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TOTARO’S QUESTION FOR SIMPLY CONNECTED GROUPS
OF LOW RANK

JODI BLACK AND RAMAN PARIMALA

Let k be a field and let G be a connected linear algebraic group over k. In
a 2004 paper, Totaro asked whether a torsor X under G and over k which
admits a zero cycle of degree d also admits a closed étale point of degree
dividing d. We consider this question in the setting where G is a simply
connected, semisimple group of rank at most 2 and k is of characteristic
different from 2.

Introduction

Serre [1995, p. 233] raised the following question:

Serre’s question: Let k be a field and let G be a connected linear algebraic
group defined over k. Let X be a G-torsor over k. Suppose X admits a zero
cycle of degree 1. Does X have a k-rational point?

An affirmative answer to Serre’s question is known in a number of special cases.
See, for example, [Sansuc 1981; Bayer-Fluckiger and Lenstra 1990; Black 2011a;
2011b]. Burt Totaro [2004] posed the following generalization of Serre’s question:

Totaro’s question: Let k be a field and let G be a connected linear algebraic
group defined over k. Let X be a G-torsor over k. Suppose X admits a zero
cycle of degree d. Does X have a closed étale point of degree dividing d?

An affirmative answer to Totaro’s question when G = PGLn is a classical result
in the theory of central simple algebras. Tits [1992] associated to any absolutely
simple, linear algebraic k-group G, an integer n(G). The values of n(G) are
shown in Table 1 below, where ν denotes the 2-adic valuation. One can show that
for any G-torsor X , there is a separable field extension L/k such that X has a
rational point over L and [L : k] divides n(G)2 [Serre 1995, Section 2.3]. Thus,
Tits’ construction gives an affirmative answer to Totaro’s question provided n(G)2

divides d. Garibaldi and Hoffmann [2006] give an affirmative answer to Totaro’s
question for semisimple groups which are of type G2, of reduced type F4 or simply
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Type of group n(G)

An 2(n+ 1)
Bn 2n

Cn 2ν(n)+1

Dn (n 6= 4) 2n+ν(n)

Table 1. Values of n(G) for classical groups.

connected of type 1 E0
6,6 or 1 E28

6,2. Their work extended previous results of Totaro
[2004] which gave an affirmative answer for split, simply connected groups of type
G2, F4 and E6. Results in [Black 2011b] give an affirmative answer to Totaro’s
question in the case where G is a simply connected or adjoint, semisimple, classical
group and d is prime to n(G).

In this paper we show the following:

Theorem 0.1. The answer to Totaro’s question is yes if k is of characteristic differ-
ent from 2 and G is a semisimple, simply connected, classical group such that rank
G k̄ ≤ 2.

1. Galois cohomology

Let k be a field, let ks be a separable closure of k and let 0k = Gal(ks/k) be the
absolute Galois group of k. We write H 1(k,G) for the first Galois cohomology set
H 1(0k,G(ks)). Given any finite field extension L/k there is a canonical restriction
map H 1(k,G)→ H 1(L ,G). If λ ∈ H 1(k,G) is any element, we write λL for the
image of λ under the restriction map H 1(k,G)→ H 1(L ,G).

For our convenience, we will consider the formulation of Totaro’s question in
Galois cohomology:

Totaro’s question: Let k be a field and let G be a connected linear algebraic
group defined over k. Let {L i }1≤i≤m be a set of finite field extensions of k and
let d = gcd{[L i : k]1≤i≤m}. If λL i = 1 for all i , is there a finite, separable field
extension F of k such that λF = 1 and [F : k] divides d?

2. Results

In this section, we consider Totaro’s question for various groups G.

The case G = SL1(A).
Theorem 2.1. The answer to Totaro’s question is yes if G = SL1(A) for A a central
simple algebra over k of prime index.

