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UNIFORM HYPERBOLICITY OF THE CURVE GRAPHS

BRIAN H. BOWDITCH

We show that there is a universal constant, k, such that the curve graph
associated to any compact orientable surface is k-hyperbolic. Independent
proofs of this have been given by Aougab, by Hensel, Przytycki and Webb,
and by Clay, Rafi and Schleimer.

1. Introduction

Let 6 be a closed orientable surface of genus g, together with a (possibly empty)
finite set 5⊆6. Set p = |5|. We assume that 3g+ p ≥ 5. Let G= G(g, p) be the
curve graph associated to (6,5); that is, the 1-skeleton of the curve complex as
originally defined in [Harvey 1981]. Its vertex set, V (G), is the set of free homotopy
classes of nontrivial nonperipheral closed curves in 6 \5; and two such curves are
deemed to be adjacent in G if they can be realised disjointly in 6 \5. These, and
related, complexes are now central tools in geometric group theory and hyperbolic
geometry.

In [Masur and Minsky 1999], it was shown that, for all g, p, G(g, p) is hyperbolic
in the sense of [Gromov 1987]. In [Bowditch 2006], henceforth abbreviated [B], it
was shown that the hyperbolicity constant, k, is bounded above by a function that
is logarithmic in g+ p. In fact, we show here that k can be chosen independently
of g and p:

Theorem 1.1. There is a universal constant, k∈N, such that G(g, p) is k-hyperbolic
for all g, p with 3g+ p ≥ 5.

We will give some estimates for k (though certainly not optimal) in Section 4.
Independent proofs of this result have been found by Aougab [2013], by Hensel,

Przytycki and Webb [Hensel, Przytycki and Webb 2013], and by Clay, Rafi and
Schleimer [Clay, Rafi and Schleimer 2013]. The proofs in these last two papers
are combinatorial in nature, while Aougab’s proof is based on broadly similar
principles to those described here, though the specifics are different. Both this paper
and [Aougab 2013] make use of riemannian geometry. The argument of [Hensel,
Przytycki and Webb 2013] seems to give the best constants.
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Given Theorem 1.1, one can also obtain uniform bounds for the bounded geodesic
image theorem of [Masur and Minsky 2000]. For this, one can combine the
description of quasigeodesic lines in [B] with an unpublished argument of Leininger.
In fact, a more direct approach, just using hyperbolicity, has recently been found
by Webb [2013].

We remark that Theorem 1.1 does not imply uniform hyperbolicity of the curve
complexes (with simplices realised as regular euclidean simplices) since their
1-skeleta are not uniformly quasi-isometrically embedded — there is an arbitrarily
large contraction of distances as the complexity increases.

The proof of Theorem 1.1 consists primarily of going through the arguments of
[B] with more careful bookkeeping of constants. This is accomplished in Section 2
here. In Sections 3 and 4 here, we show that much of this can be bypassed. In
fact, we only really need a few results from [B], notably Lemmas 1.3, 4.4 and 4.5,
together with the construction of singular euclidean structures described in Section 5
thereof.

We were motivated to look again at that paper after reading some estimates in
[Tang 2013] which relate distances to intersection number.

2. Proofs

In this section, we will prove Proposition 2.6, which, together with Proposition 3.1
of [B], implies Theorem 1.1.

We will use the following different measures of the “complexity” of 6, 5,
tailored to different parts of the argument: ξ0 = 2g + p − 4, ξ1 = 2g + p − 1,
ξ2 = 2g+ p+ 6. For α, β ∈ V (G), we write ι(α, β) for the intersection number,
and d(α, β) for the combinatorial distance in the curve graph.

Lemma 2.1. If γ, δ ∈ V (G), with ι(γ, δ)≤ ξ0+ 1, then d(γ, δ)≤ 2.

Proof. We realise γ, δ in 6 \5 so that |γ ∩ δ| = ι(γ, δ) = n, say. Now, γ ∪ δ
is a graph with n vertices and 2n edges, and hence Euler characteristic −n. If
d(γ, δ) > 2, then γ ∪ δ fills 6 \5 and so this Euler characteristic must be at most
that of 6 \5, namely, 2−2g− p. Thus n ≥ 2g+ p−2. Taking the contrapositive,
if n ≤ ξ0+ 1= 2g+ p− 3, then d(γ, δ)≤ 2. �

Now, Lemma 1.3 of [B] shows that if α, β ∈V (G)with 2ι(α, β)≤ab for a, b∈N,
then there is some γ ∈ V (G) with ι(α, γ ) ≤ a and ι(β, γ ) ≤ b. Applying this q
times, together with Lemma 2.1, we get:

Corollary 2.2. If q ∈ N and α, β ∈ V (G) with 2q
ι(α, β) ≤ ξ

q+1
0 , then d(α, β) ≤

2(q + 1).

