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RADIAL SOLUTIONS OF NON-ARCHIMEDEAN
PSEUDODIFFERENTIAL EQUATIONS

ANATOLY N. KOCHUBEI

We consider a class of equations with the fractional differentiation operator
Dα , α > 0, for complex-valued functions x 7→ f (|x|K ) on a non-Archime-
dean local field K depending only on the absolute value |·|K . We introduce a
right inverse Iα to Dα , such that the change of an unknown function u= Iαv
reduces the Cauchy problem for an equation with Dα (for radial functions)
to an integral equation whose properties resemble those of classical Volterra
equations. This contrasts much more complicated behavior of Dα on other
classes of functions.

1. Introduction

Pseudodifferential equations for complex-valued functions defined on a non-Archi-
medean local field are among the central objects of contemporary harmonic analysis
and mathematical physics; see the monographs [Vladimirov et al. 1994; Kochubei
2001; Albeverio et al. 2010], and the survey [Zúñiga-Galindo 2011].

The simplest example is the fractional differentiation operator Dα, α > 0, on
the field Qp of p-adic numbers (here p is a prime number). It can be defined as a
pseudodifferential operator with the symbol |ξ |αp where | · |p is the p-adic absolute
value or, equivalently, as an appropriate convolution operator.

Already in this case, as it was first shown by Vladimirov (see [Vladimirov
et al. 1994]), properties of the p-adic pseudodifferential operator are much more
complicated than those of its classical counterpart. It suffices to say that, as an
operator on L2(Qp), it has a point spectrum of infinite multiplicity. Considering a
simple “formal” evolution equation with the operator Dα in the p-adic time variable
t , Vladimirov [2003] noticed that such an equation does not possess a fundamental
solution.

At the same time, it was found in [Kochubei 2008] that some of the evolution
equations of the above kind behave reasonably, if one considers only solutions
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depending on |t |p. This observation has led to the concept of a non-Archimedean
wave equation possessing various properties resembling those of classical hyperbolic
equations, up to the Huygens principle.

In this paper we consider the Cauchy problem for a class of equations like

(1-1) Dαu+ a(|x |p)u = f (|x |p), x ∈Qp,

assuming that a solution is looked for in the class of radial functions, u = u(|x |p);
the precise definition of Dα and assumptions on a, f are given below. This Cauchy
problem is reduced to an integral equation resembling classical Volterra equations. It
turns out that (1-1) and its generalizations considered on radial functions constitute
p-adic counterparts of ordinary differential equations.

2. Preliminaries

2.1. Local fields. Let K be a non-Archimedean local field, that is, a nondiscrete
totally disconnected locally compact topological field. It is well known that K is
isomorphic either to a finite extension of the field Qp of p-adic numbers (if K has
characteristic 0), or to the field of formal Laurent series with coefficients from a
finite field, if K has a positive characteristic. For a summary of main notions and
results regarding local fields see, for example, [Kochubei 2001].

Any local field K is endowed with an absolute value | · |K , such that |x |K = 0 if
and only if x = 0, |xy|K = |x |K · |y|K , |x + y|K ≤max(|x |K , |y|K ). Set

O = {x ∈ K : |x |K ≤ 1}, P = {x ∈ K : |x |K < 1}.

Then O is a subring of K , and P is an ideal in O containing such an element β
that P = βO . The quotient ring O/P is actually a finite field; denote by q its
cardinality. We will always assume that the absolute value is normalized, that is
|β|K = q−1. The normalized absolute value takes the values q N , N ∈ Z. Note that
for K =Qp we have β = p and q = p; the p-adic absolute value is normalized.

Denote by S ⊂ O a complete system of representatives of the residue classes
from O/P . Any nonzero element x ∈ K admits the canonical representation in the
form of the convergent series

(2-1) x = β−n(x0+ x1β + x2β
2
+ · · · )

where n ∈ Z, |x |K = qn , x j ∈ S, x0 /∈ P . For K = Qp, one may take S =
{0, 1, . . . , p− 1}.

The additive group of any local field is self-dual; that is, if χ is a fixed nonconstant
complex-valued additive character of K , then any other additive character can be
written as χa(x)= χ(ax), x ∈ K , for some a ∈ K . Below we assume that χ is a
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rank zero character, that is χ(x)≡ 1 for x ∈ O , while there exists such an element
x0 ∈ K that |x0|K = q and χ(x0) 6= 1.

