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POLYNOMIAL INVARIANTS OF WEYL GROUPS
FOR KAC–MOODY GROUPS

ZHAO XU-AN AND JIN CHUNHUA

We prove that the ring of polynomial invariants of Weyl group for an in-
decomposable and indefinite Kac–Moody Lie algebra is generated by the
invariant symmetric bilinear form or is trivial depending on whether A is
symmetrizable or not. The result was conjectured by Moody and assumed
by Kac. As an application, we discuss the rational homotopy types of Kac–
Moody groups and their flag manifolds.

1. Introduction

Let A = (ai j ) be an n× n integer matrix satisfying:

(1) For each i, ai i = 2.

(2) For i 6= j , ai j ≤ 0.

(3) If ai j = 0, then a j i = 0.

Then A is called a Cartan matrix.
Let h be the real vector space with basis 5∨ = {α∨1 , α

∨

2 , . . . , α
∨
n }, and denote

the dual basis of 5∨ in the dual space h∗ by {ω1, ω2, . . . , ωn}; that is, ωi (α
∨

j )= δi j

for 1 ≤ i, j ≤ n. Let 5 = {α1, . . . , αn} ⊂ h∗ be given by 〈α∨i , α j 〉 = ai j for
all i, j ; then αi =

∑n
j=1 a j iω j . Note that if the Cartan matrix A is singular, then

{αi | 1≤ i ≤ n} is not a basis of h∗. 5 and 5∨ are called the simple root system and
simple coroot system associated to the Cartan matrix A, and αi , α∨i , ωi , 1≤ i ≤ n
are the simple roots, simple coroots and fundamental dominant weights respectively.

By [Kac 1968] and [Moody 1968], for each Cartan matrix A, there is a Lie
algebra g(A) associated to A, which is called the Kac–Moody Lie algebra.

The Kac–Moody Lie algebra g(A) is generated by α∨i , ei , fi , 1≤ i ≤ n over C,
with the defining relations

(1) [α∨i , α
∨

j ] = 0,

The authors are supported by National Science Foundation of China, 11171025.
MSC2010: primary 17C99; secondary 55N45.
Keywords: Cartan matrix, Weyl group, polynomial invariants of Weyl group, Kac–Moody Group,

flag manifold, cohomology of Kac–Moody groups.

491

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.269-2


492 ZHAO XU-AN AND JIN CHUNHUA

(2) [ei , f j ] = δi jα
∨

i ,

(3) [α∨i , e j ] = ai j e j , [α
∨

i , f j ] = −ai j f j ,

(4) ad(ei )
−ai j+1(e j )= 0, 1≤ i 6= j ≤ n,

(5) ad( fi )
−ai j+1( f j )= 0, 1≤ i 6= j ≤ n.

Kac and Peterson [1983; 1985] (see also [Kac 1985a]) constructed the Kac–
Moody group G(A) with Lie algebra g(A). In this paper, for convenience we
consider the quotient Lie algebra of g(A) modulo its center c(g(A)) and the associ-
ated simply connected group G(A)modulo C(G(A)). We still use the same symbols
g(A) and G(A) and call them the Kac–Moody Lie algebra and the Kac–Moody
group.

Cartan matrices and their associated Kac–Moody Lie algebras and Kac–Moody
groups are divided into three types:

(1) Finite type, if A is positive definite. In this case, G(A) is just the simply
connected complex semisimple Lie group with Cartan matrix A.

(2) Affine type, if A is positive semidefinite and has rank n− 1.

(3) Indefinite type otherwise.

A Cartan matrix A is called hyperbolic if all the proper principal submatrices
of A are of finite or affine type. A Cartan matrix A is called symmetrizable if
there exist an invertible diagonal matrix D and a symmetric matrix B such that
A = DB. Also, g(A) is called a symmetrizable Kac–Moody Lie algebra if A is
symmetrizable.

