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KATHRYN MANN

In this note, we give an explicit counterexample to the simple loop con-
jecture for representations of surface groups into PSL.2 ; R/. Specifically,
we use a construction of DeBlois and Kent to show that for any orientable
surface with negative Euler characteristic and genus at least 1, there are
uncountably many nonconjugate, noninjective homomorphisms of its fun-
damental group into PSL.2 ; R/ that kill no simple closed curve (nor any
power of a simple closed curve). This result is not new — work of Louder
and Calegari for representations of surface groups into SL.2 ; C/ applies to
the PSL.2 ; R/ case, but our approach here is explicit and elementary.

1. Introduction

The simple loop conjecture, proved by Gabai [1985], states that any noninjective
homomorphism from a closed surface group to another closed surface group has an
element represented by a simple closed curve in the kernel. It has been conjectured
that the result still holds if the target is replaced by the fundamental group of an
orientable 3-manifold (see the problem list in [Kirby 1997]). Although special
cases have been proved (e.g., [Hass 1987; Rubinstein and Wang 1998]), the general
hyperbolic case is still open.

Minsky [2000] asked whether the conjecture holds if the target group is instead
SL.2;C/. This was answered in the negative with the following theorem.

Theorem 1.1 [Cooper and Manning 2011]. Let † be a closed orientable surface of
genus g � 4. Then there is a homomorphism � W �1.†/! SL.2;C/ such that:

(1) � is not injective.

(2) If �.˛/D˙I , then ˛ is not represented by a simple closed curve.

(3) If �.˛/ has finite order, then �.˛/D I .

The third condition implies in particular that no power of a simple closed curve lies
in the kernel.
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Inspired by this, we ask whether a similar result holds for PSL.2;R/, this being
an intermediate case between Gabai’s result for surface groups and Cooper and
Manning’s for SL.2;C/. Techniques of Cooper and Manning’s proof do not seem
to carry over directly to the PSL.2;R/ case — their work involves both a dimension
count on the SL.2;C/ character variety and a proof showing that a specific subvariety
is irreducible and smooth on a dense subset, and complex varieties and their real
points generally behave quite differently. However, we will show here with different
methods that an analog to Theorem 1.1 does hold for PSL.2;R/.

While this note was in progress, we learned of work of Louder and Calegari
(independently in [Louder 2011] and [Calegari 2013]) that can also be applied to
answer our question in the affirmative. Louder shows the simple loop conjecture is
false for representations into limit groups, and Calegari gives a practical way of
verifying no simple closed curves lie in the kernel of a noninjective representation
using stable commutator length and the Gromov norm.

The difference here is that our construction is entirely elementary. We use an
explicit representation found in [DeBlois and Kent 2006] (which uses work from
[Goldman 1988] and [Shalen 1979]), and we verify by elementary means that this
representation is noninjective and kills no simple closed curve. Our end result
parallels that of Cooper and Manning but also include surfaces with boundary and
all genera at least 1:

Theorem 1.2. Let † be an orientable surface of negative Euler characteristic
and of genus g � 1, possibly with boundary. Then there is a homomorphism
� W �1.†/! SL.2;R/ such that:

(1) � is not injective.

(2) If �.˛/D˙I , then ˛ is not represented by a simple closed curve.

(3) In fact, if ˛ is represented by a simple closed curve, then �.˛k/¤ I for any
k 2 Z.

Moreover, there are uncountably many nonconjugate representations satisfying (1)
through (3).

In the case of a nonorientable surface, the appropriate target group is PGL.2;R/,
as the fundamental group of a nonorientable hyperbolic surface can be represented
as a lattice in PGL.2;R/. This again gives an intermediate case between the simple
loop conjecture for representations into surface groups and into PSL.2;C/. We have
the following direct generalization of Theorem 1.2, with essentially the same proof.

