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ON EMBEDDINGS INTO COMPACTLY GENERATED GROUPS

PIERRE-EMMANUEL CAPRACE AND YVES CORNULIER

We prove that there is a second-countable locally compact group that does
not embed as a closed subgroup in any compactly generated locally compact
group, and discuss various related embedding and nonembedding results.

1. Introduction

The Higman—Neumann—Neumann (HNN) theorem [Higman et al. 1949] ensures
that every countable group embeds as a subgroup of a finitely generated group,
indeed 2-generated (relying on a fundamental construction referred to since then
as HNN-extension). This was a major breakthrough, providing some of the first
evidence that finitely generated groups are not structurally simpler than countable
groups and thus are far from tame or classifiable. B. H. and H. Neumann [Neumann
and Neumann 1959] gave an alternative construction, showing for instance that
every countable k-solvable group (that is, solvable of derived length at most k)
embeds as a subgroup of a finitely generated (k + 2)-solvable group. Further
refinements by P. Hall [1954] and P. Schupp [1976] in a slightly different direction
showed that every countable group embeds in a 2-generated simple group.

In the present paper, we address similar questions in the context of locally
compact topological groups, which will be abbreviated henceforth by the term
l.c. groups. Recall that locally compact groups are a natural generalization of
discrete groups, the counterpart of countability (resp. finite generation), being o -
compactness (resp. compact generation). A prototypical example of an embedding
of a noncompactly generated l.c. group into a compactly generated one is the
embedding of the p-adic additive group Q, into the affine group Qp x Qj (or its
discrete cousin, the embedding of the additive underlying group of the ring Z[1/ p]
into the Baumslag—Solitar group Z[1/ p] %, Z).

It is natural to ask whether analogues of the HNN theorem hold in the context
of l.c. groups. In that context, an embedding ¢ : H — G of an l.c. group H to an
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l.c. group G is defined as a continuous injective homomorphism (with potentially
nonclosed image). In the nondiscrete setting, several natural variants of the question
can be considered:

¢ Given a o-compact l.c. group H, is there any embedding ¢ : H — G into a
compactly generated l.c. group G?

e Is there one with closed image?
e Is there one with open image?

It turns out that whenever the topology on H is nondiscrete, the answers to these
questions are not always positive, and depend heavily on the algebraic structure
of H. The results of this note are intended to illustrate that matter of fact. We start
with a positive result in the case where the algebraic structure of H is the simplest
possible, namely, when H is abelian:

Theorem 1.1. Every o-compact abelian l.c. group A embeds as an open subgroup
of a compactly generated group G, which can be chosen to be 3-solvable. If
moreover A is totally disconnected, second countable, or both, then G can also be
chosen to enjoy the same additional property.

In particular, the additive group of adeles, defined as a restricted product of
all Q, (see Section 4 for the definition) is isomorphic to an open subgroup of a
compactly generated locally compact group. In contrast, the adeles are used to
prove the following result, which shows in particular that Theorem 1.1 cannot be
generalized to solvable groups:

Theorem 1.2. There exists a o-compact metabelian Lc. group M not isomorphic
to any closed subgroup of any compactly generated l.c. group.
Moreover M can be chosen to be second countable and totally disconnected.

The proof of Theorem 1.2 is based on the now classical observation, due to
H. Abels [1974, Beispiel 5.2], that every compactly generated 1.c. group admits,
in a somewhat natural way, a continuous proper action on a connected graph of
bounded degree (see Proposition 2.1 below). Using similar ideas, we obtain the
following result, which shows that the HNN theorem fails in the nondiscrete setting,
even if one allows embeddings with potentially nonclosed images:

Theorem 1.3. There exists a second-countable (hence o-compact) topologically
simple totally disconnected l.c. group S such that every continuous (or even abstract)
homomorphism of S to any compactly generated l.c. group is trivial.

This stands in sharp contrast with the discrete case. We remark also that local
compactness is absolutely essential to this result, since it is known from [Pestov
1986] that every o-compact topological Hausdorff group is isomorphic to a closed
subgroup of some compactly generated topological Hausdorff group.
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We finally present a result illustrating the difference between embeddings with
closed and open images:

Theorem 1.4. There exists a second-countable (hence o-compact) l.c. group H
that is isomorphic to a closed subgroup of a compactly generated l.c. group, but not
to any open subgroup of any compactly generated l.c. group.

Moreover, H can be chosen to be of the form K x I, with T" discrete abelian and
K compact abelian and either connected or profinite. It can also be chosen to be a
Lie group.

