component
of Mi . If the diameter of the components goes to 0, the Antoine Cantor set is
C =

⋂
∞

i=0 Mi .

Figure 1. Antoine chain with Z6 group action.
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We refer to [Sher 1968] for basic results and description of Antoine Cantor sets.
The key result we shall need is the following:

Theorem 3.1 [Sher 1968, Theorems 1 and 2]. Two Antoine Cantor sets in S3, with
defining sequences (Mi ) and (Ni ), respectively, are equivalently embedded if and
only if there is a self-homeomorphism h of S3 with h(Mi )= Ni for each i .

In particular, the number and adjacency of links in the chains must match up
at each stage. Because we need a modification of this result for infinite chains in
Section 5, we outline an alternative proof of the forward implication.

Proof of forward implication of Theorem 3.1. It suffices to show that if C has two
Antoine defining sequences (Mi ) and (Ni ), then there is a homeomorphism h as in
the theorem.

Step 1: There is a general position homeomorphism h1, fixed on C , such that
h1(∂(M1) ∪ ∂(M2)) is in general position with ∂(N1) ∪ ∂(N2). The curves of
intersection of h1(∂(M1) ∪ ∂(M2)) ∩ (∂(N1) ∪ ∂(N2)) can be eliminated by a
homeomorphism h2 also fixed on C , by a standard argument and the facts that any
nontrivial curve on ∂(Mi ) does not bound a disk in the complement of C and that
no 2-sphere separates the points of C . For details on the type of argument in this
step, see [Sher 1968] or [Garity et al. 2011].

Step 2: Let T be a component of h2 ◦h1(M1) and assume T intersects a component
S of N1. Either T ⊂ Int(S) or S⊂ Int(T ). First assume T ⊂ Int(S). If the geometric
index of T in S is 0, then since the other components of h2 ◦ h1(M1) are linked to
T by a finite chain, all components of h2 ◦h1(M1) are in the interior of S. This is a
contradiction since there are points of C not in S. So the geometric index of T in S
is greater than or equal to 1.

Note that T cannot be contained in any component of N2 that is in S since these
have geometric index 0 in S. So T contains all the components of N2 that are
in S. Each of these components has geometric index 0 in T , so the union of these
components has an even geometric index in T by Theorem 2.3. This geometric
index must then be 2 and the geometric index of T in S must be 1. Now there is a
homeomorphism h3, fixed on C and the complement of S, that takes T to S.

If instead S ⊂ Int(T ), a similar argument shows there is a homeomorphism h3,
fixed on C and the complement of T , taking S to T . The net result is that it is
possible to construct a homeomorphism h′3 taking the components of h2 ◦ h1(M1)

to the components of S. One now proceeds inductively, matching up further stages
in the constructions, obtaining the desired homeomorphism h as a limit. �

Remark 3.2. A standard argument shows that an Antoine Cantor set cannot be
separated by a 2-sphere. This is also true if the construction starts with a finite open
chain of linked tori as in Figure 3.
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Remark 3.3. Also note that the homeomorphism of Theorem 3.1 can be realized
as the final stage of an isotopy since each of the homeomorphisms in the argument
can be realized by an isotopy.

Homogeneity groups of Antoine Cantor sets. Let C be obtained by a standard
Antoine construction where the same number of tori are used in tori of previous
stages in each stage of the construction. For example, the Antoine pattern in Figure 1
with 24 smaller tori, each geometrically similar to the outer torus, can be repeated
in each component at each stage of the construction.

We now consider some elements of the embedding homogeneity group of C .
There is an obvious Z24 group action on the resulting Cantor set obtained by rotating
and twisting the large torus. There is also a Z24 ⊕ Z24 action on C obtained by
considering the first two stages, where we require each torus in the second stage to
rotate the same amount. If we allow the tori in the second stage to rotate different
amounts, we get an even larger group action by a wreath product of Z24 with itself.
Considering more stages results in even more complicated group actions.

In addition to these group actions arising from rotating and twisting, there are
also orientation-reversing Z2 actions that arise from reflecting through a horizontal
plane (containing the core of the large torus) or through a vertical plane (containing
meridians of the large torus).

From this we see that even for a simple self-similar Antoine Cantor set, the
embedding homogeneity group is more complex than just the group of obvious
rotations from the linking structure. In the next section we shall carefully combine
certain Antoine constructions to produce a more rigid example with nontrivial
end homogeneity group, in such a way that these kinds of orientation-reversing
homeomorphisms are not possible, and that also restricts the possible rotations.

4. A Cantor set with embedding homogeneity group Zm

Fix an integer m > 1. We describe how to construct a Cantor set in S3 with
embedding homogeneity group Zm .

Construction 4.1. As in the previous section, let S0 be an unknotted solid torus
in S3. Let {S(1,i) : 1≤ i ≤ 4m} be an Antoine chain of 4m pairwise disjoint linked
solid tori in the interior of S0 and let

S1 =

4m⋃
i=1

S(1,i).

See Figure 1 for the case when m = 6. Let C j , 1 ≤ j ≤ 4, be a rigid Antoine
Cantor set with first stage S(1, j). Choose these four rigid Antoine Cantor sets so
that they are inequivalently embedded in S3. Let h be a homeomorphism of S3,
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fixed on the complement of the interior of S0, that takes S(1, j) to S(1, j+4 mod 4m) for
1≤ j ≤ 4m. Require that hm is the identity on each S(1,i).

For 4k < i ≤ 4k+ 4, let Ci be the rigid Cantor set in S(1,i) given by hk(Ci−4k).
Note that this produces m copies of each of the rigid Cantor sets C1, C2, C3, and C4.
Again, see Figure 1, where the coloring indicates the four classes of rigid Cantor
sets. The Cantor set we are looking for is

C =
4m⋃
i=1

Ci .

Theorem 4.2. The Cantor set C from the previous construction has embedding
homogeneity group Zm and is unsplittable.

Proof. Let ` : S3
→ S3 be a homeomorphism taking C to C . We show that `|C =hk

|C

for some k, 1≤ k ≤ m. By [Sher 1968], we may assume that ` takes each S(1,i) to
some S(1, j), and so `(Ci )= C j . Because of the distinct rigid Cantor sets involved,
this is only possible if j − i ≡ 0 mod 4.

So assume that `(S(1,1))= S(1,4k+1). Then `(S(1,2)) must be one of the two tori
linked with S(1,4k+1), namely S(1,4k) or S(1,4k+2). Since (4k−2) 6≡0 mod 4, `(S(1,2))
must be S(1,4k+2). Continuing inductively, one sees that `(S(1,i))= S(1,4k+i mod 4m).
Thus `(Ci )= C4k+i mod 4m . But hk(Ci ) is also C4k+i mod 4m . Since these are rigid
Cantor sets, `|Ci = hk

|Ci for each i .
So the embedding homogeneity group of C is {hk

: 1 ≤ k ≤ p} ' Zm . By
Remark 3.2, C is unsplittable. The assertion follows. �

5. A Cantor set with embedding homogeneity group Z

We now construct a Cantor set in S3 with embedding homogeneity group Z. This
requires careful analysis of an infinite chain analogue of the Antoine construction.

Construction 5.1. Let S0 be a pinched solid torus in S3, i.e., the quotient of a
solid torus with a meridional disk collapsed to a single point w. Let Ti , i ∈ Z,
be a countable collection of unknotted pairwise disjoint solid tori in S0 such that
each Ti is of simple linking type with both Ti−1 and Ti+1, and is not linked with
T j , j 6= i − 1 or i + 1. Place the tori Ti so that the Ti , i > 0, and the Ti , i < 0, have
w as a limit point as in Figure 2.

For 1≤ j ≤ 3, let C j be a rigid Antoine Cantor set with first stage T j . Choose
these three rigid Antoine Cantor sets so that they are inequivalently embedded in S3.
Let α be a homeomorphism of S3, fixed on the complement of the interior of S0,
that takes T j to T j+3 for j ∈ Z.

For 3k < i ≤ 3k + 3, let Ci be the rigid Cantor set in Ti given by αk(Ci−3k).
Note that this produces a countable number of copies of each of the rigid Cantor
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S0 w

T0

T1

T2

T
−1

T
−2

Figure 2. Infinite Antoine chain.

sets C1, C2, and C3. Again, see Figure 2. The Cantor set we are looking for is

C =
⋃
i∈Z

Ci =
⋃
i∈Z

Ci ∪ {w}.

Note that C is a Cantor set since it is perfect, compact, and totally disconnected.

Theorem 5.2. The Cantor set C from the previous construction has embedding
homogeneity group Z and is unsplittable.

Proof. It is clear from the construction that each point of C−{w} has local genus 1.
Theorem 2.4, applied to w and the Cantor sets C+ =

⋃
i>0 Ci and C− =

⋃
i<0 Ci ,

shows that w has local genus 2 in C . Thus, any homeomorphism of S3 that takes
C to C must fix w.

Let h be such a homeomorphism of S3 taking C to C . Let T ′i be the union of the
linked tori in the Antoine chain at the second stage of the construction of Ci . Let

3N =

N⋃
i=−N

Ti , 0N =

N⋃
i=−N

Ci , and 3′N =

N⋃
i=−N

T ′i .

Fix an integer n ∈ Z. Since h(Tn) does not contain w, there is a positive integer
N1 > |n| such that h(Cn)⊂ 0N1 . Similarly, there is a positive integer N2 > N1 such
that h−1(0N1)⊂ 0N2 .

As in Step 1 in the proof of Theorem 3.1, there is a homeomorphism k of S3 to
itself, fixed on C , such that

k
(
h(∂(3N2+1)∪ ∂(3

′

N2+1))
)
∩
(
∂(3N2+1)∪ ∂(3

′

N2+1)
)
=∅.

Fix a point p of Cn and let k(h(p))= h(p)=q ∈Cm . We will show that k(h(Cn))=

h(Cn) = Cm . Let ` = k ◦ h. Since `(Tn)∩ Tm 6= ∅, and since the boundaries do
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not intersect, either `(Tn)⊂ Int(Tm) or Int(`(Tn))⊃ Tm . We consider these cases
separately.

Case I: `(Tn) ⊂ Int(Tm). If `(Tn) has geometric index 0 in Tm , then `(Tn) is
contained in a cell in Tm and so it contracts in Tm . Since a contraction of `(Tn)

meets the boundary of the linked `(Tn+1), and since the boundary of `(Tn+1) is
disjoint from the boundary of Tm , `(Tn+1)⊂ Int(Tm). Continuing inductively, one
finds that one of the following two situations occur when `(Tn) has geometric
index 0 in Tm :

Case Ia: Each `(T j ), for n ≤ j ≤ N2, is contained in Tm and has geometric index 0
there. It follows that `(TN2+1) ⊂ Int(Tm). But then Cm ⊂ 0N1 and h−1(Cm) ∩

CN2+1 6=∅, contradicting the choice of N2.

Case Ib: There exists j with n< j ≤ N2 and such that `(T j ) is contained in Int(Tm)

and geometric index k in Tm , where k > 1. Then, by Theorem 2.2, `(T j ) cannot be
contained in any component of the next stage of the construction contained in Tm ,
since these have geometric index 0 in Tm . So some component of the next stage in
Tm is contained in `(T j ) and has geometric index 0 there by Theorem 2.2. Since
the components of the next stage are linked, all components of the next stage in
Tm are contained in `(T j ). The geometric index of the union of the next stages of
in Tm in `(Tn) is even by Theorem 2.3 and cannot be equal to 0. Otherwise, by
Theorem 2.2 the union of the next stages of Tm would have index 0 in Tm , which is
a contradiction. So the geometric index of the union of the next stages of in Tm in
`(Tn) is at least 2. Then by Theorem 2.2, the geometric index of the union of the
next stages of in Tm in Tm is at least 4, contradicting the fact that this geometric
index is 2.

It follows that `(T j ) has geometric index 1 in Tm and contains the union of
the next stages contained in Tm . Since ` is a homeomorphism that takes C to
C , it follows from the construction of C that `(C j ) = Cm . Since `(p) ∈ Cm ,
`(Tn)∩ `(C j ) 6=∅, contradicting the fact that ` is a homeomorphism.

Thus, neither Case Ia nor Case Ib can occur. So the geometric index of `(Tn) in
Tm must be at least 1. Repeating the argument from Case Ib above with T j replaced
by Tn , we see that `(Tn) has geometric index 1 in Tm and contains the union of
the next stages contained in Tm . Since ` is a homeomorphism that takes C to C , it
follows from the construction of C that `(Cn)= Cm as desired.

Case II: Int(`(Tn))⊃ Tm . Then `−1(Tm)⊂ Int(Tn). The argument from Case I can
now be repeated, replacing ` by `−1 and interchanging Tn and Tm . It follows that
`−1(Cm)= Cn and so `(Cn)= Cm as desired.

Since `(Cn) = h(Cn) = Cm , it must be the case that (m − n) ≡ 0 mod 3. Con-
tinuing as in the proof of the Zm result (Theorem 4.2), we have that for each i ,
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h(Ci )= Ci+(m−n). Recall that for the homeomorphism α from the construction of
C , it is also the case that α(m−n)/3(Ci )= Ci+(m−n). By the rigidity of these Cantor
sets, it follows that α(m−n)/3

|Ci = h|Ci . Thus the embedding homogeneity group of
C is {αk

: k ∈ Z} ' Z.
We now show that C is unsplittable. Assume that 6 is a 2-sphere in S3 that

separates C . Choose ε > 0 so that the distance from 6 to C is greater than ε.
Choose N so that each Ti , |i | ≥ N , has diameter less than ε/6 and is within ε/6
of w. Since 6 separates C , w∪

⋃
|i |≥N Ti must be in one component of S3

−6 and
there must be points of C in the other component of S3

−6. So
⋃
|i |≤N Ti contains

points in both components of S3
−6.

Form an Antoine Cantor set C ′ related to C as follows. Use
⋃
|i |≤N Ti as a part

of the first stage of the construction. Complete the first stage of the construction
by adding an unknotted solid torus T , linked to TN and T−N , that is within the
ε/3-neighborhood of w. For successive stages of the Antoine Cantor set C ′ in
Ti , |i | ≤ N , use the successive stages in forming the Cantor set Ci ⊂ C . For
successive stages of the Antoine Cantor set C ′ in T , use any Antoine construction.

By construction and the properties of 6, the 2-sphere 6 separates the Antoine
Cantor set C ′, contradicting Remark 3.2. �

6. Main results

Given a finitely generated abelian group G, we use the results from the previous
two sections to construct an unsplittable Cantor set CG in S3 with embedding
homogeneity group G.

Construction 6.1. Let G ' Zn
⊕Zm1 ⊕Zm2 ⊕ · · ·⊕Zmk be any finitely generated

abelian group. Form a simple chain of n + k pairwise disjoint unknotted solid
tori. Figure 3 illustrates the case n+ k = 6. Label the tori as T1, T2, . . . , Tn+k so
that T1 is only linked with T2, Tn+k is only linked with Tn+k−1, and each Ti , for
2≤ i ≤ n+ k− 1, is linked with Ti−1 and Ti+1.

For 1≤ i ≤ n, perform Construction 5.1 in Ti , treating a pinched version of Ti

in the interior of Ti as the torus S0 in Construction 5.1. Let wi be the limit point
corresponding to w in Construction 5.1. This yields a Cantor set Ci in Ti with
embedding homogeneity group Z. See Figure 4.

Figure 3. An Antoine chain containing CG .
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Ti

wi

Figure 4. Pinched torus in Ti .

For n+ 1≤ i ≤ n+ k, perform Construction 4.1 for the group Zmi−n in Ti . This
yields a Cantor set Ci in Ti with embedding homogeneity group Zmi−n . Choose all
the rigid Cantor sets from Constructions 5.1 and 4.1 to be inequivalent.

Let

CG =

n+k⋃
i=1

Ci .

Theorem 6.2. The Cantor set CG constructed above has embedding homogeneity
group G and is unsplittable.

Proof. For 1 ≤ i ≤ n + k, let hi be a self-homeomorphism of S3, fixed on the
complement of Ti , such that hi |Ci generates the embedding homeomorphism group
of Ci (Z for 1≤ i ≤ n and Zmi−n for n+ 1≤ i ≤ n+ k). Then{

(h j1
1 ◦ h j2

2 ◦ · · · ◦ h jn+k
n+k )

∣∣
CG

}
' G ' Zn

⊕Zm1 ⊕Zm2 ⊕ · · ·⊕Zmk .

Let h be a homeomorphism of S3 to itself taking CG to CG . We will show that
h|CG = (h

j1
1 ◦ h j2

2 ◦ · · · ◦ h jn+k
n+k )

∣∣
CG

for some choice of ji .

Step 1: The homeomorphism h must take each Ci to itself. As in the proof of
Theorem 5.2, there are exactly n points of genus 2 in CG , one in each Ci , 1≤ i ≤ n.
These are the points {w1, w2, . . . , wn}. The homeomorphism must take this set of
genus 2 points to itself.

Let T be one of the solid torus components of the first stage of the Antoine
construction for some Ci , 1 ≤ i ≤ n + k. As in the proofs of Theorems 4.2 and
5.2, after a general position adjustment, either h(T ) must lie in the interior of some
solid torus component T ′ of the first stage of the Antoine construction for some C j ,
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or T ′ must lie in the interior of h(T ). A similar argument to that in Theorem 5.2
shows that N (h(T ), T ′)= 1 or N (T ′, h(T ))= 1, and that h(Ci ∩ T )= C j ∩ T ′.

This same argument can be applied to all first stage tori in Ci , resulting in the
fact that h(Ci )= C j . Because of the inequivalence of the rigid Cantor sets used in
the construction, i = j and h(Ci )= Ci .

Step 2: For each i , h|Ci = hk(i)
i |Ci for some k(i). By Step 1, we have that h(Ci )=Ci .

It follows from the construction that h|Ci = hk(i)
i for some k(i). From this, it follows

that h|CG = (h
j1
1 ◦ h j2

2 ◦ · · · ◦ h jn+k
n+k )|CG for some choice of ji .

Thus, the embedding homeomorphism group of CG is isomorphic to G.

Step 3: CG is unsplittable. Let 6 be a 2-sphere in S3 separating CG . As in the proof
of Theorem 5.2, an Antoine Cantor set with first stage

⋃n+k
i=1 Ti can be formed so that

6 separates this Antoine Cantor set. This is a contradiction. (See Remark 3.2.) �

Corollary 6.3. Let G ' Zn
⊕ Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk be any finitely generated

abelian group. There is a irreducible open 3-manifold MG with the following
properties:

(a) The Freudenthal compactification of MG is S3.

(b) The end set of MG is homeomorphic to a Cantor set.

(c) The end homogeneity group of MG is isomorphic to G.

(d) The genus of MG at infinity is 2 at the n points corresponding to Zn and is 1
otherwise.

Proof. Let MG be S3
−CG , where CG is as in Construction 6.1. The end set of

MG is CG and the end homogeneity group of MG is isomorphic to the embedding
homogeneity group of CG . MG is irreducible because CG is unsplittable. Claims
(b) and (c) now follow from Theorem 6.2, while (d) follows from the proof of that
theorem. �

Remark 6.4. For each finitely generated abelian group G as above, there are
uncountably many nonhomeomorphic 3-manifolds as in the corollary. This follows
from varying the rigid Cantor sets used in the construction.

7. Questions

Question 7.1. If a finitely generated abelian group is infinite, is there an open
3-manifold with end homogeneity group G that is genus 1 at infinity?

Question 7.2. Given a finitely generated abelian group G, are there simply con-
nected open 3-manifolds with end homogeneity group G?

Question 7.3. Is the mapping class group of the open 3-manifold MG isomorphic
to G?



HOMOGENEITY GROUPS OF ENDS OF OPEN 3-MANIFOLDS 111

Question 7.4. If G is a finitely generated nonabelian group, is there an open 3-
manifold with end homogeneity group G?

Question 7.5. If G is a nonfinitely generated group, is there an open 3-manifold
with end homogeneity group G?
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ON THE CONCIRCULAR CURVATURE
OF A (κ, µ, ν)-MANIFOLD

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We study (κ,µ,ν)-contact metric 3-manifolds (a notion introduced by Koufo-
giorgos, Markellos and Papantoniou) that are Ricci flat, or are Einstein but
not Sasakian, or satisfy∇Z= 0, where Z is the concircular curvature tensor,
or satisfy Z(ξ, X)·Z= 0, where ξ is the Reeb field, or satisfy Z(ξ, X)·S= 0,
where S is the Ricci tensor, or finally satisfy R(ξ, X) · Z = 0, where R is the
Riemannian curvature tensor.

1. Introduction

A contact metric manifold (M, ξ) is Sasakian if and only if

(1-1) R(X, Y )ξ = η(Y )X − η(X)Y = R0(X, Y )ξ,

where

(1-2) R0(X, Y )U = g(Y,U )X − g(X,U )Y, X, Y, U ∈ X (M).

There exist contact metric manifolds that satisfy the condition R(X, Y )ξ = 0; for
example, the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric satisfying this condition. D. E. Blair, Th. Koufogiorgos and B. Papantoniou
[Blair et al. 1995] generalized both this condition and the Sasakian case introducing
the (κ, µ)-nullity distribution on a contact metric manifold

N (κ, µ) : p→ Np(κ, µ)= {U ∈ Tp M | R(X, Y )U = (κ I +µh)R0(X, Y )U }

for all X, Y ∈ X (M), and (κ, µ) ∈ R2. A contact metric manifold M2n+1 with
ξ ∈ N (κ, µ) is called a (κ, µ)-contact metric manifold. In particular we have

(1-3) R(X, Y )ξ = (κ I +µh)R0(X, Y )ξ, X, Y ∈ X (M),

with κ ≤ 1 and if κ = 1 the structure is Sasakian. The full classification of
these manifolds was given by E. Boeckx [2000]. If µ = 0 we have the κ-nullity
distribution and if ξ ∈ N (κ) we have a N (κ)-contact metric manifold. Koufogiorgos

MSC2010: primary 53C15, 53C25, 53D10; secondary 53C35.
Keywords: contact metric manifold, (κ, µ, ν)-contact metric manifolds, η-Einstein, Ricci flat,

Sasakian manifold, concircular curvature tensor, pseudosymmetric manifold.
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and Ch. Tsichlias [2000] introduced the generalized (κ, µ)-contact metric mani-
folds, where κ and µ are real functions, and they gave several examples. Finally,
the (κ, µ, ν)-contact metric manifolds have been introduced by Koufogiorgos,
M. Markellos and V. Papantoniou [Koufogiorgos et al. 2008] where κ, µ, ν are
smooth functions and the curvature tensor satisfies, for every X, Y ∈ X (M), the
condition

(1-4) R(X, Y )ξ = κ
(
η(Y )X − η(X)Y

)
+µ

(
η(Y )h X − η(X)hY

)
+ ν

(
η(Y )φh X − η(X)φhY

)
.

D. Perrone defined a H -contact metric manifold as a (2n+1)-dimensional contact
metric manifold M whose characteristic vector field (or the Reeb vector field) ξ is
a harmonic vector field. In [Perrone 2004], it was proved that M(η, ξ, φ, g) is an
H -contact metric manifold if and only if ξ is an eigenvector of the Ricci operator
Q. The class of H -contact metric manifolds includes several classes of contact
metric manifolds such as Sasakian, η-Einstein, or even generalized (κ, µ)-contact
metric manifolds. Perrone [2003] also showed that a contact metric 3-manifold
M is a generalized (κ, µ)-contact metric manifold on an everywhere dense open
subset of M if and only if its Reeb vector field ξ determines a harmonic map. In
turn, Koufogiorgos, Markellos and Papantoniou proved that the (κ, µ, ν)-condition
on a 3-dimensional contact metric manifold is equivalent to the Reeb vector field
ξ being a harmonic vector field, at least on an open dense subset of the manifold
[Koufogiorgos et al. 2008]. They proved also that these manifolds exist only in the
dimension 3, whereas such a manifold does not exist in dimension greater than 3;
hence, we restrict ourselves to dimension 3.

On the other hand, many geometers have studied the contact manifolds of constant
curvature and their generalizations like the locally symmetric spaces (∇R = 0),
Einstein spaces, the semisymmetric spaces (R(ξ, X) · R = 0), Ricci semisymmetric
spaces (R(X, Y ) · S = 0), Weyl semisymmetric spaces (R(X, Y ) ·C = 0), where
R(X, Y ) acts as a derivation respectively on R, S, C etc. For example, a contact
metric manifold of constant curvature is necessarily a Sasakian manifold of constant
curvature +1 or is 3-dimensional and flat [Blair 2002, pages 98–99; Olszak 1979].
S. Tanno [1969] showed that a semisymmetric K -contact manifold M2n+1 is locally
isometric to the unit sphere S2n+1(1), and that for a K -contact manifold M2n+1

the following conditions are equivalent: (i) M is an Einstein manifold; (ii) M is
Ricci-symmetric, that is, its Ricci tensor is parallel; (iii) M is Ricci semisymmetric,
i.e., it satisfies the condition R(X, Y ) · S = 0; (iv) M is ξ -Ricci semisymmetric,
that is, R(ξ, Y ) · S = 0.

Perrone [1992] showed that if ξ belongs to the κ-nullity distribution and if
R(ξ, Y )·S=0, then the contact metric manifold is locally isometric to En+1

×Sn(4)
or is Sasaki–Einstein. M. M. Tripathi [2006] proved that a contact metric manifold
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M2n+1 such that ξ belongs to the (κ, µ)-nullity distribution and R(ξ, Y )·S vanishes
is either flat and 3-dimensional, or is locally isometric to En+1

× Sn(4), or is a
Sasaki–Einstein manifold. Finally, we studied in [Gouli-Andreou et al. 2012],
together with Ph. J. Xenos, the (κ, µ, ν)-contact 3-manifolds in which certain
curvature conditions are satisfied; for instance the Ricci tensor S is cyclic parallel,
or η-parallel or R(ξ, Y ) · S = 0.

After the curvature tensor R and the Weyl conformal curvature tensor C , the
concircular curvature tensor Z is the next most important (1,3)-type curvature
tensor. It is defined on a Riemannian manifold (Mn, g) by Yano [1940a] (see also
[Yano and Bochner 1953]) as

(1-5) Z = R−
r

n(n− 1)
R0,

where R is the curvature tensor, R0 is given by (1-2) and r the scalar curvature.
We remark that Riemannian manifolds with vanishing Z are of constant curvature;
thus the concircular curvature tensor is a measure of the failure of a Riemannian
manifold to be of constant curvature. Z is an invariant of concircular transformations,
which have important geometric and algebraic applications; see [Yano 1940a;
1940b; 1940c; 1940d; 1942; Vanhecke 1977]. Hence, Blair, J. S. Kim and Tripathi
[Blair et al. 2005] started a study of the concircular curvature tensor on M2n+1

contact metric manifolds. They classified N (κ)-contact metric manifolds satisfying
Z(ξ, X) · Z = 0, Z(ξ, X) · R = 0 or R(ξ, X) · Z = 0. Similarly, Tripathi and Kim
[2004] classified M2n+1 (κ, µ)-contact manifolds with Z(ξ, X) · S = 0.

This article is motivated by these studies, and is organized in the following way.
In Section 2 we give some preliminaries on contact manifolds and the concircular
curvature tensor. In Section 3 we present a brief account of (κ, µ, ν)-contact 3-
manifolds while Section 4 contains some basic results. Finally, in Section 5 we
study (κ, µ, ν)-contact metric 3-manifolds M satisfying any of these conditions:

(i) M is Ricci flat.

(ii) M is Einstein but not Sasakian.

(iii) ∇Z = 0, where Z is the concircular curvature tensor.

(iv) Z(ξ, X) · Z = 0, where Z(ξ, X) acts as a derivation on Z .

(v) Z(ξ, X) · S = 0, where Z(ξ, X) acts as a derivation on S.

(vi) R(ξ, X) · Z = 0, where R(ξ, X) acts as a derivation on Z .

2. Preliminaries

By a contact manifold we mean a smooth manifold M2n+1, endowed with a global
1-form η such that η∧ (dη)n 6= 0 everywhere. Then there is an underlying contact
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metric structure (η, ξ, φ, g) where g is a Riemannian metric (the associated metric),
φ a global tensor of type (1,1) and ξ a unique global vector field (the characteristic
or Reeb vector field). These structure tensors satisfy the equations

φ2
=−I + η⊗ ξ, η(X)= g(X, ξ), η(ξ)= 1,(2-1)

dη(X,Y )= g(X,φY )=−g(φX,Y ), g(φX,φY )= g(X,Y )− η(X)η(Y )(2-2)

for all X, Y ∈X (M). The associated metrics can be constructed by the polarization
of dη on the contact subbundle defined by η = 0. Denoting Lie differentiation by
L, we define for all X ∈ X (M) the (1,1)-tensor field

h X = 1
2(Lξφ)X.

We give some basic equations for these tensor fields:

(2-3) φξ = hξ = 0, η ◦φ = η ◦ h = 0, ∇ξφ = 0,

Tr h = Tr(hφ)= 0, hφ =−φh.

If X is an eigenvector of h corresponding to the eigenvalue λ, then φX is also an
eigenvector of h corresponding to the eigenvalue −λ since h anticommutes with φ:

h X = λX ⇒ hφX =−λφX,(2-4)

∇Xξ =−φX −φh X,(2-5)

(∇Xη)(Y )=−g(φX +φh X, Y ),(2-6)

where ∇ is the Levi-Civita connection of g. We also denote by R the corresponding
Riemann curvature tensor field given by R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ], by S the
Ricci tensor field of type (0, 2), by Q the Ricci operator, which is the corresponding
endomorphism field, by r the scalar curvature and by H the φ-sectional curvature.

A contact metric manifold for which ξ is a Killing field is called a K-contact
manifold. A contact metric manifold is K-contact if and only if h = 0. A contact
structure on M2n+1 implies an almost complex structure on the product manifold
M2n+1

×R. If this structure is integrable, then the contact metric manifold is said
to be Sasakian. A K-contact structure is Sasakian only in dimension 3, and this
fails in higher dimensions. More details on contact manifolds can be found in [Blair
2002].

We restrict ourselves to the 3-dimensional case. Let (M, φ, ξ, η, g) be a 3-
dimensional contact metric manifold and U the open subset of points p ∈ M where
h 6=0 in a neighborhood of p and U0 the open subset of points p∈M such that h=0
in a neighborhood of p. For any point p ∈U ∪U0 there exists a local orthonormal
basis {e, φe, ξ} of smooth eigenvectors of h in a neighborhood of p. On U we put
he = λe, where λ is a nonvanishing smooth function which is supposed positive.
From (2-4) we have hφe =−λφe.
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Lemma 2.1 [Gouli-Andreou and Xenos 1998]. On U we have

∇ξe = aφe, ∇ee = bφe, ∇φee =−cφe+ (λ− 1)ξ,

∇ξφe =−ae, ∇eφe =−be+ (1+ λ)ξ, ∇φeφe = ce,

∇ξξ = 0, ∇eξ =−(1+ λ)φe, ∇φeξ = (1− λ)e,

where a is a smooth function and

(2-7)
b = 1

2λ
[(φe · λ)+ A] with A = S(ξ, e),

c = 1
2λ
[(e · λ)+ B] with B = S(ξ, φe).

Lemma 2.1 and the formula [X, Y ] = ∇X Y −∇Y X yield

(2-8)

[e, φe] =∇eφe−∇φee =−be+ cφe+ 2ξ,

[e, ξ ] =∇eξ −∇ξe =−(a+ λ+ 1)φe,

[φe, ξ ] =∇φeξ −∇ξφe= (a− λ+ 1)e.

Definition 2.2. Let M3 be a 3-dimensional contact metric manifold and let h =
λh+− λh− be the spectral decomposition of h on U . If

∇h−X h−X = [ξ, h+X ]

for all vector fields X on M3 and all points of an open subset W of U , and if h = 0
on the points of M3 which do not belong to W , then the manifold is said to be a
semi-K contact manifold.

From Lemma 2.1 and the relations (2-8), the condition above leads to [ξ, e] = 0
when X = e and to ∇φeφe= 0 when X = φe. Hence on a semi-K contact manifold
we have a+λ+1= c= 0. If we apply the deformation e→ φe, φe→ e, ξ →−ξ,
λ→−λ, b→ c and c→ b then the contact metric structure remains the same.
Hence the condition for a 3-dimensional contact metric manifold to be semi-K
contact is equivalent to a− λ+ 1= b = 0.

Definition 2.3 [Blair 2002, page 105; Okumura 1962]. A contact metric manifold
M is said to be η-Einstein if the Ricci tensor S satisfies the condition S=αg+βη⊗η,
where α and β are smooth functions on M . In particular, if β = 0, then M becomes
an Einstein manifold.

Definition 2.4. A Riemannian manifold (Mn, g) is called Ricci flat if its Ricci
tensor vanishes identically.

Since the Ricci operator Q in dimension 3 determines completely the curvature
of the contact manifold, the vanishing of Q implies the vanishing of the Riemannian
curvature tensor. Hence, the class of Ricci flat manifolds is a hyperclass of the flat
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manifolds, or equivalently a flat manifold is certainly Ricci flat, while a Ricci flat
manifold is an Einstein manifold.

Definition 2.5. A Riemannian manifold (Mm, g),m≥ 3, is called pseudosymmetric
in the sense of R. Deszcz [1992] if at every point of M the curvature tensor R satisfies
the equation R(X, Y )·R= L{(X∧Y )·R} where (X∧Y )Z = g(Y, Z)X−g(Z , X)Y
for all vectors fields X, Y, Z on M , the dot means that R(X, Y ) and X ∧ Y act as
derivations on R, and L is a smooth function.

If L is constant, then M is a pseudosymmetric manifold of constant type while
if L = 0 then M is a semisymmetric manifold.

Definition 2.6. A Riemannian manifold (Mn, g) is called concircularly symmetric
if the concircular tensor Z satisfies the condition ∇Z = 0.

All manifolds are assumed connected and all manifolds and maps are assumed
smooth (class C∞) unless otherwise stated. Finally, differentiation will be denoted
by “( )”.

3. (κ, µ, ν)-contact metric manifolds

A (κ, µ, ν)-contact metric manifold is defined in [Koufogiorgos et al. 2008] by (1-4)
where κ, µ, ν are smooth functions on M . If ν = 0 we have a generalized (κ, µ)-
contact metric manifold [Koufogiorgos and Tsichlias 2000] and if additionally
κ, µ are constants then the manifold is a contact metric (κ, µ)-space [Blair et al.
1995; Boeckx 2000]. Moreover in [Koufogiorgos et al. 2008] and [Koufogiorgos
and Tsichlias 2000] it is proved respectively that for a (κ, µ, ν) or a generalized
(κ, µ)-contact metric manifold M2n+1 of dimension greater than 3, the functions
κ, µ are constants and ν is the zero function. We recall some lemmas and equations:

Lemma 3.1 [Koufogiorgos et al. 2008]. For every point p of a (κ, µ, ν)-contact
metric manifold M2n+1 with κ(p) < 1, there exists an open neighborhood U of p
and orthonormal local vector fields X i , φX i , ξ , i = 1, . . . , n, defined on U such
that

h X i = λX i , hφX i =−λφX i , hξ = 0

for i = 1, . . . , n, where λ=
√

1− κ .

From now on, we will call the vector fields of Lemma 3.1 a local h-basis.
On any (κ, µ, ν)-contact metric manifold we have

h2
= (κ − 1)φ2, κ ≤ 1,(3-1)

(ξ · κ)= 2ν(κ − 1).(3-2)



ON THE CONCIRCULAR CURVATURE OF A (κ, µ, ν)-MANIFOLD 119

For the 3-dimensional case we have for the Ricci operator Q

Q =
( 1

2r − κ
)
I +

(
−

1
2r + 3κ

)
η⊗ ξ +µh+ νφh,(3-3)

Qφ−φQ = 2νh− 2µφh,(3-4)

r = 4κ + 2H,(3-5)

where r is the scalar curvature and H is the φ-sectional curvature. From now on, we
suppose κ < 1 everywhere on M3 and we use X, Y,U to denote arbitrary elements
of X (M). We have

(3-6) r = 1
λ
1λ− (ξ · ν)−

‖grad λ‖2

λ2 + 2(κ −µ),

where 1 is the Laplace operator and for the gradient of a function f we have

g(grad f, X)= X ( f )= d f (X),(3-7)

(ξ · r)= 2(ξ · κ), (ξ · H)=−(ξ · κ).(3-8)

For a 3-dimensional (κ, µ)-contact metric manifold, that is, for constant κ , µ we
have (see [Blair et al. 1995] and [Markellos 2009])

(3-9) r = 2(κ −µ),

R(X, Y )U = µ[g(Y,U )h X − g(X,U )hY + g(hY,U )X − g(h X,U )Y ]
(3-10)

+ ν[g(Y,U )φh X − g(X,U )φhY + g(φhY,U )X − g(φh X,U )Y ]

+ (κ − H)[g(Y,U )η(X)− g(X,U )η(Y )]ξ

+ (κ − H)[η(Y )η(U )X − η(X)η(U )Y ]

+ H [g(Y,U )X − g(X,U )Y ],

(∇X h)Y =− 1
2(1−κ)g(h X, Y ) grad κ − 1

2(1−κ)g(h X, φY )φ(grad κ)(3-11)

+ [(1− κ)g(X, φY )+ g(h X, φY )− νg(h X, Y )]ξ

+ η(Y )[(κ − 1)φX + hφX ] + η(X)[µhφY + νhY ],

(3-12) (∇Xφ)Y = g(X + h X, Y )ξ − η(Y )(X + h X),

while (∇Xφh)Y = (∇Xφ)hY +φ(∇X h)Y is calculated from (3-11) and (3-12):

(∇Xφh)Y =[g(X + h X, hY )+ νg(h X, φY )]ξ(3-13)

−
1

2(1−κ)g(h X, Y )φ(grad κ)+ 1
2(1−κ)g(h X, φY ) grad κ

+ η(Y )[(κ − 1)φ2 X + h X ] + η(X)[µhY + νφhY ].
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From (3-3) and (3-5) we calculate the Ricci tensor S(X, Y )= g(Q X, Y ):

(3-14) S(X, Y )= (κ + H)g(X, Y )+ (κ − H)η(X)η(Y )+µg(h X, Y )
+ νg(φh X, Y );

hence,

(3-15) S(h X, Y )= (κ + H)g(h X, Y )−µ(κ − 1)[g(X, Y )− η(X)η(Y )]
+ ν(κ − 1)g(X, φY ),

(3-16) S(φh X, Y )= (κ + H)g(φh X, Y )− ν(κ − 1)[g(X, Y )− η(X)η(Y )]
+µ(κ − 1)g(φX, Y ).

4. Some auxiliary results

Equation (1-5) gives for the 3-dimensional case and for all X, Y,U ∈ X (M)

(4-1) Z(X, Y )U = R(X, Y )U − 1
6r R0(X, Y )U,

where R0 is given by (1-2) and hence

(4-2) R0(ξ, X)Y = g(X, Y )ξ − η(Y )X,

while (1-4) for a (κ, µ, ν)-contact metric manifold is written in the form

(4-3) R(X, Y )ξ = (κ I +µh+ νφh)R0(X, Y )ξ,

which is equivalent to

(4-4) R(ξ, X)= R0(ξ, (κ I +µh+ νφh)X).

From (4-3) we get

(4-5) R(ξ, X)ξ = κ(η(X)ξ − X)−µh X − νφh X.

Proposition 4.1. In a (κ, µ, ν)-contact metric manifold M3, the concircular curva-
ture tensor Z satisfies

Z(X, Y )ξ =
((
κ− 1

6r
)
I +µh+ νφh

)
R0(X, Y )ξ,(4-6)

Z(ξ, X)=
(
κ− 1

6r
)
R0(ξ, X)+µR0(ξ, h X)+ νR0(ξ, φh X).(4-7)

Consequently, we have

Z(ξ, X)ξ =
(
κ− 1

6r
)
(η(X)ξ − X)−µh X − νφh X,(4-8)

η(Z(X, Y )ξ)= 0,(4-9)

η(Z(ξ, X)Y )=
(
κ− 1

6r
)(

g(X,Y )−η(X)η(Y )
)
+µg(h X,Y )+νg(φh X,Y ).(4-10)
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Proof. Equations (4-1), (4-3), (4-4) lead us to conclude equations (4-6) and (4-7).
Equation (4-7) implies (4-8) while (4-6) and (4-7) imply (4-9) and (4-10) respectively
by virtue of (2-3). �

Proposition 4.2. In a (κ, µ, ν)-contact metric manifold M3 we have

(4-11) S(Z(ξ, X)Y, ξ)= 2κ
(
κ− 1

6r
)
(g(X, Y )− η(X)η(Y ))+ 2κµg(h X, Y )

+2κνg(φh X, Y ),

(4-12) S(Z(ξ, X)ξ, Y )= 2κ
(
κ− 1

6r
)
η(X)η(Y )−

(
κ− 1

6r
)
S(X, Y )

−µS(h X, Y )− νS(φh X, Y ).

Proof. For a (κ, µ, ν)-contact metric manifold M3 we obtain from (3-14)

(4-13) S(X, ξ)= 2κη(X).

From (4-7), (4-10), (4-13) we get (4-11), while (4-8) and (4-13) yield (4-12). �

Proposition 4.3. Let M3 be a non-Sasakian (κ, µ, ν)-contact metric manifold.

(i) If M3 satisfies

ν(κ − H)= 0,(4-14)

µ(κ − H)= 0,(4-15)
1
3(κ − H)2+ (κ − 1)(µ2

+ ν2)= 0,(4-16)

then the manifold is either flat or locally isometric to SU(2) or SL(2, R), where
these two Lie groups are equipped with a left invariant metric.

(ii) If M3 satisfies

νH = 0,(4-17)

µH = 0,(4-18)

κ(κ − H)+ (κ − 1)(µ2
+ ν2)= 0,(4-19)

then the manifold is a generalized (κ, µ)-contact metric manifold with (ξ ·µ)= 0.

Proof. (i) Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold with κ < 1
everywhere. We suppose that there is a point p ∈ M where ν 6= 0. The continuity
of this function implies that there is a neighborhood Fp ⊆ M of p, where ν 6= 0
everywhere in Fp or by virtue of (4-14), κ − H = 0. Differentiating this equation
with respect to ξ and using (3-8) and (3-2) we conclude that κ = 1 everywhere in
Fp, which is a contradiction since Fp ⊆ M . Hence, ν = 0 everywhere in M and M
is a generalized (κ, µ)-contact metric manifold.

Similarly we suppose that there is a point p ∈ M where κ − H 6= 0. There is a
neighborhood Fp ⊆ M of p, where κ − H 6= 0 everywhere in Fp or by virtue of
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(4-15), µ= 0. Setting µ= ν = 0 in (4-16) we are led to 1
3(κ − H)2 = 0 which is a

contradiction in Fp. Hence κ − H = 0 everywhere in M and from (4-16), µ= 0.
Since in a generalized (κ, µ)-contact metric manifold the constancy of one of the
κ or µ implies the constancy of the other [Koufogiorgos and Tsichlias 2000], we
can conclude that κ is constant in this N (κ)-contact metric manifold. From (3-4)
and because µ= ν = 0 we get Qφ = φQ; by [Blair et al. 1990, Theorem 3.3] and
the main theorem of [Blair and Chen 1992] such a manifold is either Sasakian, flat,
locally isometric to a left invariant metric on the Lie group SU(2) with κ > 0, or
SL(2, R) with κ < 0. Finally, we can remark that the equations κ − H = 0 and
(3-5) give r = 6κ , κ < 1, and hence r is constant.

(ii) We suppose that there is a point p ∈ M where ν 6= 0. Then there is a
neighborhood Fp ⊆ M of p, where ν 6= 0 everywhere in Fp or by virtue of (4-17),
H = 0. Differentiating this equation with respect to ξ and using (3-8) and (3-2)
we conclude that κ = 1 everywhere in Fp, which is a contradiction since Fp ⊆ M .
Hence, ν = 0 everywhere in M and M is a generalized (κ, µ)-contact metric
manifold.

