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TWISTED ALEXANDER POLYNOMIALS OF 2-BRIDGE KNOTS
FOR PARABOLIC REPRESENTATIONS

TAKAYUKI MORIFUJI AND ANH T. TRAN

In this paper we show that the twisted Alexander polynomial associated to a
parabolic representation determines fiberedness and genus of a wide class of
2-bridge knots. As a corollary we give an affirmative answer to a conjecture
of Dunfield, Friedl and Jackson for infinitely many hyperbolic knots.

1. Introduction

The twisted Alexander polynomial was introduced by Lin [2001] for knots in the
3-sphere and by Wada [1994] for finitely presentable groups. It is a generalization
of the classical Alexander polynomial and gives a powerful tool in low-dimensional
topology. A theory of twisted Alexander polynomials has developed rapidly over the
past ten years. One of the most important aspects is the determination of fiberedness
[Friedl and Vidussi 2011b] and genus (the Thurston norm) [Friedl and Vidussi 2012]
of knots by the collection of the twisted Alexander polynomials corresponding to all
finite-dimensional representations. For literature on other applications and related
topics, we refer to the survey paper [Friedl and Vidussi 2011a].

Let K be a knot in S3 and GK its knot group. Namely it is the fundamental
group of the complement of K in S3, GK = π1(S3

\K ). In this paper, we consider
the twisted Alexander polynomial 1K ,ρ(t) ∈ C[t±1

] associated to a parabolic
representation ρ :GK → SL2(C). A typical example is the holonomy representation
ρ0 : GK → SL2(C) of a hyperbolic knot K , which is a lift of a discrete faithful
representation ρ̄0 : GK → PSL2(C) ∼= Isom+(H3) such that H3/ρ̄0(GK ) ∼= S3

\K
where H3 denotes the upper half space model of hyperbolic 3-space (see [Thurston
1997]). Dunfield, Friedl and Jackson [Dunfield et al. 2012] numerically computed
the twisted Alexander polynomial TK (t)=1K ,ρ0(t), which is called the hyperbolic
torsion polynomial, for all hyperbolic knots of 15 or fewer crossings. Based on
these huge computations, they conjectured that the hyperbolic torsion polynomial
determines the knot genus and, moreover, the knot is fibered if and only if TK (t) is
a monic polynomial. This conjecture is nice because it would imply the fiberedness
and genus of a knot is determined by the twisted Alexander polynomial associated
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to a single representation. However it is widely open except for the hyperbolic twist
knots [Morifuji 2012].

The purpose of this paper is to show that the above conjecture is true for a wide
class of 2-bridge knots. Since 2-bridge knots are alternating, their fiberedness and
genus can be determined by the Alexander polynomial [Crowell 1959; Murasugi
1958a; 1958b]. However there seems to be no a priori reason that the same must be
true for the hyperbolic torsion polynomial.

For a prime p and an integer a between 1 and p− 1, we say that a is a primitive
root modulo p if it is a generator of the cyclic group (Z/pZ)∗. Let P2 be the set
of all odd primes p such that 2 is a primitive root modulo p. Note that all primes
p= 2q+1 such that q is a prime≡ 1 (mod 4) are contained in P2; see, for example,
[LeVeque 1977, Theorem 5.6].

Theorem 1.1. Let K be the knot J (k, 2n) as in Figure 1, where k > 0 and n ∈ Z.
For all hyperbolic knots K , the hyperbolic torsion polynomial TK (t) determines
the genus of K . Moreover for k = 2m + 1, k = 2 (twist knot), or k = 2m and
|4mn− 1| ∈ P2, the knot J (k, 2n) is fibered if and only if TK (t) is monic.

As mentioned above, the holonomy representation ρ0 is parabolic, so that
Theorem 1.1 is an immediate corollary of the following theorem.

Theorem 1.2. Let ρ :GK→SL2(C) be a parabolic representation of K = J (k, 2n).
Then:

(1) 1K ,ρ(t) determines the genus of J (k, 2n).

(2) 1K ,ρ(t) determines the fiberedness of J (k, 2n) if k = 2m + 1, k = 2 (twist
knot), or k = 2m and |4mn− 1| ∈ P2.

Remark 1.3. (1) Suppose k = 2m and n > 0. Then 4mn−1 ∈P2 if 4mn−1 is a
prime and 2mn− 1 is a prime ≡ 1 (mod 4).

(2) It is known that the conjugacy classes of parabolic representations into SL2(C)

of the knot J (2m, 2n) can be described as the zero locus of an integral poly-
nomial in one variable. The condition |4mn− 1| ∈ P2 in Theorem 1.2 (hence
Theorem 1.1) assures the irreducibility over Z of this polynomial, see Section 5.
We do not know whether Theorem 1.2(2) holds true for every integer m and n.

This paper is organized as follows. In Section 2, we study nonabelian represen-
tations of the knot J (k, 2n) and give an explicit formula of the defining equation of
the representation space. In Section 3, we investigate parabolic representations of
J (k, 2n). In Section 4, we quickly review the definition of the twisted Alexander
polynomial and some related work on fiberedness and genus of knots. In particular,
we calculate the coefficients of the highest- and lowest-degree terms of the twisted
Alexander polynomial associated to a nonabelian representation of J (k, 2n) and
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Figure 1. The knot K = J (k, l). Here k > 0 and l = 2n (n ∈ Z)

denote the numbers of half twists in each box. Positive numbers
correspond to right-handed twists and negative numbers correspond
to left-handed twists.

give the proof of Theorem 1.2(1). In Section 5, we discuss the fibering problem
and prove Theorem 1.2(2).

2. Non-abelian representations

Let K = J (k, l) be the knot as in Figure 1. Note that J (k, l) is a knot if and only
if kl is even, and is the trivial knot if kl = 0. Furthermore, J (k, l) ∼= J (l, k) and
J (−k,−l) is the mirror image of J (k, l). Hence, in the following, we consider
K = J (k, 2n) for k > 0 and |n|> 0. When k = 2, J (2, 2n) is the twist knot.