One part of the implication in Theorem 1.4 is the following general fact, which
is based on a wreath product construction:

Proposition 1.5. Any compact-by-{countable discrete} l.c. group embeds as a
closed subgroup in a compact-by-{finitely generated discrete} l.c. group.

Similarly to Theorem 1.1, this proposition illustrates that embedding theorems
can hold in the nondiscrete case when the algebraic or topological structure of the
group H is not too complicated.

We finish by mentioning some related natural questions which we have not been
able to answer.

Question 1.6. Is every second-countable (real) Lie group isomorphic to a closed
subgroup of a compactly generated locally compact group? Of a compactly gener-
ated Lie group? Same questions for p-adic Lie groups.

The answer to Question 1.6 with “closed subgroup” replaced by “open subgroup”
is negative for both real and p-adic Lie groups; see the examples in Section 6.

2. Locally compact groups, Lie groups, and locally finite graphs

We shall use the following general result about l.c. groups; the first part follows
from the solution to Hilbert’s fifth problem, the second is an elementary but crucial
observation due to H. Abels:

Proposition 2.1. Let G be an l.c. group and V' be any identity neighborhood.

(1) (Yamabe) If G is connected-by-compact (i.e., if G/G° is compact), then V
contains a compact normal subgroup K of G such that G/ K is a connected
Lie group.

(i1) (Abels) If G is totally disconnected and compactly generated, then V contains a
compact normal subgroup W of G such that G/ W admits a faithful continuous
proper vertex-transitive action on some connected locally finite graph.
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Proof. For (i), see [Montgomery and Zippin 1955, Theorem IV.4.6]. For (ii),
originally observed in [Abels 1974, Beispiel 5.2], refer to [Monod 2001, §11.3]. [

We deduce the following useful criterion for the nonexistence of embeddings
into compactly generated l.c. groups:

Proposition 2.2. Let H be an lL.c. group. The following are equivalent:

(1) Every continuous homomorphism of H to a compactly generated l.c. group is
trivial.

(2) The following two conditions are satisfied:

(a) Every continuous homomorphism of H to a compactly generated totally
disconnected l.c. group is trivial.
(b) For any n, every continuous linear representation H — GL, (C) is trivial.

Moreover, a sufficient condition for (a) is that H has no nontrivial continuous
action on any connected graph of bounded degree.

Proof. That (1) implies (2) is immediate. Conversely, assume that (2) holds. Let G
be a compactly generated 1.c. group and f : H — G a continuous homomorphism.
Considering the composite map H — G — G/G° in view of (a), we see that
f(H) C G°. If f is not the trivial map, some identity neighborhood V in G
does not contain the image of f. By Proposition 2.1(i), there is a compact normal
subgroup K of G° contained in V' such that L = G°/K is a (connected) Lie group.
So the composite map H — L is nontrivial. Using the adjoint representation
of L and (b), we see that it maps H into the center of L. On the other hand, it
follows from Pontryagin duality and (b) that H admits no nontrivial continuous
homomorphism to any abelian 1.c. group. So we get a contradiction, and thus f is
the trivial homomorphism.

Let us now assume that H has no nontrivial continuous action on any connected
graph of bounded degree and let us check that (a) holds. Let f : H — G be a
continuous homomorphism, with G a compactly generated totally disconnected
l.c. group. If f is nontrivial, some identity neighborhood V in G does not contain
the image of f. By Proposition 2.1(ii), there is a compact normal subgroup K of G
contained in V such that G/ K acts continuously, faithfully, and vertex-transitively
on a connected locally finite graph. The hypothesis made on H implies that the
restriction of this action to H is trivial. Thus f(H) is contained in K, hence in V,
which is a contradiction. O

Remark 2.3. We do not know if, conversely, (a) implies that H has no nontrivial
continuous action on any connected graph of bounded degree. In other words, does
the existence of a continuous nontrivial action on a connected graph of bounded
degree imply the existence of such an action on a vertex-transitive graph? The same
question, replacing “nontrivial” by “proper,” can also naturally be addressed.
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Finally, we record an elementary fact, allowing us in suitable situations to exclude
actions on some connected locally finite graphs:

Lemma 2.4. Let G be an l.c. group acting continuously by automorphisms on a
connected graph all of whose vertices have degree < d. Then every vertex stabilizer
O is open in G and, for any prime p > d, every closed pro-p subgroup of O acts
trivially on the graph. In particular, if G admits an open pro-p-group, then the
action has an open kernel.

