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VARIATIONAL REPRESENTATIONS FOR N-CYCLICALLY
MONOTONE VECTOR FIELDS

ALFRED GALICHON AND NASSIF GHOUSSOUB

Given a convex bounded domain € in R? and an integer N > 2, we associate
to any jointly N-monotone (N —1)-tuplet (uq, us, ..., uy_1) of vector fields
from Q into R¢ a Hamiltonian H on R? x R? x - - - x R? that is concave in
the first variable, jointly convex in the last N—1 variables, and such that

(ul(x)’ uZ(x), ceey uN—l(x)) = VZ,...,NH(x’ Xyeooy x)

for almost all x € 2. Moreover, H is N-antisymmetric in a sense made
precise later, and also N -sub-antisymmetric in the sense that for all X € 2V
the sum Z?’:_ol H (o' (X)) < 0 is nonpositive, o being the permutation that
shifts the coordinates of X leftward one slot and places the first coordinate
last. This result can be seen as an extension of a theorem of E. Krauss,
which associates to any monotone operator a concave-convex antisymmetric
saddle function. We also give various variational characterizations of vector
fields that are almost everywhere N-monotone, showing that they are dual
to the class of measure-preserving N-involutions on £2.

1. Introduction

Given a domain € in RY, recall that a single-valued map u from Q to R? is said to

be N-cyclically monotone if for every cycle xi, ..., xy, xy4+1 = x1 of points in €2,
one has

N
) D {u(x), xi = xi1) = 0.

i=1

A classical theorem of Rockafellar [Phelps 1993] states that a map u from 2 to R4
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is N-cyclically monotone for every N > 2 if and only if
2) u(x) € d¢p(x) forall x € Q2,

where ¢ : R — R is a convex function. On the other hand, a result of E. Krauss
[1985] yields that u is a monotone map, i.e., a 2-cyclically monotone map, if and
only if

3) u(x) € rH(x,x) forall x € Q,

where H is a concave-convex antisymmetric Hamiltonian on RY x R?, and 9, H is
the subdifferential of H as a convex function in the second variable.

In this paper, we extend the result of Krauss to the class of N-cyclically monotone
vector fields, where N > 3. We shall give a representation for a family of N—1
vector fields, which may or may not be individually N-cyclically monotone. Here
is the needed concept.

Definition 1. Letu, ..., uy_; be bounded vector fields from a domain  C R< into
R<. We shall say that the (N —1)-tuple (uy, us, ..., un—1) is jointly N-monotone if
for every cycle x, ..., xpy—1 of points in €2 such that xy,; =x; for 1 <i <N —1,
one has

N—1
) D0 Gwi(xi), xi = xp4i) = 0.

i=1 £=1

Examples of jointly N-monotone families of vector fields:

o It is clear that (u, 0,0, ..., 0) is jointly N-monotone if and only if u is N-
monotone.
o More generally, if each u, is N-monotone, then the family (uy, uy, ..., un—1)

is jointly N-monotone. Actually, one only needs that for 1 <£¢ < N — 1, the
vector field uy be (N, £)-monotone in the following sense: for every cycle

X1, ..., XN+¢ of points in 2 such that xy4; = x; for 1 <i < ¢, we have
N
) > lue(xi). x; — xe14) = 0.

i=1
This notion is sometimes weaker than N-monotonicity since if £ divides N,
then it suffices for u to be N /¢ -monotone in order to be an (N, £)-monotone
vector field. For example, if #; and u3 are 4-monotone operators and u; is
2-monotone, then the triplet (u1, u;, u3) is jointly 4-monotone.

o Another example is if (u1, u», u3) are vector fields such that u; is 2-monotone
and
(u1(x) —uz(y),x —y) >0 forevery x, y € R,
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In this case, the triplet (u1, us, u3) is jointly 4-monotone. In particular, if u
and u, are both 2-monotone, then the triplet (u1, uo, u1) is jointly 4-monotone.

» More generally, it is easy to show that (u, u, ..., u) is jointly N-monotone if
and only if u is 2-cyclically monotone.

