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CONSTANT GAUSSIAN CURVATURE SURFACES
IN THE 3-SPHERE VIA LOOP GROUPS

DAVID BRANDER, JUN-ICHI INOGUCHI AND SHIMPEI KOBAYASHI

In this paper we study constant positive Gauss curvature K surfaces in the
3-sphere S3 with 0 < K < 1, as well as constant negative curvature surfaces.
We show that the so-called normal Gauss map for a surface in S3 with Gauss
curvature K < 1 is Lorentz harmonic with respect to the metric induced by
the second fundamental form if and only if K is constant. We give a uni-
form loop group formulation for all such surfaces with K ¤ 0, and use the
generalized d’Alembert method to construct examples. This representation
gives a natural correspondence between such surfaces with K < 0 and those
with 0 < K < 1.

Introduction

The study of isometric immersions from space forms into space forms is a classical
and important problem of differential geometry. This subject has its origin in
realizability of the hyperbolic plane geometry in Euclidean 3-space E3. As is well
known, Hilbert [1901] proved the nonexistence of isometric immersions of the
hyperbolic plane into E3. Analogous results hold for surfaces in the 3-sphere S3

and hyperbolic 3-space H3 as follows:

Theorem [Spivak 1979]. There is no complete surface in S3 with constant curva-
ture K < 1, K ¤ 0. Moreover, the only complete immersion of constant positive
curvature in S3 is a totally umbilic round sphere. There is no complete surface in
H3 with constant curvature K < �1.

Due to the complicated structure (nonlinearity) of the integrability condition
(Gauss–Codazzi–Ricci equations) of isometric immersions between space forms, in
the past decades many results on nonexistence, rather than explicit constructions of
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examples, have been obtained. For this direction we refer the reader to the survey
article [Borisenko 2001].

Another reason for the focus on nonexistence may be the presence of singularities.
Surfaces in S3 with constant Gauss curvature K < 1 always have singularities,
excepting the flat case K D 0 (in fact there exist infinitely many flat tori in S3

[Kitagawa 1988]). Recently, however, there has been some movement to broaden
the class of surfaces to include those with singularities, and a number of interesting
studies of the geometry of these; see, for example, [Saji et al. 2009].

On the other hand, one can see that under the asymptotic Chebyshev net parame-
trization, the Gauss–Codazzi equations of surfaces in S3 with constant curvature
K < 1 (K 6D 0) are reduced to the sine-Gordon equation. The sine-Gordon equa-
tion also arises as the Gauss–Codazzi equation of pseudospherical surfaces in E3

(surfaces of constant negative curvature) and is associated to harmonic maps from
a Lorentz surface into the 2-sphere.

By virtue of loop group techniques, an infinite-dimensional d’Alembert-type
representation for solutions is available for surfaces associated to Lorentz harmonic
maps. This d’Alembert-type representation is a special case of the generalized DPW
method (described in [Brander and Dorfmeister 2009]): for the case of Riemannian
harmonic maps the method reduces to an analogue of the Weierstrass representation;
for the case of Lorentz harmonic maps, one obtains an analogue of the d’Alembert
solution for the wave equation. More precisely, all solutions are given in terms of
two functions, each of one variable only. This type of construction method can
be traced back to [Kričever 1980]. An example of an application of this method
is the solution in [Brander and Svensson 2013] of the geometric Cauchy problem
for pseudospherical surfaces in E3, as well as for timelike constant mean curvature
surfaces in Lorentz–Minkowski 3-space L3. The key ingredient is the generalized
d’Alembert representation for Lorentz harmonic maps of Lorentz surfaces into semi-
Riemannian symmetric spaces. See also [Dorfmeister 2008] and the references
therein for more examples. One can expect that the approach can be adapted to
other classes of isometric immersion problems.

These observations motivate us to establish a loop group method (generalized
d’Alembert formula) for surfaces in S3 of constant curvature K < 1. We shall in
fact give such a solution that covers all such surfaces with K ¤ 0. The key point is
to discover which Gauss map (there are several definitions for surfaces in S3) is
the right one to make the connection with harmonic maps.

Outline of this article. This paper is organized as follows: After prerequisite knowl-
edge in Sections 1 and 2, we will give a loop group formulation for surfaces in S3

of constant curvature K < 1 (K 6D 0) in Section 3. In particular, we will show that
the Lorentz harmonicity (with respect to the conformal structure determined by the
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second fundamental form) of the normal Gauss map of a surface with curvature
K < 1 is equivalent to the constancy of K. The normal Gauss map is the left
translation, to the Lie algebra su.2/, of the unit normal n to the immersion f into
S3 D SU.2/— in symbols, � D f �1n.

The harmonicity of the normal Gauss map enables us to construct constant
curvature surfaces in terms of Lorentz harmonic maps. We establish a loop group
theoretic d’Alembert representation for surfaces in S3 with constant curvature
K < 1 (K 6D 0). In Section 4 we give a relation between the surfaces in S3 and
pseudospherical surfaces in E3, and show how the well-known Sym formula for the
latter surfaces arises naturally from our construction. Finally, we give a detailed
analysis of the limiting procedure K! 0.

The paper ends with some explicit examples constructed by our method. All
of the images shown here were produced using a numerical implementation of
the method in Matlab. The code, ksphere, can be found, at the time of writing, at
http://davidbrander.org/software.html.

Examples. Figure 1 shows the well-known pseudospherical surface of revolution,
together with a corresponding constant negative curvature surface in S3 obtained
by a different projection from the same loop group frame. The surface in S3 is
mapped diffeomorphically to R3 by the stereographic projection for rendering. See
Example 4.1 below.

Figure 2 shows Amsler’s pseudospherical surface in E3, which contains two in-
tersecting straight lines, together with a corresponding surface of constant curvature
K D 16=25 in S3 also obtained from the same loop group frame. The two straight
lines correspond to two great circles. The great circles appear as straight lines in

�D 1; K D�1; target E3 �D 4; K D�16
25
; target S3

Figure 1. Left: a pseudospherical surface of revolution in E3.
Right: a constant negative curvature analogue in S3. See also
Figure 3.

http://davidbrander.org/software.html
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�D 1; K D�1; target E3 �D�4; K D 16=25; target S3

Figure 2. Left: Amsler’s surface in E3. Right: a constant positive
curvature analogue in S3. See also Figure 4.

the image obtained by stereographic projection to R3. This example shows that
although the singular sets in the coordinate domain are the same for every surface
in the family, the type of singularity can change. The surface obtained at �D�4
apparently has a swallowtail singularity at a point where the surfaces obtained
at � D 1 and � D 4 (see Example 4.2 below) each have a cuspidal edge. This
suggests that the singularities of constant curvature surfaces in S3 are also worth
investigating.