Proof. Let O be a vertex stabilizer, which is open in G since the action on the graph
is assumed continuous. Given any closed subgroup H of O which acts nontrivially
on the graph, there is a vertex v fixed by H and adjacent to some vertex that is not
fixed by H. In particular, H admits some nontrivial continuous permutation action
on the set of neighbors of v, which is a set of at most d elements. It follows that
H cannot be pro-p for any p > d. O

3. Proof of Theorem 1.1

Recall that any totally disconnected l.c. group contains compact open subgroups.
Moreover, every abelian l.c. group A has a (noncanonical) decomposition as a
topological direct product R” x W, where W is compact-by-discrete, and the
discrete quotient is countable as soon as A is o-compact. Those facts could be used
to deduce (a part of) Theorem 1.1 from Proposition 1.5. This is however not what
we shall do here, and we present rather a simpler direct argument.

We begin with an easy classical result:

Lemma 3.1. There exists a finitely generated group I" whose center contains a free
abelian group Z of countable rank; I" can be chosen to be 3-solvable.

Proof. If ¢ is an indeterminate, the reader can check that the three matrices

100 110 100
0r 0], 010], 011
001 001 001

generate a group containing the set of all matrices of the form

10 P(2)
01 0 |, P@)eZ]1/1],
00 1

as a central, infinitely generated subgroup. (This construction is due to Hall [1954,
Theorem 7].) O

Lemma 3.2. If G is a o-compact l.c. group, then it has a cocompact closed separa-
ble subgroup.
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Proof. By the Kakutani—Kodaira theorem, there is a compact normal subgroup
K such that G/ K is second countable. So G/K admits a dense countable subset.
Lift this subset to G, and let D be the abstract (countable) group it generates.
So G = KD = KD since K is compact. Thus D is cocompact; moreover, it is
separable by construction. O

Proof of Theorem 1.1. By Lemma 3.2, there is a cocompact closed separable
subgroup in A. In other words, there is a homomorphism f : Z — A whose image
has cocompact closure, where Z = Z®) is the restricted product of countably many
copies of the infinite cyclic group. In view of Lemma 3.1, the group Z can be
embedded as a central subgroup of a finitely generated group I' (which can be
chosen to be 3-solvable). The graph F of f is a closed discrete central subgroup of
I' x A. Since f is injective, it follows that the mapping of A into G = (I'x A)/ F is
injective. Moreover A has open image (because the quotient map is open). So A lies
as an open (and central) subgroup of G. The latter group is compactly generated:
indeed, the closure of the subgroup generated by a finite generating subset of I" is
cocompact. By construction, if A is second countable or totally disconnected, then
sois G. O

4. Proof of Theorem 1.2

Consider B, = Qp X Z, where the notation X, means that the Z-action is through
multiplication by powers of p. Let 4 be the group of adeles; that is, the set of
elements in ]_[p Q,, (p ranging over all primes) whose projection in [ [Q,/Z, is
finitely supported, endowed with the ring topology for which [[Z,, is a compact
open subring. In the product ]_[p By, = (]_[p Qp) X ]_[p Z, consider the subgroup
Z = @p Z and endow it with the discrete topology. Finally, define M = A~ Z C
I1 p Bp. The group M is metabelian and admits a unique Hausdorff group topology
for which ]_[p Z,, is a compact open subgroup. In particular, M is locally compact.
Theorem 1.2 is a consequence of the following:

Proposition 4.1. There is no embedding of M as a closed subgroup of any com-
pactly generated l.c. group.

More precisely, given any continuous homomorphism f : M — G to a compactly
generated l.c. group G, there exists po such that ]Wp) is a compact connected
group for all p > po.

We begin with two lemmas on homomorphisms from Q,, into locally compact
groups:

Lemma 4.2. For every continuous homomorphism [ : Q, — G of Qp to a

connected-by-compact l.c. group G, the closure of the image f(Qp) is compact
and connected.
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Proof. Assume first that G is a virtually connected Lie group. Since Q,, is divisible,
it has no nontrivial finite quotient. Thus f(Tp) is a closed abelian subgroup of a
connected Lie group, so is isomorphic to a product I" x R¥ x T for some finitely
generated abelian group I' and torus 7. Invoking again that Q, has no nontrivial
finite quotient, we find I' = {0}. Since R¥ x T" has no small subgroup, the kernel
of f must be open in Q. In particular, f(Qp) is a torsion group, from which we
infer that k = 0. Therefore f(Qp) is a torus; in particular, it is compact.