We shall always denote by o the cyclic permutation on R? x - - - x R defined by

o(X1,X2, ..., XN—1, XN) = (X2, X3, ..., XN, X1).
We let
N—1 ‘
(6) %N(Q)z{HeC(QN):ZH(U’(xl,...,xN))=O}
i=0

be the family of continuous Hamiltonians on QN that are N -antisymmetric, i.e.,
satisfy the condition to the right of the colon in (6). We say that H is N-sub-
antisymmetric on 2 if

N—-1
(7 ZH(Gi(xl,...,xN))fo on QV.
i=0

We shall also say that a function F of two variables is N-cyclically sub-anti-
symmetric on 2 if
F(x,x)=0 and
®) <
Z F(x;,xi+1) <0 for all cyclic families xy, ..., xy, xy+1 = x1 in Q.
i=1
Note that if a function H (x1, ..., xy) N-sub-antisymmetric and if it only depends
on the first two variables, then the function F(xi, x») := H(x1, X2, ..., Xxn) 1S
N-cyclically sub-antisymmetric.
We associate to any function H on V the functional given by on  x (R¢)N~!
N-1
9 Lu(x,pi,....,pn-1) = Sup{Z(Pi» yi) =H @, y1, ..., yn-1) 1 )i € Q}
i=1
Note that if €2 is convex and if H is convex in the last N—1 variables, then Ly is
nothing but the Legendre transform of H with respect to the last N—1 variables,
where H is the extension of H over (R%)", defined by H=H on QN and H = 400
outside Q¥ . Since H(x, ..., x) =0 for any H € #y(£2), we have, for any such H,
N-1
(10) LH(X,pl,---,pN—l)ZZ(X,Pi),
i=1

for x e Q and py,..., pny—1 € R¢. To formulate variational principles for such
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vector fields, we shall consider the class of o-invariant probability measures on
QY. which are those w € P(Q") such that for all # € L' (2", dx), we have

an / h(xl,...,xN)dn=/ h(o(x1,...,xy))dm.

Qv Qv
We set
(12) Poym(QY) = {7 € P(Q") : w o-invariant probability on QV}.
For a given probability measure u on 2, we also consider the class
(13) PLL(QY) = {7 € Pym(QY) : proj,m = ),

ie., thesetof all m € @Sym(QN ) with a given first marginal w, meaning that

(14) /QN f(xl)djr(xl,...,xN)=/Qf(x1)d,u(x1) for every feLl(Q,u).

Now consider the set ¥(£2, u) of u-measure-preserving transformations on €2,
which can be identified with a closed subset of the sphere of L?($2, RY). We shall
also consider the subset of ¥(£2, 1) consisting of N-involutions, that is,

PN, ) ={SePQ, n): SN =1 p-ael.

2. Monotone vector fields and N-antisymmetric Hamiltonians

In this section, we establish the following extension of a theorem of Krauss.

Theorem 2. Let N > 2 be an integer, and let uy, ..., uy—_1 be bounded vector
fields from a convex domain Q@ C R? into RY.

1) If the (N—1)-tuple (uy, ...,un—1) is jointly N-monotone, then there exists
an N-sub-antisymmetric Hamiltonian H that is zero on the diagonal of QV,
concave in the first variable, convex in the other N —1 variables, and such that

(15) ui1(x), ..., un—1(x)) =V, NH(x,x,...,x) forae xecS.

Moreover, H is N -antisymmetric in the sense that

(16) H(xy,x2, ..., xn)+ Ha . n(x1, X2, ..., x5) =0,
N—1 _
where Hy_ .y is the concavification of the function K (x) = Y _ H(o'(x)) with

respect to the last N—1 variables. i=l
Furthermore, there exists a continuous N -antisymmetric Hamiltonian H

on QN such that

N—-1
(17 Lg(x,ui(x), uz(x),...,un—1(x)) = Z(ui(x), x) forall x € Q.

i=1
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2) Conversely, if (uy,...,uy—1) satisfies (15) for some N -sub-antisymmetric
Hamiltonian H that is zero on the diagonal of QV, concave in the first variable,
and convex in the other variables, then the (N—1)-tuple (uy, ..., uy—_1) is
Jjointly N-monotone on S2.