Comparison with other methods. It should be noted that Ferus and Pedit [1996]
gave a very nice loop group representation for isometric immersions of space forms
M n
c !

zM nCk
Qc

with flat normal bundle for any c ¤ Qc with c ¤ 0¤ Qc. Finite-type
solutions can be generated using the modified AKS theory described in [ibid.], and
all solutions can, in principle, be constructed from curved flats using the generalized
DPW method described in [Brander and Dorfmeister 2009]. For the case of surfaces,
as in the present article, the construction of Ferus and Pedit is quite different from
the Lorentzian harmonic map approach used here. For surfaces, the Lorentzian
harmonic map representation is probably more useful, since one obtains, via the
generalized d’Alembert method, all solutions from essentially arbitrary pairs of
functions of one variable only; this is the key, for example, to the solution of the
geometric Cauchy problem in [Brander and Svensson 2013]. If one were to use
the setup in [Ferus and Pedit 1996], and the generalized DPW method of [Brander
and Dorfmeister 2009], which is the analogue of generalized d’Alembert method,
one instead obtains a curved flat in the Grassmannian SO.4/=.SO.2/� SO.2// as
the basic data, which is not as simple. In contrast, our basic data are essentially
arbitrary functions of one variable.
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Another interesting difference between the two approaches is the following: we
will show below that the loop group frame corresponding to a surface of constant
curvature K < 0 in S3 also corresponds to a surface with 0 < K < 1 in S3, giving
some kind of Lawson correspondence between two surfaces, one of which has
negative curvature and the other positive. This correspondence is obtained by
evaluating at a different value of the loop parameter �. On the other hand, in
[Brander 2007], the loop group maps of Ferus and Pedit are also found to produce
Lawson-type correspondences between various isometric immersions of space forms
by evaluating in different ranges of �. In this case, however, one does not obtain
such a correspondence between surfaces with positive and negative curvature.

Finally, we should observe that Xia [2007] has also studied isometric immersions
of constant curvature surfaces in space forms via loop group methods. In that
work, for surfaces in S3, the group SO.4/ is used (as opposed to SU.2/�SU.2/,
used here) and a loop group representation for the surfaces is given. However, the
generalized d’Alembert method to construct solutions is not given, and neither is the
equivalence of this problem with Lorentz harmonic maps via the normal Gauss map.
It turns out to be difficult to find a suitable loop group decomposition in the SO.4/
setup used in [ibid.], which is really the setup for Lorentz harmonic maps into the
Grassmannian SO.4/=.SO.2/�SO.2//. The essential problem is that the surfaces
in question are not associated to arbitrary harmonic maps in the Grassmannian, but
very special ones. In contrast, our use of the group SU.2/� SU.2/ leads naturally
to the normal Gauss map, the harmonicity of which is a basic characterization of
these surfaces; this leads to a straightforward solution in terms of the known method
for Lorentz harmonic maps.

1. Preliminaries

The symmetric space S3. Let E4 be the Euclidean 4-space with standard inner
product

hx;yi D x0y0C x1y1C x2y2C x3y3:

We denote by e0 D .1; 0; 0; 0/, e1 D .0; 1; 0; 0/, e2 D .0; 0; 1; 0/, e3 D .0; 0; 0; 1/
the natural basis of E4.

The orthogonal group O.4/ is defined by

O.4/D fA 2 GL.4;R/ jATAD I g:

Here I is the identity matrix. We denote by SO.4/ the identity component of O.4/
(called the rotation group).

Let us denote by S3 the unit 3-sphere in E4 centered at the origin. The unit
3-sphere is a simply connected Riemannian space form of constant curvature 1.
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The rotation group SO.4/ acts isometrically and transitively on S3, and the
isotropy subgroup at e0 is SO.3/. Hence S3DSO.4/=SO.3/. This representation is
a Riemannian symmetric space representation of S3 with involution Addiag.�1;1;1;1/.

The unit tangent sphere bundle. Let us denote by US3 the unit tangent sphere
bundle of S3. Namely, US3 is the manifold of all unit tangent vectors of S3, and
is identified with the submanifold

f.x; v/ j hx;xi D hv; vi D 1; hx; vi D 0g

of E4 � E4. The tangent space T.x;v/US3 at a point .x; v/ is expressed as

T.x;v/US3 D f.X; V / 2 E4 � E4 j hx; Xi D hv; V i D 0; hx; V iC hv; Xi D 0g:

Define a 1-form ! on US3 by

!.x;v/.X; V /D hX; vi D �hx; V i:

Then one can see that ! is a contact form on US3; that is, .d!/2 ^! 6D 0. The
distribution

D.x;v/ WD f.X; V / 2 T.x;v/US3 j!.x;v/.X; V /D 0g

is called the canonical contact structure of US3.
The rotation group SO.4/ acts on US3 via the action A � .x; v/ D .Ax; Av/.

It is easy to see that under this action the unit tangent sphere bundle US3 is a
homogeneous space of SO.4/. The isotropy subgroup at .e0; e1/ is��

I2 0

0 b

� ˇ̌̌̌
b 2 SO.2/

�
:

Here I2 is the identity matrix of rank 2. Hence, US3DSO.4/=SO.2/. The invariant
Riemannian metric induced on US3 D SO.4/=SO.2/ is a normal homogeneous
metric (and hence naturally reductive), but not Riemannian symmetric. Note that
US3 coincides with the Stiefel manifold of oriented 2-frames in E4.

The space of geodesics. Next, we consider Geo.S3/, the space of all oriented
geodesics in S3. Take a geodesic  2 Geo.S3/; then  is given by the intersection
of S3 with an oriented 2-dimensional linear subspace W in E4. By identifying 
with W , the space Geo.S3/ is identified with the Grassmann manifold Gr2.E4/ of
oriented 2-planes in Euclidean 4-space. The natural projection �1 WUS3!Geo.S3/
is regarded as the map

�1.x; v/D the geodesic  satisfying the conditions .0/D x;  0.0/D v:

The rotation group SO.4/ acts isometrically and transitively on Geo.S3/. The
isotropy subgroup at e0 ^ e1 is SO.2/�SO.2/.
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Therefore, the tangent space Te0^e1 Geo.S3/ is identified with the linear subspace8̂̂<̂
:̂
0BB@
0 0 �x2 �x3
0 0 �x21 �x31
x2 x21 0 0

x3 x31 0 0

1CCA
9>>=>>;

of so.4/. The standard invariant complex structure J on Geo.S3/ D Gr2.E4/ is
given explicitly by

J

0BB@
0 0 �x2 �x3
0 0 �x21 �x31
x2 x21 0 0

x3 x31 0 0

1CCAD
0BB@

0 0 x21 x31
0 0 �x2 �x3
�x21 x2 0 0

�x31 x3 0 0

1CCA :
One can see that Gr2.E4/ is a Hermitian symmetric space with Ricci tensor 2h � ; � i.
The Kähler form � is related to the contact form ! by ��1�D d!.