For (4-18), we suppose that there is a point p ∈ M where H 6= 0. There is a
neighborhood Fp ⊆ M of p, where H 6= 0 everywhere in Fp or by virtue of (4-18),
µ = 0. Since µ is constant, κ is also constant and hence from (3-5) and (3-9),
H = −κ −µ or more explicitly H = −κ . From (4-19) and because µ = ν = 0
we get κ = 0 and obviously H = 0, which is a contradiction in Fp. Hence H = 0
everywhere in M and from (4-19), κ2

+(κ−1)µ2
= 0. Differentiating this equation

with respect to ξ and by virtue of (3-2) and ν = 0 we conclude (ξ ·µ)= 0, while
(3-5) implies r = 4κ with κ < 1. �

Remark 4.4. The generalized (κ, µ)-contact metric manifolds in dimension 3 with
κ < 1 (equivalently λ 6= 0) and (ξ ·µ)= 0 have been studied by T. Koufogiorgos
and C. Tsichlias [2008]. They proved in [2008, Theorem 4.1] that at any point of
P ∈ M , precisely one of the following relations is valid: µ = 2(1+

√
1− κ), or

µ = 2(1−
√

1− κ), while there exists a chart (U,(x,y,z)) with P ∈ U ⊆ M such
that the functions κ , µ depend only on z and the tensors fields η, ξ , φ, g take a
suitable form. We can also add that such a manifold according to Definition 2.2 is
a semi-K contact manifold.

Theorem 4.5 [Blair 2002, page 101]. Let M2n+1 be a contact metric manifold satis-
fying the condition R(X, Y )ξ = 0. Then M2n+1 is locally isometric to En+1

× Sn(4)
for n > 1 and flat for n = 1.

5. Main results

Theorem 5.1. A non-Sasakian Ricci flat 3-dimensional (κ, µ, ν)-contact metric
manifold is flat.
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Proof. Since the manifold M is Ricci flat, from (4-13) we have

0= S(ξ, ξ)= 2κ,

or κ = 0. Then, (3-2) yields ν = 0, so M is a generalized (κ, µ)-contact metric
manifold with κ = 0. In a generalized (κ, µ)-contact metric manifold the constancy
of one of κ or µ implies the constancy of the other [Koufogiorgos and Tsichlias
2000], so µ is also constant. We set κ = ν = 0 in (3-14) and by virtue of (3-5) and
(3-9) we have

(5-1) S(X, Y )= µ[g(h X, Y )− g(X, Y )+ η(X)η(Y )]

for all X, Y ∈X (M). For any point p ∈ M we consider a local orthonormal h-basis
as in Lemma 3.1. In the last equation we set (i) X = Y = e and (ii) X = Y = φe
and since we have a Ricci flat manifold we get respectively

0= S(e, e)= µ(λ− 1),

0= S(φe, φe)= µ(−λ− 1).

By adding these equations we see that µ = 0, and Theorem 4.5 completes the
proof. �

Remark 5.2. For a Sasakian 3-manifold, from Equation (3-14) with κ = 1 and
h = 0, setting X = Y = ξ yields S(ξ, ξ)= 2 and hence a Sasakian manifold cannot
be Ricci flat.

Theorem 5.3. A non-Sasakian Einstein 3-dimensional (κ, µ, ν)-contact metric
manifold is flat.

Proof. Since the manifold is Einstein, Equation (3-3) gives

(5-2)
( 1

2r − κ
)
X +

(
−

1
2r + 3κ

)
η(X)ξ +µh X + νφh X = aX.

For any point p ∈U as in Lemma 3.1 we consider a local orthonormal h-basis and
we set in (5-2) X = ξ , X = e and X = φe. We obtain respectively

2κ = a, ν = 0,
1
2r − κ + λµ= a, 1

2r − κ − λµ= a.

We have a generalized (κ, µ)-contact metric manifold with κ < 1 or equivalently
λ 6= 0. From the two last equations we get µ= 0 and hence κ is constant [Koufo-
giorgos and Tsichlias 2000]. In a 3-dimensional (κ, µ)-contact metric manifold
r = 2(κ−µ). By substituting r in the last equation we obtain a = 0 or equivalently
κ = 0, and Theorem 4.5 completes the proof. �
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Remark 5.4. According to [Yano and Kon 1984, Proposition 3.3, page 38], a
3-dimensional Einstein manifold M is a space of constant curvature. Hence, a
Sasaki–Einstein 3-manifold, since it has constant curvature, must have curvature 1.

Theorem 5.5. If M is a 3-dimensional concircularly symmetric (κ, µ, ν)-contact
metric manifold, then M is either flat or locally isometric to the sphere S3(1).

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is an open and dense subset of M .
In the case where M =U1 the manifold is a Sasakian concircularly symmetric

manifold.
Next, we assume that U2 is not empty. Differentiating (4-1) and using (1-2),

(2-1), (2-2), (2-5), (2-6), (3-7), (3-10), (3-11), (3-13), with κ < 1 everywhere, it
follows that

(∇W Z)(X, Y )U = [(W · H)− 1
6(W · r)][g(Y,U )X − g(X,U )Y ]

+ [(W · κ)− (W · H)][g(Y,U )η(X)− g(X,U )η(Y )]ξ

+ [(W · κ)− (W · H)][η(Y )η(U )X − η(X)η(U )Y ]

+ (W ·µ)[g(Y,U )h X − g(X,U )hY + g(hY,U )X − g(h X,U )Y ]

+(W ·ν)[g(Y,U )φh X−g(X,U )φhY +g(φhY,U )X−g(φh X,U )Y ]

+ (κ − H)
{
[g(Y,U )g(W + hW, φX)− g(X,U )g(W + hW, φY )]ξ

+ [η(Y )X − η(X)Y ]g(W + hW, φU )

+ [g(W + hW, φY )X − g(W + hW, φX)Y ]η(U )

− [g(Y,U )η(X)− g(X,U )η(Y )](φW +φhW )
}

+µ
[{ 1

2(κ−1)g(hW, X) grad κ + 1
2(κ−1)g(hW, φX)φ(grad κ)

+ [(1− κ)g(W, φX)+ g(hW, φX)− νg(hW, X)]ξ

+ η(X)[(κ − 1)φW + hφW ] + η(W )(µhφX + νh X)
}
g(Y,U )

−
{ 1

2(κ−1)g(hW, Y ) grad κ + 1
2(κ−1)g(hW, φY )φ(grad κ)

+ [(1− κ)g(W, φY )+ g(hW, φY )− νg(hW, Y )]ξ

+ η(Y )[(κ − 1)φW + hφW ] + η(W )(µhφY + νhY )
}
g(X,U )

+
{ 1

2(κ−1)g(hW, Y )(U · κ)− 1
2(κ−1)g(hW, φY )(φU · κ)

+ [(1− κ)g(W, φY )+ g(hW, φY )− νg(hW, Y )]η(U )

+η(Y )g((κ−1)φW +hφW,U )+η(W )g(µhφY +νhY,U )
}

X
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−
{ 1

2(κ−1)g(hW, X)(U · κ)− 1
2(κ−1)g(hW, φX)(φU · κ)

+ [(1− κ)g(W, φX)+ g(hW, φX)− νg(hW, X)]η(U )

+η(X)g((κ−1)φW+hφW,U )+η(W )g(µhφX+νh X,U )
}
Y
]

+ ν
[{ 1

2(κ−1)g(hW, X)φ(grad κ)− 1
2(κ−1)g(hW, φX) grad κ

+ [g(W + hW, h X)+ νg(hW, φX)]ξ

+ η(X)[(κ − 1)φ2W + hW ] + η(W )[µh X + νφh X ]
}
g(Y,U )

−
{ 1

2(κ−1)g(hW, Y )φ(grad κ)− 1
2(κ−1)g(hW, φY ) grad κ

+ [g(W + hW, hY )+ νg(hW, φY )]ξ

+ η(Y )[(κ − 1)φ2W + hW ] + η(W )[µhY + νφhY ]
}
g(X,U )

+
{
−1

2(κ−1)g(hW, Y )(φU · κ)− 1
2(κ−1)g(hW, φY )(U · κ)

+ [g(W + hW, hY )+ νg(hW, φY )]η(U )

+η(Y )g((κ−1)φ2W +hW,U )+η(W )g(µhY +νφhY,U )
}

X

−
{
−1

2(κ−1)g(hW, X)(φU · κ)− 1
2(κ−1)g(hW, φX)(U · κ)

+ [g(W + hW, h X)+ νg(hW, φX)]η(U )

+η(X)g((κ−1)φ2W+hW,U )+η(W )g(µh X+νφh X,U )
}
Y
]
.

In this equation, we set W = ξ and by virtue of (2-1), (2-3), (3-8) we obtain

(5-3) (∇ξ Z)(X, Y )U = 2(ξ · κ)[g(Y,U )η(X)− g(X,U )η(Y )]ξ

−
4
3(ξ · κ)[g(Y,U )X − g(X,U )Y ]

+(ξ ·µ)[g(Y,U )h X − g(X,U )hY + g(hY,U )X − g(h X,U )Y ]

+(ξ ·ν)[g(Y,U )φh X−g(X,U )φhY+g(φhY,U )X−g(φh X,U )Y ]

+µ
{
g(Y,U )(µhφX + νh X)− g(X,U )(µhφY + νhY )

+g(µhφY + νhY,U )X − g(µhφX + νh X,U )Y
}

+ν
{
g(Y,U )(µh X + νφh X)− g(X,U )(µhY + νφhY )

+g(µhY + νφhY,U )X − g(µh X + νφh X,U )Y
}
.

For any point p ∈U2 we consider a local orthonormal h-basis as in Lemma 3.1.
We set in (5-3): X =U = e, Y = φe which yields

(∇ξ Z)(e, φe)e = 4
3(ξ · κ)φe.

Since the manifold is concircularly symmetric we conclude that

(ξ · κ)= 0,
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or equivalently, by virtue of (3-2), ν = 0. We set in (5-3): X = e, Y =U = ξ and
ν = 0, and get

(∇ξ Z)(e, ξ)ξ = λ[(ξ ·µ)e−µ2φe].

The manifold is concircularly symmetric and hence µ = 0. The constancy of µ
implies the constancy of κ [Koufogiorgos and Tsichlias 2000] and finally [Blair
et al. 2005, Theorem 5.2] completes the proof. �

Theorem 5.6. Let M a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · Z = 0, then M
is either Sasakian (κ = 1), flat or locally isometric to either SU(2) or SL(2, R),
where these two Lie groups are equipped with a left invariant metric and they have
constant scalar curvature r = 6κ (κ < 1).

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is open and dense subset of M .
In the case where M =U1 the manifold is Sasakian and then according to [Blair

et al. 2005, Theorem 4.1], it has constant curvature 1.
Next, we assume that U2 is not empty. Note that the condition Z(ξ, X) · Z = 0

implies (Z(ξ,U ) · Z)(X, Y )ξ = 0 or more explicitly

Z(ξ,U )Z(X, Y )ξ−Z(Z(ξ,U )X, Y )ξ−Z(X, Z(ξ,U )Y )ξ−Z(X, Y )Z(ξ,U )ξ=0

which by virtue of (1-1), (1-4), (2-3), (4-1), (4-6), (4-7), (4-8), (4-9), (4-10) yields

(5-4) 0=µ
(
κ−1

6r
)
[η(Y )g(hU, X)−η(X)g(hU,Y )]ξ

+µ2
[η(Y )g(hU,h X)−η(X)g(hU,hY )]ξ

+ν
(
κ−1

6r
)
[η(Y )g(φhU, X)−η(X)g(φhU,Y )]ξ

+ν2
[η(Y )g(φhU,φh X)−η(X)g(φhU,φhY )]ξ

+
(
κ− 1

6r
)2g(U, X)Y +µ

(
κ− 1

6r
)
g(hU, X)Y +ν

(
κ−1

6r
)
g(φhU, X)Y

+µ
(
κ−1

6r
)
g(U, X)hY +µ2g(hU, X)hY +µνg(φhU, X)hY

+ν
(
κ−1

6r
)
g(U, X)φhY +µνg(hU, X)φhY +ν2g(φhU, X)φhY

−
(
κ− 1

6r
)2g(U,Y )X−µ

(
κ− 1

6r
)
g(hU,Y )X−ν

(
κ−1

6r
)
g(φhU,Y )X

−µ
(
κ−1

6r
)
g(U,Y )h X−µ2g(hU,Y )h X−µνg(φhU,Y )h X

−ν
(
κ−1

6r
)
g(U,Y )φh X−µνg(hU,Y )φh X−ν2g(φhU,Y )φh X

+
(
κ− 1

6r
)
Z(X,Y )U+µZ(X,Y )hU+νZ(X,Y )φhU.
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For any point p ∈U2 we consider a local orthonormal h-basis as in Lemma 3.1. In
(5-4) we set X =U = e, Y = φe, and by virtue of (2-3), (2-4) we obtain

(5-5)
[(
κ− 1

6r
)2
− λ2(µ2

+ ν2)
]
φe+

(
κ− 1

6r
)
Z(e, φe)e+µZ(e, φe)he

+νZ(e, φe)φhe = 0.

Equation (4-1) by virtue of (1-2), (2-4) and (3-10) yields

(5-6)

Z(e, φe)e =
(
−H+ 1

6r
)
φe,

Z(e, φe)he = λ
(
−H+ 1

6r
)
φe,

Z(e, φe)φhe = λ
(
H− 1

6r
)
e.

Substituting (5-6) in (5-5) we obtain

νλ
(
H− 1

6r
)
e+

[(
κ− 1

6r
)
(κ − H)− λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)]
φe = 0,

and hence

νλ
(
H− 1

6r
)
= 0,(5-7) (

κ− 1
6r
)
(κ − H)− λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)
= 0.(5-8)

In (5-4) we set X = e, Y =U = φe, and by virtue of (2-3), (2-4) we obtain

(5-9)
[
−
(
κ− 1

6r
)2
+ λ2(µ2

+ ν2)
]
e+

(
κ− 1

6r
)
Z(e, φe)φe

+µZ(e, φe)hφe+ νZ(e, φe)φhφe = 0.

Equation (4-1) by virtue of (1-2), (2-4) and (3-10) yields

(5-10)

Z(e, φe)φe =
(
H− 1

6r
)
e,

Z(e, φe)hφe = λ
(
−H+ 1

6r
)
e,

Z(e, φe)φhφe = λ
(
−H+ 1

6r
)
e.

Substituting the equations (5-10) in (5-9) we obtain[
−
(
κ− 1

6r
)
(κ − H)+ λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)]

e− νλ
(
H− 1

6r
)
φe = 0,

and hence, in addition to (5-7), we get

(5-11) −
(
κ− 1

6r
)
(κ − H)+ λ2(µ2

+ ν2)− λµ
(
H− 1

6r
)
= 0.

Since we work in U2 where κ 6= 1 (more precisely κ < 1) or equivalently λ 6= 0,
the equations (5-7), (5-8) and (5-11) by virtue of (3-5) yield the equations (4-14),
(4-15) and (4-16). Finally Proposition 4.3 completes the proof. �

Corollary 5.7. Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · Z = 0, then M is a
pseudosymmetric manifold, in the sense of Deszcz, of constant type.



128 FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

Proof. From [Blair et al. 1990, Proposition 3.2] this manifold is an η-Einstein and
then [Cho and Inoguchi 2005, Proposition 1.2] completes the proof. �

Theorem 5.8. Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · S = 0, then M
is either Sasakian (κ = 1), flat or locally isometric to either SU(2) or SL(2, R),
where these two Lie groups are equipped with a left invariant metric and they have
constant scalar curvature r = 6κ (κ < 1).

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is an open and dense subset of M .
In the case where M =U1, the manifold is Sasakian and according to [Tripathi

and Kim 2004, Theorem 1.4], it has constant curvature 1.
Next, we assume that U2 is not empty; we work in U2 where κ < 1 everywhere.

The condition Z(ξ, X) · S = 0 or equivalently

0= (Z(ξ, X)·S)(Y,W )= Z(ξ, X)·S(Y,W )−S(Z(ξ, X)Y,W )−S(Y, Z(ξ, X)W )

implies

(5-12) S(Z(ξ, X)Y,W )+ S(Y, Z(ξ, X)W )= 0

which in view of (4-11) and (4-12) yields

(5-13)
(
κ− 1

6r
)
[S(X, Y )− 2κg(X, Y )] +µ[S(h X, Y )− 2κg(h X, Y )]

+ν[S(φh X, Y )− 2κg(φh X, Y )] = 0.

For any point p ∈U2 we consider an h-basis. In (5-13) setting (i) X = Y = e, (ii)
X = Y = φe and (iii) X = e and Y = φe, and by virtue of (3-14), (3-15) and (3-16),
we obtain respectively(

κ− 1
6r
)
(H − κ + λµ)+µ(λH − λκ −µκ +µ)− ν2(κ − 1)= 0,(5-14) (

κ− 1
6r
)
(H − κ − λµ)+µ(−λH + λκ −µκ +µ)− ν2(κ − 1)= 0,(5-15)

and (4-14). By virtue of (3-5) and by subtracting (5-15) from (5-14) we obtain
(4-15), while by adding equations (5-14) and (5-15) we get (4-16). Proposition 4.3
completes the proof. �

Corollary 5.9. Let M be a 3-dimensional (κ, µ, ν)-contact metric manifold. If the
concircular curvature tensor Z satisfies the condition Z(ξ, X) · S = 0, then M is a
pseudosymmetric manifold, in the sense of Deszcz, of constant type.
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Proof. From [Blair et al. 1990, Proposition 3.2] this manifold is an η-Einstein and
then [Cho and Inoguchi 2005, Proposition 1.2] completes the proof. �

Theorem 5.10. Let M3(η, ξ, φ, g) be a 3-dimensional (κ, µ, ν)-contact metric
manifold satisfying the condition R(ξ, X) · Z = 0. Then, there are at most two open
subsets of M3 for which their union is an open and dense subset of M3, and each
of them as an open submanifold of M3 is either (a) a Sasakian manifold or (b) a
semi-K generalized (κ, µ)-contact metric manifold with (ξ ·µ)= 0 and r = 4κ .

Proof. We consider the open subsets of M :

U1 = {p ∈ M : κ = 1 in a neighborhood of p},

U2 = {p ∈ M : κ 6= 1 in a neighborhood of p},

where U1 ∪U2 is open and dense in M .
In the case where M =U1, the manifold is Sasakian and according to [Blair et al.

2005, Theorem 4.3], it has constant curvature 1.
Next, we assume that U2 is not empty. Firstly, we remark that the condition

R(ξ, X) · Z = 0 implies (R(ξ,U ) · Z)(X, Y )ξ = 0 or more explicitly

R(ξ,U )Z(X, Y )ξ−Z(R(ξ,U )X, Y )ξ−Z(X, R(ξ,U )Y )ξ−Z(X, Y )R(ξ,U )ξ=0

which by virtue of (1-1), (1-4), (2-3), (3-10), (4-1), (4-9) yields

(5-16) 0= µκ[η(Y )g(U, h X)− η(X)g(U, hY )]ξ

+ νκ[η(Y )g(U, φh X)− η(X)g(U, φhY )]ξ

+µ2
[η(Y )g(hU, h X)− η(X)g(hU, hY )]ξ

+ ν2
[η(Y )g(φhU, φh X)− η(X)g(φhU, φhY )]ξ

+ κ
(
κ− 1

6r
)
g(U, X)Y + κµg(U, X)hY + κνg(U, X)φhY

− κ
(
κ− 1

6r
)
g(U, Y )X − κµg(U, Y )h X − κνg(U, Y )φh X

+µ
(
κ− 1

6r
)
g(hU, X)Y +µ2g(hU, X)hY +µνg(hU, X)φhY

−µ
(
κ− 1

6r
)
g(hU, Y )X −µ2g(hU, Y )h X −µνg(hU, Y )φh X

+ ν
(
κ− 1

6r
)
g(φhU, X)Y +µνg(φhU, X)hY + ν2g(φhU, X)φhY

− ν
(
κ− 1

6r
)
g(φhU, Y )X −µνg(φhU, Y )h X − ν2g(φhU, Y )φh X

+ κZ(X, Y )U +µZ(X, Y )hU + νZ(X, Y )φhU.

For any point p ∈U2 we consider a local orthonormal h-basis as in Lemma 3.1. In
(5-16) we set X =U = e, Y = φe and by virtue of (2-3), (2-4) we obtain

1
6rνλe+

[
κ2
−

1
6rκ − λ2(µ2

+ ν2)− 1
6rλµ

]
φe+ κZ(e, φe)e

+µZ(e, φe)he+ νZ(e, φe)φhe = 0,
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which by (5-6) gives

νλHe+ [κ(κ − H)− λ2(µ2
+ ν2)− λµH ]φe = 0,

and hence

νλH = 0,(5-17)

κ(κ − H)− λ2(µ2
+ ν2)− λµH = 0.(5-18)

In (5-16) we set X = e, Y =U = φe, and by virtue of (2-3), (2-4) we obtain[
−κ2
+

1
6rκ + λ2(µ2

+ ν2)− 1
6rλµ

]
e− 1

6rλνφe+ κZ(e, φe)φe

+µZ(e, φe)hφe+ νZ(e, φe)φhφe = 0

which by virtue of (5-10) yields

[−κ(κ − H)+ λ2(µ2
+ ν2)− λµH ]e− νλHφe = 0,

and hence, in addition from (5-17), we get

(5-19) −κ(κ − H)+ λ2(µ2
+ ν2)− λµH = 0.

Since we work in U2 where κ < 1 or equivalently λ 6= 0, the equations (5-17), (5-18)
and (5-19) yield the equations (4-17), (4-18) and (4-19) and hence Proposition 4.3
completes the proof. Our open submanifold U2 is a generalized (κ, µ)-contact
metric 3-manifold with (ξ ·µ)= 0 and according to Remark 4.4 this submanifold
is a semi-K contact manifold.

We have proved:

(a) If M =U1 then M is Sasakian with κ = 1.

(b) If M = U2 then M is a semi-K generalized (κ, µ)-contact metric manifold
with κ < 1, (ξ ·µ) = 0 and r = 4κ .

(c) If U1 6=∅ and U2 6=∅, the union U1∪U2 is open and dense in M ; also, κ = 1
in U1 and κ < 1 in U2. The function κ is continuous in U1 and in U2. �

Remark 5.11. According to Proposition 4.3 and [Blair 2002, Theorem 7.5, p. 101].
U2 becomes flat when µ= 0 since Equation (4-19) yields κ = 0.
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GENUSES OF CLUSTER QUIVERS
OF FINITE MUTATION TYPE

FANG LI, JICHUN LIU AND YICHAO YANG

In this paper, we study the distribution of the genuses of cluster quivers
of finite mutation type. First, we prove that in the 11 exceptional cases,
the distribution of genuses is 0 or 1. Next, we consider the relationship
between the genus of an oriented surface and that of cluster quivers from
this surface. It is verified that the genus of an oriented surface is an upper
bound for the genuses of cluster quivers from this surface. Furthermore,
for any nonnegative integer n and a closed oriented surface of genus n, we
show that there always exist a set of punctures and a triangulation of this
surface such that the corresponding cluster quiver from this triangulation
is exactly of genus n.

1. Introduction

Cluster quivers are a valuable notion in the theory of cluster algebras, first introduced
in the famous paper [Fomin and Zelevinsky 2002]. Since then this subject has been
studied extensively by many mathematicians. The original motivation was to give a
combinatorial characterization of dual canonical bases in the theory of quantum
groups, and for the study of total positivity for algebraic groups. Now cluster
algebras are connected to various fields of mathematics such as representation
theory, Poisson geometry, algebraic geometry, Lie theory, combinatorics and so
on. One knows that cluster algebras are commutative algebras equipped with a
distinguished set of generators, i.e., cluster variables.

Two types of cluster algebras are of special interest: those of finite type, and those
of finite mutation type. The former is a special case of the latter. Cluster algebras
of finite type were completely classified in [Fomin and Zelevinsky 2003], and skew-
symmetric cluster algebras of finite mutation type were completely classified in
[Felikson et al. 2012]. The classification of cluster algebras of finite type is identical
to the Cartan–Killing classification of semisimple Lie algebras and finite root
systems. For a cluster algebra of finite type, there is a one-to-one correspondence
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between the set of cluster variables and the set of almost positive roots (consisting
of positive roots and negative simple roots). Additionally, the classification of
skew-symmetric cluster algebras (equivalently, the classification of cluster quivers)
of finite mutation type tells us that almost all skew-symmetric cluster algebras
(equivalently, cluster quivers) of this type come from triangulations of surfaces,
except for 11 exceptional cases.

Given an oriented 2-dimensional Riemann surface S with boundary ∂S, let M ⊂ S
be a finite set of marked points such that each connected boundary component
contains at least one such point. Marked points in the interior of S are called
punctures. The pair (S,M) is simply called a surface. An arc [Fomin et al. 2008]
is the homotopy class of a curve γ in S whose endpoints come from M , such that:

• γ does not intersect itself, except that its endpoints may coincide;

• except for the endpoints, γ is disjoint from M and ∂S;

• γ does not cut out an unpunctured monogon or an unpunctured digon.

An ideal triangulation T is a maximal set of noncrossing (i.e., there are no
intersections in the interior of S) arcs. For the details of the construction of cluster
quivers from triangulations of surfaces, see Section 2B.

In this paper, all surfaces we consider are oriented surfaces; all subgraphs and
subquivers are full.

In topological graph theory, the genus of a graph is the minimal genus of the
surfaces where the graph can be drawn without crossings. The genus of a quiver is
defined to be that of its underlying graph. When discussing the genus of a quiver,
one only needs to consider its simple underlying graph (without multiple edges and
orientation). A graph (respectively, quiver) is planar if it is of genus 0. It is well
known that genus is a topological invariant for surfaces, as well as for topological
graphs. A natural question is to find out the relation between the genus of a surface
and that of a cluster quiver from this surface. As an answer, we have the main
conclusion in this paper:

Theorem 1.1. (i) For a triangulation T of a surface S with genus g, let g′ be the
genus of the cluster quiver Q associated with T . Then g′ ≤ g.

(ii) Furthermore, for any nonnegative integer n and a closed oriented surface Sn of
genus n, there exists a set of marked points M on Sn and an ideal triangulation
Pn of Sn such that the corresponding cluster quiver Tn of Pn has genus n.

From this result, we know that the genus of a surface is in fact an upper bound
for the genuses of cluster quivers from the triangulations of this surface; moreover,
any nonnegative integer n can be reached as the genus of some cluster quiver
from surface.
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The paper is organized as follows. The requisite background on cluster quiv-
ers, their mutation, and triangulations of surfaces are presented in Section 2. In
Section 2A, we give the basic definitions of matrix mutation and quiver mutation.
We mention the fact that skew-symmetric matrices are in bijection with cluster
quivers, and also that matrix mutation and quiver mutation are compatible. In
Section 2B, we recall some basic definitions and properties of triangulations of
surfaces from [Fomin et al. 2008]. We recapitulate how to obtain a cluster quiver
from a surface triangulation and the compatibility between quiver mutations and
flips of triangulations. A cluster quiver comes from a surface if and only if it is
block-decomposable. At the end of this subsection, we restate the classification of
skew-symmetric cluster algebras of finite mutation type.

Section 3 mainly deals with the genuses of cluster quivers of finite mutation type.
In Section 3A, we give the table of genus distribution of the 11 exceptional quivers
by utilizing Keller’s quiver mutation in Java [Keller 2006]. In Section 3B, we first
prove Theorem 1.1(i) which states that the genus of a surface is an upper bound for
the genuses of cluster quivers obtained by triangulations of this surface. From this
result, one can easily see that genus is a mutation invariant for cluster quivers from
the surface of genus 0. As another application of this result, we give a sufficient
condition for two quivers not to be mutation equivalent. Part (ii) of Theorem 1.1 is
proved by constructing a graph Rn , using topological graph theory for genus n and
the classification theorem of compact surfaces in algebraic topology.

2. Preliminaries

2A. Cluster quiver and its mutation. The notion of skew-symmetric matrix or
equivalently of cluster quiver is crucial in the theory of cluster algebras. In the
definition of cluster algebras, the most important ingredient is the so-called seed
mutation. For our purpose in this paper, we only introduce matrix mutation (an
important part of seed mutation) so as to understand the motivation of cluster
quivers. For the details of the definitions of seed mutation and cluster algebras, we
refer to [Fomin and Zelevinsky 2003].

Suppose B= (bi j ) is an n×n integer matrix. For 1≤ k≤ n, a matrix mutation µk

at direction k transforms B into a new matrix B ′ = (b′i j ) where b′i j is defined by

b′i j =

−bi j if i = k or j = k,

bi j +
|bik |bk j + bik |bk j |

2
otherwise.

Here, all matrices we consider are skew-symmetric. It is easy to see that matrix
mutation transforms a skew-symmetric matrix into another one.

Given an n× n skew-symmetric matrix B = (bi j ), we can construct a quiver Q
without loops and 2-cycles as follows: the vertex set is {1, 2, . . . , n} (the set of
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row and column indices of the matrix B), and the number of arrows from i to j is
defined to be bi j if bi j > 0.

Definition 2.1. A quiver without loops and 2-cycles is said to be a cluster quiver.

There is a one-to-one correspondence between the set of skew-symmetric matrices
and the set of cluster quivers. In fact, given a cluster quiver Q with n vertices, one can
construct a skew-symmetric matrix B = (bi j ) defined by bi j = #{i→ j}−#{ j→ i},
where #{i → j} denotes the number of arrows from i to j . According to this
one-to-one correspondence, quiver mutation can be deduced from matrix mutation.

Definition 2.2. Suppose Q is a cluster quiver with vertex set Q0 = {1, 2, . . . , n}.
For k ∈ Q0, a quiver mutation µk at vertex k transforms Q into Q′, where Q′ is
obtained by the following three steps:

(1) For every path i→ k→ j , add a new arrow i→ j .

(2) Reverse all arrows incident with k.

(3) Delete all 2-cycles.

One can easily see that the resulting quiver Q′ is also a cluster quiver. Matrix
mutation and quiver mutation are compatible in the following sense: given any
k ∈ {1, 2, . . . , n}, µk(Q B)= Qµk(B) and µk(BQ)= Bµk(Q).

It is easy to verify that both matrix mutation and quiver mutation are involu-
tions, i.e., µ2

k = 1. If Q′=µk1µk2 . . . µkl (Q) for some k1, k2, . . . , kl ∈ {1, 2, . . . , n},
we will say that Q and Q′ are mutation equivalent. Obviously, this is an equivalence
relation on the set of isomorphism classes of cluster quivers with n vertices. A
cluster quiver (respectively, skew-symmetric cluster algebra constructed from this
quiver) is said to be of finite mutation type if the number of quivers in its mutation-
equivalence class is finite. Cluster quivers of this type were completely classified
in [Felikson et al. 2012]. We will restate this classification theorem in Section 2B.

2B. Cluster quivers from surfaces. Given a surface (S,M), the number of arcs in
any triangulation of (S,M) is a constant. The following lemma gives the formula
to calculate the number of arcs in a triangulation.

Lemma 2.3 [Fomin et al. 2008]. For a triangulation of a surface, the following
formula holds:

(1) n = 6g+ 3b+ 3p+ c− 6,

where n is the number of arcs, g is the genus of the surface, b is the number of
connected boundary components, p is the number of punctures, and c is the number
of marked points on the boundary.
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The arcs of an ideal triangulation cut the surface S into ideal triangles. The
three sides of an ideal triangle do not have to be distinct, i.e., we allow self-folded
triangles, like this:

i

Given an ideal triangulation T , there is an associated signed adjacency ma-
trix B(T ) (see [Fomin et al. 2008, §4]). Suppose the arcs in T are labeled by the
numbers 1, 2, . . . , n, and let the rows and columns of B(T ) be numbered from 1
to n. For an arc i , let πT (i) denote the arc defined as follows: if there is a self-folded
ideal triangle in T folded along i (see figure above), then πT (i) is its remaining
side; otherwise, we set πT (i)= i .

For each non-self-folded triangle 4, define the n× n integer matrix B4 = (b4i j )

by setting

b4i j =


1 if side πT ( j) immediately follows πT (i) in 4 going clockwise;

−1 if side πT (i) immediately follows πT ( j) in 4 going clockwise;

0 otherwise.

The matrix B = B(T )= (bi j ) is defined by

(2) B =
∑
4

B4,

where the sum is taken over all non-self-folded triangles 4. It is easy to verify
that B(T ) is skew-symmetric, and that all its entries are equal to 0, 1, −1, 2
or −2. Therefore, given a triangulation T , we can first associate a skew-symmetric
matrix B(T ) to T and then obtain a cluster quiver Q corresponding to B(T ), just as
in Section 2A. The corresponding cluster quiver Q B of B = B(T ) is said to come
from a surface. Correspondingly, the cluster algebra defined by Q B is also said to
come from a surface.

A flip is a transformation of an ideal triangulation T into a new triangulation T ′

obtained by replacing an arc γ with a unique different arc γ ′ and leaving other arcs
unchanged. Flips of triangulation and matrix mutation are compatible in the sense
of the following proposition.

Proposition 2.4 [Fomin et al. 2008, Proposition 4.8]. Suppose that the triangula-
tion T is obtained from T by a flip replacing an arc k. Then B(T )= µk(B(T )).

According to [Fomin et al. 2008, Remark 4.2], all triangulations that we are
interested in can be obtained by gluing together a number of puzzle pieces, except
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for one case: the triangulation of the 4-punctured sphere obtained by gluing three
self-folded triangles to respective sides of an ordinary triangle:

There are three types of puzzle pieces:

1 2

3

3

4

21
24

1

35

Figure 1. The three types of puzzle pieces.

These three types of puzzle pieces correspond to blocks of type I–V below,
depending on whether the outer sides are lying on the boundary (for the details, see
the proof of Theorem 13.3 in [Fomin et al. 2008]).

III
b

III IV V
a

III

The vertices marked by open circles in this figure are called outlets.

Definition 2.5 [Fomin et al. 2008]. A quiver is said to be block-decomposable if it
can be obtained from a collection of disjoint blocks by the following procedure:

(1) Take a partial matching of the combined set of outlets (matching an outlet to
itself or to another outlet from the same block is not allowed).

(2) Glue the outlets in each pair of the matching.

(3) Remove all 2-cycles.

According to [Fomin et al. 2008, Theorem 13.3], a cluster quiver comes from a
surface if and only if it is block-decomposable.

The following theorem gives a complete classification of skew-symmetric cluster
algebras of finite mutation type.

Lemma 2.6 [Felikson et al. 2012]. A skew-symmetric cluster algebra A of rank n
is of finite mutation type if and only if A comes from a surface (n ≥ 3), or n ≤ 2,
or A is one of the 11 exceptional types shown in Figure 2 (that is, A has a cluster
quiver at one of these types).
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E6 E7 E8

E6
(1) (1) (1)

E7 E8

E
6

2 2
2 2

(1,1)
E
(1,1)

7
X
6

E
8

2

(1,1)

2 2

2X
7

Figure 2. The eleven exceptional types.

3. Genus distribution of cluster quivers of finite mutation type

3A. Genuses of exceptional cluster quivers. Table 1 in this section gives the genus
distribution of the 11 exceptional cluster quivers in the classification of cluster
quivers of finite mutation type. Our main tool is Keller’s quiver mutation in Java
[Keller 2006]. To obtain the table, we note the following facts:

(1) E6, E7, E8, E (1)6 , E (1)7 and E (1)8 are trees. According to Lemma 1.1 of [Vatne
2010], any orientations on the same tree are mutation equivalent.

(2) E6, E7, E8 and E (1)8 are full subgraphs of the underlying graph of E (1,1)8 ; E (1)6
is a full subgraph of the underlying graph of E (1,1)6 ; E (1)7 is a full subgraph of
the underlying graph of E (1,1)7 . Since any quiver mutation-equivalent to a full
subquiver of Q must be a full subquiver of some Q′ that is mutation-equivalent
to Q, we first test the mutation classes of E (1,1)6 , E (1,1)7 and E (1,1)8 in order to
see their genus distribution.

(3) To see the genus of a quiver, we only need to see its underlying graph. Hence
when doing the quiver mutation in Java due to Keller [2006], we can choose
the mutation class under graph isomorphism. This can greatly cut down the
number of quivers in the mutation class that we have to consider.

(4) We check the quivers in the mutation classes of E (1,1)6 , E (1,1)7 and E (1,1)8 and
find they are all planar. So are the other exceptional cluster quivers of type E .
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Type Total number Number of genus 0 Number of genus 1

E6 21 21 0
E7 112 112 0
E8 391 391 0
E (1)

6 52 52 0
E (1)

7 338 338 0
E (1)

8 1935 1935 0
E (1,1)

6 27 27 0
E (1,1)

7 217 217 0
E (1,1)

8 1886 1886 0
X6 4 1 3
X7 2 1 1

Table 1. Statistics on exceptional cluster quivers of different types.

In Table 1, the total number means the number of quivers in the mutation class
up to quiver isomorphism, and the number of genus 0 (respectively, 1) means the
number of quivers (up to quiver isomorphism) in the mutation class whose genus
is 0 (respectively, 1).

From the table, one can easily see that the genus of the quiver of type E is
invariant under quiver mutation, but the genus of the quiver of type X will vary
under quiver mutation.

Proposition 3.1. There are exactly four nonplanar cluster quivers of exceptional
finite mutation types that have genus 1:

(1) (2) (3) (4)

Quivers (1), (2), and (3) are in the mutation-equivalence class of X6, and quiver (4)
is in the mutation-equivalence class of X7.

Proof.

• Quiver (1) is obtained from X6 by mutation on the vertices x4 and x6, the
vertex labeling being as shown on the top of the next page.

• Quiver (2) is obtained from X6 by mutation on the vertex x4.

• Quiver (3) is obtained from X6 by mutation on the vertices x4 and x3.
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2 2

2

4
y

1
y

3
y

2
y

5
y

6
y

7
y

X7

2 2
4
x

1
x

3
x

2
x

5
x

6
x

X6

• Quiver (4) is obtained from X7 by mutation on the vertex y4. �

3B. Proof of the main conclusion. We will begin by proving the first part of the
theorem, i.e., that the genuses of cluster quivers obtained from the triangulations of
a surface are not greater than that of the surface.

Proof of Theorem 1.1(i). By the correspondence of puzzle pieces and blocks, each
puzzle piece corresponds to a block of type I–V. For each puzzle piece, we put
its corresponding block into the face bounded by it. If two puzzle pieces have a
common edge, then we glue the two vertices corresponding to the common edge
between these two blocks. Hence we obtain the quiver Q of T in this way, and
moreover the underlying graph of Q can be drawn without self-crossings on the
surface S. We then have g′ ≤ g by definition of the genus of a quiver.

To complete the proof of the theorem, we should consider the only exceptional
case the triangulation of which cannot be obtained by gluing the puzzle pieces.
Let T be the triangulation of the 4-punctured sphere obtained by gluing three
self-folded triangles to respective sides of an ordinary triangle. The corresponding
cluster quiver of T can be obtained by gluing four blocks of type II, as follows:

3'

2'

2 3

1

1'

In this figure, for i = 1, 2 and 3, i and i ′ denote the corresponding vertices of two
arcs in the same self-folded triangles. Obviously it is a planar quiver, and hence in
this case g′ = g = 0. This completes the proof. �

To prove Theorem 1.1(ii), we need some preliminaries. First, we borrow from
[Gross and Tucker 1987, Example 3.4.2] a class of graphs with arbitrary large genus.
For each positive integer n, the graph Rn is constructed by taking n+ 1 concentric
cycles consisting of 4n edges each, together with 4n2 inner edges connecting the
n+ 1 cycles to each other and 2n outer edges adjoining antipodal vertices on the
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outermost cycle. Here is the graph R2:

8

1

2

3

4

5

to 5

to 6

to 8

to 7

6

7

It was shown in [Gross and Tucker 1987] that Rn is of genus n.
Secondly, recall that the classification theorem for compact (or closed) surfaces

(see, for example, [Massey 1977, Chapter 1, Theorem 5.1]) asserts that any compact
surface is homeomorphic to a sphere, a connected sum of tori, or a connected sum
of projective planes. Any compact surface can be considered as the quotient space
of a polygon with directed edges identified in pairs. There is a convenient way to
indicate which paired edges are to be identified in such a polygon. We give a letter
(for example, a, b, c, . . . ) to each pair of edges, different pairs receiving different
letters. Starting at a definite vertex, we traverse the boundary of the polygon either
clockwise or counterclockwise. If the arrow on an edge points in the same traversing
direction, we put no exponent (or the exponent +1) on the letter for that edge;
otherwise, we write the letter for that edge with the exponent −1. For example, the
string a1a1a2a−1

2 a3a−1
3 indicates the same identifications as this figure:

a3
−1

a2
−1

a1

a2a3

a1

The various surfaces can then be described by the following strings (see [Massey
1977, §5]):

(1) The sphere: aa−1.

(2) The connected sum of n tori: a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . . . anbna−1
n b−1

n .

(3) The connected sum of n projective planes: a1a1a2a2 . . . anan.

Given a polygon, if the letter designating a certain pair of edges occurs with
both exponents +1 and −1 in the symbol, then this pair of edges is said to be of
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the first kind; otherwise the pair is said to be of the second kind. From the proof of
Theorem 5.1 in [Massey 1977], we know that if all the pairs of edges are of the
first kind, then the resulting surface is oriented; if there exists a pair of edges of the
second kind, then the resulting surface is nonoriented. Moreover, since the pair of
adjacent edges of the first kind can be eliminated, the resulting surface of a 4n-gon
with pairs all of the first kind is an oriented surface with genus at most n.

To prepare for the proof of Theorem 1.1(ii), we first prove a lemma.

Lemma 3.2. For an arbitrary nonnegative integer n, there always exists a block-
decomposable cluster quiver Tn such that the genus g(Tn) of Tn satisfies g(Tn)≥ n.

Proof. Given a graph Rn as above, label the n+1 cycles from innermost to outermost
by 1 to n+ 1. For each i ∈ {1, 2, . . . , n}, there are 4n rectangles between the i-th
cycle and the (i+1)-st cycle. For the outermost cycle, there exist 2n rectangles
between the (n+1)-st cycle and itself. Two rectangles are said to be neighbors
if they share a common edge; otherwise, they are said to be distant. It is easy to
observe that there are 4n2

+ 2n rectangles in Rn . Given any rectangle A in Rn , we
first choose four rectangles distant from A but having a common vertex with A.
We repeat this process for each of these four rectangles; continuing this process,
we will obtain a maximal set of mutually distant rectangles. This is denoted by S.
This set contains 2n2

+ n rectangles. The other 2n2
+ n rectangles form another

maximal set of mutually distant rectangles. This is denoted by T.
Trivially, the two sets S and T are independent of the choice of the
original rectangle A. Consider the set S: each rectangle in S can
be obtained by gluing four blocks of type II as shown on the right.

For the innermost cycle, there are 2n edges which do not lie in any rectangles
of S. We can then substitute one block of type IV for each such edge. For all these
2n edges, we need 2n blocks of type IV.