Remark 3. In the case N = 2, K(x) = H(xp, x1) is concave with respect to xy,
hence Hy(x1, xp) = H(x2, x1), and (16) becomes

H (x1,x2) + H (x2,x1) =0;

thus H is antisymmetric, recovering well-known results [Krauss 1985; Ghoussoub
2009; Ghoussoub and Moameni 2013a; Millien 2011].

Lemma 4. Assume the (N —1)-tuple of bounded vector fields (uy, ..., uy—1) on
is jointly N-monotone. Define
N—-1

flxr, ... xn) = Z(ul(xl),xl — X141)

=1

and let f be the convexification of f with respect to the first variable, given by
(18)  flxr x2, ... xn)

n n n
:inf{Zkkf(xlf,xz,...,xN):n eEN, =0, S ap=1, Zxkxf:xl}.
k=1 k=1 k=1

1) We have f > f on QV.

2) f is convex in the first variable and concave with respect to the other variables.
3) f(x,x,...,x) =0 for each x € Q.

4) f satisfies

N—1
(19) > fe'G .. xn)) =0 onQV.
=0

Proof. Since the (N —1)-tuple (u1, ..., uy—_1) is jointly N-monotone, it is easy to
see that the function
N-1

FOn o xn) =y G (n), X1 — xi)

=1

is linear in the last N—1 variables, that f(x, x, ..., x) =0, and that
N—1

(20) > f@' i, xx)) =0 on QN
i=0

It is also clear that f > f , that f is convex with respect to the first variable xi,
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and that it is concave with respect to the other variables x», ..., xy, since f itself
is concave (actually linear) with respect to xs, ..., xy. We now show that f
satisfies (19).

For that, we fix xq, x2, ..., xy in €2 and consider (x{‘)zzl in 2, and (Ag); in R
such that Ay > O such that ) ;_, Ax=1and ) ;_, Akx'f = x;. For each k, we have

f('xf"xz"“’xN)—i_f('xz’""'xN’xf)_{—'..—i_f(‘xN’x{(’xz’"”'xN_l)ZO‘

Multiplying by A, summing over k, and using that f is linear in the last N—1
variables, we have

n
Z)hkf(xlf»XZ»'-wa)‘i‘f(xZ,---axN:xl)+"'+f(xN,xl’x2,---,xN—l) > 0.
k=1

By taking the infimum, we obtain

N—-1

f(xl,xz,...,xN)—i—Zf(ai(x],xz,...,xN))ZO.

i=1

n n
Letnow n € N, Ax > 0, xk € @ be such that 3" A, =1and 3" Aexk = x,. For every
1 <k <n, we have k=1 k=1

ra k k k
f(x13x2s-x3s ---axN)+f(x2’x3’ "'7-x1)+"‘+f(xN7x1’x2,x37 7-xN—1)ZO

Multiplying by Ax, summing over k and using that f is convex in the first variable
and f is linear in the last N —1 variables, we obtain

n
k
fxr,x2,x3,.. ., XN)+Z)»kf(X2,X3, con XD+ (XN, X, X2, X3, ., XNZT)
k=1

n n
§ : 3 k § : k

Z }\’kf(-xly-x27x37"'9xN)+ )\'kf(-x27-x3’---9x1)
k=1 k=1 n

+...+Zkkf(xN,x1,x§,X3,..-,XN—I)
k=1
> 0.

By taking the infimum over all possible such choices, we get

f(xlax25x39 .. -axN)+f(x25x3a .. ~’x1)+' : '+f(XN,X1,XQ,X3, .- ',-xN—l) ZO
By repeating this procedure with x3, ..., xy_1, we get
N-2

Y f@ (xr X xn)) + fOen X1, X2, X3, Xyo1) = 0.
i=0
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Finally, since
N-2
fOn X1 %0, X3, X)) = — Y ol (xp, XL X))
i=0

and since f is concave in the last N —1 variables, the function

N-2
XN —> — Z f(ai(xl,x% ..., XN))
i=0
for fixed x1, x2, ..., xy—1 1s a convex minorant of xy — f(xy, X1, X2, ..., XN—1).
It follows that
FON, X1, %2, X3, ooy XN—1) > f (0N, X1, X2, X3, 0o, XN—1)
N-2
> =) fo' (1, x2, .., xN)),
i=0

