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A JANTZEN SUM FORMULA
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OVER AFFINE KAC–MOODY ALGEBRAS
AT THE CRITICAL LEVEL

JOHANNES KÜBEL

For a restricted Verma module of an affine Kac–Moody algebra at the criti-
cal level we describe the Jantzen filtration and calculate its character. This
corresponds to the Jantzen sum formula of a baby Verma module over a
modular Lie algebra. This also implies a new proof of the linkage principle
which was already derived by Arakawa and Fiebig.

1. Introduction

To a simple complex Lie algebra g with Cartan subalgebra h, one associates an
affine Kac–Moody Lie algebra yg with Cartan subalgebra yh. The root system R

of g can be embedded into the root system yR of yg. Arakawa and Fiebig [2012a]
introduced the category Oc of restricted representations of yg at the critical level.
Denote by Oc the direct summand of the usual highest weight category O over
yg which consists of modules with critical level. Then Oc is the subcategory of
Oc on which those elements of the Feigin–Frenkel center act by zero which are
homogeneous of degree unequal to zero. We call Oc the restricted category O and
its objects restricted modules.

Conjecturally, the restricted category Oc should have the same structure as the
representation category over a small quantum group or a modular Lie algebra
described in [Andersen et al. 1994]. The standard modules in Oc , which should
correspond to baby Verma modules in the representation categories of [Andersen
et al. 1994], are the so called restricted Verma modules. They are the maximal
restricted quotients of the ordinary Verma modules.

Towards the description of Oc , Arakawa and Fiebig [2012b] confirmed the above
conjecture in the subgeneric case, and Frenkel [2005, Theorem 4.8] did so in the
generic case. Andersen, Jantzen, and Soergel [Andersen et al. 1994, Chapter 6]
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and Kumar and Letzter [1997] computed a Jantzen sum formula for a baby Verma
moduleZ.�/which describes the characters of the Jantzen filtration as an alternating
sum formula of certain characters of baby Verma modules of weight “lower” than �.

We deduce the analogous formula for restricted Verma modules at the critical
level. To be more precise, let � 2 yh� be a weight of critical level. We introduce the
Jantzen filtration

�.�/D�.�/0 ��.�/1 ��.�/2 � � � � ;

and deduce the formulaX
i>0

ch�.�/i D
X

˛2R.�/C

�X
i>0

.ch�.˛#2i�1�/� ch�.˛#2i �//
�
:

Here R.�/C �R denotes the positive roots of the finite root system R which are
integral on �. The notation ˛#i � for i > 0 is defined inductively by ˛#.˛#i�1�/,
where ˛#�D s˛ �� if s˛ ���� and ˛#�D s�˛Cı �� if s˛ ��>�. Here ı2 yR denotes
the smallest positive imaginary root and s˛; s�˛Cı are the reflections corresponding
to the real roots ˛;�˛C ı of the affine Weyl group yW with its dot-action on yh�.

The strategy to prove the Jantzen sum formula is to deduce the subgeneric cases
first and then put these together to get the general result in a very similar manner
as in [Jantzen 1979, Chapters 5.6 and 5.7]. To deduce the subgeneric case we use
a result of [Arakawa and Fiebig 2012b] which states that for � 2 yh� critical and
subgeneric the maximal submodule of �.�/ is isomorphic to the simple module
L.˛#�/ with highest weight ˛#�.

Arakawa and Fiebig [2012a] introduced projective objects in the restricted cat-
egory Oc and a BGGH-reciprocity to deduce the linkage principle for restricted
Verma modules conjectured by Feigin and Frenkel. It states that if the simple
module with highest weight � 2 yh� appears as a subquotient in a Jordan–Hölder
series of �.�/, where � 2 yh� is critical, then � 2 yW.�/ � �. Here yW.�/ denotes
the integral affine Weyl group of the root system yR.�/ corresponding to � with its
dot-action on yh�.

The linkage principle immediately follows from the Jantzen sum formula and
thus gives an independent proof.