Definition. By a region in 6, we mean a subsurface, H ⊆6, with ∂H ∩5=∅.
A region is trivial if it is a topological disc containing at most one point of 5. An
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annulus in 6 is a region A ⊆ 6 \5 homeomorphic to S1
× [0, 1] such that no

component of 6 \ A is trivial.

The core curve of an annulus therefore determines an element of V (G).
Suppose that ρ is a riemannian metric on 6. We allow for a finite number of

cone singularities (which need bear no relation to 5). We define the width of an
annulus A⊆6 to be the length of a shortest path in A connecting its two boundary
components.

The following lemma is a slight variation of Lemma 5.1 of [B]. We follow a
similar argument, but taking more care with constants.

The proof will make use of the following notion. Let α be an essential nonpe-
ripheral closed curve in 6 \5.

Definition. A bridge (across α) is an arc, δ ⊆6 \5, with ∂δ = δ ∩α such that no
component of 6 \ (α ∪ δ) is a disc not meeting 5.

In other words, α∪ δ is an embedded π1-injective theta-curve in 6 \5, i.e., it is
the union of three arcs which meet precisely in their endpoints and are pairwise
nonhomotopic relative to their endpoints.

Lemma 2.3. Let ρ be a (singular) riemannian metric on 6 with area(6) = 1.
Suppose that 3g + p ≥ 5. Suppose that there is a constant h > 0 such that for
any trivial region 1⊆6 we have area(1)≤ h(length(∂1))2. Then 6 contains an
annulus of width at least η = 1

4ξ1ξ2
√

h.

Proof. To avoid technical details obscuring the exposition, we will relax inequalities
so that they are assumed to hold up to an arbitrarily small additive constant ε > 0.
Thus, for example, a “shortest” curve will be assumed to be shortest to within ε. This
will allow us, for instance, to adjust paths so that they can be assumed to avoid 5.
Finally, we can allow ε→ 0. In what follows any “curve” in 6 \5 will be assumed
to be essential and nonperipheral, i.e., it does not bound a trivial region in 6.

Let η0=1/4ξ2
√

h. We claim that there are curves, α, β⊆6\5with ρ(α, β)≥η0.
Given this, we let φ :6→[0, η0] = [0, ξ1η] be a 1-lipschitz map with α ⊆ φ−1(0)
and β ⊆ φ−1(ξ1η). Given any i ∈ {1, . . . , ξ1 − 1}, we can find a multicurve,
γi ⊆ φ

−1(iη), which separates 6 into exactly two components, Sαi , Sβi , containing
α and β respectively. We can assume γi∩5=∅, and that Sαi ⊆ Sαi+1 for all i . These
multicurves cut6 into ξ1 regions Mi = Sαi ∩Sβi−1 (where M0= Sα1 and Mξ1

= Sβξ1−1).
At least one of these must have a component which is an annulus (otherwise each
Mi \5 would have negative Euler characteristic, giving the contradiction that the
Euler characteristic of 6 \5 is at most −ξ1 < 2−2g− p). This annulus must have
width at least η as required.

To find α and β, we take α to be a shortest curve in 6 \5. We suppose, for
contradiction, that if β ⊆6 \5 is any curve, then ρ(α, β) < η0. Let λ= 2η0.
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Figure 1. Example of a curve with bridges, (g, p)= (1, 4).

