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FANG-TING TU

Let X D
0 (N), where (D, N) = 1, denote the Shimura curve associated to an

Eichler order of level N , in an indefinite quaternion algebra over Q of dis-
criminant D. Let WD,N be the group of all Atkin–Lehner involutions on
X D

0 (N) and WD the subgroup consisting of Atkin–Lehner involutions wm

with m | D. In this paper, we will determine Schwarzian differential equa-
tions associated to Shimura curves X D

0 (N)/WD of genus zero in the cases
where there exists a squarefree integer M > 1 such that X D

0 (M)/WD is of
genus zero.

1. Introduction

Let B be an indefinite quaternion algebra of discriminant D over Q. For an Eichler
order O of level N , (D, N ) = 1, in B, we let X D

0 (N ) denote the Shimura curve
associated to O. For each divisor m of DN with (m, DN/m)= 1, we let wm denote
the Atkin–Lehner involution on X D

0 (N ) and WD,N be the group of all Atkin–Lehner
involutions. We also let the subgroup of WD,N consisting of wm , m |D, be denoted
by WD . (We refer the reader to [Alsina and Bayer 2004; Elkies 1998] for general
definitions and properties of Shimura curves.)

The notion of Shimura curves generalizes that of classical modular curves, which
correspond to the case B=M(2,Q)with D=1. Many properties and theories about
classical modular curves can be extended to the case of Shimura curves. However,
because of the lack of cusps in the case D 6= 1, there have been very few explicit
methods for general Shimura curves. One of the few methods uses differential
equations satisfied by automorphic forms and automorphic functions. (See [Bayer
and Travesa 2007; Elkies 1998; Yang 2013b; 2004].) The idea is that even though it
is difficult to explicitly construct automorphic functions that can be put into practical
use, the Schwarzian differential equations associated to automorphic functions in
the case of Shimura curves of genus zero can often be determined using analytic
information about the automorphic functions and coverings between Shimura curves.
(See Section 2 for the definition and properties of Schwarzian differential equations.)
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Then one can use the solutions of the Schwarzian differential equations in place
of automorphic forms to study properties of automorphic forms. For example,
Yang [2013b] devised a method to determine Hecke eigenforms in the spaces of
automorphic forms, expressed in terms of solutions of Schwarzian differential equa-
tions. In [Tu and Yang 2013], we obtained several new algebraic transformations
of 2 F1-hypergeometric functions by interpreting identities among hypergeometric
functions as identities among automorphic forms on different Shimura curves.

In view of the significance of Schwarzian differential equations, it is important
to determine the Schwarzian differential equation for each of the Shimura curves
X D

0 (N )/G, G < WD,N , of genus zero. Elkies [1998] worked out the Schwarzian
equations on X10

0 (1)/W10, X14
0 (1)/W14, and X15

0 (1)/W15. Bayer and Travesa
[2007] computed all the Schwarzian differential equations for the Shimura curves
X6

0(1)/G with G < W6. Yang [2013b] also gave Schwarzian differential equations
on X6

0(1)/W6 and X10
0 (1)/W10 from the properties of the automorphic derivatives.

(See Section 2.)
In this paper, we will consider the cases X D

0 (N )/WD when there exists an integer
M > 1 such that X D

0 (M)/WD has genus zero. The reason for this restriction is
that we need additional information from coverings between Shimura curves of
genus zero in order to completely determine the differential equations. (Note that in
[Yang 2013b], a covering between Shimura curves of different levels is also needed
in order to compute Hecke operators.) In the process, we also need to work out
equations for some Shimura curves of genus one and hyperelliptic Shimura curves,
which are useful in determining the covering maps between Shimura curves. As a
byproduct of our computation of coverings X D

0 (N )/WD→ X D
0 (1)/WD, we can

also determine the values of Hauptmoduln at several CM-points.
A possible future work related to Schwarzian differential equations is Ramanujan-

type series for Shimura curves. A typical example of Ramanujan-type identities for
the classical modular curves is

∞∑
n=0

(6n+ 1)(1/2)3n
(n!)3

(1
4

)n
=

4
π
,

where (a)n=a(a+1) · · · (a+n−1) is the Pochhammer symbol. Yang [2013a] gave
several Ramanujan-type formulae for the Shimura curve X6

0(1)/W6. He conjectured
that the general Ramanujan-type identities for Shimura curves are

∞∑
n=0

(R1n+ R2)Antn
0 = R3

π

�2
d
,

where R1, R2, R3 ∈ Q,
∞∑
0

Antn is the expansion of a meromorphic automorphic
form of weight 2 with respect to a Hauptmodul t of a Shimura curve of genus zero
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such that t takes value 0 at a CM-point of discriminant d , and t0 is the value of t at
some CM-point of discriminant d ′ 6= d . The number �d is the period of an elliptic
curve E over Q with CM by an imaginary quadratic number field of discriminant d .
In the same article, he also gave some numerical results of p-adic analogues of
these Ramanujan-type identities. It is natural to expect that those p-adic identities
should be related to the p-adic periods of elliptic curves with CM. In this paper, in
support of his conjecture, we will numerically obtain Ramanujan-type identities for
X14

0 (1)/W14 using our Schwarzian differential equation. However, we are not able
to give a rigorous proof at present.

The rest of the paper is organized as follows. In Section 2, we will review the
definition of properties of Schwarzian differential equations. In Section 3, we
determine all Shimura curves X D

0 (N )/WD of genus 0, N > 1. In Section 4, we will
find explicit coverings of X D

0 (N )/WD→ X D
0 (1)/WD . The equations for Shimura

curves and the methods to obtain them given in [González and Rotger 2004; 2006;
Molina 2012] are important here. The explicit coverings will be used later. In
Section 5, we will work out Schwarzian differential equations and examples for
Ramanujan-type identities from the Shimura curve X14

0 (1)/W14.
From now on, for simplicity of statements, all Shimura curves mentioned below

are assumed not to be classical modular curves.

2. Schwarzian differential equations

Let t (τ ) be a nonconstant automorphic function on a Shimura curve X . It is
straightforward to verify that t ′(τ ) is a meromorphic automorphic form of weight 2
on X and that the Schwarzian derivative

{t, τ } :=
t ′′′(τ )
t ′(τ )

−
3
2

(
t ′′(τ )
t ′(τ )

)2

is a meromorphic automorphic form of weight 4 on X . Thus, the ratio of {t, τ } and
t ′(τ )2 is an automorphic function on X . In particular, if X has genus zero and t (τ )
is a Hauptmodul, that is, if t generates the field of automorphic functions on X ,
then

Q(t) := −
{t, τ }

2t ′(τ )2

is a rational function of t . In [Bayer and Travesa 2007], given a thrice-differentiable
function f of z, the function

D( f, z) := −
{ f, z}

2 f ′(z)2

is called the automorphic derivative associated to f .
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Now the relation 2Q(t)t ′(τ )2+{t, τ } = 0 can also be written as

d2

dt (τ )2
t ′(τ )1/2+ Q(t)t ′(τ )1/2 = 0.

In other words, if we consider t ′(τ )1/2 as a function of t , then t ′(τ )1/2 is a solution
of the differential equation

(†)
d2

dt2 f + Q(t) f = 0.

Definition 1. The differential equation (†) is called the Schwarzian differential
equation associated to t (τ ).

The significance of Schwarzian differential equations can be seen from the
following result.

Proposition 2 [Yang 2013b]. Assume that a Shimura curve X has genus zero
with elliptic points τ1, . . . , τr of orders e1, . . . , er , respectively. Let t (τ ) be a
Hauptmodul of X and set ai = t (τi ), i = 1, . . . , r . For a positive even integer k ≥ 4,
let

dk = dim Sk(X)= 1− k+
r∑

j=1

⌊
k
2

(
1−

1
e j

)⌋
,

Sk(X) being the space of automorphic forms of weight k on X. A basis for Sk(X) is

t ′(τ )k/2t (τ ) j
r∏

j=1
a j 6=∞

(
t (τ )− a j

)−bk(1−1/e j )/2c
, j = 0, . . . , dk − 1.

In other words, if we can determine the Schwarzian differential equation associ-
ated to a Hauptmodul on a Shimura curve, then we can express automorphic forms
of any even weight k on this Shimura curve in terms of solutions of the differential
equation. This provides a concrete space that we can use to study properties of
automorphic forms. For example, Yang [2013b] demonstrated how to compute
Hecke operators on these spaces.

Now the upshot is that it is often possible to determine a Schwarzian differential
equation without constructing a Hauptmodul first. This is especially true when a
Shimura curve of genus zero has three elliptic points. This is due to the well-known
fact that a second-order Fuchsian differential equation with precisely three singu-
larities is uniquely determined its local exponents at the three points. For general
Shimura curves, the following properties of Schwarzian differential equations and
automorphic derivatives are very useful in determining the differential equations.



SCHWARZIAN EQUATIONS FOR SHIMURA CURVES OF GENUS ZERO 457

Proposition 3. Assume that X (O) has genus zero with elliptic points τ1, . . . , τr of
order e1, . . . , er , respectively. Let t (τ ) be a Hauptmodul of X (O) and set ai = t (τi ),
i = 1, . . . , r . Then the automorphic derivative Q(t)= D(t, τ ) is equal to

Q(t)= 1
4

r∑
j=1

a j 6=∞

1− 1/e2
j

(t − a j )2
+

r∑
j=1

a j 6=∞

B j

t − a j

for some constants B j . Moreover, if a j 6= ∞ for all j , then the constants B j satisfy

r∑
j=1

B j =

r∑
j=1

(
a j B j +

1
4(1− 1/e2

j )
)
=

r∑
j=1

(
a2

j B j +
1
2a j (1− 1/e2

j )
)
= 0.

Also, if ar =∞, then the B j satisfy

r−1∑
j=1

B j = 0,
r−1∑
j=1

(
a j B j +

1
4(1− 1/e2

j )
)
=

1
4

(
1− 1/e2

r
)
.

Proposition 4 [Yang 2013b]. Automorphic derivatives have the following proper-
ties.

(1) D((az+ b)/(cz+ d), z)= 0 for all
(a

b
c
d

)
∈ GL(2,C).

(2) D(g ◦ f, z)= D(g, f (z))+ D( f, z)/(dg/d f )2.

Proposition 5. Let t (τ ) be a Hauptmodul for a Shimura curve X of genus 0. Let
R(x) ∈ C(x) be the rational function such that the automorphic derivative Q(t)=
D(t, τ ) is equal to R(z). Assume that γ is an element of SL(2,R) normalizing
the order O associated to X and let σ be the automorphism of X induced by γ . If
σ : t 7→ (at + b)/(ct + d), then R(x) satisfies

(ad − bc)2

(cx + d)4
R
(

ax + b
cx + d

)
= R(x).

Proof. We shall compute D(t (γ τ), τ ) in two ways. By Proposition 4, we have

D(t (γ τ), τ )= D
(

at (τ )+ b
ct (τ )+ d

, t (τ )
)
+

D(t (τ ), τ )
(dt (γ τ)/dt (τ ))2

= 0+
(ct + d)4 R(t)
(ad − bc)2

.