This duality is used in the definition of the Fourier transform over K . Denoting
by dx the Haar measure on the additive group of K (normalized in such a way that
the measure of O equals 1) we write

f̃ (ξ)=
∫

K
χ(xξ) f (x) dx, ξ ∈ K ,

where f is a complex-valued function from L1(K ). As usual, the Fourier transform
F can be extended from L1(K ) ∩ L2(K ) to a unitary operator on L2(K ). If
F f = f̃ ∈ L1(K ), we have the inversion formula

f (x)=
∫

K
χ(−xξ) f̃ (ξ) dξ.

2.2. Integration formulas. As in real analysis, there are many well known formu-
las for integrals of complex-valued functions defined on subsets of a local field.
There exist even tables of such integrals [Vladimirov 2003]. Note that formulas
for integrals on Qp and its subsets, as a rule, carry over to the general case, if one
substitutes the normalized absolute value for | · |p and q for p.

Here we collect some formulas used in this work. Let n ∈ Z, α > 0.∫
|x |K≤qn

|x |α−1
K dx =

1− q−1

1− q−α
qαn,(2-2)

∫
|x |K=qn

|x − a|α−1
K dx =

q − 2+ q−α

q(1− q−α)
|a|αK , |a|K = qn.(2-3)

∫
|x |K≤qn

log |x |K dx =
(

n− 1
q−1

)
qn log q.(2-4)

∫
|x |K=qn

log |x − a|K dx =
[(

1− 1
q

)
log |a|K −

log q
q − 1

]
|a|K , |a|K = qn.(2-5)

∫
|x |K≤qn

dx = qn
;

∫
|x |K=qn

dx =
(

1− 1
q

)
qn.(2-6)

∫
|x |K=qn

x0=k0

dx = qn−1, 0 6= k0 ∈ S(2-7)

(the restriction x0 = k0 is in the sense of the canonical representation (2-1)).
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(2-8)
∫
|x |K=qn

x0 6=k0

dx =
(

1− 2
q

)
qn.

2.3. Test functions and distributions. A function f : K → C is said to be locally
constant, if there exists such an integer l that for any x ∈ K

f (x + x ′)= f (x), whenever |x ′| ≤ q−l .

The smallest number l with this property is called the exponent of local constancy
of the function f .

Let D(K ) be the set of all locally constant functions with compact supports; it is
a vector space over C with the topology of double inductive limit

D(K )= lim
−→

N→∞

lim
−→

l→∞

Dl
N

where Dl
N is the finite dimensional space of functions supported in the ball BN =

{x ∈ K : |x | ≤ q N
} and having the exponents of local constancy ≤ l. The strong

conjugate space D′(K ) is called the space of Bruhat–Schwartz distributions.
The Fourier transform preserves the space D(K ). Therefore the Fourier transform

of a distribution defined by duality acts continuously on D′(K ). As in the case
of Rn , there exists a well developed theory of distributions over local fields; it
includes such topics as convolution, direct product, homogeneous distributions etc
(see [Vladimirov et al. 1994; Kochubei 2001; Albeverio et al. 2010]). In connection
with homogeneous distributions, it is useful to introduce the subspaces of D(K ):

9(K )= {ψ ∈ D(K ) : ψ(0)= 0},

8(K )=
{
ϕ ∈ D(K ) :

∫
K
ϕ(x) dx = 0

}
.

The Fourier transform F is a linear isomorphism from 9(K ) onto 8(K ), thus
also from 8′(K ) onto 9 ′(K ). The spaces 8(K ) and 8′(K ) are called the Lizorkin
spaces (of the second kind) of test functions and distributions respectively; see
[Albeverio et al. 2010]. Note that two distributions differing by a constant summand
coincide as elements of 8′(K ).

3. Fractional differentiation and integration operators

3.1. Riesz kernels and operators generated by them. On a test function ϕ ∈D(K ),
the fractional differentiation operator Dα, α > 0, is defined as

(3-1) (Dαϕ)(x)= F−1[
|ξ |αK

(
F(ϕ)

)
(ξ)
]
(x).
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However Dα does not act on the space D(K ), since the function ξ 7→ |ξ |αK is not
locally constant. On the other hand, Dα

:8(K )→8(K ) and Dα
:8′(K )→8′(K );

see [Albeverio et al. 2010], and that was a motivation to introduce these spaces.
The operator Dα can also be represented as a hypersingular integral operator:

(3-2) (Dαϕ)(x)=
1− qα

1− q−α−1

∫
K
|y|−α−1

K [ϕ(x − y)−ϕ(x)] dy

[Vladimirov et al. 1994; Kochubei 2001]. In contrast to (3-1), the expression in the
right of (3-2) makes sense for wider classes of functions. Below we study this in
detail for the case of radial functions.

