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RESTRICTED SUCCESSIVE MINIMA

MARTIN HENK AND CARSTEN THIEL

We give bounds on the successive minima of an o-symmetric convex body
under the restriction that the lattice points realizing the successive minima
are not contained in a collection of forbidden sublattices. Our investigations
extend former results to forbidden full-dimensional lattices, to all successive
minima and complement former results in the lower-dimensional case.

1. Introduction

Let Kn
o be the set of all o-symmetric convex bodies in Rn with nonempty interior,

i.e., K ∈ Kn
o is an n-dimensional compact convex set satisfying K = −K . The

volume, i.e., the n-dimensional Lebesgue measure, of a subset X ⊂ Rn is denoted
by vol X . By a lattice3⊂Rn we understand a free Z-module of rank rg3≤ n. The
set of all lattices is denoted by Ln , and det3 denotes the determinant of 3 ∈Ln ,
that is the (rg3)-dimensional volume of a fundamental cell of 3.

For K ∈ Kn
o and 3 ∈ Ln , Minkowski introduced the i-th successive minimum

λi (K ,3), 1≤ i ≤ rg3, as the smallest positive number λ such that λK contains at
least i linearly independent lattice points of 3, i.e.,

λi (K ,3)=min{λ ∈ R≥0 : dim(λ K ∩3)≥ i}, 1≤ i ≤ rg3.

Minkowski’s first fundamental theorem (see, e.g., [Gruber 2007, Sections 22–23])
on successive minima establishes an upper bound on the first successive minimum
in terms of the volume of a convex body. More precisely, for K ∈Kn

o and 3 ∈Ln

with rg3= r , it may be formulated as

(1-1) λ1(K ,3)r volr (K ∩ lin3)≤ 2r det3,

where volr ( · ) denotes the r -dimensional volume, here with respect to the subspace
lin3, the linear hull of 3. In the case r = n we just write vol( · ). One of the
many successful applications of this inequality is related to “Siegel’s lemma”, a
catch-all term for results bounding the norm of a nontrivial lattice point lying in
a linear subspace given as ker A where A ∈ Zm×n is an integral matrix of rank m.
For instance, with respect to the maximum norm | · |∞, it was shown in [Bombieri
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and Vaaler 1983] (see also [Ball and Pajor 1990]) that there exists a z ∈ ker A\{0}
such that

|z|∞ ≤
√

det(AAᵀ )
1

n−m .

In fact, this follows by (1-1), where K = [−1, 1]n is the cube of edge length 2,
3= ker A∩Zn is an (n−m)-dimensional lattice of determinant at most

√
det(AAᵀ ),

and Vaaler’s result [1979] on the minimal volume of a slice of a cube, which here
gives voln−m([−1, 1]n ∩ lin3)≥ 2n−m . For generalizations of Siegel’s lemma to
number fields we refer to [Bombieri and Vaaler 1983; Fukshansky 2006a; 2006b;
Gaudron 2009; Gaudron and Rémond 2012a; Vaaler 2003].

Motivated by questions in Diophantine approximation, Fukshansky [2006a]
studied an inverse problem to that addressed in Siegel’s lemma, namely to bound
the norm of lattice points which are not contained in the union of proper sublattices.
To describe his result we need a bit more notation.

For a collection of sublattices 3i ⊂3, 1≤ i ≤ s, with
s⋃

i=1
3i 6=3 we call

λi

(
K ,3\

s⋃
i=1
3i

)
=min

{
λ ∈ R≥0 : dim

(
λK ∩3\

s⋃
i=1
3i

)
≥ i
}
, 1≤ i ≤ rg3,

the i-th restricted successive minimum of K with respect to 3\
⋃s

i=13i . Observe
that by the compactness of K and the discreteness of 3\

⋃s
i=13i these minima

are well-defined. Furthermore, they behave nicely with respect to dilations, as for
µ > 0 we have

(1-2) λi

(
µK ,3\

s⋃
i=1
3i

)
= λi

(
K , 1
µ

(
3\

s⋃
i=1
3i

))
=

1
µ
λi

(
K ,3\

s⋃
i=1
3i

)
.