In this section we explicitly calculate the defining equation of the nonabelian
representation space of J (k, 2n).

By [Hoste and Shanahan 2004] the knot group of K = J (k, 2n) is presented by
GK = 〈a, b | wna = bwn

〉, where

w =

{
(ba−1)m(b−1a)m for k = 2m,

(ba−1)mba(b−1a)m for k = 2m+ 1.

Let {Si (z)}i be the sequence of Chebyshev polynomials, defined by S0(z)= 1,
S1(z)= z, and Si+1(z)= zSi (z)− Si−1(z) for all positive integers i .

The following lemmas are standard; see, for example, [Tran 2013a, Lemma 2.4]
and [Tran 2013b, Lemma 3.2].

Lemma 2.1. One has S2
i (z)− zSi (z)Si−1(z)+ S2

i−1(z)= 1.

Lemma 2.2. Suppose the sequence {Mi }i of 2× 2 matrices satisfies the recurrence
relation Mi+1 = zMi −Mi−1 for all integers i . Then

Mi = Si−1(z)M1− Si−2(z)M0,(2-1)

Mi = Si (z)M0− Si−1(z)M−1.(2-2)
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A representation ρ :GK → SL2(C) is called nonabelian if ρ(GK ) is a nonabelian
subgroup of SL2(C). Taking conjugation if necessary, we can assume that ρ has
the form

(2-3) ρ(a)= A =
[

s 1
0 s−1

]
and ρ(b)= B =

[
s 0

2− y s−1

]
,

where (s, y)∈C∗×C satisfies the matrix equation W n A−BW n
=0. Here W =ρ(w).

It can be easily checked that y = tr AB−1 holds. Let x = tr A = tr B = s+ s−1.

Lemma 2.3. One has

WA− BW =
[

0 αk(x, y)
(y− 2)αk(x, y) 0

]
,

where

αk(x, y)=
{

1− (y+ 2− x2)Sm−1(y)
(
Sm−1(y)− Sm−2(y)

)
for k = 2m,

1+ (y+ 2− x2)Sm−1(y)
(
Sm(y)− Sm−1(y)

)
for k = 2m+ 1.

Proof. Recall that by the Cayley–Hamilton theorem, M i+1
= (tr M)M i

−M i−1 for
all matrices M ∈ SL2(C) and all integers i .

If k = 2m then by applying (2-1) twice, we have

W A = (BA−1)m(B−1A)m A

= S2
m−1(y)BA−1 B−1AA− Sm−1(y)Sm−2(y)(BA−1A+ B−1AA)+ S2

m−2(y)A.

Similarly,

BW = B(BA−1)m(B−1A)m

= S2
m−1(y)B BA−1 B−1A− Sm−1(y)Sm−2(y)(B BA−1

+ B B−1A)+ S2
m−2(y)B.

Hence, by direct calculations using (2-3), we obtain

WA− BW = S2
m−1(y)(BA−1 B−1AA− B BA−1 B−1A)+ S2

m−2(y)(A− B)

− Sm−1(y)Sm−2(y)(BA−1A− B BA−1
+ B−1AA− B B−1A)

=

[
0 αk(x, y)

(y− 2)αk(x, y) 0

]
,

where

αk(x, y)= (s−2
+ 1+ s2

− y)S2
m−1(y)− (s

−2
+ s2)Sm−1(y)Sm−2(y)+ S2

m−2(y).

Since S2
m−1(y)−ySm−1(y)Sm−2(y)+S2

m−2(y)= 1 (by Lemma 2.1) and x = s+s−1,

αk(x, y)= 1− (y+ 2− x2)Sm−1(y)
(
Sm−1(y)− Sm−2(y)

)
.
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If k = 2m+ 1 then by applying (2-2) twice, we have

WA = (BA−1)m BA(B−1A)m A

= S2
m(y)BAA− Sm(y)Sm−1(y)((BA−1)−1 BAA+ BA(B−1A)−1A)

+ S2
m−1(y)(BA−1)−1 BA(B−1A)−1A

= S2
m(y)BAA− Sm(y)Sm−1(y)(A3

+ B2 A)+ S2
m−1(y)ABA.

Similarly,

BW = B(BA−1)m BA(B−1A)m

= S2
m(y)B BA− Sm(y)Sm−1(y)(B(BA−1)−1 BA+ B BA(B−1A)−1)

+ S2
m−1(y)B(BA−1)−1 BA(B−1A)−1

= S2
m(y)B BA− Sm(y)Sm−1(y)(BA2

+ B3)+ S2
m−1(y)BAB.

Hence, by direct calculations using (2-3), we obtain

WA− BW = S2
m(y)(BAA− B BA)+ S2

m−1(y)(ABA− BAB)

− Sm(y)Sm−1(y)(A3
− BA2

+ B2 A− B2)

=

[
0 αk(x, y)

(y− 2)αk(x, y) 0

]
,

where

αk(x, y)= S2
m(y)− (s

−2
+ s2)Sm(y)Sm−1(y)+ (s−2

+ 1+ s2
− y)S2

m−1(y)

= 1+ (y+ 2− x2)Sm−1(y)(Sm(y)− Sm−1(y)).

This completes the proof of Lemma 2.3. �

The proof of the following lemma is similar to that of Lemma 2.3.

Lemma 2.4. One has

tr W =
{

2+ (y− 2)(y+ 2− x2)S2
m−1(y) for k = 2m,

x2
− y− (y− 2)(y+ 2− x2)Sm(y)Sm−1(y) for k = 2m+ 1.

We are now ready to calculate the expression W n A − BW n as follows. Let
λ= tr W .