2. Preliminaries

In this chapter we shortly introduce the construction of an (untwisted) affine
Kac–Moody algebra starting with a simple Lie algebra. We collect some facts
about the root data, the Weyl group and the invariant bilinear form. The results and
definitions in this section can be found in [Kac 1990] and [Kac and Kazhdan 1979].



JANTZEN SUM FORMULA FOR RESTRICTED VERMA MODULES 373

Affine Kac–Moody algebras. Let g be a simple Lie algebra with a Borel subalgebra
b and a Cartan subalgebra h. We denote by R the root system with positive roots
RC and by … the simple roots. Moreover, denote by W the finite Weyl group and
by � W g� g! C the Killing form.

We take a nonsplit central extension zg of the loop algebra g˝C CŒt; t�1�. As a
vector space, zg is the direct sum .g˝C CŒt; t�1�/˚Cc, where c is a central element.

Adding a derivation operator d with the property Œd; � �D t .@=@t/, we get the
affine Kac–Moody algebra yg associated to g. As a vector space, we have yg D
.g˝C CŒt; t�1�/˚Cc˚Cd and the Lie bracket is given by

Œc; yg�D f0g;

Œd; x˝ tn�D nx˝ tn;

Œx˝ tn; y˝ tm�D Œx; y�˝ tmCnCnım;�n�.x; y/c;

where x; y 2 g and n 2 Z. The Borel subalgebra of yg corresponding to b � g is
given by

ybD .g˝C tCŒt �C b˝C CŒt �/˚Cc˚Cd;

while the corresponding Cartan subalgebra of yg is given by

yhD h˚Cc˚Cd:

Affine roots, Weyl groups and bilinear forms. For a vector space V we denote by
h � ; � i W V � �V ! C the natural pairing with its dual space. Denote by � the usual
ordering on yh�; that is, � � � for �;� 2 yh� if ��� can be expressed as a finite
sum of positive roots. The projection yhD h˚Cc˚Cd ! h induces an embedding
h� � yh�. By this embedding we can consider all finite roots as elements of yh�. We
define two weights ƒı; ı 2 yh� by the relations

hı; h˚Cci D f0g;

hı; d i D 1;

hƒı; h˚Cd i D f0g;

hƒı; ci D 1:

Then the roots of yg with respect to yh are given by yRD yRre[ yRim, where

yRre
WD f˛Cnı j˛ 2R � yR; n 2 Zg

are the real roots, and
yRim
WD fnı jn 2 Z; n¤ 0g

are the imaginary roots. The positive roots yRC, that is, the roots of yb with respect
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to yh, are then given

yRC DRC[f˛Cnı j˛ 2R; n > 0g[ fnı jn > 0g:

Denote by � the highest root of R. Then the set of simple affine roots is given by

y…D…[f�� C ıg � yRC:

For a real root ˛ 2 yRre we denote by ˛_ 2 yh its coroot which is uniquely defined
by the properties ˛_ 2 Œyg˛; yg�˛� and h˛; ˛_i D 2.

We denote by yW� Gl.yh�/ the affine Weyl group of the root system yR, which is
the subgroup generated by the reflections s˛ W yh�!yh�, � 7! �� h�; ˛_i˛, where
˛ 2 yRre is a real root. We can identify the finite Weyl group W with the subgroup
of yW generated by the reflections s˛ corresponding to finite roots ˛ 2R. Then W

stabilizes the subspace h� � yh�.
Let � WD 1

2

P
˛2RC

˛ be the half-sum of positive finite roots. We then set

� WD �C h_ƒı;

where h_ is the dual Coxeter number of g. Then h�; ˛_i ¤ 0 for all ˛ 2 yRre and
h�; ci ¤ 0 as well. We can now define the �-shifted dot-action of yW on yh� by

w �� WD w.�C �/� �;

where w 2 yW and � 2 yh�.
The Killing form � on the simple Lie algebra g extends to a bilinear form