The expression in (3-2) is in fact the convolution f−α ∗ϕ, where the Riesz kernel
fs , for complex s /∈ 1+ 2π i

log q Z, is defined first for Re s > 0 as

fs(x)=
|x |s−1

K

0K (s)
, 0K (s)=

1− qs−1

1− q−s ,

and then extended meromorphically to the remaining nonzero values of s as a
distribution from D′(K ):

〈 fs, ϕ〉 =
1− q−1

1− qs−1ϕ(0)+
1− q−s

1− qs−1

[ ∫
|x |K>1

ϕ(x)
dx

|x |1−s
K

+

∫
|x |K≤1

(ϕ(x)−ϕ(0))
dx

|x |1−s
K

]
,

For s = 0, we set f0(x)= δ(x). For s ∈ 1+ 2π i
log q Z, we define

fs(x)=
1− q
log q

log |x |K .

It is well known that fs ∗ ft = fs+t in the sense of distributions from D′(K ), so
long as s, t, s+t /∈ 1+ 2π i

log q Z. If these kernels are considered as distributions from
8′(K ), then fs ∗ ft = fs+t for all s, t ∈ C [Albeverio et al. 2010]. In view of this
identity, it is natural to define the operator D−α, α > 0, setting

(3-3) (D−αϕ)(x)= ( fα ∗ϕ)(x)=
1− q−α

1− qα−1

∫
K
|x − y|α−1

K ϕ(y) dy,

ϕ ∈ D(K ), α 6= 1,

and

(3-4) (D−1ϕ)(x)=
1− q

q log q

∫
K

log |x − y|Kϕ(y) dy.

Then DαD−α = I on D(K ), if α 6= 1. This remains valid on 8(K ) also for α = 1.
The notions and results above are well known; see [Vladimirov et al. 1994;

Albeverio et al. 2010]. We now come to new phenomena, considering the case of
radial functions.
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3.2. Operators on radial functions. Let u be a radial function, that is u= u(|x |K ),
x ∈ K . (In order to make the notation concise, we identify the function x 7→ u(|x |K )
on K with the function |x |K 7→ u(|x |K ) on qZ. This abuse of notation will not lead
to confusion.)

Let us find an explicit expression for Dαu, α > 0. Below we write dα =
(1 − qα)/(1 − q−α−1). For x ∈ K , we denote by x0 the element from S ⊂ O
appearing in the representation (2-1).

Lemma 1. If a function u = u(|x |K ) is such that

(3-5)
m∑

k=−∞

qk
∣∣u(qk)

∣∣<∞, ∞∑
l=m

q−αl
∣∣u(ql)

∣∣<∞,
for some m ∈ Z, then for each n ∈ Z the expression in the right-hand side of (3-2)
with ϕ(x)= u(|x |K ) exists for |x |K = qn , depends only on |x |K , and

(3-6) (Dαu)(qn)= dα
(
1− 1

q

)
q−(α+1)n

n−1∑
k=−∞

qku(qk)+ q−αn−1 qα+q−2
1−q−α−1 u(qn)

+ dα
(

1− 1
q

) ∞∑
l=n+1

q−αlu(ql).

Proof. We find, using the ultrametric properties of the absolute value, that

(Dαu)(x)= dα

∫
|y|K≥|x |K

|y|−α−1
K [u(|x − y|K )− u(|x |K )] dy.

If |y|K = |x |K and y0 6= x0, the integrand vanishes. Therefore, by (2-6),

(Dαu)(x)= dα
n−1∑

k=−∞

∫
|y−x |K=qk

|x |−α−1
K [u(qk)− u(qn)] dy

+ dα
∞∑

l=n+1

∫
|y|K=ql

q−l(α+1)
[u(qk)− u(qn)] dy

= dα
(

1− 1
q

)
q−(α+1)n

n−1∑
k=−∞

qk
[u(qk)− u(qn)]

+ dα
(

1− 1
q

) ∞∑
l=n+1

q−αl
[u(ql)− u(qn)].