We first claim that there is a collection of disjoint bridges, δ1, . . . , δn , across α
with length(δi ) < λ for all i and with each component of 6 \ (α ∪ δ1 ∪ · · · ∪ δn)

trivial. (An example is shown in Figure 1.)
To prove this claim, let N (α, t) be the metric t-neighbourhood of α in 6. Let

G(t) be the image of π1(N (α, t)\5) in π1(6\5). Note that G(0) is infinite cyclic,
and G(η0) = π1(6 \5). As t increases from 0 to η0, G(t) gets bigger at certain
critical times, t1, . . . , tn . At these times, we can suppose we have added another
generator, which we can represent as a bridge, δi , of length at most 2ti < 2η0 = λ.
Thus, inductively, G(ti ) is supported on α∪δ1∪· · ·∪δi . It follows that α∪δ1∪· · ·∪δn

must fill 6 \5 (that is, carries all of π1(6 \5)), otherwise we could find a curve,
β, with ρ(α, β)≥ η0. This gives us our collection of bridges as claimed.

Let l = length(α). We now claim that l ≤ 6λ. So, suppose, to the contrary, that
l > 6λ.

Given any i , write α = αi ∪α
′

i , where αi and α′i are respectively the shorter and
longer arcs with endpoints at ∂δi . Thus

length(αi )≤ l/2 and length(αi ∪ δi )≤ l/2+ λ < l.

By minimality of α, αi ∪ δi must be trivial or peripheral, i.e., it bounds a trivial
region in 6. This region must be a disc containing exactly one point of 5. Since
this is true of all bridges δi , we already get a contradiction if g > 0 (and we can
deduce that l ≤ 3λ in this case). So we can assume that g = 0, and so α cuts 6 into
two discs, H0 and H1. We have |5∩Hi | ≥ 2, and we can assume that |5∩H0| ≥ 3.

Note also that, if α′i ∪ δi is nontrivial, then length(α′i ∪ δi ) ≥ length(α) and so
length(αi )≤ length(δi ) < λ.

Now H0 must contain at least two bridges from our collection. We can assume
these are δ1 and δ2. Recall that δ1 ∩ δ2 = ∅. From the above, it follows that
length(α1) < λ and length(α2) < λ. Since δ1 and δ2 cannot cross, we must have
α1 ∩α2 =∅.
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Figure 2. Picture of three bridges, (g, p)= (0, 5).

Now let δ3 be a bridge in H1. As before, length(α3)≤ l/2, and so for i = 1, 2,
length(αi∪α3∪δi∪δ3)≤3λ+l/2. Now α1∩α3=∅ (otherwise α1∪α3∪δ1∪δ3 would
contain a curve of length at most 3λ+ l/2< l). Similarly, α2∩α3 =∅. Now, given
i, j ∈ {1, 2, 3}, let αi j be the component of α\(α1∪α2∪α3) between αi and α j (see
Figure 2). Let θi j be the curve in 6 with image αi j ∪αi ∪α j ∪δi ∪δ j , which passes
through αi j exactly twice. Together, the curves θ12, θ23 and θ31 pass twice through
each edge of α∪δ1∪δ2∪δ3, and so their lengths sum to at most 2l+6λ. We arrive at
the contradiction that the length of at least one of the θi j is at most 1

3(2l+6λ) < l.
This shows that l ≤ 6λ as claimed.
After removing some of the bridges if necessary, we can assume that at most two

of the complementary components are discs not meeting 5, and so n ≤ 2g+ p. Let
σ = α∪δ1∪· · ·∪δn . Thus length(σ ) < 6λ+nλ= (n+6)λ≤ (2g+ p+6)λ= ξ2λ.

Since each component of 6 \σ is trivial, we must have area(6)≤ h(2 length σ)2

(the worst case being when 6 \ σ is connected). But we have assumed that
area(6) = 1 and so 1 < h(2ξ2λ)

2. Now, λ = 2η0 = 2(1/4ξ2
√

h) = 1/2ξ2
√

h,
so we arrive at the contradiction that 1< 1.

This shows that there must be a curve, β, in 6 \5 with ρ(α, β)≥ η0 as claimed.
�

In fact, the argument also applies if (g, p)= (1, 1). If (g, p)= (0, 4), we will
only need to consider a special case, namely, the quotient of a euclidean torus by
an involution with four fixed points. In that case, we can set η = 1/2.

We will now set h = 1/2π . This gives η= 1/4ξ1ξ2
√

1/2π =
√

2π/4ξ1ξ2. As in
Section 5 of [B], we define R =

√
2/η. In this case therefore, R = (4/

√
π)ξ1ξ2.

Now suppose that α, β are weighted multicurves in the sense defined in [B]. (In
other words, each is a measured lamination whose support is a disjoint union of
curves.)