Proposition 2.5. One has

W n A− BW n

=

[
0 Sn−1(λ)αk(x, y)− Sn−2(λ)

(y− 2)(Sn−1(λ)αk(x, y)− Sn−2(λ)) 0

]
.
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Proof. By applying (2-1) and Lemma 2.3, we have

W n A− BW n
= Sn−1(λ)(WA− BW )− Sn−2(λ)(A− B)

= Sn−1(λ)

[
0 αk(x, y)

(y− 2)αk(x, y) 0

]
− Sn−2(λ)

[
0 1

y− 2 0

]
.

The proposition follows. �

Proposition 2.5 implies that the assignment (2-3) gives a nonabelian representa-
tion ρ : GK → SL2(C) if and only if (s, y) ∈ C∗×C satisfies the equation

φk,2n(x, y) := Sn−1(λ)αk(x, y)− Sn−2(λ)= 0,

where αk(x, y) and λ = tr W are given by the formulas in Lemmas 2.3 and 2.4
respectively.

The polynomial φk,2n(x, y) is also known as the Riley polynomial [Riley 1984;
Tkhang 1993] of J (k, 2n).

3. Parabolic representations

A representation ρ : GK → SL2(C) is called parabolic if the meridian µ of K is
sent to a parabolic element (i.e., tr ρ(µ)= 2) of SL2(C) and ρ(GK ) is nonabelian.

Let K = J (k, 2n). In this section we will show that if ρ : GK → SL2(C) is a
parabolic representation of the form

ρ(a)= A =
[

1 1
0 1

]
and ρ(b)= B =

[
1 0

2− y 1

]
,

where y is a real number satisfying the equation φk,2n(2, y)= 0, then y > 2.

Lemma 3.1. Suppose x = 2. Then

α2
k (x, y)−αk(x, y)λ+1=

{
(y− 2)3S4

m−1(y) for k = 2m,

(y− 2)((y− 2)Sm(y)Sm−1(y)+ 1)2 for k = 2m+ 1.

Proof. If k = 2m then αk(x, y) = 1− (y + 2− x2)Sm−1(y)(Sm−1(y)− Sm−2(y))
and λ= 2+ (y− 2)(y+ 2− x2)S2

m−1(y) by Lemmas 2.3 and 2.4. Hence, by direct
calculations using x = 2, we have

α2
k (x, y)−αk(x, y)λ+ 1

=
(
−1− S2

m−1(y)+ yS2
m−1(y)− ySm−1(y)Sm−2(y)+ S2

m−2(y)
)
(y− 2)2S2

m−1(y).

Since S2
m−1(y)− ySm−1(y)Sm−2(y)+ S2

m−2(y)= 1 (by Lemma 2.1), we obtain

α2
k (x, y)−αk(x, y)λ+ 1= (y− 2)3S4

m−1(y).
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If k = 2m+ 1 then αk(x, y)= 1+ (y+ 2− x2)Sm−1(y) (Sm(y)− Sm−1(y)) and
λ = x2

− y− (y− 2)(y+ 2− x2)Sm(y)Sm−1(y) by Lemmas 2.3 and 2.4. Hence,
by direct calculations using x = 2, we have

α2
k (x,y)−αk(x,y)λ+1= (y−2)

(
1+(2−y)S2

m−1(y)+(y−2)S4
m−1(y)

+2(y−2)Sm−1(y)Sm(y)+(2−y)yS3
m−1(y)Sm(y)

+(y2
−3y+2)S2

m−1(y)S
2
m(y)

)
.

By replacing yS3
m−1(y)Sm(y) = S2

m−1(y)(S
2
m−1(y)+ S2

m(y)− 1) in this equality,
we obtain

α2
k (x, y)−αk(x, y)λ+ 1= (y− 2) ((y− 2)Sm(y)Sm−1(y)+ 1)2 ,

as claimed. �

Proposition 3.2. Suppose y is a real number satisfying the equation φk,2n(2, y)= 0.
Then y > 2.

Proof. Suppose φk,2n(x, y)= 0. Then Sn−1(λ)αk(x, y)= Sn−2(λ). Hence

1= S2
n−1(λ)− λSn−1(λ)Sn−2(λ)+ S2

n−2(λ)

=
(
α2

k (x, y)−αk(x, y)λ+ 1
)

S2
n−1(λ).

If we also suppose that x = 2 and y is a real number, then the above equality implies
that α2

k (x, y)−αk(x, y)λ+ 1> 0. By Lemma 3.1, we must have y > 2. �

4. Twisted Alexander polynomials

In this section we explicitly calculate the coefficients of the highest- and lowest-
degree terms of the twisted Alexander polynomial associated to a nonabelian
representation of J (k, 2n) and give the proof of Theorem 1.2(1).

Twisted Alexander polynomials. For a knot group GK = π1(S3
\K ), we choose

and fix a Wirtinger presentation

GK = 〈a1, . . . , aq | r1, . . . , rq−1〉.

Then the abelianization homomorphism f : GK → H1(S3
\K ;Z) ∼= Z = 〈t〉 is

given by f (a1)= · · · = f (aq)= t . Here we specify a generator t of H1(S3
\K ;Z)

and denote the sum in Z multiplicatively. Let us consider a linear representation
ρ : GK → SL2(C).