N—-1 _ B
which yields Y f(o'(x1, x2, ..., xy)) > 0. This implies that f(x,x,...,x) >0
forx e Q. =0

On the other hand, since f(x,x, e X) < f(x,x,...,x) =0, we get that
flx,x,...,x)=0forall x € Q. O
Proof of Theorem 2. Assume the (N —1)-tuple of vector fields (u1,...,un—_1) is

jointly N-monotone on €2, and consider the function

N-1

flxr, ... xy) = Z(ul(xl),xl — X141)

=1

as well as its convexification with respect to the first variable f (X1, ..., xN).
By Lemma 4, the function ¥ (x1, ..., xy) := —f(xy, ..., xy) satisfies the fol-
lowing properties:
(i) x; = ¥(x1,...,xN) is concave.
(1) (x2,x3,...,xN8) = ¥(x1,...,xXN) 1S convex.

N-1

(1) v(xr, ..., xn) = —f(x1, ..., xn) = Y (ug(xr), X401 — X1).

I1=1
(iv) ¥ is N-sub-antisymmetric.

Now consider the family % of functions H : Q¥ — R such that
1) H(xi,x2, ..., x5) = S0 (i (x1), X141 —x1) for every N-tuple (xi, ..., xy)
in QV,
2) H is concave in the first variable,

3) H is jointly convex in the last N —1 variables,
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4) H is N-sub-antisymmetric,
5) H is zero on the diagonal of QV.

Note that % # @ since ¥ belongs to #. Note that any H satisfying condi-
tions 1 and 4 automatically satisfies 5. Indeed, by N-sub-antisymmetry, for all
x=(x1,...,xy) € QY we have

N—-1 N—1
@1) Hx)<—) H('(x)<—) (' ().

i=1 i=1

This also yields that

N-1 N N-1
(22) Z(uz(xl) Xe41 — X1) Z (ue(xi), Xi — Xite),

=1 i=2 (=1
where we denote x;y :=x; fori =1, ..., £. This yields that H(x, x,...,x) =0
for any x € Q.

It is also easy to see that every directed family (H;); in % has a supremum
Hy, € #, meaning that 7€ is a Zorn family, and therefore has a maximal element H.
Now consider the function

_ 1 N-l .
H(x) = N((N —DH(x) — Z H(a’(x))).

(i) H is N-antisymmetric, since H(x) =

Z [H(x) — H(c'(x))], and each
summand is N-antisymmetric. i=l

1
N

N-—1
(i) H > H on QV, since N[H(x) — H(x)] = — Y H(c'(x)) > 0 (because H

itself is N-sub-antisymmetric). i=0

The maximality of H would have implied that H = H is N-antisymmetric if only
H was jointly convex in the last N—1 variables, but since this is not necessarily
the case, we consider for x = (x1, x2, ..., xy) the function

K(x1, %2, ..., xy) = K(x) = — Z H(o' (x)),

which is already concave in the first variable x;. Its convexification in the last N—1
variables, that is,

n . . n . .
=inf{2,\i1<(x1,x§,...,x;v) =0, S A, o a1 = (s - s 1)},
i=1 i=1
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is still concave in the first variable, but is now convex in the last N —1 variables.
Moreover,

N-—1
(23) H§K2"“’N§K=—ZHoai.
i=l1

Indeed, K%V < K from the definition of K%V, while H < K%V because
H < K and H is already convex in the last N—1 variables. It follows that

N-1

N—1D)H+K*>N (N—-DH+K 1 . _
HS( JH + 5( H+E_1 (N—l)H—ZHoa’ — .
N N N =

The function H' = (N — )H + K>N)/N belongs to the family % and therefore
H = H' by the maximality of H.