On the other hand, by the same proposition, we also have

D(t (γ τ), τ )= D(t (γ τ), γ τ)+
D(γ τ, τ )

(dt (γ τ)/dγ τ)2
= R(t (γ τ))= R

(
at + b
ct + d

)
.

Comparing the two expressions, we get the formula. �
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3. Shimura curves of genus zero

In this section, we will determine all pairs of integers (D, N ), D, N > 1, such
that X D

0 (N )/WD has genus 0. As explained in the introduction, we will need
explicit coverings X D

0 (N )/WD→ X D
0 (1)/WD in order to determine Schwarzian

differential equations.
To describe the genus formula for X D

0 (N )/WD , we need to recall the definition
of CM-points first. Let B be a quaternion algebra of discriminant D over Q and O

an Eichler order of level N in B. Fix an embedding ι of B into M(2,R). Let K
be an imaginary quadratic field and R an order of discriminant dR = f 2dK in K .
Following Eichler, we say an embedding φ : R→ O is optimal if φ(K )∩O= φ(R).
Now the action of the set ι ◦ φ(R\{0}) ⊂ GL+(2,R) on the upper half-plane H

fixes precisely one point τφ . Such a point is called a CM-point (point with complex
multiplication) of discriminant dR . We denote the set of CM-points of discriminant
dR , up to O∗1-equivalence, by CM(dR).

Lemma 6 [Ogg 1983]. Assume that m is a squarefree divisor of DN such that
(m, DN/m)= 1. Then the set of the fixed points of an Atkin–Lehner involution wm ,
m > 1, on X D

0 (N ) is
CM(−4)∪CM(−8) if m = 2,
CM(−m)∪CM(−4m) if m ≡ 3 mod 4,
CM(−4m) otherwise.

We remark that in the case m is not squarefree, the fixed points of wm will still
be CM-points, but the description is complicated. (In general, they will be a proper
subset of

⋃
f 2 |4m CM(−4m/ f 2).)

From this lemma, it is easy to determine the number of elliptic points on
X D

0 (N )/G for any subgroup G of WD,N such that m is squarefree for any wm

in G.

Lemma 7. Let G be a nontrivial subgroup of the group WD,N of Atkin–Lehner
involutions on X D

0 (N ) such that m is squarefree for any wm ∈ G. Then the only
possible orders of elliptic points on X D

0 (N )/G are 2, 3, 4, and 6.

(1) If w2 ∈ G, then the number of elliptic points of order 2 on X D
0 (N )/G is

2
|G|


∑
wm∈G
m 6=1

(#CM(−4m)+ #CM(−m))− #CM(−3) if w3 ∈ G,

∑
wm∈G
m 6=1

(#CM(−4m)+ #CM(−m)) if w3 /∈ G.
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If w2 6∈ G, then the number is (#CM(−4)+ 2A)/|G|, where A is
∑
wm∈G
m 6=1

(#CM(−4m)+ #CM(−m))− #CM(−3) if w3 ∈ G,

∑
wm∈G
m 6=1

(#CM(−4m)+ #CM(−m)) if w3 /∈ G.

(If −m is not a discriminant, we simply set #CM(−m)= 0.)

(2) If w3 ∈G, then there are no elliptic points of order 3 on X D
0 (N )/G. If w3 6∈G,

then the number of elliptic points of order 3 is #CM(−3)/|G|.

(3) If w2 6∈G, then there are no elliptic points of order 4 on X D
0 (N )/G. If w2 ∈G,

then the number of elliptic points of order 4 is 2 #CM(−4)/|G|.

(4) If w3 6∈G, then there are no elliptic points of order 6 on X D
0 (N )/G. If w3 ∈G,

then the number of elliptic points of order 6 is 2 #CM(−3)/|G|.

Proof. The fact that only 2, 3, 4, and 6 can be the orders of elliptic points on
X D

0 (N )/G is well-known.
Let wm ∈G. By Lemma 6, the fixed points of wm consist of CM(−4), CM(−m),

or CM(−4m), depending on m. If m 6= 1, 3, then points in CM(−4m) or CM(−m)
are fixed only by wm and every other Atkin–Lehner involution other than w1

permutes them. Thus, there are totally |G|/2 points in CM(−4m) or CM(−m) that
are mapped to the same point in the covering X D

0 (N )→ X D
0 (N )/G. For points in

CM(−4), which constitute elliptic points of order 2 on X D
0 (N ), they are also fixed

by w2. Thus, if w2 ∈ G, then there are 2 #CM(−4)/|G| elliptic points of order 4
on X D

0 (N )/G. If w2 6∈ G, points in CM(−4) contribute another #CM(−4)/|G|
elliptic points of order 2 on X D

0 (N )/G. For points in CM(−3), which are elliptic
points of order 3 on X D

0 (N ), they are also fixed by w3. If w3 ∈G, then they become
elliptic points of order 6 on X D

0 (N )/G and there are 2 #CM(−3)/|G| such points.
If w3 6∈ G, then they remain elliptic points of order 3. There are #CM(−3)/|G|
such points. Summarizing, we get the lemma. �

In view of these lemmas, a formula for the genus of X D
0 (N )/G, G <WD,N , will

involve the numbers of CM-points of certain discriminants. The general formula
for the number of CM-points of an arbitrary discriminant is complicated to state.
(See [Alsina and Bayer 2004; Ogg 1983].) For the goal of this section, we only
need to know the number of CM-points of discriminant −3, dK , or 4dK in the case
dK ≡ 1 mod 4, for K =Q(

√
−m) with m |D.

Lemma 8 [Ogg 1983]. For m |D or m = 3, let dK denote the discriminant of the
field K =Q(

√
−m). We have

#CM(dK )= h(dK )

{
0 if p2

|N for some p |dK ,∏
p |D

(
1−

( dK
p

)) ∏
p |N

(
1+

( dK
p

))
otherwise.
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Also, for m |D with m ≡ 3 mod 4, we have

#CM(4dK )= δh(4dK )

{
0 if 2|D,∏

p |D

(
1−

( 4dK
p

)) ∏
p |N

(
1+

( 4dK
p

))
if 2 -D,

where, when m ≡ 7 mod 8,

δ =


6 if 8|N ,
4 if 4|N ,
2 if 2|N ,
1 if 2 -N ,

and when m ≡ 3 mod 8,

δ =


0 if 8|N ,
2 if 2|N or 4|N ,
1 if 2 -N .

Here h(d) is the class number of the imaginary quadratic order of discriminant d.

Proof. These formulas are just special cases of Theorems 1 and 2 of [Ogg 1983]. �

Lemma 9. The complete list of integers (D, N ) with D, N > 1 such that the
Shimura curve X D

0 (N )/WD has genus zero, is

(6, 5), (6, 7), (6, 13), (10, 3), (10, 7), (14, 3), (14, 5),

(15, 2), (15, 4), (21, 2), (26, 3), (35, 2), (39, 2).

Proof. Let 0 be a congruence Fuchsian subgroup of SL(2,R). (See [Katok 1992]
for the definition of a congruence Fuchsian subgroup; the groups considered here
are all congruence Fuchsian subgroups.) A famous result of Selberg [1965] stated
that if 0 is a congruence subgroup of SL(2,Z), then the first eigenvalue λ1 of the
Laplace operator on the space of square-integrable function on 0\H is not less
than 3/16. By combining this result with the Jacquet–Langlands correspondence,
Vignéras [1983] showed that the same inequality also holds for congruence Fuchsian
subgroups coming from indefinite quaternion algebras over Q of discriminant not
equal to 1.

On the other hand, Zograf [1991] showed that if the area A(0\H) is at least
16(g(0)+ 1), then λ1 < 4(g(0)+ 1)/A(0\H). Here g(0) denotes the genus of 0
and the area is normalized such that A(SL(2,Z)\H)= 1/6. Combining Selberg’s
inequality and Zograf’s result, one sees that if a congruence Fuchsian subgroup has
genus 0, then the area must be less than 64/3.

Now recall from [Shimizu 1965] that the area of X D
0 (N ) is given by

DN
6

∏
p |D

(
1−

1
p

)∏
p |N

(
1+

1
p

)
.
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This immediately shows that if the number of prime factors of D is at least 6, then
the genus of X D

0 (N )/WD cannot be 0 for any N ≥ 2. Also, if D = pq is a product
of two primes such that (p− 1)(q − 1) > 512/3, then X D

0 (N )/WD must have a
positive genus for any N ≥ 2. A similar bounds exists for the case D has 4 prime
factors. This leaves finitely many cases to check.

Now recall that the genus of a Shimura curve X is given by

g(X)= 1+
A(X)

2
−

1
2

r∑
i=1

(
1−

1
ei

)
,

where the sum runs through all elliptic points with ei being their respective orders.
For X = X D

0 (N )/WD , by Lemma 7, we have

g(X)= 1+ A(X)
2
−

1
4

∑
m |D

m 6=1,3

1
2r−1 (#CM(−4m)+ #CM(−m))

−


1

4·2r #CM(−4) if 2-D,

3
8·2r−1 #CM(−4) if 2|D

−


1

3·2r #CM(−3) if 3-D,(
1

4·2r−1 #CM(−12)+ 5
12·2r−1 #CM(−3)

)
if 3|D,

where r is the number of prime divisors of D. (Of course, if d is not a discriminant,
then we simply let CM(d) be the empty set.)

Using the Selberg–Zograf bound, the genus formula in the paragraph above and
Lemma 8, we check case by case that the pairs of integers given in the lemma are
the only cases where X D

0 (N )/WD , N > 1, has genus zero. �

We now tabulate all Shimura curves X D
0 (M)/WD of genus 0 for integers D that

appear in the lemma. We will also give a description of their elliptic points. We
wish to determine the Schwarzian differential equations for these curves. Here v j

denotes the number of elliptic points of order j on X D
0 (M)/WD . Here we also let

CM(−m) denote the set of points on X D
0 (N )/WD that are the image of CM-points

of discriminants −m under the covering X D
0 (N )→ X D

0 (N )/WD. The number n
in CM(−m)×n means the number of elements in CM(−m) is n. If n = 1, we omit
this annotation.