Definition. The weighted intersection number, ι(α, β), of α and β is the sum∑
i, j λiλ j ι(αi , β j ), where αi and β j vary over the components of the support

of α and β, where λi and λ j are the respective weighting on them, and where
ι(αi , β j ) ∈ N is the usual geometric intersection number.
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We write d(α, β) = mini, j {d(αi , β j )}, again where αi and β j vary over the
components of α, β.

Given γ ∈ V (G) we set l(γ )= lαβ(γ )=max{ι(α, γ ), ι(β, γ )} (interpreting γ as
a one-component multicurve of unit weight). One can think of l(γ ) as describing a
“length” in a singular euclidean structure arising from α and β (see Section 5 of
[B]).

Lemma 2.4. Suppose that α, β are weighted multicurves with ι(α, β) = 1 and
d(α, β)≥ 2. Then there is some δ ∈ V (G) with l(δ)≤ R such that ι(γ, δ)≤ Rl(γ )
for all γ ∈ V (G) (where R is defined as above).

Proof. This is just a restating of Lemma 4.1 of [B] for this particular definition of R.
The proof is the same. Suppose first that α ∪β fills 6 \5. As in Section 5 of that
paper, we construct a singular euclidean surface, tiled by rectangles, dual to α ∪β.
The cone angles are all multiples of π , and all cone singularities of angle π lie in
5. Thus, any trivial region, 1⊆5, contains at most one cone point of angle less
than 2π . Passing to a branched double cover over this cone point (if it exists) we
are reduced to considering the case where all cone angles are at least 2π . But then
the worst case is a round circle in the euclidean plane [Weil 1926] which would
give area(1)= length(∂1)2/4π . We can therefore set h = 2(1/4π)= 1/2π . Now
apply Lemma 2.3, and set δ to be a core curve of that annulus. The statement then
follows exactly as in [B] (at the end of Section 5 thereof). (In [B], h was given
inaccurately as π/2.)

If α ∪β does not fill 6 \5, we get instead a singular euclidean structure on a
“smaller” surface, namely a region of 6 with each boundary component collapsed
to a point. However, this process can only decrease ξ1 and ξ2, so we again get
an annulus of width at least η. (This case is the reason we needed a version of
Lemma 2.3 when 3g+ p = 4. In the case where (g, p)= (0, 4), note that 1/2 is
certainly greater than the required

√
2π/120.) �

Given r ≥ 0, set L(α, β, r)= {γ ∈ V (G) | l(γ )≤ r}. Note that the curve δ given
by Lemma 2.4 lies in L(α, β, R).

Lemma 2.5. Suppose that 2g+ p ≥ 195. Suppose that α, β are weighted multic-
urves with ι(α, β)= 1 and d(α, β)≥ 2. Then, the diameter of L(α, β, 2R) in G is
at most 20.

Proof. Let δ be as given by Lemma 2.4. If γ ∈ L(α, β, 2R), then l(γ ) ≤ 2R, so
ι(γ, δ)≤ 2R2. If we knew that 16 ι(γ, δ)≤ ξ 5

0 , then Corollary 2.2 with q = 4 would
give d(γ, δ)≤ 10 and the result would follow.

It is therefore sufficient that 16(2R2)≤ ξ 5
0 . Recall that R = (4/

√
π)ξ1ξ2, so this

reduces to 32(4/
√
π)2ξ 2

1 ξ
2
2 ≤ ξ

5
0 , that is, 512ξ 2

1 ξ
2
2 ≤ πξ

5
0 . In other words, we want

(∗) 512(2g+ p− 1)2(2g+ p+ 6)2 ≤ π(2g+ p− 4)5,
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which holds whenever 2g+ p ≥ 195. �

We now assume that 2g+ p ≥ 195.
Recall that Lemma 4.3 of [B] states that L(α, β, R) has diameter bounded by

some constant D (which there, depended on R). Since L(α, β, R)⊆ L(α, β, 2R),
we have now verified Lemma 4.3 of [B] with D = 20. Recall that Lemma 4.2 of
[B], more generally, placed a bound on the diameter of L(α, β, r) depending on
r and R (specifically, diam L(α, β, r) ≤ 2Rr + 2). This was used in the proof of
Lemma 4.12 [B]. We can now use Lemma 2.5 above, in place of Lemma 4.2 of [B],
to give a proof of Lemma 4.12 of [B] with the constant 4D now replaced by 40.
We can now proceed as in [B] to prove Lemma 4.13 and Proposition 4.11 of that
paper. In fact, the improvement on Lemma 4.12 allows us, respectively, to replace
the constants 14D by 10D and 18D by 14D, where D = 20. Thus, the original
diameter bound of 18D of Proposition 4.11 of [B] now becomes 280.