2. Surface theory in S3

The Lagrangian and Legendrian Gauss maps. Let f WM ! S3 � E4 be a con-
formal immersion of a Riemann surface with unit normal vector field n. Then we
define the (Lagrangian) Gauss map L of f by

L WD f ^n WM ! Gr2.E4/:

One can see that L is an immersion and, in addition, that it is Lagrangian with
respect to the canonical symplectic form � of Gr2.E4/; that is, L��D 0. Under
the identification Gr2.E4/DGeo.S3/, the Lagrangian Gauss map is referred as the
oriented normal geodesic of f (and called the spherical Gauss map).

On the other hand, we have a map L WD .f; n/ W M ! US3. This map is
Legendrian with respect to the canonical contact structure of US3; that is, L�!D 0.
This map L is called the Legendrian Gauss map of f .

Parallel surfaces. An oriented geodesic congruence in S3 is an immersion of a
2-manifold M into the space Geo.S3/ of geodesics. Now, let f WM ! S3 be a
surface with unit normal n. Then a normal geodesic congruence through f at a
distance r is the map f r WM ! S3 defined by

f r WD cos r f C sin r n:

If f satisfies the condition cos.2r/ � sin.2r/H C sin2.r/K 6D 0, then f r is an
immersion. Here, H and K are the mean and Gauss curvatures of f , respectively.
If f r is an immersion, then it is called the parallel surface of f at the distance r .
The correspondence f 7! f r is called the parallel transformation.
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Legendrian lifts, frontals and fronts. The Gauss map L of an oriented surface
f WM!S3 with unit normal n is a Lagrangian immersion into Gr2.E4/. Conversely,
we have:

Proposition 2.1 [Palmer 1994]. Let L WM !Gr2.E4/ be a Lagrangian immersion.
Then locally L is a projection of a Legendrian immersion L W M ! US3. The
Legendrian immersion is unique up to parallel transformations.

The Legendrian immersion L is called a Lie surface by Palmer. If f WM ! S3

is an immersion with unit normal n, then L WD .f; n/ is a Legendrian immersion
into US3. However, even if L is a Legendrian immersion, f WD �2 ıL need not be
an immersion, although it possesses a unit normal n. Here, �2 W US3! S3 is the
natural projection.

Remark 2.2. A smooth map f WM !S3 is called a frontal if for any point p 2M
there exists a neighborhood U of p and a unit vector field n along f defined on
U such that hdf; ni D 0. A frontal is said to be coorientable if there exists a
unit vector field n along f such that hdf; ni D 0. Namely, a coorientable frontal
is a smooth map f W M ! S3 that has a lift L D .f; n/ to US3 satisfying the
Legendrian condition L�! D hdf; ni D 0. A coorientable frontal is called a front if
its Legendrian lift is an immersion.

Our main interest is surfaces of constant curvature K < 1 in S3. Except in the
case K D 0, any surface of constant Gauss curvature K < 1 has singularities. A
theory of the singularities of fronts can be found in [Arnold 1990]. Geometric
concepts such as curvature and completeness for surfaces with singularities have
been defined by Saji, Umehara and Yamada in [Saji et al. 2009].

Asymptotic coordinates. Hereafter, assume that the Gaussian curvature K is less
than 1. This implies that the second fundamental form II derived from n is a possibly
singular Lorentzian metric on M .

Represent K as K D 1 � �2 for some positive function �, and take a local
asymptotic coordinate system .u; v/ defined on a simply connected domain D�M .
Then the first and second fundamental forms I and II are given by (see, e.g., [Moore
1972])

(2-1) ID A2 du2C 2AB cos� dudvCB2 dv2; IID 2�AB sin� dudv:

Note that asymptotic coordinates .u; v/ are conformal with respect to the second
fundamental form. We may regard M as a (singular) Lorentz surface [Weinstein
1996] with respect to the conformal structure determined by II (called the second
conformal structure [Klotz 1963; Milnor 1983]). Thus, one can see that

C D A2 du2CB2 dv2
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is well defined on M .
The Gauss equation is given by

�uv �

�
�v

2�

B

A
sin�

�
v

�

�
�u

2�

A

B
sin�

�
u

C .1� �2/AB sin� D 0:

Now, we introduce functions a and b by aDA� and bDB�. The Codazzi equations
are

(2-2) av �
�v

2�
aC

�u

2�
b cos� D 0; bu�

�u

2�
bC

�v

2�
a cos� D 0:

The Codazzi equations imply that if K is constant, then we have av D bu D 0. In
addition, the Gauss–Codazzi equations are invariant under the deformation

a 7! �a; b 7! ��1b; � 2 R� WD R n f0g:

Thus, there exists a one-parameter deformation ff�g�2R� of f preserving the
second fundamental form and the Gauss curvature. The resulting family is called
the associated family of f . The existence of the associated family motivates us to
study constant Gauss curvature surfaces in S3 by loop group methods.

3. The loop group formulation

The SU.2/�SU.2/ frame. Let us now identify S3 with SU.2/, via

.z; w/ 2 S3 � R4 D C2  !

�
z w

� Nw Nz

�
2 SU.2/:

The standard metric g on S3 is then given by left translating V;W 2 TxS3 to the
tangent space at the identity, Te SU.2/D su.2/; that is,

g.V;W / WD hx�1V; x�1W i;

where the inner product on su.2/ is given by hX; Y i D �Tr.XY /=2. The natural
basis fe0; e1; e2; e3g of E4 is identified with

e0 D e D I2; e1 D

�
0 1

�1 0

�
; e2 D

�
0 i

i 0

�
; e3 D

�
i 0

0 �i

�
:

Note that fe1; e2; e3g is an orthonormal basis of su.2/. We have the commutators
Œe1; e2�D 2e3, Œe2; e3�D 2e1 and Œe3; e1�D 2e2, so the cross product on E3 is given
by A�B D 1

2
ŒA; B�. Note that S3 is represented by .SU.2/�SU.2//=SU.2/ as a

Riemannian symmetric space. The natural projection is given by .G; F / 7!GF�1.
Let M be a simply connected 2-manifold, and suppose given an immersion

f W M ! S3, with global asymptotic coordinates .u; v/ and first and second
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fundamental forms as above at (2-1). Set � D �=2 and

�1 Dcos � e1� sin � e2 D
�

0 e�i�

�ei� 0

�
;

�2 Dcos � e1C sin � e2 D
�

0 ei�

�e�i� 0

�
:

Then h�1; �2iD cos�, and so we can define a map F WM!SU.2/ by the equations

(3-1) f �1fu D AAdF �1; f �1fv D B AdF �2; f �1nD AdF e3;

where n is the unit normal given by nD .AB/�1f .f �1fu �f �1fv/.
Setting G D fF , the map FD .F;G/ WM ! SU.2/�SU.2/ is a lift of f , and

the projection to SU.2/ is given by

f DGF�1:

