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NOTES ON THE EXTENSION OF THE
MEAN CURVATURE FLOW

YAN LENG, ENTAO ZHAO AND HAORAN ZHAO

In this paper, we present several new curvature conditions that assure the
extension of the mean curvature flow on a finite time interval, which im-
prove some known extension theorems.

1. Introduction

Let F0 : Mn
→ N n+d be a smooth isometric immersion from an n-dimensional

closed (compact and without boundary) Riemannian manifold M to an (n + d)-
dimensional Riemannian manifold N . Consider a one-parameter family of smooth
isometric immersions F : M ×[0, T )→ N satisfying

(1-1)

{ ∂

∂t
F(x, t)= H(x, t),

F(x, 0)= F0(x),

where H(x, t) is the mean curvature vector of Ft(M) and Ft(x) = F(x, t). Set
Mt = Ft(M). We call F : M × [0, T )→ N the mean curvature flow with initial
value F0 : M→ N .

The mean curvature flow is a (degenerate) quasilinear parabolic evolution equa-
tion, and one can obtain the short-time existence either by the Nash–Moser implicit
function theorem or by the DeTurck trick to modify the mean curvature flow equation
to a strongly parabolic equation. Without any special assumption on M0, the mean
curvature flow (1-1) will in general develop singularities in finite time, characterized
by blowing up of the second fundamental form A.

Theorem 1.1 [Huisken 1984; 1986; Wang 2001]. Suppose T < ∞ is the first
singular time for a closed mean curvature flow in a Riemannian manifold with
bounded geometry. Then we have

lim
t→T

sup
Mt

|A| =∞.
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From Theorem 1.1, we see that if supMt×[0,T ) |A| is bounded, then the mean
curvature flow can be extended past the time T . Recently, Le and Šešum [2011]
and Liu, Xu, Ye and Zhao [Liu et al. 2011; Xu et al. 2011a; 2011b] obtained some
integral conditions to extend the mean curvature flow. Define a (0, 2)-tensor B
on M in a local orthonormal frame field by Bi j = 〈H, hi j 〉. Cooper obtained the
following characterization of the singular time.

Theorem 1.2 [Cooper 2011]. Suppose T <∞ is the first singular time for a closed
mean curvature flow in a Riemannian manifold with bounded geometry. Then we
have

lim
t→T

sup
Mt

|B| =∞.

Similarly, we see from Theorem 1.2 that if supMt×[0,T ) |B| is bounded, then the
mean curvature flow can be extended past the time T .

In the present paper, we make an improvement of Theorems 1.1 and 1.2 by
considering the integral of |B| on the time interval. More precisely, we prove the
following theorem.

Theorem 1.3. Let Ft : Mn
→ N n+d be the mean curvature flow solution of closed

submanifolds on a finite time interval [0, T ) and assume N has bounded geometry.
If the function f (x) :=

∫ T
0 |B|(x, t) dt is continuous on M , then the mean curvature

flow can be extended past the time T .

By the dominated convergence theorem and Theorem 1.3, we obtain the following
result, which recovers Theorems 1.1 and 1.2.

Theorem 1.4. Suppose T <∞ is the first singular time for a closed mean curvature
flow in a Riemannian manifold with bounded geometry. Then we have∫ T

0
sup
Mt

|B|(t) dt =∞.

Analogous extension theorems for the Ricci flow have been proved recently
[Wang 2012; He 2014]. Some general regularity results have been obtained by
Cheeger, Haslhofer and Naber [Cheeger et al. 2013] and Ecker [2013], among
others. To prove our theorems we combine the ideas in [Cooper 2011] and [He
2014]. First, by a suitable blow-up argument we get a minimal submanifold in
Euclidean space. Second, we prove that the volume of geodesic balls in this minimal
submanifold is less than the volume of geodesic balls with same radius. By the
expansion for the volume of geodesic balls, we see that this minimal submanifold
is in fact totally geodesic at the base point.
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2. Preliminaries

Let Mn be an n-dimensional submanifold isometrically immersed in an (n+ d)-
dimensional Riemannian manifold N n+d . Let A and H be the second fundamental
form and the mean curvature vector of M in N , respectively. Define a (0, 2)-
tensor B from A and H by B = 〈A, H〉. Choose a local orthonormal frame field
{eA}

n+d
A=1 in N n+d such that each ei , i = 1, . . . , n, is tangent to M and let {ωA}

n+d
A=1

be the dual frame field of {eA}
n+d
A=1. Then A, H and B can be written as

A =
n∑

i, j=1

n+d∑
α=n+1

hαi j ωi ⊗ω j ⊗ eα =
∑
i, j

hi j ωi ⊗ω j , hi j =

n+d∑
α=n+1

hαi j eα,

H =
∑
α

Hαeα, Hα
=

n∑
i=1

hαi i ,

B =
n∑

i, j=1

Bi j ωi ⊗ω j , Bi j =

n+d∑
α=n+1

Hαhαi j .