Recall that Proposition 3.1 of [B] gives a criterion for hyperbolicity depend-
ing on a constant, K , in the hypotheses. The three clauses (1), (2), and (3) of
those hypotheses were verified respectively by Lemma 4.10, Proposition 4.11 and
Lemma 4.9. These respectively gave K bounded by 4D, 18D, and 2D, which we
can now replace by 80, 280 and 40. In particular, we have shown:

Proposition 2.6. If 2g + p ≥ 195, then the curve graph G(g, p) satisfies the hy-
potheses of Proposition 3.1 of [B] with K = 280.

For 2g+ p ≥ 195, one can now explicitly estimate k from the proof of Proposi-
tion 3.1 of [B]. In fact, one can do better.

3. A criterion for hyperbolicity

We give a self-contained account of a criterion for hyperbolicity which is related to,
but simpler than, that used in [B]. In particular, it does not require the condition
on moving centres (clause (2) of Proposition 3.1 of [B]) which complicated the
argument there. Essentially the same statement can be found in Section 3.13 of
[Masur and Schleimer 2013], though without a specific estimate for the hyperbolicity
constant arising (or the final clause about Hausdorff distance). Our proof uses an
idea to be found in [Gilman 2002], but bypasses use of the isoperimetric inequality.
Since this criterion has many applications, this may be of some independent interest.
For definiteness, we say that a space is k-hyperbolic if, in every geodesic triangle,
each side lies in a k-neighbourhood of the union of the other two.

Proposition 3.1. Given h ≥ 0, there is some k ≥ 0 with the following property.
Suppose that G is a connected graph, and that for each x, y ∈ V (G), we have
associated a connected subgraph, L(x, y)⊆ G, with x, y ∈L(x, y). Suppose that:
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(1) For all x, y, z ∈ V (G),

L(x, y)⊆ N (L(x, z)∪L(z, y), h).

(2) For any x, y ∈ V (G) with d(x, y)≤ 1, the diameter of L(x, y) in G is at most h.

Then G is k-hyperbolic. In fact, we can take any k ≥ (3m − 10h)/2, where m is
any positive real number satisfying 2h(6+ log2(m + 2)) ≤ m. Moreover, for all
x, y ∈ V (G), the Hausdorff distance between L(x, y) and any geodesic from x to y
is bounded above by m− 4h.

Here, d is the combinatorial metric on G, and N ( · , h) denotes h-neighbourhood.
Note that we can assume that L(x, y) = L(y, x) (on replacing L(x, y) with
L(x, y)∪L(y, x)). Note that the condition on m is monotonic: if it holds for m, it
holds strictly for any m′ > m.

Proof. Given any x, y ∈ V (G), let I(x, y) be the set of all geodesics from x to y.
Given any n ∈ N, write

f (n)=max{d(w, α) | (∃x, y ∈ V (G)) d(x, y)≤ n, α ∈ I(x, y), w ∈ L(x, y)}.

In other words, f (n) is the minimal f ≥ 0 such that L(x, y) ⊆ N (α, f ) for any
geodesic, α, connecting any two vertices x, y at most n apart.

We first claim that f (n)≤ (2+[log2 n])h (compare [Gilman 2002]). To see this,
write l = d(x, y)≤ n and p = [log2 l]+ 2. Let z ∈ V (G) be a “near midpoint” of
α; that is, it cuts α into two subpaths, α− and α+, whose lengths differ by at most 1.
By (1), L(x, y)⊆ N (L(x, z)∪L(z, y), h). We now choose near midpoints of each
of the paths α+ and α− and then continue inductively. After at most p−1 steps, we
see that L(x, y)⊆ N

(⋃l−1
i=0 L(xi , xi+1), (p−1)h

)
where x = x0, x1, . . . , xl = y is

the sequence of vertices along α. Applying (2) now gives L(x, y)⊆ N (α, ph), and
so f (n)≤ ph as claimed.