We call F the coordinate frame for f . We now want to get expressions for the
Maurer–Cartan forms of F and G. Differentiating G D fF and substituting in the
expressions at (3-1) for f �1fu and f �1fv, we obtain

(3-2)
G�1Gu�F

�1Fu D A�1;

G�1Gv �F
�1Fv D B�2:

Now, write F�1FuD a1e1Ca2e2Ca3e3. Differentiating the expression f �1fuD
AAdF �1, we obtain

f �1fuu D A
2 AdF �21 C

@A

@u
AdF �1CAAdF ŒF�1Fu; �1�CAAdF

@�1

@u

D AAdF

�
�Ae0CA

�1 @A

@u
�1

C Œa1e1C a2e2C a3e3; cos � e1� sin � e2�C
@�1

@u

�
D A.�2a1 sin � � 2a2 cos �/AdF e3CAdF .d0e0C d1e1C d2e2/;

where we are only interested in the coefficient of AdF e3, that is, of f �1n. Since
the second fundamental form is assumed to be II D 2�AB sin� dudv, we know
that hf �1n; f �1fuui D 0. Hence the coefficient of n in the above equation is zero:
0D A.�2a1 sin � � 2a2 cos �/, or again

a2 D�a1 tan �:

Next, differentiating f �1fv D B AdF �2 with respect to u, we deduce

f �1fuv D AB AdF .�1�2/CAdF

�
@B

@u
�2CBŒF

�1Fu; �2�CB
@�2

@u

�
;
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and the coefficient of AdF e3 on the right-hand side is

AB sin 2� CB.2a1 sin � � 2a2 cos �/:

Substituting in a2 D�a1 tan � , the equation hf �1n; f �1fuvi D �AB sin� then
becomes

�AB sin 2� D AB sin 2� CB4a1 sin �:

Hence, a1DA.��1/ cos.�/=2, and a2D�A.��1/ sin.�/=2. Writing U0 WDa3e3,
we have

F�1Fu D U0C
�� 1

2
A�1:

From the equations (3-2) we also have

G�1Gu D U0C
�C 1

2
A�1:

Similarly, one obtains the expressions

F�1Fv D V0�
�C 1

2
B�2 and G�1Gv D V0�

�� 1

2
B�2;

where V0 is a scalar times e3.
The Maurer–Cartan form ˛ D F�1dF of F thus has the expression

(3-3)
˛ D ˛0C˛1C˛�1;

˛0 D U0 duCV0 dv; ˛1 D
�� 1

2
A�1 du; ˛�1 D�

�C 1

2
B�2 dv;

and similarly, G�1 dG D ˇ D ˇ0Cˇ1Cˇ�1, with

(3-4) ˇ0 D U0 duCV0dv; ˇ1 D
�C 1

2
A�1 du; ˇ�1 D�

�� 1

2
B�2 dv:

One can check that U0 and V0 are of the form U0 D��ue3=2 and V0 D �ve3=2.

Ruh–Vilms property. Now we investigate Lorentz harmonicity, with respect to the
second conformal structure, of the normal Gauss map �Df �1n of f . By definition,
� takes values in the unit 2-sphere S2 DAdSU.2/ e3 in the Lie algebra su.2/. Since
f and � are given by f DGF�1, � D AdF e3, we have

�u D AdF ŒU; e3�; �v D AdF ŒV; e3�;

where U D F�1Fu and V D F�1Fv. From these we have

@

@v
�u D AdF

��
@U

@v
; e3

�
C ŒV; ŒU; e3��

�
;

@

@u
�v D AdF

��
@V

@u
; e3

�
C ŒU; ŒV; e3��

�
:
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Next, we have�
@U

@v
; e3

�
D fA.�� 1/ sin �gve1CfA.�� 1/ cos �gve2;�

@V

@v
; e3

�
D�fB.�C 1/ sin �gue1CfB.�C 1/ cos �gue2;

ŒV; ŒU; e3��D�A.�� 1/�v.cos.�/e1� sin.�/e2/C 1
2
AB.�2� 1/ cos.2�/e3;

ŒU; ŒV; e3��D B.�C 1/�u.cos.�/e1C sin.�/e2/C 1
2
AB.�2� 1/ cos.2�/e3:

Here we recall that a smooth map � WM ! S2 � E3 of a Lorentz surface M into
the 2-sphere is said to be a Lorentz harmonic map (or wave map) if its tension
field with respect to any Lorentzian metric in the conformal class vanishes. This is
equivalent to the existence of a function k such that

�uv D k�

for any conformal coordinates .u; v/.
First, .�u/v is parallel to � if and only if

Av.�� 1/CA�v D 0:

Inserting the Codazzi equation (2-2) into this, we get

(3-5) a.�C 1/�v � b.�� 1/.cos�/�u D 0:

Analogously, .�v/u is parallel to � if and only if

Bu.1C �/CB�u D 0:

Inserting the Codazzi equation again, we get

(3-6) b.�� 1/�v � a.�C 1/.cos�/�v D 0:

Thus � is Lorentz harmonic if and only if (3-5) and (3-6) hold. The system (3-5)–
(3-6) can be written in matrix form as�

b.�� 1/ �a.�C 1/ cos�
�b.�� 1/ cos� a.�C 1/

��
�u
�v

�
D

�
0

0

�
:

The determinant of the coefficient matrix is ab.�2 � 1/ sin2 �. Thus, under the
condition � 6D 1, i.e., K 6D 0, we have � is Lorentz harmonic if and only if K is
constant.

In case �D1, we haveU D��ue3=2 and so �uDAdF ŒU; e3�D0. Hence �uvD0.
Thus g is Lorentz harmonic.

goodbreak
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Theorem 3.1. Let f W M ! S3 be an isometric immersion of Gauss curvature
K < 1. Then the normal Gauss map � is Lorentz harmonic with respect to the
conformal structure determined by the second fundamental form if and only if K is
constant.

This characterization is referred as the Ruh–Vilms property for constant curvature
surfaces in S3 with K < 1.

Remark 3.2. Under the identification S3 D .SU.2/� SU.2//=SU.2/, the space
Geo.S3/ is identified with the Riemannian product

S2 �S2 D .SU.2/�SU.2//=.U.1/�U.1//:

The Lagrangian Gauss map L corresponds to the map

L  ! .nf �1; f �1n/D .AdG e3;AdF e3/

(see [Aiyama and Akutagawa 2000; Kitagawa 1995]). Thus the Ruh–Vilms property
can be rephrased as follows:

Corollary 3.3. Let f WM ! S3 be an isometric immersion of Gauss curvature
K < 1. Then the Lagrangian Gauss map L is Lorentz harmonic with respect to the
conformal structure determined by the second fundamental form if and only if K is
constant.