Let F :M×[0, T )→ N be a mean curvature flow solution with initial immersion
F0 :M→ N . Denote by g(t) and dµ(t) the induced metric and the volume form on
M . Under the mean curvature flow, g(t) and dµ(t) satisfy the following evolution
equations.

∂

∂t
g(t)=−2B(t),(2-1)

∂

∂t
dµ(t)=−|H |2dµ(t).(2-2)

3. Proof of Theorem 1.3

Now we give the proof of Theorem 1.3.

Proof. We argue by contradiction. Suppose that T is the maximal existence time.
Then by Theorem 1.1 we see that limt→T supMt

|A| = ∞. Choose a sequence of
points (Oi , ti ) ∈ M ×[0, T ), i = 1, 2, . . . , such that limi→∞ ti = T and

|A|2(Oi , ti )= max
(x,t)∈M×[0,ti ]

|A|2(x, t)→∞ as i→∞.

Set Qi = |A|2(Oi , ti ) and we suppose Qi ≥ 1 and Qi ti ≥ 1. Denote by h the
Riemannian metric on N . We consider the rescaled flows for t ∈ [0, 1]

Fi (t)= F
(

t − 1
Qi
+ ti

)
: (M, gi (t))−→ (N , Qi h),

where gi (t)= Fi (t)∗(Qi h) is the induced metric on M . Then for each i , Fi is also
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a solution of the mean curvature flow on time interval [0, 1]. Denote by Mi the
manifold M with metric gi (t). It follows from [Chen and He 2010] that there is a
subsequence of {(Mi , gi (t), Oi ) : i = 1, 2, . . . } which converges to a Riemannian
manifold (M∞, g∞(t), O∞), and the corresponding subsequence of immersions
Fi (t) converges to an immersion F∞(t) : M∞→ Rn+d , t ∈ [0, 1]. Note that F∞ is
also a solution of the mean curvature flow on time interval [0, 1].

We first show that for any t ∈ [0, 1], M∞ is a minimal submanifold in Rn+d . Let
B∞( · , t) be the (0, 2)-tensor for F∞(t). In fact, we prove the following:

Lemma 3.1. B∞(t)= 0 for t ∈ [0, 1].

Proof. By the continuity assumption on

f (x) :=
∫ T

0
|B|(x, t) dt

and the compactness of M , we can use elementary arguments to prove that

lim
t→T

∫ T

t
|B|(x, t) dt = 0.

First, we have

gi (t)= Fi (t)∗(Qi h)= F
(

t − 1
Qi
+ ti

)∗
(Qi h)

= Qi F
(

t − 1
Qi
+ ti

)∗
(h)= Qi g

(
t − 1
Qi
+ ti

)
.

Denote by Ai ( · , t), Hi ( · , t) and Bi ( · , t) the second fundamental form, the
mean curvature and the (0, 2)-tensor of Fi (t), respectively. It is easy to see from
the definition of second fundamental form that

Ai ( · , t)= A
(
· ,

t − 1
Qi
+ ti

)
.

Since the mean curvature is the trace of the second fundamental form, we have

Hi ( · , t)= Q−1
i H

(
· ,

t − 1
Qi
+ ti

)
.

So for the (0, 2)-tensor we have

Bi ( · , t)= 〈Ai ( · , t), Hi ( · , t)〉Qi h

=

〈
A
(
· ,

t − 1
Qi
+ ti

)
, H

(
· ,

t − 1
Qi
+ ti

)〉
h
= B

(
· ,

t − 1
Qi
+ ti

)
.
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From this we see that

|Bi ( · , t)|2gi (t) = 〈Bi ( · , t), Bi ( · , t)〉gi (t)⊗gi (t)

=Q−2
i

〈
B
(
· ,

t−1
Qi
+ti

)
, B
(
· ,

t−1
Qi
+ti

)〉
g((t−1)/Qi+ti )⊗g((t−1)/Qi+ti )

= Q−2
i

∣∣∣∣B(· , t−1
Qi
+ti

)∣∣∣∣2
g((t−1)/Qi+ti )

.

For any y ∈ M∞, there are yi ∈ M , i = 1, 2, . . . , such that limi→∞ yi = y.∫ 1

0
|B|g∞(t)(y, t) dt = lim

i→∞

∫ 1

0
|Bi |gi (t)(yi , t) dt

= lim
i→∞

Q−1
i

∫ 1

0
|B|g((t−1)/Qi+ti )

(
yi ,

t − 1
Qi
+ ti

)
dt

= lim
i→∞

∫ ti

ti−Q−1
i

|B|g(s)(yi , s) ds

= 0.