Proof. Let {L i }1≤i≤m be a set of finite field extensions of k and suppose λ ∈
H 1(k,SL1(A)) is an element such that λL i = 1 for all i . Let d = gcd{[L i : k]1≤i≤m}.
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We will find F/k separable such that λF = 1 and [F : k] divides d .
Since by [Knus et al. 1998, Theorem 29.2], H 1(k,GL1(A))= 1, the short exact

sequence

1 // SL1(A) // GL1(A)
Nrd // Gm // 1

induces the long exact sequence

(2.1.1) A∗ Nrd // k∗ // H 1(k,SL1(A)) // 1

in Galois cohomology, where Nrd is the reduced norm. By (2.1.1) above,

H 1(k,SL1(A))∼= k∗/Nrd(A∗),

and we can identify λ with the class of an element of k∗ which is in Nrd(AL i )

for all i . For simplicity, we will also refer to this element as λ. Let the index of
A be s and choose L contained in A a separable field extension of k of degree
s which splits A [Gille and Szamuely 2006, Propositions 4.5.3 and 4.5.4]. Then
Nrd(AL)= L∗ and λ is in Nrd(AL). So if s divides d we may take F = L . Recall
that s is prime. So if s does not divide d then gcd(s, d) = 1. It is well known
that NL/k(Nrd(AL)) ⊆ Nrd(A). In particular, λs

= NL/k(λ) is in Nrd(A). Since
Nrd(A) is a group and NL i/k(λ) ∈ Nrd(A) for all i , we find that λd is in Nrd(A).
In turn, λ is in Nrd(A) and we can take F = k. �

The case G = SU(A, σ ).

Theorem 2.2. The answer to Totaro’s question is yes if k is of characteristic differ-
ent from 2 and G = SU(A, σ ) for a central simple algebra A of degree 3 over K ,
k = K σ and [K : k] = 2.

Proof. Let {L i }1≤i≤m be a set of finite field extensions of k and suppose λ ∈
H 1(k,SU(A, σ )) is an element such that λL i = 1 for all i . Let d = gcd{[L i : k]}.
We will find F/k separable such that λF = 1 and [F : k] divides d .

The case where d is coprime to 2 and 3 was covered in [Black 2011b, Theo-
rem 3.4]. If 6 | d , we take L to be a separable extension of K of degree dividing 3
which splits A. Since K/k is Galois, L/k is separable of degree dividing 6. Since
H 1(K ,SU(A, σ )) = H 1(K ,SL1(A)) and L splits A, H 1(L ,SU(A, σ )) = {1} by
Hilbert’s Theorem 90. Therefore, for any λ ∈ H 1(k,SU(A, σ )), λL = 1 and we can
take F = L . Now suppose 2 | d and 3 - d . Fix an index i such that [L i : k] is prime to
3 and λL i =1. Consider L i K , the compositum of L i and K . Since, by assumption, 3
is prime to [L i : k], and [K : k] = 2, we know that 3 is prime to [L i K : k]. Therefore,
3 is prime to [L i K : K ]. Let L be a separable splitting field of A such that [L : K ]
is equal to the index of A. Since degK (A)= 3, either [L : K ] = 1 or [L : K ] = 3. In
either case, L , L i K is a pair of field extensions of K such that λL = 1= λL i K and
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gcd{[L : K ], [L i K : K ]} is 1. Since H 1(K ,SU(A, σ ))= H 1(K ,SL1(A)) we have
λK = 1 by Theorem 2.1, and we can take F = K . The final setting to consider is the
case where 3 | d and 2 - d. Since d is odd, we can fix an index i such that [L i : k]
is odd and λL i = 1. Let RK/k Gm be the Weil transfer of Gm and let R1

K/k Gm be
defined as the kernel of the norm map NK/k : RK/k Gm → Gm . The short exact
sequence

1→ SU(A, σ )→U (A, σ )→ R1
K/k Gm→ 1

induces the commutative diagram

K ∗1 δ //

��

H 1(k,SU(A, σ ))
j //

��

H 1(k,U (A, σ ))

��
(K ⊗ L i )

∗1 // H 1(L i ,SU(A, σ )) // H 1(L i ,U (A, σ ))

where K ∗1 and (K ⊗ L i )
∗1 denote the norm-one elements in K ∗ and (K ⊗ L i )

∗

respectively. By a result of Bayer-Fluckiger and Lenstra [1990, Theorem 2.1],
j (λ) = 1. In particular, we can choose α ∈ K ∗1 such that δ(α) = λ. In the case
where A is split, H 1(K ,SU(A, σ ))= H 1(K ,SL1(A))={1}. Then, since K and L i

are field extensions of coprime degree with λK = λL i = 1, the desired result holds
by [Black 2011b, Theorem 4.4]. Since deg(A) = 3, if A is not split, then A is a
division algebra and by [Albert 1963] (see also [Knus et al. 1998, Theorem 19.14]),
there is a k-subalgebra L of A such that L/k is étale of degree three. Since A is
division, L is a field. Consider the diagram