The Weyl group W (A) associated to a Cartan matrix A is the group generated
by the Weyl reflections σi : h∗ → h∗ with respect to α∨i , for 1 ≤ i ≤ n, where
σi (α)= α−α(α

∨

i )αi . W (A) has a Coxeter presentation

W (A)= 〈σ1, . . . , σn | σ
2
i = e, 1≤ i ≤ n; (σiσ j )

mi j = e, 1≤ i < j ≤ n〉,

where mi j = 2, 3, 4, 6 or∞ as ai j a j i = 0, 1, 2, 3 or ≥ 4, respectively. The action
of σi on fundamental dominant weights is given by σi (ω j ) = ω j − ω j (α

∨

i )αi =

ω j − δ j iαi . For details see [Kac 1983; Humphreys 1990].
The action of the Weyl group W (A) on h∗ induces an action of W (A) on the

polynomial ring Q[h∗] ∼= Q[ω1, . . . , ωn]. If for each σ ∈ W (A), σ( f ) = f , then
f ∈Q[h∗] is called a W (A)-invariant polynomial. Since W (A) is generated by σi ,

1≤ i ≤ n, f is a W (A)-invariant polynomial if and only if σi ( f )= f for 1≤ i ≤ n.
The W (A)-invariant polynomials form a ring, called the ring of W (A) polynomial
invariants, denoted by I (A).

The invariant theory of Weyl groups has been a significant topic since the 1950s.
It has important applications in the homology of Lie groups and their classifying
spaces. Motivated by that study, Chevalley showed that the ring of invariants of a
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finite Weyl group is a polynomial algebra. A comprehensive study of the polynomial
invariants was undertaken by Bourbaki, Solomon, Springer and Steinberg, etc.

Moody [1978] proved the following:

Theorem. Let A be an indecomposable and symmetrizable n× n Cartan matrix
whose associated invariant bilinear form ψ is nondegenerate and of signature
(n− 1, 1). Then the ring of W (A) polynomial invariants is Q[ψ].

In the same paper, Moody further said: “We conjecture that it is in fact true for
all Weyl groups arising from nonsingular Cartan matrices of nonfinite type.”

Kac [1985b] also assumed that for an indecomposable and indefinite Cartan
matrix, the ring of W (A) polynomial invariants is Q[ψ] or trivial depending on
whether A is symmetrizable or not.

In this paper, we prove the following:

Theorem. Let A be an indecomposable and indefinite Cartan matrix A. If A is
symmetrizable, then I (A)=Q[ψ]; if A is nonsymmetrizable, then I (A)=Q.

The content of this paper is as follows. In Section 2, we discuss the general
results about the polynomial invariants of Weyl group W (A). In Sections 3 and 4,
we consider the rank 2 and hyperbolic cases, respectively. The main theorem is
proved in Section 5. In Section 6, we consider the applications of the theorem
in determining the rational homotopy type of Kac–Moody groups and their flag
manifolds.

2. Rings of polynomial invariants of Weyl groups: general case

In this section, we discuss some general properties of the ring of invariants of Weyl
groups.

Lemma 2.1. If a Cartan matrix A is the direct sum of Cartan matrices A1, A2, then
I (A) is isomorphic to the tensor product I (A1)⊗ I (A2).

So we only consider indecomposable Cartan matrices.

Lemma 2.2. Write f ∈ I (A) as f =
∑l

i=0 fi ∈ I (A), where fi is the degree i
homogeneous component of f . Then fi ∈ I (A).

So I (A) is a graded ring: I (A)=
⊕
∞

i=0 I i (A), where I i (A) is the subspace of
homogeneous polynomials of degree i in I (A). To determine the ring I (A), we
only need to consider homogeneous invariant polynomials.