4. Coverings of Shimura curves

The goal of this section is to obtain explicit coverings of X D
0 (N )/WD→ X D

0 (1)/WD

for pairs of D and N given in Lemma 9. That is, we wish to find a Hauptmodul t1
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D, N v2, v3, v4, v6 elliptic points

6, 1 1, 0, 1, 1 CM(−3), CM(−4), CM(−24)
6, 5 2, 0, 2, 0 CM(−4)×2, CM(−24)×2

6, 7 2, 0, 0, 2 CM(−3)×2,CM(−24)×2

6, 13 0, 0, 2, 2 CM(−3)×2,CM(−4)×2

10, 1 3, 1, 0, 0 CM(−3), CM(−8), CM(−20), CM(−40)
10, 3 4, 1, 0, 0 CM(−3), CM(−8)×2, CM(−20)×2

10, 7 4, 2, 0, 0 CM(−3)×2, CM(−20)×2, CM(−40)×2

14, 1 3, 0, 1, 0 CM(−4), CM(−8), CM(−56)×2

14, 3 6, 0, 0, 0 CM(−8)×2, CM(−56)×4

14, 5 4, 0, 2, 0 CM(−4)×2, CM(−56)×4

15, 1 3, 0, 0, 1 CM(−3), CM(−12), CM(−15), CM(−60)
15, 2 6, 0, 0, 0 CM(−12)×2, CM(−15)×2, CM(−60)×2

15, 4 8, 0, 0, 0 CM(−12)×2, CM(−15)×2, CM(−60)×4

21, 1 5, 0, 0, 0 CM(−4), CM(−7), CM(−28),CM(−84)×2

21, 2 7, 0, 0, 0 CM(−4), CM(−7)×2, CM(−28)×2, CM(−84)×2

26, 1 5, 0, 0, 0 CM(−8), CM(−52), CM(−104)×3

26, 3 8, 0, 0, 0 CM(−8)×2,CM(−104)×6

35, 1 6, 0, 0, 0 CM(−7), CM(−28), CM(−35), CM(−140)×3

35, 2 10, 0, 0, 0 CM(−7)×2, CM(−28)×2, CM(−140)×6

39, 1 6, 0, 0, 0 CM(−52)×2, CM(−39)×2, CM(−156)×2

39, 2 10, 0, 0, 0 CM(−52)×2, CM(−39)×4, CM(−156)×4

Table 1. All Shimura curves X D
0 (M)/WD of genus 0 for integers

D appearing in Lemma 9.

of X D
0 (1)/WD , a Hauptmodul tN of X D

0 (N )/WD , and the relation between them.
Of course, there are infinitely many choices for t1 and tN . For X D

0 (N )/WD, we
will choose tN such that the Atkin–Lehner involution wN acts by wN : tN 7→ −tN .
This will make the determination of Schwarzian differential equation simpler.

Case D = 6. In the case D = 6, all the coverings X6
0(N )/W6 → X6

0(1)/W6,
N = 5, 7, 13, are already given in [Elkies 1998]. Here we just modify the tN in
[Elkies 1998] such that the new tN satisfies wN : tN 7→ −tN .

Lemma 10 [Elkies 1998]. (1) There is a Hauptmodul t1 for X6
0(1)/W6 that takes

values 0, 1, and ∞ at the CM-points of discriminants −24, −4, and −3,
respectively.
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(2) There is a Hauptmodul t = t5 for X6
0(5)/W6 that takes values ±i/8 and

±
√
−6/3 at the CM-points of discriminants −4 and −24, respectively. The

relation between t1 and t is

t1 =
(2+ 3t2)(34− 117t + 1824t2)2

125(1+ 6t)6
= 1+

27(1+ 64t2)(3− 7t)4

125(1+ 6t)6
.

The Atkin–Lehner involution w5 acts by w5 : t 7→ −t .

(3) There is a Hauptmodul t = t7 for X6
0(7)/W6 that takes values ±

√
−3/9 and

±
√
−6/8 at the CM-points of discriminants −3 and −24, respectively. The

relation between t1 and t is

t1 =−
(3+ 32t2)(78− 396t + 1963t2

− 12312t3)2

4(1+ 27t2)(3+ 10t)6
.

The Atkin–Lehner involution w7 acts by w7 : t 7→ −t .

(4) There is a Hauptmodul t = t13 for X6
0(13)/W6 that takes values ±4

√
−3/9

and ±3i/4 at the CM-points of discriminants −3 and −4, respectively. The
relation between t1 and t is

t1 = 1−
27(9+ 16t2)(144− 98t + 246t2

− 161t3)4

16(16+ 27t2)(30+ 3t + 55t2)6
.

The Atkin–Lehner involution w13 acts by w13 : t 7→ −t .

Proof. Elkies [1998] showed that explicit coverings of X6
0(N )/W6→ X6

0(1)/W6,
N = 5, 7, 13, are given by

t1 = 1+ 135s4
+ 324s5

+ 540s6, w5 : s 7→
42− 55s

55+ 300s
,

t1 =−
(4s2
+ 4s+ 25)(2s3

− 3s2
+ 12s− 2)2

108(7s2− 8s+ 37)
, w7 : s 7→

116− 9s
9+ 20s

,

and

t1 =
(s7
− 50s6

+ 63s5
− 5040s4

+ 783s3
− 168426s2

− 6831s− 1864404)2

4(7s2+ 2s+ 247)(s2+ 39)6

with

w13 : s 7→
5s+ 72
2s− 5

,

respectively. Choosing t such that

s =
7t − 3

30t + 5
, s =

−29t + 6
10t + 3

, s =
−8t + 9
2t + 1

,

respectively, we get the lemma. �



464 FANG-TING TU

Case D = 10. The covering X10
0 (3)/W10→ X10

0 (1)/W10 has also been given in
[Elkies 1998]. Here we mainly work on the case N = 7.

Lemma 11. (1) There is a Hauptmodul t1 for X10
0 (1)/W10 that takes values 0,

∞, 2, and 27 at the CM-points of discriminants −3, −8, −20, and −40,
respectively.

(2) There is a Hauptmodul t = t3 for X10
0 (3)/W10 that takes values 0, ±1/4

√
−2,

±1/
√
−5 at the CM-points of discriminants −3, −8, and −20, respectively.

The relation between t1 and t is

t1 =
108t (1− 2t)3

(1+ 32t2)(1+ 7t)2
= 2−

2(1+ 5t2)(1− 20t)2

(1+ 32t2)(1+ 7t)2
.

The Atkin–Lehner involution w3 acts by w3 : t 7→ −t .

(3) There is a Hauptmodul t = t7 for X10
0 (7)/W10 that takes values ±1/3

√
−3,

±1/2
√
−5, and ±

√
−10/16 at the CM-points of discriminants −3, −20, and

−40, respectively. The relation between t1 and t is

t1 =
8(1+ 27t2)(2− 3t + 44t2)3

7(1+ 4t + 55t2+ 102t3+ 736t4)2
.

The Atkin–Lehner involution w7 acts by w7 : t 7→ −t .

Proof. In [Elkies 1998], it is shown that an explicit covering X10
0 (3)/W10 →

X10
0 (1)/W10 is given by

t1 =
216(s− 1)3

(s+ 1)2(9s2− 10s+ 17)

with w3 : s 7→ 10/9− s. Let t be the Hauptmodul of X10
0 (1)/W10 with

s =
2
9t
+

5
9
.

Then the relation of t1 and t and the action of w3 are given as in the lemma.
We next consider the case N = 7. According to Theorem 3.4 of [González and

Rotger 2006], an equation for X10
0 (7) is given by

(1) y2
=−27x4

− 40x3
+ 6x2

+ 40x − 27.

The actions of the Atkin–Lehner involutions on this model of X10
0 (7) are given by

w70 : (x, y) 7→ (x,−y), w5 : (x, y) 7→
(
−

1
x
,−

y
x2

)
,

and

w10 : (x, y) 7→
(

2x + 1
x − 2

,
5y

(x − 2)2

)
.
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Since CM(−20) are fixed points under the action of w5, their coordinates on (1)
are (i,±2

√
5(1+ 2i)) and (−i,±2

√
5(1− 2i)). Likewise, we find that CM(−40)

have coordinates (2+
√

5,±8
√
−10(2+

√
5)) and (2−

√
5,±8

√
−10(2−

√
5)).

Furthermore, from the method of [González and Rotger 2006], we know that the
two points at infinity are CM-points of discriminant −3. Thus, the coordinates of
CM(−3) are∞, (0,±3

√
−3), (2,±15

√
−3), and (−1/2,±15

√
−3/4).

From (1), we can obtain an equation w2
+27z2

+40z+20= 0 for X10
0 (7)/〈w10〉,

where the covering X10
0 (7)→ X10

0 (7)/〈w10〉 is given by

(x, y) 7→ (w, z)=
(

y
x − 2

,
x2
+ 1

x − 2

)
.

In this equation for X (10)
0 (7)/〈w10〉, the actions of the Atkin–Lehner involutions are

given by

w70 = w7 : (w, z) 7→ (−w, z), w2 = w5 : (w, z) 7→
(

w

2z+ 1
,
−z

2z+ 1

)
.

The coordinates of CM(−3) are the two points at∞ and (±3
√
−3/2,−1/2). Also,

the coordinates of CM(−20) are (±2
√
−5, 0), and the coordinates of CM(−40)

are (±8
√
−2(2+

√
5), 4+ 2

√
5) and (±8

√
−2(2−

√
5), 4− 2

√
5).

Now set t = (z + 1)/w. We can check that t is invariant under w2 and that
(w, z) 7→ t = (z+ 1)/w is 2-to-1. Thus, t is a Hauptmodul of X10

0 (7)/W10. The
coordinates of the CM-points of discriminants −3, −20, and −40 are ±1/3

√
−3,

±1/2
√
−5, and ±

√
−10/16, respectively. It follows that the relation between t1

and t is

t1 =
A(1+ 27t2)(1+ a1t + a2t2)3

(1+ b1t + b2t2+ b3t3+ b4t4)2

with

A(1+ 27t2)(1+ a1t + a2t2)3− 2(1+ b1t + b2t2
+ b3t3

+ b4t4)2

= B(1+ 20t2)(1+ c1t + c2t2
+ c3t3)2,

A(1+ 27t2)(1+ a1t + a2t2)3− 27(1+ b1t + b2t2
+ b3t3

+ b4t4)2

= C
(
1+ 128

5 t2)(1+ d1t + d2t2
+ d3t3)2

for some constants A, B, C , a j , b j , c j , and d j . Comparing the coefficients, we get

t1 =
8(1+ 27t2)(2− 3t + 44t2)3

7(1+ 4t + 55t2+ 102t3+ 736t4)2

(or the same expression with t replaced by −t). This proves the lemma. �
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Case D = 14. The case D = 14 is also worked out in [Elkies 1998]. Here we only
need to make a change of variable so that wN acts by wN : tN →−tN .

Lemma 12 [Elkies 1998]. (1) There is a Hauptmodul t1 for X14
0 (1)/W14 that

takes values∞, 0, and (−13± 7
√
−7)/32 at CM-points of discriminants −4,

−8, and −56, respectively.

(2) There is a Hauptmodul t = t3 for X14
0 (3)/W14 that takes values ±1/

√
−2

and (±9
√
−7 ± 4

√
−14)/49 at CM-points of discriminants −8 and −56,

respectively. The relation between t1 and t is

t1 =
4(1+ 2t2)(1− 5t)2

9(1+ t)4
.

The Atkin–Lehner involution w3 acts by w3 : t 7→ −t .

(3) There is a Hauptmodul t = t5 for X14
0 (5)/W14 that takes values ±i/4 and

(±5
√
−7± 4

√
−14)/7 at CM-points of discriminants −4 and −56, respec-

tively. The relation between t1 and t is

t1 =−
5(1− t + 17t2

− 13t3)2

(1+ 16t2)(1+ 3t)4
.

The Atkin–Lehner involution w5 acts by w5 : t 7→ −t .