U (A, σ )(k) //

��

K ∗1 δ //

��

H 1(k,SU(A, σ ))
j //

��

H 1(k,U (A, σ ))

��
U (A, σ )(L) // (K ⊗ L)∗1 // H 1(L ,SU(A, σ )) // H 1(L ,U (A, σ ))

For x ∈ (K ⊗ L)∗1, write x = y−1 y for y ∈ (K ⊗ L)∗ where denotes the nontrivial
automorphism of K/k. Since A⊗L is split, y is a reduced norm from A⊗L . In view
of [Merkurjev 1995, Proposition 6.1], the image of Nrd(U (A, σ )→ (K ⊗ L)∗1)
contains x . Thus λL = 1 and we may take F = L . �

The case G = Spin(q). The following result will be useful:

Proposition 2.3. Let k be a field of characteristic different from 2 and let q be a
quadratic form over k of dimension ≤ 5. Let λ ∈ H 1(k,Spin(q)) be any element.
Then there exists a (separable) field extension F of k such that [F : k] divides 2 and
λF = 1.
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Proof. Consider the short exact sequence

1 // µ2
i // Spin(q) π // O+(q) // 1,

which induces the exact sequence in Galois cohomology

(2.3.1) H 1(k, µ2)
i // H 1(k,Spin(q)) π // H 1(k, O+(q)).

The pointed set H 1(k, O+(q)) classifies quadratic forms over k of the same di-
mension and discriminant as q. Let q ′ = π(λ). Then q⊥−q ′ has even dimension,
trivial discriminant and trivial Clifford invariant since q ′ is in the image of π . Thus
q⊥−q ′ ∈ I 3(k).

First consider the case where dim(q) < 4. Then, dim(q⊥−q ′) < 8 and by
the Arason–Pfister Hauptsatz [Lam 1980, Chapter X, Hauptsatz 5.1], q⊥−q ′ is
hyperbolic. Equivalently, q ∼= q ′ and q ′ = 1 in H 1(k, O+(q)). Using the exactness
of (2.3.1), choose η in H 1(k, µ2) such that i(η)= λ. Since H 1(k, µ2)∼= k∗/k∗2 we
can choose F/k a field extension of degree at most 2 such that ηF = 1∈ H 1(F, µ2).
By commutativity of (2.3.2) below, λF = 1 in H 1(F,Spin(q)).

(2.3.2)

H 1(k, µ2) //

��

H 1(k,Spin(q))

��
H 1(F, µ2) // H 1(F,Spin(q))

Suppose instead that dim(q)= 4. Let d = disc(q) and write q = a〈1, b, c, bcd〉.
By [Lam 1980, Chapter XII, Proposition 2.4], there is an element α ∈ k∗ such
that q ′ ∼= αq and we may write q⊥−q ′ ∼= 〈1,−α〉q = a〈1,−α〉〈1, b, c, bcd〉. Let
e2 be the map from I 2(k)→ H 2(k, µ2) induced by the Clifford invariant. Since
q⊥−q ′ ∈ I 3(k), e2(q⊥−q ′) = (d) ∪ (α) = 0 ∈ H 2(k, µ2) [Elman et al. 2008,
16.2] and so 〈1,−α,−d, αd〉 is hyperbolic. Equivalently, 〈1,−α〉d ∼= 〈1,−α〉 and
q⊥−q ′ ∼= a〈1,−α〉〈1, b, c, bc〉 = a〈1,−α〉〈1, b〉〈1, c〉. Let F = k(

√
−b). Then

[F : k] ≤ 2, (q⊥−q ′)F is hyperbolic and q ′F = 1 ∈ H 1(F, O+(q)). Consider the
diagram

(2.3.3)

O+(q)(k) //

��

H 1(k, µ2) //

��

H 1(k,Spin(q))

��

// H 1(k, O+(q))

��
O+(q)(F) sn // H 1(F, µ2)

i // H 1(F,Spin(q)) π // H 1(F, O+(q))

By commutativity of the right rectangle, π(λF ) = 1 and by the exactness of the
bottom row, λF ∈ im(i). But since q ∼= a〈1, b, c, bcd〉, qF is isotropic. Thus, the
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spinor norm sn : O+(q)(F)→ H 1(F, µ2) is onto [Baeza 1978, p. 78] and therefore,
since λF ∈ im(i), λF = 1.