In summary, we obtain a quiver Tn by gluing 8n2
+ 4n blocks of type II and 2n

blocks of type IV. According to the construction of Tn , obviously, Rn is a subgraph
of the underlying graph of Tn . Therefore, the genus g(Tn) is at least g(Rn) = n.
Figure 3 on the next page illustrates the case n = 2. �

Proof of Theorem 1.1(ii). We will use the fact that the quiver Tn given in the proof
of Lemma 3.2 can be obtained from a closed surface of genus n. By Lemma 3.2,
g(Tn) ≥ n. It is easy to check that Tn is a uniquely block-decomposable quiver
and hence Tn can be uniquely encoded by its corresponding triangulation, that is,
blocks of type II are encoded by puzzle pieces of the first type (see the left graph in
Figure 1) and blocks of type IV are encoded by puzzle pieces of the second type
(see the middle graph in Figure 1). In order to draw Tn , we first draw a planar quiver
T ′n which has 4n unglued outlets. After gluing these 4n outlets in pairs, one obtains
Tn , where each pair consists of one outlet and its opposite one. See Figure 3 for an
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1 2

12

3

4

4

3

Figure 3. Quiver corresponding to the graph T2. Vertices labeled
by the same numbers should be glued together.

illustration of the case n = 2. Now we will construct a closed surface Sn of genus
n and a triangulation Pn of Sn such that the corresponding cluster quiver is Tn .

We will chase Tn from innermost to outermost. Blocks of type II and type IV
are encoded by puzzle pieces of the first and second types, respectively. For the
outermost 4n oriented triangles in T ′n , we let each of them correspond to a puzzle
piece of the first type. Thus we obtain a 4n-
gon with a triangulation. Denote this 4n-gon
with triangulation by S′n . Then we can obtain
a closed oriented surface Sn by identifying the
edges of S′n in pairs and gluing all outermost
vertices into one, and then obtain a triangula-
tion Pn of Sn such that its corresponding quiver
is exactly Tn . For the case T2, its corresponding
S′2 is given on the right.

1

1

33

4

2

2

4To obtain S2 and P2, one only needs to glue
the edges labeled by the same number in pairs
and to glue all 8 outermost vertices into one.

By the proof of the classification theorem of compact surfaces in [Massey 1977],
the genus of Sn is at most n.

Since Tn is obtained from a triangulation of Sn , by Theorem 1.1(i), g(Tn)≤ n.



GENUSES OF CLUSTER QUIVERS OF FINITE MUTATION TYPE 145

On the other hand, by Lemma 3.2, g(Tn)≥ n. Hence, g(Tn)= n.
For the genus g(Sn) of Sn , since n= g(Tn)≤ g(Sn)≤ n, we also have g(Sn)= n.
Then Theorem 1.1(ii) easily follows from the fact that all closed oriented surfaces

with the same genus are homeomorphic. �

3C. Applications and further problems. As an application of Theorem 1.1(i), we
give two corollaries.

Corollary 3.3. Let S be a surface of genus 0 and M a set of marked points of S.
Given any triangulation T of (S,M), suppose Q is the associated cluster quiver.
Then all quivers in the mutation-equivalence class of Q are of genus 0.

Besides the cluster quivers of type E in Section 3A, this corollary gives another
class of cluster quivers of finite mutation type whose genuses are invariant under
mutation.

Corollary 3.4. Let S be a surface of genus g, with M its set of marked points.
For any triangulation T of (S,M), let Q be its corresponding quiver and let Q′

be another cluster quiver of genus g′ such that g′ > g. Then Q and Q′ are not
mutation equivalent.

Proof. According to Proposition 12.3 in [Fomin et al. 2008], all quivers in the
mutation-equivalence class of Q are the corresponding quivers of some triangula-
tions of (S,M). Hence, by Theorem 1.1(i), the genuses of these quivers are not
greater than g. Hence Q′ is not in the mutation-equivalence class of Q, that is, Q
and Q′ are not mutation equivalent. �

This corollary gives us a necessary condition for two quivers with the same
number of vertices, one coming from a triangulation of a surface and the other
nonplanar, to be mutation equivalent.

Remark 3.5. An easy calculation shows that the number of marked points on the
closed surface Sn in the proof of Theorem 1.1(ii) is 4n2

+ 2n+ 2. For example, in
the case n = 2, one can easily see that there are 22 marked points on S2; here the
outermost 8 marked points in S′2 (see figure at the bottom of page 144) are glued
into one.

Theorem 1.1(ii) tells us that, given a closed surface S of genus n, the upper bound
of genuses of quivers from triangulations of S given in part (i) of Theorem 1.1 can
be reached.

On the other hand, the lower bound 0 of genuses can also be reached; that is, given
any closed oriented surface S with genus n, there always exists a triangulation T
of S such that the corresponding cluster quiver Q of T is planar.

In fact, if the closed surface is a sphere, this obviously holds by Corollary 3.3;
whereas if the closed surface S is of genus n ≥ 1, it is homeomorphic to the
connected sum of n tori. In this case, the symbol of the corresponding polygon is
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a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . . . anbna−1
n b−1

n . A triangulation
T of S with two punctures is shown on the right. For
this triangulation, the outer 4n vertices in fact come from
the same puncture and the only inner vertex is the other
puncture. One can easily check that the corresponding
cluster quiver Q of T is planar. ...a1

a2
b2a1

−1

a2
−1

b2
−1

b1
−1

b1

Restricting the discussion to the torus, we reach the following conclusion:

Proposition 3.6. For a given cluster quiver Q from the torus S with p punctures,
there exists at least one planar quiver in the mutation-equivalence class of Q.

Proof. According to Proposition 12.3 in [Fomin et al. 2008], the corresponding
quivers from all triangulations of S are mutually mutation equivalent. Hence, we
only need to find a triangulation T of S such that its corresponding quiver is planar.

For the convenience of describing the desired triangulation, we first restate how a
torus is constructed. Given two circles C and C ′, assume the radius of C is greater
than that of C ′. Let the center of C ′ run along C for one round; then a torus is built.
The circle C is called a basic circle for this torus.

For the torus S with p punctures, we construct a triangulation T as follows:
For each puncture, construct a closed arc on S perpendicular to the basic circle

such that its two endpoints coincide at the puncture; we have p such arcs. These
p arcs cut down the torus into p pieces of cylinders. For each
cylinder, drawing an arc between two punctures, we obtain a
rectangle. Moreover, we draw a diagonal in this rectangle.
The corresponding quiver from such a rectangle with its
diagonal is shown on the right.

All p such rectangles with diagonal are arranged continuously together to form
a graph. The quiver Q of T is obtained by gluing p pieces of such quivers along
the outlets. Obviously, it is a planar quiver. �

For example, in the case p = 3, the triangulation and the corresponding cluster
quiver are as follows, where the numbers 1, . . . , 9 label the arcs:

2

(1)

2

1 13

4

4

5
6

9

9

7
8

(2)Since both the upper and lower bounds for genuses of cluster quivers from closed
surfaces can be attained, based on Theorem 1.1 and Proposition 3.6 we propose
these further interesting problems:
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Problem 3.7. For any closed surface S with genus n and 0 ≤ i ≤ n, does there
exist a certain number of punctures and an ideal triangulation T (i) of S such that
the corresponding cluster quiver Qi from T (i) is of genus i?

Problem 3.8. Given a closed surface S of genus n, find the minimal number of
punctures on S with the property that there exists an ideal triangulation T of S such
that the corresponding cluster quiver Qn of T is of genus exactly n.

For the case of the torus, we know at least one planar quiver in each mutation-
equivalence class according to Proposition 3.6. Hence, for a given number of
punctures we can check the corresponding mutation-equivalence class of this planar
quiver by Keller’s quiver mutation in Java [Keller 2006]. Since the genus of a
quiver has nothing to do with the orientations of the arrows, we can choose the
mutation-equivalence class under graph isomorphism when doing quiver mutation
in Java.

For the cases p = 1 and p = 2, all quivers in their two mutation-equivalence
classes are planar. When p = 3, there exists exactly one quiver of genus 1 in the
mutation class:

Therefore, the answer to Problem 3.8 for the case of the torus is p = 3, which
is much smaller than the number 4× 12

+ 2× 1+ 2 = 8 of punctures given in
Remark 3.5 when constructing T1 from the torus.
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TAUT FOLIATIONS IN KNOT COMPLEMENTS

TAO LI AND RACHEL ROBERTS

We show that for any nontrivial knot in S3, there is an open interval con-
taining zero such that a Dehn surgery on any slope in this interval yields a
3-manifold with taut foliations. This generalizes a theorem of Gabai on zero
frame surgery.

1. Introduction

A transversely orientable codimension-one foliation F of a 3-manifold M is called
taut [Gabai 1991] if every leaf of F intersects some closed transverse curve. The
existence of a taut foliation in a 3-manifold M provides much interesting topological
information about both M and objects embedded in M . If a closed 3-manifold M
contains a taut foliation, either M is finitely covered by S2

× S1 or M is irreducible
[Novikov 1965; Reeb 1952; Rosenberg 1968]. If a closed 3-manifold M contains
a taut foliation, then its fundamental group is infinite [Haefliger 1962; Novikov
1965; Gabai and Oertel 1989] and acts nontrivially on interesting 1-dimensional
objects (see, for example, [Thurston 1998; Calegari and Dunfield 2003; Palmeira
1978; Roberts et al. 2003]), and its universal cover is R3 [Palmeira 1978]. Taut
foliations can be perturbed to interesting contact structures [Eliashberg and Thurston
1998; Kazez and Roberts 2014] and hence can be used to obtain Heegaard–Floer
information [Ozsváth and Szabó 2004b]. In this paper we seek to add to the
understanding of the existence of taut foliations by describing a new construction
of taut foliations.

Let k be a nontrivial knot in S3. In his proof of the Property R conjecture, Gabai
[1987b] showed that the knot exterior M = S3

\ int N (k) has a taut foliation whose
restriction to the torus ∂M is a collection of circles of slope 0. Thus a zero frame
Dehn surgery on k yields a closed 3-manifold that admits a taut foliation obtained
by adding disks along the boundary circles of the taut foliation of M . In this paper,
we extend Gabai’s theorem from zero frame surgery to any slope in an interval that
contains 0. Although we restrict attention to knots in S3, the approach described in
this paper applies more generally to manifolds (M, ∂M) with boundary a nonempty
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union of tori and for which there exists a well-groomed sutured manifold hierarchy
which meets each component of ∂M only in essential simple closed curves.

Theorem 1.1. Let k be a nontrivial knot in S3. Then there is an interval (−a, b),
where a > 0 and b > 0, such that for any slope s ∈ (−a, b), the knot exterior
M = S3

\ int(N (k)) has a taut foliation whose restriction to the torus ∂M is a
collection of circles of slope s. Moreover, by attaching disks along the boundary
circles, the foliation can be extended to a taut foliation in M(s), where M(s) is the
manifold obtained by performing Dehn surgery to k with surgery slope s.

A group G is called left-orderable if there is a total order on G which is invariant
under left multiplication. We thank Liam Watson for calling our attention to the
following results.

Corollary 1.2. Let k be a hyperbolic knot in S3 and let M(1/n) denote the manifold
obtained by 1/n Dehn filling along k. Then there is some number N = N (k) such
that π1(M(1/n)) is left-orderable whenever |n|> N.

Proof. The surgered manifold M(1/n) is a homology S3 and, by Thurston’s
hyperbolic Dehn surgery theorem [Thurston 1982], atoroidal when |n| is sufficiently
large (or, equivalently, when 1/n is sufficiently small). Moreover, by Theorem 1.1,
M(1/n) contains a transversely oriented taut foliation whenever 1/n is sufficiently
close to 0. It therefore follows from [Calegari and Dunfield 2003, Corollary 7.6]
that π1(M(1/n)) is left-orderable. �

Ozsváth and Szabó [2004c; 2004d] defined the Heegaard–Floer homology group
ĤF(Y ) of a 3-manifold Y . In [Ozsváth and Szabó 2005], they define L-spaces as
follows.

Definition 1.3 [Ozsváth and Szabó 2005, Definition 1.1]. A closed three-manifold
is called an L-space if H1(Y ;Q) = 0 and ĤF(Y ) is a free abelian group of rank
|H1(Y ;Z)|.

L-spaces are therefore the closed 3-manifolds with the simplest possible Hee-
gaard–Floer homology groups and the following is an important open question:

Question 1.4 [Ozsváth and Szabó 2004a, Question 11]. Is there a topological
characterization of L-spaces (i.e., one that makes no reference to Floer homology)?

Ozsváth and Szabó proposed the following partial answer to this question:

Conjecture 1.5 [Hedden and Levine 2012, Conjecture 1]. If Y is an irreducible
homology sphere that is an L-space, then Y is homeomorphic to either S3 or the
Poincaré homology sphere.

Approaches to understanding L-spaces have included investigations into the
following two questions. Are L-spaces exactly those irreducible rational homology
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3-spheres which contain no transversely oriented taut foliation? Are L-spaces
exactly those irreducible rational homology 3-spheres which have non-left-orderable
fundamental groups? (See [Boyer et al. 2012] for a nice survey.)

Conjecture 1.6 [Boyer et al. 2012, Conjecture 1]. An irreducible rational homology
3-sphere is an L-space if and only if its fundamental group is not left-orderable.

With Conjecture 1.6 in mind, we compare Corollary 1.2 with the following
result, which appears in various contexts [Ozsváth and Szabó 2004b, Corollary 1.3;
Ghiggini 2008, Corollary 1.5], but is stated most conveniently as [Hedden and
Watson 2010, Proposition 5].

Proposition 1.7 [Ozsváth and Szabó 2004b; Hedden and Watson 2010]. Suppose k
is a nontrivial knot in S3 and let M(1/n) denote the manifold obtained by 1/n Dehn
filling along k. If M(1/n) is an L-space, then either n = 1 and k is the right-handed
trefoil or n =−1 and k is the left-handed trefoil.

It follows that Conjecture 1.5 holds for 3-manifolds obtained by surgery on knots
in S3. And it follows from Corollary 1.2 and Proposition 1.7 that Conjecture 1.6
holds for 3-manifolds obtained by 1/n surgery on the complement of hyperbolic
knots when |n| is sufficiently large.

In Theorem 1.1, the interval (−a, b) depends both on the knot k and on the
sutured manifold decomposition in [Gabai 1987b]. In [Roberts 2001a; 2001b],
it is shown that if k is a fibered hyperbolic knot (not necessarily in S3), then
this interval can always be chosen to contain (−1,∞), (−∞, 1), or (−∞,∞).
Related results appear in [Dasbach and Li 2004; Delman and Roberts 1999; Roberts
1995]. Moreover, the values of a and b in a maximal such interval (−a, b) reveal
information about the pseudo-Anosov monodromy and hence the geometry of M .

Question 1.8. Let k be a nontrivial knot in S3, and let a > 0 and b > 0. What is
the maximal interval (−a, b) such that for any slope s ∈ (−a, b), the knot exterior
M = S3

\ int(N (k)) has a taut foliation whose restriction to the torus ∂M is a
collection of circles of slope s, and the foliation can be extended to a taut foliation
in M(s) by attaching disks along the boundary circles, where M(s) is the manifold
obtained by performing Dehn surgery to k with surgery slope s?

Conjecture 1.9. Such a maximal interval will always contain (−1, 1).

The proof of the main theorem uses theorems in [Li 2002; 2003] on branched
surfaces to generalize the approach of [Roberts 2001a] to nonfibered knots. We
first use Gabai’s [1983; 1987a; 1987b] sutured manifold decomposition to construct
a branched surface B. Then, after first splitting B as necessary, we add in some
product disks to get a new branched surface that carries more laminations which
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extend to taut foliations. The key point in the construction is to add branch sectors
so that the new branched surface does not contain any sink disk. By [Li 2002;
2003], this means that the branched surface carries a lamination.

2. Laminar branched surfaces

Definition 2.1. A branched surface B in M is a union of finitely many compact
smooth surfaces, glued together to form a compact subspace (of M) locally modeled
on Figure 1, left (ignore the arrows in the picture for now).

Given a branched surface B embedded in a 3-manifold M , we denote by N (B)
a regular neighborhood of B, as shown in Figure 1, right. One can regard N (B)
as an interval bundle over B. We denote by π : N (B)→ B the projection that
collapses every interval fiber to a point. As shown in Figure 1, right, the boundary
of N (B) consists of two parts: the horizontal boundary ∂h N (B) which is transverse
to the I -fibers of N (B), and the vertical boundary ∂vN (B) which is the union of
subarcs of the I -fibers. The branch locus of B is L = {b ∈ B : b does not have
a neighborhood in B homeomorphic to R2

}. We call the closure (under the path
metric) of each component of B\L a branch sector of B. L is a collection of smooth
immersed curves in B. Let Z be the union of double points of L . We associate
with every component of L\Z a normal vector (in B) pointing in the direction of
the cusp, as shown in Figure 1, left. We call it the branch direction of this arc. Let
D be a disk branch sector of B. We call D a sink disk if the branch direction of
every smooth arc in its boundary points into the disk and D ∩ ∂M =∅. We call D
a half sink disk if ∂D ∩ ∂M 6=∅ and the branch direction of each arc in ∂D\∂M
points into D. Note that ∂D ∩ ∂M might not be connected.

Laminar branched surfaces were introduced in [Li 2002] as a branched surface
with the usual properties in [Gabai and Oertel 1989] plus a condition that there
is no sink disk. The notion of laminar branched surface was slightly extended to

horizontal
v

∂h N (B)∂vN (B)

Figure 1. Left: a branched surface B. Right: a regular neighbor-
hood N (B).
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branched surfaces with boundary, by adding a requirement that there is no half
sink disk [Li 2003]. Note that if a branched surface has no half sink disk, then
one can arbitrarily split the branched surface near its boundary train track without
creating any sink disk. This plus Theorem 1 of [Li 2002] implies the following
theorem from [Li 2003]. Note that the condition that there is no sink disk basically
guarantees that the branched surface carries a lamination and the other conditions
in [Gabai and Oertel 1989] imply that the lamination is an essential lamination.

Theorem 2.2 [Li 2003, Theorem 2.2]. Let M be an irreducible and orientable
3-manifold whose boundary is an incompressible torus. Suppose B is a laminar
branched surface and ∂M\∂B is a union of bigons. Then, for any rational slope
s ∈Q∪∞ that can be realized by the train track ∂B, if B does not carry a torus that
bounds a solid torus in M(s), then B fully carries a lamination L whose boundary
consists of loops of slope s and L can be extended to an essential lamination
in M(s).

3. Sutured manifold decompositions

Gabai [1983] introduced the notions of sutured manifold and sutured manifold
decomposition. We will state basic definitions and theorems as needed for this
paper but we refer the reader to [Gabai 1983; 1987a; 1987b] for a more detailed
description. The papers [Altman 2012; Cantwell and Conlon 2012; Juhász 2008]
and book [Candel and Conlon 2003] also provide nice descriptions of some of
Gabai’s sutured manifold theory. In this paper, we will use branched surfaces to
describe sutured manifolds and sutured manifold decompositions.

Definition 3.1 [Gabai 1983, Definition 2.6]. A sutured manifold (M, γ ) is a com-
pact oriented 3-manifold M together with a set γ ⊂ ∂M of pairwise disjoint annuli
A(γ ) and tori T (γ ). Furthermore, the interior of each component of A(γ ) contains
a suture, that is, a homologically nontrivial oriented simple closed curve. We denote
the set of sutures by s(γ ).

Finally, every component of R(γ )= ∂M\ int(γ ) is oriented. Define R+(γ ) (or
R−(γ )) to be those components of ∂M\ int(γ ) whose normal vectors point out of
(into) M . The orientations on R(γ ) must be coherent with respect to s(γ ); that is,
if δ is a component of ∂R(γ ) and is given the boundary orientation, then δ must
represent the same homology class in H1(γ ) as some suture.

Roughly speaking, a sutured manifold is a 3-manifold together with extra infor-
mation about ∂M . Given a sufficiently nice surface S properly embedded in a
sutured manifold (M, γ ), it is important to be able to cut M open along S while
keeping track of corresponding boundary information. This is captured in the
following definition.
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Definition 3.2 [Gabai 1983, Definition 3.1]. Let (M, γ ) be a sutured manifold and
S a properly embedded surface in M such that every component λ of S∩γ satisfies
one of these three conditions:

(1) λ is a properly embedded nonseparating arc in γ .

(2) λ is a simple closed curve in an annular component A of γ in the same
homology class as A∩ s(γ ).

(3) λ is a homotopically nontrivial curve in a toral component T of γ , and if δ is
another component of T ∩ S, then λ and δ represent the same homology class
in H1(T ).

The surface S defines a sutured manifold decomposition

(M, γ ) S
 (M ′, γ ′),

where M ′ = M\ int(N (S)) and

γ ′ = (γ ∩M ′)∪ N (S′
+
∩ R−(γ ))∪ N (S′

−
∩ R+(γ )),

R′
+
(γ ′)=

(
(R+(γ )∩M ′)∪ S′

+

)
\ int(γ ′),

R′
−
(γ ′)=

(
(R−(γ )∩M ′)∪ S′

−

)
\ int(γ ′),

where S′
+

and S′
−

are those components of ∂N (S)∩M ′ whose normal vectors point
out of and into M ′, respectively.

Definition 3.3 [Gabai 1987a, Definition 0.2]. A sutured manifold decomposition

(M, γ ) S
 (M ′, γ ′)

is called well-groomed if for each component V of R(γ ), S ∩ V is a union of
parallel, coherently oriented, nonseparating closed curves and arcs.

Definition 3.4 [Gabai 1987b, Definition 3.2]. Let

(M, ∂M)
S1 (M1, γ1)

S2 · · ·
Sn (Mn, γn)

be a sequence of sutured manifold decompositions where ∂M is a nonempty union
of tori. Define E0 = ∂M . Define Ei to be the union of those components of
Ei−1\ int(N (Si )) which are annuli and tori (i.e., if Mi is viewed as a submanifold
of M , then Ei consists of those components of γi which are contained in ∂M). The
components of Ei are called the boundary sutures of γi .

Definition 3.5. Let (M, γ ) and (N , τ ) be sutured manifolds. We will call (M, γ )
a sutured submanifold of (N , τ ), and write (M, γ ) ⊂ (N , τ ), if M is a union of
components of N and γ = τ ∩M .

If (M, γ )⊂ (N , τ ), then we write (N , τ )\(M, γ ) to denote the sutured manifold
(N\M, τ\γ ).
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Theorem 3.6 [Gabai 1987b, Lemmas 3.6 and 5.1]. Let k be a knot in S3. There is
a well-groomed sutured manifold sequence

(M, γ )
S1 (M1, γ1)

S2 · · ·
Sn (Mn, γn)= (S× I, ∂S× I )

of
(M, γ )= (S3

\ int(N (k)), ∂N (k))

such that ∂Si ∩∂N (k) is a (possibly empty) union of circles for each i, 1≤ i ≤ n, S1

is a minimal genus Seifert surface, and S is a compact (not necessarily connected)
oriented surface.

Sutured manifold decompositions determine branched surfaces. As described by
Gabai in [1987b, Construction 4.6] (and detailed further in [Cantwell and Conlon
2012]), a sutured manifold decomposition sequence corresponds to building a (finite
depth) branched surface, starting with S1 and successively adding the Si ’s. To see
this, inductively construct a sequence of transversely oriented branched surfaces.
Let B1 = S1. So we may view M1 as M\ int(N (B1)), where N (B1) is a fibered
neighborhood of B1. As a sutured manifold (M1, γ1), its suture γ1 is the annulus
∂M\N (B1) and the two components of ∂h N (B1) are the plus and minus boundaries
R+(γ1) and R−(γ1) of the sutured manifold. We may view R+(γ1) and R−(γ1)

as lying on the plus and minus sides of S1 respectively and we assign a normal
direction for B1 = S1 pointing from the plus side to the minus side.

Suppose we have constructed a branched surface Bk using the surfaces S1, . . . , Sk

in the sutured manifold decomposition, such that M\ int(N (Bk)) = Mk and the
suture γk of (Mk, γk) consists of ∂vN (Bk) and a collection of annuli in the boundary
torus ∂M . Now we consider the sutured manifold decomposition

(Mk, γk)
Sk+1 (Mk+1, γk+1).

The surface Sk+1 has a normal vector. Then we can deform Bk ∪ Sk+1 into a
branched surface Bk+1 as follows:

(1) For each component of ∂Sk+1 that is not totally inside ∂vN (Bk), we can deform
Bk ∪ Sk+1 near ∂Sk+1 as in Figure 2, left, so that the normal directions of Bk

and Sk+1 are compatible in the newly constructed branched surface.

(2) For each component c of ∂Sk+1 lying inside a suture ∂vN (Bk), we first slightly
isotope Sk+1 by pushing c into R±(γk)⊂ ∂h N (Bk), then as shown in Figure 2,
right, we can deform Bk ∪ Sk+1 near c into a branched surface. By the re-
quirement of the normal directions in the sutured manifold decomposition,
the normal directions of Bk and Sk+1 are compatible in the newly constructed
branched surface.
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S

BBk

Sk+1
S

BBkSk+1

Figure 2. Bk ∪ Sk+1 is deformed near ∂Sk+1. Left: the normal
directions of Bk and Sk+1 are compatible. Right: the neighborhoods
of each suture are branched surfaces.

It follows from the definition of sutured manifold decomposition [Gabai 1983]
that M\ int(N (Bk+1)) = Mk+1 and the suture γk+1 of (Mk+1, γk+1) consists of
∂vN (Bk+1) and a collection of annuli in the boundary torus ∂M . We will sometimes
use the notation

Bk+1 = B(Mk+1,γk+1) = B〈S1;S2;...;Sk+1〉.

In summary, there is a map from the set of sutured manifold decomposition
sequences to the set of properly embedded branched surfaces given by

(S1, S2, . . . , Sl) 7→ B〈S1;S2;...;Sl 〉,

and a (forgetful) map from the set of properly embedded branched surfaces to the
set of sutured 3-manifolds given by

B 7→ (MB, γB)= (M\ int(N (B)), ∂vN (B)∪ E ′),

where E ′ ⊂ ∂M satisfies E ′ = E , the set of boundary sutures, if B intersects ∂M
only in longitudes. For future reference, it is useful to highlight that under this
correspondence, ∂h N (B) corresponds naturally to R+(γB)∪ R−(γB).

4. The construction

Modifying the sutured manifold hierarchy. Given a well-groomed sutured mani-
fold hierarchy satisfying the conclusions of Theorem 3.6, we can inductively con-
struct the sequence of branched surfaces B1, . . . , Bn corresponding to the sutured
manifold decomposition. The branched surface Bn in the end has the properties
that (1) M\ int(N (Bn)) is a product and (2) ∂Bn is a collection of circles in ∂M
of slope 0. In particular, any taut foliation carried by Bn will also necessarily meet
∂M only in simple closed curves of slope 0.

To obtain a branched surface carrying taut foliations realizing an open interval of
boundary slopes about 0, it is necessary to modify the sutured manifold hierarchy,
or, equivalently, the sequence of branched surfaces Bk . In this section, we describe
one way of doing this. We break the process into two steps.
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As a first step, we slightly modify the sutured manifold hierarchy by adding
some parallel copies of the surfaces Sk . Equivalently, we modify the sequence
of branched surfaces Bk by adding some parallel copies of the surfaces Sk . This
operation is equivalent to a splitting of the branched surface. As a second (and
final) step, we further modify the sutured manifold hierarchy by adding carefully
chosen product disks.

Before giving a precise description of these steps, we introduce some terminology.
Let B be a transversely oriented branched surface and let F be a component of
∂h N (B). The boundary of F has two parts: ∂F ∩ ∂M and ∂F ∩ ∂vN (B). We call
∂F ∩ ∂vN (B) the internal boundary of F . Let L be the branch locus of B. Let
L F be the closure of π−1(L)∩ int(F), where π : N (B)→ B is the map collapsing
each interval fiber to a point. So L F is a trivalent graph properly embedded in F .
We call L F the projection of the branch locus to F . Each arc in L F has a normal
direction induced from the branch direction of L .

Definition 4.1. Let F be a component of ∂h N (B) with ∂F ∩ ∂M 6= ∅ and let
η be an arc properly embedded in F . If F has nonempty internal boundary, we
require that η connects ∂F ∩ ∂M to the internal boundary of F . Choose η so that it
intersects L F transversely and only at points in the interior of edges of L F (namely,
it misses all triple points). Since η is transverse to L F , the induced branch direction
of L F gives a direction along η for each point in η∩ L F . We say η is good if these
induced directions are coherent along η and all point away from an endpoint of η
that lies in ∂M .

We say F is good if F satisfies the following properties:

(1) The closure of each component D of F\L F has a boundary arc with induced
branch direction (from L F ) pointing out of D.

(2) If F has internal boundary, then there is a set of disjoint good arcs, denoted by
0F, connecting each component of ∂F ∩ ∂M to the internal boundary of F .

(3) If F has no internal boundary (in which case, F must be a Seifert surface of
the knot exterior), then there is a properly embedded nonseparating good arc
in F , which we also denote by 0F.

Lemma 4.2. Let B be a branched surface. If each component of ∂h N (B) is good,
then B does not contain any sink disk or half sink disk.

Proof. Let F be a component of ∂h N (B) and let L F be as above. Let P be the
closure (under path metric) of a component of F\L F . So P can be viewed as a
copy of a branch sector of B. It follows from part (1) of Definition 4.1 that B has
no sink disk or half sink disk. �
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Definition 4.3. We say the branched surface B is good if

(1) every component of ∂h N (B) is good, and

(2) the arc systems 0F as described in (2) and (3) in Definition 4.1 can be chosen
so that the projections π(0F), as F ranges over all components of ∂h N (B), are
disjoint in B.

Note that these good arcs 0F will be the arcs along which we will attach product
disks.

Step 1: Splitting Bn. Next we will describe the first modification of a sutured
manifold decomposition sequence satisfying the conclusions of Theorem 3.6.

Lemma 4.4. Let k be a nontrivial knot in S3 and M = S3
\ int(N (k)) the knot

exterior. Let

(M, ∂M)
S1 (M1, γ1)

S2 · · ·
Sn (Mn, γn)= (S× I, ∂S× I )

be a well-groomed sutured manifold hierarchy that satisfies the conclusions of
Theorem 3.6. Then there exists a well-groomed sutured manifold hierarchy

(M, γ )
S1 (M ′1, γ

′

1)
R′1 (M ′′1 , γ

′′

1 )
S2 (M ′2, γ

′

2)
R′2 (M ′′2 , γ

′′

2 )
S3 · · ·

Sn (M ′n, γ
′

n)

which also satisfies the conclusions of Theorem 3.6. Moreover, the branched
surfaces B ′l = B(M ′l ,γ ′l ), 1≤ l ≤ n, satisfy the conditions:

(1) ∂B ′l ∩ ∂M is a collection of simple closed curves of slope 0 in ∂M for each l.

(2) (Ml, γl) is a sutured submanifold of (M ′l , γ
′

l ) and (M ′l , γ
′

l )\(Ml, γl) is a prod-
uct sutured manifold for each l.

(3) Every branched surface B ′l is good.

(4) No B ′l carries a torus.

(5) (M ′n, γ
′
n) is a product sutured manifold (S′× I, ∂S′× I ).

Proof. First note that, in the sutured manifold hierarchy above, each R′i is a parallel
copy of some components of R+(γ ′i )∪ R−(γ ′i ).

We proceed by induction on l. Since k is nontrivial and hence S1 has genus at
least one, the branched surface B ′1 = S1 is easily seen to satisfy conditions (1)–(4).
So suppose we have constructed

(M, γ )
S1 (M ′1, γ

′

1)
R′1 (M ′′1 , γ

′′

1 )
S2 (M ′2, γ

′

2)
R′2 (M ′′2 , γ

′′

2 )
S3 · · ·

Sl (M ′l , γ
′

l )

satisfying the conclusions of Theorem 3.6 and such that the corresponding branched
surfaces B ′i = B(M ′i ,γ ′i ) satisfy the conditions (1)–(4) for all i , 1≤ i ≤ l.

By condition (2), (Ml, γl) is a sutured submanifold of (M ′l , γ
′

l ). Let R′
+
(γl) and

R′
−
(γl) be parallel copies of R+(γl) and R−(γl), chosen to be properly embedded in
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(Ml, γl)⊂ (M ′l , γ
′

l ) and with boundary lying in El ∪ A(γl) (see Definition 3.1 and
Definition 3.4). Set R′l = R′

+
(γl)∪ R′

−
(γl). We first consider the sutured manifold

decomposition (M ′l , γ
′

l )
R′l (M ′′l , γ

′′

l ). By the definition of R′l , this decomposition
only adds some product complementary regions. Set B ′′l = B(M ′′l ,γ ′′l ). The change
from B ′l to B ′′l is basically the addition of branch sectors corresponding to R′l , and
this operation creates some product complementary regions. See Figure 3, left, for
a schematic picture. We may view (Ml, γl) as a subset of (M ′′l , γ

′′

l ), and consider
the sutured manifold decompositions

(M ′l , γ
′

l )
R′l (M ′′l , γ

′′

l )
Sl+1 (M ′l+1, γ

′

l+1) ,

where we now view Sl+1 as lying in (Ml, γl)⊂ (M ′′l , γ
′′

l ). Certainly B ′l+1 satisfies
conditions (1) and (2).

Consider condition (3). We begin by considering a component F of ∂h N (B ′′l ).
The surface F can be classified as one of the following 3 types (see Figure 3, right):

(1) F can be viewed as a component G of ∂h N (B ′l ), as illustrated in Figure 3,
right. Since the new branch sectors are attached to B ′l along cusp circles, L F

is obtained from LG by adding curves parallel to curves in LG with coherent
induced branch direction, where LG is the projection of the branch locus of
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Figure 3. Left: adding branch sectors. Right: three different
classifications of a component of ∂h N (B ′′l ).
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B ′l to G. Since the branch directions are coherent, adding such parallel curves
to LG does not affect the good arcs in G. Thus in this case F is good with
respect to B ′′l with the same set of good arcs as G.

(2) F is a horizontal boundary component for a newly created product comple-
mentary region and π(F) contains part of the branch sectors added to B ′l , as
illustrated in Figure 3, right. In this case, each component of L F consists of a
circle C parallel to the internal boundary and with induced branch direction
pointing to the internal boundary and possibly a collection of essential arcs in
the annulus between C and the internal boundary.

(3) F is in the boundary of the sutured submanifold (Ml, γl)⊂ (M ′′l , γ
′′

l ). In this
case, L F =∅.

Next consider how ∂h N (B ′l+1) is related to ∂h N (B ′′l ). Let H be a component
of ∂h N (B ′l+1). Then either H can be viewed as a component of ∂h N (B ′′l ) or H
contains a subset of one side of Sl+1. Our goal is to find a set of good arcs for each
component H of ∂h N (B ′l+1), so that the projections of the good arcs in B ′l+1 are
disjoint.

Case (a). H is not a component of ∂h N (B ′′l )

In this case, H is contained in the union of one side of Sl+1 and F\∂Sl+1, where
F is a component of ∂h N (B ′′l ) of type (3). By our construction, L F =∅. Moreover,
on the other side of F , there is a corresponding component F ′ of ∂h N (B ′′l ) of
type (2) such that π(F)∩π(F ′) 6=∅ in the branched surface B ′′l . Adding Sl+1 to
B ′′l does not affect F ′, so we may also view F ′ as a component of ∂h N (B ′l+1). Next
we choose good arcs for both H and F ′.

First note that since the original sutured manifold decomposition is well-groomed,
∂Sl+1 is homologically nontrivial in H1(F, ∂F). There is a simple closed curve
η in F transverse to Sl+1, as shown in Figure 4 (note that the arrows in Figure 4
on ∂Sl+1 denote the branch direction at ∂Sl+1), such that the algebraic intersection

g
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e
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k

α1

β1

α2

β2

η

∂Sl+1

internal boundary

c

d

i

jα1

β

η

∂Sl+1

Figure 4. Left: arcs connecting each component of ∂F ∩M to a
component of ∂Sl+1. Right: arcs connecting each component of
∂F ′ ∩ ∂M to the internal boundary of F ′.
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number of η and ∂Sl+1 is equal to |η∩ ∂Sl+1| (this is equivalent to saying that the
normal direction of ∂Sl+1 at η∩ ∂Sl+1, induced from the branch direction of B ′l+1,
are coherent along η).

Recall that H can be viewed as the union of one side of Sl+1 and F\∂Sl+1. We
first consider the components θ1, . . . , θp of ∂H ∩ ∂M that are not in F (i.e., each
θi can be viewed as a component of ∂Sl+1∩∂M). We can find an arc γi connecting
θi to the internal boundary of H such that γi either is totally in (one side of) Sl+1

or consists an arc in Sl+1 and an arc in F parallel to a subarc of η. Moreover, we
can choose these arcs γi to be disjoint in H .

Now we consider the components of ∂F ∩∂M (which are viewed as components
of ∂H ∩ ∂M). It is easy to see from our construction that there is a collection of
disjoint good arcs α1, . . . , αq in F (see the arcs α1 and α2 in Figure 4, left), such
that (1) these arcs α j connect each component of ∂F ∩ ∂M to a component of
∂Sl+1, and (2) these arcs α j are disjoint from the curve η describe above.

It follows from our construction that these arcs γi and α j form a set of good arcs
0H for H .

Next we consider the component F ′ of ∂h N (B ′′l ) on the other side of F . F ′ is a
type (2) component of ∂h N (B ′′l ), and we may view F ′ as a component of ∂h N (B ′l+1).
Moreover, we view F ′ as a parallel copy of F and view the curves ∂Sl+1, η and α j

described above as curves in F ′. We have two slightly different situations. The first
is that F ′ (and hence F) has nonempty internal boundary, and the second is that F ′

has no internal boundary.
If F ′ has nonempty internal boundary, then there are arcs β1, . . . , βr in F ′ (see

the arcs β1 and β2 in Figure 4, left), such that (1) the arcs βk connect each component
of ∂F ′ ∩ ∂M to the internal boundary of F ′, and (2) the arcs βk are disjoint from η,
∂Sl+1 and the arcs α j . The arcs βk form a set of good arcs 0F ′ for F ′. Moreover,
since each βk is disjoint from η and the arcs α j , the projections π(0H) and π(0F ′)

of the good arcs 0H and 0F ′ for H and F ′ respectively are disjoint in B ′l+1.
If F ′ does not have internal boundary (in which case F ′ must be a Seifert surface

of the knot exterior), then as shown in Figure 4, right, there is an arc β properly
embedded in F ′ such that (1) β is disjoint from η and the arcs α j and (2) the
intersection of β with ∂Sl+1 is minimal up to isotopy. Since the original sutured
manifold is well-groomed, the requirement (2) implies that the algebraic intersection
number of β and ∂Sl+1 is equal to |β ∩ ∂Sl+1|. Thus β is a good arc for F ′. Since
β is chosen to be disjoint from η and each α j , the projections of π(β) and π(0H)

on B ′l+1 are disjoint.

Case (b). H is a component of ∂h N (B ′′l )

In this case, either L H is unchanged by the decomposition by Sl+1 or H is
the surface F ′ of type (2) considered in Case (a). In Case (a), we have already
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constructed a set of good arcs for the type (2) surface F ′, so we may assume that
L H is unchanged by the decomposition by Sl+1. Since H (viewed as a component
of ∂h N (B ′′l )) is good in B ′′l , H is good in B ′l+1. Furthermore, the projections of the
good arcs in Case (a) and the good arcs (from the induction) of H in this case are
disjoint in B ′l+1.

So B ′l+1 is good. It remains to show that B ′l+1 does not carry any torus. Since B ′l
does not carry any torus and B ′′l can be obtained by splitting B ′l , B ′′l does not carry
any torus. Suppose B ′l+1 carries a torus T . Then T can be expressed as the union of
some copies of Sl+1 and a surface in N (B ′′l ) transverse to the I -fibers. Moreover,
the transverse orientation of the branched surface induces a compatible normal
orientation for T . Since the original sutured manifold decomposition sequence is
well-groomed, ∂Sl+1 ∩ R±(γl) is a collection of homologically nontrivial curves in
H1(R±(γl), ∂R±(γl)). Thus there is a component F of ∂h N (B ′′l ), such that T ∩ F
(with the induced orientation) is homologically nontrivial in F . However, since T
is a torus in S3, T is homologically trivial and this is impossible.

Therefore, B ′l+1 satisfies properties (1)–(4) of the lemma and we can inductively
construct the sutured manifold hierarchy and corresponding sequence of branched
surfaces as claimed. �

Step 2: Adding product disks. Let B ′n be the good branched surface constructed
in the proof of Lemma 4.4. It follows from the conditions on the sutured manifold
hierarchy and our construction above that ∂B ′n consists of circles of slope 0 in the
torus ∂M . In this section, we will add some product disks and modify B ′n to get a
laminar branched surface carrying more laminations.

As M\ int(N (B ′n)) is a product, we may suppose M\ int(N (B ′n))= S× I , where
S is a compact and possibly disconnected surface. Let S+= S×{0} and S−= S×{1}.
So ∂h N (B ′n)= S+ ∪ S−. It is possible to decompose S× I as the disjoint union

S× I = (F × I )∪ (G× I ),

where F is the union of the components of S without internal boundary. Thus
∂F ⊂ ∂M and each component of G has nonempty internal boundary. Moreover,
each component of F must be a Seifert surface in the knot exterior. Note that, since
we take parallel copies of surfaces in the horizontal boundary in each step of the
sutured manifold decompositions (see Lemma 4.4), F 6=∅. Furthermore, G =∅
only if k is fibered.

Let m = |∂S± ∩ ∂M | be the number of components of the noninternal boundary
S± ∩ ∂M . Since B ′n is good, there is a collection of pairwise disjoint good arcs
in S+, denoted by η1, . . . , ηm , and a collection of pairwise disjoint good arcs in
S−, denoted by δ1, . . . , δm , such that π

(⋃
iηi
)
∩ π

(⋃
iδi
)
= ∅ (in B ′n) and each

component of ∂S± ∩ ∂M has exactly one incident good arc ηi and one incident
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good arc δi attached to it. After relabeling as necessary, we may assume that for
1 ≤ i ≤ r , ηi and δi lie in F × {0, 1}, while for r + 1 ≤ i ≤ m, ηi and δi lie in
G×{0, 1}. It follows that each ηi and each δi , 1≤ i ≤ r , has both endpoints lying
on ∂M while each ηi and δi , r + 1≤ i ≤ m, has exactly one endpoint lying on ∂M .

Consider first F ×[0, 1]. Recall that each component of F is a Seifert surface
of the knot exterior. Let F1 be any component of F and relabel as necessary so
that η1 ⊂ F1×{0} and δ1 ⊂ F1×{1}. By [Roberts 2001a, Lemma 4.4], there is a
sequence of simple arcs

α0 = η1, α1, . . . , αl = δ1

such that αi ∩αi+1 =∅ and a regular neighborhood of αi ∪αi+1 ∪ ∂F1 in F1 is a
twice-punctured torus for each i, 1≤ i ≤ l. For 1≤ i ≤ l, let F1 induce a consistent
orientation on each F1×

{ i
l+1

}
and orient the disks αi ×

[ i
l+1 ,

i+1
l+1

]
arbitrarily. Add

branch sectors to B ′n as prescribed by the following sequence of sutured manifold
decompositions:

(M ′n, γ
′

n)
A
 (M ′n+1, γ

′

n+1)
B
 (MF1, γF1) ,

where
A = F1×

{ 1
l+1 , . . . ,

l
l+1

}
and B =

⋃
i

(
αi ×

[ i
l+1 ,

i+1
l+1

])
.

Repeat for each remaining component of F and let (MF , γF ) denote the resulting
sutured manifold. Set BF = B(MF ,γF ). Notice that the conditions satisfied by the
arcs αi guarantee that BF is laminar.

Now consider G × I . Let G1 be a component of G and let p = |∂G1 ∩ ∂M |.
Let {C1, . . . ,C p} be a listing of the components of G1 ∩ ∂M . After relabeling as
necessary, we may assume ηr+1, . . . , ηr+p lie in G1×{0} and δr+1, . . . , δr+p lie
in G1×{1}, with {ηr+i (0), δr+i (0)} ⊂ Ci for each 1≤ i ≤ p.