In fact, we aim to show that f (n) is bounded purely in terms of h. We proceed
as follows.

Let t = f (n)+ 2h+ 1. Choose any w ∈ L(x, y). Let l0 =max{0, d(w, x)− t}
and l1 = max{0, d(w, y)− t}. Since l = d(x, y), we have l ≤ l0 + l1 + 2t , and
so we can find vertices x ′, y′ in α cutting it into subpaths α = α0 ∪ δ ∪α1, where
d(x, x ′)≤ l0, d(x ′, y′)≤ 2t , and d(y′, y)≤ l1. If x = x ′ we leave out α0, and/or if
y = y′ we leave out α1. (We can always assume that x ′ 6= y′.)

Note that d(w, α0) ≥ d(w, x)− d(x, x ′) ≥ d(w, x)− l0. Therefore, if x 6= x ′,
then l0 = d(w, x)− t , and so d(w, α0) ≥ t . But d(x, x ′) ≤ d(x, y) ≤ n and so
L(x, x ′) ⊆ N (α0, f (n)). It follows that d(w,L(x, x ′)) ≥ t − f (n) = 2h + 1. In
other words, if x 6= x ′, then d(w,L(x, x ′)) ≥ 2h + 1. Similarly, if y 6= y′, then
d(w,L(y′, y))≥ 2h+ 1. But

w ∈ L(x, y)⊆ N (L(x, x ′)∪L(x ′, y′)∪L(y′, y), 2h)
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and so d(w,L(x ′, y′)) ≤ 2h. Now d(x ′, y′) ≤ 2t and so L(x ′, y′) ⊆ N (δ, f (2t)).
Thus, w ∈ N (δ, f (2t)+ 2h)⊆ N (α, f (2t)+ 2h). Since w was an arbitrary point
of L(x, y), it follows that

f (n)≤ f (2t)+ 2h = f (2 f (n)+ 4h+ 2)+ 2h.

Writing F(n)= 2 f (n)+4h+2, we have shown that F(n)≤ F(F(n))+4h for all n.
Now, from the earlier claim,

F(n)≤ 2((2+ log2 n)h)+ 4h+ 2= 2h(4+ log2 n)+ 2.

Suppose m is as in the statement of the theorem. Writing r = m + 2, we have
2h(6+ log r)+ 2≤ r , and so F(n)+ 4h ≤ 2h(6+ log2 n)+ 2< n for any n > r .

In summary, we have shown that

F(n)≤ F(F(n))+ 4h

for all n, and that
F(n)+ 4h < n

for all n > r . It follows that F(n) ≤ r for all n (otherwise, we have the con-
tradiction F(n) ≤ F(F(n))+ 4h < F(n)). It now follows that f (n) ≤ s, where
s = (r/2)− 2h− 1= (m/2)− 2h.

We have shown that for all x, y ∈ V (G) and α ∈ I(x, y), we have L(x, y) ⊆
N (α, s). It now follows also that α ⊆ N (L(x, y), 2s). Since if w ∈ α, then w cuts
α into two subpaths, α− and α+. Since L(x, y) is connected and contains x, y, we
can find some v ∈L(x, y) and v± ∈α± with d(v, v±)≤ s. Now d(w, {v−, v+})≤ s,
so d(v,w)≤ 2s. We deduce that d(w,L(x, y))≤ 2s as required.

Now suppose that x, y, z ∈ V (G) and that α ∈ I(x, y), β ∈ I(x, z), and
γ ∈ I(y, z). We have

α ⊆ N (L(x, y), 2s)⊆ N (L(x, z)∪L(z, y), 2s+ h)⊆ N (β ∪ γ, k),

where
k = 3s+ h ≤ 3((r/2)− 2h− 1)+ h = (3m− 10h)/2.

Thus, G is k-hyperbolic. �

4. Estimation of constants

Given Proposition 3.1 of this paper, we can extract information more efficiently from
[B], and bypass much of the proof of Theorem 1.1. Given α, β ∈ V (G(g, p)) with
d(α, β)≥ 2 and t ∈R, let 3αβ(t)= L((et/ι)α, (e−t/ι)β, R), where ι= ι(α, β) > 0.