. � j � / W yg�yg! C which is given by the equations

.x˝ tn jy˝ tm/D ın;�m�.x; y/;

.c j g˝C CŒt; t�1�˚Cc/D f0g;

.d j g˝C CŒt; t�1�˚Cd/D f0g;

.c j d/D 1;

for x; y 2 g and m; n 2 Z. It is nondegenerate, symmetric and invariant, i.e.,
.Œx; y� j z/D .x j Œy; z�/ for all x; y; z 2 yg. Furthermore, it induces a nondegenerate
bilinear form on the affine Cartan subalgebra and thus an isomorphism � W yh�!� yh�

which coincides with the isomorphism h �!� h� induced by the Killing form, when
restricted to the finite Cartan subalgebra, and which sends c to ı and d to ƒı. So
the induced form on yh� is given by

.˛ jˇ/D �.˛; ˇ/;

.ƒı j h
�
˚Cƒı/D f0g;

.ı j h�˚Cı/D f0g;

.ƒı j ı/D 1;
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for ˛; ˇ 2 h� and � the induced Killing form on h�. The induced form is invariant
under the linear action of the affine Weyl group, i.e.,

.w.�/ jw.�//D .� j�/

for �;� 2 yh�, w 2 yW.

3. Verma modules

For a Lie algebra a we denote by U.a/ its universal enveloping algebra. For � 2 yh�

let C� be the one-dimensional representation of U.yb/ on which yh acts by the
character � and Œyb; yb� by zero. Then the Verma module with highest weight � is
defined by

�.�/ WD U.yg/˝
U.yb/ C�:

It has a unique simple quotient, which we denote by L.�/, and both modules are
highest weight modules with highest weight �.

Deformed Verma modules. Denote by yS WD S.yh/D U.yh/ the symmetric algebra
over the vector space yh and by S D S.h/ the symmetric algebra over the vector
space h. Then the projection yh! h induces a homomorphism yS ! S and equips
S with an yS -algebra structure. We call a commutative, unital, noetherian yS -algebra
with structure morphism � W yS ! A a deformation algebra.

For a Lie algebra a we set aA WD a ˝C A. Then we can identify .yhA/� D
HomA.yhA; A/ with yh�˝CA and any weight � 2 yh� induces a weight �˝ 1 2 yh�A,
which we simply denote by � again. In this way, the composition yh ,! yS �

! A

induces the canonical weight � 2 yh�A.
For � 2 yh� let A� be the ybA-module which is A as an A-module and on which yh

acts via the character �C � and Œyb; yb� by zero. We then define the deformed Verma
module with highest weight � by

�A.�C �/ WD U.ygA/˝U.ybA/A�:

For an yhA-module M and � 2 yh� we define the deformed weight space of � by

M� WD fm 2M jHmD .�C �/.H/m for all H 2 yhAg:

Then the deformed Verma module �A.�C �/ decomposes as yhA-module into the
direct sum of its weight spaces �A.�C�/� with �2 yh�, such that �A.�C�/�¤ 0
implies �� �.

If A! A0 is a homomorphism of deformation algebras with structure maps
� W yS ! A and � 0 W yS ! A! A0, then

�A.�C �/˝AA
0
Š�A0.�C �

0/:
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Note that for � W yS ! C, the surjection on the quotient C Š yS=yh yS , we have
�C.�C �/Š�.�/.

Characters. Let ZŒyh��D
L
�2yh�

Ze� be the group algebra of yh�. We define a certain
completion by

bZŒOh���
Y
�2yh�

Ze�

to be the subgroup of elements .c�/ with the property that there exists a finite
subset f�1; : : : ; �ng � yh� such that c� ¤ 0 implies �� �i for at least one i . Let
M 2 yg-mod be semisimple over yh with the properties that each weight space M� is
finite-dimensional and that there exists �1; : : : ; �n 2 yh� such that M� ¤ 0 implies
�� �i for at least one i . We define the character of M as element in bZŒOh�� given
by the formal sum

chM WD
X
�2yh�

.dimCM�/e
�:

We define the generalized Kostant partition function P W Z yRC! N by

P.�/ WD

�
dimC�.0/� if � 2 N yRC;

0 otherwise:

The name partition function comes from the combinatorial description of the
formula

ch�.�/D
Y
˛2 yRC

.1C e�˛C e�2˛C � � � /dimyg˛

(compare [Kac 1990, Section 9.7]).