Lemma 4.5. Let {α1, . . . , αp} and {β1, . . . , βp} each be a set of pairwise dis-
joint arcs properly embedded in G1 with {αi (0), βi (0)} ⊂ Ci and {αi (1), βi (1)} ⊂
∂G\{C1, . . . ,C p}, the internal boundary of G1. Let s=

∣∣⋃
iαi ∩

⋃
iβi
∣∣. Then either

s = 0 or there is a set {γ1, . . . , γp} of pairwise disjoint arcs properly embedded in
G1 with γi (0) ∈ Ci , γi (1) ∈ ∂G1\{C1, . . . ,C p}, such that

max
{∣∣⋃

iαi ∩
⋃

iγi
∣∣, ∣∣⋃iβi ∩

⋃
iγi
∣∣}< s.

Proof. Suppose s 6= 0. Relabeling as necessary, we may assume that α1 and
⋃

iβi

intersect. Choose z to be the point in α1 ∩
⋃

iβi that is furthest along α1. So
there are j, t0, t1 such that z = α1(t0) = β j (t1) and α1(t0, 1] ∩

⋃
iβi = ∅. Let γ j

be the concatenation of the two arcs β j [0, t1] and α1[t0, 1], perturbed slightly so
that it intersects α1 transversely and minimally. For i 6= j , set γi = βi . Then∣∣⋃

iαi ∩
⋃

iγi
∣∣< ∣∣⋃iαi ∩

⋃
iβi
∣∣ and |

⋃
iγi ∩

⋃
iβi
∣∣= 0. �
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The next corollary follows immediately.

Corollary 4.6. There are sets of arcs Ai = {α
i
1, . . . , α

i
p}, 1≤ i ≤ q, such that

(1) for each i , the arcs in Ai are pairwise disjoint and properly embedded in G1,
αi

j (0) ∈ C j , and αi
j (1) ∈ ∂G1\{C1, . . . ,C p}, j = 1, . . . , p,

(2) A0 = {ηr+1, . . . , ηr+p} and Aq+1 = {δr+1, . . . , δr+p}, and

(3)
⋃

jα
i
j ∩

⋃
jα

i+1
j =∅ for each i .

For 1≤ i ≤ q , let G1 induce a consistent orientation on each G1×
{ i

q+1

}
. Orient

the disks αi
j ×
[ i

q+1 ,
i+1
q+1

]
so that the orientation induced on their boundaries agrees

with the orientation of αi
j (which is the orientation from its starting point in ∂M to

its ending point in the internal boundary). Add branch sectors to BF as given by
the following sequence of sutured manifold decompositions:

(MF , γF )
A
 (M ′F , γ

′

F )
B
 (MG1, γG1),

where

A = G1×
{ 1

q+1 , . . . ,
q

q+1

}
and B =

⋃
i, j

(
αi

j ×
[ i

q+1 ,
i+1
q+1

])
.

Repeat for each remaining component of G and let (MG, γG) denote the resulting
sutured manifold. Set BG = B(MG ,γG). Notice that the conditions satisfied by the
arcs αi

j guarantee that BG is laminar.
By Lemma 4.4, B ′n does not carry any torus. Therefore, any branched surface

obtained by splitting B ′n also cannot carry a torus. And finally, any (closed) torus
carried by BG but not by this splitting of B ′n would necessarily pass through one
of the added disk branches and hence would necessarily have nonempty boundary.
Thus BG does not carry a torus.

Noting that for each product disk in the above construction, its two normal
directions give two ways of deforming it into a branched surface, let B ′G denote
the branched surface obtained from BG by reversing the orientations of the disks
αi

j ×
[ i

q+1 ,
i+1
q+1

]
. Notice that B ′G is also laminar, has only product complementary

regions, and does not carry a torus.
Hence we have laminar branched surfaces BG and B ′G with only product com-

plementary regions and which do not carry a torus. We may therefore apply
Theorem 2.2 to conclude the existence of taut foliations realizing any boundary
slope carried by BG ∩ ∂M or B ′G ∩ ∂M . It remains to compute these boundary
slopes.

The boundary train tracks. Let τ denote the train track BG∩∂M and let τ ′ denote
the train track B ′G ∩ ∂M .

Lemma 4.7. Together, τ and τ ′ realize all slopes in (−a, b) for some a, b > 0.
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a b c(a)a b c(b)a b c(c)

Figure 5. Train tracks that realize all slopes in (−a, b) for a, b > 0.

Proof. Consider an annular component AG of ∂G1×
[ i

q+1 ,
i+1
q+1

]
. The train tracks τ

and τ ′ restricted to AG have the form indicated in parts (a) and (b), respectively, of
Figure 5. Similarly, consider an annular component AF of ∂F1×

[ i
l+1 ,

i+1
l+1

]
. Recall

that each F1×
{ i

l+1

}
is a Seifert surface and the good arc for F1 has both endpoints

on the circle ∂F1. Thus both τ and τ ′ restricted to AF have the form indicated in
Figure 5(c). Call all such nonlongitudinal branches of τ or τ ′ vertical.

Since all vertical branches of τ (or τ ′, respectively) are of one of the three types
shown in Figure 5, it follows that τ (or τ ′) is a train track obtained by concatenating
pieces of the types of Figure 5(a) or (c) (or (b) or (c), respectively). Examples are
shown in Figure 6. Notice that τ and τ ′ are orientable and measurable; namely,
they admit a transverse measure [Hatcher 1988, page 66; Penner and Harer 1992,
page 86]. Assign weights x , y, and x + y to the vertical branches of τ and τ ′ as
indicated in Figure 6; namely, vertical branches in G× I regions are weighted x ,
the compatibly oriented branches in F × I regions are weighted x + y, and the
remaining branches in F × I regions are weighted y. Then assign weights from
{1, 1 + x, 1 + y, 1 + x + y} to the remaining branches of τ and τ ′ to obtain a
measure µ on τ and a measure µ′ on τ ′.

x

yz

z y

x

X

Z

Z

x

x

y

yx + y

x + y

1+ x

1+ x + y

1+ x + y

x

y z

y z

1

Y

Z

x

x

x

y

y

x + y

x + y

1

1+ y

1+ x + y

Figure 6. Examples of train tracks.
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Recall that if γ is a simple closed curve in a torus, then the slope of γ is given
in standard coordinates by

(1) slope(γ )=
〈λ, γ 〉

〈γ,m〉
,

where 〈 , 〉 denotes algebraic intersection number and λ is the longitude and m is
the meridian of the knot k in S3.

Applying (1) to the measured train tracks (τ, µ) and (τ ′, µ′) while letting x, y
range over all values 0< y� x , we see that (τ, µ) and (τ ′, µ′) together carry all
boundary slopes in some open interval (−a, b) about 0. �

By Theorem 2.2, if τ (or τ ′) fully carries a curve of slope s, then BG (or B ′G ,
respectively) fully carries an essential lamination whose boundary consists of loops
of slope s in ∂M . Moreover, this lamination extends to an essential lamination in
M(s). Since M\ int(N (BG)) and M\ int(N (B ′G)) consist of product regions, such
essential laminations can be extended to taut foliations. This proves Theorem 1.1.
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248–278. In Russian; translated in Trans. Moscow Math. Soc. 14 (1965), 268–304. MR 34 #824
Zbl 0247.57006

[Ozsváth and Szabó 2004a] P. Ozsváth and Z. Szabó, “Heegaard diagrams and holomorphic disks”,
pp. 301–348 in Different faces of geometry, edited by S. Donaldson et al., Int. Math. Ser. (N. Y.) 3,
Kluwer, New York, 2004. MR 2005g:57057 Zbl 1091.57010

[Ozsváth and Szabó 2004b] P. Ozsváth and Z. Szabó, “Holomorphic disks and genus bounds”, Geom.
Topol. 8 (2004), 311–334. MR 2004m:57024 Zbl 1056.57020

[Ozsváth and Szabó 2004c] P. Ozsváth and Z. Szabó, “Holomorphic disks and topological invari-
ants for closed three-manifolds”, Ann. of Math. (2) 159:3 (2004), 1027–1158. MR 2006b:57016
Zbl 1073.57009

[Ozsváth and Szabó 2004d] P. Ozsváth and Z. Szabó, “Holomorphic disks and three-manifold invari-
ants: properties and applications”, Ann. of Math. (2) 159:3 (2004), 1159–1245. MR 2006b:57017
Zbl 1081.57013

[Ozsváth and Szabó 2005] P. Ozsváth and Z. Szabó, “On knot Floer homology and lens space
surgeries”, Topology 44:6 (2005), 1281–1300. MR 2006f:57034 Zbl 1077.57012

[Palmeira 1978] C. F. B. Palmeira, “Open manifolds foliated by planes”, Ann. Math. (2) 107:1 (1978),
109–131. MR 58 #18490 Zbl 0382.57010

[Penner and Harer 1992] R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of
Mathematics Studies 125, Princeton University Press, 1992. MR 94b:57018 Zbl 0765.57001

http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0609.0620.ocr.pdf
http://msp.org/idx/mr/93d:57013
http://msp.org/idx/zbl/0754.57008
http://dx.doi.org/10.2307/1971476
http://msp.org/idx/mr/90h:57012
http://msp.org/idx/zbl/0685.57007
http://dx.doi.org/10.1353/ajm.0.0016
http://msp.org/idx/mr/2010f:57013
http://msp.org/idx/zbl/1149.57019
http://msp.org/idx/mr/32:6487
http://msp.org/idx/zbl/0122.40702
http://dx.doi.org/10.1016/0166-8641(88)90081-8
http://dx.doi.org/10.1016/0166-8641(88)90081-8
http://msp.org/idx/mr/89k:57022
http://msp.org/idx/zbl/0662.57005
http://msp.org/idx/arx/1210.7055
http://dx.doi.org/10.1353/ajm.2010.0005
http://dx.doi.org/10.1353/ajm.2010.0005
http://msp.org/idx/mr/2012c:57023
http://msp.org/idx/zbl/1204.57010
http://dx.doi.org/10.2140/gt.2008.12.299
http://msp.org/idx/mr/2009a:57021
http://msp.org/idx/zbl/1167.57005
http://msp.org/idx/arx/1404.5919
http://dx.doi.org/10.2140/gt.2002.6.153
http://msp.org/idx/mr/2003h:57019
http://msp.org/idx/zbl/1067.57011
https://www2.bc.edu/~taoli/boundary.pdf
http://msp.org/idx/mr/2005h:57028
http://msp.org/idx/zbl/1043.57006
http://www.mi.ras.ru/~snovikov/23.pdf
http://msp.org/idx/mr/34:824
http://msp.org/idx/zbl/0247.57006
http://dx.doi.org/10.1007/0-306-48658-X_7
http://msp.org/idx/mr/2005g:57057
http://msp.org/idx/zbl/1091.57010
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2004m:57024
http://msp.org/idx/zbl/1056.57020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://msp.org/idx/mr/2006b:57016
http://msp.org/idx/zbl/1073.57009
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://msp.org/idx/mr/2006b:57017
http://msp.org/idx/zbl/1081.57013
http://dx.doi.org/10.1016/j.top.2005.05.001
http://dx.doi.org/10.1016/j.top.2005.05.001
http://msp.org/idx/mr/2006f:57034
http://msp.org/idx/zbl/1077.57012
http://www.jstor.org/stable/1971256
http://msp.org/idx/mr/58:18490
http://msp.org/idx/zbl/0382.57010
http://msp.org/idx/mr/94b:57018
http://msp.org/idx/zbl/0765.57001


168 TAO LI AND RACHEL ROBERTS

[Reeb 1952] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci.
Ind. 1183, Hermann, Paris, 1952. MR 14,1113a Zbl 0049.12602

[Roberts 1995] R. Roberts, “Constructing taut foliations”, Comment. Math. Helv. 70:4 (1995), 516–
545. MR 96j:57032 Zbl 0855.57009

[Roberts 2001a] R. Roberts, “Taut foliations in punctured surface bundles, I”, Proc. London Math.
Soc. (3) 82:3 (2001), 747–768. MR 2003a:57040 Zbl 1034.57017

[Roberts 2001b] R. Roberts, “Taut foliations in punctured surface bundles, II”, Proc. London Math.
Soc. (3) 83:2 (2001), 443–471. MR 2003j:57016 Zbl 1034.57018

[Roberts et al. 2003] R. Roberts, J. Shareshian, and M. Stein, “Infinitely many hyperbolic 3-manifolds
which contain no Reebless foliation”, J. Amer. Math. Soc. 16:3 (2003), 639–679. MR 2004e:57023
Zbl 1012.57022

[Rosenberg 1968] H. Rosenberg, “Foliations by planes”, Topology 7 (1968), 131–138. MR 37 #3595
Zbl 0157.30504

[Thurston 1982] W. P. Thurston, “Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry”, Bull. Amer. Math. Soc. (N.S.) 6:3 (1982), 357–381. MR 83h:57019 Zbl 0496.57005

[Thurston 1998] W. P. Thurston, “Three-manifolds, foliations and circles, II”, unfinished manuscript,
1998.

Received November 13, 2012. Revised January 16, 2013.

TAO LI

DEPARTMENT OF MATHEMATICS

BOSTON COLLEGE

CARNEY HALL

140 COMMONWEALTH AVE.
CHESTNUT HILL, MA 02467
UNITED STATES

taoli@bc.edu

RACHEL ROBERTS

DEPARTMENT OF MATHEMATICS

WASHINGTON UNIVERSITY

ST. LOUIS, MO 63130
UNITED STATES

roberts@math.wustl.edu

http://msp.org/idx/mr/14,1113a
http://msp.org/idx/zbl/0049.12602
http://dx.doi.org/10.1007/BF02566022
http://msp.org/idx/mr/96j:57032
http://msp.org/idx/zbl/0855.57009
http://dx.doi.org/10.1112/plms/82.3.747
http://msp.org/idx/mr/2003a:57040
http://msp.org/idx/zbl/1034.57017
http://dx.doi.org/10.1112/plms/83.2.443
http://msp.org/idx/mr/2003j:57016
http://msp.org/idx/zbl/1034.57018
http://dx.doi.org/10.1090/S0894-0347-03-00426-0
http://dx.doi.org/10.1090/S0894-0347-03-00426-0
http://msp.org/idx/mr/2004e:57023
http://msp.org/idx/zbl/1012.57022
http://dx.doi.org/10.1016/0040-9383(68)90021-9
http://msp.org/idx/mr/37:3595
http://msp.org/idx/zbl/0157.30504
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://msp.org/idx/mr/83h:57019
http://msp.org/idx/zbl/0496.57005
mailto:taoli@bc.edu
mailto:roberts@math.wustl.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 269, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.269.169

ON THE SET OF MAXIMAL NILPOTENT SUPPORTS
OF SUPERCUSPIDAL REPRESENTATIONS

QIN YUJUN

Let G be a quasisplit reductive group over a p-adic field k, T a maximal
unramified anisotropic torus of G.k/, and � a character of T.k/ satisfying
certain conditions. Assume the residue characteristic p of k is large enough.
It was shown by DeBacker and Reeder that the irreducible supercuspidal
representation �� of G.k/ associated to .T.k/; �/ is generic if and only if
B.T; k/ is a special vertex of B.G; k/. We compute the set of maximal
nilpotent support Nwh;max.��/ when B.T;k/ is not a special point in B.G;k/.

1. Introduction

Let k be a p-adic field and  a nontrivial character of k. LetG be a split orthogonal
or symplectic group over k, ggg the Lie algebra of G , G D G .k/, and g D ggg.k/.
Let gnil be the set of nilpotent elements in g upon which G acts by the adjoint
action. Let O be an orbit in gnil=G, z 2 O , and let � W sl2! g be a Lie algebra
homomorphism with

�

��
0 0

1 0

��
D z:

Identify a scalar t 2 k with the diagonal matrix diag.t; t�1/ 2 sl2.k/. For j 2 Z, let

gj D fY 2 g jAd ı�.t/.Y /D i tY for all t 2 kg:

Then g has a decomposition gD
L
j2Z gj , z 2 g�2.

Let N�2 (resp. N�1) be the unipotent subgroup of G with Lie algebra n�2 DL
j�2 gj (resp. n�1 D

L
j�1 gj ) and  z.n/ D  .tr.z logn// be a character of

N�2. Let Sz be the irreducible representation of N�1 whose restriction to N�2 is
a multiple of  z . Let � be an irreducible representation of G; following [Mœglin
and Waldspurger 1987], let Nwh.�/ be the subset of nilpotent orbits such that
O 2Nwh.�/ if and only if HomN�1.�; Sz/ 6D 0 for any z 2O . Let Nwh;max.�/ be
the subset of maximal elements in Nwh.�/ with respect to the inclusion relation of
closure of orbits.
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On the other hand, let T be a maximal K-split anisotropic torus of G ; here, K is
the maximal unramified extension of k. Then T D T.k/ is a maximal unramified
anisotropic torus of G. Let � be a character of T satisfying certain conditions
described in [Adler 1998] or [Reeder 2008]. There is a supercuspidal irreducible
representation �� of G associated to .T; �/. Identify B.T ; k/ as a point in B.G ; k/.
In [DeBacker and Reeder 2010], it was shown that �� is generic (that is, Nwh.��/

contains a regular nilpotent orbit) if and only if B.T; k/ is a special point in B.G; k/.
In [Barbasch and Moy 1997], it was shown that if � is of depth zero, the character
of �� can be expanded as linear combination of orbital integrals over elements in
Nwh.��/.

For those .T; �/ with B.T ; k/ nonspecial (that is, when rank.G/ is large enough
for B.G/ to contain nonspecial vertices), we show in Theorem 3.2 that if � is of
positive depth, there is one element in Nwh;max.��/ which is related to B.T ; k/.
Note that in this case the supercuspidal representation �� is of positive integral
depth. We also apply this theorem to irreducible representations in…0' , theL-packet
of ', where ' is the Langlands parameter of ��.

This article is organized as follows: in Section 2, preliminary notation are recalled,
including vertices in Bruhat–Tits building, L-packet of positive-depth supercuspidal
representations [Reeder 2008], classification of maximal unramified anisotropic tori
[DeBacker 2006], and classification of rational nilpotent orbits [Waldspurger 2001].
We also show by example in the Appendix how to choose a particular element from
a rational nilpotent orbit. The main theorems are stated and proved in Section 3.

2. Preliminary

2A. Notation. Let k be a nonarchimedean local field of characteristic 0 with
residue field f, and let p be the characteristic of f. Let O be the ring of integers of
k and P the maximal ideal of O. Let K be the maximal unramified field extension
of k and F the residue field of K. Let � be the normalized valuation of k and �K
the extension of � to K. Let  be an additive character of k with conductor P, and
denote the character of fDO=P derived from  by  also.

Throughout this paper, assume p is large enough that p is a good prime in the
sense in [Carter 1972].

LetW be a finite-dimensional vector space over k, h � ; � i a nondegenerate bilinear
form on W , and d D dimk.W /. Assume that

hv;wi D �W hw; vi for all v;w 2W;

with �W D˙1. Let G be the reductive group defined over k with

G D

�
SO.W / if �W D 1;
Sp.W / if �W D�1:
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Throughout this paper, assume that W has a k-basis fe1; : : : ; ed g satisfying

hej ; eki D

�
0 if j C k 6D d C 1;
1 if j C k D d C 1; j � k:

Then G is a connected split reductive group over k with finite center. Where no
confusion will result, denote G by SO.d/;Sp.d/ for �W D 1;�1, respectively.

Let JW D .ai;j / be the matrix of degree d such that tJW D �W JW and

aj;k D ıj;dC1�k for j � k:

Let k be the algebraic closure of k and R � k a commutative k-algebra. Then
G .R/, the set of R-rational points of G , is identified with the set of R-valued
matrices g of degree d satisfying

tgJW g D JW ; det.g/D 1:

Let ggg be the Lie algebra of G ; then ggg.R/ is identified with the set of R-valued
matrices g of degree d satisfying

tgJW CJW g D 0:

2B. Vertices of Bruhat–Tits building of G . Let G D G .k/ and g D ggg.k/. Let
B.G/DB.G ; k/ be the Bruhat–Tits building of G. For x 2B.G/, let Gx be the
parahoric subgroup attached to x and Gx;C the prounipotent radical of Gx . Let Gx
be the connected reductive group defined over f such that Gx=Gx;C is the group
of f-rational points of Gx . If F is a G-facet of B.G/ and x 2 F , let GF D Gx ,
GF;0C D Fx;0C, and GF D Gx .

Let S be the maximal k-split torus ofG containing all diagonal matrices inG ,B
the Borel subgroup of G containing all upper triangular matrices in G , S D S .k/,
and B D B.k/. Let ˆ be the set of roots of G with respect to S , ˆC the set of
positive roots of G with respect to B , and ��ˆC the subset of simple roots of
ˆC. Let sss be the Lie algebra of S ; then sD sss.k/ consists of all diagonal matrices
in g. By taking differentials, roots in ˆ are identified with linear functions on s.

Identify s with kn by the following isomorphism:

s D diag.c1; : : : ; cd / 2 s 7! .c1; : : : ; cn/ 2 k
n
I

here, nD Œd=2�. For i D 1; : : : ; n, the i -th coordinate function ei on kn is identified
with a linear function on s, still denoted by ei . Let ; ˛i .i D 1; : : : ; n/ be positive
roots as follows:

˛i D ei � eiC1; i D 1; : : : ; nI

˛n D en;  D e1C e2; if G D SO.2nC 1/I
or ˛n D en�1C en;  D e1C e2; if G D SO.2n/I
or ˛n D 2en;  D 2e1; if G D Sp.2n/:
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Then �D f˛1; : : : ; ˛ng and  is the highest root in ˆ with respect �.
Let ˆaf be the set of affine roots of G with respect to S . As a subset of affine

functions on s,
ˆaf D f˛Cm j˛ 2ˆ;m 2 Zg:

Let ˛0 D 1�  2 ˆaf and † D �[ f˛0g. Then every affine root is an integral
combination of elements in †.

Let X�.S/ be the character group of S , X�.S/ the dual group of X�.S/, and

a WDX�.S/˝Z R:

Let ADA.S/ be the underlying affine space of a. Then A is an apartment in B.G/.
By fixing a hyperspecial point o 2 A, one can identify A with a and elements in
ˆaf with affine functions on a.

Let C be the fundamental chamber of A defined by

C D fz 2 A j 0 < ˛.z/ < 1 for all ˛ 2†g:

For ˛ 2 ˆaf, let H˛ D fz 2 A j˛.z/ D 0g. Then the H˛ .˛ 2 †/ are walls of C .
For 0� i � n, let yi 2 C , such that fyig D

T
˛2†
˛ 6D˛i

H
j̨

. Then the yi .i D 0; : : : ; n/
are vertices of C . Let

(1) Insp D

8̂<̂
:
f2; : : : ; ng if G D SO.2nC 1/;
f2; : : : ; n� 2g if G D SO.2n/;
f1; : : : ; n� 1g if G D Sp.2n/:

Then yi is not a special vertex (see [Tits 1979]) for all i 2 Insp, and

Gyi .f/'

8<:
SO.2i; f/�SO.2n� 2i C 1; f/ if G D SO.2nC 1/;
SO.2i; f/�SO.2n� 2i; f/ if G D SO.2n/;
Sp.2i; f/�Sp.2n� 2i; f/ if G D Sp.2n/:

2C. On the stable conjugacy classes of maximal tori. If T is a maximal K-split
k-torus of G defined over k, then T D T.k/ is a maximal unramified torus of G
[DeBacker 2006]. In this case, let B.T / D B.T ; k/. By [Adler 1998], choose a
Gal.K=k/-equivariant embedding of B.T ; K/ into B.G ; K/; then B.T / is identi-
fied with a subset of B.G/:

B.T /DB.T ; K/� �B.G ; K/� DB.G/:

DeBacker [2006] defines a set Im and an equivalence relation “�” on Im, so
that there is a one-to-one and onto correspondence between Im= � and the set
of G-conjugacy classes of unramified maximal tori in G. Elements in Im are of
the form .F;T/, where F is an arbitrary G-facet in B.G/ and T is a maximal
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minisotropic f-torus in GF . Let C.F;T/ be the G-conjugacy class of maximal
unramified tori in G corresponding to the equivalence class in Im containing .F;T/.

Let o 2B.G/ be one of the special points chosen in Section 2B, to which we
associate a conjugacy class of a maximal anisotropic f-torus in Go and a conjugacy
class inW .Go/ (see [DeBacker 2006; Carter 1985]). HereW .Go/ is the Weyl group
of Go. Let To (resp. wo) be a representative of the conjugacy class of a maximal
anisotropic f torus (resp. the W .Go/-conjugacy class). Then .fog;To/ 2 Im. Take
T D T.k/ 2 C.fog;To/; then T is a maximal unramified anisotropic k-torus in G
(see [DeBacker 2006]).

Let S.To/ be the subset of Im consisting of elements .F;T/ such that ifW .GF /

is identified with a subgroup ofW .Go/, then W .GF /wF \
W .Go/wo 6D∅, where wF

is a representative of the W .GF /-conjugacy class corresponding to T. Then S.To/

depends only on the conjugacy class of wo in W .Go/. In fact, S.To/ is the set of
G-conjugacy classes of maximal unramified anisotropic tori in the stable conjugacy
class of T in G, which is the stable conjugacy class of maximal unramified tori in
G corresponding to wo [ibid., Corollary 4.3.2]. Let “�” be the equivalence relation
on S.To/ inherited from Im.

We briefly recall the classification of conjugacy classes in W .Go/. Since Go is
split special orthogonal group or symplectic group over f,

W .Go/'

�
Sn Ì .Z=2Z/n if Go D SO.2nC 1/ or Sp.2n/;
Sn Ì .Z=2Z/n�1 if Go D SO.2n/; n� 2:

Here Sn is the n-th symmetric group. Conjugacy classes inW .Go/ are parametrized
by the set of pairs of partitions .�;�/ with S.�/CS.�/D n; moreover, if Go D
SO.2n/, c.�/ is even [Carter 1972, Propositions 24, 25]. Here, terminology in
[Waldspurger 2001] is used: for a partition �D .�1; : : : ; �n; : : : /,

S.�/D
1P
iD1

�i ; c.�/D jfi � 1 j�i 6D 0gj:

In particular, conjugacy classes of anisotropic maximal tori in Go.f/ are parametrized
by the subset consisting of .∅;�/, with S.�/D n; if Go D SO.2n/, c.�/ is even.

Assume .∅;�/ corresponds to the conjugacy class of wo in W.Go/, and write

�D .�1; : : : ; �s/; �1 � � � � � �s � 1;

so that S.�/D n, and s is even if G D SO.2n/. Let

S.�/Df�0D .�j1 ; : : : ; �js�2m/ j for some 1�j1<j2< � � �<js�2m; 0�2m� sg;

if G D SO.2nC 1/ or SO.2n/I

S.�/D f�0 D .�j1 ; : : : ; �js�m/ j for some 1� j1 < j2 < � � �< js�m; 0�m� sg;

if G D Sp.2n/I
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For �0 2 S.�/, define

i WD i�0 WD i.�
0/ WD S.�/�S.�0/:

Then W .Go/wo \W .Gyi / 6D ∅. Here W .Go/wo is the conjugacy class of wo and
W .Gyi / is the Weyl group of Gyi identified as a subgroup ofW .Go/. By [DeBacker
2006, Corollary 4.3.2], there is a maximal anisotropic torus T�0 in Gyi .f/ that is
Go.f/-conjugate to To. Hence .fyi.�0/g;T�0/ 2 S.To/.

Take T�0 2C.fyi.�0/g;T�0/; then T�0 is a maximal unramified anisotropic torus
in G stably conjugate to T and B.T�0/ D fyi�0 g. In particular, � 2 S.�/. Take
T� D T . Conversely, all G-conjugacy classes in the stable conjugacy class of T
have a representative of this form.

Lemma 2.1. The set
˚
.fyi�0 g;T�0/ j�

02S.�/
	

is a complete set of representatives
of S.To/=� .

Proof. It remains to show that the pairs .fyi�0 g;T�0/ are not equivalent to one
another, for �0 2 S.�/. If i�0 D i�00 for distinct �0;�00 2 S.�/, then by the choice
of T�0 and T�00 , T�0 is not conjugate to T�00 in Gyi�0

; therefore .fyi�0 g;T�0/ is
not equivalent to .fyi�00 g;T�00/.

If i�0 6D i�00 for �0;�00 2 S.�/, we will show yi�0 is not associated to yi�00 . As
a consequence, .fyi�0 g;T�0/ is not equivalent to .fyi�00 g;T�00/.

The case for G D Sp.2n/ is trivial, since the vertices y0; y1; : : : ; yn of C are
not associated to each other.

If G D SO.2nC 1/, among all vertices y0; y1; : : : ; yn of C , y0 is associated to
y1, and y0; y2; : : : ; yn are not associated to each other. For �0 2 S.�/, if i�0 6D 0,
then i�0 � 2. As a result, .fyi�0 g;T�0/ is not equivalent to .fyi�00 g;T�00/.

If G D SO.2n/, among all vertices y0; y1; : : : ; yn, y0 is associated to y1, yn�1
is associated to yn, and y0; y2; : : : ; yn�2; yn are not associated to each other. For
�0 2S.�/, if i�0 6D 0, then i�0 6D 1; i�0 6Dn�1. Then .fyi�0 g;T�0/ is not equivalent
to .fyi�00 g;T�00/. �

2D. L-packet. Keep the notation of the previous subsection. Let t� (resp. t�.K/)
be the Lie algebra of T� (resp. T�.K/). For s 2 Z, let t�;s (resp. T�;s) be the s-th
filtration of t� (resp. T�) [Adler 1998]. Let r be a positive integer, X� a good
element in t�;�r (i.e., X� 2 t�r ), and for every root ˛ of T�.K/ in G .K/, assume
d˛.X�/ 6D 0. Let �� be a character of T� satisfying ��jT�;rC1

D 1,

��.expo.Y //D  .tr.X�Y // for all Y 2 t�;r :

Here expo is the mock exponential map defined in [Adler 1998].
Let ���I� be the supercuspidal representation constructed by using �� and X�,

' WWk!
LG be the L-parameter of ���I� (see [Adler 1998; Reeder 2008]), where
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Wk is the Weil group of k. For �0 2 S.�/, let g 2G .K/o be an element such that
T�0.k/D

gT�.k/; then X�0 D gX� is a good element in t�0;�r . Define a depth r
character ��0 of T�0 by ��0 WD g��0 ; then,

��0.expyi.�0/.Y //D  .trX�0Y / for all Y 2 t�0;r :

Let ���I�0 be the supercuspidal representation of G constructed by using ��0 and
X�0 . Then:

Theorem 2.2 [Reeder 2008]. The set…0.'/Df���I�0 j�
0 2S.�/g is theL-packet

associated to '.

The main result of this paper concerns nilpotent orbits supporting representations
in …0.'/. Prior to the statement of the main theorems, we recall the classification
of k-rational nilpotent orbits in g [Waldspurger 2001, §I.6] and define a partition
�i for every i 2 Insp.

2E. Nilpotent orbits. Let �D .�i /i2N be a sequence of nonnegative integers such
that �j D 0 for j sufficiently large. Define

S.�/D
X
j�1

�j ; c.�/D jfj � 1 j�j 6D 0gj; ci .�/D jfj j�j D igj for all i 2N:

If �1 � �2 � � � � , � is called a partition. Let P be the set of all partitions and P.n/

the subset of all � 2 P such that S.�/D n. For �;� 2 P, let �[� be the unique
partition such that ci .�[�/D ci .�/C ci .�/ for all i 2 N.

Let W be the vector space defined in Section 2A and d D dimk W . If �W D 1,
let P.W / be the set of partitions � 2 P.d/ such that ci is even for all even i . If
�W D�1, let P.W / be the set of partitions �2P.d/ so that ci is even for all odd i .
Let NilI .W / be the set of .�; .qi // with � 2P.W /, and let qi , i 2N, be quadratic
forms satisfying these conditions:

� If �W D 1, qi is a nondegenerate quadratic form on kci for i odd, qi D 0 for i
even, moreover the quadratic form

L
i2N qi has the same anisotropic kernel

as qW ; here, qW is the quadratic form on W defined by qW .v/D hv; vi.

� If �W D�1, qi is a nondegenerate quadratic form on kci for i even, qi D 0
for i odd.

Definition 2.3. .�; .qi // 2 NilI .W / is called exceptional if �W D 1, 4 j d , and �i
is even for all i 2 N. In this case, qi D 0 for all i 2 N.

Definition 2.4. � If �W D�1, let Nil.W /D NilI .W /;

� If �W D 1, 4 − d , let Nil.W /D NilI .W /;

� If �W D 1, 4 jd , let Nil.W / be the set consisting all nonexceptional .�; .qi //2
NilI .W / and .�; .qi /; "/ with .�; .qi // exceptional, "D˙1.
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By [Waldspurger 2001], there is a bijective correspondence between Nil.W / and
gnil=G, the set of k-rational nilpotent orbits. Define a partial order on P.n/: for
�;� 2 P.n/, �� � if and only if for all j � 1,

Pj
iD1 �i �

Pj
iD1 �i .

Definition 2.5. Define a partial order on the set of nilpotent orbits in g: O1 �O2 if
and only if O1 �O2. Here the closure is taken with respect to the usual topology
in g.

Lemma 2.6. Let O1; O2 be nilpotent orbits in g corresponding to .�; .qi // or
.�;∅; "/ and .�; .q0i // or .�;∅; "0/ respectively. If O1 >O2, then �> �.

Proof. The proof is similar to that of Theorem 6.2.5 of [Collingwood and McGovern
1993]. Take arbitrary X 2O1, Y 2O2, with O1; O2 corresponding to .�; .qi // or
.�;∅; "/ and .�; .q0i // or .�;∅; "0/ respectively. If O1 >O2, then O1 ¥O2,

rank.Xk/ > rank.Y k/ for all k � 1;

since the condition that rank of a matrix be strictly less than a fixed number is a
closed condition for the usual topology. Now �>� by of [ibid., Lemma 6.2.2], �

Example 2.7. Regular nilpotent orbits in gnil are those corresponding to:

� .Œ2nC 1�; q2nC1/, if �W D 1, d D 2nC 1. Here q2nC1 is the nondegenerate
quadratic form on k defined by q2nC1.x/D x2.

� .Œ2n�1; 1�; .q2n�1; q1//, if �W D1, dD2n. Here q2n�1; q1 are nondegenerate
quadratic forms on k such that q2n�1˚ q1 ' q0, where q0 is the quadratic
form on k2 defined by q0.x; y/D 2xy for all x; y 2 k.

� .Œ2n�; q2n/, if �W D�1, d D 2n. Here q2n is a nondegenerate quadratic form
on k.

Let Insp be the set defined in (1). For i 2 Insp, let �i D �0[�00 with

�0 D Œ2i � 1; 1�; �00 D Œ2n� 2i C 1�; if �W D 1; d D 2nC 1I

�0 D Œ2i � 1; 1�; �00 D Œ2n� 2i � 1; 1�; if �W D 1; d D 2nI

�0 D Œ2i �; �00 D Œ2n� 2i�; if �W D�1; d D 2n:

For i 62 Insp, let

�i D

8<:
Œd � if �W D 1; d D 2nC 1;
Œd�1; 1� if �W D 1; d D 2n;
Œd � if �W D�1; d D 2n:

Lemma 2.8. Let i 2 Insp. Let O 0; O i be nilpotent orbits in gnil corresponding to
.�0; .q0j // or .�0;∅; "/ and .�i ; .qj //. Assume O 0 >O i . Then:
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� If G D SO.2n C 1/, then �0 D Œ2n C 1� or Œm; 2n � m; 1� for some odd
m>max.2i � 1; 2n� 2i C 1/.

� If G D SO.2n/ and i 6D n=2, then �0 D Œm; 2n � m� for some odd m �
max.2i � 1; 2n � 2i � 1/, or �0 D Œm; 2n �m � 2; 12� for some odd m >

max.2i � 1; 2n� 2i � 1/.

� If G D SO.2n/ and i D n=2, then �0 D Œn2�, or

�0 D Œm; 2n�m� or Œm; 2n�m� 2; 12�

for some odd m>max.2i � 1; 2n� 2i � 1/.

� If G D Sp.2n/, then �0 D Œm; 2n�m� for some even m>max.2i; 2n� 2i/.

Proof. Assume �0 D Œ�01; �
0
2; : : : � 2 P.W /, with �01 � �

0
2 � � � � . By Lemma 2.6, if

O 0 >O i , then �0 > �i .
Assume G D SO.2nC 1/, �i D Œ2i � 1; 1� [ Œ2n � 2i C 1�. First, assume

2i � 1� 2n� 2i C 1, �i D Œ2i � 1; 2n� 2i C 1; 1�.
By definition, �0 > �i if and only if �0 6D �i and

�01 � 2i � 1; �01C�
0
2 � 2n; �01C�

0
2C�

0
3 D 2nC 1:

Then �03 D 0 or �03 D 1. If �03 D 0, �02 D 0, then �0 D Œ2nC 1� > �i . If �03 D 0,
�02 6D 0, then �0 D Œ�01; 2nC 1� �

0
1� 62 P.W /, which contradicts the assumption

�0 2 P.W /.
If �03D 1, �0D Œm; 2n�m; 1� for some m� 2i�1. If mD 2i�1, then �0D �i ,

which contradicts the assumption �0 6D �i . Hence m> 2i � 1. If m is even, then
cm.�

0/ is even and 2n�m D m; hence m D n, and �0 D Œn2; 1�. On the other
hand, �0 > �i , 2i � 1D 2n� 2i C 1D nDm, which contradicts m> 2i � 1. In
conclusion, �0 D Œm; 2n�m; 1� for some odd m> 2i � 1.

Similarly, if 2n � 2i � 1 � 2i � 1, �0 > �i D Œ2n � 2i � 1; 2i � 1; 1�, then
�0 D Œm; 2n�m; 1� for some odd m> 2n� 2i C 1. This concludes the proof for
G D SO.2nC 1/.

Assume G D SO.2n/, �i D Œ2i �1; 1�[ Œ2n�2i �1; 1�. First, assume 2i �1 >
2n� 2i � 1, �i D Œ2i � 1; 2n� 2i � 1; 12�.

By definition, �0 > �i if and only if �0 6D �i and

�01�2i�1; �01C�
0
2�2n�2; �01C�

0
2C�

0
3�2n�1; �01C�

0
2C�

0
3C�

0
4D2n:

Then �04 D 0 or �04 D 1. Assume �04 D 0; then, �03 D 0 or �03 D 1. If �03 D 1,
�04 D 0, then �01 and �02 have different parity, so �0 62 P.W /. If �03 D �

0
4 D 0, then

�0D Œm; 2n�m�withm�2i�1. Ifm is even, then cm.�0/ is even,mD2n�mDn.
Hence m D n > 2i � 1 > 2n � 2i � 1, which has no solution since the second
inequality requires 2i � 1 > n� 1. In conclusion, if �04 D 0, then �0 D Œm; 2n�m�
for some odd m� 2i � 1.
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If �04 D 1, then �03 D 1, �0 D Œm; 2n �m � 2; 12� for some m � 2i � 1. If
m D 2i � 1, then �0 D �i which contradicts the assumption �0 6D �i . Hence
m > 2i � 1. If m is even, then cm.�0/ is even, m D 2n�m� 2 D n� 1. Hence
mD n�1> 2i�1> 2n�2i�1, which has no solution since the second inequality
requires 2i �1 > n�1. In conclusion, if �04D 1, then �0D Œm; 2n�m�2; 12� for
some odd m> 2i � 1.

Similarly, if 2n � 2i � 1 > 2i � 1, then �0 D Œm; 2n � m� for some odd
m � max.2i � 1; 2n � 2i � 1/, or �0 D Œm; 2n �m � 2; 12� for some odd m >

max.2i � 1; 2n� 2i � 1/.
Assume now 2i�1D2n�2i�1. Then n is even, iDn=2, and�i D Œ.n�1/2; 12�.

Assume �0 > �i , � 2 P.W /. Then

�01�n�1; �01C�
0
2�2n�2; �01C�

0
2C�

0
3�2n�1; �01C�

0
2C�

0
3C�

0
4D2n:

If �01Dn�1, then �02Dn�1, �0D Œ.n�1/2; 12�D�i , contradicting the assumption
�0 6D�i . Hence �01 � n. If �01 is even, then c�01 is even, �01D �

0
2D n, and �D Œn2�.

IfmD�01>n is odd, thenm>max.2i�1; 2n�2i�1/Dn�1 and �0D Œm; 2n�m�
or Œm; 2n�m� 2; 12�. This concludes the proof for G D SO.2n/.

Assume G D Sp.2n/. Without loss of generality, assume 2i � 2n� 2i ; i.e.,
i � n=2. Then �i D Œ2i; 2n�2i�. By definition, �0 >�i if and only if �0 6D�i and

�01 � 2i; �01C�
0
2 D 2n:

Hence �D Œ�01; 2n��
0
1�. If �01D 2i , then �02D 2n�2i;�

0D�i , which contradicts
the assumption �0 6D �i . Hence �01 > 2i � n. If �01 is odd, then c�01�

0 is even,
�01 D �02 D n, which contradicts �01 > n. As a result, �0 D Œm; 2n � m� with
mD �01 > 2i even. This concludes the proof for G D Sp.2n/. �

2F. Nilpotent support. Let O 0 be a rational nilpotent orbit in g=G and fix an
element z 2O 0. Let fz; h; z0g be an sl2 triple in g; i.e., let there be a Lie algebra
homomorphism � W sl2! g such that

z D �

��
0 0

1 0

��
; hD �

��
1 0

0 �1

��
; z0 D �

��
0 1

1 0

��
:

For i 2 Z, let gi D fZ 2 g jAd.h/.Z/D iZg. Then z 2 g�2 and gD
L
i2Z gi .

Define nilpotent subalgebras n0
�1; n

0
�2 of g and unipotent subgroups N 0

�1; N
0
�2

of G as follows:

(2)

n0�1 D
M
i�1

gi ; N 0�1 D exp.n0�1/;

n0�2 D
M
i�2

gi ; N 0�2 D exp.n0�2/:
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Let  z be the character of N 0
�2 defined by

(3)  z.Z/D  ı tr.z � logZ/ .Z 2N 0�2/:

Then Ker. z/ is a subgroup of N 0
�2. If n0

�1 D n0�2, so N 0
�1 DN

0
�2, let Sz be the

character  z of N 0
�1. If n0

�1 6D n0�2, then g1 6D 0 and N 0
�1=Ker. z/ is isomorphic

to a Heisenberg group over f with center N 0
�2=Ker. z/. In this case, let Sz be the

irreducible representation of N 0
�1 whose restriction to N 0

�2 is a multiple of  z .

Definition 2.9. Keep the notation above. Following [Mœglin and Waldspurger
1987], denote by Nwh.�/ the set of all nilpotent orbits O 0 in g=G such that, for
some smooth irreducible representation � of G, we have HomN 0

�1
.�; Sz/ 6D 0.

Let Nwh;max.�/ be the subset of maximal elements in Nwh.�/ with respect to the
inclusion relation of closure of orbits.

3. Main theorems

The main results of this paper are the following theorems, whose proofs are given
starting on page 185 and page 192, respectively.

Theorem 3.1. Let � 2…0.'/. Assume � D ���I�0 for some �0 2 S.�/, i D i�0 .
Let O 0; O i be nilpotent orbits in g corresponding to .�0; .q0j // or .�0; �; �/ and
.�i ; .qj // respectively, with O 0 >O i . Take arbitrary z 2O 0. Then

HomN 0
�1
.�; Sz/D 0:

Theorem 3.2. Let � 2 …0.'/. Assume � D ���I�0 for some �0 2 S.�/; i D

i�0 . Then there is a nilpotent orbit O i corresponding to .�i ; .qj // such that
O i 2 Nwh;max.�/.

If i 62 Insp, then yi is special. In this case, Theorem 3.1 is void and Theorem 3.2
is proved in [DeBacker and Reeder 2010].