The maps ρ and f naturally induce two ring homomorphisms ρ̃ : Z[GK ] →

M(2,C) and f̃ : Z[GK ] → Z[t±1
] respectively, where Z[GK ] is the group ring of

GK and M(2,C) is the matrix algebra of degree 2 over C. Then ρ̃ ⊗ f̃ defines
a ring homomorphism Z[GK ] → M(2,C[t±1

]). Let Fq denote the free group
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on generators a1, . . . , aq and 8 : Z[Fq ] → M(2,C[t±1
]) the composition of the

surjection Z[Fq ] → Z[GK ] induced by the presentation of GK and the map ρ̃⊗ f̃ :
Z[GK ] → M(2,C[t±1

]).
Consider the (q − 1)× q matrix M whose (i, j)-component is the 2× 2 matrix

8
(
∂ri
∂a j

)
∈ M(2,Z[t±1

]),

where ∂/∂a denotes the free differential calculus. For 1≤ j ≤ q, let us denote by
M j the (q − 1)× (q − 1) matrix obtained from M by removing the j-th column.
We regard M j as a 2(q − 1)× 2(q − 1) matrix with coefficients in C[t±1

]. Then
Wada’s twisted Alexander polynomial of a knot K associated to a representation
ρ : GK → SL2(C) is defined to be a rational function

1K ,ρ(t)=
det M j

det8(1− a j )

and moreover well-defined up to a factor t2n (n ∈ Z). It is also known that if two
representations ρ, ρ ′ are conjugate, then 1K ,ρ(t) = 1K ,ρ′(t) holds. See [Wada
1994] and [Goda et al. 2005] for details.

Remark 4.1. Let ρ : GK → SL2(C) be a nonabelian representation.

(1) The twisted Alexander polynomial1K ,ρ(t) associated to ρ is always a Laurent
polynomial for any knot K [Kitano and Morifuji 2005].

(2) The twisted Alexander polynomial is reciprocal; that is,1K ,ρ(t)= t i1K ,ρ(t−1)

for some i ∈ Z [Hillman et al. 2010; Friedl et al. 2012].

(3) If K is a fibered knot, then1K ,ρ(t) is a monic polynomial for every nonabelian
representation ρ [Goda et al. 2005]. It is also known that the converse holds
for alternating knots [Kim and Morifuji 2012, Remark 4.2].

(4) If K is a knot of genus g, then deg(1K ,ρ(t))≤ 4g− 2 [Friedl and Kim 2006].
Moreover if K is fibered, then the equality holds [Kitano and Morifuji 2005].

We say the twisted Alexander polynomial 1K ,ρ(t) determines the knot genus
g(K ) if deg(1K ,ρ(t))= 4g(K )−2 holds. For a hyperbolic knot K , the hyperbolic
torsion polynomial TK (t) is defined to be 1K ,ρ0(t) for the holonomy representation
ρ0 : GK → SL2(C). We note that it is normalized so that TK (t)= TK (t−1) holds.

Proof of part (1) of Theorem 1.2. It is known that the genus of J (k, 2n), where
k > 1 and |n|> 0, is 1 if k is even, and is |n| if k is odd. Moreover, the genus of
J (1, 2n) (the (2, 2n− 1)-torus knot) is n− 1 if n > 0 and is −n if n < 0.

We first consider the case n > 0. Let r = wnaw−nb−1, where w is as defined in
Section 2. By direct calculations, we have

(4-1) ∂r
∂a
= wn

(
1+ (1− a)(w−1

+ · · ·+w−n)
∂w

∂a

)
,
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where, for k = 2m,

∂w

∂a
=−

(
ba−1

+ · · ·+ (ba−1)m
)
+ (ba−1)m

(
1+ b−1a+ · · ·+ (b−1a)m−1b−1) ,

and, for k = 2m+ 1,

∂w

∂a
=−

(
ba−1

+ · · ·+ (ba−1)m
)
+ (ba−1)mb

(
1+ ab−1

+ · · ·+ (ab−1)m
)
.

Suppose ρ : GK → SL2(C) is a nonabelian representation given by (2-3). Then
the twisted Alexander polynomial of K associated to ρ is

1K ,ρ(t)=
det8

(
∂r
∂a

)
det8(1− b)

=

det8
(
∂r
∂a

)
1− t x + t2 .

The case J (2m, 2n), n > 0. From (4-1) we have

det8
(
∂r
∂a

)
=

∣∣I + (I − t A)(W−1
+ · · ·+W−n)V

∣∣,
where I is the 2× 2 identity matrix and

V =−(BA−1
+· · ·+(BA−1)m)+(BA−1)m(I+B−1A+· · ·+(B−1A)m−1)t−1 B−1.

The next lemma follows easily.

Lemma 4.2. The highest- and lowest-degree terms of det8
(
∂r
∂a

)
are respectively∣∣A(W−1

+ · · ·+W−n)(BA−1
+ · · ·+ (BA−1)m)

∣∣ t2

and ∣∣(W−1
+ · · ·+W−n)(BA−1)m(I + B−1A+ · · ·+ (B−1A)m−1)B−1∣∣ t−2.

Let {Ti (z)}i be the sequence of Chebyshev polynomials defined by T0(z) = 2,
T1(z)= z and Ti+1(z)= zTi (z)−Ti−1(z) for all integers i . Recall that y = tr AB−1

and λ= tr W .

Proposition 4.3. The highest- and lowest-degree terms of det8
(
∂r
∂a

)
are respec-

tively
Tn(λ)− 2
λ− 2

Tm(y)− 2
y− 2

t2 and
Tn(λ)− 2
λ− 2

Tm(y)− 2
y− 2

t−2.

Proof. Let β± be the roots of z2
−λz+1 and γ± the roots of z2

− yz+1. Lemma 4.2
implies that the highest- and lowest degree terms of det8(∂r/∂a) are respectively

(1+β++ · · ·+βn−1
+

)(1+β−+ · · ·+βn−1
−

)

× (1+ γ++ · · ·+ γ m−1
+

)(1+ γ−+ · · ·+ γ m−1
−

)t2
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and

(1+β++ · · ·+βn−1
+

)(1+β−+ · · ·+βn−1
−

)

× (1+ γ++ · · ·+ γ m−1
+

)(1+ γ−+ · · ·+ γ m−1
−

)t−2.