Moreover, for a lattice 3∈Ln , r = rg3, and a basis (b1, . . . , br ), b j ∈Rn , of 3,
let v(3) ∈ R(

n
r) be the vector with entries det B j , where B j is an r × r submatrix

of (b1, . . . , br ). Observe that up to the order of the coordinates the vector is
independent of the given basis, and on account of the Cauchy–Binet formula the
Euclidean norm of v(3) is the determinant of the lattice. With this notation,
Fukshansky [2006a, Theorem 1.1] proved

(1-3) λ1

(
[−1, 1]n,3\

s⋃
i=1
3i

)
≤
(3

2

)r−1r r
( s∑

i=1

1
|v(3i )|∞

+
√

s
)
|v(3)|∞+ 1,

for proper sublattices3i , 1≤ i≤ s, where proper means rg3i < rg3=r . This result
was generalized and improved in various ways in [Gaudron 2009] and [Gaudron and
Rémond 2012a]. In particular, (1-3) has been extended to all o-symmetric bodies as
well as to the adelic setting (see also [Gaudron and Rémond 2012b, Lemma 3.2] for
an application). For instance, the following is a simplified version of [Gaudron 2009,
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Theorem 6.1] when we assume that rg3i = rg3− 1= r − 1 (see also [Gaudron
and Rémond 2012a, Theorem 2.2, Corollary 3.3]):

(1-4) λ1

(
K ,3\

s⋃
i=1
3i

)
≤ ν max

1≤i≤s

{
1,
νr−1 vol(K ∩ lin3i )

ωr det3i
,

(
ν

λ1(K ,3∩ lin3i )

)r−2
2
}
,

where ν = 7r(sωr det3/ vol K )1/r and ωr is the volume of the r -dimensional unit
ball.

In our first theorem we want to complement these results on forbidden lower-
dimensional lattices by a bound which takes care of the size or the structure of the
individual forbidden sublattices such that the bound becomes essentially (1-1) if
λ1(K ,3i )→∞ for 1≤ i ≤ s. In this case the bounds in (1-3) and (1-4) still have
a dependency on s of order

√
s and s1/r , respectively. Here we have the following

result.

Theorem 1.1. Let K ∈ Kn
o , 3 ∈ Ln , rg3 = n ≥ 2, and let 3i ⊂ 3, 1 ≤ i ≤ s,

rg3i ≤ n− 1, be sublattices. Then

λ1

(
K ,3\

s⋃
i=1
3i

)
< 6n−1 det3

λ1(K ,3)n−2 vol K

( s∑
i=1

1
λ1(K ,3i )

)
+

n
√

2n det3
vol K

.

Note that, if s = 0 or all the λ1(K ,3i ) are very large, we get essentially (1-1).
Our second main theorem deals with forbidden full-dimensional sublattices —

those for which rg3i = rg3, 1≤ i ≤ s.

Theorem 1.2. Let K ∈ Kn
o , 3 ∈ Ln , rg3 = n ≥ 2, and let 3i ⊂ 3, 1 ≤ i ≤ s,

rg3i = n, be sublattices such that
⋃s

i=13i 6=3. Then

λ1

(
K ,3\

s⋃
i=1
3i

)
<

2n det3
λ1(K ,3)n−1 vol K

( s∑
i=1

det3
det3i

− s+ 1
)
+ λ1(K ,3),

where 3=
s⋂

i=1
3i .

In the special case s = 1, since we may the assume λ1(K ,31)= λ1(K ,3), we
get the following immediate consequence:

Corollary 1.3. Let K ∈ Kn
o , 3 ∈ Ln , rg3= n ≥ 2, and let 31 (3, rg31 = n, be

a sublattice. Then

λ1(K ,3\31)≤
2n det3

λ1(K ,31)n−1 vol K
+ λ1(K ,3).

The following example shows that the bound in Theorem 1.2 as well as the one
of the corollary above cannot be improved in general by a multiplicative factor.
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Example 1.4. Let K ∈K2
o be the rectangle K = [−1, 1]× [−α, α] of edge-lengths

2 and 2α, α ≤ 1, and of volume 4α. Let 3= Z2, and define the sublattices

31 =
{
(z1, z2)

ᵀ
∈ Z2
: z2 ≡ 0 mod 2

}
, 32 =

{
(z1, z2)

ᵀ
∈ Z2
: z1 ≡ 0 mod p

}
,

where p > 2 is a prime. Then det3= 1, det31 = 2, det32 = p, and

3=31 ∩32 =
{
(z1, z2)