Theorem 1.3. Let † be a nonorientable surface of negative Euler characteristic
and of nonorientable genus g�2 that is not the punctured Klein bottle nor the closed
nonorientable genus-3 surface. Then there are uncountably many representations
� W �1.†/! PGL.2;R/ satisfying conditions (1) through (3) of Theorem 1.2.
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See Section 3 for a comment on the exceptional cases of the punctured Klein
bottle and the closed, nonorientable genus-3 surface.

2. Proof of Theorem 1.2

We describe a family of (noninjective) representations constructed in [DeBlois and
Kent 2006] based on a construction from [Goldman 1988]. We will then show that
this family contains infinitely many nonconjugate representations with no simple
closed curve in the kernel.

Let † be an orientable surface of genus g � 1 and negative Euler characteristic,
possibly with boundary. Assume for the moment that † is not the once-punctured
torus — Theorem 1.2 for this case will follow easily later on.

Let c � † be a simple closed curve separating † into a genus-1 subsurface
with single boundary component c and a genus-.g � 1/ subsurface with one or
more boundary components. Let †A denote the genus-.g� 1/ subsurface and †B

the genus-1 subsurface. Finally, we let A D �1.†A/ and B D �1.†B/, so that
�1.†/DA�C B , where C is the infinite cyclic subgroup generated by the element
Œc� represented by the curve c. We assume that the basepoint for �1.†/ lies on c.

Let x 2 B and y 2 B be generators such that B D hx; yi, and that the curve c
represents the commutator Œx; y�. See Figure 1.

Fix ˛ and ˇ in R n f0;˙1g, and following [DeBlois and Kent 2006] define
�B W B! SL.2;R/ by

�B.x/D

�
˛ 0

0 ˛�1

�
; �B.y/D

�
ˇ 1

0 ˇ�1

�
:

We have then

�B.Œx; y�/D

�
1 ˇ.˛2� 1/

0 1

�
;

so �B.Œx; y�/ is invariant under conjugation by the matrix �t WD
�

1
0

t
1

�
. Projecting

these matrices to PSL.2;R/ gives a representation B ! PSL.2;R/ that is upper

†A †B

x

yc

Figure 1. Decomposition of † and curves representing generators
x and y for B .
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triangular, hence solvable, and therefore noninjective. Abusing notation, we let �B

denote this representation.
Now let �A W A ! PSL.2;R/ be Fuchsian such and that the image of the

boundary curve c under �A agrees with �B.Œx; y�/. That such a representation
exists is standard —†A has negative Euler characteristic and therefore admits a
complete hyperbolic structure. The image of Œc� under the corresponding Fuchsian
representation is a parabolic element of PSL.2;R/, so after conjugation we may
assume that it is equal to �B.Œx; y�/, since ˇ.˛2� 1/¤ 0.

Finally, we combine �A with conjugates of �B to get a one-parameter family of
representations �t W �1.†/! PSL.2;R/ as follows. For t 2 R and g 2 �1.†/D

A�C B , let

�t .g/D

�
�A.g/ if g 2 A;
�t ı�B.g/ ı .�t /

�1 if g 2 B:

This representation is well-defined because �B.Œx; y�/D�A.Œx; y�/, and is invariant
under conjugation by �t .

Our next goal is to show that for appropriate choice of ˛, ˇ, and t , the represen-
tation �t satisfies the criteria in Theorem 1.2. The main difficulty will be checking
that no element representing a simple closed curve is of finite order. To do so, we
employ a stronger form of Lemma 2 from [DeBlois and Kent 2006]. This trick
originally comes from the proof of Proposition 1.3 in [Shalen 1979].

Lemma 2.1. Suppose w 2 A �C B is a word of the form w D a1b1a2b2 � � � albl ,
with ai 2 A and bi 2 B for 1 � i � l . Assume that for each i , the matrix �0.ai /

has a nonzero .2; 1/-entry and �0.bi / is hyperbolic. If t is transcendental over the
entry field of �0.A�C B/, then �t .w/ is not of finite order.