Proposition 4.3 then follows from Lemma 4.4 below. �

Lemma 4.4. (1+β++ · · ·+βn−1
+

)(1+β−+ · · ·+βn−1
−

)=
Tn(λ)− 2
λ− 2

∈ Z[λ].

Proof. The left-hand side is equal to

(βn
+
− 1)(βn

−
− 1)

(β+− 1)(β−− 1)
=
βn
+
+βn
−
− 2

β++β−− 2
=

Tn(λ)− 2
λ− 2

.

The lemma follows. �

Proposition 4.3 implies that the highest- and lowest-degree terms of the twisted
Alexander polynomial

1K ,ρ(t)=
det8

(
∂r
∂a

)
1− t x + t2

are respectively Um,n(y)t0 and Um,n(y)t−2, where

Um,n(y)=
Tn(λ)− 2
λ− 2

Tm(y)− 2
y− 2

.

Hence to prove Theorem 1.2(1) for J (2m, 2n), n > 0, we only need to show that
the coefficients of these terms are nonzero under the assumption that φK (2, y)=
Sn−1(λ)αk(2, y)− Sn−2(λ)= 0 (because the roots of this equation correspond to
the parabolic representations). To this end, we show that at x = 2 the polynomials
φK (2, y) and Um,n(y) do not have any common zero y ∈ C (in fact, if they have a
common zero, the highest- and lowest-degree terms vanish at x = 2). It is equivalent
to show that at x = 2 these polynomials are relatively prime in C[y].

Recall that λ= tr W = (y− 2)(y+ 2− x2)S2
m−1(y)+ 2 and

αk(x, y)= 1− (y+ 2− x2)Sm−1(y)
(
Sm−1(y)− Sm−2(y)

)
.

The next two lemmas will complete the proof of Theorem 1.2(1) for J (2m, 2n),
n > 0.

Lemma 4.5. Suppose x = 2. Then gcd
(
φK (x, y), Tn(λ)−2

λ−2

)
= 1 in C[y].

Proof. It is equivalent to show that at x = 2, φK (x, y) and (Tn(λ)− 2)/(λ− 2) do
not have any common root y ∈ C.

Suppose Tn(λ)= 2 and λ 6= 2 then βn
+
= βn
−
= 1 and β+ 6= 1. If β+ 6= −1 then

Sn−1(λ)= (β
n
+
−βn
−
)/(β+−β−)=0 and Sn−2(λ)= (β

n−1
+ −β

n−1
− )/(β+−β−)=−1;

hence φK (x, y)= 1 6= 0.
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If β+ =−1 (in this case n must be even) then λ=−2. It implies that Sn−1(λ)=

−n, and Sn−2(λ)= n− 1. Hence φK (x, y)=−n αk(x, y)− (n− 1).
Suppose φK (x, y)= 0. Then αk(x, y)= 1/n− 1. We have

(y− 2)
(
y+ 2− x2)S2

m−1(y)= λ− 2=−4,

(y+ 2− x2)
(
S2

m−1(y)− Sm−1(y)Sm−2(y)
)
= 1−αk(x, y)= 2− 1

n
.

Thus (y+2−x2)S2
m−1(y)=

−4
y−2

, (y+2−x2)Sm−1(y)Sm−2(y)=−
( 4

y−2
+2−1

n

)
.

Since

S4
m−1(y)− yS2

m−1(y)(Sm−1(y)Sm−2(y))+ (Sm−1(y)Sm−2(y))2 = S2
m−1(y)

(by Lemma 2.1), we must have

16
(y− 2)2

−
4y

y− 2

(
4

y− 2
+ 2−

1
n

)
+

(
4

y− 2
+ 2−

1
n

)2

=
−4(y+ 2− x2)

y− 2
,

that is, y = 2+ 4n2x2.
If x ∈ R then y = 2+ 4n2x2

∈ R and

−4= (y− 2)(y+ 2− x2)S2
m−1(y)= 4n2x2(4+ (4n2

− 1)x2)S2
m−1(y)≥ 0,

a contradiction. Hence φK (x, y) 6= 0 when Tn(λ)−2
λ−2

= 0 and x ∈ R. The lemma
follows. �

Lemma 4.6. Suppose x = 2. Then gcd
(
φK (x, y), Tm(y)−2

y−2

)
= 1 in C[y].

Proof. Suppose Tm(y)= 2 and y 6= 2 then γ m
+
= γ m
−
= 1 and γ+ 6= 1. If γ+ 6= −1

then Sm−1(y) = (γ m
+
− γ m
−
)/(γ+− γ−) = 0, hence λ = 2 and αk(x, y) = 1. This

implies that φK (x, y)= Sn−1(2)− Sn−2(2)= 1 6= 0.
If γ+ =−1 (in this case m must be even) then y =−2. We have

λ= (y− 2)(y+ 2− x2)S2
m−1(y)+ 2= 4m2x2

+ 2

and

αk(x, y)= 1− (y+ 2− x2)Sm−1(y)(Sm−1(y)− Sm−2(y))= m(2m− 1)x2
+ 1.

This implies that

φK (x, y)= Sn−1(λ)αk(x, y)− Sn−2(λ)= (m(2m− 1)x2
+ 1)Sn−1(λ)− Sn−2(λ).

If x ∈ Z then λ= 4m2x2
+2 ∈ Z is even. This means that φK (x, y) is odd, since

φK (x, y)≡ Sn−1(λ)− Sn−2(λ) (mod 2).

Thus φK (x, y) 6= 0 when Tm(y)−2
y−2

= 0 and x ∈ Z. The lemma follows. �
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The case J (2m+ 1, 2n), n > 0. From (4-1) we have

det8
(
∂r
∂a

)
=

∣∣I + (I − t A)(t−2W−1
+ · · ·+ t−2nW−n)V

∣∣ t4n,

where

V =−(BA−1
+ · · ·+ (BA−1)m)+ t (BA−1)m B(I + AB−1

+ · · ·+ (AB−1)m).