Now suppose dim(q)= 5. Since q⊥−q ′ is a rank 10 form in I 3(k), it is isotropic
[Lam 1980, Chapter XII, Proposition 2.8]. Therefore q and q ′ have a common slot
and we can write q = 〈a〉 ⊥ q1 and q ′ = 〈a〉 ⊥ q2. Since q1⊥−q2 ∈ I 3k is rank 8,
we can proceed as in the rank 4 case and find a field extension F of k of degree at
most 2 such that (q1⊥−q2)F is hyperbolic and (q1)F is isotropic. By the Arason–
Pfister Hauptsatz, (q⊥−q ′)F is hyperbolic and thus qF ∼= q ′F and π(λF )= q ′F =
1 ∈ H 1(F, O+(q)). Thus λF is in the image of i : H 1(F, µ2)→ H 1(F,Spin(q)).
However, (q1)F being isotropic, qF is isotropic and sn : O+(q)(F)→ H 1(F, µ2)

is onto. Therefore, i is the zero map and λF = 1. �

Theorem 2.4. The answer to Totaro’s question is yes if k is of characteristic differ-
ent from 2 and G = Spin(q) for q a quadratic form of dimension ≤ 5.

Proof. Let {L i }1≤i≤m be a set of finite field extensions of k and suppose λ ∈
H 1(k,Spin(q)) is an element such that λL i = 1 for all i . Let d = gcd{[L i : k]}. We
want to find F/k separable such that λF = 1 and [F : k] divides d. If d is odd
we are done by [Black 2011b, Theorem 3.7] and can take F = k. If d is even, by
Proposition 2.3, there is a separable extension F/k of degree at most 2 such that
λF = 1. �

Theorem 2.5. The answer to Totaro’s question is yes if k is of characteristic differ-
ent from 2 and G = Sp(A, σ ) where A is a central simple algebra with symplectic
involution and deg(A) is 2 or 4.

Proof. Let q be a quadratic form of dimension 3 (resp. 5) with trivial discriminant.
Then the even Clifford algebra A = C0(V, q) is a central simple algebra of degree
2 (resp. 4) and the canonical involution on the Clifford algebra is symplectic and
Spin(q)∼= Sp(A, σ ) [Knus et al. 1998, Section 15.C]. Moreover, every algebra A
of degree 2 or 4 with a symplectic involution arises in this way. Thus, a positive
answer to Totaro’s question for Sp(A, σ ) follows from Proposition 2.3. �

The case G = Spin(A, σ ).

Theorem 2.6. The answer to Totaro’s question is yes if k is of characteristic differ-
ent from 2 and G = Spin(A, σ ), where A is a central simple algebra of degree 4
over k and σ is an orthogonal involution on A.

Proof. Let {L i }1≤i≤m be a set of finite field extensions of k and suppose λ ∈
H 1(k,Spin(A, σ )) is an element such that λL i = 1 for all i . Let d = gcd{[L i : k]}.
We will find F/k separable such that λF = 1 and [F : k] divides d .

By [Black 2011b, Theorem 3.7], when d is odd we may take F = k. So
we may suppose that d is even. Suppose (A, σ ) has trivial discriminant. Then
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(A, σ ) ∼= (Q1⊗ Q2, τ1⊗ τ2) [Knus et al. 1998, Corollary 15.12], where Q1 and
Q2 are quaternion algebras with the symplectic involution given by conjugation. In
turn Spin(A, σ )∼= SL1(Q1)×SL1(Q2) [Knus et al. 1998, Corollary 15.13]. There
exist λ1, λ2 ∈ k∗ such that λ= (λ̄1, λ̄2) with λ̄i ∈ k∗/Nrd(Qi )∼= H 1(k,SL1(Qi ))