Coming back to the general case, we now let W be the maximal compact normal
subgroup of G, which exists by Proposition 2.1(i). Proposition 4.1 ensures that
G/ W is a virtually connected Lie group. By the special case above, we deduce
that, denoting K = m, the group K W/ W is compact. Hence K is compact as
well. Since K/K°® is profinite and Q, has no nontrivial finite quotient, K = K°;
that is, K is connected. O

Remark 4.3. It follows from Pontryagin duality that Q, has a continuous homo-
morphism with dense image into the circle, and also has an injective continuous
homomorphism with dense image into the Pontryagin dual Q of Q, which is a
connected compact group.

Lemma 4.4. Every nontrivial continuous homomorphism f : Q, — G of Qp to a
totally disconnected l.c. group G is proper, and either has a compact open kernel
or is an isomorphism to its (closed) image.

Proof. We can suppose that f has dense image, so G is abelian. Let U be a compact
open subgroup in G. Then f~1(U) is an open subgroup of Q,. If it is all of Qp,
then U = G, and since U is profinite and Q, has no nontrivial finite quotient, it
follows that U = {1}, contradicting that f is nontrivial. Otherwise, f~1(U) is a
compact open subgroup, so f is proper and, in particular, has closed image and is
the quotient map by some compact subgroup, giving the two possibilities. O

Lemma 4.5. Every continuous homomorphism f : B, — G of the group B, =
Qp %p Z to a totally disconnected l.c. group G satisfies one of two alternatives:
either f is a topological isomorphism to its closed image, or f(Qp) is trivial.

Proof. If f(Q)) is nontrivial, then f is proper in restriction to Q, by Lemma 4.4.
Since the only compact subgroup of Q,, that is normal in B, is the trivial group, it
follows from Lemma 4.4 that the restriction of f to Q, is an isomorphism to its
closed image.

Let 2 be the normalizer of f(Q,) in G; this is a closed subgroup and there is a
unique continuous homomorphism p : 2 — Z such that conjugation by g € 2 on
f(Qp) multiplies the Haar measure by pP®) 1In restriction to Z, we see that po f
is the identity. It follows that f(Qp) is open in f(Bp) and that f is proper. [
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Proof of Proposition 4.1. Let f : M — G be an arbitrary continuous homomorphism
to a compactly generated l.c. group G. Note that G/G° is a compactly generated
totally disconnected l.c. group. Therefore by Proposition 2.1(ii) it has a continuous
proper action on a connected graph of degree d, for some d. By Lemma 2.4, for
every p > d, the restriction to Q, of the G-action on this graph has an open kernel.
Hence, by Lemma 4.5, for all p > d the action of Q, on this graph is trivial.

Let W/G° be the (compact) kernel of the G-action on the graph. Thus W is
connected-by-compact and contains f(Q,) for all p > d. In view of Lemma 4.2,
this implies that for all p > d, the group f(Qp) is compact and connected. [

Remark 4.6. Proposition 4.1 shows that there is no injective continuous homomor-
phism from M to any totally disconnected compactly generated l.c. group. On the
other hand, M admits an injective continuous homomorphism (not proper!) to a
compactly generated l.c. group, which can be obtained as follows: start from the
dense embedding Q C Qp; it induces a dense embedding Q, C Q where Q is the
Pontryagin dual of Q (this is a compact connected group). Multiplication by p is
an automorphism of Q and thus induces a topological automorphism of Q also
given by multiplication by p. So we obtain a continuous injective homomorphism
M — ]_[p Q x Z, where the p-th component of Z acts on the p-th component of
the compact group ]_[p Q by multiplication by p. By Proposition 1.5, the latter
group ]_[p Q x Z embeds as a closed subgroup of a compactly generated l.c. group.

5. Some groups of permutations

5A. A nonembedding criterion.

Proposition 5.1. Let H be a topologically simple totally disconnected locally
compact group. Assume that H has a compact open subgroup K such that for
every k, the group K possesses for some prime p > k a closed subgroup topolog-
ically isomorphic to a nontrivial pro-p-group (for example, K has some element
of order p). Then H admits no nontrivial continuous homomorphism into any
compactly generated locally compact group.

Proof. We use the criteria from Proposition 2.2 applied to H, in which we can
replace “nontrivial” by “faithful” since H is topologically simple. Thus, we only
have to show

(1) H has no faithful continuous action on any connected graph of bounded degree;
(2) H has no faithful continuous representation into GL,, (C) for any n.

Condition (2) is immediate as H has small nontrivial subgroups whereas GL,, (C)
has none.