We first consider the case m = 0 (in this case we must have n > 1 so that K is a
nontrivial knot). Then W = BA and

det8
(
∂r
∂a

)
=

∣∣I + (I − t A)(t−2W−1
+ · · ·+ t−2nW−n)t B

∣∣ t4n

=
∣∣(t−2W−1

+ · · ·+ t−2nW−n)t B− t A(t−4W−2
+ · · ·+ t−2nW−n)t B

∣∣ t4n.

This implies that the highest- and lowest-degree terms of det8(∂r/∂a) are
|t−1W−1 B| t4n

= t4n−2 and |t1−2nW−n B| t4n
= t2, respectively. Hence the highest-

and lowest degree terms of 1K ,ρ(t) are t4n−4 and t2, respectively. Since the genus
of J (1, 2n), where n > 1, is n− 1, we complete the proof of Theorem 1.2(1) for
J (1, 2n), n > 1.

We now consider the case m > 0. In this case, we have the following.

Lemma 4.7. (1) The highest-degree term of det8
(
∂r
∂a

)
is∣∣I − AW−1(BA−1)m B(I + AB−1

+ · · ·+ (AB−1)m)
∣∣ t4n

=
∣∣I + BA−1

+ · · ·+ (BA−1)m−1∣∣ t4n.

(2) The lowest-degree term of det8
(
∂r
∂a

)
is∣∣−W−n(BA−1

+ · · ·+ (BA−1)m)
∣∣ t0
=

∣∣I + BA−1
+ · · ·+ (BA−1)m−1∣∣ t0.

Lemmas 4.7 and 4.4 imply the following.

Proposition 4.8. The highest- and lowest-degree terms of det8
(
∂r
∂a

)
are respec-

tively
Tm(y)− 2

y− 2
t4n and

Tm(y)− 2
y− 2

t0.

Proposition 4.8 implies that the highest- and lowest-degree terms of 1K ,ρ(t) are
(Tm(y)− 2)/(y− 2)t4n−2 and (Tm(y)− 2)/(y− 2)t0, respectively. Hence to prove
Theorem 1.2(1) for J (2m+1, 2n), where m, n>0, we only need to show that at x=2
(parabolic representation) the polynomials φK (x, y)= Sn−1(λ)αk(x, y)− Sn−2(λ)

and (Tm(y)− 2)/(y− 2) are relatively prime in C[y].
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Recall that λ= tr W = x2
− y− (y− 2)(y+ 2− x2)Sm(y)Sm−1(y) and

αk(x, y)= 1+ (y+ 2− x2)Sm−1(y)(Sm(y)− Sm−1(y)).

The next lemma will complete the proof of Theorem 1.2(1) for J (2m + 1, 2n),
where m, n > 0.

Lemma 4.9. Suppose x = 2. Then gcd
(
φK (x, y), Tm(y)−2

y−2

)
= 1 in C[y].

Proof. Suppose Tm(y)= 2 and y 6= 2, then γ m
+
= γ m
−
= 1 and γ+ 6= 1. If γ+ 6= −1

then Sm−1(y)= 0 and Sm(y)= 1; hence λ= x2
− y and αk(x, y)= 1. This implies

that φK (x, y)= Sn−1(λ)− Sn−2(λ).
Since γ m

+
= 1, we have y = γ++ γ−1

+ = 2 cos(2π j/m) for some 0< j < m. If
φK (x, y)= Sn−1(λ)− Sn−2(λ)= 0 then λ= 2 cos

(
(2 j ′− 1)π/(2n− 1)

)
for some

1≤ j ′ ≤ n− 1; see [Le and Tran 2012, Lemma 4.13], for example. Hence

x2
= y+ λ= 2

(
cos

2π j
m
+ cos

(2 j ′− 1)π
2n− 1

)
< 4.

If γ+ =−1 (in this case m must be even) then y =−2. We have

λ=−(y− 2)(y+ 2− x2)Sm(y)Sm−1(y)+ x2
− y = (2m+ 1)2x2

+ 2

and

αk(x, y)= 1+ (y+ 2− x2)Sm−1(y)(Sm(y)− Sm−1(y))= m(2m+ 1)x2
+ 1.

If x is an even integer then λ= (2m+ 1)2x2
+ 2 is an even integer and αk(x, y)=

m(2m+ 1)x2
+ 1 is an odd integer. Hence

φK (x, y)= Sn−1(λ)αk(x, y)− Sn−2(λ)≡ Sn−1(λ)− Sn−2(λ) (mod 2)

is odd and so is nonzero.
In both cases, we obtain φK (x, y) 6= 0 when Tm(y)−2

y−2
= 0 and x is an even

integer at least 2. The lemma follows. �

Next we consider the case n< 0. We put l =−n (l > 0). For r =wnaw−nb−1
=

w−lawlb−1, we have

(4-2) ∂r
∂a
=
∂w

∂a

−l
+w−l

(
1+a ∂w

l

∂a

)
=w−l

(
1−(1−a)

(
1+w+· · ·+wl−1)∂w

∂a

)
.

The case J (2m, 2n), n < 0. From (4-2) we have

det8
(
∂r
∂a

)
=

∣∣I − (I − t A)(I +W + · · ·+W l−1)V
∣∣,

where

V =−(BA−1
+· · ·+(BA−1)m)+(BA−1)m(I+B−1A+· · ·+(B−1A)m−1)t−1 B−1.
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Lemma 4.10. (1) The highest-degree term of det8
(
∂r
∂a

)
is∣∣−A(I +W + · · ·+W l−1)(BA−1

+ · · ·+ (BA−1)m)
∣∣ t2.

(2) The lowest-degree term of det8
(
∂r
∂a

)
is∣∣−(I +W + · · ·+W l−1)(BA−1)m(I + B−1A+ · · ·+ (B−1A)m−1)B−1∣∣ t−2.