By the entry field of a group � of matrices, we mean the field generated over Q

by the collection of all entries of matrices in � .

Remark 2.2. Lemma 2 of [DeBlois and Kent 2006] is a proof that �t .w/ is not
the identity, under the assumptions of Lemma 2.1. We use some of their work in
our proof.

Proof of Lemma 2.1. DeBlois and Kent show by a straightforward induction (we
leave it as an exercise) that under the hypotheses of Lemma 2.1, the entries of
�t .w/ are polynomials in t such that the degree of the .2; 2/-entry is l , the degree
of the .1; 2/-entry is at most l , and the other entries have degree at most l � 1.
Now, suppose that �t .w/ is finite order. Then it is conjugate to a matrix of the
form

�
u
�v

v
u

�
, where u D cos � and v D sin � for � a rational multiple of � . In

particular, it follows from the de Moivre formula for sine and cosine that u and v
are algebraic.



A COUNTEREXAMPLE TO THE SIMPLE LOOP CONJECTURE FOR PSL.2; R/ 429

Now suppose that the matrix conjugating �t .w/ to
�

u
�v

v
u

�
has entries aij . Then

we have

�t .w/D

 
u� .a12a22� a11a21/v .a2

12a
2
11/v

�.a2
22a

2
21/v uC .a12a22C a11a21/v

!
:

Looking at the .2; 2/-entry we see that a12a22Ca11a21 must be a polynomial in t
of degree l . But this means that the .1; 1/-entry is also a polynomial in t of degree l ,
contradicting DeBlois and Kent’s calculation. This proves the lemma.

�
To complete our construction, choose any t 2 R that is transcendental over

the entry field of �0.A �C B/. We want to show that no power of an element
representing a simple closed curve lies in the kernel of �t . To this end, consider
any word w in A�C B that has a simple closed curve as a representative. There are
three cases to check.

Case i: w is a word in A alone. In this case �t .w/ is not finite order, since �t .A/

is Fuchsian and therefore injective.

Case ii: w is a word in B alone. Theorem 5.1 of [Birman and Series 1984] states
thatw can be represented by a simple closed curve only if it has one of the following
forms after cyclic reduction:

1. w D x˙1 or w D y˙1.

2. w D Œx˙1; y˙1�.

3. Up to replacing x with x�1, y with y�1, and interchanging x and y, there is
some n 2 ZC such that w D xn1yxn2y � � � xnsy, where ni 2 fn; nC 1g.

The heuristic for Case 3 of the Birman–Series theorem is shown in Figure 2 — if
w is represented by a simple closed curve and terminates with xnsy, this forces the

p p p

w D x4y w D x4yx5y w D x4yx3y

Figure 2. Simple closed curves on the once punctured torus. As-
sume the puncture is at the vertex, x is represented by a horizontal
loop oriented from left to right, and y is a vertical loop oriented
from bottom to top.
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rest of the curve representing w to wind around the punctured torus in a set pattern.
The figure shows the behavior for ns D 4.

By construction, no word of type 1, 2 or 3 above is finite order, provided that
˛sˇk ¤ 1 for any integers s and k other than zero — indeed, we only need to check
words of type 3, and these necessarily have trace equal to ˛sˇkC˛�sˇ�k for some
s; k¤ 0. Since cyclic reduction corresponds to conjugation, no word in B has finite
order image.

Note also that, in particular, under the condition that ˛sˇk ¤ 1 for s; k ¤ 0, all
type 3 words are hyperbolic. We will use this fact again later on.

Case iii: general case. Ifw is a word including bothA andB , we claim that it can be
written in a form where Lemma 2.1 applies. To write it this way, take a simple curve
 on † that represents w and has a minimal number of (geometric) intersections
with c. We can write  as a concatenation of simple arcs  D 1ı12ı2 � � � nın,
with i � †A and ıi � †B . Since we chose  to have a minimal number of
intersections with c, no arc i (or ıi ) is homotopic in †A (respectively in †B )
to a segment of c— if it were, we could apply an isotopy of † supported in a
neighborhood of the disc bounded by the arc and the segment of c to push the arc
across c and reduce the total number of intersections.