Hence we have B∞(t)= 0 for each t ∈ [0, 1]. �

Lemma 3.2. The induced metrics g(t) on M are uniformly equivalent and converge
pointwise as t→ T to a continuous positive-definite metric g(T ).

Proof. Under the assumption that f (x)=
∫ T

0 |B|(x, t) dt is continuous, we see that
f (x) is bounded and for any 0≤ τ ≤ θ < T

lim
τ→θ

∫ θ

τ

|B|(x, t) dt = 0

uniformly. Since g(t) satisfies (2-1), we can carry out the same argument as in
[Hamilton 1982] to prove the lemma. �

Let Bg∞(1)(O∞, r) be the geodesic ball of radius r centered at O∞ ∈ M∞
with respect to the metric g∞(1), and Volg∞(1)(Bg∞(1)(O∞, r)) be the volume of
Bg∞(1)(O∞, r). Denote by ωn the volume of the unit ball in Rn .

Lemma 3.3. Volg∞(1)(Bg∞(1)(O∞, r))≤ ωnrn .

Proof. Let Bgi (1)(Oi , r) be the geodesic ball with radius r centered at Oi ∈ Mi with
respect to gi (t) and Volgi (1)(Bgi (1)(Oi , r)) the volume of Bgi (1)(Oi , r). It is easy
to see that

Bgi (1)(Oi , r)= Bg(ti )(Oi , Q−1/2
i r).
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Hence
Volg∞(1)(Bg∞(1)(O∞, r))

rn = lim
i→∞

Volgi (1)(Bgi (1)(Oi , r))
rn

= lim
i→∞

Volgi (1)(Bg(ti )(Oi , Q−1/2
i r))

rn

= lim
i→∞

Qn/2
i Volg(ti )(Bg(ti )(Oi , Q−1/2

i r))
rn

= lim
i→∞

Volg(ti )(Bg(ti )(Oi , Q−1/2
i r))

(Q−1/2
i r)n

.

From Lemma 3.2, we see that for any ε > 0, there is a positive constant δ such
that if t ≥ t0 > T − δ, then (1− ε)g(t0) ≤ g(t) ≤ (1+ ε)g(t0). We may pick ti s
such that ti ≥ t0 ≥ T − δ. From a lemma in [Cooper 2011; Glickenstein 2003] we
see that

lim
i→∞

Volg(ti )(Bg(ti )(Oi , Q−1/2
i r))

(Q−1/2
i r)n

≤ lim
i→∞

Volg(ti )(Bg(t0)(Oi , ((1− ε)Qi )
−1/2r))

(Q−1/2
i r)n

≤ lim
i→∞

Volg(t0)(Bg(t0)(Oi , ((1− ε)Qi )
−1/2r))

(Q−1/2
i r)n

= (1− ε)−n/2 lim
i→∞

Volg(t0)(Bg(t0)(Oi , ((1− ε)Qi )
−1/2r))

(((1− ε)Qi )−1/2r)n
.

Since Qi →∞ as i→∞, we have

lim
i→∞

Volg(t0)(Bg(t0)(Oi , ((1− ε)Qi )
−1/2r))

(((1− ε)Qi )−1/2r)n
= ωn.

Since ε is arbitrary, we see that

Volg∞(1)(Bg∞(1)(O∞, r))
rn ≤ ωn. �

We continue the proof of Theorem 1.3. From the expansion formula for the
volume of small balls (see Theorem 3.98 of [Gallot et al. 1987]) we have

Volg∞(1)(Bg∞(1)(O∞, r))
ωnrn = 1−

R(O∞)
6(n+ 2)

r2
+ o(r2).

Here R(O∞) is the scalar curvature at O∞ ∈ (M∞, g∞(1)). From Lemma 3.3 we
see that

R(O∞)≥ 0.
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This combined with Lemma 3.1 implies that

|A|∞(O∞, 1)= 0.

However, it is seen from the point selecting process that

|A|∞(O∞, 1)= 1.

This is a contradiction, which completes the proof of Theorem 1.3. �

Theorem 3.4. Let Ft : Mn
→ N n+d be the mean curvature flow solution of closed

submanifolds on a finite time interval [0, T ) and assume N has bounded geometry.
Suppose T <∞ is the first singular time. If the function

∫ T
0 |A|(x, t) dt <+∞ is

continuous on M , then we have

lim
t→T

sup
Mt

|H | =∞.

Proof. We suppose |H | ≤ C uniformly for all the existence time. Then∣∣∣∂g
∂t

∣∣∣= 2|B| ≤ 2|H ||A| ≤ 2C |A|.

By the dominated convergence theorem, we know that
∫ T

0 |A|(x, t) dt is continuous
in x . Then by a similar argument as in the proof of Theorem 1.3, we get the
conclusion. �

Remark 3.5. Theorem 3.4 recovers [Cooper 2011, Theorem 5.1].
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