This finally yields that H is N-sub-antisymmetric, that H(x, ..., x) =0 for all
x € Q and that

Hx)+ Hy,. n(x)=0 foreveryx e QN,

where Hy, vy =—K 2N which for a fixed x; is nothing but the concavification
of (xa,...,x5) — ZlN:_II H(o'(x1,%x2,...,%xN)).
Note now that since for any xi, ..., xy in €2
N-1
(24) H(x1, %2, xn) = Y {ue(xn), Xepr —x1),
=1
and
(25) H(xl,xl,...,xl)zo,
we have
N-1
(26) H(xi, %2, xn) = H@x, -, x1) = ) (), Xey1 — X1).
=1

Since H is convex in the last N —1 variables, this means that for all x € 2, we have

(27) (u1(x), ua(x), ..., uny—1(x)) €02, NH(x, x,...,x),
as claimed in (15). This also yields
N-1
Lgx,ui(x),...,un-1(x)+H(x,x,...,x)= Z(ug(x), x) forall x € Q.
=1
N-1

In other words, Ly (x,u1(x),...,uny—1(x)) = Y (ug(x),x) for all x € Q. As
above, consider (=1
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N—-1

_ 1 .
H(x) = N((N —DH(x) — Z H(cr’(x))).
i=1

We have H € ¥ (2) and H > H, and therefore L 7 < Lu. On the other hand, for
all x € Q we have

Lo, ur(x), ..., uny—1(x)) =L, u1(x), ..., uny—_1(x))+ H(x, x,...,x)

N—1

> Y {up(x), x).

=1

To prove (17), we use the appendix in [Ghoussoub and Moameni 2013b] to deduce

that fori =2, ..., N, the gradients V; H (x, x, ..., x) actually exist for a.e. x in Q.
The converse is straightforward since if (27) holds, then (26) does, and since

we also have (25), then the property that (uy, ..., ux—1) is jointly N-monotone

follows from (24) and the sub-antisymmetry of H. ([

In the case of a single N-monotone vector field, we can obviously apply the
above theorem to the (N—1)-tuple (u, O, ..., 0), which is then N-monotone, to
find an NV-sub-antisymmetric Hamiltonian H, which is concave in the first variable
and convex in the last N—1 variables such that

(28) (—u(x),u(x),0,...,00=VH(x,x,...,x) forae.xeQ.

However, in this case we can restrict ourselves to N-cyclically sub-antisymmetric
functions of two variables and establish the following extension of the theorem of
Krauss.

Theorem 5. Ifu is N-cyclically monotone on 2, then there exists a concave-convex
Sfunction of two variables F that is N-cyclically sub-antisymmetric and zero on the
diagonal, such that

(29) (—u(x),u(x)) € dF(x,x) forallx e <,

where 0 H is the subdifferential of H as a concave-convex function [Rockafellar
1970]. Moreover,

(30) u(x)=VpF(x,x) forae. x €.

Proof. Let f(x,y) = (u(x), x —y) and let f!'(x, y) be its convexification in x for
fixed y, that is,

3Dl y) =inf{2kkf(xk, Vike=0Y =1 Jx =x}.
k=1 k=1 k=1

N
Since f(x,x) =0, f is linear in y, and ) f(x;, x;11) > O for any cyclic family

i=1
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X1, ..., XN, Xy+1 = X1 In €2, it is easy to show that f > f1 on €2, fl 18 convex in
the first variable and concave with respect to the second, f 1 (x, x) = 0 for each
x € , and that f! is N-cyclically supersymmetric in the sense that for any cyclic
family xq, ..., xy, Xy+1 = X1 in 2, we have ZINZI Fl(xi, xig1) = 0.

Now consider F(x,y) = —fl(x, y) and note that x — F(x, y) is concave,
y — F(x,y)isconvex, F(x,y)>—f(x,y) = (u(x),y—x)and F is N-cyclically
sub-antisymmetric. By the antisymmetry, we have

(32) (u(xy), x2 —x1) < F(x1, x2) < (u(x2), x2 — x1),

which yields that (—u(x), u(x)) € dF (x, x) for all x € Q.