for i = 1, 2. In the case 4 | d, let F1, F2 be extensions of k of degree at most 2
which split Q1 and Q2 respectively. Then λF1 F2 = 1 and [F1 F2 : k] divides 4. In the
case 2 | d and 4 - d , we can fix an L j/k such that [L j : k] = 2m, where m is odd and
λL j = 1. Following arguments as in [Garibaldi and Hoffmann 2006, Lemma 1.5]
we suppose without loss of generality that k ⊆ L ⊆ L j with [L : k] odd, [L j : L] = 2
and λL j = 1. Let NQ1 , NQ2 be the norm forms for the quaternion algebras Q1, Q2

respectively and let φ1=〈1,−λ1〉NQ1 and φ2=〈1,−λ2〉NQ2 . The fact that λL j = 1
implies that φ1, φ2 are hyperbolic over L j . Then by [Garibaldi and Hoffmann 2006,
Lemma 1.4] there exists µ ∈ k∗ such that φ1 ∼= 〈1, µ〉φ̃1 and φ2 ∼= 〈1, µ〉φ̃2, where
φ̃1, φ̃2 are 2-fold Pfister forms. Let F = k(

√
−µ). Then φ1, φ2 are hyperbolic over

F and thus λ1 ∈ Nrd(Q1F ) and λ2 ∈ Nrd(Q2F ). That is, λF = 1. Also, F/k is
separable and degree at most 2 by construction.

Suppose instead that (A, σ ) has nontrivial discriminant. One can associate to
(A, σ ) its Clifford algebra Q, which is a quaternion algebra with center K = k(

√
δ),

where δ = disc(A, σ ) [Knus et al. 1998, Theorem 15.7]. Then Spin(A, σ ) =
RK/k SL1(Q) [Knus et al. 1998, Proposition 15.10] and H 1(k,Spin(A, σ )) =
H 1(K ,SL1(Q)). If Q is split, λ = 1 and we take F = k. So suppose Q is
not split. If 4 | d we can take F a splitting field of Q such that F/K is a separable
extension of degree 2. Since

H 1(F,Spin(A, σ ))= H 1(K ⊗ F,SL1(Q))∼= H 1(F × F,SL1(Q))= {1},

we obtain λF = 1. Further [F : k] = 4, and since F/K and K/k are separable,
F/k is separable. We are left to consider the case where (A, σ ) has nontrivial
discriminant and 4 - d and 2 | d .

Consider the short exact sequence

1→ RK/k SL1(Q)→ RK/k GL1(Q)→ RK/k Gm→ 1,

which induces

GL1(Q)(K )
Nrd // K ∗ // H 1(K ,SL1(Q)) // 1.

Choose λ ∈ H 1(K ,SL1(Q)) such that λL i = 1 for all i and let β ∈ K ∗ satisfy
δ(β)= λ. Following [Garibaldi and Hoffmann 2006, Lemma 1.5], we may suppose
that λL j = 1 where k ⊆ L ⊆ L j and [L j : L] = 2.
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(2.6.1)

GL1(Q)(K )
Nrd //

��

K ∗ //

��

H 1(K ,SL1(Q)) //

��

1

GL1(Q)(K⊗k L j )
Nrd // (K⊗k L j )

∗ // H 1(K⊗k L j ,SL1(Q)) // 1

Write L j = L(
√

a) for a ∈ L∗/L∗2. Let f be the norm form on Q and let f 0 denote
the norm form restricted to the traceless elements of Q, which we denote by Q0.
Since λL j = 0, choose x0, y0 ∈ Q⊗ L such that

(2.6.2) β = f (x0+ y0
√

a).

If y0 = 0 we have β ∈ Nrd(Q⊗ L), and, L/K being of odd degree, this implies
β ∈ Nrd(Q). We take F = k. So suppose y0 6= 0. Since Q is a division algebra,
f (y0) 6= 0 and

(2.6.3) β = f (x0)+ a f (y0).

If we let b f denote the adjoint bilinear form, we have

(2.6.4) b f (x0, y0)= 0

and

(2.6.5) β f (y−1
0 )= f (x0 y−1

0 )+ a,

where the reduced trace trd(x0 y−1
0 ) vanishes by (2.6.4). Therefore,

(2.6.6) β f (y−1
0 )= f 0(x0 y−1

0 )+ a.