4. Restricted Verma modules

An equivalence relation. For a deformation algebra A with canonical weight � W
yhA!A, we extend the bilinear form . � j � / W yh��yh�!C to anA-linear continuation
. � j � /A W yh

�
A �
yh�A! A.

Let AD K be a field. For �; � 2 yh� we write � �K � if there exists n 2 N and
˛ 2 yRC such that 2.�C�C� j˛/KD n.˛ j˛/K and �D��n˛. We now denote by
�K the partial ordering on yh� which is generated by such tuples � �K �. Then �K

is a refinement of the usual ordering � on yh�. We denote by �K the equivalence
relation on yh� which is generated by �K.

Let LK.� C �/ be the unique simple quotient of �K.� C �/ and denote by
Œ�K.�C �/ W LK.�C �/� the number of subquotients of a composition series of
�K.�C �/ which are isomorphic to LK.�C �/.
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Theorem 4.1 [Kac and Kazhdan 1979, Theorem 2]. We have

Œ�K.�C �/ W LK.�C �/�¤ 0

if and only if ��K �.

Remark 4.2. From [Rocha-Caridi and Wallach 1982, Theorem 15] we know that
Œ�K.�C�/ WLK.�C�/�¤ 0 if and only if there exists an embedding�K.�C�/ ,!

�K.�C �/. Thus Theorem 4.1 also contains information about embeddings of
Verma modules.

For � 2 yh� we define the integral roots (with respect to � and A) by

yRA.�/ WD f˛ 2 yR j 2.�C �C � j˛/A 2 Z.˛ j˛/Ag;

and the corresponding integral Weyl group by

yWA.�/ WD hs˛ j˛ 2 yRA.�/\ yR
re
i � yW:

We write yRA.�/C D yRC\ yRA.�/ and yR.�/D yRC.�/ in case � W yS ! yS=yh yS Š C

is the quotient map and similarly yW.�/D yWC.�/.

The critical level. For � 2 yh� we define the level of � to be the complex number
�.c/ 2 C. If ��K �, we have �.c/D �.c/. Therefore, the equivalence class ƒ of
� has a well-defined level, and we have �.c/D .� j ı/ for all � 2 yh�.

Lemma 4.3 [Arakawa and Fiebig 2012b, Lemma 4.2]. For ƒ 2 yh�=�K the follow-
ing are equivalent.

(1) We have �.c/D��.c/ for some � 2ƒ.

(2) We have �.c/D��.c/ for all � 2ƒ.

(3) We have �C ı 2ƒ for all � 2ƒ.

(4) We have nı 2 yRK.�/ for all n¤ 0 and � 2ƒ.

We call crit WD ��.c/ the critical level.
Denote by yh�crit the hyperplane which consists of all � 2 yh� with �.c/ D crit.

Then for each � 2 yh�crit we have .�C � j ı/D 0.

Restricted Verma modules. Let � 2 yh� and � W yS ! A be a deformation algebra
which is an integral domain. Denote by Q.A/ its field of fractions and assume that
both structure maps factor through the restriction map yS ! S . This implies that
�.c/D �.d/D 0. We define ��A .�C �/ to be the submodule of �A.�C �/ which
is generated by the images of all homomorphisms �A.��nıC �/!�A.�C �/

for n 2N>0. Since �.c/D �.d/D 0, we have .� j ı/D 0, and by Theorem 4.1 and
its remark there is an injective map �Q.A/.��nıC �/ ,!�Q.A/.�C �/ for every
n > 0 and � critical. But by our assumption on A, this also induces an injective
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map �A.��nıC �/ ,!�A.�C �/. If � is noncritical, we get ��A .�C �/D f0g.
We now define the restricted Verma module as the quotient

�A.�C �/D�A.�C �/=�
�
A .�C �/:

As in the nonrestricted case, we omit the subscript of the restricted Verma modules
if the deformation algebra is CŠ S=Sh. For example, we write �.�/ instead of
�C.�/.