Since F' is antisymmetric and concave-convex, the possibly multivalued map
x — 3 F(x, x) is monotone on €2, and therefore single-valued and differentiable
almost everywhere [Phelps 1993]. This completes the proof. (]

Remark 6. We cannot expect to have a function F such that Zf\’: | F(xi, xi41) =0
for all cyclic families x1, ..., xy, xy+1 = X1 in . Actually, we believe that the
only function satisfying such an N-antisymmetry for N > 3 must be of the form
F(x,y)= f(x)— f(y). This is why one needs to consider functions of N variables
in order to get N-antisymmetry. In other words, the function defined by

N—1
(33) H(xi,x2,...,xy) = ((N — DF(x1,x2) — Z F(xl,xl+1))
=2
is N-antisymmetric in the sense of (6) and H (x1, x2, ..., xy) > F(x1, x2) for all

(x1, X2, ..., xy) in QN

3. Variational characterization of monotone vector fields

In order to simplify the exposition, we shall always assume in the sequel that du is
Lebesgue measure dx normalized to be a probability on €2. We shall also assume
that €2 is convex and that its boundary has measure zero.

Theorem 7. Letuy, ..., un—_;: Q2 — R? be bounded measurable vector fields. The
following properties are then equivalent:

1) The (N—1)-tuple (41, ...,uyn—1) is jointly N-monotone a.e., that is, there
exists a measure-zero set Q2 such that (uy, ..., uy—1) is jointly N-monotone
on Q\ Q.

2) The infimum of the Monge—Kantorovich problem

(34) 1nf{ Z (e(x1), X1 — Xp1) d7T (X1, X2y o, X)) ¢ ne@sym(QN)}
¥ o
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is equal to zero, and is therefore attained by the push-forward of u by the map

x— (x,x,...,X).
3) (uy,...,un—1) is in the polar of ¥ N (2, W) in the following sense:
(35) 1nf{ Z ue(x), x — Sx)du: S € Py (R, u)}
2 =1

4) The following holds:

N-1 N—-1
(36) inf{/ Z |ug(x)—S£x|2d,u:SGSPN(Q,M)} =Z/ lug(x) —x|>du.
@ = =179

S) There exists an N -sub-antisymmetric Hamiltonian H which is concave in the
first variable, convex in the last N —1 variables, and vanishing on the diagonal
such that

(37) ui(x),...,un-1(x))=Vo NH(x,x,...,x) forae x €.

.....

Moreover, H is N-symmetric in the sense of (16).

6) The following duality holds:
inf{f LyG,ui(x),...,un_1(x))du:H e %N(Q)}
Q

—sup: Z ue(x), S'x)dp: S € Iy (K2, u)}
2

and the latter is attained at the identity map.

We start with the following lemma, which identifies those probabilities in
@é‘ym(QN ) that are carried by graphs of functions from € to QV.

Lemma 8. Let S : Q — Q be a u-measurable map. The following properties are
equivalent:

1) The image of u by the map x — (x, Sx, ..., SN"1x) belongs to @sym(QN).
2) S is -measure-preserving and SN(x)=x p-ae.
3) For any bounded Borel measurable N-antisymmetric H on QV, we have

JoHx, Sx, ..., " x)du=0.

Proof. Clearly 1) implies 3), since fQN H(x)dn(x) =0 for any N-antisymmetric
Hamiltonian H and any 7 € @qym(QN ).

That 2) implies 1) is also straightforward since if 7 is the push-forward of u by
a map of the form x — (x, Sx, ..., SN=1x), where S is a Q-measure-preserving S
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with S¥x = x p-a.e. on , then for all 1 € LY(QN, dm), we have
/ h(xl,...,xN)drr=/h(x,Sx,...,SN_lx)d,u(x)
QN Q
:/ h(Sx, S%x, ..., SV 1x, S¥x) du(x)
Q
:/ h(Sx, S%x, ..., SV x, x)du(x)
Q

=/ ho(xy,...,xy))dm.
QN

We now prove that 2) and 3) are equivalent. Assuming first that S is p-measure-
preserving such that SV = I p-a.e., then for every Borel bounded N-antisymmetric
H, we have

/H(x,Sx,Szx,...,SN_lx)d,uzfH(Sx,Szx,...,SN_lx,x)du
Q Q

:.--=/ H(SNflx,x,Sx,...,SNfzx)d,u.
Q

Since H is N-antisymmetric, we can see that
H(x,Sx,....,S" ")+ H(Sx, $%x, ..., 8" x,x)
+o e+ HSY X, x, 8x, .., 8V ) = 0.