It is clear from this expression that (Dαu)(x), |x |K = qn , depends only on |x |K .
After elementary transformations we get (3-6). �
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Definition. We say that the action Dαu, α > 0, on a radial function u is defined in
the strong sense if the function u satisfies (3-5), so that Dαu(|x |K ), |x |K 6= 0, is
given by (3-6), and there exists the limit

Dαu(0) def
= lim

x→0
Dαu(|x |K ).

It is evident from (3-2) that Dα annihilates constant functions (recall that in
8′(K ) they are equivalent to zero). Therefore D−α is not the only possible choice
of the right inverse to Dα. In particular, we will use

(3-7) (I αϕ)(x)= (D−αϕ)(x)− (D−αϕ)(0).

This is defined initially for ϕ ∈D(K ). It is seen from (3-3), (3-4), and the ultrametric
property of the absolute value that

(I αϕ)(x)=
1− q−α

1− qα−1

∫
|y|K≤|x |K

(
|x − y|α−1

K − |y|α−1
K

)
ϕ(y) dy, α 6= 1,(3-8)

and

(I 1ϕ)(x)=
1− q

q log q

∫
|y|K≤|x |K

(
log |x − y|K − log |y|K

)
ϕ(y) dy.(3-9)

In contrast to (3-3) and (3-4), in (3-8) and (3-9) the integrals are taken, for each
fixed x ∈ K , over bounded sets.

Let us calculate I αu for a radial function u = u(|x |K ). Obviously, (I αu)(0)= 0
whenever I α is defined.

Lemma 2. Suppose that, for some m ∈ Z,

m∑
k=−∞

max
(
qk, qαk)∣∣u(qk)

∣∣<∞ if α 6= 1,

and
m∑

k=−∞

|k|qk
∣∣u(qk)

∣∣<∞ if α = 1.

Then I αu exists, it is a radial function, and for any x 6= 0, we have

(3-10) (I αu)(|x |K )=

q−α|x |αK u(|x |K )+
1− q−α

1− qα−1

∫
|y|K<|x |K

(
|x |α−1

K − |y|α−1
K

)
u(|y|K ) dy

if α 6= 1, and
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(3-11) (I 1u)(|x |K )=

q−1
|x |K u(|x |K )+

1− q
q log q

∫
|y|K<|x |K

(
log |x |K − log |y|K

)
u(|y|K ) dy.

Proof. It is sufficient to compute the integrals over the set {y ∈ K : |y|K = |x |K },
and that is done using the integration formulas (2-3) and (2-5). �

It follows from Lemma 2 that the function I αu is continuous if, for example,
u is bounded near the origin (see an estimate of the integral Iα,0 in the proof of
Theorem 1 below). If |u(|x |K )|≤C |x |−εK , as |x |K ≥1, then |(I αu)(|x |K )|≤C |x |α−εK ,
as |x |K ≥ 1. Here and below we denote by C various (possibly different) positive
constants.

It is easy to transform (3-10) and (3-11) further obtaining series involving u(qn).
Obviously, Dα I α = I on D(K ), if α 6= 1, and on 8(K ), if α = 1. Since by

Lemma 1 and Lemma 2, the operators are defined in a straightforward sense for
wider classes of functions, it is natural to look for conditions sufficient for this
identity.

Lemma 3. Suppose that for some m ∈ Z,
m∑

k=−∞

max(qk, qαk)
∣∣v(qk)

∣∣<∞ and
∞∑

l=m

∣∣v(ql)
∣∣<∞ if α 6= 1,

m∑
k=−∞

|k|qk
∣∣v(qk)

∣∣<∞ and
∞∑

l=m

l
∣∣v(ql)

∣∣<∞ if α = 1.

Then there exists (Dα I αv)(|x |K )= v(|x |K ) for any x 6= 0.

The proof consists of tedious but quite elementary calculations based on the
integration formulas (2-2)–(2-8). A relatively nontrivial tool is the sum formula
for the arithmetic-geometric progression (from [Gradshteyn and Ryzhik 1996,
Formula 0.113]).