Now consider a continuous action of H on a connected graph of bounded degree,
say < d. Fix a vertex xo. Then the stabilizer Ky, of xo in K is open, hence of
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finite index in K. Therefore, the hypothesis implies that Ky, and hence also the
full stabilizer Hy,, contains a nontrivial pro-p-subgroup L for some prime p > d.
But Lemma 2.4 implies that L acts trivially on the graph, so (1) holds. O

5B. Proof of Theorem 1.3. Here we prove the continuous case of Theorem 1.3.
The case of abstract homomorphisms is postponed to Section 5C.

There exist various sources of topologically simple groups satisfying the criterion
of Proposition 5.1 and hence the conclusions of Theorem 1.3. We shall content
ourselves with describing one of them, following a construction of Akin, Glasner and
Weiss [Akin et al. 2008, §4]; we point out that those examples were independently
obtained as part of a more general construction by Willis [2007, §3].

The construction goes as follows: Fix an infinite index set J (we can have J/ =N
in mind). Fix a family u = (uy)rey of integers greater than 2. Define the graph
9 = %(u) (nonoriented, without self-loops) as a disjoint union of complete graphs
9 on uy elements; we denote the vertex set by G(u) as well. Let us call the height
Sfunction h the function ¢ — J mapping any v € ¢ to k. Note that & completely
characterizes the graph structure.

Given a self-map f : 9 — 9, we call a vertex v € 4, singular if h( f(v)) # u.
We call the self-map f almost regular if only finitely many vertices are singular.
If f is a permutation, we say that f is an almost automorphism of the graph
with height function (%, /) if both f and f~! are almost regular. The group of
almost automorphisms of (%, &) is denoted by S (or S(u) if we need specify it).
Its subgroup of automorphisms of (4, i) (consisting of those f that preserve the
height and the graph structure) is denoted by K (or K(u)).

Note that K is naturally isomorphic to the product [ [ < ; Sym(ug ), which makes
it a compact group. The group S is endowed with the unique left-invariant topology
making K a compact open subgroup; this topology is obviously locally compact
and is a group topology, as checked in [Akin et al. 2008, §4]. It is the union of an
increasing filtering family of compact subgroups (Kr ), where F ranges over finite
subsets of J and KF is defined as those elements in S all of whose singularities and
pairs of singularities lie in | ;< 7 %;; note that Ko = K and that K is topologically

isomorphic to
Sym(z ui) X l_[ Sym(uy).

ieF keJ\F
Define K 1}" as its closed subgroup
Alt(z u,-) X l_[ Alt(uyg).
ieF keJ\F

The filtering family (K ;f ) is increasing; we define S as an abstract group as the
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union | J,,cr K ;f . Endow it with the left-invariant topology making K (Jg a compact
open subgroup. For the same reason as for S, this is a group topology.

Finally, we define 4 < S and AT < S as the subgroups consisting of the finitary
permutations, i.e., the permutations with finite support. Clearly A is the group of
all finitary permutations on the vertices of 4, while A™ is the index-two subgroup
of A consisting of the alternating finitary permutations.

Remark 5.2. It is easily seen that A™ and A are dense as subgroups of S+ and S,
respectively. Moreover, AT is also dense in S indeed, since A4 is dense, it is enough
to show that any transposition (x y) in S can be approximated by a sequence of
elements of A, This is indeed the case, using a sequence of double transpositions
(x ¥)(xn yn) with x,, y, distinct elements of the same height k, and n — kj,
injective.

This implies in particular that the embedding of S into S, which is continuous,
is not closed: indeed, its image is a proper subgroup which is dense since it
contains A™.

Remark 5.3. In [Akin et al. 2008], it is shown that S has a dense conjugacy class
under the assumption that the mapping k — uy has finite fibers (which implies that
J is countable). The precise statement of [ibid., Theorem 4.4] actually shows that
such a conjugacy class can then be found inside S, and also shows that S itself
admits a dense conjugacy class.

Let us show the following related but independent result. For the moment, the
family (uy ) of integers greater than 2 is arbitrary:

Proposition 5.4. Every nontrivial normal subgroup of ST or S contains AT, and
is thus dense. In particular, ST and S are both topologically simple.

Note that ST and S are not abstractly simple, since AT is a proper dense normal
subgroup in both.