The subset �z of ˆC. Assume now i 2 Insp; that is, rank.G/ is large enough for
Insp to be nonempty. Let O 0, O i be nilpotent orbits in g corresponding to .�0; .q0j //
or .�0; �; �/ and .�i ; .qj // respectively, with O 0 >O i . In this subsection, we will
choose a particular element z 2O 0 such that

(4) N 0�2 � B; N 0�4 � B:

Here B is the Borel subgroup consisting of upper triangular matrices in G and N 0
�j

is the object defined in Section 2F for any sl2 triple fz; h; z0g attached to z in g.
Let � 0z �ˆ

C be the subset of positive roots such that ˛ 2 � 0z if and only if the root
space u˛ � n0

�4, and let

(5) �z WDˆ
C
n� 0z :
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The following notation is used frequently: let � D .�1; : : : ; �s/ be a sequence
of positive integers such that d D

Ps
jD1 �j . Then every matrix a 2 gl.d; k/ can

be written in blocks a D .aj;`/j;`�s , with ajj 2 gl.�j ; k/. Let Aj be an arbitrary
�jC1��j matrix for 1� j � s�1, and let z.�IA1; : : : ; As�1/D .zj;`/j;`�s be the
nilpotent element in gl.d; k/ such that

zj;` D

�
A` j D `C 1;

0�j��` j 6D `C 1:

Assume G D SO.2nC1/. By Lemma 2.8, �0D Œ2nC1� or Œm; 2n�m; 1� with
m odd and m>max.2i � 1; 2n� 2i C 1/.

First, assume �0 D Œ2nC 1�, q02nC1 D q2nC1 as in Example 2.7. Let

(6) z D z.�I 1; : : : ; 1;�1; : : : ;�1/;

with � D .12nC1/ a regular nilpotent element in g. Let fz; h; z0g be an sl2 triple
attached to z in g and gj ; n

0
�j ; N

0
�j the objects defined in Section 2F. Then, we

naturally have

N 0�2 D fnD .nj;`/j;`�2nC1 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�2nC1 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z be the subset of ˆC defined in (5); then,

(7) �z D f j̨ j j D 1; : : : ; ng:

Second, assume mD 2n� 1. Then �0 D Œ2n� 1; 12�, q02n�1 is a nondegenerate
quadratic form on k, identified with a nonzero element in k�, and q01 is a nonde-
generate quadratic form on k2, such that q02n�1˚ q

0
1 is isometric to the quadratic

form on k3

.u; v; w/ 7! 2uwC v2 .u; v; w 2 k/:

Let

(8) z D z.�I 1; 1; : : : ; 1; A�; A;�1; : : : ;�1/;

with � D .1n�1; 3; 1n�1/,

A� D .am; bm; cm/
t ; AD�.cm; bm; am/;

such that AA� D�q02n�1. Then z 2O 0, as shown in the Appendix.
Let fz; h; z0g be an sl2 triple attached to z in g and gj ; n

0
�j ; N

0
�j the objects

defined in Section 2F. Let sD s.�/D 2n�1Dm. It is shown in the Appendix that

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1gI
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that is, (4) is satisfied. Let �z be the subset of ˆC defined in (5); then,

(9) �z D f j̨ j j D 1; : : : ; n� 2g[ fen�1˙ eng[ fen�1; eng:

Here the j̨ .j D 0; 1; : : : n/ are simple roots defined in Section 2B.
Third, assume m < 2n� 1. Then �0 D Œm; 2n�m; 1�, and q0m; q

0
2n�m; q

0
1 are

nondegenerate quadratic forms on k such that q0m˚ q
0
2n�m˚ q

0
1 is isometric to

quadratic form .u; v; w/ 7! 2uwC v2 .u; v; w 2 k/. Let

(10) z D z.�I 1 : : : ; 1; a�; 12; : : : ; 12; A
�; A;�12; : : : ;�12; a;�1; : : : ;�1/;

with � D .1m�n; 2n�.mC1/=2; 3; 2n�.mC1/=2; 1m�n/, a� D .1; 0/t , aD�.0; 1/,

A� D

0@am a2n�m
bm b2n�m
cm c2n�m

1A ; AD�

�
c2n�m b2n�m a2n�m
cm bm am

�
;

such that

AA� D�

�
0 q02n�m
q0m 0

�
:

Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached to
z in g and let gj ; n0�j ; N

0
�j be the objects defined in Section 2F. Let sD s.�/Dm;

then, (4) is satisfied:

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,

(11) �z Df j̨ j j D 1; : : : ; m�ng[ fem�n� em�nC2g

[ f˛m�nC2j�1 j j D 1; : : : ; n� .mC 1/=2g

[

n�mC3
2[

jD1

fem�nC2j�1� em�nC2jC1; em�nC2j�1� em�nC2jC2g

[

n�mC3
2[

jD1

fem�nC2j � em�nC2jC1; em�nC2j � em�nC2jC2g

[ fen�2˙ eng[ fen�1˙ eng[ fen�2; en�1; eng:

Assume G D SO.2n/. By Lemma 2.8, �0 is one of Œn2�, Œm; 2n � m�, or
Œm; 2n�m� 2; 12� for some odd m�max.2i � 1; 2n� 2i � 1/.

First, assume m D 2n� 3 and �0 D Œm; 2n�m� 2; 12� D Œ2n� 3; 13�. Then
q02n�3 and q01 are nondegenerate quadratic forms on k and k3, respectively, such
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that q02n�3˚ q
0
1 is isometric to the quadratic form on k4 defined by .u; v; w; x/D

2uxC2vw .u; v; w; x 2 k/. Let �D .1n�2; 4; 1n�2/, sD s.�/D 2n�3Dm, and
z D z.�I 1; : : : ; 1; A�; A;�1; : : : ;�1/, with

A� D .a2n�3; b2n�3; c2n�3; d2n�3/
t ; AD�.d2n�3; c2n�3; b2n�3; a2n�3/

satisfying AA�D�q02n�3. Similar to that in the Appendix, z 2O 0. Let fz; h; z0g be
an sl2 triple attached to z in g and gj ; n

0
�j ; N

0
�j the objects defined in Section 2F.

Then

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,

(12) �z D f j̨ j j D 1; : : : ; n�3g[fen�2˙en�1g[fen�2˙eng[fen�1˙eng:

Second, assume �0 D Œm; 2n � m � 2; 12� for some odd m < 2n � 3, m >

max.2i � 1; 2n� 2i � 1/. Since m> 2n�m� 2 > 1, q0m; q
0
2n�m�2 are quadratic

forms on k and q01 is a quadratic form on k2 such that q0m ˚ q
0
2n�m�2 ˚ q

0
1 is

isometric to the quadratic form on k4 defined by

.u; v; w; x/D 2uxC 2vw .u; v; w; x 2 k/:

Let � D .1m�nC1; 2n�
mC3
2 ; 4; 2n�

mC3
2 ; 1m�nC1/, s D s.�/Dm, and

z D z.�I 1; : : : ; 1; a�; 12; : : : ; 12; A
�; A;�12; : : : ;�12; a;�1; : : : ;�1/;

with a� D .1; 0/t ; aD�.0; 1/,

A� D

0BB@
am a2n�m�2
bm b2n�m�2
cm c2n�m�2
dm c2n�m�2

1CCA ; AD��d2n�m�2 c2n�m�2 b2n�m�2 a2n�m�2dm cm bm am

�
;

such that

AA� D�

�
0 q02n�m�2
q0m 0

�
:

Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached to
z in g and let gj ; n0�j ; N

0
�j be the objects defined in Section 2F. Then

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,
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(13) �z Df j̨ j j D 1; : : : ; m�nC1g[fem�nC1�em�nC3g

[ f˛m�nC1C2j�1 j j D 1; : : : ; n�.mC3/=2g

[

n�mC5
2[

jD1

fem�nC1C2j�1�em�nC1C2jC1; em�nC1C2j�1�em�nC1C2jC2g

[

n�mC5
2[

jD1

fem�nC1C2j�em�nC1C2jC1; em�nC1C2j�em�nC1C2jC2g

[ fen�3˙en�1; en�3˙eng[fen�2˙en�1; en�2˙eng

[fen�1˙eng:

Third, assume �0D Œm; 2n�m� for some odd m� n. If m> n, then q0m; q
0
2n�m

are quadratic forms on k such that q0m˚q
0
2n�m is isometric to the quadratic form on

k2 defined by .u;w/ 7!2uw. IfmDn is odd, then�0D Œn2�, and q0n is the quadratic
form on k2 isometric to the quadratic form on k2 defined by .u;w/ 7! 2uw.

Let � D .1m�n; 22n�m; 1m�n/, s D s.�/Dm, and

zD

�
z.�I 12; : : : ; 12; A

�; A;�12; : : : ;�12/; mD n;

z.�I 1; : : : ; 1; a�; 12; : : : ; 12; A
�; A;�12; : : : ;�12; a;�1; : : : ;�1/; m > n;

with a� D .1; 0/t ; aD�.0; 1/,

A� D

�
am a2n�m
bm b2n�m

�
; AD�

�
b2n�m a2n�m
bm am

�
;

satisfying

AA� D�

8̂̂̂̂
<̂
ˆ̂̂:

�
0 q02n�m
q0m 0

�
if m> n;

�

�
2 0

0 2

�
if mD n:

Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached to
z in g and let gj ; n0�j ; N

0
�j be the objects defined in Section 2F. Then

N 0�2 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `g � B;

N 0�4 D fnD .nj;`/j;`�s 2 g jnj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5); then,
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(14) �z Df j̨ j j D 1; : : : ; m�ng[ fem�n� em�nC2g

[ f˛m�nC2j�1 j j D 1; : : : ; n� .mC 1/=2g

[

n�mC3
2[

jD1

fem�nC2j�1� em�nC2jC1; em�nC2j�1� em�nC2jC2g

[

n�mC3
2[

jD1

fem�nC2j � em�nC2jC1; em�nC1C2j � em�nC2jC2g

[ fen�1˙ eng[ fen�2˙ eng:

Fourth, assume n is even and �0 D Œn2�. Let � D .2n/,

(15) z D z.�I 12; : : : ; 12; A;�12; : : : ;�12/;

with AD diag.1;�1/. Working as in the Appendix, take z" 2O 0", where O 0" is the
nilpotent orbit corresponding to .�0;∅; "/ for some "D 1 or �1. Let fz"; h"; z"g be
an sl2 triple attached to z" in g, and gj ; n

0
�j ; N

0
�j the objects defined in Section 2F.

Then

N 0�2 D fuD .uj;`/j;`�n 2 g juj;` D 0�j��` if j � `g � B;

N 0�4 D fuD .uj;`/j;`�n 2 g juj;` D 0�j��` if j � `� 1g � B:

Let �z" �ˆ
C be the subset of positive roots defined in (5) for z"; then,

(16) �z�Df˛2j�1 j j D 1; : : : ; n=2�1g[fen�1˙eng

[

n
2
�1[

jD1

fe2j�1�e2jC1; e2j�1�e2jC2; e2j �e2jC1; e2j �e2jC2g:

Let w0 D .a`;`0/2n�2n be the element in OOO.2n/ satisfying�
an;nC1 D anC1;n D aj;j D 1 if 1� j � 2n; j 6D n; j 6D nC 1;
a`;`0 D 0 otherwise.

Let z�"Dw0z"w�10 ; then z�" 2O 0�� , where O 0�� is the nilpotent orbit correspond-
ing to .�0; �;�"/. Let fz�"; h�"; z�"g be an sl2 triple attached to z�" in g and g00j ,
n00
�j , N 00

�j the objects defined in Section 2F. Then

N 00�2 D w0N
0
�2w

�1
0 � B; N 00�4 D w0N

0
�4w

�1
0 � B:

Let �z�" �ˆ
C be the subset of positive roots defined in (5) for z�", then

(17) �z�" D fen�3C en; en�2C eng[�z"n fen�3� en; en�2� eng:
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Assume G D Sp.2n/. By Lemma 2.8, �0 D Œm; 2n�m� for some even m >

max.2i; 2n� 2i/. Then m> 2n�m, and q0m; q
0
2n�m are nondegenerate quadratic

forms on k. Let � D .1m�n; 22n�m; 1m�n/, s D s.�/Dm, and

z D z.�I 1; : : : ; 1; a�; 12; : : : ; 12; A;�12; : : : ;�12; a;�1; : : : ;�1/;

with a� D .1; 0/t ; a D �.0; 1/, AD
�
b
a
a
c

�
; such that q0m˚ q

0
2n�m is isometric to

the quadratic form given by the symmetric matrix A.
Working as in the Appendix, given z 2O 0, let fz; h; z0g be an sl2 triple attached

to z in g and let gj ; n0�j ; N
0
�j be the objects defined in Section 2F. Then

N 0�2 D fuD .uj;`/j;`�s 2 g juj;` D 0�j��` if j � `g � B;

N 0�4 D fuD .uj;`/j;`�s 2 g juj;` D 0�j��` if j � `� 1g � B:

Let �z �ˆC be the subset of positive roots defined in (5) for z; then,

(18) �z Df j̨ j j D 1; : : : ; m�ng[ fem�n� em�nC2g

[ f˛m�nC2j�1 j j D 1; : : : ; n� .m/=2g

[

n�m
2
�1[

jD1

fem�nC2j�1� em�nC2jC1; em�nC2j�1� em�nC2jC2g

[

n�m
2
�1[

jD1

fem�nC2j � em�nC2jC1; em�nC1C2j � em�nC2jC2g

[ fen�1C en; 2en�1; 2eng:

Proof of Theorem 3.1. We keep the notation used so far in this section and in
Section 2B. For i 2 Insp, let

†i D f j̨ j j D 1; : : : ; n; j 6D ig[ f�g;

which is a set of simple roots of a root subsystem of ˆ. Let O 0; O i be nilpotent
orbits in g corresponding to .�0; .q0j // or .�0; �; �/ and .�i ; .qj // respectively,
with O 0 > O i . Let z 2 O 0; �z � ˆC be as defined (6), (8), (10), (15), and set
� 0z Dˆ

Cn�z .

Lemma 3.3. Let w be a Weyl element of G such that w�1.†i / � ˆC. Then
w�1.†i /\�

0
z 6D∅.

Proof. First assumeG DSO.2nC1/. Then � D�e1�e2, j̨ D ej �ejC1 for j D
1; : : : ; n�1, and ˛nD en. Let w be a Weyl element of G such that w�1.†i /�ˆC;
then, there is a permutation � of f1; 2; : : : ; ng satisfying �.1/ > �.2/ > � � �> �.i/,
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�.i C 1/ < �.i C 2/ < � � �< �.n/, such that

(19) w�1.ej /D

8<:
˙e�.1/ if j D 1;
�e�.j / if 2� j � i;
e�.j / if i C 1� j � n:

Assume on the contrary that w�1.†i /\� 0z D∅; then

(20) w�1.†i /� �z :

If iDn, then�iD Œ2n�1; 12�,†nDf j̨ j 1�j <ng[f�g. Then by Lemma 2.8,
�0 D Œ2nC 1� and q02nC1 D q2nC1, and by (7), �z D f j̨ j j D 1; : : : ; ng. If w
satisfies (19) and (20), then �.j /D nC 1� j ,

w�1.e1/D˙en; w�1.ej /D�enC1�j .1 < j � n/:

As a result, w�1.†n/Df j̨ j 1� j <ng[fen�1Ceng 6��z , which contradicts (20).
Hence w�1.†n/\� 0z 6D∅.

If i < n, by Lemma 2.8, �0 D Œ2nC 1� or Œm; 2n�m; 1� for some odd m >

max.2i � 1; 2n� 2iC 1/. Let w be a Weyl element satisfying (19) and (20). Since
˙e1� e2; en 2†i , we have

(21) w�1.˙e1� e2/D e�.2/˙ e�.1/ 2 �z; w�1.en/D e�.n/ 2 �z :

If �0 D Œ2nC 1�, then �z D f j̨ j 1 � j � ng and e�.2/ C e�.1/ 62 �z , which
contradicts (21).

If �0D Œm; 2n�m; 1�,mD2n�1, then �z is the set in (9). By (21), �.2/Dn�1,
�.1/D n, while �.n/D n or n� 1, which is impossible since � is a permutation.

If �0D Œm; 2n�m; 1�, m< 2n�1, then �z is the set in (11). By (21), �.1/D n,
f�.2/; �.n/g D fn� 2; n� 1g. If e2� e3; en�1� en 2†i , then by (20),

w�1.e2� e3/D e�.3/� e�.2/ 2 �z; w�1.en�1� en/D e�.n�1/� e�.n/ 2 �z :

Then f�.3/; �.n� 1/g D fn� 4; n� 3g. Since m>max.2i � 1; 2n� 2i C 1/, we
have

n�
mC 1

2
<min.n� i; i � 1/;

so the procedure can be repeated n� mC1
2

times. Then, for `D 2; : : : ; n� m�1
2

,

f�.`/; �.nC 2� `/g D fn� 2.`� 1/; n� 2.`� 1/C 1g:

In particular, for `0 D n�
m�1

2
and nC 2� `0 D

mC3

2
,

f�.`0/; �.nC 2� `0/g D
n
�.`0/; �

�
mC3

2

�o
D fm�nC 1;m�nC 2g:
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Since m> 2i � 1, we have m> 2n� 2i C 1,

`0Dn�
m� 1

2
<i; iC1<

mC 3

2
DnC2�`0; e`0�e`0C1; emC1

2

�emC3
2

2†i :

By (20),
w�1.e`0 � e`0C1/D e�.`0C1/� e�.`0/ 2 �z;

w�1.emC1
2

� emC3
2

/D e
�.mC1

2
/
� e

�.mC3
2
/
2 �z :

Then �.`0C 1/D �.12.mC 1//Dm�n, which contradicts the assumption that �
is a permutation, for `0C 1 � i , .mC 1/=2 � i C 1, `0C 1 6D .mC 1/=2. Hence
w�1.†i /\�

0
z 6D∅, concluding the proof for G D SO.2nC 1/.

Assume now G D SO.2n/; then we have � D �e1 � e2, j̨ D ej � ejC1
for j D 1; : : : ; n � 1, and ˛n D en�1 C en. Let w be a Weyl element of G
such that w�1.†i / � ˆC; then, there is a permutation � of f1; 2; : : : ; ng and
"1; "2 2 f˙1g satisfying �.1/>�.2/> � � �>�.i/, �.iC1/<�.iC2/< � � �<�.n/,
.�1/i�1"1"2 D 1, such that

(22) w�1.ej /D

8̂̂̂<̂
ˆ̂:
"1e�.1/ if j D 1;
�e�.j / if 2� j � i;
e�.j / if i C 1� j � n� 1;

"2e�.n/ if j D n:

Assume on the contrary that w�1.†i /\� 0z D∅; then

(23) w�1.†i /� �z :

By Lemma 2.8, �0 is of the form Œm; 2n�m� 2; 12� or Œm; 2n�m�.
Assume first mD 2n�3 >max.2i �1; 2n�2i �1/, �0D Œ2n�3; 13�; then �z

is the set in (12). Since i 2 Insp, Insp is nonempty and n� 4. Hence 1; 2; n� 1; n
are four distinct numbers. On the other hand, ˙e1�e2; en�1˙en 2†i , so by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Hence the cardinality of f�.1/; �.2/; �.n� 1/; �.n/g is 3, which contradicts the
assumption that � is a permutation.

Second, assume �0D Œm; 2n�m�2; 12� for some odd m with m< 2n�3, m>
max.2i�1; 2n�2i�1/. Then �z is the set in (13). Since˙e1�e2; en�1˙en 2†i ,
we have, by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Then f�.1/; �.n/g D fn� 1; ng and f�.2/; �.n� 1/D fn� 2; n� 3g. If e2 � e3;
en�2� en�1 2†i , then by (23),

w�1.e2�e3/D e�.3/�e�.2/ 2�z; w�1.en�2�en�1/D e�.n�2/�e�.n�1/ 2�z :
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Then f�.3/; �.n� 2/g D fn� 5; n� 4g. Since m> 2i � 1, m> 2n� 2i � 1,

n�
mC 3

2
<min.i � 1; n� i � 1/;

the procedure can be repeated n� mC3
2

times. Then for `D 1; 2; : : : ; n� mC1
2

,

f�.`/; �.nC 1� `/g D fn� 2.`� 1/; n� 2.`� 1/� 1g:

In particular, for `0 D n�
mC1

2
, we have nC 1� `0 D

mC3

2
,

f�.`0/; �.nC 1� `0/g D
n
�.`0/;

mC3

2

o
D fm�nC 3;m�nC 2g:

Since m> 2i � 1, we have m> 2n� 2i � 1,

`0Dn�
mC 1

2
<i; iC1<

mC 3

2
DnC1�`0; e`0�e`0C1; emC1

2

�emC3
2

2†i :

By (23),
w�1.e`0 � e`0C1/D e�.`0C1/� e�.`0/ 2 �z;

w�1.emC1
2

� emC3
2

/D e
�.mC1

2
/
� e

�.mC3
2
/
2 �z :

Then �.`0C 1/ D �.12.mC 1// D m� nC 1, which contradicts the assumption
that � is a permutation, for `0C 1� i , 12.mC 1/� i C 1, `0C 1 6D 1

2
.mC 1/.

Third, assume �0 D Œm; 2n�m� for some odd m � max.2i � 1; 2n� 2i C 1/.
Then �z is the set in (14). Since ˙e1� e2; en�1˙ en 2†i , we have, by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Then �.1/D �.n/D n, which contradicts the assumption that � is a permutation.
Fourth, assume n is even and �0 D Œn2�. Then �z is either the set in (16) or the

set in (17). Since ˙e1� e2; en�1˙ en belong to †i , by (23),

w�1.˙e1�e2/De�.2/˙�1e�.1/2�z; w�1.en�1˙en/De�.n�1/˙�2e�.n/2�z :

Then �.1/D �.n/D n, which contradicts the assumption that � is a permutation.
Hence w�1.†i /\� 0z 6D∅. This concludes the proof for G D SO.2n/.

Assume now G D Sp.2n/; then we have � D �2e1, j̨ D ej � ejC1 for
j D 1; : : : ; n�1, and ˛nD 2en. Since w�1.†i /�ˆC, there is a permutation � of
f1; 2; : : : ; ng, satisfying �.1/>�.2/> � � �>�.i/, �.iC1/<�.iC2/< � � �<�.n/,
such that

(24) w�1.ej /D

�
�e�.j / if 1� j � i;
e�.j / if i C 1� j � n:

By Lemma 2.8, �0 D Œm; 2n�m� for some even m>max.2i; 2n� 2i/. Then �z
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is the set in (18). Assume on the contrary that w�1.†i /\� 0z D∅; then

w�1.†i /� �z :

Since �2e1; 2en 2†i , we have

w�1.�2e1/D 2e�.1/ 2 �z; w�1.2en/D 2e�.n/ 2 �z :

Then f�.1/; �.n/g D fn� 1; ng. If e1� e2; en�1� en 2†i ,

w�1.e1� e2/D e�.2/� e�.1/ 2 �O 0 ; w�1.en�1� en/D e�.n�1/� e�.n/ 2 �O 0 :

Then f�.2/; �.n� 1/g D fn� 3; n� 2g. Since m> 2i and m> 2n� 2i , we have

n�
m

2
<max.i; n� i/;

the above procedure can be repeated n� m
2

times. Then for `D 1; 2; : : : ; n� m
2

,

f�.`/; �.nC 1� `/g D fn� 2.`� 1/; n� 2.`� 1/� 1g:

In particular, for `0 D n�
m

2
and nC 1� `0 D

m

2
C 1, we have

f�.`0/; �.nC 1� `0/g D
n
�.`0/; �

�
m

2
C 1

�o
D fm�nC 1;m�nC 2g:

Since m> 2i , m> 2n� 2i ,

`0 D n�
m

2
< i; i C 1 <

m

2
C 1D nC 1� `0; e`0 � e`0C1; em2

� em
2
C1 2†i :

By assumption,

w�1.e`0 � e`0C1/D e�.`0C1/� e�.`0/ 2 �O 0 ;

w�1.em
2
� em

2
C1/D e�.m

2
/� e�.m

2
C1/ 2 �O 0 :

Then �.`0C 1/D �.m=2/Dm�n. But i � `0C 1 6Dm=2 > i , which contradicts
the assumption that � is a permutation. Hence w�1.†i /�ˆC. This conclude the
proof for G D Sp.2n/. �

Let AD A.S/ be the apartment of B.G/ defined by the maximal split torus S
of G; see Section 2B. Let r be a positive integer. F �A is called an r-facet if F is
connected and there is a finite subset ˆF of ˆaf such that

 .x/D r for all x 2 F;  2ˆF :

Here ˆaf is the set of affine roots associated to S . For more details on r-facets, see
[DeBacker 2002]. Since r is integer, the r-facet is in fact the usual facet.



190 QIN YUJUN

Lemma 3.4. For i 2 Insp, let w be a Weyl element satisfying w�1.†i / � ˆC.
Let O 0; O i be nilpotent orbits in g corresponding to .�0; .q0j // or .�0; �; �/ and
.�i ; .qj // respectively, with O 0 > O i . Let z 2 O 0 be the nilpotent element in (6),
(8), (10), (15), and let r > 0 a positive integer. Then there is an r-facet F such that
yi 2 @F and

.wN 0�4w
�1
\Gyi ;r/Gyi ;rC �GF;rC:

Here yi is the vertex of the fundamental chamber C defined in Section 2B and N 0
�j

is the object defined in Section 2F for any sl2 triple fz; h; z0g attached to z in g.

Proof. Let �z �ˆC be the set defined in (7), (9), (11), (13), and set � 0z Dˆ
Cn�z .

By Lemma 3.3, w�1.†i /\� 0z 6D∅. Take ˇ 2†i such that w�1.ˇ/ 2 � 0z and, let
xˇ be an arbitrary point in the apartment A such that 0<ˇ.xˇ / < 1

2
and ˛.xˇ /D 0

for all ˛ 2†i distinct from ˇ. Let F be the smallest r-facet containing xˇ . Then
yi 2 @F and F satisfies the requirement of the lemma.

In fact, let ˆi be the root subsystem generated by †i and ˆCi the subset of
positive roots of ˆi generated by †i . Then by definition

gF;rC WD gxˇ;rC D

� Y
ı2ˆi

ı.xˇ/>ı.yi /

uı;r

�
C gyi ;rC � gyi ;r :

Note that the following sets are the same:

fı 2ˆi j ı.xˇ / > ı.yi /g D fı 2ˆ
C
i j ı�ˇ 2ˆ

C
i g

D fı 2ˆCi j ı 2 ˇCˆ
C
i g

D fw.˛/ 2ˆCi j˛ 2 w
�1.ˇ/Cw�1.ˆCi /g:

By Lemma 3.3, w�1.ˇ/ 2 � 0z; that is, the root space uw�1.ˇ/ � n0
�4. On the other

hand, since w�1.†i / � ˆC, w�1.ˆCi / � ˆ
C. For all ı 2 ˆC, uı 2 n0

�0 (see
Appendix), so u˛ � n0

�4 for all ˛ 2ˆC\ .w�1.ˇ/Cw�1.†i //.
Hence gF;rC � wn

0
�4w

�1\ gyi ;r C gyi ;rC, and thus

.wN 0�4w
�1
\Gyi ;r/Gyi ;rC �GF;rC: �

Proposition 3.5. Let � D ���I�0 2…
0.'/ be an irreducible representation defined

in Section 2D such that i D i.�0/ 2 Insp. Let O 0; O i be nilpotent orbits in g

corresponding to .�0; .q0j // or .�0; �; �/ and .�i ; .qj // respectively, with O 0 >O i .
Let z 2O 0 be the nilpotent element in (6), (8), (10), (15), and let N 0

�j be the object
defined in Section 2F for any sl2 triple fz; h; z0g attached to z in g.

LetN 0DN 0
�2 and z the character ofN 0 defined in (3). Let v be a representative

of a double coset in GyinG=N
0 and  vz the character of vN 0v�1\Gyi defined as
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follows: for all x 2 vN 0v�1\Gyi ,

(25)  vz .x/ WD  z.v
�1xv/:

Let r > 0 be a positive integer. Then there is an r-facet F such that yi 2 @F and

.vN 0v�1\Gyi ;r/Gyi ;rC=Gyi ;rC �GF;rC=Gyi ;rC;  vz jGF;rC D 1:

Proof. Let S;B be the split torus and the Borel subgroup ofG defined in Section 2B
and U the unipotent subgroup of B . Let v be a representative of GyinG=N

0; then,

v D w � a �u

for some Weyl element w of G such that w�1.†i /�ˆC, a 2 S , and u 2 U=N 0,
where †i is the set defined in Lemma 3.3 (see [Reeder 1997]).

Note that a; u normalize N 0, and let  0 D  auz , the character of N 0 defined in
(25) with v replaced by au. By Lemma 3.4, there is an r-facet F with yi 2 @F
such that

.vN 0v�1\Gyi ;r/Gyi ;rC � .wN
0
�4w

�1
\Gyi ;r/Gyi ;rC �GF;rC:

For all x 2GF;rC,

v�1xv 2 .au/�1w�1ŒwN 0�4w
�1�wau� .au/�1N 0�4auDN�4:

By the definition of  z ,  vz .x/D  z.v
�1xv/D 1. �

We can now conclude the proof of Theorem 3.1. By the discreteness criterion in
[DeBacker and Reeder 2010, Lemma 2.4],

�.�/ WD fx 2B.G/ jV
Gx;rC
� 6D 0g DG:yi ;

and the Gyi ;r=Gyi ;rC-module V
Gyi ;rC
� is cuspidal; i.e., for any r-facet F with

yi 2 @F ,

(26) .V
Gyi ;rC
� /LF D 0:

Here LF DGF;rC=Gyi ;rC and V� is the representation space of � .
Assume on the contrary HomN 0.�;  z/ 6D 0. By the construction of � in [Adler

1998], � D c � IndGGyi
.„/ for some irreducible representation „ of Gyi . Let V„

be the space of „. Then

HomN 0.�;  z/D
Y

v2GyinG=N
0

HomvN 0v�1\Gyi .„; 
v
z /;

and there is some v 2GyinG=N
0 such that HomvN 0v�1\Gyi .„; 

v
z / 6D 0. Then

HomvN 0v�1\Gyi ;r .„; 
v
z / 6D 0:
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Applying Proposition 3.5, there is an r-facet F such that yi 2 @F and V GF;rC„ 6D 0.

Then V GF;rC� 6D 0, which contradicts the discreteness criterion (26). �

Proof of Theorem 3.2. Let f be the algebraic closure of f. Assume the characteristic
p of f is large enough that p is a good prime in the sense of [Carter 1972].

Keep the notation of Proposition 3.5. Then i D i.�0/2 Insp and Gyi ;r=Gyi ;rCD
g1.f/� g2.f/, with g1 D so.2i; f / or sp.2i; f / (see Section 2B). Let �j 2 gj .f/

.j D 1; 2/ be regular nilpotent elements and f�j ; hj ; � 0j g an sl2 triple in gj .f/

attached to �j . Let

� D .�1; �2/; hD .h1; h2/; � 0 D .�1; �2/:

Then .�; h; � 0/ is an sl2 triple in g1.f/� g2.f/.
Recall that if �0 2 S.�/, i D i�0 2 Insp, then T WD T�0 D T1 �T2 is a maximal

anisotropic torus in Gyi . Let T WD T�0 be the maximal anisotropic unramified torus
in G associated to .yi ;T�0/ in Section 2C. Let X DX�0 2 tD Lie.T / be the good
element of depth �r defining ���I�0 , whose image under the natural projection

gyi ;�r ! gyi ;�r=gyi ;�rC ' g1 � g2:

is denoted by X D .X1; X2/. Since X is a good element in t with CG.X/D T ,
Xj is a regular semisimple element in Lie.Tj /.f/ for j D 1; 2.

LetOXj be the orbit ofXj in gj .f/=Gj .f/. By [Slodowy 1980, §7.4, Corollary 2],
the Slodowy slice

(27) V j WD �j CCgj .f/
.� 0j /

intersects OXj at a unique f-rational point X 0j 2 gj .f/.

Since X is good, CGj .f/
.Xj / is connected [Carter 1985, Theorem 3.5.3]. Then

there is a gj 2 Gj .f/ such that Ad.gj /.Xj /DX 0j [Digne and Michel 1991, §3.25].
Moreover T0j D CGj .X

0
j /D Ad.gj /.Tj / is a maximal anisotropic torus of Gj .f/,

with Gj .f/-conjugate to Tj . Let gD .g1; g2/2G.f/; then, Ad.g/.T1�T2/DT0 WD

T01 �T02.
Let g 2 Gyi ;0 � gyi ;0C such that g projects to g, T 0 WD Ad.g/.T /, and X 0 WD

Ad.g/.X/2 t0. Then T 0 is the maximal unramified torus inG, associated to .yi ;T0/,
X 0 is a good element in gyi ;�rngyi ;�rC, whose image under the natural projection
in Gyi is X 0 D .X 01; X

0
2/. Note that X 0 2 V 1.f/�V 2.f/, where

V 1.f/D �1CCg1.f/.�
0
1/; V 2.f/D �2CCg2.f/.�

0
2/

are sets of f-rational points of V 1; V 2 respectively. Without loss of generality,
assume X D X 0. Then the natural image X of X in gyi ;�r=gyi ;�rC belongs to
V 1.f/�V 2.f/.
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By [DeBacker 2002, Corollary 4.3.2], let .�; h; � 0/ 2 gyi ;�r � gyi ;0� gyi ;r be an
sl2 triple in g such that f�; h; � 0g lifts f�; h; � 0g respectively and O 0 D Ad.G/.�/
the nilpotent orbit of � in g. By the choice of f�; h; � 0g, O 0DO i is a nilpotent orbit
corresponding to .�i ; .qj //. Let N 0

�j be the object defined in Section 2F for the
triple f�; h; � 0g attached to � in g.

We can now conclude the proof of Theorem 3.2. Let N 0 DN 0
�2 and let S� be

the character  � of N 0:

S�.expY /D  ı tr.�Y /; Y 2 Lie.N 0/:

On the other hand, by the construction in [Adler 1998], ���I�0 D c � IndG.k/Gyi
.„/,

while „D Ind
Gyi
TJ .��/. Here

J D expyi .J/; JD tyi ;r C t?
yi ;

r
2
;

JC D expyi .J
C/; JC D tyi ;r C t?

yi ;
r
2
C
;

with t? the orthogonal complement of t in g with respect to the killing form. Here
TJ and TJC are subgroups of G, since T normalizes J and JC, and �� is the
irreducible representation of TJ such that ��jTJC is a multiple of �, where � is
the character of TJC extending ��0 on T , such that

�.expyiY /D  .tr.X �Y // for all Y 2 JC:

Note that T is anisotropic andN 0\TJ DN 0\J �N 0\JC, whileN 0\J=N 0\JC

is an isotropic subspace over f with respect to the nondegenerate symplectic form
defined on J=JC by .n; n0/ 7!  �.Œlogn; logn0�/. On the other hand, since X 2
V 1.f/�V 2.f/, �jJC\N 0 D  � jJC\N 0 . By the definition of ��,

HomN 0\TJ .��;  �/D HomN 0\J .��;  �/ 6D 0:

Apply Lemma 3.6 below with G1 replaced by Gyi , G2 by N 0 \Gyi , and H1 by
TJ ; then,

(28) HomN 0\Gyi .„; �/ 6D 0:

Since HomN 0.���I�0 ; S�/D
Q
v2Gyi nG=N

0 HomvN 0v�1\Gyi .„; 
v
�
/, by (28),

HomN 0.���I�0 ;  �/ 6D 0:

HenceO 0 2Nwh.���I�0/. Combining with Theorem 3.1,O 0 2Nwh;max.���I�0/. �

Lemma 3.6. Let G1 be a compact subgroup, and H1; G2 open compact subgroups
of G1. Let .�; V� / (resp. .�; V�/) be a smooth representation of H1 (resp. G2). If
HomH1\G2.�; �/ 6D 0, then HomG2.IndG1H1�; �/ 6D 0.



194 QIN YUJUN

Proof. The proof is similar to that of Proposition 2.1 in [Arthur 2008]. Consider a
nonzero A 2HomH1\G2.�; �/, and define JA 2HomG2.IndG1H1�; �/ as follows: for

arbitrary � 2 IndG1H1� ,

JA� D
X

H1\G2nG2

�.g0/�1A.�.g0// 2 V� :

For all g 2G2,

JA.Ind�/.g/� D
X

H1\G2nG2

�.g0/�1A.Ind�.g/�/.g0/

D

X
H1\G2nG2

�.g0/�1A�.g0g/

D �.g/JA�:

Take some v 2 V� such that Av 6D 0. Define �v.g/ D �.h/v if g D h 2 H1 and
�v.g/D 0 if g 62H1. Then �v 2 IndG1H1� , and JA�v D Av 6D 0, so JA is a nonzero

element in HomG2.IndG1H1�; �/. �

Appendix: Rational nilpotent orbits

In this section, we show by example how to choose a particular element from a
rational nilpotent orbit parametrized by .�; .qj //.

Let W be a .2nC 1/-dimensional symmetric k-space as defined in Section 2A,
with bilinear form qW . Let z be a nonzero nilpotent element in gD so.W /� gl.W /,
and set G D SO.k;W /. Let � W sl2! g be a Lie algebra homomorphism with

�

��
0 0

1 0

��
D z:

Identify a scalar t 2k with the diagonal matrix diag.t; t�1/2 sl2.k/. As in [Mœglin
1996], for i 2 Z, let

g.i/D fY 2 g jAd ı�.t/.Y /D i tY for all t 2 kg;

W.i/D fv 2W j�.t/.v/D i tv for all t 2 kg:

Then gD
L
i2Z g.i/, W D

L
i2ZW.i/.

Assume the orbit O D Ad.G/.z/ of z is parametrized by .�; .qi // with � D
Œm; 2n�m; 1�, where m> n is an odd number. For i D 1; : : : ; 2nC 1, let

(29) Wi D Ker.zi /=.Ker.zi�1/C z Ker.ziC1//:
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Then by [Waldspurger 2001, §I.6], dimWi D ci .�/ and qi is the nondegenerate
quadratic form on Wi defined by

(30) qi .v; v
0/D .�1/Œ

i�1
2
�qW .z

i�1v; v0/ .v; v0 2Wi /;

where v (resp. v0) is an inverse image of v (resp. v0) in Ker.zi /.
Assume m D 2n� 1; in this case � D Œ2n� 1; 12�, c1.�/ D 2, c2n�1.�/ D 1.

Then dimW1 D 2 and dimWm D 1. By (29), let v1; v01 2 Ker z, vm 2 Ker zm such
that

Ker z D z Ker z2˚ kv1˚ kv01;

Ker zm D .Ker zm�1C z Ker zmC1/˚ kvm:

Let v1; v01 be the natural images of v1; v01 in W1 and vm that of vm in Wm. Without
loss of generality, assume v1; v01 are orthogonal to each other under q1; then
q1 D hq1.v1; v1/; q1.v

0
1; v
0
1/i,

(31) qm D hqm.vm; vm/i D .�1/
m�1
2 qW .z

m�1vm; vm/:

In the following, identify qm with qm.vm; vm/.
Through � W sl2 ! so.W / � gl.W /, W is a representation space of sl2. In

fact, since OX corresponds to .�; .qi //, W ' Vm ˚ V1 ˚ V1, where Vj is the
irreducible representation of sl2 of dimension j . By the representation theory of
sl2, v1; v01 2 W.0/ and vm 2 W.m� 1/. Modifying by elements in z Ker z2, we
can assume further that the subspace generated by v1; v01 is V1˚V1.

Then 06Dz`.vm/ 2W.m� 1� 2`/ for all `D 1; : : : ; m� 1, and

W.m� 1/D kvm;

W.m� 3/D kzvm;

:::
:::

W.2/D kzn�2vm;

W.0/D kzn�1vm˚ kv1˚ kv
0
1;

W.�2/D kznvm;

:::
:::

W.�.m� 1//D kzm�1vm:

For j D 1; : : : ; m, let Fj D
L
`��.m�1/C2.j�1/W.`/ be a subspace of W . Then

0D F0 � F1 � F2 � � � � � Fm DW;
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and zFj D Fj�1 for j D 1; : : : ; m. Take a basis of W such that

e1 D vm; e�1 D .�1/
m�1
2 q�1m zm�1vm;

e2 D zvm; e�2 D .�1/
m�3
2 q�1m zm�2vm;

:::
:::

en�1 D z
n�2vm; e�.n�1/ D .�1/q

�1
m znC1vm:

By (30), qW .ei ; ej /D 0 unless i C j D 0, and qW .ei ; e�i /D 1. Note that W.0/
has orthogonal decomposition

W.0/D kzn�1vm˚ kv1˚ kv
0
1

under qW jW.0/. By (30), qW .zn�1vm; zn�1vm/ D qm.vm; vm/, qW .v1; v1/ D
q1.v1; v1/, and qW .v01; v

0
1/D q1.v

0
1; v
0
1/. By (31),

qW jW.0/ D hqW .z
m�1
2 vm; z

m�1
2 vm/; qW .v1; v1/; qW .v

0
1; v
0
1/i

D hqm.vm; vm/; q1.v1; v1/; q1.v
0
1; v
0
1/i

D qm˚ q1:

Because q1˚ qm has the same anisotropic kernel as W , let en; e0; e�n be a basis
of W.0/ such that

qW .en; e�n/D 1; qW .e0; e0/D 1; qW .en; e0/D qW .e�n; e0/D 0:

Then e1; e2; : : : ; en; e0; e�n; : : : ; e�1 is a basis of W , under which the matrix of
qW is JW (defined in Section 2A), and the matrix of z is the lower triangular block
matrix 0BBBBBBBBBBBB@

0

1 0
: : :

: : :

1 0

A� 03
A 0

�1 0
: : :

: : :

1CCCCCCCCCCCCA
;

with

A� D

0@ambm
cm

1A ; AD�
�
cm bm am

�
;

where .am; bm; cm/ are the coordinates of zn�1vm in the basis fen; e0; e�ng. Note
that in this case, AA� D�qm.
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THE NATURAL FILTRATIONS OF FINITE-DIMENSIONAL
MODULAR LIE SUPERALGEBRAS OF WITT AND

HAMILTONIAN TYPE

KELI ZHENG, YONGZHENG ZHANG AND WEI SONG

We study the natural filtrations of the finite-dimensional modular Lie super-
algebras W(n, m) and H(n, m). In particular, the natural filtrations which
are invariant relative to the automorphisms of the Lie superalgebras are
employed in order to characterize the Lie superalgebras themselves.

1. Introduction

In mathematics, a Lie superalgebra is a generalization of a Lie algebra including
a Z2-grading. Lie superalgebras are also important in theoretical physics where
they are used to describe the mathematics of supersymmetry [Varadarajan 2004].
Although many structural features of Lie superalgebras over fields of characteristic
zero (see [Kac 1977; Scheunert 1979]) are well understood, there seem to be very
few general results on modular Lie superalgebras. In particular, the classification
problem is still open for the finite-dimensional simple Lie superalgebras over
fields of positive characteristic (see [Bouarroudj and Leites 2006; Zhang 1997]
for example). The treatment of modular Lie superalgebras necessitates different
techniques which are set forth in [Kochetkov and Leites 1992; Petrogradski 1992].
Elduque [2007] obtained two new simple modular Lie superalgebras. These Lie
superalgebras share the property that their even parts are orthogonal Lie algebras
and the odd parts are their spin modules. In [Zhao 2010] modular representations
of basic classical Lie superalgebras were studied. The Lie superalgebras of Cartan
type play an extremely important role in the study of modular Lie superalgebras.
Recent works on them can be found in [Chen and Liu 2011; Yuan et al. 2011; Zhang
and Fu 2002].