Proof. In [Elkies 1998], it is shown that explicit coverings X14
0 (N )/W14 →

X14
0 (1)/W14 can be given by

t1 = 1
27(s

4
+ 2s3

+ 9s2), w3 : s 7→
5− 2s
2+ s

and

t1 =−
(256s3

+ 224s2
+ 232s+ 217)2

50000(s2+ 1)
, w5 : s 7→

24− 7s
7+ 24s

,

respectively. Choosing t with

s =
1− 5t
1+ t

, s =
3− 16t
4+ 12t

,

respectively, we get the lemma. �

Case D = 15. An explicit covering X15
0 (2)/W15→ X15

0 (1)/W15 is given in [Elkies
1998]. Here we only need make a change of variable so wN acts by wN : tN→−tN .

Lemma 13. (1) There is a Hauptmodul for X15
0 (1)/W15 that takes values∞, 0,

81, and 1 at CM-points of discriminants −3, −12, −15, and −60, respectively.
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(2) There is a Hauptmodul t2 for X15
0 (2)/W15 that takes values ±1, ±

√
−15/3,

and ±1/5 at CM-points of discriminant −12, −15, and −60, respectively. The
relation between t1 and t2 is

t1 =
27(1− t2)(1− 3t2)2

2(1+ t2)3
= 1+

(1− 5t2)(5− 7t2)2

2(1+ t2)3
= 81−

27(1+ 5t2)(5+ 3t2
2 )

2(1+ t2)3
.

The Atkin–Lehner involution w2 acts by w2 : t2 7→ −t2.

(3) There is a Hauptmodul t4 for X15
0 (4)/W15 that takes values ±1/

√
−3,

±
√
−15/5, and (±1±

√
−15)/8 at CM-points of discriminants −12, −15,

and −60, respectively. The relation between t4 and t2 is

t2 =
5t2

4 + 2t4+ 1
7t2

4 − 2t4+ 3
.

Proof. In [Elkies 1998], an explicit covering X15
0 (2)/W15→ X15

0 (1)/W15 is given
by

t1 = 1
4 s(s− 3)2, w2 : s 7→

36
s
.

Choosing a Hauptmodul t for X15
0 (2)/W15 with

s =
6− 6t
1+ t

,

we establish the claim about X15
0 (2)/W15.

For the covering map X15
0 (4)/W15→ X15

0 (2)/W15, it is clear that one of the CM-
points of discriminant−12 on X15

0 (2)/W15 becomes two CM-points of discriminant
−12 on X15

0 (4)/W15, and the other is ramified. To determine the ramification data
of this covering completely, we need to consider the optimal embeddings of the
quadratic orders of the field Q(

√
−15) into the Eichler order of level 2 and the

Eichler order of level 4 in the quaternion algebra B over Q with discriminant 15 at
the finite place p = 2.

Let R1 = Z+Zα, p1(x)= x2
+ x + 4 be the irreducible polynomial of α over

Q, and R2 = Z+Zβ, p2(x)= x2
+ 15 be the irreducible polynomial of β over Q.

Up to conjugation, we may assume that in the localization M(2,Q2) of B at the
finite place 2, the Eichler orders O2, O4 of level 2 and 4 are

O2 =

(
Z2 Z2

2Z2 Z2

)
, O4 =

(
Z2 Z2

4Z2 Z2

)
,

respectively. Then the inequivalent optimal embeddings of R1 into O2 can be given
by sending α to

A−15,1 =

(
0 −1
4 −1

)
and A−15,2 =

(
−1 −1

4 0

)
;
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the inequivalent optimal embeddings of R2 into O2 can be given by sending β to

A−60,1 =

(
1 −1

16 −1

)
and A−60,2 =

(
1 −8
2 −1

)
.

The inequivalent optimal embeddings of R1 and R2 into O4 are given by

B−15,1 =

(
0 −1
4 −1

)
and B−15,2 =

(
−1 −1

4 0

)
,

and

B−60,1 =

(
1 −1

16 −1

)
and B−60,2 =

(
−1 −1
16 1

)
,

B−60,3 =

(
1 −4
4 −1

)
and B−60,4 =

(
−1 −4

4 1

)
,

respectively. Furthermore, we can check the embeddings sending β to B−60,3,
B−60,4 give optimal embeddings of R1 into O2, and the matrices B−60,1, B−60,2,
and A−60,1 are conjugate to each other in O2.

According this information, we can conclude that each CM-point of discriminant
−15 on X15

0 (2)/W15 becomes one CM-point of discriminant−15 and one CM-point
of discriminant −60 on X15

0 (4)/W15. One of the CM-points of discriminant −60
on X15

0 (2)/W15 becomes two CM-points of discriminant −60 on X15
0 (4)/W15, and

the other CM-points of discriminant −60 on X15
0 (2)/W15 is ramified.

We now suppose that the covering X15
0 (4)/W15→ X15

0 (2)/W15 is given by

t2 =
a2t2
+ a1t + a3

t2+ b1t + b2
,

where t = t4 is a Hauptmodul for X15
0 (4)/W15. Since the Atkin–Lehner involution

w2 switches the two CM-points of discriminant −12 on X15
0 (2)/W15, we may

assume that the CM-point of discriminant −12 having coordinate 1 is a ramified
point. According to the ramification data and the fields of definition of these CM-
points, without loss the generality, we may assume that t has repeated roots 1 when
t2 = 1, and assume that the CM-points of discriminant −12 of X15

0 (4)/W15 that lie
above the unramified CM-point of discriminant −12 of X15

0 (2)/W15 are ±1/
√
−3.

Therefore, we have

t2 =
(2a− 3)t2

+ (3a− 1)t + 1− 2a
t2+ (1− 3a)t + a

,

for some constant a. From the information of the CM-points of discriminant −60,

t2
2 − 1=

(t − c)2(t2
+ c1t + c2)

(t2+ (1− 3a)t + a)2
,
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and the roots of t2
+ c1t + c2 are in the field Q(

√
−3,
√

5), we can deduce that

t2 =
5t2
+ 2t + 1

7t2− 2t + 3
.

We get the lemma. �

Case D = 21. We will need an equation for some Atkin–Lehner quotient of X21
0 (2)

in order to determine the coordinates of elliptic points on X21
0 (2).

Lemma 14. An equation for X21
0 (2)/〈w21〉 is y2

= (x+12)(x2
−7x+28). Moreover,

the action of the Atkin–Lehner involution w3 =w7 on this curve is given by the map
(x, y) 7→ (x,−y). Also, the two rational points∞ and (−12, 0) are the CM-points
of discriminant −28, and the other two 2-torsion points (7± 3

√
−7)/2, 0) are the

CM-points of discriminant −7.

Proof. We follow the methods of [González and Rotger 2006]. The Shimura curve
X21

0 (2)/〈w21〉 has genus 1. By Lemma 5.10 of that paper, the two CM-points of dis-
criminant−28 are Q-rational points on this curve. Thus, X21

0 (2)/〈w21〉 is an elliptic
curve over Q. Now in the space S2(00(42))21-new the unique Hecke eigenform with
+-eigenvalue for w21 is coming from the newform space of S2(00(42)). Therefore,
the elliptic curve X21

0 (2)/〈w21〉 has conductor 42. Using the Cherednik–Drinfeld
theory of p-adic uniformization of Shimura curves, we find that the types of singular
fibers at primes of bad reduction of X21

0 (2)/〈w21〉 agree with those of the elliptic
curve 42A1, in Cremona’s notation. The global minimal model of the elliptic curve
42A1 is y2

+ xy+ y = x3
+ x2
− 4x + 5. With a simple change of variables, we

write it as y2
= (x + 12)(x2

− 7x + 28).
Now the covering X21

0 (2)/〈w21〉→ X21
0 (2)/W21 is ramified at the two CM-points

of discriminant −7 and the two CM-points of discriminant −28. If we let one of
the CM-points of discriminant −28 be the point at infinity, then an equation for
X21

0 (2)/〈w21〉 is of the form y2
= f (x) for some polynomial f (x)= x3

+ · · · of
degree 3 in Q[x] with the Atkin–Lehner involution w3 acting by (x, y) 7→ (x,−y).
Up to a transformation of the form x 7→ ax + b, this polynomial f (x) must be the
polynomial (x + 12)(x2

− 7x + 28). This proves the lemma. �

Remark 15. According to Cremona’s table of elliptic curves [1997], the elliptic
curve 42A1 has 8 rational points. Thus, X21

0 (2)/〈w21〉 also has 8 Q-rational points.
Two of them are the CM-points of discriminant −28 mentioned above. The rest of
Q-rational points consist of two CM-points of discriminant −4 and four CM-points
of discriminant −16.

Lemma 16. There is a Hauptmodul t1 for X21
0 (1)/W21 that takes values 49, 0,

∞, and (47± 8
√
−3)/7 at CM-points of discriminants −4, −7, −28, and −84,

respectively.
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Also, there is a Hauptmodul t= t2 for X21
0 (2)/W21 that takes values 0,±1/3

√
−7,

±1, and ±1/3
√
−3 at CM-points of discriminants −4, −7, −28, and −84, respec-

tively. The relation between t1 and t is

t1 =
49(1+ t)(1+ 63t2)

(1− t)(1− 15t)2
= 49+

1568t (1− 3t)2

(1− t)(1− 15t)2
.

The Atkin–Lehner involution w2 acts by w2 : t 7→ −t .

Proof. According to [González and Rotger 2006], an equation for X21
0 (1) is given

by y2
=−7x4

+94x2
−343 with the actions of the Atkin–Lehner involutions given

by

w3 : (x, y) 7→ (−x,−y), w7 : (x, y) 7→ (−x, y), w21 : (x, y) 7→ (x,−y).

The Atkin–Lehner involution w7 fixes the two points at∞ and (0,±7
√
−7). Since

the equation has a symmetry (x, y) 7→ (7/x, 7y/x2), we might as well assume that
the two points (0,±7

√
−7) are the CM-points of discriminant −7 and the two

points at infinity are the CM-points of discriminant −28. Moreover, the four points
with y = 0 correspond to the four CM-points of discriminant −84.

Since w3 acts by (x, y) → (−x,−y), an equation for X21
0 (1)/〈w3〉 is y2

=

−7x3
+ 94x2

− 343x , where the covering X21
0 (1) → X21

0 (1)/〈w3〉 is given by
(x, y) 7→ (x2, xy). Then t1 = x generates the function field of X21

0 /W21. The
values of t1 at the CM-points of discriminants −7, −28, and −84 are 0,∞, and
(47± 8

√
−3)/7, respectively. The value of t1 at the CM-point of discriminant −4

will be determined later.
By Lemma 14, an equation X21

0 (2)/〈w21〉 is y2
= (x + 12)(x2

− 7x + 28) with
the Atkin–Lehner involution w3 = w7 acting by (x, y)→ (x,−y). Thus, s = x
generates the function field of X21

0 (2)/W21. According to the lemma, the values of
s at the CM-points of discriminant −7 are (7± 3

√
−7)/2 and those at CM-points

of discriminant −28 are −12 and∞. The Atkin–Lehner involution w2 switches
the two CM-points of discriminant −28. It also switches the two CM-points of
discriminant −7. (Note that in general, w2 can send a CM-point of discriminant −d
on X D

0 (N )/G to a CM-point of discriminant −4d and vice versa. Here because
w2 is defined over Q, it must send a Q-rational point to another Q-rational point.)
This information suffices to determine w2 in terms of s. We find

w2 : s 7→
−12s+ 112

s+ 12
.