Proof. Let s be a nontrivial element in S* or S and t € A™. Let N be the normal
subgroup generated by s; we show that t € N. For some finite subset F' of J such
that ) jer Uj =5, the element s belongs to Kr and ¢ has support in the finite
set X = Uie F % (which has at least 5 elements). The commutator s’ of s and a
suitable element of Alt(X) is a nontrivial element of N N Alt(X). By simplicity of
Alt(X), it follows that t € N. O

We deduce the following corollary, which implies Theorem 1.3:

Corollary 5.5. If (uy)key is unbounded, the groups S(u)* and S(u) admit no
nontrivial continuous homomorphism into any compactly generated l.c. group.

Proof. We have to check that the hypotheses of Proposition 5.1 are fulfilled. The
topological simplicity is ensured by Proposition 5.4. The local condition also
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holds: since (uy) is unbounded, every neighborhood of the identity contains finite
symmetric groups of all orders and thus contains elements of all possible finite
orders. O

5C. Abstract homomorphisms of S and S+. We start with the following converse
to Corollary 5.5:

Proposition 5.6. If J is countable and (uy)xcy is bounded, then S(u)™ and S(u)
are both embeddable as open subgroups in compactly generated l.c. groups, which
can be taken as topologically finitely generated.

Proof. The % form a countable partition of % by subsets of bounded cardinality,
so there exists a permutation o of § globally preserving this partition and having
finitely many orbits on ¢§. Then o normalizes S and ST as well as K and K.
Therefore the semidirect products S x (o) and ST x (o) are well defined. They are
totally disconnected locally compact groups containing S and S respectively as
open subgroups. Moreover they act naturally by permutations of ¢4. The subgroup
generated by A1 and o is finitely generated (when o is transitive, this group was
introduced by B. H. Neumann [1937, p. 127]). Since A™ is dense in S and S,
it follows that S x (o) and ST x (o) are topologically finitely generated, hence
compactly generated. O

Using two theorems of S. Thomas, it is possible to improve Corollary 5.5 in the
case where the sequence (1) tends to infinity.

Theorem 5.7. Assume that k — uy, has finite fibers. Then S(u)™ admits no non-
trivial abstract homomorphism into any compactly generated l.c. group.

Proof. Since J is countable, we suppose for convenience J = N. We invoke the
criterion from Proposition 2.2, applied to the group S+ = S(u)* endowed with
the discrete topology. Thus, it is enough to show that

(1) ST has no nontrivial action on any connected graph of bounded degree;
(2) ST has no nontrivial representation into GL,, (C).

Both conditions can be checked with the help of the following result: Consider
the subgroup L =[] >k Alt(uj) of S+. Observe that ST is generated by the
alternating finitary group A" and L; (because A™ is dense), so it follows from
Proposition 5.4 that ST is normally generated by L.

Next, we use a result of Thomas [1999, Theorem 1.10] that every (abstract)
subgroup of at most countable index in Ly is open. This immediately shows that
every action of ST on a graph of at most countable valency is continuous, so (1)
follows from the proof of Corollary 5.5 (which, through the proof of Proposition 5.1,
shows that S admits no nontrivial continuous action on any connected graph of
bounded valency).
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Suppose ST has a nontrivial linear representation p into some GL,(C) over
a field. Let m; be the dimension of the smallest nontrivial representation of the
alternating group Alt(7); then m; tends to infinity (it can be shown that m; =i —1 for
i > 7, but a nice argument based on commutation [Abért 2006] gives a completely
elementary lower bound >~ Vi). Fix k so that my ;> d for all j > k. Since
Lj normally generates S, the representation p is nontrivial in restriction to Ly.
By another result of Thomas [1999, Theorem 2.1], any nontrivial subgroup of
GL,;(C) admits a subgroup of at most countable index. Apply this to p(Ly) and
let H be its inverse image in L. By the choice of k, the kernel of p contains
the direct sum >k Alt(u; ), which is dense. So H is dense; on the other hand,
the first-mentioned result of Thomas implies that H is open. We thus reach a
contradiction. d

We have seen in Corollary 5.5 that unboundedness of the sequence (uy) was
sufficient to guarantee the absence of nontrivial homomorphisms of S(u) or S(u)™
to a compactly generated locally compact group. In contrast to this, the next result
shows that the hypothesis that (1) tends to infinity in Theorem 5.7 cannot be
weakened to the unboundedness of the sequence:

Proposition 5.8. The quotient of the group S (resp. S™) by its subgroup of finitary
permutations can be identified with

l_[ Sym(uj)/ @ Sym(u;) (resp. l_[ Alt(uj)/ @Alt(uj)).

jeJ jeJ jeJ jeJ
In particular:
(1) S has an uncountable abstract abelianization and has proper subgroups of
finite index (such subgroups are necessarily dense).