It follows that N [, H(x, Sx, S?x, ..., S¥"lx)du =0.

For the reverse implication, assume [, H (x, Sx, $x, ..., S¥"1x)du =0 for
every N-antisymmetric Hamiltonian H. By testing this identity with the Hamil-
tonians

H(xy, X2, ..., xn) = f(x) — f(xi),

where f is any continuous function on €2, one gets that S is p-measure-preserving.
Now take the Hamiltonian

Hxy,x2, ..., xn) = |x1 — Sxn| — |Sx1 —x2] — |x2 — Sx1]| 4+ |Sx2 — x3].
Note that H € 7 (£2) since it is of the form
H(xi, ..., xn) = f(x1, x2, xn5) — f(x2, x3, x1).
Now test the above identity with such an H to obtain

0:/ H(x,Sx,Szx,...,SN_lx)dM:/ |x—SSN_1x|d,u.
Q Q

It follows that S¥ = I p-a.e. on w, and we are done. O
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Proof of Theorem 7. To show that 1) implies 2), it suffices to notice that if 7 is a
o -invariant probability measure on Q¥ such that proj, = u, then

N-1
[, St n = xesnydrt, o)
-

: N N—l
NZ/ (ue(xi), xi — Xite) dmw(xy, ..., XN)
i1 792 o
1 N-1
— i), Xi — X dm(xy, ...,
N/Sﬂ’(; Z (ue(xi), x;i Xz+z)> (x1 XN)
>0,
since (41, ...,un—1) is jointly N-monotone. On the other hand, if 7 is the
o -invariant measure obtained by taking the image of u :=dx by x — (x, ..., x),

then
/ Z ue(x1), X1 — xeq1) dr(xy, ..., xy) =0
S
To show that 2) implies 3), let S be a p-measure-preserving transformation on 2
such that SV = I p-a.e. on Q. Then the image 75 of by the map

x — (x, Sx, Szx, R SN_lx)

18 o -invariant, hence

N—-1 N—-1
f Z(ue(xl),xl—xm)dns(xl,...,xzv):/ > lue(), x =) dp = 0.
A 2

By taking S = I, we get that the infimum is necessarily zero.
The equivalence of 3) and 4) follows immediately from developing the square.
We now show that 3) implies 1). Take N points xy, x3, ..., xy in €, and let
R > 0 be such that B (x;, R) C 2. Consider the transformation

x—x1+xy, forxe B(xi,R),
x—xp+x3 forxe B(xy, R),
Sp(x) = :
x—xy+x; forx e B(xy,R),

X otherwise.

It is easy to see that Sg is a measure-preserving transformation and that S g =1d.
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We then have

N—-1

0< ZW(X)X Skx) M<Z/B( g 2000t = s}
TR g=1

2y

Letting R — 0, we get from Lebesgue’s density theorem that

1
|B(xi, R)| JB(x, R

from which follows that (u, ..., uy—1) are jointly N-monotone a.e. on Q2. The
fact that 1) is equivalent to 5) follows immediately from Theorem 2.

To prove that 5) implies 6), note that for all p; € RY, x € Q, vi € Q0 =
1,...,.N—1,

(ue(x), xj — xgqi)dp — (ue(x;), Xj — Xeyi),

N-
LH(-x’pla--'apN—l)—i_H(-x’yl’""yN 1 Zpl’yl
which yields that for any S € ¥y (2, ),

f[LH(x, ui(x), ... un—1(xX))dp+Hx, Sx, ..., SN o) ldu
Q

If He ¥ y(R2) and S € (L2, ), we then have fQ H(x,Sx,....,S" 'x)du=0,
and therefore

N-—1
[ ntcneo. e di= [ 3w st d
Q Q =1

If now H is the N-sub-antisymmetric Hamiltonian obtained by 5), which is concave
in the first variable and convex in the last N—1 variables, then

N—
Ly(x,uy(x),...,uy_1(x)+H(x, x, ..., Z (ue(x), x) for all x € 2\,
=1

and therefore [ Ly (x, ui(x), ..., uy—1(x))dp = Z Jolue(x), x)d
Now consider =1

N—-1

H(x) = ((N—l)H(x) > H(d' (x)))

i=1
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As before, we have H € #n(£2) and H > H. Since Lg < Ly, we have

N—-1
fLH<x,u1<x),...,uN1<x))du=2f<uz(x>,x>du
Q =1 Q

and 6) is proved.
Finally, note that 6) readily implies 3), which means that (u, ..., uy—1) is then
jointly N-monotone. ([

We now consider again the case of a single N-cyclically monotone vector field.