Remark 4.4. There is an alternative definition of restricted Verma modules. Denote
by V crit.g/ the universal affine vertex algebra at the critical level and denote by
z its center. Then each smooth Œyg; yg�-module M carries the structure of a graded
z-module. By a theorem of Feigin and Frenkel [1992], z yields an action on M by
the graded polynomial ring generated by infinitely many homogeneous elements

ZD CŒp.i/s j i D 1; : : : ; l; s 2 Z�D
M
n2Z

Zn:

Now a theorem of Frenkel and Gaitsgory [2006] shows that for any critical weight
� 2 yh� and n < 0 there is a surjective map Zn! Homyg.�.�Cnı/;�.�//. Thus,
the restricted Verma module �.�/ coincides with the quotient

�.�/res
WD�.�/=

X
n<0

Zn�.�/:

However, we will not use this alternative description of restricted Verma modules
in the rest of this paper.

Let � W yh�� h� be the map induced by h ,!yh. For any subset ƒ�yh� we denote
by ƒ� h� its image under �.

Definition 4.5. Let ƒ 2 yh�crit=�K be a critical equivalence class. We call ƒ

(1) generic if ƒ� h� contains exactly one element;

(2) subgeneric if ƒ� h� contains exactly two elements.

We call any weight contained in a generic (subgeneric, resp.) equivalence class
a generic (subgeneric, resp.) weight. If ƒ is subgeneric, there is a weight � 2 h�

and a finite root ˛ 2R such that ƒD f�; s˛ ��g.
Let � 2 yh�crit be a critical weight. Similarly to the integral roots of � we now

define the finite integral root system (with respect to � and the deformation algebra
A) by

RA.�/ WD yRA.�/\RD f˛ 2R j 2.�C �C � j˛/A 2 Z.˛ j˛/Ag;

and the finite integral Weyl group by

WA.�/D yWA.�/\W:



JANTZEN SUM FORMULA FOR RESTRICTED VERMA MODULES 379

Again we write RA.�/C D RC \RA.�/ and R.�/ D RC.�/ if the deformation
algebra is C. For �2yh�crit and ˛2RA.�/, such that s˛ ��¤�, we have either s˛ ��<�
or s�˛Cı ��<�. We define ˛#� to be the element in the set fs˛ ��; s�˛Cı ��gwhich
is smaller than �. Furthermore, we define inductively ˛#n� WD ˛#.˛#n�1�/. In
case s˛ ��D � we have ˛#�D �.

Now [2012b, Corollary 4.10] gives in our set up the following theorem:

Theorem 4.6. Let � 2 yh�crit and � W yS !K be a deformation algebra with K being
a field. Assume that the structure map � factors through S .

(1) If � is generic, �K.�C �/ is simple.

(2) If � is subgeneric with RK.�/D f˙˛g, we have a short exact sequence

LK.˛#�/ ,!�K.�/� LK.�/:

Note that the term subgeneric implies �¤ ˛#�.

5. The restricted Jantzen sum formula

Andersen et al. [1994, Chapter 6] established a Jantzen sum formula for baby
Verma modules. It relates the sum of the characters of the Jantzen filtration to an
alternating sum of characters of baby Verma modules with smaller highest weights.
We deduce a similar formula for the restricted Verma modules at the critical level.

Theorem 5.1. Let � 2 yh�crit. There is a filtration

�.�/D�.�/0 ��.�/1 ��.�/2 � � � �

with these properties:

(1) �.�/1 is the maximal submodule of �.�/.