(2) ST has proper subgroups of finite index if and only if k — uy has an infinite
fiber. It has a nontrivial abelianization if and only if u=Y({3,4}) is infinite;
and in this case the abelianization is uncountable.

Proof. The first statement follows from the fact that S = AK, so S/A = AK/A =
K /(AN K); the argument for S is similar.
Denoting by C,, the cyclic group of order p, the signature map induces a canonical

surjection
J
[Tsymee) / @B sym@uy) ~ ¢ /i,
jeJ jeJ
proving that S has an uncountable abelianization, and, by taking a suitable quotient,

admits subgroups of index 2, proving (1). (Observe that ST has index 2 in the
kernel of the surjection S — CZJ / CZ(J).)
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Recall that u; > 3 for all k. Concerning ST, if u has finite fibers, then, by
Theorem 5.7, ST has no nontrivial linear representation, and therefore has no proper
subgroup of finite index. Also observe that if F = u~1({3, 4}) is finite, then ST is
generated by the perfect groups A™ and [ j¢F Alt(u)) and thus is perfect.

Conversely, assume u has a finite fiber u~1 ({m}). We obtain a surjective homo-
morphism

St — Alt(m)? / Alt(m)).

Taking the limit with respect to a nonprincipal ultrafilter yields a nontrivial fi-
nite quotient. Also, if m € {3,4}, then ST admits either Alt(3)”/ Alt(3)Y) or
Alt(4)7 / Alt(4)) as a quotient, and thus admits either CZJ / CZ(J) or C3J / C3(J) as
an uncountable abelian quotient. O

6. Proof of Theorem 1.4

Our first example is the following: let Q be the Pontryagin dual of the discrete ad-
ditive group Q. So Q is a connected torsion-free compact group, and by Pontryagin
duality, its automorphism group can be identified with the group of automorphisms
of the group Q, namely, the multiplicative group Q™. The first example is then

Hy=QxA,

where A is an arbitrary infinitely generated subgroup of Q* endowed with the
discrete topology (recall that Q™ is isomorphic to the product of its subgroup of
order 2 and a free abelian group of countable rank).

Our second example is very similar in construction. Fix a prime p. Recall that
the group Z;f is uncountable (it is known to be isomorphic to the product of a finite
abelian group with Z,). Let A be a countable infinitely generated subgroup of Z7,
and endow A with the discrete topology. Our second example is

H2=Zp><][\.

A third example is
H3; =R XA,

where A is a countable infinitely generated subgroup of R*; this is a Lie group.

Proposition 6.1. If an l.c. group G admits an isomorphic copy of H; (i =1,2,3)
as an open subgroup, then it admits a discrete quotient that is an infinitely generated
abelian group. In particular, G is not compactly generated.

Proof. Since the identity component H°® = Qis open in H, it is open in G and
thus H° = G° is open and normal in G. Thus the action by conjugation of G on
G° = 6 defines a continuous homomorphism ¢ : G — Q* that is the identity on
A and trivial on G°. So Ker(¢) is open and the image of ¢ contains A and is thus
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an infinitely generated abelian group. This concludes the proof of the proposition
for H;. The proof for H3 is similar.

Let us now deal with H>; since Zj, is not connected, the previous argument does
not work. The subgroup Z, being compact and open in G, it is commensurated by
G its abstract topological commensurator is the group Q’, so G naturally admits
a continuous homomorphism to Q; whose kernel contains Z,. Let us check this
directly: observe that if g € G, then there exists n such that g(p"Z,) g lc Z,, and
then there exists a unique A(g), not depending on 7, such that the conjugation by
g, in restriction to p"Z,, coincides with the multiplication by A(g). An immediate
verification shows that A is a homomorphism. In restriction to A, the map A is the
identity, and Ker(1) is open in G since it contains Z,. Thus G/ Ker(A) is a discrete
abelian group containing A and therefore fails to be finitely generated. O

In order to conclude the proof of Theorem 1.4, it remains to show that those
examples admit embeddings as closed subgroups into some compactly generated
l.c. groups.

For H», such an embedding can be obtained as follows. First embed A into
a finitely generated group I' (this is possible by Lemma 3.1). Thus A can be
diagonally embedded as a discrete subgroup into Z;,‘ x I'. This embedding extends
to a continuous embedding of Z, x A into (Z, x Z;) x I". This second embedding
is continuous and injective; moreover, it is proper, since it is a discrete embedding
in restriction to the cocompact subgroup A.