Corollary 9. Let u : @ — R? be a bounded measurable vector field. The following
properties are then equivalent:

1) The vector field u is N-cyclically monotone a.e., that is, there exists a measure-
zero set Q2o such that u is N-cyclically monotone on Q2 \ .

2) The infimum of the Monge—Kantorovich problem

(38) inf{/ (u(x1), x1 —x2)dm(x):m e @’é‘ym(QN)}
QN

is equal to zero, and is therefore attained by the push-forward of u by the map
x— (x,x,...,x).

3) The vector field u is in the polar of ¥ (K2, 1), that is,
39) inf{/ﬂ(u(x),x—Sx)du:SEEPN(Q,,LL)}=0.
4) The projection of u on & N (2, 1) is the identity map, that is,
(40) inf{/gm(x)—sxﬁduzSey’N(Q,M)} =/Q|u(x)—x|2du.

5) There exists an N-cyclically sub-antisymmetric function H of two variables,
which is concave in the first variable, convex in the second variable, vanishing
on the diagonal and such that

41 u(x) =VyH(x,x) forae. x €.

6) The following duality holds:
inf{/ Ly(x,u(x),0,...,00dun:He %N(Q)}
Q

= sup{/ (u(x), Sx)du:S e Fy(L, ,u)}
Q

and the latter is attained at the identity map.
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Proof. This is an immediate application of Theorem 7 applied to the (N —1)-tuplet
vector fields (u, 0, . . ., 0), which is clearly jointly N-monotone on €2\ €2g9, whenever
u is N-monotone on 2 \ Q. ([l

Remark 10. The sets of u-measure-preserving N-involutions (¥ (€2, 1))y do not
form a nested family, that is, ¥ (€2, ©) is not necessarily included in S, (€2, ),
whenever N < M, unless of course M is a multiple of N. On the other hand, the
above theorem shows that their polar sets, i.e.,

P, 1)’ = {u e L*(Q,RY): / (u(x), x —Sx)dpu > 0forall S € Py (2, M)},
Q

which coincide with the N-cyclically monotone maps, satisfy

Pn1(Q, 1)’ C Py, w)°,

for every N > 1. This can also be seen directly. Indeed, it is clear that a 2-involution
is a 4-involution but not necessarily a 3-involution. On the other hand, assume that
u is a 3-cyclically monotone operator. Then for any transformation S : 2 — 2, we
have

/(u(x),x—Sx)du-l—/(u(Sx),Sx—SZx)d,u+/(u(Szx),Szx—x)d,uzo.
Q Q Q

Now if S is measure-preserving, we have

/ (u(x), x — Sx) du+/ (u(x), x — Sx)du +/ (u(S*x), S>x —x)du >0,

Q Q Q

and if $? = I, then [ (u(x),x — Sx)du > 0, which means that u € (2, n)°.
Similarly, one can show that any (N+1)-cyclically monotone operator belongs to
Fn (2, n)°. In other words, Fn41(R2, 1)° C LN (R, w)° for all N > 2. Note that
F1(2, w)° ={1}° = L*(Q, RY), while

R, 10" =Ny In(Q, 1)°
={ue LZ(Q, [Rd), u = V¢ for some convex function ¢ in Wl’z([R{d)},
in view of classical results of Rockafellar [1970] and Brenier [1991].

Remark 11. In [Ghoussoub and Moameni 2013b], the preceding result is extended
to give a similar decomposition for any family of bounded measurable vector fields
ui,uy,...,uy—1 on 2. It is shown there that there exists a measure-preserving
N-involution S on  and an N-antisymmetric Hamiltonian H on Q" such that for
i=1,...,N—1, we have

ui(x) = Vi H(x, Sx, 8?x, ..., SV 'x) forae. x € Q.
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