ᵀ
∈ Z2
: z2 ≡ 0 mod 2, z1 ≡ 0 mod p

}
with det3= 2p. For α ≤ 2/p we therefore have λ1(K ,3)= p. Regarding the set
3\(31 ∪32), we observe that the lattice points on the axes are forbidden, but not
(1, 1)ᵀ and so λ1(K ,3\(31 ∪32))= 1/α. Putting everything together, the bound
in Theorem 1.2 evaluates for α ≤ 2/p to

1
α
= λ1(3\(31 ∪32)) <

4
p 4α

(p+ 1)+ p = 1
α
+

1
pα
+ p.

Hence for α = 2/p2 and p→∞ the bound cannot be improved by a multiplicative
factor.

In the situation of Corollary 1.3, i.e., when we consider only the forbidden
lattice 31, the upper bound in the corollary evaluates to 1/α+1, whereas, as before,
λ1(K ,3\31)= 1/α.

Before beginning with the proofs of our results we would like to mention a closely
related problem, namely to cover K ∩3, K ∈ Kn

o , by a minimal number γ (K ) of
lattice hyperplanes. Obviously, having a ν > 0 with γ (νK )≥ s+ 1 implies that

λ1

(
K ,3\

s⋃
i=1
3i

)
≤ ν

in the case of lower-dimensional sublattices 3i . For bounds on γ (K ) in terms of
the successive minima and other functionals from the geometry of numbers we
refer to [Bárány et al. 2001; Bezdek and Hausel 1994; Bezdek and Litvak 2009].

Finally, we remark that restricted successive minima have also been investigated
from an algorithmic point of view. Blömer and Naewe [2007] studied the complexity
of computing λ1

(
K ,3\

⋃s
i=13i

)
for s = 1 and when K is the unit ball of an lp-

norm. They show, among other things, that some of the well-known lattice problems,
like the shortest or closest lattice vector problem, are polynomial reducible to
computing/approximating λ1(K ,3\31). Moreover, as in the case of these lattice
problems an LLL-reduced basis (see [Grötschel et al. 1993, Chapter 5]) can be used
to find in polynomial time a lattice vector b which approximates λ1(Bn,3\31) up
to a factor of 2n−1 [Blömer and Naewe 2007, Theorem 3.6]. Here Bn is the unit
ball of the Euclidean norm. Hence, Theorem 1.1 implies (see [Grötschel et al. 1993,
Theorem 5.3.13a] for a similar result in the standard setting s = 0):
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Corollary 1.5. Let 3 ∈ Ln , rg3 = n ≥ 2, and let 31 ⊂ 3, rg31 ≤ n − 1, be
a sublattice. There exists a polynomial time algorithm for computing a vector
b ∈3\31 of Euclidean length

‖b‖< 2n−1
(

6n−1 det3
λ1(K ,3)n−2 vol K

1
λ1(K ,31)

+
n
√

2n det3
vol K

)
.

It seems to be a challenging problem to extend this result to more than one
forbidden sublattice as well as to full-dimensional forbidden lattices.

The paper is organized as follows. The proof of Theorem 1.1 will be given in
the next section and full-dimensional forbidden sublattices, i.e., Theorem 1.2, will
be treated in Section 3. In each of the sections we also present some extensions of
the results above to higher successive minima, i.e., to λi

(
K ,3\

⋃s
i=13i

)
, i > 1.

2. Avoiding lower-dimensional sublattices

In the course of the proof we have to estimate the number of lattice points in a
centrally symmetric convex body, i.e., to bound |K ∩3| from below and above.
Assuming K ∈ Kn

o and rg3= n, we will use as a lower bound a classical result of
van der Corput (see, e.g., [Gruber and Lekkerkerker 1987, p. 51]):

(2-1) |K ∩3| ≥ 2
⌊

vol K
2n det3

⌋
+ 1>

vol K
2n−1 det3

− 1.

As upper bound we will use a bound in terms of the first successive minima by
Betke, Henk and Wills [Betke et al. 1993]:

(2-2) |K ∩3| ≤
(

2
λ1(K ,3)

+ 1
)n

.