An obvious similar construction works for the third example R x A. However,
both embeddings rely on the fact that A is contained in a compactly generated
l.c. group of automorphisms of the normal subgroup (either Z, or R). For Hq,
we use the following topological version of a classical theorem of Krasner and
Kaloujnine [1951]:

Recall that given two groups K and Q, the unrestricted wreath product K ? Q
is the semidirect product K€ x Q, where Q acts on K€ by shifting on the left,
namely, ¢ - f(r) = f(g~'r). Assume now that K is a topological group and Q is a
discrete group. Then the product topology on K€ x Q makes K ? Q a topological

group.

Theorem 6.2. For every l.c. group H that is an extension of a compact normal
subgroup K by a discrete quotient Q, there is an embedding of H as a closed
subgroup of the unrestricted wreath product K3 Q = K€ % Q.

Proof of Proposition 1.5. Let I" be a finitely generated group containing Q. By
Theorem 6.2, there is a closed embedding H < K ? Q. By the definition of the
unrestricted wreath product, the embedding Q < I' extends to a closed embedding
K?Q <K:T. O
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Proof of Theorem 6.2. We begin by a general construction, not relying on the group
topologies. Let m : H — Q be a surjective group homomorphism with kernel K.
We will define, in a canonical way, a set X = X () with commuting actions of
K ? Q and H such that the (K ? Q)-action is simply transitive and the H -action
is free. Given a choice of x € X, this yields a unique injective homomorphism
Fx : H— K ? Q mapping h € H to the unique element s = Fyx(h) € K? Q
such that 1x = s~ x. The latter homomorphism depends on the choice of x but is
canonically defined up to postcomposition by inner automorphisms of K ¢ Q.

The set X is defined to be the set of functions f : Q — H such that 7 o f is a
left translation of Q by some element 6( f). Note that X # &; indeed, it contains
the set of set-theoretic sections Q — H of w, which are the elements f in X such
that () = 1.

Let K€ act on X as follows. If u € K2, define

u-fq) = fl@uig)™".
If feX,thenu-f € X and(u-f)=06(f), because

mo(u- f)(g) =n(f(@Qu(q)™")=n(f(q) =06(f)q.

This is clearly an action.
Further, let Q act on X as follows. If r € Q, define

r-flg@) = f(r 'q).

Note that 7(r - £(q)) = n(f(r™'q) = 0(f)r lq,sor-f e X and 0(r- f) =
o(f)r—1.

We next claim that these actions define an action of the semidirect product K ¢ Q
on X. To verify the claim, we need to show that forall f € X, u € K€ andr € Q,
we have

vef =10 ),

where v € K€ is defined as v : ¢ — u(r~1¢). In other words, we have v = rur~
in the wreath product K ? Q. Given ¢ € Q, we have

v- (@)= f@v@)~" = fl@utrg)~".
On the other hand, we have

reu-rTh ) = - ) )
=0 e puirTig !
= forr'gur'q)7!
= flQur™g)7t,

1
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sov- f(g)=r-(u-(r~'- f))(qg) forall g € O, as desired.
A straightforward verification shows that the action of K ? Q on X that has just

been defined is simply transitive.
Finally, the H -action on X is defined as follows: if g € H and f is a function
Q0 — H, define

g fl@)=2gf(@).
If feXandge H and g € Q, we have

(mo(g- ) =n((g-f)q) =n(gf(q) =n(g)n(f(q) =n(g)0(f)q.
sog-feXandb(g-f)=mn(g)0(f).

We immediately see that the action of H, which is free, commutes with both the
action of K€ and the action of Q, and thus commutes with the action of K 2 Q. So,
we have for x € X an injective homomorphism Fy : H — K ? Q as defined above.

Assume now that K is a topological group, while Q is still assumed to be
discrete, so K ? Q is a topological group. Endow H € with the product topology,
and endow X € H € with the topology induced by inclusion, namely, the pointwise
convergence topology. It is straightforward that the actions of K ¢ Q and H on X
are continuous and that orbital maps K ¢ Q — X are homeomorphisms. It follows
that the homomorphism F) is continuous.

Let us now assume that K is compact, so K ? Q and X are both locally compact.
(As soon as Q is infinite, the converse holds; namely, K ? Q is locally compact if
and only if K is compact.) We claim that the homomorphism F5 is then proper.
Checking this amounts to verifying that the H-action on X is proper: Let Uy, U,
be nonempty compact subsets of X and let us check that I ={g € H : gU; C U,}
has compact closure. By compactness, 8(U,) is finite, and therefore we deduce
that (/) is finite. Since 7 is proper, it follows that / has compact closure. O
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