Using Lemma 3, we can consider the simplest Cauchy problem

Dαu(|x |K )= f (|x |K ), u(0)= 0,

where f is a continuous function, such that
∞∑

l=m

∣∣ f (ql)
∣∣<∞, if α 6= 1, or

∞∑
l=m

l
∣∣ f (ql)

∣∣<∞, if α = 1.

The unique strong solution is u = I α f ; the uniqueness follows from the fact that
the equality Dαu = 0 (in the sense of D′(K )) implies the equality u = const; see
[Vladimirov et al. 1994] or [Kochubei 2001]. Therefore on radial functions, the
operators Dα and I α behave like the Caputo–Dzhrbashyan fractional derivative
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and the Riemann–Liouville fractional integral of real analysis (see, for example,
[Kilbas et al. 2006]). However the next example illustrates a different behavior of
the “fractional integral” in the non-Archimedean case.

Example. Let f (|x |K )≡ 1, x ∈ K . Then (I α f )(|x |K )≡ 0.

Proof. Let |x |K = qn . If α 6= 1, then by (3-10), (2-2), and (2-6),

(I α f )(|x |K )= q−α|x |αK +
1− q−α

1− qα−1

∫
|y|K≤qn−1

(
|x |α−1

K − |y|α−1
K

)
dy

= q−α|x |αK +
1− q−α

1− qα−1

[
qn−1
|x |α−1

K −
1− q−1

1− q−α
qα(n−1)

]
= q−α|x |αK +

1− q−α

1− qα−1 |x |
α
K

q−1
− q−α

1− q−α
= 0.

If α = 1, then by (3-11), (2-4), and (2-6),

(I 1 f )(|x |K )= q−1
|x |K +

1− q
q log q

∫
|y|K≤qn−1

(
log |x |K − log |y|K

)
dy

= q−1
|x |K +

1− q
q log q

[
qn−1 log |x |K −

(
n− 1− 1

q−1

)
qn−1 log q

]
= |x |K

(
q−1
+

1− q
q log q

(
1+ 1

q−1

)
q−1 log q

)
= 0. �

Of course, these identities in the weaker sense of distributions from 8′(K ) are
trivial, since the constant functions are identified with zero, I α with D−α, and
DαD−α = I .

On the other hand, the example shows that the condition of decay at infinity in
Lemma 3 cannot be dropped.

4. Fractional differential equations

4.1. The Cauchy problem and an integral equation. In the class of radial func-
tions u = u(|x |K ), we consider the Cauchy problem

Dαu+ a(|x |K )u = f (|x |K ), x ∈ K ,(4-1)

u(0)= 0,(4-2)

where a and f are continuous functions, that is, they have finite limits a(0) and
f (0), as x→ 0.

Looking for a solution of the form u = I αv, where v is a radial function, we
obtain formally an integral equation

(4-3) v(|x |K )+ a(|x |K )(I αv)(|x |K )= f (|x |K ), x ∈ K .
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Let us study its solvability. Later we investigate, in what sense a solution of (4-3)
corresponds to a solution of the Cauchy problem (4-1)–(4-2).

It follows from (4-3) that v(0)= f (0). Suppose first that α 6= 1. By Lemma 2,
(4-3) can be written in the form

(4-3′)
[
1+ q−αa(|x |K )|x |αK

]
v(|x |K )

+ cαa(|x |K )
∫
|y|K<|x |K

(
|x |α−1

K − |y|α−1
K

)
v(|y|K ) dy = f (|x |K ), x 6= 0,

where cα = (1− q−α)/(1− qα−1).
Since a is continuous, there exists such N ∈ Z that

q−αa(|x |K )|x |αK < 1 for |x |K ≤ q N .

On the ball BN =
{

x ∈ K : |x |K ≤ q N
}
, the equation takes the form

(4-4) v(|x |K )+
∫
|y|K<|x |K

kα(x, y)v(|y|K ) dy = F(|x |K )

where

kα(x, y)=

{[
1+ q−αa(|x |K )|x |αK

]−1cαa(|x |K )
(
|x |α−1

K − |y|α−1
K

)
if x 6= 0,

0 if x = 0,

and

F(|x |K )=
[
1+ q−αa(|x |K )|x |αK

]−1 f (|x |K ).

If we construct a solution of (4-4) on BN , and if

(4-5) a(|x |K ) 6= −qαm for any x ∈ K , m ∈ Z,

we will be able to construct a solution of (4-4), thus a solution of (4-3), successively
for all x ∈ K .