Proof of Theorem 1.1. By scaling K with λ1(K ,3) we may assume without loss
of generality that λ1(K ,3) = 1, i.e., K contains no nontrivial lattice point in its
interior (cf. (1-2)). Let ni = rg3i < n. For γ ≥ 1, since λ1(K ,3i )≥ λ1(K ,3)= 1
we get, from (2-2),

(2-3) |γ K\{0} ∩3i | ≤

(
γ

2
λ1(K ,3i )

+ 1
)ni

− 1< γ n−13n−1 1
λ1(K ,3i )

.

Hence, for γ ≥ 1, we have

(2-4)
∣∣∣∣γ K\{0} ∩

(
s⋃

i=1
3i

)∣∣∣∣< γ n−13n−1
s∑

i=1

1
λ1(K ,3i )

.

Combining this bound with the upper bound (2-1) leads, for γ ≥ 1, to the estimate
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s⋃

i=1
3i

∣∣∣∣> γ n vol K
2n−1 det3

− 2−
∣∣∣∣γ K\{0} ∩

(
s⋃

i=1
3i

)∣∣∣∣
> γ n vol K

2n−1 det3
− γ n−13n−1

( s∑
i=1

1
λ1(K ,3i )

)
− 2

=
vol K

2n−1 det3
(γ n
− γ n−1β − ρ),

where

β = 6n−1 det3
vol K

( s∑
i=1

1
λ1(K ,3i )

)
, ρ = 2n det3

vol K
.

Hence, given β and ρ, we have to determine a γ ≥ 1 such that γ n
−γ n−1β−ρ > 0.

To this end let γ = β + ρ1/n . Then

(2-5) γ n
− γ n−1β = (β + ρ1/n)n − (β + ρ1/n)n−1β

= ρ1/n(β + ρ1/n)n−1 > ρ1/nρ(n−1)/n
= ρ.

Finally, we observe that

γ > ρ1/n
=

(
2n det3

vol K

)1/n

≥ λ1(K ,3)= 1,

by (1-1) and our assumption. Hence, γ > 1 and in view of (2-5) we have
λ1
(
K ,3\

⋃s
i=13i

)
< γ , which by the definition of γ yields the desired bound of

the theorem with respect to our normalization λ1(K ,3)= 1. �

Compared to the bounds in (1-3) and (1-4), our formula uses only the successive
minima and not the determinants of the forbidden sublattices which reflect more the
structure of a lattice. However, instead of (2-2) one can use a Blichfeldt-type bound,
proved in [Henze 2013], for o-symmetric convex bodies K with dim(K ∩3)= n;
namely, if Ln(x) is the n-th Laguerre polynomial,

|K ∩3| ≤
n!
2n

vol K
det3

Ln(−2),

This leads to a bound on λ1
(
K ,3\

⋃s
i=13i

)
where the sum over 1/λ1(K ,3i ) is

replaced by a sum over ratios of the type voldim H (K ∩H)/ det(3i ∩H) for certain
lower-dimensional planes H ⊆ lin3i . In general, however, we have no control over
the dimension of these hyperplanes H nor on the volume of the sections.

Theorem 1.1 can easily be extended inductively to higher restricted succes-
sive minima λ j+1

(
K ,3\

⋃s
i=13i

)
, 1 ≤ j ≤ n − 1, by avoiding, in addition, a

j-dimensional lattice containing j linearly independent lattice points corresponding
to the successive minima λi

(
K ,3\

⋃s
i=13i

)
, 1≤ i ≤ j .
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Corollary 2.1. Under the assumptions of Theorem 1.1 we have, for j=1, . . . , n−1,

λ j+1

(
K ,3\

s⋃
i=1
3i

)
< 6n−1 det3

λ1(K ,3)n−2 vol K

( s∑
i=1

1
λ1(K ,3i )

)

+

(
3 j

λ1(K ,3) j 2n−1 det3
vol K

+

(
2n det3

vol K

)n− j
n
) 1

n− j
.

Proof. Let zi ∈ λi
(
K ,3\

⋃s
i=13i

)
K ∩3, 1≤ i ≤ j , be linearly independent, and

let 3=3∩ lin{z1, . . . , z j }. Then

(2-6) λ j+1

(
K ,3\

s⋃
i=1
3i

)
= λ1

(
K ,3\

(
s⋃

i=1
3i ∪3

))
,

and we now follow the proof of Theorem 1.1. In particular, we assume λ1(K ,3)=1.
In addition to the upper bounds on |γ K\{0} ∩3i |, 1≤ i ≤ s, in (2-3), we also use
for γ ≥ λ1(K ,3)≥ λ1(K ,3)= 1 the bound

(2-7) |γ K\{0} ∩3|<
(

2γ
λ1(K ,3)

+ 1
)j

≤ 3 j
(

γ

λ1(K ,3)

)j

.