(2)
X
i>0

ch�.�/i D
X

˛2R.�/C

�X
i>0

.ch�.˛#2i�1�/� ch�.˛#2i �//
�

.

Note that the sum is taken over all finite, positive, integral roots ˛ 2R.�/C.

The Shapovalov determinant. Let � W yg!yg be a Chevalley-involution and define
ynC WD

L
˛>0 yg˛ and yn� WD

L
˛<0 yg˛ , where yg˛ is the root space of yg corresponding

to the root ˛ 2 yR. There is a decomposition U.yg/D U.yh/˚ .yn�U.yg/CU.yg/ynC/,
and we denote by ˇ W U.yg/! S.yh/ the projection to the first summand of this
decomposition.

The Shapovalov form is now defined as the bilinear pairingF WU.yg/�U.yg/!S.yh/

with F.x; y/Dˇ.�.x/y/. It is symmetric and contravariant, i.e., for u; x; y 2U.yg/
we have F.�.u/x; y/D F.x; uy/. For � 2 N yRC we denote by F� the restriction
of F to the weight space U.yn�/��. Recall the isomorphism � W yh �!� yh� induced
by the bilinear form . � j � / on yh and define h˛ WD ��1.˛/ for any root ˛ 2 yR.
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Theorem 5.2 [Kac and Kazhdan 1979, Theorem 1]. The determinant of

F� W U.yn�/�� �U.yn�/��! S.yh/

is, up to multiplication with a nonzero complex number, given by the formula

detF� D
Y
˛2 yRC

1Y
nD1

�
h˛C �.h˛/�n

.˛ j˛/

2

�mult.˛/�P.��n˛/

;

where P is Kostant’s partition function and mult.˛/ WD dimC.yg˛/.

We equip the polynomial ring CŒt � in one variable with two different structures
of a deformation algebra. The first one is given by the map �1 W yS� CŒt �, where
�1 is induced by the inclusion of the line C� � yh�. The second yS -module structure
�2 W yS� CŒt � is given by the inclusion C� � yh�. Recall that we consider elements
of h� as elements of yh� by the embedding from above. Furthermore, � 2 h�

implies that �2 factors through the restriction map yS� S . For a more intuitive
notation, we follow [Jantzen 1979] and define �CŒt�.�C t�/ WD�CŒt�.�C �1/ and
�CŒt�.�C t�/ WD�CŒt�.�C �2/.

Note that for � 2 yh�crit critical, and since �2.c/ D �2.d/ D t�.c/ D 0, we can
construct the restricted Verma module �CŒt�.�C t�/. Let C.t/ be the quotient field
of CŒt �.

Lemma 5.3. Let �2 yh�crit. Then�C.t/.�C t�/D�CŒt�.�C t�/˝CŒt�C.t/ is simple.

Proof. If we prove that RC.t/.�/D∅, the lemma follows from Theorem 4.6. But
since .�j˛/¤ 0 for all ˛ 2RC, we get 2.�C�C t� j˛/C.t/ … Z.˛ j˛/C.t/ � C for
all ˛ 2RC. �

The Shapovalov form induces symmetric, contravariant bilinear forms on
� yS .�C �

0/ and �S .�C �/, where �0 2 yh�
yS

denote the canonical weight induced
by yh ,! yS and � 2 yh�S denotes its composition with yS � S . Moreover, it in-
duces contravariant forms on all Verma modules �CŒt�.�C t�/, �CŒt�.�C t�/,
�CŒt�.�C t�/, �.�/ and �.�/, which we have to deal with in the rest of this paper.
The contravariance of the forms implies for �.�/ and �.�/ that the radicals of the
forms coincide with the maximal submodules of �.�/ and �.�/.