Lemma 2.3. For an indecomposable Cartan matrix A of affine or indefinite type, the
orbit {σ(ω) | σ ∈W (A)} of a nonzero elementω in the Tits cone

{∑n
i=1 λiωi | λi ≥0

}
is an infinite set.
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Proof. If ω 6= 0 is in the Tits cone, then we can assume ω=
∑n

i=1 λiωi , λi ≥ 0. Let
S = {1, 2, . . . , n}, J = {i ∈ S | λi = 0}, WJ (A) be the subgroup of W (A) generated
by {σi | i ∈ J } and G J (A) be the parabolic subgroup of G(A) corresponding to
the Weyl group WJ (A). Since {σ(ω) | σ ∈ W (A)} ∼= W (A)/WJ (A) indexes the
Schubert varieties of the generalized flag manifold FJ (A) = G(A)/G J (A), the
lemma follows from the fact that the number of Schubert varieties in FJ (A) is
infinite for affine and indefinite type. For reference, see [Kumar 2002]. �

Corollary 2.4. Let f ∈ I (A) be a homogeneous invariant polynomial and ω 6= 0
be in the Tits cone. If ω | f , then f = 0 .

Proof. If ω | f , then for any σ ∈W (A), σ (ω) | σ( f )= f . Since {σ(ω) | σ ∈W (A)}
is an infinite set, if f 6= 0, this contradicts the condition that the degree of f is
finite. �

Lemma 2.5. For a Cartan matrix A, I 1(A)= {0}.

Proof. Suppose f =
∑n

i=1 λiωi ∈ I 1(A); then for each j , σ j ( f )= f − λ jα j = f .
Since α j 6= 0, λ j = 0. Hence f = 0. �

Lemma 2.6. For a Cartan matrix A, we may write any homogeneous degree 2
polynomial f in the form

∑n
i, j=1 λi jωiω j , where λi j = λ j i . Then f ∈ I 2(A) if and

only if ∂ f/∂ω j =
1
2(∂

2 f/∂ω2
j )α j for 1≤ j ≤ n; that is, 2λi j = ai jλ j j for 1≤ i, j ≤ n.

Proof. If f is an invariant polynomial, then for each j ,

σ j ( f )= f (ω1, . . . , ω j −α j , . . . , ωn)= f (ω)−
∂ f
∂ω j

α j +
1
2
∂2 f
∂ω2

j
α2

j = f.

This is equivalent to ∂ f
∂ω j
=

1
2
∂2 f
∂ω2

j
α j . That is, 2

n∑
i=1
λi jωi = λ j jα j = λ j j

n∑
i=1

ai jωi ;
i.e., 2λi j = ai jλ j j . �

Lemma 2.6 can be generalized:

Lemma 2.7. Let A be a Cartan matrix. Then f is a degree l invariant polynomial
if and only if for 1≤ j ≤ n,

(1)
∂ f
∂ω j
−

1
2!
∂2 f
∂ω2

j
α j + · · ·+ (−1)l

1
l!
∂ l f
∂ωl

j
αl−1

j = 0.

Lemma 2.8. An n×n Cartan matrix A= {ai j } is symmetrizable if and only if there
exist nonzero d1, d2, . . . , dn such that ai j d j = a j i di for all i, j .
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Proof. Suppose A is symmetrizable. Then there exist an invertible diagonal ma-
trix D = diag(d1, . . . , dn) and a symmetric matrix B such that A = DB; that is,
ai j = di bi j for all i, j . So ai j/di = bi j = b j i = a j i/d j . Equivalently, ai j d j = a j i di .

If there exist nonzero d1, d2, . . . , dn such that ai j d j = a j i di for all i, j , let
D = diag(d1, . . . , dn) and B = (bi j )n×n = (ai j/di )n×n; then, A = DB. Therefore
A is symmetrizable. �

Corollary 2.9. If A is an indecomposable Cartan matrix, then dim I 2(A)= 1 or 0
depending on whether A is symmetrizable or not. And if A is symmetrizable, then
I 2(A) is spanned by the invariant bilinear form ψ , which is unique up to a constant.

Proof. If dim I 2(A) > 0, choose f (ω) =
∑n

i, j=1 λi jωiω j ∈ I 2(A), f (ω) 6= 0. By
permuting the simple roots, we can assume that there exists an integer k > 0 such
that λ11, . . . , λkk 6= 0 but λk+1,k+1, . . . , λnn = 0. If i ≤ k and j > k, by Lemma 2.6
2λi j = ai jλ j j , therefore λi j = 0. By 0= 2λi j = 2λ j i = a j iλi i , we get a j i = 0 for all
i ≤ k, j > k. Since A is indecomposable, k must equal n. Let di = λi i for 1≤ i ≤ n;
then ai j d j = a j i di for all i, j . This means that A is symmetrizable.