Combining this bound with (2-1) leads for γ ≥ λ1(K ,3) to∣∣∣∣γ K\{0} ∩ 3\
(

s⋃
i=1
3i ∪3

)∣∣∣∣
> γ n vol K

2n−1 det3
− 2−

∣∣∣∣γ K\{0} ∩
(

s⋃
i=1
3i

)∣∣∣∣− |γ K\{0} ∩3|

> γ n vol K
2n−1 det3

− 2− γ n−13n−1
( s∑

i=1

1
λ1(K ,3i )

)
− 3 j

(
γ

λ1(K ,3)

)j

=
vol K

2n−1 det3
(γ n
− γ n−1 β − γ jα− ρ),

with

β = 6n−1 det3
vol K

( s∑
i=1

1
λ1(K ,3i )

)
, α =

3 j

λ1(K ,3) j
2n−1 det3

vol K
, ρ = 2n det3

vol K
.

Now setting γ = β +
(
α+ρ

n− j
n
) 1

n− j we see as in the proof of Theorem 1.1 that

(2-8) γ n
− γ n−1β − γ jα− ρ = γ j(γ n− j

−βγ n− j−1
−α

)
− ρ

> γ jρ(n− j)/n
− ρ > 0.

Since γ > β + ρ1/n , which is, by the proof of Theorem 1.1, an upper bound on
λ1(K ,3), we also have γ >λ1(K ,3) and so we know λ j+1

(
K ,3\

⋃s
i=13i

)
<γ ,
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by (2-8). By the definition of γ we get the required upper bound with respect to
the normalization λ1(K ,3)= 1. �

An upper bound on λ j
(
K ,3\

⋃s
i=13i

)
of a different kind involves the so-called

covering radius µ(K ,3) of a convex body K ∈Kn
o and a lattice 3 ∈Ln , rg3= n.

This is the smallest positive number µ such that any translate of µK contains a
lattice point:

µ(K ,3)=min
{
µ > 0 : (t +µK )∩3 6=∅ for all t ∈ Rn}.

(see [Gruber and Lekkerkerker 1987, Chapter 2, Section 13]).

Proposition 2.2. Under the assumptions of Theorem 1.1 we have

λ1

(
K ,3\

s⋃
i=1
3i

)
≤ (s+ 1)µ(K ,3),

and hence λ j

(
K ,3\

s⋃
i=1
3i

)
≤ (s+ 2)µ(K ,3) for 2≤ j ≤ n.

Proof. Observe that on account of (2-6) the bound for j ≥ 2 follows from the one
for λ1

(
K ,3\

⋃s
i=13i

)
. For the proof in the case j = 1 let Hi = lin3i , 1≤ i ≤ s,

and for brevity we write µ instead of µ(K ,3). By Ball’s solution [1991] of the
affine plank problem for o-symmetric convex bodies, applied to µK , we know that
there exists a t ∈ Rn such that(

t + 1
s+1

µK
)
⊂ µK and int

(
t + 1

s+1
µK

)
∩ Hi =∅, 1≤ i ≤ s,

where int( · ) denotes the interior. Thus, for any ε>0 the body (s+1+ε)µK contains
a translate tε+µK having no points in common with Hi , 1≤ i ≤ s. Hence, together
with the definition of the covering radius, we have (tε+µK )∩3\

⋃s
i=13i 6=∅ and

so λ1
(
K ,3\

⋃s
i=13i

)
≤ (s+1+ε)µ. By the arbitrariness of ε and the compactness

of K the assertion follows. �

For a comparable uniform bound in the much more general adelic setting and,
of course, with a completely different method see [Gaudron and Rémond 2012a,
Proposition 3.2].

3. Avoiding full-dimensional sublattices

If the forbidden sublattices are full-dimensional we cannot argue as in the lower-
dimensional case, since now the number of forbidden lattice points in λK∩

⋃s
i=13i

grows with the same order of magnitude with respect to λ as the number of points
in λK ∩3.