If α = 1, we use (3-11) and obtain in a similar way the equation (4-4) with

k1(x,y)=

{ 1−q
q log q

[
1+q−1a(|x |K )|x |K

]−1a(|x |K )
(
log |x |K−log |y|K

)
if x 6= 0,

0 if x = 0,

and

F(|x |K )=
[
1+ q−1a(|x |K )|x |K

]−1 f (|x |K ).

It is convenient to extend kα (including the case α = 1) by zero onto BN × BN .

Theorem 1. For each α > 0, the integral equation (4-4) has a unique continuous
solution on BN .
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Proof. Let us consider the integral operator K appearing in (4-4) as an operator on
the Banach space C(BN ) of complex-valued continuous functions on BN . By the
theory of integral operators developed in sufficient generality in [Edwards 1965]
(see Proposition 9.5.17), to prove that K is a compact operator, it suffices to check
that, for any x0 ∈ BN ,

(4-6) lim
x→x0

∫
BN

|kα(x, y)− kα(x0, y)| dy = 0.

The relation (4-6) is obvious for x0 6= 0, and also for α > 1. For x0 = 0, we have
kα(0, y)= 0, and for 0< α < 1, |x |K = qn , n ≥ N , we get by (2-2) and (2-6) that∫

BN

|kα(x, y)| dy = const
∫
|y|K≤qn−1

(
|y|α−1

K − qn(α−1)) dy

= const
(

1− q−1

1− q−α
qα(n−1)

− qn(α−1)qn−1
)
= const |x |αK ,

which tends to 0 as |x |K → 0. For α = 1, we use (2-4) and (2-6) to obtain that∫
BN

|k1(x, y)| dy = const
∫
|y|K≤qn−1

(
log qn

− log |y|K
)

dy

= const
(

nqn−1 log q −
(

n− 1− 1
q−1

)
qn−1 log q

)
= const

q
q − 1

qn−1 log q = const
log q
q − 1

|x |K ,

and this again tends to 0 as |x |K → 0.
Thus, K is compact, and by the Fredholm alternative [Edwards 1965, 9.10.3],

our theorem will be proved if we show that K has no nonzero eigenvalues.
Suppose that Kw = λw, λ 6= 0, for some w ∈ C(BN ). We have |w(y)| ≤ C ,

|kα(x, y)| ≤ M
∣∣|x |α−1

K − |y|α−1
K

∣∣,
if α 6= 1, and

|k1(x, y)| ≤ M(log |x |K − log |y|K ),

if α = 1, |y|K < |x |K .
In subsequent iterations we will deal with the integrals

Iα,m =
∫
|y|K<|x |K

∣∣|x |α−1
K − |y|α−1

K

∣∣ |y|αm
K dy, α 6= 1,

I1,m =

∫
|y|K<|x |K

(
log |x |K − log |y|K

)
|y|mK dy.
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If α > 1, we find denoting |x |K = qn and using (2-2) that

Iα,m = |x |α−1
K

∫
|y|K≤qn−1

|y|αm
K dy−

∫
|y|K≤qn−1

|y|α(m+1)−1
K dy = dα,m |x |

α(m+1)
K

where, for all m = 0, 1, 2, . . .

dα,m =
1− q−1

1− q−αm−1 q−αm−1
−

1− q−1

1− q−αm−α q−αm−α

= (1− q−1)
qα−1
− 1

(1− q−αm−1)(qαm+α − 1)
≤ Aq−αm

for some A > 0. A similar result,

(4-7) Iα,m = dα,m |x |
α(m+1)
K , dα,m ≤ Aq−αm, m = 0, 1, 2, . . .

is obtained for 0 < α < 1, so that (4-7) holds for any α 6= 1. If α = 1, then the
integral I1,m is evaluated as follows. We have

I1,m =

n−1∑
k=−∞

∫
|y|K=qk

(
log |x |K − log |y|K

)
|y|mK dy

=

(
1− 1

q

)
log q

n−1∑
k=−∞

(n− k)qk(m+1)

=

(
1− 1

q

)
log q

∞∑
ν=1

νq(n−ν)(m+1)
= d1,m |x |

α(m+1)
K

where

d1,m =

(
1− 1

q

)
log q

∞∑
ν=1

νq−ν(m+1)
=

(
1− 1

q

)
log q

q−m−1

(1− q−m−1)2
≤ Aq−m

(we have used [Gradshteyn and Ryzhik 1996, Identity 0.231.2]). Thus, we have
proved (4-7) also for α = 1.