Restricted Jantzen filtration. Let . � ; � / be the contravariant form on�CŒt�.�C t�/

induced by the Shapovalov form. We first define a filtration on �CŒt�.�C t�/ by

�CŒt�.�C t�/
i
WD fm 2�CŒt�.�C t�/ j .m;�CŒt�.�C t�//� t

iCŒt �g:

The Jantzen filtration on �.�/ is then defined by

�.�/i WD im.�CŒt�.�C t�/
i ,!�CŒt�.�C t�/��.�//;
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where the second map is the specialization t 7! 0. In the same way we get the
Jantzen filtration on �.�/ as it is defined in [Kac and Kazhdan 1979] using the
deformed Verma module �CŒt�.�C t�/.

Notation 5.4. Let �� �. We denote the determinants of the contravariant bilinear
forms on the �-weight spaces �CŒt�.�C t�/�, �CŒt�.�C t�/� and �CŒt�.�C t�/�

by D�Ct�.�C t�/, D�Ct�.�C t�/ and D�Ct�.�C t�/.

For a polynomial P 2 CŒt � denote by ordt .P / the natural number n 2 N with
tnjP but tnC1−P .

Lemma 5.5. For the Jantzen filtrations of the �-weight spaces of the nonrestricted
and restricted Verma modules we have the formulasX

i>0

dimC�.�/
i
� D ordt .D�Ct�.�C t�//

and X
i>0

dimC�.�/
i
� D ordt .D�Ct�.�C t�//:

Proof. By Lemma 5.3 the Shapovalov form of the restricted deformed Verma
module �CŒt�.�/ is nondegenerate. Thus we can apply [Jantzen 1979, Lemma 5.1]
to get both formulas. �

We first want to describe the Jantzen filtration of a restricted Verma module with
a highest weight, which is critical and subgeneric.

Proposition 5.6 [Kübel 2014, Lemma 11]. Let � 2 yh�crit be subgeneric; that is,
R.�/ D f˙˛g for a finite positive root ˛ 2 RC and ˛#� ¤ �. Then the Jantzen
filtration of �.�/ is

�.�/� L.˛#�/� 0;

and we have the alternating sum formulaX
i>0

ch�.�/i D chL.˛#�/D ch�.˛#�/� ch�.˛#2�/C ch�.˛#3�/� � � � :

Proof. The first part of the proposition is [Kübel 2014, Lemma 11]. The second
part follows inductively from Theorem 4.6. �

Recall the canonical weight � W yhS ! S induced by yh � yS � S , and for
� � 0 denote by D���.� � � � �/ the determinant of the contravariant form on
�S .�� �/���� . Let � W S� CŒt � be the algebra homomorphism given by

�.H/ WD .�C �/.H/C t�.H/;
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for all H 2 h. If p 2 S is a prime element and a 2 S , we denote by ordp.a/ the
integer n 2N such that pnja but pnC1−a. By [Jantzen 1979, Chapter 5.6], we get
for a 2 S

(5-1) ordt .�.a//D
X
p

ordp.a/ ordt .�.p//;

where p runs over all classes of associated prime elements of S . As in Lemma 5.3
we see that, for the quotient field Q DQ.S/ of S , the restricted Verma module
�Q.���/Š�S .���/˝SQ is simple. We conclude thatD���.�����/¤ 0 and
also �.D���.�� �� �//¤ 0 for all � 2 N yRC. Combining (5-1) with Lemma 5.5,
we get

(5-2)
X
n>0

ch�.�/n D e�
X
p

ordt .�.p//
X

�2N yRC

ordp.D���.�� �� �//e�� :

We are now able to prove the general case. We follow [Jantzen 1979, Chapter 5.7].

Proof of Theorem 5.1. If � 2 yh�crit fulfills h�C�; ˛_i … Znf0g for any finite positive
root ˛ 2RC, then � is a generic weight and �.�/ is simple, by Theorem 4.6. The
evaluation of the polynomial D���.�� �� �/ 2 S at �C � for � 2 N yRC can be
viewed as the determinant of the contravariant form on the weight space �.�/���
induced by the Shapovalov form. Since the weight spaces are orthogonal to each
other according to the contravariant form, D���.�� �� �/.�C �/ is unequal to
zero for all � 2 N yRC. Otherwise we could construct a proper submodule of �.�/,
which would be a contradiction. D���.� � �� �/ decomposes into a product of
linear factors, and it follows that all prime divisors of D���.�� �� �/ are of the
form ˛_� r , where ˛ 2RC and r 2 Znf0g.