The tool we use in this full-dimensional case is the torus group Rn/3 for a certain
lattice 3. For a more detailed discussion we refer to [Gruber 2007, Section 26].
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We recall that this quotient of abelian groups is a compact topological group and
we may identify Rn/3 with a fundamental parallelepiped P of 3:

Rn/3∼ P = {ρ1b1+ · · ·+ ρnbn : 0≤ ρi < 1},

where b1, . . . , bn form a basis of 3. Hence for X ⊂Rn , the set X modulo 3, X/3,
can be described as

X/3= {y ∈ P : ∃b ∈3 such that y+ b ∈ X} = (3+ X)∩ P,

and we can think of X ⊆ Rn/3 as its image under inclusion into Rn . In the same
spirit we may identify addition ⊕ in Rn/3 with the corresponding operation in Rn ,
i.e., for X1, X2 ⊂ Rn/3 we have

X1⊕ X2 = ((X1+ X2)+3)∩ P.

As Rn/3 is a compact abelian group, there is a unique Haar measure volT ( · ) on
it normalized to volT (R

n/3)= det3, and for a “nice” measurable set X ⊂ Rn or
X ⊂ Rn/3 we have

volT (X/3)= vol((3+ X)∩ P) and volT (X)= vol((3+ X)∩ P).

Regarding the volume of the sum of two sets X1, X2⊂Rn/3 we have the following
classical sum theorem of Kneser and Macbeath [Gruber 2007, Theorem 26.1]:

(3-1) volT (X1⊕ X2)≥min
{
volT (X1)+ volT (X2), det3

}
.

We also note that for an o-symmetric convex body K ∈ Kn
o and λ ≥ 0 the set

3+ λK forms a lattice packing, i.e., for any two different lattice points ā, b̄ ∈3
the translates ā+ λK and b̄+ λK do not overlap if and only if λ ≤ λ1(K ,3)/2.
Hence we know that, for 0≤ λ≤ λ1(K ,3)/2,

(3-2) volT (λK/3)= vol
(
(λK +3)∩ P

)
= λn vol K .

Furthermore, we also need a “torus version” of van der Corput’s result (2-1):

Lemma 3.1. Let K ∈ Kn
o , 3 ∈ Ln , rg3 = n and let 3 ( 3 be a sublattice with

rg3= n, and let m ∈ N with m det3< det3. If volT
( 1

2 K/3
)
≥ m det3 then

#(K/3∩3)≥ m+ 1;

i.e., K contains at least m + 1 lattice points of 3 belonging to different cosets
modulo 3.

Proof. By the compactness of K and the discreteness of lattices we may assume
volT

( 1
2 K/3

)
> m det3. Let P be a fundamental parallelepiped of the lattice

3. Then by assumption we have for the measurable set X =
( 1

2 K +3
)
∩ P that

vol X >m det3. According to a result of van der Corput [Gruber and Lekkerkerker
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1987, Section 6.1, Theorem 1] we know that there exists pairwise different xi ∈ X ,
1≤ i ≤ m+ 1, such that xi − x j ∈3. By the o-symmetry and convexity of K we
have (X− X)= (K +3)∩ (P− P), and since (P− P)∩3= {0} we conclude that

xi − x j ∈ (K +3)∩3\3, i 6= j.

Hence the m points xi−x1 ∈ K+3, i = 2, . . . ,m+1, belong to different nontrivial
cosets of3 modulo3 and thus #(K/3∩3)≥m+1, where the additional 1 counts
the origin. �

We now state some simple facts on the intersection of full-dimensional sublattices.

Lemma 3.2. Let 3 ∈Ln , 3i ⊆3, 1≤ i ≤ s, rg3i = rg3= n, and let 3=
s⋂

i=1
3i .

Then 3 ∈ Ln with rg3= n, and

max
1≤i≤s

det3i ≤ det3≤ (det3)1−s(det31) · · · (det3s).

Moreover, with m =
s∑

i=1
det3/det3i − s+ 1 we have:

(i) The union
s⋃

i=1
3i is covered by at most m cosets of 3 modulo 3.

(ii) If det3/det3≥ m+ 1 then 3 6=
s⋃

i=1
3i .