Let f = f1+
√
δ f2 with f1 and f2 quadratic forms on Q with values in k. Further

let f 0
= f 0

1 +
√
δ f 0

2 where f 0
1 , f 0

2 are quadratic forms on Q0 with values in k.
Setting z0 = y−1

0 and w0 = x0 y−1
0 , we have

a = β1 f1(z0)+β2δ f2(z0)− f 0
1 (w0),(2.6.7)

0= β1 f2(z0)+β2 f1(z0)− f 0
2 (w0),(2.6.8)

with z0 ∈ Q⊗ L and w0 ∈ Q0
⊗ L . Define k-quadratic forms q1 : Q⊕Q0

→ k and
q2 : Q⊕ Q0

→ k by

q1(z, w)= β1 f1(z)+β2δ f2(z)− f 0
1 (w),(2.6.9)

q2(z, w)= β1 f2(z)+β2 f1(z)− f 0
2 (w),(2.6.10)

for z ∈ Q and w ∈ Q0. Since y0 6= 0, z0 = y−1
0 6= 0 and (z0, w0) is a nontrivial zero

of q2 over L . Then by Springer’s theorem [1952], q2 has a nontrivial zero (z1, w1)
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over k. By a general position argument, we may assume that z1 6= 0. Let

(2.6.11) α = β1 f1(z1)+β2δ f2(z1)− f 0
1 (w1).

We have

(2.6.12) 0= β1 f2(z0)+β2 f1(z0)− f 0
2 (w1).

Adding these two equations, we find

(2.6.13) α = β f (z1)− f 0(w1),

or, equivalently,

(2.6.14) β f (z1)= α+ f 0(w1).

Let F= k(
√
α). Then [F : k]≤2, (

√
α+w1)z−1

1 ∈QF and β=Nrd((
√
α+w1)z−1

1 ).
Thus, λF = 1. �

Theorem 2.7. The answer to Totaro’s question is yes if k is of characteristic dif-
ferent from 2 and G = SU(A, σ ) where A is a quaternion algebra with unitary
involution σ .

Proof. The norm algebra NK/k(A, σ ) equals (B, τ ) for B a central simple algebra
of degree 4 and τ an orthogonal involution on B. Since Spin(B, τ ) ∼= SU(A, σ ),
that Totaro’s question has an affirmative answer in this case is a consequence of
Theorem 2.6. �

3. Conclusion

Theorem 3.1. The answer to Totaro’s question is yes for k a field of characteristic
different from 2 and G a simply connected, semisimple, classical group of rank ≤ 2.

Proof. We suppose in all cases that G is simply connected and semisimple and that
the rank of G k̄ ≤ 2. If G is of type 1A1 or 1A2 then G is of the form SL1(A) for A a
central simple algebra of degree 2 or 3 [Knus et al. 1998, Theorem 26.9]. A positive
answer to Totaro’s question for a group of this form was shown in Theorem 2.1.
If G is of type 2A1 then G = SU(A, σ ) for A a central simple algebra of degree 2
with unitary involution σ . The proof for this case was given in Theorem 2.7. If G
is of type 2A2 then G is of the form SU(A, σ ), where A is a central simple algebra
of degree 3 with unitary involution σ [Knus et al. 1998, Theorem 26.9]. Thus
an affirmative answer to Totaro’s question for a group of type 2A2 follows from
Theorem 2.2 above. If G is of type B1 or B2, then G = Spin(q) for q a quadratic
form of dimension 3 or 5 [Knus et al. 1998, Theorem 26.12] and the desired result
was proven in Theorem 2.4. If G is of type C1 or C2, then G = Sp(A, σ ), where
A is a central simple algebra of degree 2 or 4 and σ is a symplectic involution
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on A. The proof of our result in this case was covered in Theorem 2.5. If G is of
type D2 then either G = Spin(q) for q a quadratic form of dimension 2 or 4 or G
is of the form Spin(A, σ ) for A a central simple algebra over k of degree 4 and
σ an orthogonal involution on A [Knus et al. 1998, Theorem 26.15]. In the first
case the desired results follows from Theorem 2.4 and in the latter it follows from
Theorem 2.6. �

Remark 3.2. Since Garibaldi and Hoffman [2006] have given a proof in the case
G is of type G2, Totaro’s question has a positive answer for any simply connected,
semisimple group of rank ≤ 2.
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