It is well known that filtration techniques are of great importance in the struc-
ture and the classification theories of Lie (super)algebras (see [Block and Wilson
1988; Strade 1993; Kac 1977; Scheunert 1979]). We know that the simple Lie
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(super)algebras of Cartan type possess various natural filtration structures. For
the filtration structures, the invariance may be used to make an insight for the
intrinsic properties and the automorphism groups of those Lie (super)algebras. The
natural filtrations of finite-dimensional modular Lie algebras of Cartan type were
proved to be invariant in [Kac 1974; Kostrikin and Shafarevich 1969]. The finite-
dimensional simple modular Lie superalgebras W , S, and H of Cartan type were
defined in [Zhang 1997] and their natural filtrations were investigated in [Zhang and
Fu 2002; Zhang and Nan 1998]. Recently, the natural filtrations of odd Hamiltonian
superalgebras and special odd Hamiltonian superalgebras of formal vector fields
were investigated in [Ren et al. 2012].

The finite-dimensional modular Lie superalgebras W (n,m) and H(n,m) were
first introduced in [Awuti and Zhang 2008] and [Ren et al. 2011], respectively. In
these papers, their derivation superalgebras were also determined. The starting
point of our studies is the investigation of the ad-nilpotent elements of W (n,m).
Then the natural filtration of W (n,m) is proved to be invariant by the determined
ad-nilpotent elements. In the case of H(n,m), the invariance of the natural filtration
is studied by the methods of minimal dimension of image spaces and the derivation
superalgebras. In view of the above invariance of the natural filtrations we describe
the intrinsic properties of these modular Lie superalgebras.

This paper is arranged as follows. A brief summary of the relevant concepts and
notations in finite-dimensional modular Lie superalgebras W (n,m) and H(n,m) is
presented in Section 2. In Section 3, by using the ad-nilpotent elements of the Lie
superalgebras W (n,m), we show that the natural filtration of W (n,m) is invariant
under their automorphisms. In Section 4, the intrinsic properties with respect to
the natural filtration of finite-dimensional modular Lie superalgebras H(n,m) are
investigated. Besides, the isomorphic relation between H(n,m) and H(n′,m′) is
also proved by the method of the natural filtration.

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of characteristic p > 2,
n is an integer greater than 1. Let Z, N and N0 denote the sets of integers, positive
integers and nonnegative integers. Let Z2 = {0̄, 1̄} be the residue class ring of
integers modulo 2.

Let 3(n) be the Grassmann algebra over F in n variables x1, x2, . . . , xn . Set
Bk = {〈i1, i2, . . . , ik〉 | 1 ≤ i1 < i2 < · · · < ik ≤ n} and B(n) =

⋃n
k=0 Bk , where

B0 = ∅. For u = 〈i1, i2, . . . , ik〉 ∈ B(k), set |u| = k, {u} = {i1, i2, . . . , ik}, and
xu
= xi1 xi2 · · · xik (|∅| = 0, x∅

= 1). Then {xu
|u ∈ B(n)} is an F-basis of 3(n).

Let 5 denote the prime field of F, that is, 5 = {0, 1, . . . , p − 1}. Suppose
that {z1, z2, . . . , zm} is a 5-linearly independent finite subset of F. Let G =
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i=1 λi zi |λi ∈5

}
. Then G is an additive subgroup of F. Let F[y1, y2, . . . , ym] be

the truncated polynomial algebra satisfying y p
i = 1 for all i = 1, 2, . . . ,m. For every

element λ=
∑m

i=1 λi zi ∈ G, define yλ = yλ1
1 yλ2

2 · · · y
λm
m . Then yλyη = yλ+η for all

λ, η ∈ G. Let T(m) denote F[y1, y2, . . . , ym]. Then T(m)=
{∑

λ∈G aλyλ | aλ ∈ F
}
.

We denote the tensor product by U = 3(n)⊗ T(m). Then U is an associative
superalgebra with Z2-gradation induced by the trivial Z2-gradation of T(m) and the
natural Z2-gradation of 3(n), that is, U = U0̄⊕U1̄, where U0̄ = 3(n)0̄⊗T(m)
and U1̄ =3(n)1̄⊗T(m).

For f ∈3(n) and α ∈T(m), we abbreviate f ⊗α as f α. Then the elements xu yλ

with u∈B(n) and λ∈G form an F-basis of U. It is easy to see that U=
⊕n

i=0 Ui is a
Z-graded superalgebra, where Ui = spanF{x

u yλ | u ∈ B(n), |u| = i, λ ∈ G}. In par-
ticular, U0=T(m) and Un = spanF{x

π yλ |λ∈G}, where π := 〈1, 2, . . . , n〉 ∈B(n).
In this paper, if A = A0̄⊕ A1̄ is a superalgebra (or Z2-graded linear space), let

hg(A)= A0̄ ∪ A1̄; that is, hg(A) is the set of all Z2-homogeneous elements of A.
If deg x occurs in some expression, we regard x as a Z2-homogeneous element and
deg x as the Z2-degree of x . Let A =

⊕n
i=−r Ai be a Z-graded superalgebra. If

x ∈ Ai , we call x a Z-homogeneous element, i the Z-degree of x and set zd(x)= i .
If y ∈ A, let µ(y) denote the nonzero Z-homogeneous part of y with the least
Z-degree.

Let pl(A)= pl0̄(A)⊕ pl1̄(A) denote the general linear Lie superalgebra of the
Z2-graded space A. For ϕ ∈ plθ (A) with θ ∈ Z2, if

ϕ(xy)= ϕ(x)y+ (−1)θ deg x xϕ(y)

for all x ∈ hg(A) and y ∈ A, then ϕ is called a derivation of A with Z2-degree θ .
Let Derθ A denote the set of all derivations of A with Z2-degree θ . Then Der A =
Der0̄ A⊕Der1̄ A is a subalgebra of pl(A) (see [Scheunert 1979]), which is called
the derivation superalgebra of A.

Set Y= {1, 2, . . . , n}. Given i ∈ Y, let ∂/∂xi be the partial derivative on 3(n)
with respect to xi . For i ∈ Y , let Di be the linear transformation on U such that
Di (xu yλ) = (∂xu/∂xi )yλ for all u ∈ B(n) and λ ∈ G. Then Di ∈ Der1̄ U for all
i ∈ Y since ∂/∂xi ∈ Der1̄(3(n)).

Suppose that u ∈ Bk ⊆ B(n) and i ∈ Y. When i ∈ {u}, we denote the uniquely
determined element of Bk−1 satisfying {u−〈i〉} = {u} \ {i} by u−〈i〉, and denote
the number of integers less than i in {u} by τ(u, i). When i 6∈ {u}, we set τ(u, i)= 0
and xu−〈i〉

= 0. Therefore, Di (xu)= (−1)τ(u,i)xu−〈i〉 for any i ∈ Y and u ∈ B(n).
We define ( f D)(g) = f D(g) for f, g ∈ hg(U) and D ∈ hg(Der U). Since the

multiplication of U is supercommutative, it follows that f D is a derivation of U.
Let

W (n,m)= spanF{x
u yλDi | u ∈ B(n), λ ∈ G, i ∈ Y}.
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Then W (n,m) is a finite-dimensional Lie superalgebra contained in Der U. A direct
computation shows that

(2-1) [ f Di , gD j ] = f Di (g)D j − (−1)deg f Di deg gD j gD j ( f )Di ,

where f, g ∈ hg(U) and i, j ∈ Y.
Let DH :U→ W (n,m) be the linear mapping such that for every f ∈ hg(U),

DH ( f ) =
∑n

i=1 fi Di , where fi = (−1)deg f Di ( f ). It is easy to see that DH is
an even linear mapping and Di ( f j ) = −D j ( fi ) for all i, j ∈ Y. Let H(n,m) =
{DH ( f ) | f ∈ U} and H(n,m) =

{
DH ( f ) | f ∈

⊕n−1
i=0 Ui i

}
. Then H(n,m) is a

finite-dimensional Hamiltonian Lie superalgebra, with a Z-gradation H(n,m)=⊕n−3
i=−1 Hi (n,m), where Hi (n,m)= {DH (xu yλ) | u ∈ B(n), |u| = i +2, λ ∈ G}. It

was shown in [Ren et al. 2011] that H(n,m) is a subalgebra of W (n,m) and that

[DH ( f ), DH (g)] = DH

( n∑
i=1

(−1)deg f Di ( f )Di (g)
)
,(2-2)

[D j , DH ( f )] = DH (D j ( f )),(2-3)

where f, g ∈ hg(U) and j ∈ Y .
Let 2 := T (m)m = T (m)×· · ·×T (m). For every θ = (h1(y), . . . , hm(y)) ∈2,

we define θ̃ : G → T (m) by θ̃ (λ) =
∑m

j=1 λ j h j (y) for λ =
∑m

j=1 λ j z j ∈ G. It
is easy to check that θ̃ (λ + η) = θ̃ (λ) + θ̃ (η) for λ, η ∈ G. For every θ ∈ 2,
let Dθ : H(n,m) → H(n,m) be the linear mapping given by Dθ DH (xu yλ) =
θ̃ (λ)DH (xu yλ) for xu yλ ∈U. A direct verification shows that Dθ ∈ Der0̄ H for all
θ ∈2. Put � := {Dθ | θ ∈2}.

3. The natural filtration of W(n, m)

In this section, W always denotes Lie superalgebras W (n,m). Then W =
⊕n−1

k=−1 Wk

is Z-graded, where Wk = spanF{x
u yλD j | |u| = k+ 1, j ∈ Y}.

Adopting the notion of [Jin 1992], the element x of Lie superalgebra L is called
ad-nilpotent if ad x is a nilpotent linear transformation. The set of all ad-nilpotent
elements of L is denoted by nil(L). Let L( j)=

⊕
k≥ j Lk ; then {L( j) | j ≥−1} is the

natural filtration of L . If L is Z-graded and finite-dimensional, then L−1 ⊆ nil(L)
and L(1) ⊆ nil(L).

Let Mn(F) denote the set of all n×n matrices over F. Notice that dim T (m)= pm .
Without loss of generality, we may suppose that {y1, . . . , ypm } is a standard F-basis
of T (m). If

z =
n∑

i, j=1

pm∑
q=1

ai jq xi yq D j ∈W0,

where ai jq ∈ F, let
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ρ(z)=

(
A1

...
Apm

)
npm×npm

where Aq = (ai jq)n×n ∈ Mn(F).

Lemma 3.1. Suppose that z =
∑n

i, j=1
∑pm

q=1 ai jq xi yq D j ∈W0. If z is ad-nilpotent,
then ρ(z) is a nilpotent matrix.

Proof. Let 0 be the representation of W0 with values in W−1. Then 0(z) = ad z
and the matrix of 0(z) over the basis {y1 D1, . . . , y1 Dn, . . . , ypm D1, . . . , ypm Dn}

of W−1 is

A =

(
−(A1)

t

...
−(Apm )t

)
npm×npm

where Aq = (ai jq)n×n ∈ Mn(F). Since z is ad-nilpotent, the representation 0(z)
is a nilpotent linear transformation. This implies that A is nilpotent. Therefore,
ρ(z)=−At is a nilpotent matrix. �

Lemma 3.2. Let z =
∑n−1

i=k zi , where zi ∈ Wi and k ≤ n − 1. If z ∈ nil(W ) and
k ≥ 0, then zk ∈ nil(W ).

Proof. Suppose that z = zk + z′, where zk ∈ Wk and z′ ∈
⊕n−1

i=k+1 Wi ⊆ W(k+1).
Since z ∈ nil(W ), we may assume that (ad z)t = 0. Let x is a Z-homogeneous
element of W with Z-degree i . Then (ad z)t(x)= 0. On the other hand,

(ad z)t(x)= (ad(zk + z′))t(x)= (ad zk)
t(x)+ h,

which implies (ad zk)
t(x)+ h = 0. It is easy to see that (ad zk)

t(x) ∈ W(kt+i) and
h ∈ W(kt+i+1) =

⊕
j≥kt+i+1 W j . Thus (ad zk)

t(x) = 0. Since x is an arbitrary
Z-homogeneous element of W , we have (ad zk)

t(W )= 0. Then (ad zk)
t
= 0, that

is, zk ∈ nil(W ). �

Suppose that Ei j denotes the n×n matrix whose (i, j) element is 1 and otherwise
are zero. Obviously,

(3-1) Ei j Ekl = δ jk Eil,

where δ jk is the Kronecker delta.
If z =

∑n
i, j=1

∑pm

q=1 ai jq xi yq D j ∈W0, where ai jq ∈ F, then

(3-2) ρ(z)=
n∑

i, j=1

ai j1 Ei j +

2n∑
i, j=n+1

ai j2 Ei j + · · ·+

npm∑
i, j=n(pm−1)+1

ai j pm Ei j .

Let 1= {z ∈ nil(W ) | ad z(W )⊆ nil(W )}.
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Lemma 3.3. Suppose that z=
∑n−1

i=−1 zi , where zi ∈Wi . If z ∈1, then z−1= z0= 0.

Proof. Suppose that 0 6= z−1 =
∑n

i=1
∑pm

q=1 aiq yq Di , where aiq ∈ F. Let a jq 6= 0
and j, l ∈ Y such that j, l are distinct. We may assume that d = [z−1, xl x j Dl]. A
direct calculation shows that

d =
[ n∑

i=1

pm∑
q=1

aiq yq Di , xl x j Dl

]
=

pm∑
q=1

(alq x j yq Dl − a jq xl yq Dl).

By (3-1) and (3-2), we have

(ρ(d))t = (−1)t(a j1)
t Ell + (−1)t−1al1(a j1)

t−1 E jl

+ (−1)t(a( j+n)2)
t E(l+n)(l+n)+ (−1)t−1a(l+n)2(a( j+n)1)

t−1 E( j+n)(l+n)

+ · · ·

+ (−1)t(a( j+pm−n)pm )t E(l+pm−n)(l+pm−n)

+ (−1)t−1a(l+pm−n)pm (a( j+pm−n)pm )t−1 E( j+pm−n)(l+pm−n).

Since (a j1)
t
6= 0, we have (ρ(d))t 6= 0. So ρ(d) is not a nilpotent matrix. By

Lemma 3.1, it shows that d 6∈ nil(W ). By Lemma 3.2, we have [z, xl x j Dl] 6∈ nil(W ).
Then z 6∈1. This contradicts z ∈1, and proves our assertion that z−1 = 0.

Assume that z0 6= 0. Let z0 =
∑n

i, j=1
∑pm

q=1 ai jq xi yq D j , ai jq ∈ F and

l =min{i | ai jλ 6= 0, i, j ∈ Y},(3-3)

t =min{ j | ai jλ 6= 0, i, j ∈ Y}.(3-4)

(i) Suppose that l ≤ t . Let

(3-5) k =max{ j | al jλ 6= 0, j ∈ Y}.

Then alkq 6= 0. It is easy to see that t ≤ k. Since l ≤ t , we have l ≤ k. Therefore,

z0 =

k∑
j=t

pm∑
q=1

al jq xl yq D j +

n∑
i=l+1

n∑
j=t

pm∑
q=1

ai jq xi yq D j .

Assume that l = k. It follows from t ≤ k that t ≤ l. Then t = l, which implies
that

z0 =

pm∑
q=1

allq xl yq Dl +

n∑
i=l+1

n∑
j=t

pm∑
q=1

ai jq xi yq D j .
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Therefore,

ρ(z0)= all1 Ell +

n∑
i=l+1

n∑
j=t

ai j1 Ei j

+a(l+n)(l+n)2 E(l+n)(l+n)+

2n∑
i=l+1+n

2n∑
j=t+n

ai j2 Ei j

+ · · ·

+a(l+n(pm−1))(l+n(pm−1))pm E(l+n)(l+n)

+

npm∑
i=l+1+n(pm−1)

npm∑
j=t+n(pm−1)

ai j pm Ei j

=


A1
B1 C1

...
Apm

Bpm C pm


npm×npm

,

where Ak = a(l+(k−1)n)(l+(k−1)n)q E(l+(k−1)n)(l+(k−1)n) is an (l + (k− 1)n)-by-
(l + (k − 1)n) matrix and q ∈ {1, . . . , pm

}. Since all1 6= 0, we have A1 is
not a nilpotent matrix. Then ρ(z0) is not a nilpotent matrix and z0 6∈ nil(W ).
Lemma 3.2 shows that z 6∈ nil(W ). This is in contradiction with z ∈1; thus
l < k.

Suppose that h ∈Y and h 6= l, k. Let d = [z0, xk Dl]. From (2-1), we obtain

d =
pm∑

q=1

(
alkq xl yq Dl +

n∑
i=l+1

aikq xi yq Dl −

k∑
j=t

al jq xk yq D j

)
.

Since l < k, ρ(d) also has the form
A1
B1 C1

...
Apm

Bpm C pm


npm×npm

.

It follows from alkq 6= 0 that A1 is not a nilpotent matrix. Then ρ(d) is not
nilpotent. So z 6∈ nil(W ) and [z, xk Dl] 6∈ nil(W ). This is in contradiction with
z ∈1.

(ii) Suppose that t < l. Let k =max{i | ai tλ 6= 0} and d ′ = [z, xt Dk]. Imitating (i),
we may prove that ρ(d ′) is also not nilpotent. The desired result follows. �

Lemma 3.4. (i) If z ∈W0 ∩ nil(W ) and h ∈W(1), then z+ h ∈ nil(W ).

(ii) If i , j are distinct elements of Y, then xi yλD j ∈ nil(W ) for all λ ∈ G.
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(iii) If i , j , k are distinct elements of Y, then ax j yλDk + bxi yηDk ∈ nil(W ) and
xi x j yλDk ∈1, where a, b ∈ F and λ, η are arbitrary elements of G.

Proof. (i) A direct verification shows that {ad z} ∪ {ad W(1)} is a weakly closed
subset of nilpotent elements of pl(W ). It was shown in [Jacobson 1962, Theorem 1
of Chapter II] that each element of spanF({ad z} ∪ {ad W(1)}) is a nilpotent linear
transformation of W . Then ad z+ ad h is nilpotent. So z+ h is ad-nilpotent.

(ii) To prove (ad xi yλD j )
p
= 0, we may assume without loss of generality that

i < j . Set η is an arbitrary element of G. If k 6= i , then

(ad xi yλD j )
2(xu yηDk)= [xi yλD j , [xi yλD j , xu yηDk]]

= (−1)τ(u, j)
[xi yλD j , xi xu−〈 j〉yλ+ηDk]

= 0.

In the case of k = i , we have

(adxi yλD j )
3(xu yηDk)= [xi yλD j ,[xi yλD j ,[xi yλD j ,xu yηDi ]]]

= [xi yλD j ,[xi yλD j ,(−1)τ(u, j)xi xu−〈 j〉yλDi−xu yλ+ηD j ]]

= (−1)τ(u, j)
[xi yλD j ,−xi xu−〈 j〉yλD j−xi xu−〈 j〉y2λ+ηD j ]

= 0.

For p > 2 we get (ad xi yλD j )
p(xu yηDk) = 0. Therefore (ad xi yλD j )

p(W ) = 0.
This yields (ad xi yλD j )

p
= 0. Thus xi yλD j ∈ nil(W ).

(iii) According to (ii) and [x j yλDk, xi yηDk] = 0, {ad x j yλDk, ad xi yηDk} is a
weakly closed subset of nilpotent elements of pl(W). So ax j yλDk + bxi yηDk ∈

nil(W ), where a, b ∈ F.
Suppose that l ∈Y\{i, j, k}. Then xi x j yλDk ∈W(1)⊆ nil(W ). Let z=

∑n−1
i=−1 zi ,

where zi ∈Wi . Without loss, we may assume that [xi x j yλDk, z] = f0+ f1, where
f0 = [xi x j yλDk, z−1] ∈W0 and f1 ∈W(1). Let z−1 =

∑n
l=1

∑
η∈G alηyηDl . Then

f0 = [xi x j yλDk,

n∑
l=1

∑
η∈G

alηyηDl] = −
∑
η∈G

(aiηx j yλ+ηDk + a jηxi yλ+ηDk).

It follows that f0 ∈ W0 ∩ nil(W ). Statement (i) shows that f0+ f1 ∈ nil(W ). We
finally obtain xi x j yλDk ∈1 for all λ ∈ G. �

Let Q = {z ∈ nil(W ) | ad z(1)⊆1}.

Lemma 3.5. Q =W(1).

Proof. By the definition of 1, we have W(2) ⊆1. Lemma 3.3 show that 1⊆W(1).
Then [W(1),1] ⊆ [W(1),W(1)] ⊆W(2) ⊆1. Thus W(1) ⊆ Q.
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Next we will prove Q ⊆ W(1). Let z ∈ Q and z =
∑n−1

i=−1 zi , where zi ∈ Wi .
Assume that z−1 =

∑n
l=1

∑
λ∈G alλyλDl 6= 0, alλ ∈ F. Without loss of generality,

we may suppose that ai 6= 0. Let d = xi x j yηDk , where i, j, k are distinct elements
of Y and η is an arbitrary element of G. By Lemma 3.4 (iii), we have d ∈ 1.
Let [z, d] = h0 + h1, where h0 = [z−1, d] ∈ W0 and h1 ∈ W(1). Since ai 6= 0,
we have h0 =

∑
λ∈G(aiλx j yλ+ηDk − a jλxi yλ+ηDk) 6= 0. Lemma 3.3 implies that

h0+ h1 6∈1. It is a contradiction to z ∈ Q. Hence z−1 = 0.
Assume that 0 6= z0 =

∑n
i, j=1

∑pm

q=1 ai jλxi yq D j , ai jq ∈ F and suppose that l and
t are as the definitions in (3-3) and (3-4). We may suppose that l ≤ t (the proof
is similar to the case t < l) and let k be as definition in (3-5). Similar to the first
part of the proof in Lemma 3.3, we have l < k. Suppose that h ∈ Y \ {l, k, t} and
d1 = xk xh Dl . Lemma 3.4 (iii) shows that d1 ∈ 1. Let [z, d1] = g1 + g2, where
g1 = [z0, d1] ∈W1 and g2 ∈W(2). Using (2-1), we have

g1 =

pm∑
q=1

(
alkq xl xh yq Dl −

n∑
i=l+1

aihq xi xk yq Dl −

k∑
j=t

al jq xk xh yq D j

)
.

If h < t , then aihq = 0 in the above equality, where i ∈ Y \ {1, . . . , l − 1}. Thus

[Dh, g1] = −

pm∑
q=1

(
alkq xl yq Dl +

n∑
i=l+1

aihq xi yq Dl + ahhq xk yq Dl − al jq xk yq D j

)
.

By (3-2), the matrix ρ([Dh, g1]) has the form
A1
B1 C1

...
Apm

Bpm C pm


npm×npm

as in Lemma 3.3. Since alkq 6= 0, A1 is not a nilpotent matrix. This implies that
ρ([Dh, g1]) is not nilpotent. Hence [Dh, g1] 6∈ nil(W ). Lemma 3.2 shows that
[Dh, g1+g2] 6∈ nil(W ), that is, [Dh, g1+g2] 6∈1. It is contradict with z ∈ Q. Thus
z0 = 0. Therefore, z ∈W(1) and Q ⊆W(1). �

It is easy to verify that1 and Q are invariant subspaces under the automorphisms
of W . According to Lemma 3.5, W(1) is also invariant under the automorphisms
of W . Since

W(0) = {x ∈W | [x,W(1)] ⊆W(1)},(3-6)

W(i) = {x ∈Wi−1 | [x,W ] ⊆W(i−1)}, i ≥ 1,(3-7)

we easily obtain the following theorem.

Theorem 3.6. The natural filtration of W is invariant under automorphisms of W .
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Let Wi =W(i)/W(i+1) for−1≤ i ≤n−1. Then Wi is a Z-graded space. Suppose
that W :=

⊕n−1
i=−1 Wi ; then W is also a Z-graded space. Let x +W(i+1) ∈Wi and

y+W( j+1) ∈W j . Define

[x +W(i+1), y+W( j+1)] := [x, y] +W(i+ j+1).

It follows from [Wi ,W j ] ⊆ Wi+ j that the operator [ , ] on W is well-defined.
There exists a linear expansion such that W has a operator [ , ]. A direct verification
shows that W is a Lie superalgebra with respect to the operator [ , ]. The Lie
superalgebras W is called a Lie superalgebra induced by the natural filtration of W .

Lemma 3.7. W∼=W .

Proof. Let φ : W → W is a linear map such that φ(x) = x + W(i+1), where
x ∈ W(i) \W(i+1). A direct verification shows that φ is a homomorphism of Lie
superalgebras. Suppose that y ∈ kerφ. If y 6= 0, then there exists i ≥−1 such that
y ∈W(i) \W(i+1). Since φ(y)= 0, we have y+W(i+1)= 0. Hence y ∈W(i+1). That
shows that y = 0. Thus, kerφ = 0. Therefore, φ is a monomorphism. It follows
from W is finite-dimensional that φ is an isomorphism. �

The definition of φ shows that, for i ≥−1

(3-8) φ(Wi )= {x +W(i+1) | x ∈Wi } = {x +W(i+1) | x ∈W(i)}

=W(i)/W(i+1) =Wi .

Suppose that m, n, m′, n′ are elements of N greater than 1. Similar to W , the Lie
superalgebra W (n′,m′) will be simply denoted by W ′. According to the definitions
of 1, Q, and W in W , we define 1′, Q′, and W′ in W ′ using the same method.

Proposition 3.8. Suppose that W ∼= W ′ and σ is an isomorphism from W to W ′.
Then σ(W(i))=W ′(i) for all i ≥−1.

Proof. It is clear that σ(W(−1)) = W ′(−1) and σ(nil(W )) = nil(W ′). A direct
verification shows that σ(1) =1′. Hence σ(Q) = Q′. By virtue of Lemma 3.5,
we have Q = W(1) and Q′ = W ′(1). Thus σ(W(1))= W ′(1). By (3-6) and (3-7), the
desired result σ(W(i))=W ′(i) for all i ≥−1 is obtained. �

Lemma 3.9. Suppose that W ∼=W ′ and σ is an isomorphism from W to W ′. Then
σ induces an isomorphism σ̃ from W to W′ such that σ̃ (Wi )=W′i for all i ≥−1.

Proof. Define a linear map σ̃ : W→W′ such that

σ̃ (x +W(i+1))= σ(x)+W ′(i+1),

where x+W(i+1) ∈Wi . Because of Proposition 3.8, the definition of σ̃ is reasonable
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and

σ̃ ([x +W(i+1), y+W( j+1)])= σ([x, y])+W ′(i+ j+1)

= [σ(x)+W ′(i+1), σ (y)+W ′( j+1)]

= [σ̃ (x +W ′(i+1)), σ̃ (y+W ′( j+1))].

Thus σ̃ is a homomorphism from W to W′. Clearly, σ̃ (Wi )=W′i for all i ≥−1.
It shows that σ̃ is an epimorphism.

Suppose that y ∈ ker σ̃ ; then y ∈W. So we may suppose that y =
∑n−1

i=−1 yi

and yi ∈ Wi . Since Wi = W(i)/W(i+1), let yi = zi + W(i+1), where zi ∈ W(i).
Hence σ̃ (yi ) = σ(zi )+W ′(i+1). It follows from σ̃ (y) = 0 that

∑n−1
i=−1 σ̃ (yi ) = 0.

Thus σ̃ (yi ) = 0, that is, σ(zi ) + W ′(i+1) = 0. This shows σ(zi ) ∈ W ′(i+1). By
Proposition 3.8, we have zi ∈ σ

−1(W ′(i+1))=W(i+1). Then yi = zi +W(i+1) = 0 for
−1≤ i ≤ n−1. Therefore, y= 0 and ker σ̃ = 0. Consequently, σ̃ is an isomorphism
induced by σ such that σ̃ (Wi )=W′i for all i ≥−1. �

Theorem 3.10. W ∼=W ′ if and only if m = m′ and n = n′.

Proof. Since the sufficiency is obvious, it suffices to prove the necessity. Suppose
that φ : W →W is the isomorphism given in the proof of Lemma 3.7. Similarly,
there also exists the φ′ : W ′→W′. According to (3-8) and Lemma 3.9, we have

φ(Wi )=Wi , φ′(W ′i )=W′i , σ̃ (Wi )=W′i

for −1≤ i ≤ n− 1. Let ψ = (φ′)−1σ̃ φ. Then

ψ(Wi )= (φ
′)−1σ̃ φ(Wi )= (φ

′)−1σ̃ (Wi )= (φ
′)−1(W′i )=Wi .

In particular, ψ(W−1) = W ′
−1 and ψ(W0) = W ′0. Since dim W−1 = dim W ′

−1, we
get npm

= n′ pm′ . By virtue of the definition of Wi , we have

W0 = spanF{xi yλD j ∈W | i, j ∈ Y, λ ∈ G}.

Thus dim W0 = n2 pm . By the same method used in W0, we may obtain dim W ′0 =
n′2 pm′ . According to dim W0 = dim W ′0 and npm

= n′ pm′ , we have n = n′ and
m = m′. In conclusion, the proof is completed. �

4. The natural filtration of H(n, m)

In this section we will investigate the question of the natural filtration of the Lie
superalgebras H(n,m). For convenience, H(n,m), H(n,m) and Hi (n,m) will be
simply denoted by H , H and Hi .

Let H( j) =
⊕
i≥ j

Hi . Then

H = H(−1) ⊇ H(0) ⊇ H(1) ⊇ · · · ⊇ H(n−3) ⊇ H(n−2) = 0
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is a descending filtration of H , which is called the natural filtration of H . We also
call {H(k) | k ∈Z} a filtration of H for short, where H(k)= H if k ≤−1 and H(k)= 0
if k ≥ n− 2.

Lemma 4.1. Let fi = gi + hi , where fi , gi , hi ∈ U and i = 1, . . . , k. If the set
{gi | i = 1, . . . , k} is linearly independent and

spanF{gi | i = 1, . . . , k} ∩ spanF{hi | i = 1, . . . , k} = 0,

then { fi | i = 1, . . . , k} is linearly independent.

Proof. If
k∑

i=1
ai fi = 0, ai ∈ F, then

k∑
i=1

ai gi =−
k∑

i=1
ai hi . This shows that

k∑
i=1

ai gi ∈ spanF{gi | i = 1, . . . , k} ∩ spanF{hi | i = 1, . . . , k} = 0.

Since {gi | i = 1, . . . , k} is linearly independent, we obtain ai = 0, i = 1, . . . , k. �

Lemma 4.2. If h1, h2, . . . , hk ∈ H \{0}. If {hi | i = 1, . . . , k} is linearly dependent,
then so is {µ(hi ) | i = 1, . . . , k}.

Proof. Since {hi | i = 1, . . . , k} is linearly dependent, there exist a1, . . . , ak ∈ F such
that

∑k
i=1 ai hi = 0 and some ai is not zero. We may suppose that a1, . . . , as 6= 0

and as+1 = · · · = ak = 0, where 1≤ s ≤ k. Let

ε =min{zd(µ(hi )) | i = 1, . . . , s}.

Without loss of generality, we may suppose that zd(µ(hi )) = ε for i = 1, . . . , t
and zd(µ(hi )) > ε for i = t + 1, . . . , s. It follows from

∑k
i=1 ai hi = 0 that∑k

i=1 aiµ(hi ) = 0. Since a1, . . . , at 6= 0, we obtain that {µ(hi ) | i = 1, . . . , t}
is linearly dependent. Hence so is {µ(hi ) | i = 1, . . . , k}. �

Lemma 4.3. Let g1, g2, . . . , gk ∈U. If zd(µ(gi ))≥ 1, i = 1, . . . , k, then {gi | i =
1, . . . , k} is linearly dependent if and only if {DH (gi ) | i = 1, . . . , k} is.

Proof. If {gi | i = 1, . . . , k} is linearly dependent, there exist a1, . . . , ak ∈ F, not
all zero, such that

∑k
i=1 ai gi = 0. Clearly, DH

(∑k
i=1 ai gi

)
=
∑k

i=1 ai DH (gi )= 0.
Hence {DH (gi ) | i = 1, . . . , k} is linearly dependent.

Conversely, we consider the sufficiency. Without loss of generality, we may
suppose that g = xu yλ for u ∈ B(n) and λ ∈ G such that DH (g)= 0. Then

DH (xu yλ)=
n∑

i=1

(−1)|u|Di (xu)yλDi .

Hence Di (xu) = 0, which shows that |u| = 0. Thus ker(DH ) = T(m). Since
the set {DH (gi ) | i = 1, . . . , k} is linearly dependent, there exist a1, . . . , ak ∈ F,



NATURAL FILTRATIONS OF MODULAR LIE SUPERALGEBRAS 211

not all zero, such that
∑k

i=1 ai DH (gi ) = 0. Then DH
(∑k

i=1 ai gi
)
= 0. Hence∑k

i=1 ai gi ∈ T(m). Notice that zd(µ(gi )) ≥ 1, i = 1, . . . , k; thus
∑k

i=1 ai gi = 0,
showing that {gi | i = 1, . . . , k} is linearly dependent. �

For a superderivation D of a Lie superalgebra L . Set I (D)= dim (Im(D)). If
T is a subset of superderivations of L , we define I (T )=min{I (D) | 0 6= D ∈ T }.

Theorem 4.4. Suppose that T = ad(hg(H))|H , then I (T ) ≥ npm . Besides,
I (ad DH (g))= npm if and only if 0 6= DH (g) ∈ spanF{DH (xπ yλ) | λ ∈ G}, where
DH (g) ∈ hg(H).

Proof. For any h ∈ hg(H) we write ad h|H simply as ad h. A direct calculation
shows that

[DH (xπ yλ), DH (xv yη)] = DH

( n∑
i=1

(−1)n Di (xπ yλ)Di (xv yη)
)

for v ∈ B(n) and λ, η ∈ G.
In the case of |v| ≥ 2 we have

Di (xv yη)= (−1)τ(v,i)xv−〈i〉yη, Di (xπ yλ)= (−1)τ(π,i)xπ−〈i〉yλ.

Clearly, {v−〈i〉} ∈ {π −〈i〉}. Then [DH (xπ yλ), DH (xv yη)] = 0 in this case.
In the case of |v| = 1 we may suppose that xv yη = xi yη for some i ∈ Y. Then

[DH (xπ yλ), DH (xi yη)] = DH

( n∑
j=1

(−1)n D j (xπ yλ)D j (xi yη)
)

= DH ((−1)n+τ(π,i)xπ−〈i〉yλ+η
)
.

Since {xπ−〈i〉yλ+η | i ∈Y, λ, η ∈G} is a linearly independent set, Lemma 4.3 shows
that {[DH (xπ yλ), DH (xi yη)] | i ∈ Y, λ, η ∈ G} is linearly independent. Thus
I (ad DH (g))= npm .

Next we will consider the converse inclusion. Assume that DH (g0) ∈ hg(H) and
DH (g0) 6∈ spanF{DH (xπ yλ) | λ ∈ G}. We want to prove that I (ad DH (g0)) > npm .
Suppose that µ(DH (g0)) = DH (g). By Lemma 4.2, it suffices to prove that
I (ad DH (g)) > npm .

Let g= xu yλ, where u ∈B(n) and λ∈G. Then 1≤ |u|< n. There exist v ∈B(n)
and η ∈ G such that DH (xv yη) ∈ H . Then

[DH (xu yλ), DH (xv yη)] = DH

( n∑
i=1

(−1)|u|Di (xu yλ)Di (xv yη)
)
.

(1) Suppose that |u| = 1 and xu yλ = xi yλ for some i ∈ Y, then

[DH (xi yλ), DH (xv yη)] = −(−1)τ(v,i)DH
(
xv−〈i〉yλ+η

)
.
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Considering xv−〈i〉, the following statements hold:

DH (xv−〈i〉yλ+η)= 0 if |v| = 0 or 1,

dim{xv−〈i〉} = C1
n−1 if |v| = 2,

dim{xv−〈i〉} = C2
n−1 if |v| = 3,

...

dim{xv−〈i〉} = Cn−1
n−1 if |v| = n.

Therefore,

dim{xv−〈i〉yλ+η} = (C1
n−1+C2

n−1+ · · ·+Cn−1
n−1)p

m
= (2n−1

− 1)pm > npm .

(2) If 1< |u|< n, then we suppose that |u| = l.
For |v| = 2 we may suppose that xv yη = x j xk yη, where j, k are distinct

elements of Y and η is an arbitrary element of G. A direct calculation shows
that [DH (xu yλ), DH (x j xk yη)] equals

DH
(
(−1)|u|((−1)τ(u, j)xu−〈 j〉xk − (−1)τ(u,k)xu−〈k〉x j )yλ+η

)
.

Consider ϒ = (−1)τ(u, j)xu−〈 j〉xk − (−1)τ(u,k)xu−〈k〉x j . Then the following
statements hold:

ϒ = 0 if j, k ∈ u or j, k 6∈ u,

ϒ = (−1)τ(u, j)x (u\{ j})∪{k} if j ∈ u and k 6∈ u,

ϒ = (−1)τ(u,k)x (u\{k})∪{ j} if k ∈ u and j 6∈ u.

Thus dimϒ = l(n− l).
For |v| = 1 we may suppose that xv yη = xi yη for some i ∈ Y. Then

[DH (xi yλ), DH (xi yη)] = (−1)|u|+τ(u,i)DH (xu−〈i〉yλ+η), i ∈ Y.

Hence dim(xu−〈i〉)= |u| = l. It is clear to see that l(n− l)+ l > n. Therefore,
I (ad DH (g))≥ (l(n− l)+ l)pm > npm . �

Theorem 4.5. I (hg(Der H)) = npm . Moreover, for D ∈ hg(Der(H)), we have
I (D)= npm if and only if D is nonzero and lies in spanF{adDH (xπ yλ) | λ ∈ G}.

Proof. By virtue of Theorem 4.4, we have I (ad DH (xπ yλ))= npm . By [Ren et al.
2011, Proposition 3.7], we obtain

Der H = ad(H + Fyλh)⊕�,

where h=
∑n

i=1 xi Di and λ∈G. Hence I (hg(Der H))≤ npm . Let D ∈ hg(Der H)
and I (D)≤ npm . Without loss of generality, we may suppose that

D = ad DH (g)+ a ad yλh+
∑
θ∈2

bθ Dθ ,
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where a, bθ ∈ F and DH (g) ∈ hg(H). Then

D(DH (xu yη))

= [DH (g), DH (xu yη)] + a
[ n∑

i=1

xi yλDi , DH (xu yη)
]
+

∑
θ∈2

bθ Dθ (DH (xu yη))

for all u ∈ B(n) and η ∈ G.
Next we will prove that a and bθ are all zero for all θ ∈2.
First of all we consider the coefficient a. A direct calculation shows that

a
[ n∑

i=1

xi yλDi , DH (xu yη)
]
=

n∑
i, j=1

(−1)|u|a[xi yλDi , D j (xu)yηD j ]

=

n∑
i, j=1

(−1)|u|a[xi yλDi , (−1)τ(u, j)xu−〈 j〉yηD j ]

=


−

n∑
j=1

(−1)|u|+τ(u, j)axu−〈 j〉yλ+ηD j if i = j,

(n−1)
n∑

j=1

(−1)|u|+τ(u, j)axu−〈 j〉yλ+ηD j if i 6= j.

Using the similar discussion in Theorem 4.4, we obtain

dim
(
spanF{x

u−〈 j〉yλ+ηD j }
)
> npm

for given j ∈ u. Since n > 1, we have a = 0.
Secondly, the other coefficient bθ will be considered. For any u ∈ B(n) and

η ∈ G, we have

bθ Dθ (DH (xu yη))= θ̃ (η)DH (bθ xu yη)

=

n∑
i=1

(−1)|u|bθ Di (xu)Di θ̃ (η)yη

= bθ
n∑

i=1

(−1)|u|+τ(u,i)xu−〈i〉Di θ̃ (η)yη.

By the equality above and the similar discussion in Theorem 4.4, we have

dim(spanF{x
u−〈i〉η̃(µ)yηD j }) > npm .

Hence bθ = 0 for all θ ∈2. Therefore, D= ad DH (g). It follows from Theorem 4.4
that I (hg(Der H))= npm . In particular, I (D)= npm if and only if

0 6= D ∈ spanF{ad DH (xπ yλ) | λ ∈ G}. �
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We adopt the notations n′,m′ in Section 3 and let H ′ = H(n′,m′) and G ′ ={∑m′
i=1 λi zi | λi ∈5, i = 1, . . . ,m′

}
.

Proposition 4.6. Let

R = spanF{DH (xu yλ) ∈ H | u ∈ B(n), |u| ≥ 2, λ ∈ G},

R′ = spanF{DH ′(xu yλ) ∈ H ′ | u ∈ B(n′), |u| ≥ 2, λ ∈ G ′}.

If σ is an isomorphism from H to H ′, then σ(R)= R′.

Proof. It is easy to see that the map ξ : D → σDσ−1 is a bijection. Then ξ
is an isomorphism from Der H to Der H ′. Thus I (hg(Der H)) = I (hg(Der H ′)).
According to Theorem 4.5, we have

σ(spanF{ad DH (xπ yλ)})σ−1
= spanF{ad DH (xπ

′

yλ
′

)},

where π ′ = {1, . . . , n′} ∈ B(n′), λ ∈ G, and λ′ ∈ G ′. Note that

[DH (xπ yλ), DH (xu yη)] = DH

( n∑
i=1

(−1)n Di (xπ yλ)Di (xu yη)
)
.

for u ∈ B(n) and λ, η ∈ G. If |u| ≥ 2, then Di (xu yη) = (−1)τ(u,i)xu−〈i〉yη and
Di (xπ yλ)= (−1)τ(π,i)xπ−〈i〉yλ. Since {u−〈i〉} ∈ {π −〈i〉}, we have

[DH (xπ yλ), DH (xu yη)] = 0.

Hence
R = {h ∈ H | (spanF{ad DH (xπ yλ)})(h)= 0}.

Similarly, R′ = {h ∈ H ′ | (spanF{ad DH ′(xπ
′

yλ
′

)})(h)= 0}. Then

(spanF{ad DH ′(xπ
′

yλ
′

)})(σ (R))= σ(spanF{ad DH (xπ yλ)})σ−1(σ (R))

= σ(spanF{ad DH (xπ yλ)})(R)

= σ(spanF{ad DH (xπ yλ)})(R)

= σ(0)

= 0.

Thus σ(R) ⊆ R′. By the same method above, we have σ−1(R′) ⊆ R. Hence
R′ ⊆ σ(R). In conclusion, σ(R)= R′. �

Lemma 4.7. Let H = H(−1) ⊇ H(0) ⊇ · · · ⊇ H(n−3) ⊇ H(n−2) = 0 be the natural
filtration of H. Then

H(0) = R, H(i) = {h ∈ H(i−1) | [h, H ] ⊆ H(i−1)} for i ≥ 1.
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Similarly, for the natural filtration of H ′,

H ′(0) = R′, H ′(i) = {h ∈ H ′(i−1) | [h, H ′] ⊆ H ′(i−1)} for i ≥ 1.

Proof. Suppose that M = {h ∈ H(i−1) | [h, H ] ⊆ H(i−1)}. Note that H(i) ⊆ H(i−1)

and [H(i), H ] = [H(i), H(−1)] ⊆ H(i−1). Then the inclusion relations show that
H(i) ⊆ M .

Conversely, if h ∈ M , then h ∈ H(i−1). So we may suppose that h =
∑n−3

j=i−1 h j ,
where h j ∈ H j . Let hi−1 =

∑
k ak D(xuk yλk ), where ak ∈ F, uk ∈ B(n), |uk | =

i − 1+ 2= i + 1≥ 2, and λk ∈ G.
If hi−1 = 0, then h ∈ H(i). Therefore, the desired result follows in this case.
If hi−1 6= 0, then it follows from h ∈ M that [h, H−1] ⊆ H(i−1). Hence
[hi−1, H−1] = 0, that is,[∑

k

ak D(xuk yλk ), DH (xi yη)
]
= 0

for all i ∈ Y and η ∈ G. As |uk | ≥ 2, there exists i ∈ Y such that

DH ((−1)|uk |Di (xuk yλk )) 6= 0.