The Legendrian Gauss map has the formula LD .f; n/D .GF�1; Ge3F
�1/.

Remark 3.4. Consider an oriented minimal surface f WM!S3 with unit normal n.
Then its Lagrangian Gauss map L D f ^ n is a harmonic map with respect to
the conformal structure determined by the first fundamental form. Hence L is a
minimal Lagrangian surface in the Grassmannian [Palmer 1994, Proposition 3.1];
see also [Castro and Urbano 2007].

The loop group formulation for constant curvature surfaces. Let ˛ and ˇ be as
defined above at (3-3) and (3-4). Let us now define the family of 1-forms

˛� D ˛0C�˛1C�
�1˛�1;

where � is a (nonzero) complex parameter. The integrability conditions for the
1-forms ˛ and ˇ are d˛C˛^˛D 0 and dˇCˇ^ˇD 0. Using these two equations,
which must already be satisfied, it is straightforward to deduce that ˛� is integrable
for all � if and only if � is constant; in other words, if and only if the immersion f
has constant curvature 1� �2. In this case we have, of course, ˛ D ˛1, but also

(3-7) ˇ D ˛�; where �D
�C 1

�� 1
:

From now on, we assume that � is constant, so d˛�C˛� ^˛� D 0 for all nonzero
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complex values of �. Let us choose coordinates for the ambient space such that

(3-8) F.u0; v0/D f .u0; v0/DG.u0; v0/D I

at some base point .u0; v0/. We further assume that M is simply connected. Then
we can integrate the equations

yF�1 d yF D ˛�; yF .u0; v0/D I;

to obtain a map yF W M ! G D ƒSL.2;C/�� . Here the twisted loop group
ƒSL.2;C/�� is the fixed point subgroup of the free loop group ƒSL.2;C/ by
the involutions � and � , which are defined as

�x.�/ WD Addiag.1;�1/.x.��//; �x.�/ WD x.. N�//T
�1
:

Elements of G take values in SU.2/ for real values of �.
By definition, we have F D yF j�D1, and, moreover, from (3-7) and the initial

condition (3-8) we also have GD yF j�D�. Thus, yF can be thought of as a lift of the
coordinate frame FD .F;G/, with the projections .F;G/D . yF j�D1; yF j�D�/ and

(3-9) f D yF
ˇ̌
�D�

yF�1
ˇ̌
�D1

:

Thus we may call the map yF the extended coordinate frame for f .
Let us now consider a general map into the twisted loop group G that has a

similar Maurer–Cartan form to ˛�; first, let K be the diagonal subgroup of SU.2/
and su.2/D kCp be the symmetric space decomposition induced by S2DG=K D

SU.2/=U.1/ of the Lie algebra; that is,

kD span.e3/ and pD span.e1; e2/:

Definition 3.5. Let M be a simply connected subset of R2 with coordinates .u; v/.
An admissible frame is a smooth map yF WM ! G, the Maurer–Cartan form of
which has the Fourier expansion

yF�1 d yF D ˛0C�B1 duC��1B�1 dv; ˛0 2 k˝�
1.M/; B˙1.u; v/ 2 p:

The admissible frame is regular at a point p if B1.p/ and B�1.p/ are linearly
independent, and yF is called regular if it is regular at every point.

Note that the extended coordinate frame for a constant curvature 1��2 immersion,
defined above, is a regular admissible frame on M . Conversely:

Lemma 3.6. Let yF W M ! G be a regular admissible frame. Let � be any real
number not equal to 1 or 0. Then the map f WM ! S3 D SU.2/ defined by the
projection (3-9) is an immersion of constant curvature

K� D 1� �
2; where � WD �C1

��1
:
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The first and second fundamental form are given by

(3-10) ID A2 du2C 2AB cos� dudvCB2 dv2; IID 2�AB sin� dudv;

where A D .� � 1/jB1j, B D .��1 � 1/jB�1j, and � is the angle between B1
and B�1.

Proof. Set
F WD yF

ˇ̌
�D1

; G WD yF
ˇ̌
�D�

;

so that f DGF�1. Differentiating this formula and using the expressionsF�1dF D
˛0CB1 duCB�1 dv and G�1dG D ˛0C�B1 duC��1B�1 dv, we obtain

(3-11) f �1fu D .�� 1/AdF B1; f �1fv D .�
�1
� 1/AdF B�1:

Thus, since B˙1 are linearly independent for a regular admissible frame, the map
f is an immersion and the first fundamental form is given by

.��1/2jB1j
2 du2C2.��1/

�
1

�
�1
�

cos� jB1jjB�1j dudvC
�
1

�
�1
�2
jB�1j

2 dv2;

where � is the angle between B1 and B�1. This gives formula (3-10)1 for the first
fundamental form.

It remains to show formula (3-10)2 for the second fundamental form, from which
it will follow that the intrinsic curvature is 1� �2. Since B˙1 take values in p,
and e3 is perpendicular to p, it follows from equations (3-11) that a choice of unit
normal is given by

nD f AdF e3:

Differentiating equations (3-11) then leads to

hf �1fuu; f
�1ni D hf �1fvv; f

�1ni D 0;

hf �1fuv; f
�1ni D .1��/.1C��1/jB1j jB�1j sin�

D � .�� 1/.��1� 1/jB1j jB�1j sin�;

which gives the formula at (3-11) for II. �

Note that

K� 2 .0; 1� and K�1 D 1 for � < 0;

K� < 0 and lim
�!1

K� D�1 for � > 0:

The Legendrian Gauss map and Lagrangian Gauss map of f D yF�D� yF�1�D1 are
given respectively by

LD . yF�D� yF
�1
�D1;

yF�D�e3 yF
�1
�D1/; LD .Ad yF�D� e3;Ad yF�D1 e3/:
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The generalized d’Alembert representation. As we have shown, the problem of
finding a nonflat constant curvature immersion f WM!S3 withK<1 is equivalent
to finding an admissible frame. As a matter of fact, Definition 3.5 of an admissible
frame is identical to the extended SU.2/ frame for a pseudospherical surface in the
Euclidean space E3 (see, for example, [Brander and Svensson 2013; Dorfmeister
and Sterling 2002; Toda 2005]). The surfaces in E3 are obtained from the same
frame, not by the projection (3-9) but by the so-called Sym formula. We will explain
the connection between these problems in the next section, but the point we are
making here is that the problem of constructing these admissible frames by the
generalized d’Alembert representation has already been solved in [Toda 2005].