We can apply a similar argument to that of the parallel case with n> 0 (page 441)
to conclude that 1K ,ρ(t), for ρ parabolic, determines the knot genus in this case.

The case J (2m+ 1, 2n), n < 0. From (4-2) we have

det8
(
∂r
∂a

)
=

∣∣t−2l W−l (
I − (I − t A)(I + t2W + · · ·+ t2(l−1)W l−1)V

)∣∣
=

∣∣I − (I − t A)(I + t2W + · · ·+ t2(l−1)W l−1)V
∣∣ t−4l,

where

V =−(BA−1
+ · · ·+ (BA−1)m)+ t (BA−1)m B(I + AB−1

+ · · ·+ (AB−1)m).

Lemma 4.11. (1) The highest-degree term of det8
(
∂r
∂a

)
is∣∣AW l−1(BA−1)m B(I + AB−1

+ · · ·+ (AB−1)m)
∣∣ t0

= |I + AB−1
+ · · ·+ (AB−1)m | t0.

(2) The lowest-degree term of det8
(
∂r
∂a

)
is∣∣I + BA−1

+ · · ·+ (BA−1)m
∣∣ t−4l .

We can apply a similar argument to that of the parallel case with n> 0 (page 444)
to conclude again that 1K ,ρ(t), for ρ parabolic, determines the knot genus in this
case.

The case analysis starting on page 441 covers all possibilities. Theorem 1.2(1)
follows immediately. �

5. The fibering problem

In this section we study some properties of the parabolic representation spaces of
2-bridge knots and give the proof of Theorem 1.2(2).

Parabolic representations of 2-bridge knots. Consider the 2-bridge knot K =
b(p, q), where p>q≥1 are relatively prime. The knot group GK has a presentation
GK = 〈a, b |wa = bw〉, where w = aε1bε2 · · · aεp−2bεp−1 and ε j = (−1)b jq/pc (see,
e.g., [Burde and Zieschang 2003]).
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Let φK (x, y) be the defining equation for the nonabelian representations into
SL2(C) of GK , where x= tr ρ(a)= tr ρ(b) and y= tr ρ(ab−1). Then φK (2, y) is the
defining equation for the parabolic representations. It is known that φK (2, y)∈Z[y]
is a monic polynomial of degree d = (p− 1)/2; see [Riley 1984; Tkhang 1993].

We want to study the irreducibility of φK (2, y) ∈ Z[y].

Lemma 5.1. One has φK (2, y)= Sd(y)+ Sd−1(y) in Z2[y].

Proof. The proof is similar to that of [Le and Tran 2012, Proposition A.2].
Suppose ρ is a parabolic representation. Let A= ρ(a), B= ρ(b) and W = ρ(w).

Taking conjugation if necessary, we can assume that

(5-1) A =
[

1 1
0 1

]
and B =

[
1 0

2− y 1

]
,

where y = tr AB−1
∈ C satisfies the matrix equation WA− BW = 0.

By the Cayley–Hamilton theorem applying for matrices in SL2(C) we have
A+ A−1

= tr(A)I = 2I = 0 (mod 2), that is, A−1
= A (mod 2). Similarly, B−1

=

B (mod 2). This implies that W = Aε1 Bε2 . . . Aε2d−1 Bε2d = (AB)d (mod 2). By
applying (2-2), we have

WA+ BW = (AB)d A+ B(AB)d

= Sd(y)(A+ B)+ Sd−1(y)(B−1
+ A−1)

= (Sd(y)+ Sd−1(y)) (A+ B) (mod 2),

where A+ B =
[ 0

y
1
0

]
(mod 2). Hence φK (2, y)= Sd(y)+ Sd−1(y) in Z2[y]. �

Recall from the Introduction that P2 is the set of all odd primes p such that 2 is
a primitive root modulo p.

Lemma 5.2. Suppose p ∈ P2. Then Sd(y)+ Sd−1(y) ∈ Z2[y] is irreducible.

Proof. Let y = u+ u−1. Then

Sd(y)+ Sd−1(y)=
ud+1
+ u−(d+1)

u+ u−1 +
ud
+ u−d

u+ u−1 = u−d 1+ u2d+1

1+ u
.

Suppose p ∈P2. We will show that (1+u p)/(1+u)∈Z2[u] is irreducible. This
will imply that Sd(y)+ Sd−1(y) ∈ Z2[y] is irreducible.

We have (1+u p)/(1+u)= u p−1
+· · ·+u+1 is the p-th-cyclotomic polynomial

C p(u) ∈ Z2[u] (since p is an odd prime). It is well known that C p(u) ∈ Z2[u] is
irreducible if p ∈P2; see for example, [Roman 2006, Theorem 11.2.8]. The lemma
follows. �

Proposition 5.3. Suppose p ∈ P2. Then φK (2, y) ∈ Z[y] is irreducible.
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Proof. By Lemma 5.1, φK (2, y) = Sd(y)+ Sd−1(y) ∈ Z2[y]. Since p ∈ P2, the
polynomial Sd(y)+ Sd−1(y) ∈ Z2[y] is irreducible by Lemma 5.2. This implies
that φK (2, y) is irreducible in Z2[y]. Since φK (2, y) ∈ Z[y] is a monic polynomial
in y, it is irreducible in Z[y]. �

Proof of part (2) of Theorem 1.2. It is known that J (k, 2n) is fibered only for the
trivial knot J (k, 0), the trefoil knot J (2, 2), the figure eight knot J (2,−2), the
knots J (1, 2n) for any n, and the knots J (3, 2n) for n > 0.

The case J (2m, 2n), m > 1. We will apply Proposition 5.3 to study the fibering
problem for K = J (2m, 2n).