Choosing a new Hauptmodul

t =
4− s
28+ s

,
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we have w2 : t 7→ −t . The new coordinates of CM-points of discriminants −7 and
−28 are ±1/3

√
−7 and ±1, respectively. Also, since w2 fixes the unique CM-point

of discriminant −4, we find that the CM-point of discriminant −4 has coordinate 0.
We now determine the relation between t1 and t .

Replacing t by−t if necessary, we may assume that the CM-point of discriminant
−28 of X21

0 (2)/W21 that lies above the CM-point of discriminant−7 of X21
0 (1)/W21

is −1. Then

t1 =
A(1+ t)(1+ 63t2)

(1− t)(1− at)2

for some constants A and a. Since X21
0 (2)/W21→ X21

0 (1)/W21 is also ramified at
the CM-points of discriminant −84, the discriminant of the polynomial

A(1+ t)(1+ 63t2)− B(1− t)(1− at)2

in t must be divisible by the polynomial 7B2
− 94B + 343. This gives us two

conditions on A and a. Solving them for A and a, we find that the only legiti-
mate values for A and a are A = 49 and a = 15. Because t has value 0 at the
CM-point of discriminant −4 on X21

0 (2)/W21, the CM-point of −4 on X21
0 (1)/W21

has coordinate 49. This proves the lemma. �

Case D = 26. We first recall a lemma of González and Rotger.

Lemma 17 [González and Rotger 2004, Proposition 2.1]. Let C be a hyperelliptic
curve of genus 2 defined over a field k of characteristic not equal to 2 or 3 and let w
be its hyperelliptic involution. Assume that the group of automorphisms of C over k
contains a subgroup 〈u1, u2 = u1 ·w〉 isomorphic to (Z/2Z)2 and denote by Ci the
elliptic quotient C/〈ui 〉. If the two elliptic curves

E1 : y2
= x3
+ A1x + B1, E2 : y2

= x3
+ A2x + B2

are isomorphic to C1 and C2 over k, respectively, then C admits a hyperelliptic
equation of the form y2

= ax6
+bx4

+cx2
+d , where a ∈ k∗, b ∈ k are solutions of

27a3 B2 = 2A3
1+ 27B2

1 + 9A1 B1b+ 2A2
1b2
− B1b3,

9a2 A2 =−3A2
1+ 9B1b+ A1b2,

c = (3A1+ b2)/(3a), d = (27B1+ 9A1b+ b3)/(27a2), and the involution u1 on C
is given by (x, y) 7→ (−x, y).
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Lemma 18. The Shimura curves X1 : X26
0 (3)/〈w2, w3〉, X2 : X26

0 (3)/〈w2, w39〉,
and X3 : X26

0 (3)/〈w6, w13〉 are elliptic curves over Q with defining equations

X1 : y2
= x3
− 3403x − 83834,

X2 : y2
= x3
− 43x + 166,

X3 : y2
= x3
+ 621x + 9774.

Moreover, on the equation for X1, the point at ∞ is the C M-point of discrim-
inant −312, and the involution (x, y) 7→ (x,−y) is the Atkin–Lehner involu-
tion w13 = w26 = w39 = w78. On the equation for X2, the point at ∞ is the
CM-point of discriminant −24 and the involution (x, y) 7→ (x,−y) is the Atkin–
Lehner involution w3 = w6 = w13 = w26. On the equation for X3, the point at
∞ is the CM-point of discriminant −8 and the involution (x, y) 7→ (x,−y) is the
Atkin–Lehner involution w2 = w3 = w26 = w39. In all three cases, the 2-torsion
points are the CM-points of discriminant −104 on their respective curves.

Proof. The fact that the three curves in the lemma have genus one can be verified
either by using the genus formula, together with Lemmas 6, 7, and 8, or by counting
the dimensions of subspaces of S2(00(78))26-new with appropriate eigenvalues for
the Atkin–Lehner involutions. We omit the details.

On X1, there is a unique CM-point of discriminant −312, which must be a
Q-rational point. Thus, X1 is an elliptic curve over Q. Likewise, X2 and X3 have
unique CM-points of discriminants −24 and −8, respectively. They are also elliptic
curves over Q.

Observe that all cusp forms in S2(00(78))26-new having −1 eigenvalue for w2 are
from the cusp form of level 26 corresponding to the isogeny class 26B of elliptic
curves in Cremona’s notation. Thus, X1 and X2 are isomorphic to either 26B1 or
26B2. Similarly, we find that the one-dimensional subspace of S2(00(78))26-new

that has eigenvalue +1 for both w6 and w13 comes from the cusp form associated
to 26A. Using the Cerednik–Drinfeld theory to compute the types of singular fibers
at primes 2 and 13, we see that X1 is isomorphic to the elliptic curve 26B2, X2

is isomorphic to 26B1, and X3 is isomorphic to 26A3. If we put the CM-point of
discriminant −312 on X1, that of discriminant −24 on X2, and that of discriminant
−8 on X3 at∞, respectively, and require that the Atkin–Lehner involutions w13,
w3, and w2 act by (x, y)→ (x,−y) on the three curves, respectively, we get the
equations for the three curves. �

Lemma 19. (1) An equation for the curve X26
0 (3)/〈w2〉 is

y2
=−

2197
3 x6
− 362x4

− 55x2
−

8
3
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with the actions of the Atkin–Lehner involutions given by

w3 : (x, y) 7→ (−x, y), w13 : (x, y) 7→ (x,−y).

On this model, the two CM-points of discriminant −312 are the two points at
infinity, and the two CM-points of discriminant −24 are (0,±2

√
−6/3).

(2) An equation for the curve X26
0 (3)/〈w6〉 is

y2
=

2197
72 x6

−
699

8 x4
−

225
8 x2
−

81
8

with the actions of the Atkin–Lehner involutions given by

w2 : (x, y) 7→ (−x, y), w26 : (x, y) 7→ (x,−y).

On this model, the two CM-points of discriminant −312 are the two points at
infinity, and the two CM-points of discriminant −8 are (0,±9

√
−2/4).

(3) An equation for X26
0 (3)/〈w39〉 is

y2
=

8
9 x6
+ 9x4

− 18x2
+ 81

with the actions of the Atkin–Lehner involutions given by

w2 : (x, y) 7→ (−x, y), w6 : (x, y) 7→ (x,−y).

On this model, the two CM-points of discriminant −24 are the two points at
infinity, and the two CM-points of discriminant −8 are (0,±9).

Moreover, on each of these three curves, there are six CM-points of discriminant
−104. Their coordinates are (α j , 0), j = 1, . . . , 6, where α j are the zeros of their
respective polynomials of degree 6.

Proof. We apply Proposition 2.1 of [González and Rotger 2004], cited as Lemma 17
above, with C = X26

0 (3)/〈w2〉, w13, u1=w3, u2=w39, A1=−3403, B1=−83834,
A2 =−43, and B2 = 166. We find an equation for X26

0 (3)/〈w2〉 is

y2
=−

2197
3 x6
− 362x4

− 55x2
−

8
3

with the Atkin–Lehner involutions given by

w3 : (x, y) 7→ (−x, y), w13 : (x, y) 7→ (x,−y).

Since the CM-points of discriminant −24 are fixed by the involution w6 = w3 :

(x, y) 7→ (−x, y), we see that their coordinates are (0,±2
√
−6/3). Likewise,

the CM-points of discriminant −312 are the fixed points of w78 = w39 : (x, y) 7→
(−x,−y), so they are the two points at infinity. Also, the CM-points of discriminant
−104 are the fixed points of w26 = w13 : (x, y) 7→ (x,−y). Their coordinates are
(α j , 0), j = 1, . . . , 6, where α j are the zeros of −2197x6/3− 362x4

− 55x2
− 8/3.

The equations of the other two curves are obtained in the same way. �
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Lemma 20. Let y2
= −2197x6/3 − 362x4

− 55x2
− 8/3 be the equation for

X26
0 (3)/〈w2〉 given in the previous lemma. Then the coordinates of the four CM-

points of discriminant −8 are (±1/2
√
−2,±3/16

√
−2).

Proof. By Lemma 19, an equation for X26
0 (3)/〈w2〉 is y2

=−2197x6/3− 362x4
−

55x2
− 8/3 with w3 : (x, y) 7→ (−x, y) and w13 : (x, y) 7→ (x,−y). Thus, if

we let t1 = x2, then t1 is a Hauptmodul for X26
0 (3)/W26,3. Likewise, if we let t2

be the function x2 in the equation y2
= 2197x6/72− 699x4/8− 225x2/8− 81/8

for X26
0 (3)/〈w6〉, then t2 is also a Hauptmodul for X26

0 (3)/W26,3. It follows that
t1 = (at2+ b)/(ct2+ d) for some a, b, c, d .

Now observe that the values of t1 and t2 at the CM-point of discriminant −312
are both∞. Thus, t1 = at2+b for some a and b. The values of t1 and t2 at the CM-
points of discriminant−104 are the zeros of f1(z)=−2197z3/3−362z2

−55z−8/3
and f2(z) = 2197z3/72− 699z2/8− 225z/8− 81/8, respectively. Therefore, the
constants a and b must satisfy f1(az+b)= A f2(z) for some constant A. Comparing
the coefficients, we find A = 1/576, a = −1/24 and b = −1/8. Since the value
of t2 at the CM-point of discriminant −8 is 0, the value of t1 at the same point is
−1/8, which implies that the four CM-points of discriminant −8 on X26

0 (3)/〈w2〉

have coordinates (±1/(2
√
−2),±3/(16

√
−2)) on the equation y2

=−2197x6/3−
362x4

− 55x2
− 8/3 for X26

0 (3)/〈w2〉. �

Lemma 21. There is a Hauptmodul t1 for X26
0 (1)/W26 that takes values∞, 0, and

the three zeros of −2x3
+ 19x2

− 24x − 169 at the CM-point of discriminant −8,
the CM-point of discriminant −52, and three CM-points of discriminant −104,
respectively. Also, there is a Hauptmodul t = t3 for X26

0 (3)/W26 that takes values
±1/(2

√
−2) and the six zeros of −2197x6/3− 362x4

− 55x2
− 8/3 at the two CM-

points of discriminant −8 and the six CM-points of discriminant −104, respectively.
Moreover, the relation between t1 and t and the action of w3 on t are given by

t1 =−
3(1+ t + 10t2)2

(1+ 8t2)(1− t)2
, w3 : t 7→ −t.