For ˛ 2RC and r 2 Z we define �˛;r 2 bZŒOh�� by

�˛;r D
X

�2N yRC

ord˛_�r.D���.�� �� �//e��:

Because h�; ˛_i ¤ 0 for any ˛ 2 RC, the restriction of ˛_ � r to the curve
.�C �/CC� � yh� is unequal to zero, i.e., in formulas we have

�.˛_� r/D h�C �; ˛_i � r C th�; ˛_i ¤ 0:

If r ¤ h�C �; ˛_i, then ordt .h�C �; ˛_i � r C th�; ˛_i/ D 0. However, for
rDh�C�; ˛_iwe have ordt .h�C�; ˛_i�rCth�; ˛_i/D1. Now ˛_�h�C�; ˛_i
can only be a prime divisor of D���.�� �� �/ if ˛ 2R.�/C. Applying formula
(5-2) we conclude that

(5-3)
X
i>0

ch�.�/i D
X

˛2R.�/C

�˛;h�C�;˛_ie
�:
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Let ˛ 2R.�/C. Perturbing the weight � in the hyperplane that contains � and is
parallel to the reflection hyperplane corresponding to ˛, we find a weight � 2 yh�crit
such that h�C�; ˛_iDnDh�C�; ˛_i and h�C�; ˇ_i …Z for all ˇ 2R.�/Cnf˛g.
Thus, we’ve found a subgeneric weight � with R.�/D f˙˛g and �˛;h�C�;˛_i D
�˛;h�C�;˛_i. But by Proposition 5.6, the Jantzen filtration of �.�/ is given by

�.�/� L.˛#�/� 0:

We conclude using (5-3):

�˛;ne
�
D chL.˛#�/D

X
i>0

�
ch�.˛#2i�1�/� ch�.˛#2i�/

�
:

Now the choice of � implies that e��� ch �.˛#n�/D ch �.˛#n�/. Thus, we
conclude

�˛;ne
�
D

X
i>0

�
ch�.˛#2i�1�/� ch�.˛#2i �/

�
:

Since we can apply this to any root ˇ 2R.�/C we can use (5-3) once more to get
the formula in Theorem 5.1. �

As a consequence of Theorem 5.1 we get the linkage principle for restricted
Verma modules at the critical level in the same way as in [Andersen et al. 1994,
Chapter 6] or [Kumar and Letzter 1997, Theorem 10.3]. The linkage principle was
already proved in [Arakawa and Fiebig 2012a] introducing restricted projective
objects in the restricted category O over the Lie algebra yg. Our proof, however,
avoids the rather complicated construction of restricted projective objects.

Corollary 5.7 [Arakawa and Fiebig 2012a, Theorem 5.1]. Let � 2 yh�crit and � 2 yh�.
Then Œ�.�/ W L.�/�¤ 0 implies � 2 yW.�/ �� and �� �.

Proof. The statement is obvious for �D�, and it is also clear that Œ�.�/ WL.�/�¤ 0
implies �� �. We use induction on ��� and assume �<�. If Œ�.�/ WL.�/�¤ 0,
then also Œ�.�/1 W L.�/� ¤ 0 since �.�/1 � �.�/ is the maximal submodule.
But then the restricted Jantzen sum formula implies that L.�/ has to appear as
a subquotient in some �.˛#n�/, where ˛ 2 R.�/C and n > 0. Our induction
assumption then implies � 2 yW.˛#n�/ � .˛#n�/, but the definition of ˛#� implies
yW.˛#n�/ � .˛#n�/D yW.�/ � .�/. �
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