Hence ak = 0 which is in contradiction with hi−1 6= 0.
The considerations above show that M ⊆ H(i). Therefore,

H(i) = {h ∈ H(i−1) | [h, H ] ⊆ H(i−1)} for i ≥ 1.

Similarly, H ′(i) = {h ∈ H ′(i−1) | [h, H ′] ⊆ H ′(i−1)} for i ≥ 1. �

Proposition 4.8. Suppose that H ∼= H ′ and σ is an isomorphism from H to H ′,
then σ(H(i))= H ′(i) for all i ≥−1.

Proof. If i = 0, then H(0) = R and H ′(0) = R′. Proposition 4.6 shows that
σ(H(0))= H ′(0).

If i =−1, then H(−1) = H and H ′(−1) = H ′. Hence σ(H(−1))= H ′(−1).
Next we use induction on i . Assume that σ(H(i))= H ′(i) for i ≥ 1. By Lemma 4.7,

for h ∈ H(i+1), we have h ∈ H(i) as well as [h, H ] ⊆ H(i). Since h ∈ H(i), the
induction hypothesis yields σ(h) ∈ H ′(i). Then

σ([h, H ])= [σ(h), σ (H)] ⊆ [H ′(i), H ′] ⊆ H ′(i).

By Lemma 4.7, we have σ(h) ∈ H ′(i+1). This implies that σ(H(i+1))⊆ H ′(i+1).
For any h′ ∈ H ′(i+1), we want to prove that h′ ∈ σ(H(i+1)). The fact h′ ∈ H ′(i) =

σ(H(i)) ensures that there exists h ∈ H(i) such that σ(h) = h′. It is easy to see
that [h′, H ′] ⊆ H ′(i) = σ(H(i)). Since [h′, H ′] = [σ(h), σ (H)] = σ [h, H ], we have
[h, H ]∈H(i). Then h∈H(i+1), that is, h′∈σ(H(i+1)). Consequently, σ(H(i))=H ′(i)
for all i ≥−1. �
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Theorem 4.9. The natural filtration of H is invariant under the automorphisms
of H.

Proof. It is a direct conclusion of Proposition 4.8. �

Imitating the definition of Wi in W , we let Hi = H(i)/H(i+1) for −1≤ i ≤ n−3.
Suppose that H :=

⊕n−3
i=−1 Hi , then H is a Z-graded space. Let x + H(i+1) ∈Hi and

y+ H( j+1) ∈ H j . We define

[x + H(i+1), y+ H( j+1)] := [x, y] + H(i+ j+1).

It is easy to see that the operator [ , ] on H is well-defined. There exists a linear
expansion such that H has a operator [ , ]. A direct verification shows that H is
a Lie superalgebra with respect to the operator [ , ]. The Lie superalgebras H is
called a Lie superalgebra induced by the natural filtration of H .

By the similar methods used to prove Propositions 3.7 and 3.9, the following
lemmas are easy to obtain.

Lemma 4.10. H∼= H.

Lemma 4.11. Suppose that H ∼= H ′ and σ is an isomorphism from H to H ′, then
σ induces an isomorphism σ̃ from H to H′ such that σ̃ (Hi )= H′i for all i ≥−1.

Theorem 4.12. H ∼= H ′ if and only if m = m′ and n = n′.

Proof. Since the sufficiency is obvious, it suffices to prove the necessity. Using the
similar methods in the proof of Theorem 3.10, we have dim H−1 = dim H ′

−1 and
dim H0 = dim H ′0. It follows from W−1 = H−1 that npm

= n′ pm′ . By virtue of the
definition of Hi , we have

H0 = spanF{DH (xi x j yλ) ∈ H | i, j ∈ Y, λ ∈ G}.

Thus dim H0=C2
n pm
=

1
2 n(n−1)pm . Similarly, dim H ′0=

1
2 n′(n′−1)pm′ . Accord-

ing to dim H0=dim H ′0 and npm
=n′ pm′ , we have n=n′ and m=m′. Consequently,

the desired result follows. �
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FREE BROWNIAN MOTION AND FREE CONVOLUTION
SEMIGROUPS: MULTIPLICATIVE CASE

PING ZHONG

We consider a pair of probability measures µ, ν on the unit circle such that
6λ(ην(z)) = z/ηµ(z). We prove that the same type of equation holds for
any t ≥ 0 when we replace ν by ν � λt and µ by Mt(µ), where λt is the
free multiplicative analogue of the normal distribution on the unit circle of
C and Mt is the map defined by Arizmendi and Hasebe. These equations
are a multiplicative analogue of equations studied by Belinschi and Nica.
In order to achieve this result, we study infinite divisibility of the measures
associated with subordination functions in multiplicative free Brownian mo-
tion and multiplicative free convolution semigroups. We use the modified
S-transform introduced by Raj Rao and Speicher to deal with the case that
ν has mean zero. The same type of the result holds for convolutions on the
positive real line. In the end, we give a new proof for some Biane’s results on
the densities of the free multiplicative analogue of the normal distributions.

1. Introduction

Let MR be the set of probability measures on R. For every t ≥ 0, Belinschi and
Nica [2008b] defined a family of maps Bt :MR→MR by setting

Bt(µ)= (µ
�(t+1))]1/(t+1), µ ∈MR.

These maps have several remarkable properties. For any t ≥ 0, Bt is an endomor-
phism of (MR+,�), where MR+ is the set of probability measures on [0,+∞) and
� is free multiplicative convolution. {Bt }t≥0 is a semigroup and B1 is the Boolean
to free Bercovici–Pata bijective map.

The maps Bt have strong connections with �-infinite divisibility. They are also
connected to free Brownian motion and additive free convolution semigroups. For
µ ∈ MR, we denote by Gµ the Cauchy transform of µ and by Fµ the reciprocal
Cauchy transform of µ. Given a pair of probability measures µ, ν ∈MR such that

Gν(z)= z−Fµ(z), z ∈ C+,

MSC2010: 46L54.
Keywords: multiplicative free convolution, free Brownian motion, free convolution semigroups.
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we have

(1-1) Gν�γt (z)= z−FBt (µ)(z), t > 0, z ∈ C+,

where γt is the semicircular distribution with variance t . This result was generalized
to the multi-variable case in [Belinschi and Nica 2008a; 2009; Nica 2009]. An
equivalent form of (1-1) was used to prove the superconvergence theorem in [Wang
2010]. Anshelevich [2010; 2011a; 2011b; 2012] generalized the above correspon-
dence of µ↔ ν and Bt(µ)↔ ν� γt to the context of two-state probability spaces.
Motivated by these generalizations and applications, we study in this article the
analogue of these equations for multiplicative free convolution.

Throughout this article, we denote by T the unit circle of C, by MT the set of
probability measures on T, and by M∗ the set of probability measures on C with
nonzero mean. We also set

M∗T = {µ ∈MT ∩M∗ : ηµ(z) 6= 0 for all z ∈ D\{0}}.

It was shown in [Belinschi and Bercovici 2005] that one can define multiplicative
free convolution power µ�t for µ ∈M∗T and t > 1.

In [Arizmendi and Hasebe 2013], a family of maps Mt , which is the analogue of
the semigroup Bt , was defined for the probability measures in M∗T. The definition
of Mt there was more general; we only need a simpler form defined as follows.
Given µ ∈M∗T having positive mean, then for t ≥ 0, the map Mt is defined by

Mt(µ)= (µ
�(t+1)) ×∪1/(t+1),

where the convolution power µ�(t+1) and the measure Mt(µ) are chosen in a way
such that they have positive means.

We then state one of our main theorems.

Theorem 1.1. Given a pair of probability measures µ ∈M∗T and ν ∈MT such that

(1-2) 6λ(ην(z))=
z

ηµ(z)
, z ∈ D,

we have

(1-3) 6λ(ην�λt (z))=
z

ηMt (µ)(z)
, z ∈ D,

where λt is the analogue of the normal distribution on T with6λt (z)=exp((t/2)(1+
z)/(1− z)) and λ= λ1.

In order to prove Theorem 1.1, we consider two semigroups ν� λt and µ�(t+1)

for all t ≥ 0. It is well-known that ην�λt and ηµ�(t+1) are subordinated to ην and
ηµ respectively. We prove that the subordination functions are η-transforms of
some �-infinitely divisible probability measures on T. It turns out that the equation
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6λ(ην(z))= z/ηµ(z) means that the subordination function of ην�λt with respect
to ην and the subordination function of ηµ�(t+1) with respect to ηµ are the same.
The proof of Theorem 1.1 will be given in Subsection 3.5.

Given µ ∈MT, we prove that if µ�t can be defined and ηµ�t is subordinated to
ηµ for all t > 1, then µ ∈M∗T; in addition, we prove that for nontrivial measures
µ ∈MT and ν ∈ ID(�,T), the density functions of the measures µ� νt and µ�t

converge to 1/2π uniformly as t→∞.
To deal with the case that ν ∈MT\M∗, we use the modified S-transform [Ariz-

mendi 2012; Rao and Speicher 2007] to study subordination functions. In this
case, the subordination function of ην�λt with respect to ην is generally not unique.
However, we can prove that there exists a unique subordination function satisfying
certain properties (see Theorem 3.11). Let ρt be the measure associated with this
subordination function of ην�λt with respect to ην , we have that6ρt (z)=6λt (ην(z)).

Similar results to Theorem 1.1 for multiplicative convolution on MR+ are also
valid. The proof for this case is much simpler because of the uniqueness of multi-
plicative convolution powers and the uniqueness of subordination functions.

Finally, we give a new proof for some results concerning the density functions of
the free multiplicative analogue of the normal distributions studied by Biane [1997c],
and we obtain some new results. For example, for λt (t > 0) the free multiplicative
analogue of the normal distributions on T, we prove that λt is unimodal.

This article is organized as follows. After this introductory section, we describe
some backgrounds in the additive case in Section 2. In Section 3, we consider mul-
tiplicative free and multiplicative Boolean convolution on MT, and prove our main
theorems. Section 4 is devoted to studying multiplicative free and multiplicative
Boolean convolution on MR+ . The regularity properties of the free multiplicative
analogue of the normal distributions are discussed in Section 5.

2. Background: additive case

Additive free convolution and additive Boolean convolution. For a measure µ ∈
MR, we define the Cauchy transform Gµ : C

+
→ C− by

Gµ(z)=
∫
+∞

−∞

1
z− t

dµ(t), z ∈ C+.

We set

Fµ(z)=
1

gµ(z)
, z ∈ C+,

so that Fµ : C+→ C+ is analytic.
The following result characterizes those functions which are reciprocal Cauchy

transforms of probability measures.
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Proposition 2.1 [Bercovici and Voiculescu 1993]. Let F :C+→C+ be an analytic
function. The following assertions are equivalent:

(1) There exists a probability measure µ on R such that F(z)= Fµ(z) in C+.

(2) There exists a ∈ R, and a finite positive measure ρ on R such that

F(z)= a+ z+
∫
+∞

−∞

1+ t z
t − z

dρ(t) for all z ∈ C+.

(3) limy→+∞ F(iy)/ iy = 1.

It was proved in [Bercovici and Voiculescu 1993] that Fµ is invertible in some
domain. More precisely, for two positive numbers M and N , we set

0M,N = {z ∈ C+ : |x |< My, y > N }.

Then for any M > 0, there exists N > 0 such that the left inverse F−1
µ of Fµ is

defined in 0M,N , and then we can define the Voiculescu transform of µ by

ϕµ(z)= F−1
µ (z)− z,

for z ∈ 0M,N . For any two measures µ, ν ∈MR, we have

(2-1) ϕµ�ν(z)= ϕµ(z)+ϕν(z)

in any truncated cone 0M,N where ϕµ, ϕν and ϕµ�ν are defined. This remarkable
result was proved in [Voiculescu 1986] for compactly supported measures and then
extended to general cases in [Bercovici and Voiculescu 1993; Maassen 1992].

Given ν ∈MR, we say that ν is �-infinitely divisible if for every positive integer
n, there exists a probability measure ν1/n ∈MR such that

ν = ν1/n � ν1/n � · · ·� ν1/n︸ ︷︷ ︸
n times

.

It is known [Bercovici and Voiculescu 1993; Maassen 1992; Voiculescu 1986] that
a probability measure ν on R is �-infinitely divisible if and only if its Voiculescu
transform ϕν has an analytic extension defined on C+ with values in C− ∪R. We
denote by ID(�,R) the set of all �-infinitely divisible probability measures on the
real line. If ν ∈ ID(�,R), then for every t > 0, there exists a probability measure
νt such that ϕνt (z)= tϕν(z) for z in the common domain of ϕν and ϕνt .

Proposition 2.2. Let ν is �-infinitely divisible, and let H(z)= z+ϕν(z). Then

(2-2) H(Fν(z))= z

for z ∈ C+. The set U := {z ∈ C+ : =H(z) > 0} is a simply connected domain with
boundary which is a simple curve and H maps C+ conformally onto U. Moreover,



FREE BROWNIAN MOTION AND FREE CONVOLUTION SEMIGROUPS 223

the boundary ∂U is the graph of a function and the function H is continuous up to
the real axis.

Proof. The first part of the assertion appears in [Bercovici and Voiculescu 1993;
Voiculescu 1986], and the second part of the assertion follows from the fact that H
satisfies the conditions of [Belinschi and Bercovici 2005, Proposition 4.7]. The last
part of the assertion is due to [Chistyakov and Götze 2013, Lemma 3.3; Belinschi
and Bercovici 2005, Proposition 4.7]. �

Additive Boolean convolution was introduced in [Speicher and Woroudi 1997].
For µ ∈ MR, we set Eµ(z) = z − Fµ(z). For µ, ν ∈ MR, the additive Boolean
convolution µ] ν is characterized by the identity

Eρ(z)= Eµ(z)+Eν(z) for z ∈ C+.

We can also consider the infinite divisibility with respect to additive Boolean
convolution. It turns out that every µ ∈MR is ]-infinitely divisible; see [Speicher
and Woroudi 1997]. We denote by ID(],R) the set of all ]-infinitely divisible
probability measures on the real line.

Infinite divisibility and subordination functions. Given µ, ν ∈ MR, it is known
that Fµ�ν is subordinated to Fµ and Fν , and by Proposition 2.1, we can also regard
these subordination functions as the reciprocal Cauchy transforms of probability
measures on R.

Definition 2.3. For µ, ν ∈MR, the subordination distribution [Anshelevich 2012;
Lenczewski 2007; Nica 2009] µ ν is defined to be the unique probability measure
in MR such that Fµ�ν(z)= Fν(Fµ ν(z)).

Many subordination distributions in semigroups related to free convolution are
infinitely divisible; see [Anshelevich 2012; Nica 2009].

Proposition 2.4. Let µ, ν ∈MR.

(1) ϕµ ν(z)= (ϕµ ◦Fν)(z).

(2) If µ∈ID(�,R), then µ ν ∈ID(�,R). In particular, γt ν ∈ID(�,R) and
ϕγt ν(z)= tGν(z), where γt is the semicircular distribution with variance t.

(3) If ν = µ� ν ′ for ν ′ ∈ MR, then µ ν ∈ ID(�,R). In particular, µ µ ∈

ID(�,R), and ϕµ µ(z)= z−Fµ(z).

Proof. Part (1) is Lemma 1 of [Anshelevich 2012]. Note that ϕγt (z) = t/z and
(ϕµ ◦ Fµ)(z) = z − Fµ(z); parts (2) and (3) follow from part 1 and Lemma 2 of
[Anshelevich 2012]. See also [Chistyakov and Götze 2011, Corollary 2.3]. �

The following result was inspired by a question of Michael Anshelevich [2012],
to whom I am grateful for sending me an updated version of his paper.



224 PING ZHONG

Lemma 2.5. Given τ, ρ ∈MR, if τ ρ ∈ ID(�,R), then ρ� τ�t is defined for all
t ≥ 0 in the sense that ϕρ + tϕτ is the Voiculescu transform of a positive measure.
Moreover, Fρ�(τ�t ) = Fρ(F(τ ρ)�t (z)).

Proof. Let σ = τ ρ and σt = σ
�t . By Proposition 2.1, there exists a unique

probability measure µt ∈MR such that

Fµt = Fρ(Fσt (z)).

We claim that ϕµt (z)= ϕρ(z)+ tϕτ (z). Indeed, by Proposition 2.4, we have

F−1
σt
(z)− z = t ·ϕσ (z)= t ·ϕτ (Fρ(z)),

and we thus obtain

ϕµt (Fρ(z))= F−1
µt
(Fρ(z))−Fρ(z)= F−1

σt
(z)−Fρ(z)= F−1

σt
(z)− z+ z−Fρ(z)

= t ·ϕτ (Fρ(z))+F−1
ρ (Fρ(z))−Fρ(z).

By analytic continuation, we conclude that

ϕµt (z)= t ·ϕτ (z)+F−1
ρ (z)− z = ϕρ(z)+ t ·ϕτ (z),

which completes the proof. �

Remark. There are examples ρ, τ ∈MR such that τ ρ ∈ ID(�,R) but τ does
not lie in ID(�,R) and is not a summand of ρ; see [Anshelevich 2012].

Combining Proposition 2.4 and Lemma 2.5, we can reconstruct Nica–Speicher
free convolution semigroups [Belinschi and Bercovici 2004; Nica and Speicher
1996] as follows.

Theorem 2.6. Given µ∈MR, the measure µ�t
∈MR is defined by ϕµ�t (z)= tϕµ(z)

for all t > 1. Moreover, there exists an analytic map ωt : C
+
→ C+ such that for

z ∈ C+ the following conditions are satisfied:

• Fµ�t (z)= Fµ(ωt(z)).

• ωt = F(µ µ)�(t−1)(z).

• ϕ(µ µ)�(t−1) = (t − 1)(z−Fµ(z)) for all t > 1.

Let Ht(z) = z+ (t − 1)(z−Fµ(z)). By Proposition 2.2 and Theorem 2.6, we
know that Ht is the left inverse of ωt such that Ht(ωt(z))= z for z ∈C+. Therefore,
for t > 1, we can write

(2-3) ωt(z)= z+
(

1− 1
t

)
(Fµ�t (z)− z), z ∈ C+.

We deduce from (2-3) and the definition of ωt in Theorem 2.6 that, for t > 0,

z−F(µ µ)�t (z)=
(

1− 1
t+1

)
(z−Fµ�(t+1)(z)),
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which implies that

(2-4) (µ µ)�t(z)= (µ�(t+1))](t/(t+1)).

Two formulas related to free Brownian motion. Given µ ∈ MR, we construct
subordination functions ωt as in Theorem 2.6. Let σt = (µ µ)�t

∈ MR; then
ωt+1 = Fσt (z) for t > 0. Given ν ∈ MR, let ρt = γt ν and let Ft = Fρt (z) for
all t > 0. From Proposition 2.4 and Theorem 2.6, we know that ρt and σt are
�-infinitely divisible and their Voiculescu transforms are given by ϕρt (z)= tGν and
ϕσt (z)= t (z−Fµ(z)). By comparing Voiculescu transform of ρt with Voiculescu
transform of σt , we deduce that Ft = ωt+1 for some t > 0 if and only if Gν(z)=
z−Fµ(z).

For t>0, Belinschi and Nica [2008b] constructed a transformation Bt :MR→MR

such that
Bt(µ)= (µ

�(1+t))]1/(1+t) for µ ∈MR.

They also showed that Bt is a semigroup and B2 = B, where

B : ID(],R)→ ID(�,R)

is the bijective map from the ]-infinitely divisible distributions to the �-infinitely
divisible distributions, discovered in the seminal [Bercovici and Pata 1999].

Theorem 2.7 [Belinschi and Nica 2008b]. Let µ and ν be a pair of probability
measures on the real line such that

(2-5) Gν(z)= z−Fµ(z), z ∈ C+.

Then we have
Gν�γt (z)= z−FBt (µ)(z), t > 0, z ∈ C+.

Remark. Maassen [1992] has shown that, given µ, ν ∈MR satisfying (2-5), µ has
mean zero and variance one. Conversely, if µ ∈MR has mean zero and variance
one, then there exists a unique ν ∈MR satisfying (2-5).

Given τ ∈ ID(�,R) and µ, ν ∈ MR, we compare free Lévy process ν � τ�t

and free convolution semigroup µ�(t+1). If ϕτ (Fν(z))= z−Fµ(z), then τ ν =

µ µ, which implies that subordination function of Fν�(τ�t ) to Fν is the same as
the subordination function of Fµ�(t+1) to Fµ. The following theorem generalizes
Theorem 2.7. The argument is similar to the proof of Theorem 1.6 in [Belinschi
and Nica 2008b] (see also the proof of Lemma 3 in [Anshelevich 2012]); therefore
we omit the proof.

Theorem 2.8. Given τ ∈ ID(�,R), and let µ and ν be a pair of probability
measures on the real line such that

ϕτ (Fν(z))= z−Fµ(z), z ∈ C+.
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Then we have

ϕτ (Fν�(τ�t )(z))= z−FBt (µ)(z), t > 0, z ∈ C+.

Remark. Let τ = γa,b be the semicircular distribution with mean a and variance
b, and let µ, ν be a pair of probability measures on the real line such that

ϕτ (Fν(z))= z−Fµ(z).

We first compute

(2-6) Fµ(z)= z−ϕτ (Fν(z))= z−
(

a+ b
z

)
◦Fν(z)= z− a− bGν(z).

Then, by Theorem 2.8,

(2-7) FBt (µ)(z)= z−ϕτ (Fν�τ�t (z))

= z−
((

a+ b
z

)
◦Fν�γ�t

a,b

)
(z)= z− a− bGν�γ�t

a,b
(z).

By (2-7) and the definition of Boolean convolution, we obtain

(2-8) F(Bt (µ))]t (z)= z− ta− tbGν�γ�t
a,b
(z).

Equations (2-6), (2-7) and (2-8) were studied in [Anshelevich 2012]. As shown there
(Proposition 1 and Example 1), we have (Bt(µ))

]t
∈ ID(�,R), and (Bt(µ))

]t
=

(τ ν)�t
= (µ µ)�t . In fact, for all µ ∈MR, we can deduce from (2-4) and the

identity (Bt(µ))
]t
= (µ�(1+t))]t/(1+t) that (Bt(µ))

]t is the measure associated with
the subordination function of µ�(1+t) with respect to µ: (Bt(µ))

]t
= (µ µ)�t .

3. Multiplicative free convolution and
multiplicative Boolean convolution on MT

Given any two probability measures µ, ν on T, the unit circle of C, we can define
their multiplicative free convolution. We first recall the calculation of the multiplica-
tive free convolution of two measures on T with nonzero means. Given µ ∈MT,
we define

ψµ(z)=
∫

T

t z
1− t z

dµ(t)

and set ηµ(z)= ψµ(z)/(1+ψµ(z)). The following proposition characterizes the
η-transforms of probability measures on T.

Proposition 3.1 [Belinschi and Bercovici 2005]. If η :D→C is an analytic function,
the following assertions are equivalent.

(1) There exists a probability measure µ ∈MT such that η = ηµ.

(2) η(0)= 0, and |η(z)|< 1 holds for all z ∈ D.
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Ifµ∈MT∩M∗, then η′µ(0)=
∫

T t dµ(t) 6=0. Therefore, the inverse η−1
µ is defined

in a neighborhood of zero. We set 6µ(z)= η−1
µ (z)/z. Given µ, ν ∈MT∩M∗, their

multiplicative free convolution, which is denoted by µ�ν, is the unique probability
measure in MT ∩M∗ such that

(3-1) 6µ�ν(z)=6µ(z)6ν(z)

for z in a neighborhood of zero.
It is known (see [Biane 1998; Belinschi and Bercovici 2007]) that there exist

two analytic functions ω1, ω2 : D→ D such that

(1) ω1(0)= ω2(0)= 0,

(2) ηµ�ν(z)= ηµ(ω1(z))= ην(ω2(z)).

A probability measure µ ∈ MT is said to be �-infinitely divisible if for any
positive integer n, there exists µn ∈ MT such that µ = (µn)

�n
= µn � · · ·�µn .

It is shown in [Bercovici and Voiculescu 1992] that if µ ∈MT\M∗ is �-infinitely
divisible, then µ is the Haar measure on T; and µ∈MT∩M∗ is �-infinitely divisible
if and only if there exists a function

(3-2) u(z)= αi +
∫

T

1+ t z
1− t z

dσ(t),

such that 6µ(z)= exp(u(z)), where α ∈ R and σ is a finite positive measure on T.
Equation (3-2) is the analogue of the Lévy–Khintchine formula for multiplicative
free convolution on T. The analogue of the normal distribution in this context is
given by 6λt (z) = exp((t/2)(1+ z)/(1− z)). Denote by ID(�,T) the set of all
�-infinitely divisible measures on T.

Lemma 3.2. Let µ ∈MT ∩M∗ be �-infinitely divisible.

(1) The function H(z)= z6µ(z) is the left inverse of ηµ(z), that is H(ηµ(z))= z
for all z ∈ D.

(2) The function ηµ extends to be a continuous function on D, and ηµ is one-to-one
on D.

(3) The set {z ∈ D : |z6µ(z)|< 1} is a simply connected domain which coincides
with {ηµ(z) : z ∈D}, and its boundary is ηµ(T) which is a simple closed curve.

Proof. Observing that H(ηµ(z))= z is valid in a neighborhood of zero, we obtain
assertion (1) by analytic continuation.

Note that H :D→ C satisfies the conditions in [Belinschi and Bercovici 2005,
Proposition 4.5] and thus assertions (2) and (3) hold. �
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Multiplicative free Brownian motion. For µ ∈ MT and t > 0, we study the mul-
tiplicative free convolution µ� λt . We first concentrate on the case when µ has
nonzero mean. The case when µ has mean zero will be studied in Subsection 3.2.

We start with the following result which is the multiplicative version of [Biane
1997b, Lemma 1].

Lemma 3.3. Given µ, ν ∈MT ∩M∗, we have

ηµ(z)= ηµ�ν(z ·6ν(ηµ(z)))

for z in a neighborhood of zero.

Proof. From (3-1), we find that

(3-3)
η−1
µ�ν(z)

z
=
η−1
µ (z)

z
·
η−1
ν (z)

z

for z in a neighborhood of zero, which we denote by D0. We choose a subdomain
D1 ⊂ D0 such that ηµ(D1)⊂ D0. Replacing z by ηµ(z) in (3-3), we obtain

(3-4)
η−1
µ�ν(ηµ(z))

ηµ(z)
=
η−1
µ (ηµ(z))

ηµ(z)
·
η−1
ν (ηµ(z))
ηµ(z)

=
z

ηµ(z)
·
η−1
ν (ηµ(z))
ηµ(z)

for z ∈ D1. Note that η−1
ν (z)= z6ν(z) for z ∈ D0, and we then rewrite (3-4) as

(3-5) η−1
µ�ν(ηµ(z))= z6ν(ηµ(z)).

Applying ηµ�ν on both sides of (3-5) yields

ηµ(z)= ηµ�ν(z6ν(ηµ(z)))

for z in a neighborhood of zero D1. �

For any t > 0, we denote by ηt : D→ D the subordination function of µ� λt

with respect to µ. Since ηt : D→ D is analytic and ηt(0) = 0, Proposition 3.1
implies the existence of a probability measure ρt such that ηρt (z)= ηt(z).

Lemma 3.4. The measure ρt is �-infinitely divisible and its 6-transform is

6ρt (z)=6λt (ηµ(z)).

Proof. Define analytic function 8t : D→ C by 8t(z) := z6λt (ηµ(z)) for all t > 0.
By Lemma 3.3, we have

ηµ(z)= ηµ�λt (z6λt (ηµ(z)))= ηµ�λt (8t(z))

which implies that

ηµ�λt (z)= ηµ(ηt(z))= ηµ�λt (8t(ηt(z))).
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Since ηµ�λt is invertible in a neighborhood of zero, we have 8t(ηt(z)) = z in a
neighborhood of zero.

We thus obtain η−1
ρt
(z)= η−1

t (z)=8t(z) holds for z in a neighborhood of zero,
which yields that

(3-6) 6ρt (z)=
η−1
ρt
(z)

z
=6λt (ηµ(z)).

By the definition of the ψ- and η-transforms, we have

(3-7) 6λt (ηµ(z))= exp
(

t
2

∫
T

1+ ξ z
1− ξ z

dµ(ξ)
)
.

The real part of the integrand in (3-7) is positive for all z ∈ D; thus the assertion
follows from (3-6) and [Bercovici and Voiculescu 1992, Theorem 6.7]. �

By (3-6), the right hand side of (3-7) is the Lévy–Khintchine representation of
ρt . We can also write ηt in terms of λt and µ� λt . Replacing z by ηµ�λt (z) in the
equation

η−1
µ�λt

(z)

z
=
η−1
µ (z)

z
·
η−1
λt
(z)

z
,

we obtain
z

ηµ�λt (z)
=

ηt(z)
ηµ�λt (z)

·6λt (ηµ�λt (z)),

which shows that

(3-8) ηt(z)=
z

6λt (ηµ�λt (z))
.

Modified S-transform and subordination functions. Given µ ∈MT\M∗ and ν ∈
MT ∩M∗, it is known from [Biane 1998] that ηµ�ν is subordinated to ηµ and ην .
The subordination function for this case is generally not unique (see Example 3.5
below). However, we show that there is a nice subordination function, which we
call the principal subordination function, uniquely determined by certain conditions.
Using the principal subordination function, results related to subordination function
in the case µ, ν ∈ MT ∩M∗ can be extended to the case where µ ∈ MT\M∗ and
ν ∈MT ∩M∗.

Let us first give an example which illustrates the non-uniqueness of subordination
functions.

Example 3.5. For k ∈ N, and let λ(k) = 1/k
∑k−1

n=0 δzn , where zn = e2π in/k . We
have ψλ(k)(z)= zk/(1− zk) and ηλ(k)(z)= zk . Given ν ∈MT∩M∗, if ω :D→D is a
subordination function of ηλ(k)�ν with respect to ηλ(k) , then ω(n)(z) := e2π in/kω(z) is
also a subordination function of ηλ(k)�ν with respect to ηλ(k) for all integer 0< n< k.
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We now introduce the modified S-transform. Given two free random variables
x and y in a W*-probability space (A, φ), such that φ(x) = 0 and φ(y) 6= 0, we
can not directly apply Voiculescu’s S-transform (6-transform) to calculate the
distribution of xy. N. Raj Rao and R. Speicher [2007] introduce a new transform,
which we call the modified S-transform, to deal with this case. They apply the
modified S-transform to study the distribution of xy where x, y are free self-adjoint
random variables such that φ(x)= 0, φ(y) 6= 0. For nonzero self-adjoint operator
x , we have φ(x2) 6= 0. Assume that φ(x) = · · · = φ(xk−1) = 0 and φ(xk) 6= 0.
Arizmendi [2012] observe that we can calculate the distribution of xy using the
idea in [Rao and Speicher 2007]. We present the details of their work for reader’s
convenience.

We first recall some definitions. For µ ∈ MT ∩M∗, we have ψµ(0) = 0 and
ψ ′µ(0) 6= 0. It follows that there exists a function χµ(z), which is analytic in a
neighborhood of zero, such that

ψµ(χµ(z))= χµ(ψµ(z))= z

for sufficiently small z. The usual S-transform is defined by

Sµ(z)=
z+ 1

z
χµ(z).

We then have

6µ(z)= Sµ

(
z

1− z

)
, η−1

µ (z)= χ
(

z
1− z

)
.

We set

Mk
T =

{
µ ∈MT :

∫
T

tn dµ(t)= 0 for 1≤ n < k, and
∫

T
tk dµ(t) 6= 0

}
.

Then, for µ ∈Mk
T, we have

(3-9)
{
ψ ′µ(0)= · · · = ψ

(k−1)
µ (0)= 0= η′µ(0)= · · · = η

(k−1)
µ (0),

ψ
(k)
µ (0) 6= 0 and η(k)µ 6= 0.

For µ ∈ Mk
T, ν ∈ MT ∩M∗, from the definition of free independence, we deduce

that µ� ν ∈Mk
T.

We recall the following classical result in complex analysis; see, for example,
[Hille 1959].

Theorem 3.6. If f (z) is holomorphic in |z|< R, and suppose that

f (0)= f ′(0)= · · · = f (k−1)(0)= 0, f (k) 6= 0.

Then for small values of w 6= 0 the equation

f (z)= w
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has k roots z1(w), . . . , zk(w), which tend to zero when w tends to zero. Moreover,
there exists a function g(w), holomorphic for w sufficiently small with g(0)= 0 and
g′(0) 6= 0, such that for any fixed small values w 6= 0,

z j (w)= g(ω jw1/k), ω = e2π i/k, 0≤ argω1/k <
2π
k
,

if we put those roots in a certain order.

Remark. The converse of Theorem 3.6 is also true. More precisely, given a function
g(w) that is holomorphic for small enough w and satisfies g(0)= 0 and g′(0) 6= 0,
if we set

z j (w)= g(ω jw1/k), ω = e2π i/k, 0≤ argω1/k <
2π
k

for j = 1, . . . , k, then z1(w), . . . , zk(w) are the roots of the equation

Fk(z)= w,

where F is a holomorphic function defined in a neighborhood of the zero such that
F(g(w))= w.

For j = 1, . . . , k, denote D j,r = {ω
j z : 0≤ arg(z) < 2π/k, |z|< r}. We record

the following result for convenience.

Proposition 3.7. Under the assumption of Theorem 3.6, we have z j ( f (z))= z for
z ∈ g(D j,r ) for r sufficiently small.

Given µ ∈ Mk
T, and by Theorem 3.6, we know that there exist k functions

represented by the power series in z1/k such that

(3-10) ψµ(χ
( j)
µ (z))= z,

for z sufficiently small. Moreover, there exists a function gµ(w) holomorphic in a
neighborhood of the zero, such that for j = 1, . . . , k,

χ ( j)
µ (z)= gµ(ω j z1/k),

where ω = e2π i/k , 0≤ arg z1/k < 2π/k.

Definition 3.8. Given µ ∈ Mk
T. Let χ ( j)

µ be the inverse function of ψµ in (3-10),
the modified S-transform of µ is k functions S(1)µ (z), . . . ,S(k)µ (z), such that for
j = 1, . . . , k,

S( j)
µ (z)= χ

( j)
µ (z) ·

1+ z
z
.

Given µ ∈Mk
T and ν ∈MT ∩M∗, we set

S( j)(z)= S( j)
µ (z) ·Sν(z)
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and compute

(3-11) χ ( j)(z)= S( j)(z) ·
z

1+ z
= S( j)

µ (z) ·Sν(z) ·
z

1+ z
= χ ( j)

µ (z) ·Sν(z)= gµ(ω j z1/k) ·Sν(z)= g(ω j z1/k),

where g(z)= gµ(z) ·Sν(zk) is a function such that g(0)= 0, g′(0) 6= 0. From the
remark after Theorem 3.6, we deduce that for different j , there exists the same left
inverse ψ such that ψ(χ ( j)(z))= z. Therefore, we have the following proposition.

Proposition 3.9. Given µ ∈Mk
T and ν ∈MT ∩M∗, for 1≤ j ≤ k, let

S( j)(z)= S( j)
µ (z) ·Sν(z), χ ( j)(z)= S( j)(z) ·

z
1+ z

.

Then there exists a unique holomorphic function ψ defined in a neighborhood of the
zero such that

ψ((χ ( j))(z))= z.

Theorem 3.10 [Rao and Speicher 2007; Arizmendi 2012]. Given µ ∈ Mk
T and

ν ∈MT ∩M∗, we have

(3-12) S
( j)
µ�ν(z)= S( j)

µ (z) ·Sν(z), j = 1, . . . , k,

where the modified S-transforms are listed in a certain order.

Because of Proposition 3.9 and Theorem 3.10, for fixed µ∈Mk
T and ν ∈MT∩M∗,

we denote

(3-13) ψ(z)= ψµ�ν(z) and χ ( j)(z)= χ ( j)
µ�ν(z),

and we also denote g(z)= gµ(z) ·Sν(zk) as in (3-11).
Given µ ∈ Mk

T, ν ∈ MT ∩ M∗, we set ι( j)
µ (z) = χ

( j)
µ (z/(1 − z)) and ιν(z) =

χν(z/(1− z)). Theorem 3.10 implies that

(3-14) χ
( j)
µ�ν(z)= χ

( j)
µ (z) ·χν(z) ·

1+ z
z
.

We also have χ ( j)
µ (z)= gµ(ω j z1/k) and χ ( j)

µ�ν(z)= gµ(ω j z1/k) ·Sν(z)= g(ω j z1/k).
Substituting z by ψµ�ν(z) in (3-14), and applying Proposition 3.7, we find that

z = χ ( j)
µ�ν(ψµ�ν(z))= χ

( j)
µ (ψµ�ν(z)) ·χν(ψµ�ν(z)) ·

1+ψµ�ν(z)
ψµ�ν(z)

,

where z ∈ g(D j,r ) for r sufficiently small. Thus

(3-15) zηµ�ν = ι( j)
µ (ηµ�ν) · ιν(ηµ�ν)

holds in the same domain.



FREE BROWNIAN MOTION AND FREE CONVOLUTION SEMIGROUPS 233

We can now utilize the argument in [Belinschi and Bercovici 2007] to prove the
existence of subordination function of ηµ�ν with respect to ηµ for µ ∈ Mk

T, ν ∈

MT ∩M∗. Note that part of the following result is known in [Biane 1998].

Theorem 3.11. Given µ ∈ Mk
T, ν ∈ MT ∩M∗, there exists two unique analytic

functions ω1, ω2 : D→ D such that

(1) ω1(0)= ω2(0)= 0;

(2) ηµ�ν(z)= ηµ(ω1(z))= ην(ω2(z)),

(3) ω1(z)ω2(z)= zηµ�ν(z) for all z ∈ D.

Proof. Since ηµ(0)= 0, ην(0)= 0, we can write ηµ(z)= z f1(z), ην(z)= z f2(z) for
two analytic functions f1, f2 : D→ D. Fix 1 ≤ j ≤ k, set ω1(z) = ι

( j)
µ (ηµ�ν(z)),

ω2(z)= ιν(ηµ�ν(z)) defined in g(D j,r ) for r sufficiently small.
By (3-15), we have

zηµ�ν(z)= ω1(z)ω2(z)

for z ∈ g(D j,r ). We thus obtain

ω1(z)=
zηµ�ν
ω2(z)

=
zην(ω2(z))
ω2(z)

= z f2(ω2(z)).

Similarly, we have ω2(z) = z f1(ω1(z)) for z ∈ g(D j,r ). Regarding ω1(z), ω2(z)
as Denjoy–Wolff points, the same argument as in [Belinschi and Bercovici 2007]
implies ω1, ω2 can be extended analytically to D. By the uniqueness of Denjoy–
Wolff points, ω1, ω2 does not depend on the choice of j .

By the definitions of ι( j)
µ , ιν , we have ηµ(ω1(z)) = ην(ω2(z)) = ηµ�ν for z in

g(D j,r ). Thus (2) and (3) hold by analytic continuation. Since η′ν(0) 6= 0, ην is
locally invertible near the origin and therefore ω2 is unique. Finally (3) implies the
uniqueness of ω1. �

Since µ ∈ Mk
T and µ � ν ∈ Mk

T, we have ω′1(0) 6= 0, where ω1 is given in
Theorem 3.11.

Definition 3.12. For µ ∈ Mk
T, ν ∈ MT ∩M∗, the subordination ω1 satisfying the

relations (1), (2) and (3) in Theorem 3.11 is called the principal subordination
function of ηµ�ν with respect to ηµ. The measure ρ ∈MT ∩M∗ satisfying ηρ(z)=
ω1(z) is called the principal subordination distribution of ηµ�ν with respect to ηµ.

Note that for µ, ν ∈MT ∩M∗, the principal subordination function of ηµ�ν with
respect to ηµ is the usual subordination function.

The following result might be obtained by approximation. We provide a direct
proof.
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Corollary 3.13. Given µ ∈Mk
T, ν ∈MT ∩M∗, let ρ be the principal subordination

distribution of ηµ�ν with respect to ηµ, we have

6ρ(z)=6ν(ηµ(z)).

In particular, if ν ∈ ID(�,T), we have ρ ∈ ID(�,T).

Proof. By choosing a sequence µn ∈MT ∩M∗ such that µn converges to µ weakly,
Lemma 3.3 implies

ηµ(z)= ηµ�ν(z6ν(ηµ(z)))

for z in a neighborhood of zero.
Set 8(z)= z6ν(ηµ(z))= z ·Sν(ψµ(z)), and we thus have

(3-16) ηµ�ν(z)= ηµ(ω1(z))= ηµ�ν(8(ω1(z)))= ηµ�ν(8(ηρ(z))).

Fix 1 ≤ j ≤ k, we claim that if z ∈ g(D j,r ), then 8(ω1(z)) = z. Indeed, for
0≤ arg(w1/k) < 2π/k and z = g(ω jw1/k)= χ ( j)(w), using the construction of ω1

in Theorem 3.11, we have

(3-17) ω1(z)= ι( j)
µ (ηµ�ν(z))= χ

( j)
µ (ψµ�ν(z)).

From (3-11) and (3-13), we have

(3-18) χ ( j)(w)= g(ω jw1/k)) and ψµ�ν(χ
( j)(w))= w.

Equations (3-17) and (3-18) imply that ω1(g(ω jw1/k)))= χ
( j)
µ (w).

Note that ψµ(ω1(g(ω jw1/k)))= ψµ�ν(g(ω jw1/k))= w. Thus we obtain

8(ω1(z))=8(ω1(g(ω jw1/k)))= χ ( j)
µ (w)Sν(w)= χ

( j)(w)= z.

The above claim, (3-16) and Proposition 3.7 imply

z =8(ω1(z))=8(ηρ(z))

for z ∈ g(D j,r ). We conclude that 6ρ(z) = 8(z)/z = 6ν(ηµ(z)) for z in a small
neighborhood of zero by applying the above argument for all 1≤ j ≤ k.

If ν ∈ ID(�,T), then by [Bercovici and Voiculescu 1993, Theorem 6.7], there
exists an analytic function u(z) defined in D such that 6ν(z) = exp(u(z)) and
<u(z) ≥ 0 for all z ∈ D. Thus 6ν(ηµ(z)) = exp(u(ηµ(z))) and <(u(ηµ(z))) ≥ 0
for all z ∈D, and then the second assertion follows from [Bercovici and Voiculescu
1993, Theorem 6.7]. �

Remark. If k = 1, noticing that Mk
T =MT ∩M∗, the modified S-transform is the

usual S-transform. We see that Corollary 3.14 holds when µ, ν ∈MT ∩M∗.

The following result is the multiplicative analogue of Lemma 2.6.
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Proposition 3.14. Given ρ, τ ∈MT∩M∗, let σ be a measure in MT∩M∗ such that
ηρ�τ (z)= ηρ(ησ (z)). If σ ∈ ID(�,T), then ρ� τ�t can be defined for all t ≥ 0 in
the sense that 6ρ�(τ�t )(z)=6ρ(z)(6τ (z))

t .

Proof. For t > 0, there exists µt ∈MT ∩M∗ such that

ηµt (z)= ηρ(ησ�t ).

Using a similar argument as in the proof of Lemma 2.6 and applying Corollary 3.13,
we can find that 6µt (z)=6ρ(z)(6τ (z))

t . �

Semigroups related to multiplicative free convolution. Recall that

M∗T = {µ ∈MT ∩M∗ : ηµ(z) 6= 0 for all z ∈ D\{0}}.

Letµ∈M∗T and t>1 be given, and let u be an analytic function such that z/(ηµ(z))=
eu(z) for z in a neighborhood of zero. Set Ht(z)= ze(t−1)u(z)

= z[z/(ηµ(z))]t−1. It
is shown in [Belinschi and Bercovici 2005] that Ht has a right inverse ωt : D→ D

such that Ht(ω(z))= z, and there exists a probability measure µ�t
∈M∗T such that

(1) ηµ�t (z)= ηµ(ωt(z)) and 6µ�t (z)= (6µ(z))t ,

(2) ωt(z) = ηµ�t (z)[z/ηµ�t (z)]1/t for z ∈ D, where the power is chosen so that
the equation holds.