Let us return to a function w satisfying the relation Kw = λw, λ 6= 0. Using
(4-7) (separately for α 6= 1 and α = 1) and iterating we find by induction that

(4-8) |w(x)| ≤ C(M |λ|−1 A)m
( m∏

j=0

q−α j
)
|x |αm

K , m = 0, 1, 2, . . . , x ∈ BN .

Since
m∏

j=0
q−α j
= q−

α
2 m(m+1), it follows from (4-8) that w(x)≡ 0. �

4.2. Strong solutions. Below we assume that the inequality (4-5) is satisfied. Then,
as we have mentioned, the solution v of (4-4) is automatically extended in a unique
way from BN onto K . The extended function v satisfies (4-3). Therefore the
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function u = I αv satisfies (4-1) in the sense of distributions from 8′. The initial
condition (4-2) is satisfied automatically.

Let us find additional conditions on a and f , under which this construction gives
a strong solution of the Cauchy problem (4-1)–(4-2). Note that, by Lemma 3 and
Theorem 1, a strong solution is unique in the class of functions u = I αv where v is
a continuous radial function, such that

∑
∞

l=m |v(q
l)|<∞ for some m ∈ Z.

Theorem 2. Suppose that

(4-9) |a(|x |K )| ≤ C |x |−α−εK , | f (|x |K )| ≤ C |x |−εK , ε > 0,C > 0,

as |x |K > 1. Then u = I αv is a strong solution of the Cauchy problem (4-1)–(4-2).

Proof. Let v(|x |K ) be the solution of (4-3′) constructed above for all x ∈ K (for
x = 0, the integral in the right-hand side is assumed equal to zero). For |x |K ≤ q N

the existence of a solution v was obtained from the theory of compact operators;
for larger values of |x |K we use successively (4-3′) itself. Denote

Vm = sup
|x |K≤qm

|v(qm)|.

The sequence {Vm} is nondecreasing.
As we assumed in Theorem 1 only the continuity of the coefficient a, we took N

in such a way that the neighborhood BN = {x : |x |K ≤ q N
} was sufficiently small.

Here we assume (4-5), so that we can take any fixed integer N and obtain a solution
v on BN .

Consider the case where α 6= 1. It follows from (4-5) and (4-9) that∣∣[1+ q−αa(|x |K )|x |αK ]
−1∣∣≤ H

where H > 0 does not depend on x ∈ K . If m ≥ N , then we find from (4-3′) and
the above estimate for Iα,0 that

(4-10) |v(qm)| ≤ cαdα,0 Ha(qm)qαm Vm−1+ H | f (gm)|.

Let us choose m1 ≥ N so big that

cαdα,0 Ha(qm)qαm
≤

1
2 , H | f (gm)| ≤ 1

2 VN−1,

as m≥m1 (that is possible due to (4-9)). Then it follows from (4-10) that Vm≤Vm−1,
as m ≥ m1, hence that the function v is bounded on K .

Now we get from (4-3′) and the assumptions (4-9) that

(4-11)
∣∣v(|x |K )∣∣≤ C |x |−εK , |x |K ≥ 1,

C > 0. A similar reasoning works for α = 1.
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Taking into account the estimate (4-11) we find from Lemma 3 that

(Dα I αv)(|x |K )= v(|x |K ), x 6= 0.

Therefore the function u = I αv satisfies (4-1) for all x 6= 0. Since a, f , and u are
continuous, the equation is satisfied in the strong sense. �

4.3. Generalizations. Instead of (4-2), one can consider an inhomogeneous initial
condition u(0) = u0, u0 ∈ C. Looking for a solution in the form u = u0 + I αv,
v = v(|x |K ), we obtain the integral equation

v(|x |K )+ a(|x |K )(I αv)(|x |K )= f (|x |K )− a(|x |K )u0,

which can be studied under the same assumptions.
All the above results carry over to the case of a matrix-valued coefficient a(|x |K )

and vector-valued solutions. In this case, to obtain a strong solution, it is sufficient
to demand that the spectrum of each matrix a(|x |K ), x ∈ K , does not intersect the
set {−q N

: N ∈ Z}.
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