A presentation of the method, using similar definitions to those found here, can
be found in [Brander and Svensson 2013]. The building blocks of any admissible
frame are these:

Definition 3.7 [Brander and Svensson 2013, Definition 5.1]. Let Iu and Iv be two
real intervals, with coordinates u and v respectively. A potential pair .�C; ��/ is a
pair of smooth ƒsl.2;C/�� -valued 1-forms on Iu and Iv respectively with Fourier
expansions in �

�C D

1X
jD�1

.�C/j�
j du; �� D

1X
jD�1

.��/j�
j dv:

The potential pair is called regular if Œ.�C/1�12 6D 0 and Œ.��/�1�12 6D 0.

The admissible frame yF is then obtained by solving F�1
˙

dF˙ D �˙ with
initial conditions F˙.0/D I , and thereafter performing at each .u; v/ a Birkhoff
decomposition [Pressley and Segal 1986]

F�1C .u/F�.v/DH�.u; v/HC.u; v/; with H˙.u; v/ 2ƒ˙SL.2;C/;

and then setting yF .u; v/D FC.u/H�.u; v/.
Example solutions, using a numerical implementation of this method, are com-

puted below.

4. Limiting cases: pseudospherical surfaces in Euclidean space
and flat surfaces in the 3-sphere

In this section we discuss the interpretation of admissible frames at degenerate
values of the loop parameter �, namely, the case �D 1, which was excluded from
the above construction, and the limit �! 0 or �!1.

Relation to pseudospherical surfaces in Euclidean space E3. As alluded to above,
in addition to the constant Gauss curvatureKD 1��2 surfaces in S3 of Lemma 3.6,
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one also obtains from a regular admissible frame yF a constant negative curvature�1
surface in E3 by the Sym formula

(4-1) Lf D 2
@ yF

@�
yF�1

ˇ̌
�D1

:

Here we explain how this formula arises naturally from the construction of surfaces
in S3 D SU.2/.

Obviously the projection formula

f� D yF
ˇ̌
�D�

yF�1
ˇ̌
�D1

for the surface in S3 degenerates to a constant map for �D 1. On the other hand,
we can see that K�D 1�.�C1/2=.��1/2 approaches �1 when � approaches 1.
This suggests that we multiply our projection formula by some factor, allowing the
size of the sphere to vary, so that K approaches some finite limit instead, in order
to have an interpretation for the map at �D 1. Set

Lf� D
2

1��
.f�� e0/:

Note that e0D .1; 0; 0; 0/ under our identification E4D su.2/C span.e0/. Now, for
�¤ 1 the function f� is a constant curvature K� surface in S3, and Lf� is obtained
by a constant dilation of E4 by the factor 2.1��/�1, plus a constant translation
which has no geometric significance. It follows that Lf� is a surface in a (translated)
sphere of radius 2.1��/�1, and that Lf� has constant curvature

(4-2) LK� D .1=4/.1��/
2K�:

Now, consider the function g WM � .1� "; 1C "/! E4, for some small positive
real number ", given by

g.u; v; �/D 2
�
yF .u; v/

ˇ̌
�D�
yF .u; v/�1

ˇ̌
�D1
� e0

�
:

This function is differentiable in all arguments, and

@g

@�

ˇ̌̌̌
�D1

D 2 lim
�!1

F
ˇ̌
�D�

F�1
ˇ̌
�D1
� e0

1��
D lim
�!1

Lf�:

Hence the limit on the right-hand side exists and is a smooth function M ! E4. On
the other hand, differentiating the definition of g, we obtain the right-hand side of
the Sym formula (4-1). Note that since F is SU.2/-valued, this expression takes
values in the Lie algebra su.2/D span.e1; e2; e2/, which in our representation of
E4 is the hyperplane x0 D 0. In other words, lim�!1 Lf� takes values in E3 � E4.
Assuming that our surface in S3 is regular, then one can verify that the regularity
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assumption on the frame F implies that this map is an immersion, and it is clear
from expression (4-2) that this surface has constant curvature �1.

Example 4.1. In Figure 3, various projections of the same admissible frame are
plotted. These are computed using the generalized d’Alembert method (see [Toda
2005]), using the potential pair

�C D A du; �� D A dv; AD

�
0 ���1C i�

��1C i� 0

�
:

The first image, the surface in E3 obtained via the Sym formula (4-1), is part of a
hyperbolic surface of revolution (a plot of a larger region is shown in Figure 1). The
two cuspidal edges that can be seen in this image also appear in the other surfaces at
the same places in the coordinate domain, because the condition on the admissible
frame for the surface to be regular is independent of �. The surfaces in S3 are
of course distorted by the stereographic projection, which is taken from the south

�D 1; K D�1; target E3 �D 4; K D�16
9
; target S3

�D�4; K D 16
25
; target S3 �D�1; K D 1; target S3

Figure 3. Surfaces obtained from one admissible frame evaluated
at different values of �. All images are of the same coordinate
patch. The first image is obtained via the Sym formula, and the
others are in S3, stereographically projected to R3 for plotting.
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�D1; KD�1; target E3 �D4; KD�16
9
; target S3 �D�4; KD 16

25
; target S3

Figure 4. Amsler’s surface and generalizations in the 3-sphere.
The surfaces are obtained from one admissible frame evaluated at
different values of �. All images are of the same coordinate patch.

pole .�1; 0; 0; 0/ 2 E4; the north pole .1; 0; 0; 0/ is at the center of the coordinate
domain plotted. The last image is in fact planar, the projection of a part of a totally
geodesic hypersphere S2 � S3. In this case, each of the two singular curves in the
coordinate domain maps to a single point in the surface.

Example 4.2. Amsler’s surface in E3 can be computed by the generalized d’Alem-
bert method, using the potential pair

�C D

�
0 i�

i� 0

�
du; �� D

�
0 ���1

��1 0

�
dv:

The image of a rectangle Œ0; a� � Œ0; b� in the positive quadrant of the uv-plane
is plotted in Figure 4, evaluated at 3 different values of �. The coordinate axes
correspond to straight lines for the surface in E3, and to great circles for the surfaces
in S3, which project to straight lines under the stereographic projection from the
south pole. The north pole .1; 0; 0; 0/ corresponds to .u; v/D .0; 0/.

The singular set in the coordinate patch corresponds to a cuspidal edge in each
of the first two images, but contains a swallowtail singularity in the third. See also
Figure 2.

Relation to flat surfaces in the 3-sphere. We have considered above the surfaces
f�, obtained by the projection

(4-3) yF j�D� yF
�1
j�D1;

for all nonzero real values of �. We now consider the limit as � approaches 0 or1.
From the formula K� D 1� .�C 1/2=.�� 1/2, it is clear that the limiting surface,
if it exists, will be flat. We discuss the case �! 0 here.