Now choose a proper segment c0 of c that contains the basepoint p and all
endpoints of all i and ıi , and close each of the arcs i and ıi into a simple loop
by attaching a segment of c0. If ai 2 A and bi 2 B are represented by the loops i

and ıi , then a1b1a2b2 � � � anbn D w in �1.†/.
Since no arc i or ıi was homotopic to a segment of c, no ai or bi is represented

by a power of Œc� in �1.†/. We claim that in this case a1b1a2b2 � � � anbn satisfies
the hypotheses of Lemma 2.1. Indeed, since �A is Fuchsian, the only elements with
a nonzero .2; 1/-entry are powers of Œc�, and the Birman–Series classification of
simple closed curves on †b implies that the only simple closed curves which are
not hyperbolic represent Œc� or Œc��1.

It remains only to remark that the representation �t is noninjective and that, by
choosing appropriate parameters, we can produce uncountably many nonconjugate
representations. Noninjectivity follows immediately since �t .B/ is solvable, so the
restriction of �t to B is noninjective. Now, for any fixed ˛ and ˇ (satisfying the
requirement that ˛sˇk ¤ 1 for all integers s; k), varying t among transcendentals
over the entry field of �0.A �C B/ produces uncountably many nonconjugate
representations that are all noninjective, but have no power of a simple closed curve
in the kernel. This concludes the proof of Theorem 1.2, assuming that the surface
was not the punctured torus.

The punctured torus case is now immediate: any representation of the form of
�B where ˛sˇk ¤ 1 for any integers s and k is noninjective and our work above
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shows that no element represented by a simple closed curve has finite order. Fixing
˛ and varying ˇ produces uncountably many nonconjugate representations.

3. Nonorientable surfaces

Recall that the genus of a nonorientable surface † is defined to be the number of
RP2-summands in a decomposition of the surface as †D RP2 # RP2 # � � � # RP2.
A closed, nonorientable genus-g surface has Euler characteristic �D 2�g.

Let † be a nonorientable surface of negative Euler characteristic and nonori-
entable genus g�2 that is not the punctured Klein bottle nor the closed nonorientable
genus-3 surface. The same strategy as in the orientable case can then be used to
produce uncountably many noninjective representations �1.†/! PGL.2;R/ such
that no power of a simple closed curve lies in the kernel. In detail, our assumptions
on † imply that we may decompose † along a (2-sided) curve c into a genus-1
orientable surface †B with one boundary component and a nonorientable surface
†A of negative Euler characteristic.

We define �B exactly as in the orientable case, but now consider the matrices as
elements of PGL.2;R/ rather than PSL.2;R/. We let �A W �1.†A/! PGL.2;R/
be a discrete, faithful representation such that �A.Œc�/D �B.Œc�/. As in the case of
the orientable surface, we may take this to be a representation corresponding to a
complete hyperbolic structure on †. Define �t W �1.†/! PGL.2;R/ by “gluing
together” �A with a conjugate of �B by �t exactly as in the orientable case. The
proof now carries through verbatim, for none of the topological arguments that
we used required orientability of †A. We also reassure the reader (who may be
unfamiliar with lattices in PGL.2;R/) that powers of �A.Œc�/ are indeed the only
elements of the image of �A with 0 as the .2; 1/-entry.

This strategy does not cover the case of the punctured Klein bottle, which cannot
be decomposed with a T 2-summand, nor the closed nonorientable genus-3 surface,
which decomposes as T 2 # RP2. It would be interesting to try to cover this case
in a manner analogous to the punctured torus case of Theorem 1.2 by providing
a classification of simple closed curves on these surfaces. Indeed (as the referee
has pointed out) the punctured Klein bottle case is not too difficult. The closed,
nonorientable genus-3 surface case appears to be more challenging.
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