Now, ι((et/ι)α, (e−t/ι)β)= 1. Therefore if 2g+ p ≥ 195, then by Lemma 2.4,
3αβ(t) 6=∅. Let L(α, β)(t) be the full subgraph of G with vertex set3αβ(t). It is not
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hard to see that L(α, β)(t) is connected. (For example, the standard argument, going
back to work of Lickorish, for showing that G itself is connected effectively does this.
This involves interpolating between two curves by a series of surgery operations,
see Lemma 1.3 of [B] for example. These can only decrease the intersection number
with any fixed curve.) It follows easily that L(α, β)=

⋃
t∈R L(α, β)(t) is connected.

Note that the vertex set of L(α, β) is the “line” 3αβ =
⋃

t∈R3αβ(t) as defined
in [B]. Note also that α, β ∈ 3αβ . If d(α, β) ≤ 1, we set 3αβ = {α, β}, so that
L(α, β) is a single vertex or edge.

We can now verify that the collection (L(α, β))α,β∈V (G) satisfies the hypotheses
of Proposition 3.1 here with h = 40. Condition (2) is immediate. For condition (1),
let α, β, γ ∈ V (G). If these three curves all pairwise intersect, then we set τ =
1
2 loge(ι(α, β)ι(α, γ )/ι(β, γ )). As in Lemma 4.5 of [B], we see that if t ≤ τ , the
diameter of L(α, β)(t) ∪ L(α, γ )(t) is at most 40 (since we can set D = 20).
Similarly, if t ≥ τ then L(α, β)(t) ∪L(β, γ )(t) has diameter at most 40. Thus,
L(α, β)⊆ N (L(α, γ )∪L(γ, β), h) with h = 40. The cases where at least two of
the curves α, β, γ are disjoint follow from a slight modification of this argument,
as in [B]. This now gives m ≤ 1320 and k ≤ 1780. This shows that if 2g+ p ≥ 195,
then G(p, q) is 1780-hyperbolic.

In fact, since we are now only using Lemma 4.3 of [B], we can replace 2R by
R in Lemma 2.5 here, so that the requirement 16(2R2)≤ ξ 5

0 becomes 16R2
≤ ξ 5

0 ,
and so we can replace the resulting factor of 512 in (∗) by 256. It is therefore
sufficient that 2g+ p ≥ 107. We have shown that if 2g+ p ≥ 107, then G(g, p) is
1780-hyperbolic.

We can deal with lower complexity surfaces using larger values of q from
Corollary 2.2. In general, we require that

2q+4(2g+ p− 1)2(2g+ p+ 6)2 ≤ π(2g+ p− 4)q+1.

For example, with q = 5, this is satisfied for 2g+ p ≥ 26. This gives

D = 4(q + 1)= 24, h = 2D = 48, m ≤ 1584, k ≤ 2136.

In other words, if 2g+ p ≥ 26, then G(g, p) is 2064-hyperbolic. Similarly (with
q = 6), if 2g+ p ≥ 14, then G(g, p) is 2492-hyperbolic, and so on.

For the cases where 2g+ p ≤ 6, we need to revert to previous arguments. The
estimates and methods in [Tang 2013] might give improvements for some of the
lower complexities.

There is scope for other improvements in various directions. For the bounds
on complexity for example, suppose p = 0. In the proof of Lemma 2.3 we don’t
have to worry about trivial regions, so we can easily obtain l ≤ 2λ, allowing us
to reset ξ2 = 2g + 2. We can also reset ξ1 = 2g. For Corollary 2.2, we could
set h = 1/4π , further decreasing R by a factor of

√
2. In Lemma 1.3 of [B],
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we can eliminate the factor of 2 in the hypotheses, and thereby weaken those of
Corollary 2.2 here to saying that ι(α, β)≤ xq

0 . The fact that we have replaced 2R
by R also gives us another factor of 2, so that our requirement, when q = 4, now
becomes R2

≤ ξ 5
0 . Together these now give 8(2g)2(2g+ 2)2 ≤ π(2g− 4)5, that

is, 4g2(g + 1)2 ≤ π(g − 2)5, which holds for g ≥ 8. In other words, G(g, 0) is
1780-hyperbolic for g ≥ 8.

We remark that in [Hensel, Przytycki and Webb 2013], it is shown that every
curve graph is “17-hyperbolic” in the sense that, for every geodesic triangle, there
is a vertex at a distance of no more than 17 from each of its sides. From this, one
can easily derive a uniform hyperbolicity constant in the sense we have defined it.
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