Observe that the admissible frame yF has a pole at �D 0, so we cannot evaluate
(4-3) at �D 0. However, in the Maurer–Cartan form of yF , the factor ��1 appears
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only as a coefficient of dv. Hence a change of coordinates could remove the pole
in �. For � > 0, we set QuD u and Qv D v=�, so that

f�.u; v/D f�. Qu;� Qv/DW g�. Qu; Qv/:

For simplicity, let us assume that M is a rectangle .a; b/� .c; d/� R2, containing
the origin .0; 0/ and with coordinates .u; v/. We denote by M� the same rectangle
in the coordinates . Qu; Qv/, that is, M� D .a; b/� .c=�; d=�/, and we define M0 WD

.a; b/� .�1;1/.
We have already seen that for �> 0, the map g� WM�!S3 is an immersion of

constant curvature K� D 1� .�C 1/2=.�� 1/2, since this is just the same map as
f� in different coordinates. For fixed �0 2 .0; 1/, if 0 < � < �0 then M� �M�0 ,
and so we can restrict g� to M�0 and talk about a family of maps g� WM�0! S3

with a fixed domain.

Lemma 4.3. For any fixed �0 2 .0; 1/, the family of maps g� WM�0! S3 extends
real analytically in � to �D 0. Moreover, the map g0 WM�0 ! S3 extends to the
whole of M0 D .a; b/� .�1;1/, and is an immersion of zero Gaussian curvature.

Proof. Write yG�. Qu; Qv/D yF . Qu;� Qv/D yF .u; v/, so yG� WM�! G. Then

g�. Qu; Qv/DH�. Qu; Qv/K
�1
� . Qu; Qv/; where H� WD yG�

ˇ̌
�D�

; K� WD yG�
ˇ̌
�D1

:

Since yF is an admissible frame, we can write

yF�1 d yF D .U0C�U1/ duC .V0C��1V1/ dv

D
�
U0. Qu;� Qv/C�U1. Qu;� Qv/

�
d QuC

�
�V0. Qu;� Qv/C��

�1V1. Qu;� Qv/
�
d Qv;

and thus
H�1� dH� D .U0C�U1/ d QuC .�V0CV1/ d Qv;

so
H�10 dH0 D U0. Qu; 0/ d QuCV1. Qu; 0/ d Qv;

and
K�1� dK� D .U0CU1/ d QuC .�V0C�V1/ d Qv;

so
K�10 dK0 D .U0. Qu; 0/CU1. Qu; 0// d Qu:

Since H� and K� are both obviously real analytic in � in a neighborhood of �D 0,
so also is g�. Finally, the 1-forms  D H�10 dH0 and ı D K�10 dK0 are both
integrable on M�0 D .a; b/ � .c=�0; d=�0/ for any fixed �0. But, since the
coefficients of the 1-forms are constant in Qv, this means that they are in fact
integrable on the whole of .a; b/� .�1;1/. This implies the claim. �
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Figure 5. The surface g� for �D 10�9, obtained from the same
admissible frame used in Figure 3.

Using the expressions  and ı above, we obtain the formula

g�10 dg0 D AdK0.�U1. Qu; 0/ d QuCV1. Qu; 0/ d Qv/;

from which we have the following expression for the first fundamental form of g0:

I. Qu; Qv/D .jB1j
2 d Qu2� 2 cos� jB1jjB�1j d Qud QvCjB�1j2 d Qv2/

ˇ̌
. Qu;0/

:

Letting �! 0 in expression (3-10), we conclude that the second fundamental form
of g0 is

IID 2jB1. Qu; 0/j jB�1. Qu; 0/j sin.�. Qu; 0// d Qud Qv:

Example 4.4. In Figure 5 is shown the surface g� for �D 10�9, obtained from the
same admissible frame yF� used in Example 4.1. A square region in the . Qu; Qv/-plane
is plotted, approximately equal to the region .a; b/� .c=�; d=�/ in the uv-plane,
where .a; b/� .c; d/ is the region plotted in Example 4.1. The region plotted here
is actually slightly larger, in order to make the singular set visible. As � approaches
zero, the cuspidal edges, which, in the nonflat surface, were approximated by
v D˙uC constant, are now approaching curves of the form Qv D constant.
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[Kričever 1980] I. M. Kričever, “An analogue of the d’Alembert formula for the equations of a
principal chiral field and the sine–Gordon equation”, Dokl. Akad. Nauk SSSR 253:2 (1980), 288–292.
In Russian; translated in Sov. Math. Dokl. 22 (1980), 79–84. MR 82k:35095 Zbl 0496.35073

[Milnor 1983] T. K. Milnor, “Harmonic maps and classical surface theory in Minkowski 3-space”,
Trans. Amer. Math. Soc. 280:1 (1983), 161–185. MR 85e:58037 Zbl 0532.53047

[Moore 1972] J. D. Moore, “Isometric immersions of space forms in space forms”, Pacific J. Math.
40 (1972), 157–166. MR 46 #4442 Zbl 0238.53033

[Palmer 1994] B. Palmer, “Buckling eigenvalues, Gauss maps and Lagrangian submanifolds”, Differ-
ential Geom. Appl. 4:4 (1994), 391–403. MR 95j:53107 Zbl 0819.53028

[Pressley and Segal 1986] A. Pressley and G. Segal, Loop groups, Clarendon Press, New York, 1986.
MR 88i:22049 Zbl 0618.22011

[Saji et al. 2009] K. Saji, M. Umehara, and K. Yamada, “The geometry of fronts”, Ann. of Math. .2/
169:2 (2009), 491–529. MR 2010e:58042 Zbl 1177.53014

[Spivak 1979] M. Spivak, A comprehensive introduction to differential geometry, IV, 2nd ed., Publish
or Perish, Wilmington, DE, 1979. MR 82g:53003d Zbl 0439.53004

[Toda 2005] M. Toda, “Initial value problems of the sine–Gordon equation and geometric solutions”,
Ann. Global Anal. Geom. 27:3 (2005), 257–271. MR 2007f:35205 Zbl 1077.53010