Proof. In order to show that 3 is a full-dimensional lattice it suffices to consider
s = 2. Obviously, 31 ∩32 is a discrete subgroup of 3 and it also contains n
linearly independent points, e.g., (det32)a1, . . . , (det32)an , where a1, . . . , an is
a basis of 31. Hence 3 is a full-dimensional lattice; see [Gruber and Lekkerkerker
1987, Section 3.2, Theorem 2]. The lower bound on det3 is clear by the inclusion
3⊆3i , 1≤ i ≤ s. For the upper bound we observe that two points g, h ∈3 belong
to different cosets modulo 3 if and only if g and h belong to different cosets of 3
modulo at least one 3i . There are det3i/ det3 many cosets for each i and so we
get the upper bound.

For (i) we note that since3i is the union of det3/ det3i many cosets modulo3,
the union is certainly covered by

∑s
i=1 det3/det3i =m+ s−1 many cosets of 3

modulo 3. But here we have counted the trivial coset at least s times. Part (ii) is a
direct consequence of part (i). �

Lemma 3.2(ii) implies, in particular, that the union of two strict sublattices can
never be the whole lattice. This is no longer true for three sublattices, as we see in
the next example, which also shows that Lemma 3.2(ii) is not an equivalence.

Example 3.3. Let 3= Z2, and let 31, . . . , 34 ⊂ Z2 be the sublattices

31 = {(z1, z2)
ᵀ
∈ Z2
: z2 ≡ 0 mod 2}, 32 = {(z1, z2)

ᵀ
∈ Z2
: z1 ≡ 0 mod 2},

33 = {(z1, z2)
ᵀ
∈ Z2
: z2 ≡ 0 mod 3}, 34 = {(z1, z2)

ᵀ
∈ Z2
: z1 ≡ z2 mod 2}.
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Then 31 ∪ 32 ∪ 34 = 3 but 31 ∪ 32 ∪ 33 6= 3. Furthermore det3 = 1,
det31 = det32 = det34 = 2, det33 = 3 and

3=31 ∩32 ∩33 = {(z1, z2)
ᵀ
∈ Z2
: z1 ≡ 0 mod 2, z2 ≡ 0 mod 6}

with det3= 12, while
3∑

i=1

det3
det3i

− 1= 15.

We now come to the proof of the full-dimensional case.

Proof of Theorem 1.2. Let 31, . . . , 3s be the full-dimensional forbidden sublattices
of the given lattice 3 and let 3=

⋂s
i=13i . Let

m =min
{ s∑

i=1

det3
det3i

− s+ 1,
det3
det3

}
.

Claim 1. Let λ > 0 with volT
((
λ 1

2 K
)
/3
)
≥ m det3. Then

λ1

(
K ,3\

s⋃
i=1
3i

)
≤ λ.

To verify the claim, we first assume

m =
s∑

i=1

det3
det3i

− s+ 1<
det3
det3

.

By Lemma 3.1, λK contains m+1 lattice points of 3 belonging to different cosets
with respect to 3. By Lemma 3.2 (i),

⋃s
i=13i is covered by at most m cosets of 3

modulo 3, and thus λK contains a lattice point of 3\
⋃s

i=13i .
Next suppose that m = det3/ det3. Then

volT
((
λ 1

2 K
)
/3
)
= det3= volT (R

n/3)

and, in particular, λK contains a representative of each coset of 3 modulo 3. By
assumption there exists a coset containing a point a ∈3\

⋃s
i=13i , and hence all

points of this coset, that is a+3, lie in 3\
⋃s

i=13i .
This verifies the claim and it remains to compute a λ with

(3-3) volT
((
λ 1

2 K
)
/3
)
≥ m det3.

To this end we set λ1 = λ1(K ,3) and we write an arbitrary λ > 0 modulo λ1 in
the form λ= bλ/λ1cλ1+ρλ1, with 0≤ ρ < 1. Hence, in view of the sum theorem
of Kneser and Macbeath (3-1) and the packing property (3-2) of λ1 with respect
to 1

2 K , we may write
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volT
((
λ1

2 K
)
/3
)
= volT

(((⌊
λ

λ1

⌋
λ1
2
+ ρ

λ1
2

)
K
)
/3
)

= volT

((
λ1
2

K
)
/3⊕ · · ·⊕

(
λ1
2

K
)
/3︸ ︷︷ ︸

bλ/λ1c

⊕

(
ρλ1

2
K
)
/3
)

≥min
{(⌊

λ

λ1

⌋
+ ρn

)(
λ1
2

)n
vol K , det3

}
.