Proof. According to Theorem 3.1 of [González and Rotger 2004], an equation
for X26

0 (1) is y2
= −2x6

+ 19x4
− 24x2

− 169. In fact, the method used in that
paper to deduce this equation also shows that the Atkin–Lehner involutions act
by w13 : (x, y) 7→ (−x, y) and w26 : (x, y) 7→ (x,−y). Then the two points
(0,±13

√
−1) are the CM-points of discriminant −52, the two points at infinity

are the fixed points of w2 : (x, y) 7→ (−x,−y), that is, the two CM-points of
discriminant −8, and the six points (α j , 0), j = 1, . . . , 6, are the six CM-points
of discriminant −104, where α j are the zeros of −2x6

+ 19x4
− 24x2

− 169.
Thus, t1 = x2 is a Hauptmodul of X26

0 (1)/W26 with values ∞, 0, the zeros of
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−2x3
+ 19x2

− 24x − 169 at the CM-point of discriminant −8, the CM-point of
discriminant −52, and the three CM-points of discriminant −104 on X26

0 (1)/W26.
On the other hand, Lemmas 19 and 20 show that if we let t be the x in the

equation y2
= −2197x6/3 − 362x4

− 55x2
− 8/3 for X26

0 (3)/〈w2〉, then t is a
Hauptmodul for X26

0 (3)/W26 that takes values ±1/(2
√
−2) at the two CM-points

of discriminant −8 and β j , j = 1, . . . , 6, at the six CM-points of discriminant
−104, where β j are the six zeros of −2197x6/3− 362x4

− 55x2
− 8/3. It is clear

that w3 acts on t by w3 : t 7→ −t .
The relation between t1 and t is simple to determine. From the table at the end

of Section 3, we know that the covering X26
0 (3)/W26→ X26

0 (1)/W26 is ramified
precisely at the CM-points of discriminants −8, −52, and −104 of X26

0 (1)/W26

with ramification types given by

CM(−8) CM(−104)×3 CM(−52)

1 1 2 1 1 2 2 2

It follows that

t1 =
A(1+ a1t + a2t2)2

(1+ 8t2)(1+ bt)2

for some constants A, a1, a2, and b such that

−2 f 3
+ 19 f 2g− 24 f g2

− 169g3

= B(−2197t6/3− 362t4
− 55t2

− 8/3)(1+ c1t + c2t2
+ c3t3)2

for some constants B, c1, c2, and c3, where f = A(1+ 8t2)(1+ at)2 and g =
(1+ b1t + b2t2)2. Comparing the coefficients, we find

t1 =−
3(1+ t + 10t2)2

(1+ 8t2)(1− t)2
or t1 =−

3(1− t + 10t2)2

(1+ 8t2)(1+ t)2
.

Both are valid, since the action of w3 sends one to the other. This gives us the
lemma. �

Case D = 35.

Lemma 22. An equation for X35
0 (1)/〈w5〉 is

y2
=−(x + 12)(7x + 4)(x3

+ 4x2
+ 144x + 80)

with the action w7 = w35 given by w7 : (x, y) 7→ (x,−y). The coordinates of the
CM-points of discriminants −7, −28, −35, and −140 are (−12, 0), (−4/7, 0),∞,
and (α j , 0), respectively, where α j are the three roots of x3

+ 4x2
+ 144x + 80.
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An equation for X35
0 (2)/〈w7〉 is

−2y2
= (x3

+ 3x2
+ 11x + 25)(x3

− 3x2
+ 11x − 25)

with the actions of w2 = w14 and w5 = w35 given by w2 : (x, y) 7→ (−x,−y) and
w5 : (x, y) 7→ (x,−y). The coordinates of the CM-points of discriminants −7,
−8, −140, and −280 are (±

√
−7,±8), two points at ∞, (β j , 0), j = 1, . . . , 6,

and (0,±25/
√
−2), respectively, where β j are the six roots of the polynomial

(x3
+ 3x2

+ 11x + 25)(x3
− 3x2

+ 11x − 25).

Proof. In Section 10.4 of [2012], Molina showed that an equation for X35
0 (1)/〈w5〉

is

y2
=−x(9x + 4)(4x + 1)(172x3

+ 176x2
+ 60x + 7),

where w7 : (x, y) 7→ (x,−y) and the points (0, 0), (−4/9, 0), (−1/4, 0), and
(γ j , 0), j = 1, . . . , 3, are the CM-points of discriminant −7, −28, −35, and −140,
respectively. Here γ j are the zeros of 172x3

+ 176x2
+ 60x + 7. Setting

(x, y)=
(
−

x ′+ 12
4x ′+ 28

,
5y′

16(x ′+ 7)3

)
,

we get the equation in our lemma. The reason for this change of variable is the
Shimura curve X35

0 (1)/〈w7〉 has genus 1 and the unique CM-point of discriminant
−35 is a Q-rational point. Thus, it is an elliptic curve over Q. Computing the
singular fibers at primes of bad reduction, we find that it is isomorphic to the
elliptic curve 35A1, which, after a change of variables, has an equation y2

=

x3
+ 4x2

+ 144x + 80. If we choose a Weierstrass equation for X35
0 (1)/〈w7〉 by

requiring that the CM-point of discriminant −35 is the point at infinity and that w5

acts by (x, y)→ (x,−y), then up to a transformation of the form x→ ax+b, this
Weierstrass equation must be y2

= x3
+ 4x2

+ 144x + 80 and the three 2-torsion
points (α j , 0) must be the three CM-points of discriminant −140. In view of this
equation for X35

0 (1)/〈w7〉, we make the above change of variables for X35
0 (1)/〈w5〉.

We now consider the Shimura curve X35
0 (2)/〈w7〉. It is bielliptic with elliptic

quotients C1 : X35
0 (2)/〈w7, w10〉 and C2 : X35

0 (2)/〈w2, w7〉. Here C1 is an elliptic
curve over Q because it has a unique CM-point of discriminant −8 and another
two Q-rational point coming from CM(−7). Likewise, C2 is an elliptic curve
over Q because C2 has a unique CM-point of discriminant −280. By considering
the eigenvalues of the Atkin–Lehner involutions associated to the eigenforms in
S2(00(70))35-new, we find that both C1 and C2 fall in the isogeny class 35A, in
Cremona’s notation. Furthermore, by considering its singular fibers at primes of bad
reduction using the Cerednik–Drinfeld theory, we find that C1 is isomorphic to the
elliptic curve 35A3 and C2 is isomorphic to 35A2. We take y2

= x3
−1728x+30672
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and y2
= x3
− 170208x − 28273968 to be (nonminimal) equations for 35A3 and

35A2, respectively.
Now if we choose a Weierstrass equation for C1 by requiring that the CM-point

of discriminant−8 is the infinity point and that the Atkin–Lehner involution w2 acts
by (x, y) 7→ (x,−y), then by a suitable transformation x 7→ ax + b, the equation
must be y2

= x3
−1728x+30672. Similarly, if we put the CM-point of discriminant

−280 at infinity and require that w5 acts by (x, y) 7→ (x,−y), then an equation for
C2 is y2

= x3
− 170208x − 28273968. Applying Lemma 17, we find an equation

for X35
0 (2)/〈w7〉 is

y2
=−

9
2(x

6
+13x4

−29x2
−625)=−9

2(x
3
+3x2

+11x+25)(x3
−3x2

+11x−25).

Replacing y by 3y, we get the equation

(2) −2y2
= (x3

+ 3x2
+ 11x + 25)(x3

− 3x2
+ 11x − 25)

as claimed in the lemma. According to Lemma 17, the Atkin–Lehner involutions
act by

w10 : (x, y) 7→ (−x, y), w5 : (x, y) 7→ (x,−y), w2 : (x, y) 7→ (−x,−y).

Since the CM-points of discriminant −8, −140, and −280 on X35
0 (2)/〈w7〉 are

fixed points of w2, w5, and w10, respectively, we find that their coordinates are
the two points at infinity, (β j , 0), j = 1, . . . , 6, and (0,±25/

√
−2), respectively,

where β j are the zeros of the polynomial on the right-hand side of (2).
To determine the coordinates of the four CM-points of discriminant −7, we

observe that the curve C1 : X35
0 (2)/〈w7, w10〉 has exactly three Q-rational points

since it is isomorphic to the elliptic curve 35A3, which has precisely three Q-rational
points. Since we already know that C1 has three Q-rational points consisting
of CM(−8) and CM(−7), any Q-rational point of C1 that is the CM-point of
discriminant −8 will be a CM-point of discriminant −7. From the model −2y2

=

x6
+13x4

−29x2
−625 for X35

0 (2)/〈w7〉, we see that−2y2
= x3
+13x2

−29x−625
is also an equation for X35

0 /〈w7, w10〉. On this model, the point at infinity is the
CM-point of discriminant −8. Thus, the 3-torsion points (−7,±8) are the CM-
points of discriminant −7 on X35

0 (2)/〈w7, w10〉. This in turn implies that the four
CM-points of discriminant −7 on X35

0 (2)/〈w7〉 have coordinates (±
√
−7,±8).

This completes the proof of the lemma. �

Lemma 23. There is a Hauptmodul t1 for X35
0 (1)/W35 that takes values−12,−4/7,

∞, and the three zeros of x3
+ 4x2

+ 144x + 80 at the CM-points of discriminants
−7, −28, −35, and −140, respectively. Also, there is also a Hauptmodul t for
X35

0 (2)/W35 that takes values ±
√
−7, ±5, the six zeros of

(x3
+ 3x2

+ 11x + 25)(x3
− 3x2

+ 11x − 25),
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and 0 at the CM-points of discriminants −7, −8, −140, and −280, respectively.
Moreover, the relation between t1 and t is

t1 =−
2(t − 1)(t2

− 6t + 25)
t3+ 3t2+ 11t + 25

and the Atkin–Lehner involution w2 on t is given by w2 : t 7→ −t .

Proof. The existence of Hauptmoduln with the described values at CM-points
follows immediately from Lemma 22. The fact that w2 acts on t by w2 : t 7→
−t also follows from the same lemma. We now determine the relation between
Hauptmoduln.

The CM-point of discriminant −35 on X35
0 (1)/W35 splits completely in the

covering X35
0 (2)/W35 → X35

0 (1)/W35 and the three points lying above it are
CM-points of discriminant −140 on X35

0 (2)/W35. Replacing t by −t if necessary,
we may assume that the coordinates of these three points are the three zeros of
x3
+ 3x2

+ 11x + 25. Considering CM-points of discriminant −7, we have

(3) t1+ 12=
A(t2
+ 7)(t − a)

t3+ 3t2+ 11t + 25
for some constants A and a. The point t = a is a CM-point of discriminant −28.
Thus, the point t =−a is the other CM-point of discriminant −28 and this point
lies above the CM-point of discriminant −28 on X35

0 (1)/W35. Therefore, we have

(4) t1+ 4
7 =

B(t + a)(t − b)2

t3+ 3t2+ 11t + 25
for some constants B and b. Comparing (3) and (4), we find A = 10, B =−10/7,
a =−5, and b = 3. It follows that

t1 =−
2(t − 1)(t2

− 6t + 25)
t3+ 3t2+ 11t + 25

.

To check the correctness, we observe that the point t with t3
− 3t2

+ 11t − 25
lies above CM-points of discriminant −140 on X35

0 (1)/W35. Thus, if we write
t3
1 + 4t2

1 + 144t1+ 80 as a rational function of t , then t3
− 3t2

+ 11t − 25 should
divide its numerator. Indeed, we find

t3
1 + 4t2

1 + 144t1+ 80=−
200(t3

− t2
+ 11t − 25)(t3

− t2
− 5t − 35)2

(t3+ 3t2+ 11t + 25)3

as expected. This proves the lemma. �

Case D = 39.