Observe that for each t > 0, by Proposition 3.1, there exists a probability measure
σt ∈ MT such that ησt (z) = ωt+1(z). It turns out that σt is �-infinitely divisible
and its 6-transform is 6σt (z)= [z/ηµ(z)]

t , which can be obtained by applying the
same argument as in the proof of Lemma 3.4.

The following result is a partial converse of [Belinschi and Bercovici 2005,
Theorem 3.5].

Theorem 3.15. Given µ ∈ MT ∩M∗, assume that for any t > 1, there exists a
probability measure µt ∈MT such that

(3-19) 6µt (z)= (6µ(z))
t .

Assume in addition that µt is subordinated with respect to µ for all t > 1. Then
ηµ(z) 6= 0 for all z ∈ D\{0}, that is µ ∈M∗T.

Proof. For each t > 1, we denote by ωt the subordination function of µt to µ.
Observing that µt ∈M∗ and ω′t(0) 6= 0, for each t > 1, there exists a probability
measure σt−1 ∈MT ∩M∗ such that ησt−1(z)= ωt(z). We rewrite (3-19) as

(3-20)
η−1
µt
(z)

z
=

[
η−1
µ (z)

z

]t

for z in a neighborhood of zero.
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Note that ω−1
t (z)= η−1

µt
(ηµ(z)) for z in a neighborhood of zero. Replacing z by

ηµ(z) in (3-20), we obtain

ω−1
t (z)
ηµ(z)

=
η−1
µt
(ηµ(z))

ηµ(z)
=

[
η−1
µ (ηµ(z))

ηµ(z)

]t

=

[
z

ηµ(z)

]t

,

which implies
ω−1

t (z)
z
=

[
z

ηµ(z)

]t−1

.

Given t > 0, we thus have 6σt (z) = [z/ηµ(z)]
t for z in a neighborhood of zero.

Therefore σt is �-infinitely divisible.
By [Bercovici and Voiculescu 1992, Theorem 6.7], there exists an analytic

function u(z) in D such that <u(z)≥ 0 if z ∈ D and 6σ1(z)= exp(u(z)). We thus
obtain z/ηµ(z)= exp(u(z)), which implies that ηµ(z) 6= 0 for all z ∈ D. �

It was pointed out in [Belinschi and Bercovici 2005] that µ�t is only determined
up to a rotation by a multiple of 2π t . Note that ωt and σt are determined by the
choice of µ�t .

Multiplicative Boolean convolution and the Bercovici–Pata bijection. Multiplica-
tive Boolean convolution on T was studied by Franz [2008]. Let µ∈MT, and we set
kµ(z)= z/ηµ(z). Given two probability measures µ, ν ∈MT, their multiplicative
Boolean convolution µ×∪ν is a probability measure on T such that

kµ ×∪ν(z)= kµ(z)kν(z)

for all z ∈ D.
A probability µ ∈ MT is said to be ×∪-infinitely divisible, if for any positive

integer n, there exists µn ∈MT such that µ= (µn)
×∪n . Let P0 be the Haar measure.

It is shown in [Franz 2008] that µ ∈MT\{P0} is ×∪-infinitely divisible if and only if
η′µ(0) 6= 0 and ηµ 6= 0 for all z ∈ D\{0}, that is µ ∈M∗T, which is equivalent to

(3-21) kµ(z)= exp
(

bi +
∫

T

1+ ξ z
1− ξ z

d τµ(ξ)
)
,

where b ∈ R and τµ is a finite measure on T. Equation (3-21) is the analogue of the
Lévy–Khintchine formula in this context.

The multiplicative Bercovici–Pata bijection from ×∪ to � was studied in [Wang
2008]. Denote the set of all ×∪-infinitely divisible measures on T by ID(×∪,T),
and the multiplicative Bercovici–Pata bijection from ×∪ to � by M. Then we have
kµ(z)=6M(µ)(z).

Given µ∈ID(×∪,T)\P0=M∗T, let ω2 be the subordination function of µ�2 with
respect to µ, and let σ be the probability measure on T such that ησ (z) = ω2(z).
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Then σ is �-infinitely divisible and its 6-transform is 6σ (z)= z/ηµ(z)= kµ(z).
Therefore, σ is the same as M(µ). Since P0�P0= P0 and ηP0= z, the subordination
function of P0 � P0 with respect to P0 is the identity map z, and the measure
associated with the identity map z is P0. To summarize:

Corollary 3.16. Given µ ∈ ID(×∪,T), let ω2 be the subordination function of µ�2

with respect to µ, and let σ be the probability measure on T such that ησ (z)=ω2(z).
Then σ =M(µ), where M is the multiplicative Bercovici–Pata bijection from ×∪

to �.

Proposition 3.17. If µ ∈MT, the following are equivalent.

(1) µ ∈ ID(T,�).

(2) δβ ×∪µ ∈ ID(T,�) for any β ∈ T.

Proof. It is enough to prove that (1) implies (2) for µ ∈MT ∩M∗. Observing that
ηδβ ×∪µ(z)= β · ηµ(z), we thus have

6δβ ×∪µ(z)=
η−1
δβ ×∪µ

(z)

z
=
η−1
µ (βz)

z
= β ·6µ(βz).

The result follows from the Lévy–Khintchine formula for the multiplicative free
convolution on T. �

An analogue of equations studied by Belinschi and Nica. In this subsection, we
prove our Theorem 1.1. Recall that λt is the free multiplicative analogue of the
normal distribution on T, the unit circle of C, with6λt (z)=exp((t/2)(1+z)/(1−z))
and we set λ= λ1. For µ ∈MT, we denote m1(µ)=

∫
T ξdµ(ξ).

Proposition 3.18. Given µ ∈M∗T and a finite measure τ on T, define an analytic
map u by

(3-22) u(z)= bi +
∫

T

1+ ξ z
1− ξ z

dτ(ξ), z ∈ D,

where b ∈ [0, 2π). If kµ(z)= z/ηµ(z)= exp u(z), then b = arg 1/m1(µ) ∈ [0, 2π)
and τ(T)= ln |1/m1(µ)|. In particular, there exists a probability measure ν ∈MT

such that kµ(z)=6λ(ην(z)) if and only if m1(µ)= e−1/2.

Proof. By definition, we have

(3-23) kµ(0)= lim
z→0

z
ηµ(z)

=
1

η′µ(0)
=

1
m1(µ)

.

Since u(0)= bi + τ(T), we obtain

(3-24) b = arg
(

1
m1(µ)

)
and τ(T)= ln

∣∣∣∣ 1
m1(µ)

∣∣∣∣.
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The first assertion follows.
By (3-7), we have

6λ(ην(z))= exp
(

1
2

∫
T

1+ ξ z
1− ξ z

dν(ξ)
)
.

Noticing that kµ has the Herglotz representation as (3-21), we conclude that kµ(z)
can be written in the form of 6λ(ην(z)) for a probability measure ν on T if and
only if ln(1/m1(µ))= 1/2. This implies the second half of the assertion. �

For µ ∈ ID(×∪,T)\P0 =M∗T with m1(µ) > 0, let u(z) be the analytic function
satisfying kµ(z) = exp(u(z)) and u(0) > 0. Given t > 1, let Ht(z) = z exp((t −
1)u(z)), and denote its right inverse by ωt :D→D with ωt(0)= 0. We define (see
[Belinschi and Bercovici 2005]) µ�t by the relation

(3-25) ηµ�t (z)= ηµ(ωt(z)).

Then we see that H ′t (0) > 0, ω′t(0) > 0 and that

m1(µ
�t)= η′

µ�t (0) > 0.

For t > 0, we also define µ ×∪t by the relation

(3-26) kµ×∪ t (z)= exp(tu(z)).

For this choice of the Boolean convolution power, we have

m1(µ
×∪t) > 0.

Definition 3.19. Given µ ∈M∗T such that m1(µ) > 0, we define a family of maps
{Mt }t 6=0 by

Mt(µ)= (µ
�(t+1)) ×∪1/(t+1),

where we choose µ�(t+1) and Mt(µ) in a way such that they have positive means.

The next result is a special case of [Arizmendi and Hasebe 2013, Theorem 4.4].

Lemma 3.20. Given µ ∈M∗T with m1(µ) > 0, the following assertions are true.

(1) Mt+s(µ)=Mt(Ms(µ)) for all t, s ≥ 0.

(2) M1(µ)=M(µ).

Proof of Theorem 1.1. We set

(3-27) u(z)= 1
2

∫
T

1+ ξ z
1− ξ z

dν(ξ).

By (3-7) and the assumption (1-2), we have

(3-28)
z

ηµ(z)
=6λ(ην(z))= exp(u(z)).
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By Proposition 3.18, we see that m1(µ) > 0. We therefore can choose the multi-
plicative convolution power µ�(t+1) such that m1(µ

�(t+1)) > 0.
Let ηt be the principal subordination function of ν � λt with respect to ν and

ωt+1 be the subordination function of µ�(t+1) with respect to µ. Let ρt , σt ∈MT

such that ηρt = ηt and ησt = ωt+1.
By Corollary 3.13, (1-2) implies that 6ρt (z)=6λt (ηµ(z))= exp(tu(z)). From

the choice of µ�(t+1), the function Ht+1(z) := z exp(tu(z)) is the left inverse of
ωt+1 such that Ht+1(ωt+1(z))= z for all z ∈ D, which implies that

(3-29) 6σt (z)= exp(tu(z)).

We thus obtain that ρt = σt and ηt = ωt+1.
Replacing z by ηt in (1-2), we obtain

(3-30) 6λ(ην�λt (z))=6λ(ην((ηt(z))))=
ηt(z)

ηµ(ηt(z))

=
ωt+1(z)

ηµ(ωt+1(z))
=

ωt+1(z)
ηµ�(t+1)(z))

=

(
z

ηµ�(t+1)(z)

)1/t+1

.

On the other hand, by the definition of Mt , we have

z
ηMt (µ)(z)

=
z

η(µ�(t+1)) ×∪ (1/(t+1))(z)
=

(
z

ηµ�(t+1)(z)

)1/t+1

,

completing the proof of Theorem 1.1. �

Some examples and applications. We start with the multiplicative analogues of ex-
amples studied in [Anshelevich 2010; 2012; Arizmendi and Hasebe 2013; Belinschi
and Nica 2008b]. We define the set

(A)= {µ ∈M∗T : m1(µ)= e−1/2
}.

By (3-22), the set MT is in one-to-one correspondence with the set (A) via the
bijection ν↔ µ, such that 6λ(ην(z))= z/ηµ(z).

Definition 3.21. The bijective map 3 :MT→ (A) is defined by

6λ(ην(z))=
z

η3[ν](z)
for all ν ∈MT.

Using the 3 notation, Theorem 1.1 implies that

3[ν� λt ] =Mt [3(ν)] for all ν ∈MT.
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Example 3.22. Let δ1 be the Dirac measure at 1, and let µ = 3[δ1], we have
z/ηµ(z)=6λ(ηδ1(z))= exp(1

2(1+ z)/(1− z)). For t ≥ 0, Theorem 1.1 implies that

z
ηMt (µ)(z)

=6λ(ηδ1�λt (z))=6λ(ηλt (z)).

In particular, when t = 1,

ηM1(µ)(z)=
z

6λ(ηλ1(z))
= ηλ1(z),

where we used the equality ((z6λ) ◦ ηλ)(z)= z and λ= λ1. Therefore, M1(µ) is
the free multiplicative analogue of the normal distribution on T.

Example 3.23. More generally, we consider λb,t = δb � λt and µb,t = 3[λb,t ].
Then

6λ(ηλb,t (z))=
z

ηµb,t (z)
for t 6= 0.

On the other hand, Theorem 1.1 implies that

6λ(ηλb,t1+t2
(z))=6λ(ηλb,t1�λ2(z))=

z
ηMt2 (µb,t1 )

(z)
for t1, t2 ≥ 0,

which yields that µb,t1+t2 =Mt2(µb,t1) for t1, t2 ≥ 0.

We would like to provide another example which covers part of [Arizmendi and
Hasebe 2013, Example 4.10].

Example 3.24. Let P0 be the Haar measure on T. Then by the free independence,
P0 � λt = P0. We set µ=3[P0], and we have

6λ(ηP0�λt (z))=6λ(ηP0(z))=
z

ηµ(z)
,

which implies that Mt(µ)= µ for all t ≥ 0. To calculate the distribution of µ, we
note that ηP0 ≡ 0, which shows that ηµ = e−1z, and thus ψµ(z)= z/e− z. Using
the identity

1
π

(
ψµ(z)+

1
2

)
=

1
2π

∫ 2π

0

ei t
+ z

ei t − z
dµ(e−i t),

and Stieltjes’s inversion formula, we obtain

µ(dt)=
1

2π
1− e−2

1+ e−2− 2e−1 cos(t)
dt, 0≤ t ≤ 2π.

We then give some applications of results concerning infinity divisibility of
the measures associated with subordination functions. For µ ∈ MT, we say µ is
nontrivial if it is not a Dirac measure at a point on T.
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Lemma 3.25. Given σ ∈ID(�,T) which is non-trivial, and 0< ε < 1, there exists
a positive number n(ε) such that

ησt (D)⊂ Dε = {z = reiθ
: 0≤ r ≤ ε, 0≤ θ < 2π}

for any t > n(ε), where σt = σ
�t .

Proof. If σ = P0, the Haar measure on T, the result is trivial. If σ 6= P0 is nontrivial,
then by [Bercovici and Voiculescu 1992, Theorem 6.7], there exists a finite positive
measure ν on T with ν(T) > 0, α ∈ R, and an analytic function u defined by

u(z)= iα+
∫

T

1+ ξ z
1− ξ z

dν(ξ) for z ∈ D,

such that 6σ (z)= exp(u(z)). We choose σt ∈MT satisfying 6σt (z)= exp(tu(z)).
Noticing that other choices of the multiplicative free convolution power of σ can
be obtained from σt by a rotation of a multiple of 2π t , it is enough to prove the
assertion for σt .

We set 8σt = z6σt (z); then, by Lemma 3.2, we have

8−1
σt
(D)= ησt (D).

For z = reiθ
∈ D, we calculate

(3-31) |8σt (z)| = r exp
(

t
∫

T

1− r2

|1− ξ z|2
dν(ξ)

)
≥ r exp

(
t
∫

T

1− r2

|1+ r |2
dν(ξ)

)
= r exp

(
t · ν(T)

1− r
1+ r

)
.

Since

lim
t→∞

r exp
(

t · ν(T)
1− r
(1+ r)

)
=∞,

we deduce that for any 0< ε < 1, there exists a positive number n(ε) such that, for
all t > n(ε), we have

|8σt (z)|> 1 for |z| = ε.

By Lemma 3.2, 8σt (D) is a simply connected domain which contains zero, which
implies that

ησt (D)=8
−1
σt
(D)⊂ Dε, for t > n(ε).

The assertion follows because ησt extends to a continuous function on D. �

For µ ∈MT, we have

1
2π

(
1+ ηµ(z)
1− ηµ(z)

)
=

1
2π

∫ 2π

0

eiθ
+ z

eiθ − z
dµ(e−iθ ), z ∈ D.
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The real part of this function is the Poisson integral of the measure dµ(e−iθ ), we
can recover µ by Stieltjes’s inversion formula. The functions

(3-32)
1

2π
<

(
1+ ηµ(reiθ )

1− ηµ(reiθ )

)
=

1
2π

1− |ηµ(reiθ )|2

|1− ηµ(reiθ )|2

converge to the density of µ(e−iθ ) a.e. relative to Lebesgue measure, and they
converge to infinity a.e. relative to the singular part of this measure.

Proposition 3.26. Given µ ∈MT and σ ∈ ID(�,T) which is nontrivial, let µt be
the unique probability measure on T such that

ηµt (z)= ηµ(ησt (z)).

Then we have

lim
t→∞

sup
θ∈[0,2π ]

∣∣∣∣dµt(eiθ )

dθ
−

1
2π

∣∣∣∣= 0,

where dµt(eiθ )/dθ is the density function of µt at eiθ with respect to Lebesgue
measure.

Proof. Given 0< ε < 1, by Lemma 3.25, there exists n(ε) > 0 such that ησt (e
iθ ) < ε

for t ≥ n(ε), which yields that ηµt (z) extends continuously to D. Thus

|ηµt (e
iθ )| = |ηµ(ησt (e

iθ ))| ≤ |ησt (e
iθ )|< ε,

which implies that

(3-33)
1− ε
1+ ε

=
1− ε2

|1+ ε|2
≤

1− |ηµt (e
iθ )|2

|1− ηµt (eiθ )|2
≤

1
|1− ε|2

.

Since ε is arbitrary, combining (3-32) with (3-33), we prove our assertion. �

Corollary 3.27. Given µ∈MT and a nontrivial measure ν ∈ID(�,T), the density
functions of the measures µ� νt converge to 1/2π uniformly as t→∞; if µ ∈MT

is nontrivial, the density functions of the measures µ�t converge to 1/2π uniformly
as t→∞.

Proof. Noticing Corollary 3.13, Propositions 3.14, 3.26 and Subsection 3.3, we
only need to prove the case of µ�t for µ /∈M∗T. We point out that the measures are
nontrivial imply that the subordination distributions involved are nontrivial.

For µ ∈MT\M∗, we have µ�n
= P0, where P0 is the Haar measure on T. Thus

the assertion is true for this case. For µ ∈ MT ∩M∗, but µ /∈ M∗T, it is shown in
[Belinschi and Bercovici 2005] that µ�µ ∈M∗T; thus this case reduces to the case
when µ ∈M∗T. This finishes the proof. �
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4. Multiplicative convolution on MR+

Multiplicative free convolution on MR+ . We are interested in the probability mea-
sures on the positive real line R+, which are different from the Dirac measure at
zero, we thus set

M∗R+ =MR+\{δ0}.

Given µ ∈M∗
R+

, we define

ψµ(z)=
∫
+∞

0

t z
1− t z

dµ(t),

and ηµ(z)=ψµ(z)/(1+ψµ(z)). The transform ηµ is characterized by the following
proposition; see [Belinschi and Bercovici 2005].

Proposition 4.1. Let η : C\R+→ C be an analytic function such that η(z̄)= η(z)
for all z ∈ C\R+. Then the following two conditions are equivalent.

(1) η = ηµ for some µ ∈M∗
R+

.

(2) η(0−)= 0 and arg(η(z)) ∈ [arg z, π) for all z ∈ C+.

It can be shown that ηµ is invertible in some neighborhood of (−∞, 0), and we
set 6µ(z)= η−1

µ (z)/z where η−1
µ is defined in some neighborhood of (α, 0). Given

two measures µ, ν ∈ M∗
R+

, the multiplicative free convolution of µ and ν is the
probability measure µ� ν in M∗

R+
such that

6µ�ν(z)=6µ(z)6ν(z)

in some neighborhood of (α, 0), where these functions are defined.
It is known from [Belinschi and Bercovici 2007; Biane 1998] that there exist

two analytic functions ω1, ω2 : C\R
+
→ C\R+ such that

(1) ω j (0−)= 0 for j = 1, 2,

(2) for any λ ∈ C+, we have ω j (λ̄)= ω j (λ) for j = 1, 2,

(3) ηµ�ν(z)= ηµ(ω1(z))= ην(ω2(z)) for z ∈ C\R+.

For simplicity, we say that ω1 (resp. ω2) is the subordination function of µ�ν with
respect to µ (resp. ν), and µ� ν is subordinated to µ and ν.

The analogy of the Lévy–Khintchine in this setting was proved in [Bercovici
and Voiculescu 1992; 1993]. A measure µ ∈MR+ is �-infinitely divisible if and
only if 6µ(z)= exp(u(z)), with

u(z)= a− bz+
∫
+∞

0

1+ t z
z− t

dσ(t),

where b ∈ R and σ is a finite positive measure on R+. The analogue of the normal
distribution in this context is given by 6λt (z)= exp((t/2)(z+ 1)/(z− 1)).
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Lemma 4.2. If µ, ν ∈M∗
R+

, we have

ηµ(z)= ηµ�ν(z6ν(ηµ(z)))

in some neighborhood of interval (α, 0).

The proof of Lemma 4.2 is identical to the proof of Lemma 3.3, therefore we omit
the details.

For any t > 0, assume that ηt : D→ D is the subordination function of µ� λt

with respect to µ, by Lemma 4.2 and the characterization of η-transform, there
exists a probability measure ρt in M∗

R+
such that ηρt (z)= ηt(z). The argument in

the proof of Lemma 3.4 implies the following result.

Proposition 4.3. The measure ρt is �-infinitely divisible and its 6-transform is
6ρt (z)=6λt (ηµ(z)), and

6λt (ηµ(z))= exp
(

t
2

∫
+∞

0

1+ ξ z
ξ z− 1

dµ(ξ)
)
.

We now discuss free convolution semigroups. Given t > 1, it is proved in
[Belinschi and Bercovici 2005] that one can define µ�t

∈M∗
R+

such that 6µ�t (z)=
(6µ(z))t for z < 0 sufficiently close to zero. Similar to the case of MT, µ�t is
subordinated with respect to µ and we denote the subordination function by ωt .
By [Belinschi and Bercovici 2005, Theorem 2.6] and the characterization of η-
transform, there exists a probability σt ∈M∗

R+
such that ησt (z)= ωt+1 for all t > 0.

Moreover, σt is �-infinitely divisible and its 6-transform is 6σt (z)= [z/ηµ(z)]
t .

Multiplicative Boolean convolution on MR+ and the semigroup Mt . Bercovici
[2006] proved that the multiplicative Boolean convolution does not preserve MR+ .
But we can still define µ ×∪t for µ ∈ MR+ and 0 ≤ t ≤ 1 as follows. Let kµ(z) =
z/ηµ(z), the Boolean convolution power µ ×∪t is defined by

kµ×∪ t (z)= (kµ(z))t .

Definition 4.4 [Arizmendi and Hasebe 2013]. A family of maps from MR+ to itself
is defined by

Mt(µ)= (µ
�(t+1)) ×∪(1/(t+1)).

It is also shown in [Arizmendi and Hasebe 2013] that Mt+s =Mt ◦Ms for t, s ≥ 0.

Analogous equations. Given a pair of probability measures ν, µ ∈MR+ , we also
consider, as in the case MT, the semigroups ν� λt and µ�(t+1), the subordination
functions ηt and ωt+1, and their associated probability measures ρt , σt for all t > 0.
Since 6ρt (z) = 6λt (ην(z)) and 6σt (z) = [z/ηµ(z)]

t , we deduce that ηt = ωt+1 if
and only if

6λ(ην(z))=
z

ηµ(z)
.
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Applying the same argument as in the proof of the Theorem 1.1, we obtain the
following result.

Theorem 4.5. Given a pair of probability measures µ, ν ∈MR+ such that

(4-1) 6λ(ην(z))=
z

ηµ(z)
, z ∈ C+,

we have 6λ(ην�λt (z))=
z

ηMt (µ)(z)
, z ∈ C+.

5. A description of the analogue of the normal distribution

Biane [1997a; 1997c] studied free Brownian motion and proved many important
results. In this section, we give a new proof for the density functions of the free
multiplicative analogue of the normal distributions, which was first obtained in
[Biane 1997c] (See also [Demni and Hmidi 2012] for a different approach). Some
results are new. For example, we show that λt is unimodal for the circle case; and
we show that 8−1

λ (C
+) contains infinitely many connected components where λ is

the free multiplicative analogue of the normal distribution on the positive half line
with 6λ(z)= exp((z+ 1)/(z− 1)). We also give a description of the boundaries
�t , � (defined below), we observe that ∂�t can be parametrized by θ and ∂� can
be parametrized by r .

The circle case. Let λt ∈MT be the analogue of the normal distribution such that
6λt (z)= exp((t/2)(1+ z)/(1− z)). We set 8t(z)= z6λt (z), and let �t = {z ∈D :

|8t(z)|< 1}. By Lemma 3.2, ηλt extends continuously to the unit circle T, �t is
simply connected and bounded by a simple closed curve, and we have ∂�t = ηλt (T).

Observe that for t 6= 4, 8t has zeros of order one at z1(t)= (2− t+
√

t2− 4t)/2
and z2(t)= (2− t−

√
t2− 4t)/2. 84 has a zero of order two at−1; and for all t , 8t

has an essential singularity at 1, and no other zeros and singularities. For 0< t < 4,
z1(t), z2(t) ∈ T and z2(t) = z1(t), we let θ1(t) ∈ (0, π) and θ2(t) ∈ (π, 2π) such
that z1(t)= eiθ1(t) and z2(t)= eiθ2(t). We have z1(4)= z2(4)=−1 and for t > 4,
z1(t) ∈ (−1, 0) and z2(t) ∈ (−∞,−1).

We define

gt(r, θ)= r exp
(

t
2

1− r2

1− 2r cos θ + r2

)
= |8t(z)|

for z = reiθ . The unit circle is parametrized by T= {eiθ
: 0≤ θ < 2π}.

Lemma 5.1. For 0< t < 4, ∂�t = {z = eiθ
: θ1(t)≤ θ ≤ θ2(t)}∪L1,t ∪L2,t , where

L1,t is an analytic curve, and L1,t is in D∩C+ except one of its endpoints, and L2,t

is the reflection of L1,t about x-axis. L1,t can be parametrized by γt(u) (0≤ u ≤ 1)
such that γt(0) ∈ R, γt(1) = z1(t) and γt(u) ⊂ D∩C+ for 0 < u < 1. Moreover,
|γt(u)| is an increasing function of u on the interval [0, 1].
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Proof. Observing that 8t(z̄)=8t(z), we see that ∂�t is symmetric with respect
to x-axis. Since �t is simply connected and ∂�t is a simple closed curve, ∂�t

intersects x-axis at two points.
Restricting 8t to real numbers, we find that 8t(R) ⊂ R, and that 8t is an

increasing function on (−1, 1) since 8′t(z) is positive for z ∈ (−1, 1). From
8t(−1)=−1 and limz→1− 8t(z)=+∞, we deduce that

(5-1) 8−1
t ((−1, 1))= (−1, x(t)),

where x(t) is the unique solution of the equation 8t(z)= 1 for z ∈ (−1, 1). The
fact that 8′t(z) 6= 0 for z 6= zt(t), z2(t) implies that 8t is locally invertible for
z 6= z1(t), z2(t). Combining the fact that 8t(T\{1})⊂ T, we obtain that

{eiθ
: θ1(t)≤ θ ≤ θ2(t)} ⊂ ∂�t

and ∂�t has corners of opening π/2 at z1(t) and z2(t).
Since 8t is a conformal mapping from �t to D, by the symmetry 8t(z̄)=8t(z)

and (5-1), noticing that 8′t(0) = 1, we thus deduce that 8t(�t ∩C+) ⊂ D∩C+.
Since ∂�t is a simple closed curve, z1(t) and x(t) are connected by ∂�t . It is clear
that ∂�t\{eiθ

: θ1(t) ≤ θ ≤ θ2(t)} does not intersect with T, we thus assume the
curve γt = {γt(u) : 0≤ u ≤ 1} is the part of �t which connects z1(t) and x(t) such
that γt(0)= x(t), γt(1)= z1(t) and γt(u) ∈ D for 0< u < 1.

We claim that |γt(u)| is an increasing function of u on the interval [0, 1]. For
given 0< r < 1, we define the function of θ by

gt,r (θ)= gt(r, θ)= |8t(reiθ )|.

Then gt,r is a strictly decreasing function of θ on the interval [0, π]. From the fact
that �t is simply connected, we deduce that, for z0 ∈�t ∩D∩C+, the arc

(5-2) {reiθ
: |r | = |z0|, arg z0 < θ ≤ π} ⊂�t .

Given 0< u1 < u2 < 1, we need to prove that |γt(u1)|< |γt(u2)|. Since [0, x(t)] ⊂
�t , we obtain from (5-2) that

(5-3) {reiθ
: 0≤ r ≤ x(t), 0< θ ≤ π} ⊂�t ,

which shows that |γt(u1)| > x(t). Suppose that |γt(u1)| ≥ |γt(u2)|. There exists
0 < u′1 ≤ u1 such that |γt(u′1)| = |γt(u2)|. If arg(γt(u′1)) > arg(γt(u2)), then
by (5-2), γt(u2) ∈ �t and thus γt(u2) /∈ ∂�t ; if arg(γt(u′1)) < arg(γt(u2)), then
γt(u′1) ∈�t and thus γt(u′1) /∈ ∂�t . For both cases, we obtain a contradiction. Thus
|γt(u1)|< |γt(u2)| and our claim is proved. �
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For t > 0, we let x1(t) ∈ (0, 1) be the unique solution of the equation 8t(z)= 1
for z ∈ (0, 1). For 0< t ≤ 4 we let x2(t)=−1; for t > 4, we let x2(t) ∈ (−1, 0) be
the unique solution of the equation 8t(z)=−1 for z ∈ (−1, 0).

Lemma 5.2. For t ≥ 4, ∂�t =L1,t ∪L2,t , where L1,t is an analytic curve, and L1,t

is in D∩C+ except its endpoints, and L2,t is the reflection of L1,t about x-axis. L1,t

can be parametrized by γt(u) (0 ≤ u ≤ 1) such that γt(0) = x1(t), γt(1) = x2(t)
and γt(u)⊂D∩C+ for 0< u < 1. Moreover, |γt(u)| is an increasing function of u
on the interval [0, 1].

Proof. Recall that 84 has a zero of order two at −1. For all t > 4, z2(t) < −1
and z1 ∈ (−1, 0). The assertion follows from the similar arguments in the proof
Lemma 5.1. �

From the proof of Lemmas 5.1 and 5.2, for t > 0, we have 8−1
t ((−1, 1)) =

(x2(t), x1(t)). Moreover, x1(t)=min{|z| : z∈ ∂�t } and−x2(t)=max{|z| : z∈ ∂�t }.

Remark. In fact, for any t > 0, from the equation

gt(r, θ)= 0, 0< r < 1, 0≤ θ ≤ π,

we can prove that dr/dθ > 0 for 0<θ <π , which implies that if z ∈ ∂�t , the entire
radius {r z : 0≤ r < 1} is contained in �t . Therefore, ∂�t can be parametrized by θ .

Lemma 5.3. Using the same notations in Lemmas 5.1 and 5.2, for t > 0, the
function |1− γt(u)| is an increasing function of u on [0, 1].

Proof. We only prove the case when 0< t < 4, the proof for other cases are similar.
Noticing that |1− reiθ

|
2
= 1− 2 cos θ + r2, since |γt(u)| is an increasing function

of u, to prove the assertion, we only need to prove that for the implicit function
r exp((t/2)(1− r2)/h)= 1 of r and h, the value of h increases when r increases
on (0, 1). From this equation, we have h = h(r)=−(t/2)(1− r2)/(ln r). One can
check that h′(r) > 0 for 0< r < 1, therefore h is an increasing function of r . �

Theorem 5.4. Denote by At the support of λt .

(1) For t > 0, the measure λt has no singular part, and its density function is an
analytic function. At1 ⊂ At2 if t1 < t2 < 4. At ( T for 0 < t < 4 and At = T
for t ≥ 4.

(2) The measure λt is unimodal for all t > 0 and its density is maximal at z = 1
and is minimal at z =−1.

(3) The density fucntion dλt/dθ converges uniformly to 1/(2π) as t→∞.

Proof. Since z = 1 is not in the closure of �t = ηλt (D), the singular part of
λt vanishes. From the analyticity of 8t or a general theorem in [Belinschi and
Bercovici 2005], the density function is analytic.
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For 0< t < 4, set a1(t)=8t(z1(t)), a2(t)=8t(z2(t)). Note that ηλt (8t(z))= z
for z ∈ �t . From (3-32) we see that At is the closed arc on T with endpoints
a1(t), a2(t) which contains 1. Thus, to prove that At1 ⊂ At2 , it is enough to prove
that arg(a1(t)) is an increasing function of t . A direct computation shows that
|z1(t)− 1|2 = t and arg(6λt (z1(t)))= =z1(t)=

√
t (4− t)/2. We thus have

arg(a1(t))= =z1(t)+ arg(z1(t))= sin(θ1(t))+ θ1(t).

From z1(t)= (2− t +
√

t2− 4t)/2 we see that θ1(t) is an increasing function of t .
The function θ→ sin(θ)+ θ is an increasing function on (0, π). Thus arg(a1(t))
is an increasing function of t and (1) is proved.

To prove (2), recall that a probability measure is unimodal if its density with
respect to Lebesgue measure has a unique local maximum. ηλt extends continuously
to T, we thus have

(5-4)
dλt(e−iθ )

dθ
=

1
2π

1− |ηλt (e
iθ )|2

|1− ηλt (eiθ )|2
.

We first prove the case when 0 < t < 4. From ηλt (8t(z)) = z for z ∈ �t and
ηλt (1) = x(t), to prove λt is unimodal, by the boundary correspondence, it is
enough to show that the function ft of u defined by

ft(u) :=
1− |γt(u)|2

|1− γt(u)|2
,

is a decreasing function on [0, 1] and is maximal at 0. Since γt(u) ∈ ∂�t , we have
|8t(γt(u))| = 1. In other words, we have

(5-5) |γt(u)| exp
(

t
2

ft(u)
)
= |γt(u)| exp

(
t
2

1− |γt(u)|2

|1− γt(u)|2

)
= 1.

As we shown in Lemma 5.1 that the function |γt(u)| is an increasing function of u,
from (5-5), we deduce that ft is a decreasing function of u and max{ ft } = ft(0).
By the symmetric property of the function 8t in Lemma 5.1, the density function
is symmetric with respect to x-axis as well. Thus the density of λt has only one
local maximum at 8t(γt(0))=8t(x1(t))= 1.

The proof for the case t ≥ 4 is similar. In this case At = T and max{ ft } = ft(0)
and min{ ft } = ft(1). Part (3) is a consequence of Corollary 3.27. �

Remark. From the proof of Theorem 5.4, we see that, for t < 4,

arg(a1(t))= θ1(t)+ sin(θ1(t))= 1
2

√
t (4− t)+ arccos

(
1− t

2

)
,

which implies a known result in [Biane 1997c], namely

At =

{
eiθ
: −

1
2

√
t (4− t)− arccos

(
1− t

2

)
≤ θ ≤ 1

2

√
t (4− t)+ arccos

(
1− t

2

)}
.
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The positive half line case. Let λ∈MR+ be the analogue of the normal distribution
such that 6λ(z)= exp((z+ 1)/(z− 1)).

We restate [Bercovici and Voiculescu 1993, Proposition 6.14] in terms of η and
6 transforms as follows.

Lemma 5.5. Let µ be a �-infinitely divisible measure on R+, and set 8µ(z) :=
z6µ(z).

(1) We have 8µ
(
ηµ(z)

)
= z for every z ∈ C+.

(2) The set {ηµ(z) : z ∈ C+} =�, where � is the component of the set {z ∈ C+ :

=(8µ(z)) > 0} whose boundary contains the left half line (−∞, 0). Moreover,
ηµ(8µ(z))= z for z ∈�.

We set 8λ(z)= z exp((z+ 1)/(z− 1)). The following lemma is elementary.

Lemma 5.6. 8λ has zero of order one at 2−
√

3 and 2+
√

3, and 8λ has an
essential singularity at 1. These are the only zeros and singularities of 8λ.

Theorem 5.7. The measure λ has no singular part. The support of this measure is
the closure of its interior, and this interior has only one connected component.

Proof. By [Bercovici and Voiculescu 1992, Theorem 7.5], the measure λ has
compact support on R+.

Let � be the component of {z ∈ C+ : =(8λ(z)) > 0} whose boundary contains
(−∞, 0). By Lemma 5.5, ηλ : C+→� is a conformal map and 8λ is its inverse
map; thus � is simply connected. By Lemma 5.6, ∂� is locally analytic. A general
theorem in complex analysis tells us that ηλ extends continuously to C+ ∪R and it
establishes a homeomorphism between the real axis and ∂�. We continue to denote
by ηλ and 8λ their extensions.

We claim that

∂�=
(
−∞, 2−

√
3
]
∪
[
2+
√

3,+∞
)
∪L,

where L is an analytic and open curve in C+ with endpoints 2−
√

3 and 2+
√

3.
We denote γ (t)= ηλ(t), t ∈R be a parametrization of ∂�. Set t1=8λ(2−

√
3)> 0

and t2 = 8λ(2 +
√

3) > 0. Then ηλ(t1) = 2 −
√

3 and ηλ(t2) = 2 +
√

3, and
L= {γ (t)}t1<t<t2 . Note that

(1) (−∞, 0)⊂ ∂�,

(2) 8′λ(x) > 0 for all x ∈ (−∞, 2−
√

3).

From this we deduce that (−∞, 2−
√

3)⊂ ∂�. Lemma 5.6 tells us 8λ has a zero
of order one at 2−

√
3, therefore ∂� has a corner of opening π/2 at 2−

√
3. Note

that 8′λ(x) > 0 for all x ∈ (2+
√

3,+∞), thus (2+
√

3,+∞)⊂ ∂�, and ∂� has
a corner of opening π/2 at 2+

√
3.
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It remains to prove that L∩R = ∅. First we show 1 /∈ L. Suppose that is the
case, and suppose γ (t0)= 1 where t1 < t0 < t2, by continuity, we have

γ (t) exp
(
γ (t)+ 1
γ (t)− 1

)
=8λ(γ (t))=8λ(ηλ(t))= t

for all t ∈ R. Therefore in a small neighborhood of t0, we have

γ (t)+ 1
γ (t)− 1

= ln
t

γ (t)
.

The left side of the above equation blows up, while the right hand side is bounded.
This contradiction tells us that 1 /∈ L. Now suppose L touches the real axis at
x0 ∈ (2−

√
3, 1)∪ (1, 2+

√
3). Since � is connected, it is not hard to see that x0

must be a critical point of 8λ. This is not possible by Lemma 5.6. We therefore
proved that L⊂ C+ and the claim.

From the definitions of the Cauchy transform and η-transform, one can easily
check that

Gλ

(
1
z

)
=

z
1− ηλ(z)

.

From the above equation we know that Gλ extends to be a continuous function on
C∪R, and {x ∈ R : =(Gµ(x)) > 0} = (1/t2, 1/t1). By the Stieltjes inverse formula,
we deduce that the support of λ is (1/t2, 1/t1). From the analyticity of the curve
L⊂ C+, we conclude that λ has positive and analytic density in the interior of its
support. �

We are interested in the level curves of the function

(5-6) f (r, θ)= θ −
2r sin θ

1− 2r cos θ + r2 = arg(8λ(z)),

where z = r iθ
∈ C+. For t ≤ 0, set γt = {z = reiθ

∈ C+ : f (r, θ)= t}.

Proposition 5.8. (A) γ0 is a simple open curve with endpoints 2−
√

3, 2+
√

3
and γ0 = L.

(B) γt is a simple open curve which starts at z = 1 and ends at z = 1 as well for all
t < 0.

Denote by �0 the open domain bounded γ0 ∪ [2−
√

3, 2+
√

3]. For all t < 0,
denote by �t the open domain bounded γt ∪ {1}.

(C) For t1 < t2 ≤ 0, we have �t1 ⊂�t2 ; and for all t0 ≤ 0, �t0 = ∪t<t0�t .

Proof. Given θ ∈ (0, π), we define a function of r by fθ (r)= f (r, θ) for r ∈ (0,+∞).
We first note that f (r, θ) < θ < π and observe that

lim
r→+∞

fθ (r)= θ.
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Thus {z = reiθ
: f (r, θ) > 0, 0< θ < π} ⊂8−1(C+).

Given θ ∈ (0, π) and t ≤ 0, the equation f (r, θ)= t is equivalent to the quadratic
equation

(5-7) hθ (r) := (θ − t)r2
− (2(θ − t) cos θ + 2 sin θ)r + θ − t = 0

with discriminant d(θ, t)= [2(θ − t) cos θ + 2 sin θ ]2− 4(θ − t)2. We then rewrite
d(θ, t) as follows.

(5-8) d(θ, t)= 4(1− cos2(θ))

[
sin θ

1+ cos θ
+ θ − t

]
.

[
sin θ

1− cos θ
− θ + t

]
,

The first two factors in (5-8) are never zero for θ ∈ (0, π); thus only the last factor
in (5-8) matters to determine the sign of d(θ, t). We consider the function k by
k(θ)= sin θ/(1− cos θ)− θ for θ ∈ (0, π), and calculate

(5-9) k ′(θ)=
1

cos θ − 1
− 1< 0,

which implies that k is a decreasing function of θ . For t ≤ 0, we now set dt(θ) :=

d(θ, t). We then deduce that dt(θ)= 0 has exactly one solution, which we denote by
θt , and dt(θ) > 0 if and only if 0< θ < θt . Therefore, the half line r = θ intersects
with γt at two points if and only if 0< θ < θt and the half line r = θt is tangent to
γt . Moreover, θt1 < θt2 if t1 < t2 ≤ 0.

For the solutions of the equation f (r, θ)= 0, one can check as θ→ 0, r satisfying
the equation r2

− 4r + 1. Given t < 0, for the solutions of the equation f (r, θ)= t ,
we can easily see that r tend to 1 as θ → 0. Now (A) and (B) follow from this
observation.

Given θ ∈ (0, π), from (5-6), we see that the function fθ (r) defined by fθ (r)=
f (r, θ) has exactly one local minimum at r = 1. fθ (r) is a decreasing function of
r on (0, 1) and an increasing function of r on (1,∞). Therefore, if the half line
r = θ intersects γt at two points, one of them is inside the unit circle of C and the
other one is outside the unit circle. We conclude that (C) is valid. �

It is interesting to compare the next result with Proposition 2.2 and Lemma 3.2.

Corollary 5.9. We have 8−1
λ (C

+) = � ∪∞k=1 (�(2k−1)π\�(2k−2)π ). Moreover, �
and �(2k−1)π\�(2k−2)π (k = 1, 2, . . .) are all connected components of 8λ. In
particular, 8−1

λ (C
+) has infinitely many connected components.

We would like to point out that for z = reiθ
∈ L = γ0, the curve L can be

parametrized by r . Noticing (5-7) and (5-8), we first observe the following equiva-
lences:

(5-10) d(θ, 0)= 0 ⇐⇒ θ cos θ + sin θ = θ ⇐⇒ r = 1.
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By (5-9), we see that (5-10) has exactly one solution θ0 for θ ∈ (0, π). By differen-
tiating the equation f (r, θ)= 0, we obtain

(5-11)
dθ
dr
=

2θ cos θ + 2 sin θ − 2θr
r2+ 2θ sin θ − 4 cos θ + 1

.

Thus, dθ/dr = 0 if and only if r = (θ cos θ+sin θ)/θ . Fix θ , the equation fθ (r)= 0
is equivalent to the quadratic equation θr2

− (2θ cos θ + 2 sin θ)r + θ = 0, from
which we deduce that r = (θ cos θ + sin θ)/θ if and only if d(r, 0) = 0. From
(5-11) and continuity of dθ/dr , we see that dθ/dr > 0 for 0< θ < θ0, r < 1 and
dθ/dr < 0 for 0 < θ < θ0, r > 1. Therefore, for the solutions of the equation
f (r, θ)= 0, θ is a function of r and the curve L can be parametrized by r .

Denote by g the density function of λ. From the equation Gλ(1/x)= x/(1−ηλ(x)),
we obtain the following formula for the density function of λ.

Proposition 5.10. Given z = reiθ
∈ γ0 = L, we have

g(1/x)= θ8λ(z)= rθ exp
(

r2
− 1

1− 2r cos θ + r2

)
,

where x =8λ(z).
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Figure 1. Level curves of g2(r, θ)= |82(reiθ )|. The vertical axis
indicates θ , and the horizontal axis indicates r .
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