Thus, (3-3) is certainly satisfied for a λ with

(3-4)
(⌊

λ

λ1

⌋
+ ρn

)(
λ1
2

)n
vol K =

( s∑
i=1

det3
det3i

− s+ 1
)

det3.

Using that

(3-5)
⌊
λ

λ1

⌋
+ ρn >

λ−λ1
λ1

,

we find

λ1

(
K ,3\

s⋃
i=1
3i

)
≤ λ <

2n det3
λn−1

1 vol K

( s∑
i=1

det3
det3i

− s+ 1
)
+ λ1. �

Remark 3.4. The bound in Theorem 1.2 can be slightly improved in lower dimen-
sions by noticing that in (3-5) we may replace (λ−λ1)/λ1 by λ/λ1−ρ+ρ

n . Since
ρ− ρn takes its maximum at ρ = (1/n)1/(n−1) we get in this way

λ1

(
K ,3\

s⋃
i=1
3i

)
≤

2n det3
λ1(K ,3)n−1 vol K

( s∑
i=1

det3
det3i

− s+ 1
)
+ n−1/(n−1) n−1

n
λ1(K ,3).

There is a straightforward way to extend Theorem 1.2 to higher successive
minima which we will first present in the special case s = 1.

Corollary 3.5. Under the assumptions of Corollary 1.3 we have, for 1≤ i ≤ n,

λi (K ,3\31)≤
2n det3

λ1(K ,31)n−1 vol K
+ λ1(K ,3)+ λi (K ,3).

Proof. By Corollary 1.3 it suffices to show λi (K ,3\31)≤λ1(K ,3\31)+λi (K ,3)
for i = 2, . . . , n. To this end let a ∈ λ1(K ,3\31)K ∩3\31 and let b1, . . . , bn

be linearly independent with b j ∈ λ j (K ,3)K ∩3, j = 1, . . . , n. Since not both
b j and a+ b j can belong to the forbidden sublattice 31 we can select from each
pair b j , a+ b j one contained in 3\31, 1≤ j ≤ n. Let these points be denoted by
b̄ j , j = 1, . . . , n. Then a, b̄ j ∈

(
λ1(K ,3\31)+ λ j (K ,3)

)
K , 1≤ j ≤ n.

Now choose k such that a /∈ lin({b1, . . . , bn}\{bk}). Then the lattice points
a, b̄1, . . . b̄k−1, b̄k+1, . . . , b̄n are linearly independent and we are done. �
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For s > 1 the excluded substructure
⋃s

i=13i is, in general, not a lattice anymore
and so we cannot argue as above. Therefore, in this case, we choose the vectors b j ,
1≤ j ≤ n, from the lattice 3=

⋂s
i=13i . Then for a ∈3\

⋃s
i=13i we have

a, a+ b1, a+ b2, . . . , a+ bn ∈3\
s⋃

i=1
3i ,

and analogously to the proof of Corollary 3.5 we get:

Corollary 3.6. Under the assumptions of Theorem 1.2 we have, for 1≤ i ≤ n,

λi

(
K ,3\

s⋃
i=1
3i

)
≤

2n det3
λ1(K ,3)n−1 vol K

( s∑
i=1

det3
det3i

− s+ 1
)
+ λ1(K ,3)+ λi (K ,3).

Remark 3.7. It is also possible to extend lower-dimensional lattices to lattices of
full rank by adjoining “sufficiently large” vectors, i.e., for each3i of rank ni choose
linearly independent zi,ni+1, . . . , zi,n ∈3\3i and consider the lattice 3i spanned
by 3i and zi,ni+1, . . . , zi,n . If zi, j are such that λ j (K ,3i ) is very large for j > ni ,
one can apply the results from Section 3 to the collection 3i , 1≤ i ≤ s. However,
the bounds obtained in this way are in general weaker, with one exception in the
case s = 1 for the bound on λ1(K ,3\31). Here we get

λ1(K ,3\31)≤
2n det3

λ1(K ,31)n−1 vol K
+ λ1(K ,3)

for 31 (3 with rg31 < n, which improves on Theorem 1.1.
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