Lemma 24. An equation for X39
0 (1)/〈w13〉 is

y2
=−(7x2

+ 23x + 19)(x2
+ x + 1)



SCHWARZIAN EQUATIONS FOR SHIMURA CURVES OF GENUS ZERO 479

with w3 = w39 : (x, y) 7→ (x,−y). Moreover, the coordinates of the CM-points of
discriminants −52, −39, and −156 are (±2i,±

√
13(3+2i)), ((−1±

√
−3)/2, 0),

and ((−23±
√
−3)/14, 0), respectively.

Proof. By [Molina 2012], an equation for X39
0 (1) is

y2
=−(7x4

+ 79x3
+ 311x2

+ 497x + 277)(x4
+ 9x3

+ 29x2
+ 39x + 19)

with w39 : (x, y) 7→ (x,−y). Moreover, the coordinates of the CM-points of
discriminants −39 and −156 are (α j , 0) and (β j , 0), j = 1, . . . , 4, respectively,
where α j are the zeros of x4

+ 9x3
+ 29x2

+ 39x + 19 and β j are the zeros of
7x4
+ 79x3

+ 311x2
+ 497x + 277. Substituting x by x − 2, we obtain an equation

(5) y2
=−(7x4

+ 23x3
+ 5x2

− 23x + 7)(x4
+ x3
− x2
− x + 1)

with smaller coefficients. This hyperelliptic curve has an obvious automorphism
(x, y) 7→ (−1/x, y/x4). We will show that this is the Atkin–Lehner involution w13.

The Atkin–Lehner w13 permutes the CM-points of discriminant −39. It also
permutes the CM-points of discriminant −156. Therefore, if w13 maps (x, y) to
((ax + b)/(cx + d),Cy/(cx + d)4), then the constants a, b, c, and d must satisfy

(cx + d)4 f j

(
ax + b
cx + d

)
= C j f j (x)

for f1(x) = 7x4
+ 23x3

+ 5x2
− 23x + 7 and f2(x) = x4

+ x3
− x2
− x − 1. We

find w13 maps (x, y) to either (−1/x, y/x4) or (−1/x,−y/x4). The latter has no
fixed points, so we conclude that w13 maps (x, y) to (−1/x, y/x4).

Now it is easy to show that Y = y/x2 and X = x − 1/x generate the function
field of X39

0 (1)/〈w13〉. The relation between X and Y is also easy to find. It is

(6) Y 2
=−(7X2

+ 23X + 19)(X2
+ X + 1),

which gives us an equation for X39
0 (1)/〈w13〉. The coordinates of the CM-points

of discriminants −39 and −156 on X39
0 (1)/〈w13〉 are ((−1 ±

√
−3)/2, 0) and

((−23±
√
−3)/14, 0), respectively.

To find the coordinates of the CM-points of discriminant −52 on X39
0 (1)/〈w13〉,

we first consider the CM-points of the same discriminant on X39
0 (1). Since these

points on X39
0 (1) are the fixed points of w13 and on (5), the Atkin–Lehner involution

w13 acts by (x, y) 7→ (−1/x, y/x4), we find that the coordinates of the CM-points
of discriminant−52 on (5) are (±i,±

√
13(3+2i)). This implies that the CM-points

of discriminant −52 on X39
0 (1)/〈13〉 are (±2i,±

√
13(3+ 2i)). The proof of the

lemma is complete. �
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Lemma 25. There is a Hauptmodul t1 on X39
0 (1)/W39 that takes values

±2i,
−1±

√
−3

2
,
−23±

√
−3

14

at the CM-points of discriminants −52, −39, and −156, respectively. Also, there is
a Hauptmodul t on X39

0 (2)/W39 that takes values

±3i,
±2
√
−3±

√
−39

3
, ±1± 2

√
−3

at the CM-points of discriminants −52, −39, and −156, respectively. Moreover,
the relation between t1 and t is

t1 =−
2(t3
+ t2
+ 11t + 3)

(t2+ 7)(t + 3)

and the Atkin–Lehner involution w2 on t is w2 : t 7→ −t .

Proof. The existence of t1 with the described properties follows from the previous
lemma. Now let s1 = (t1− 2i)/(t1+ 2i) so that s1 takes values 0 and∞ at the two
CM-points of discriminant −52. Then the values of s1 at the two CM-points of
discriminant −156 are the zeros of

(7) (9+ 46i)x2
+ 94x + (9− 46i).

The covering X39
0 (2)/W39→ X39

0 (1)/W39 is ramified at CM(−52)∪CM(−156)
of X39

0 (1)/W39. There is a Hauptmodul s of X39
0 (2)/W39 such that

s1 =
As(1− s)2

(1− as)2

for some complex numbers A and a. That is, s is determined by the property that it
takes values 0 and 1 at the two points lying above the point s1 = 0 with the point
s = 1 having a ramification index 2 and value∞ at the point lying above s1 =∞

with ramification index 1.
Now the condition that the CM-points of discriminant −156 are ramified implies

that the discriminant of
As(1− s)2− x(1− as)2

as a polynomial in s must be divisible by the polynomial in (7). This gives two
relations between A and a. Solving them for A and a, we find that the only
legitimate choice is A = 9− 46i and a = 13. Then we have

t1 =
2i(s1+ 1)
−s1+ 1

=
4394is3

+ (−15548− 5746i)s2
+ (2392+ 3926i)s− 92+ 18i

(13s− 3+ 2i)(−169s2+ (416+ 624i)s+ 5− 12i)
.
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Let t be the Hauptmodul of X39
0 (2)/W39 with

s =−
3+ 2i

13
(5+ i)t + 3− 15i
(5− i)t + 3+ 15i

.

Then we have

t1 =−
2(t3
+ t2
+ 11t + 3)

(t + 3)(t2+ 7)
.

The values of t at CM(−52), CM(−39), and CM(−156) can be read off from

t2
1 + 4=

8(t2
+ 9)(t2

+ 2t + 5)2

(t + 3)2(t2+ 7)2
,

t2
1 + t1+ 1=

(t2
+ 2t + 13)(3t4

+ 34t2
+ 27)

(t + 3)2(t2+ 7)2
,

and

7t2
1 + 23t1+ 19=

(t2
− 2t + 13)(t2

− 6t + 21)2

(t + 3)2(t2+ 7)2
,

respectively. To determine the action of w2 on t , we recall that w2 switches the two
points in CM(−52). It also exchanges the two zeros of x2

+2x+13, corresponding
to the two points in CM(−156) that lie above the CM-points of discriminant −39
on X39

0 (1)/W39, with the two zeros of x2
− 2x + 13, corresponding to the other

two points in CM(−156) that lie above the CM-points of discriminant −156 on
X39

0 (1)/W39. From this information, we can deduce that w2 : t 7→ −t . �

5. Main results

5.1. Schwarzian differential equations.

Theorem. Let Hauptmoduln for X D
0 (N )/WD be as in the lemmas. Then the auto-

morphic derivatives associated to them are as follows. For (D, N )= (6, 1),

Q(t)=
108− 113t + 140t2

576t2(1− t)2
.

For (D, N )= (6, 5),

Q(t)=−
15(23− 456t2

+ 1608t4)

2(2+ 3t2)2(1+ 64t2)2
.

For (D, N )= (6, 7),

Q(t)=−
3(267+ 6480t2

+ 64352t4)

4(1+ 27t2)2(3+ 32t2)2
.

For (D, N )= (6, 13),
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Q(t)=−
3(12492+ 43272t2

+ 37541t4)

(9+ 16t2)2(16+ 27t2)2
.

For (D, N )= (10, 1),

Q(t)=
3t4
− 119t3

+ 3157t2
− 7296t + 10368

16t2(t − 2)2(t − 27)2
.

For (D, N )= (10, 3),

Q(t)=
8− 303t2

− 1200t4
− 95840t6

36t2(1+ 32t2)2(1+ 5t2)2
.

For (D, N )= (10, 7),

Q(t)=−
655+ 62410t2

+ 2237231t4
+ 35817920t6

+ 216522240t8

(1+ 27t2)2(1+ 20t2)2(5+ 128t2)2
.

For (D, N )= (14, 1),

Q(t)=
192+ 440t + 43t2

+ 1036t3
+ 960t4

16t2(8+ 13t + 16t2)2
.

For (D, N )= (14, 3),

Q(t)=−
3(497− 1988t2

+ 31494t4
+ 141436t6

+ 139601t8)

2(1+ 2t2)2(7+ 226t2+ 343t4)2
.

For (D, N )= (14, 5),

Q(t)=−
623+ 16772t2

+ 55178t4
− 853468t6

+ 97503t8

(1+ 16t2)2(7+ 114t2+ 7t4)2
.

For (D, N )= (15, 1),

Q(t)=
177147− 244944t + 244242t2

− 3680t3
+ 35t4

144t2(1− t)2(81− t)2
.

For (D, N )= (15, 2),

Q(t)=
3(385+ 5500t2

− 2042t4
+ 35196t6

− 2175t8)

4(1− t)2(1+ t)2(1− 5t)2(1+ 5t)2(5+ 3t2)2
.

For (D, N )= (15, 4),

Q(t)=−
9(14+ 271t2

+ 2024t4
+ 7746t6

+ 19895t10
+ 16674t8

+ 10720t12)

4(4t2− t + 1)2(4t2+ t + 1)2(3t2+ 1)2(5t2+ 3)2
.



SCHWARZIAN EQUATIONS FOR SHIMURA CURVES OF GENUS ZERO 483

For (D, N )= (21, 1),

Q(t)=
21(40353607− 17647350t + 3561369t2

− 477652t3
+ 31833t4

− 630t5
+ 7t6)

16t2(49− t)2(343− 94t + 7t2)2
.

For (D, N )= (21, 2),

Q(t)=
3(1− 69t2

− 4086t4
+ 23670t6

+ 6043653t8
+ 6781887t10)

16t2(1− t)2(1+ t)2(1+ 27t2)2(1+ 63t2)2
.

For (D, N )= (26, 1),

Q(t)=
85683+ 15210t + 16694t2

− 9480t3
+ 1363t4

− 170t5
+ 12t6

16t2(169+ 24t − 19t2+ 2t3)2
.

For (D, N )= (26, 3),

Q(t)=−
6(85+3528t2

+60543t4
+552448t6

+2850579t8
+7990200t10

+9677785t12)

(1+8t2)2(8+165t2+1086t4+2197t6)2
.

For (D, N )= (35, 1),

Q(t)= Q1(t)/16(t + 12)2(7t + 4)2(t3
+ 4t2

+ 144t + 80)2,

where

Q1(t)= 666427392t + 1132800t4
+ 181420032− 753984t5

+ 24576t6
+ 147t8

+ 659096576t2
+ 85540864t3

+ 3808t7.