Let p = |4mn − 1| then it is known that φK (2, y) has degree (p − 1)/2. By
Proposition 5.3, the polynomial φK (2, y) ∈ Z[y] is irreducible if p ∈ P2.

Proposition 5.4. Suppose m > 1 and p = |4mn − 1| ∈ P2. Then 1K ,ρ(t) is
nonmonic for every parabolic representation ρ.

Proof. We only need to consider the case n > 0. The case n < 0 is similar.
Suppose ρ is a parabolic representation, that is, x = 2. Since k = 2m, by

Proposition 4.3 the coefficient of the highest-degree term of 1K ,ρ(t) is h(y) =
(Tn(λ)− 2)/(λ− 2)× (Tm(y)− 2)/(y− 2), an integer polynomial in y of degree
(n− 1)(2m)+ (m− 1)= 2mn− (m+ 1) < 2mn− 1= (p− 1)/2.

Since p ∈P2, the polynomial φK (2, y) ∈ Z[y] is irreducible. This implies that
φK (2, y) does not divide h(y)− 1 in Z[y]. Hence h(y) 6= 1 when φK (2, y) = 0.
The proposition follows. �

Twist knots J (2, 2n). For K = J (2, 2n) we have λ = y2
− yx2

+ 2x2
− 2 and

φK (x, y)=−(y+ 1− x2)Sn−1(λ)− Sn−2(λ). Suppose ρ is a nonabelian represen-
tation. By Proposition 4.3 the coefficient of the highest-degree term of 1K ,ρ(t) is
(Tn(λ)−2)/(λ−2). We want to show that for |n|>1, we have (Tn(λ)−2)/(λ−2) 6=1
when φK (x, y)= 0 and x = 2. This will imply that for any parabolic representation
ρ, 1K ,ρ(t) is monic if and only if |n| = 1.

Lemma 5.5. If x = 2, then gcd
(
φK (2, y), Tn(λ)−2

λ−2
− 1

)
= 1 in C[y] for |n|> 1.

Proof. We only need to consider the case n > 1. The case n <−1 is similar.
Suppose Tn(λ) = λ and λ 6= 2. Then βn

+
+ βn
−
= β+ + β−, i.e., βn−1

+ = 1 or
βn+1
+ = 1. It implies that λ=−2, or λ= 2 cos 2 jπ/(n−1) for some 1≤ j ≤ n−2

and j 6= (n−1)/2, or λ= 2 cos 2 jπ/(n+1) for some 1≤ j ≤ n and j 6= (n+1)/2.

Case 1: λ = −2 (in this case n must be odd). By similar arguments as in the
proof of Lemma 4.5, we have φK (x, y) 6= 0 if x ∈ R.

Case 2: λ= 2 cos 2 jπ/(n− 1) for some 1≤ j ≤ n− 2 and j 6= (n− 1)/2. Then
Sn−1(λ)= 1 and Sn−2(λ)= 0, hence φK (x, y)=−(y+ 1− x2).
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Suppose φK (x, y)= 0. Then y = x2
− 1 and λ= y2

− yx2
+ 2x2

− 2= x2
− 1.

This cannot occur if x2
− 1≥ 2, since λ < 2. Hence φK (x, y) 6= 0 if x2

≥ 3.

Case 3: λ = 2 cos 2 jπ/(n + 1) for some 1 ≤ j ≤ n and j 6= (n + 1)/2. Then
Sn−1(λ)=−1 and Sn−2(λ)=−λ, hence φK (x, y)= y+ 1− x2

+ λ.
Suppose φK (x, y) = 0. Then y = x2

− λ− 1 and λ = y2
− yx2

+ 2x2
− 2 =

λ2
+ λ(2− x2)+ x2

− 1, that is, λ2
− λ(x2

− 1)+ x2
− 1= 0. This equation does

not have any real solution λ if 1< x2 < 5. Hence φK (x, y) 6= 0 if 1< x2 < 5.

In all cases, φK (x, y) 6= 0 when (Tn(λ)− 2)/(λ− 2)= 1 and 3 ≤ x2 < 5. The
lemma follows. �

Remark 5.6. Lemma 5.5 gives a proof of [Morifuji 2012, Theorem 1.2] that does
not use the irreducibility of φJ (2,2n)(2, y) ∈ Z[y] proved in [Hoste and Shanahan
2001].

The case J (2m+ 1, 2n). Let K = J (2m + 1, 2n). Suppose ρ is a nonabelian
representation. By Proposition 4.8 and Lemma 4.11, the coefficient of the highest-
degree term of 1K ,ρ(t) is

Tm(y)− 2
y− 2

if n > 0 and
Tm+1(y)− 2

y− 2
if n < 0.

We want to show that for m>1, we have (Tm(y)−2)/(y−2) 6=1 when φK (2, y)=0.
This will imply that for any parabolic representation ρ, 1K ,ρ(t) is monic if and
only if K = J (1, 2n), or K = J (3, 2n) and n > 0.

The key point of the proof of the following lemma is to apply Proposition 3.2.

Lemma 5.7. If x = 2, then gcd
(
φK (2, y), Tm(y)−2

y−2
− 1

)
= 1 in C[y] for m > 1.

Proof. Suppose Tm(y) = y and y 6= 2. Then γ m
+
+ γ m
−
= γ++ γ−, i.e., γ m−1

+ = 1
or γ m+1

+ = 1. This implies that y = −2, or y = 2 cos 2 jπ/(m − 1) for some
1≤ j ≤ m− 2 and j 6= (m− 1)/2, or y = 2 cos 2 jπ/(m+ 1) for some 1≤ j ≤ m
and j 6= (m+ 1)/2. In all cases, y ∈ R and y < 2. Proposition 3.2 then implies that
φK (2, y) 6= 0. The lemma follows. �

The case analysis on the last two pages cover all possibilities, showing part (2)
of Theorem 1.2. This completes the proof of the theorem. �
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