http://dx.doi.org/10.1007/s10455-007-9063-y
http://dx.doi.org/10.1007/s10455-007-9063-y
http://msp.org/idx/mr/2008i:53075
http://msp.org/idx/zbl/1127.37048
http://dx.doi.org/10.1007/s00209-008-0367-9
http://dx.doi.org/10.1007/s00209-008-0367-9
http://msp.org/idx/mr/2009m:37186
http://msp.org/idx/zbl/1167.37031
http://projecteuclid.org/euclid.jdg/1357141506
http://projecteuclid.org/euclid.jdg/1357141506
http://msp.org/idx/mr/3019511
http://msp.org/idx/zbl/06201312
http://dx.doi.org/10.4310/CAG.2007.v15.n2.a1
http://msp.org/idx/mr/2008j:53107
http://msp.org/idx/zbl/1185.53063
http://msp.org/idx/mr/2010a:58020
http://msp.org/idx/zbl/1168.53031
http://dx.doi.org/10.1016/S0926-2245(02)00091-8
http://dx.doi.org/10.1016/S0926-2245(02)00091-8
http://msp.org/idx/mr/2003f:58032
http://msp.org/idx/zbl/1027.58012
http://dx.doi.org/10.1007/BF01444224
http://dx.doi.org/10.1007/BF01444224
http://msp.org/idx/mr/97d:53061
http://msp.org/idx/zbl/0866.53046
http://dx.doi.org/10.2307/1986308
http://msp.org/idx/mr/1500557
http://msp.org/idx/jfm/32.0608.01
http://dx.doi.org/10.2969/jmsj/04030457
http://msp.org/idx/mr/89g:53080
http://msp.org/idx/zbl/0642.53059
http://dx.doi.org/10.2969/jmsj/04720275
http://msp.org/idx/mr/96e:53093
http://msp.org/idx/zbl/0836.53035
http://dx.doi.org/10.2307/2034997
http://msp.org/idx/mr/27:2917
http://msp.org/idx/zbl/0126.17302
http://msp.org/idx/mr/82k:35095
http://msp.org/idx/zbl/0496.35073
http://dx.doi.org/10.2307/1999607
http://msp.org/idx/mr/85e:58037
http://msp.org/idx/zbl/0532.53047
http://dx.doi.org/10.2140/pjm.1972.40.157
http://msp.org/idx/mr/46:4442
http://msp.org/idx/zbl/0238.53033
http://dx.doi.org/10.1016/0926-2245(94)90005-1
http://msp.org/idx/mr/95j:53107
http://msp.org/idx/zbl/0819.53028
http://msp.org/idx/mr/88i:22049
http://msp.org/idx/zbl/0618.22011
http://dx.doi.org/10.4007/annals.2009.169.491
http://msp.org/idx/mr/2010e:58042
http://msp.org/idx/zbl/1177.53014
http://msp.org/idx/mr/82g:53003d
http://msp.org/idx/zbl/0439.53004
http://dx.doi.org/10.1007/s10455-005-1582-9
http://msp.org/idx/mr/2007f:35205
http://msp.org/idx/zbl/1077.53010


CONSTANT GAUSSIAN CURVATURE SURFACES IN S3 VIA LOOP GROUPS 303

[Weinstein 1996] T. Weinstein, An introduction to Lorentz surfaces, de Gruyter Expositions in
Mathematics 22, de Gruyter, Berlin, 1996. MR 98a:53104 Zbl 0881.53001

[Xia 2007] Q. Xia, “Generalized Weierstrass representations of surfaces with the constant Gauss
curvature in pseudo–Riemannian three-dimensional space forms”, J. Math. Phys. 48:4 (2007),
042301, 18. MR 2008d:53012 Zbl 1137.53305

Received January 25, 2013.

DAVID BRANDER

INSTITUT FOR MATEMATIK OG COMPUTER SCIENCE

MATEMATIKTORVET

BYGNING 303B
TECHNICAL UNIVERSITY OF DENMARK

DK-2800
KONGENS LYNGBY

DENMARK

D.Brander@mat.dtu.dk

JUN-ICHI INOGUCHI

DEPARTMENT OF MATHEMATICAL SCIENCES

FACULTY OF SCIENCE

YAMAGATA UNIVERSITY

YAMAGATA 990-8560
JAPAN

inoguchi@sci.kj.yamagata-u.ac.jp

SHIMPEI KOBAYASHI

DEPARTMENT OF MATHEMATICS

HOKKAIDO UNIVERSITY

SAPPORO 060-0810
JAPAN

shimpei@math.sci.hokudai.ac.jp

http://dx.doi.org/10.1515/9783110821635
http://msp.org/idx/mr/98a:53104
http://msp.org/idx/zbl/0881.53001
http://dx.doi.org/10.1063/1.2714002
http://dx.doi.org/10.1063/1.2714002
http://msp.org/idx/mr/2008d:53012
http://msp.org/idx/zbl/1137.53305
mailto:D.Brander@mat.dtu.dk
mailto:inoguchi@sci.kj.yamagata-u.ac.jp
mailto:shimpei@math.sci.hokudai.ac.jp




PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 269 No. 2 June 2014

257Totaro’s question for simply connected groups of low rank
JODI BLACK and RAMAN PARIMALA

269Uniform hyperbolicity of the curve graphs
BRIAN H. BOWDITCH

281Constant Gaussian curvature surfaces in the 3-sphere via loop groups
DAVID BRANDER, JUN-ICHI INOGUCHI and SHIMPEI KOBAYASHI

305On embeddings into compactly generated groups
PIERRE-EMMANUEL CAPRACE and YVES CORNULIER

323Variational representations for N -cyclically monotone vector fields
ALFRED GALICHON and NASSIF GHOUSSOUB

341Restricted successive minima
MARTIN HENK and CARSTEN THIEL

355Radial solutions of non-Archimedean pseudodifferential equations
ANATOLY N. KOCHUBEI

371A Jantzen sum formula for restricted Verma modules over affine Kac–Moody
algebras at the critical level

JOHANNES KÜBEL

385Notes on the extension of the mean curvature flow
YAN LENG, ENTAO ZHAO and HAORAN ZHAO

393Hypersurfaces with prescribed angle function
HENRIQUE F. DE LIMA, ERALDO A. LIMA JR. and ULISSES L. PARENTE

407Existence of nonparametric solutions for a capillary problem in warped products
JORGE H. LIRA and GABRIELA A. WANDERLEY

425A counterexample to the simple loop conjecture for PSL(2, R)

KATHRYN MANN

433Twisted Alexander polynomials of 2-bridge knots for parabolic representations
TAKAYUKI MORIFUJI and ANH T. TRAN

453Schwarzian differential equations associated to Shimura curves of genus zero
FANG-TING TU

491Polynomial invariants of Weyl groups for Kac–Moody groups
ZHAO XU-AN and JIN CHUNHUA

0030-8730(201406)269:2;1-Z

Pacific
JournalofM

athem
atics

2014
Vol.269,N

o.2


	Introduction
	Outline of this article
	Examples
	Comparison with other methods

	1. Preliminaries
	The symmetric space S3
	The unit tangent sphere bundle
	The space of geodesics

	2. Surface theory in S3
	The Lagrangian and Legendrian Gauss maps
	Parallel surfaces
	Legendrian lifts, frontals and fronts
	Asymptotic coordinates

	3. The loop group formulation
	The SU(2)SU(2) frame
	Ruh–Vilms property
	The loop group formulation for constant curvature surfaces
	The generalized d'Alembert representation

	4. Limiting cases: pseudospherical surfaces in Euclidean space and flat surfaces in the 3-sphere
	Relation to pseudospherical surfaces in Euclidean space E3
	Relation to flat surfaces in the 3-sphere

	References
	
	