For (D, N )= (35, 2),

Q(t)= Q1(t)/4(t2
+ 7)2(t2

− 25)2(t6
+ 13t4

− 29t2
− 625)2,

where

Q1(t)= 2842805000t2
+ 91524600t6

− 2082286t8
− 217416t10

+ 54644t12
+ 3784t14

+ 19t16
− 992578125+ 1017474100t4.

For (D, N )= (39, 1),

Q(t)=
−3Q1(t)

4(4+ t2)2(1+ t + t2)2(19+ 23t + 7t2)2
,

where

Q1(t)= 2596+ 7104t + 9692t2
+ 12348t3

+ 13149t4
+ 9522t5

+ 4367t6
+ 1086t7

+ 97t8.

For (D, N )= (39, 2),

Q(t)=
−9Q1(t)

4(9+ t2)2(13+ 2t + t2)2(13− 2t + t2)2(27+ 34t2+ 3t4)2
,
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where

Q1(t)= 419253003+ 119984328t2
+ 89200020t4

+ 43676088t6
+ 10194786t8

+ 1272824t10
+ 87380t12

+ 3080t14
+ 43t16.

For these results, we take the Schwarzian differential equations on X14
0 (1)/W14,

X14
0 (3)/W14, and X14

0 (5)/W14 as examples for the proofs.

Proof. In Lemma 12, we see that there is a Hauptmodul t1 on X14
0 (1)/W14 with

value∞ at the elliptic point of order 4 and values 0 and (−13± 7
√
−7)/32 at the

elliptic points of order 2. According to Proposition 3, the automorphic derivative
Q(t1) associate to t1 is

Q(t1)=
3
16
−

21+ 16B
52t

+
3(512t2

+ 416t − 87)
(16t2+ 13t + 8)2

+
4(21t + B(16t + 13))

13(16t2+ 13t + 8)
,

for some constant B. We now use the covering X14
0 (3)/W14 → X14

0 (1)/W14 to
determine the constant B. More precisely, according to Proposition 4, we have
the relation between Q(t1) and the automorphic derivative Q(t) associative to a
Hauptmodul t of X14

0 (3)/W14,

Q(t)= D(t1, t)+ Q(t1)/(dt1/dt)2.

Note that there is a Hauptmodul t for X14
0 (3)/W14 that takes values ±1/

√
−2,

(±9
√
−7± 4

√
−14)/49 at the 6 elliptic points of order 6. Thus, the automorphic

derivative Q(t) is

Q(t)=
3(2t2

− 1)
4(2t2+ 1)2

+
3(18335t2

+ 38759t4
+ 117649t6

− 791)
4(7+ 226t2+ 343t4)2

+
343(686C4t3

+ 109C3t2
+ 109C4t + 109C5)

436(7+ 226t2+ 343t4)
−

1372C4t + 981+ 218C3

436(2t2+ 1)

for some constants C3, C4, and C5. Also, the action of the Atkin–Lehner involution
w3 is w3 : t 7→ −t . Thus, by Proposition 5, we can get the value C4 = 0.

From the relations

t1 =
4(1+ 2t2)(1− 5t)2

9(1+ t)4
and Q(t)= D(t1, t)+

Q(t1)
(dt1/dt)2

we find that

B =− 373
512 , C3 =−

91
9 , and C5 =−

1301
3087 .

For the case of X14
0 (5)/X14, the chosen Hauptmodul t takes values ±i/4 at the

elliptic points of order 4, (±5
√
−7±4

√
−14)/7 at the elliptic points of order 2, and
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the action of Atkin–Lehner involution w5 is t 7→ −t . Therefore, the automorphic
derivative associative to t is

Q(t)=
15(16t2

− 1)
2(16t2+1)2

+
3(49t6

+399t4
+6351t2

− 399)
4(7t4+114t2+7)2

−
39+8B1

2(16t2+1)
+

7(B1t2
+B2)

4(7t4+114t2+7)
,

for some constants B1 and B2. From the relation

t1 =−
5(1− t + 17t2

− 13t3)2

(1+ 16t2)(1+ 3t)4

and Proposition 4, we can conclude that

Q(t)=−
97503t8

− 853468t6
+ 55178t4

+ 16772t2
+ 623

(16t2+ 1)2(7t4+ 114t2+ 7)2
. �

5.2. Ramanujan-type formulae. Recall that if E is an elliptic curve defined over
Q, which has CM by an imaginary quadratic field K of discriminant d , then up to
an algebraic factor, the period of E can be expressed by

�d =
√
π

∏
0<a<|d|

0

(
a
|d|

)wdχd (a)/4hd

,

where wd is the number of roots of unity in K , χd is the Kronecker character
( d
·

)
associated to K , and hd is the class number of K . Yang [2013a] contributes many
Ramanujan-type series. For example,

∞∑
n=0

(
74480n+ 6860

3

) (1/12)n(1/4)n(5/12)n
(1/2)n(3/4)nn!

(
−74

3375

)n

= 73
√

5 4
√

3375
4π

4
√

12�2
−4

,

which is related to the period of an elliptic curve with CM by Q(
√
−1). The power

series
∞∑

n=0

(1/12)n(1/4)n(5/12)n
(1/2)n(3/4)nn!

tn

mentioned above is the hypergeometric function

3 F2
( 1

12 ,
1
4 ,

5
12 ;

1
2 ,

3
4 , t
)
= 2 F1

( 1
24 ,

5
24 ;

3
4 ; t
)2
.

Note that the function 2 F1
( 1

24 ,
5

24 ;
3
4 ; t
)

is related to the Schwarzian differential
equation associated to the Hauptmodul t of X6

0(1)/W6 that takes values 0, 1, and
∞ at the CM-points of discriminants −4, −24, and −3, respectively. Yang also
gave other similar identities related to �−4, and also the Ramanujan-type series
related to �−3 for the curve X6

0(1)/W6.
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Yang [2013a] guesses that, in general, we can use the t-series expansion of a
meromorphic form to obtain Ramanujan-type identities, which are related to certain
periods of elliptic curves with CM. That is, we may have

∞∑
n=0

(R1n+ R2)Antn
0 = R3

π

�2
d
,

where R1, R2, R3 ∈Q,
∑
∞

0 Antn is the expansion of a meromorphic automorphic
form of weight 2 with respect to a Hauptmodul t of a Shimura curve of genus
zero such that t takes value 0 at a CM-point of discriminant d, and t0 is the value
of t at some CM-point of discriminant d ′ 6= d. To be more precise, let g1 and g2

be two linearly independent solutions of a given Schwarzian differential equation
associated to a Shimura curve of genus 0. Write g2

1 =
∑
∞

0 Antn and g2
2 =

∑
∞

0 Bntn;
then we expect that

∞∑
n=0

(R1n+ R2) Antn
0 = R3

π

�2
d
,

∞∑
n=0

(R1n+ R2+ R1/a) Bntn
0 = R3

�2
d

π
,

for certain positive integer a. We remark that the series also converges p-adically
for primes p |M while t0 = M/N . The p-adic numbers to which they converge
should be related to the p-adic periods of certain elliptic curves with CM. Yang also
gave some numerical examples of the p-adic analogues for the Ramanujan-type
series obtained from X6

0(1)/W6. Here, let us see some numerical examples coming
from X14

0 (1)/W14.
From the Lemma 12, we know that there is a Hauptmodul t for X14

0 (1)/W14

that takes values∞, 0, and (−13± 7
√
−7)/32 at CM-points of discriminants −4,

−8, and −56, respectively. The t-series expansions of two linearly independent
solutions of the Schwarzian differential equation associated to t (see Theorem),

d2

dt2 f + Q(t) f = 0, Q(t)=
192+ 440t + 43t2

+ 1036t3
+ 960t4

16t2(8+ 13t + 16t2)2
,

are

g1 = t1/4 (1+ 23
64 t + 1867

8192 t2
−

955937
2621440 t3

+
157030847
671088640 t4

+
3694251053
42949672960 t5

+ . . .
)

and

g2 = t3/4 (1+ 23
192 t + 3149

24576 t2
−

434593
1572864 t3

+
264972083

1207959552 t4
+

39014127761
850403524608 t5

+ . . .
)
.

The Hauptmodul t takes value t0 =−13/81 at the CM-points of discriminants −91
(this is given in [Elkies 1998]). We now let

∞∑
n=0

An = t−1/2g2
1,

∞∑
n=0

Bn = t−3/2g2
2,
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and

C =
81

2548
0(5/8)0(7/8)
0(1/8)0(3/8)

=
81

2548
�2
−8/π.

Then ( ∞∑
n=0

R1n+ R2

)
Antn

0 =
847
18 133/43C,(8) (∑

n=0

∞R1n+ R1+ R2

)
Bntn

0 =
847
18 131/427C−1.(9)

If we choose a Hauptmodul t that takes values 0,∞, and (−39± 21
√
−7)/16

at CM-points of discriminant −4, −8, and −56, respectively, the Schwarzian
differential equation associated to t is given by

d2

dt2 f + Q(t) f = 0, Q(t)=
3(64t4

+ 440t3
+ 129t2

+ 9324t + 25920)
16t2(8t2+ 39t + 144)2

,

and its two linearly independent solutions are

g1 = t3/8 (1+ 131
2304 t + 21631

3538944 t2
−

49745249
29896998912 t3

+
16603576771

91843580657664 t4
+ . . .

)
,

g2 = t5/8 (1+ 131
3840 t + 8923

1966080 t2
−

257758957
176664084480 t3

+
646181570409

9226105147883520 t4
+ . . .

)
.

The Hauptmodul t takes value t0= 27/200 at the CM-points of discriminants −168.
Let

∞∑
n=0

Cn = t−3/4g2
1,

∞∑
n=0

Dn = t−5/4g2
2 .

We have

∞∑
n=0

(R1n+ R2)Cntn
0 =

810000
118 273/42001/4C,

∞∑
n=0

(R1n+ R2+ R1/2) Dntn
0 =

810000
118 271/42003/4C−1

with R1 = 2904, R2 = 12, where

C =
0(3/4)2

0(1/4)2

(196
3

)1/4
=

(196
3

)1/4
�2
−4/π.

Let 0p( · ) stand for the p-adic Gamma function. The numerical results checked
for 70 p-adic digits yield that
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∞∑
n=0

(R1n+ R2)Cntn
0 =

24
· 118

9

(
273200

9803(1/4)
2703(3/4)

)1/4

,

∞∑
n=0

(R1n+ R2+ R1/2) Dntn
0 =

24
· 118

9

(
27 · 2003 2703(3/4)

9803(1/4)

)1/4

,

hold 3-adically with R1 = 29040 and R2 = 120.
For the numbers

∑
n Antn

0 ,
∑

Antn
0 ,
∑

nBntn
0 , and

∑
Bntn

0 , after numerical
computation, we find that the equalities( ∞∑

n=0

(11011n+ 7290)Antn
0

)2

= 33
· 7 · 137 · 1571

013(5/8)013(7/8)
2013(1/8)013(3/8)

,

( ∞∑
n=0

(11011n+ 75897) Bntn
0

)2

= 312
· 7 · 114 013(1/8)013(3/8)

8013(5/8)013(7/8)
,

hold 13-adically.
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