If dim I 2(A)= 0, then A is nonsymmetrizable (if A is symmetrizable, then the
Killing form gives an element in I 2(A)).

Since A is indecomposable, for all i, j , the ratios λi j : λ j j and λi i : λ j j are
determined by A. Therefore, if dim I 2(A) > 0, then dim I 2(A)= 1. �

Below, for an indecomposable and symmetrizable Cartan matrix A, we always
fix a nonzero ψ ∈ I 2(A).

3. Rings of polynomial invariants of Weyl groups, n = 2 case

A 2× 2 Cartan matrix is of the form

Aa,b :=

(
2 −a
−b 2

)
.

We say that Aa,b is of finite, affine or indefinite type if ab < 4, ab = 4 or ab > 4,
respectively. The action of reflections σ1, σ2 ∈W (A) on h∗ is given by

σ1(ω1)=−ω1+ bω2, σ1(ω2)= ω2, σ2(ω1)= ω1, σ2(ω2)=−ω2+ aω1.

Lemma 3.1. The Weyl group Wa,b of a Cartan matrix Aa,b is the dihedral group Dm ,
where m = 2, 3, 4, 6 or∞ when ab = 0, 1, 2, 3 or ≥ 4, respectively. If Aa,b is of
affine or indefinite type, then the ring of polynomial invariants of the Weyl group
Wa,b is I (Aa,b)=Q[ψ].

Proof. For a Cartan matrix Aa,b of affine or indefinite type, ab 6= 0. Since A is
indecomposable and symmetrizable, dim I 2(A)= 1 and I 2(A) is spanned by ψ =
aω2

1−abω1ω2+bω2
2. Suppose f (ω)=

∑l
i=0 λiω

i
1ω

l−i
2 is a degree l homogeneous
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invariant polynomial; then

σ2( f )=
l∑

i=0

λiω
i
1(−ω2+ aω1)

l−i

=

l∑
i=0

l−i∑
j=0

(−1) jλi

( l−i
j

)
ωi

1ω
j
2(aω1)

l−i− j

=

l∑
j=0

l− j∑
i=0

(−1) jλi

( l−i
j

)
al−i− jω

l− j
1 ω

j
2

=

l∑
j=0

( j∑
i=0

(−1)l− jλi

( l−i
l− j

)
a j−i

)
ω

j
1ω

l− j
2 .

So σ2( f )= f is equivalent to

(2) λ j =

j∑
i=0

(−1)l− jλi

( l−i
l− j

)
a j−i , 0≤ j ≤ l.

Letting j = 0, we get λ0 = (−1)lλ0. So λ0 = 0 or l is even.

(1) If λ0 = 0, then ω1 | f . By Corollary 2.4, f = 0.

(2) If l is even, suppose l = 2m. There exists a constant λ such that f − λψm is
an invariant polynomial and ω1 | ( f − λψm), hence f = λψm .

This proves the lemma. �

4. Some results about hyperbolic Cartan matrices

Moody [1978] proved that for each indecomposable and symmetrizable hyperbolic
Cartan matrix A, the ring of polynomial invariants I (A) is Q[ψ], where ψ is the
invariant symmetric bilinear form. So in this section we only consider nonsym-
metrizable Cartan matrices.

Indecomposable n × n hyperbolic Cartan matrices exist only for n ≤ 10, and
their number is finite for 3≤ n ≤ 10. There are lists of hyperbolic Cartan matrices
in [Wan 1991] and [Carbone et al. 2010].

Lemma 4.1. Let A be an indecomposable and nonsymmetrizable hyperbolic Cartan
matrix with n ≥ 4.

(C1) The Dynkin diagram of A forms a circle. That is, ai j 6= 0 if and only if
|i − j | = 0, 1 or n− 1.

(C2) If |i − j | = 1 or n− 1, then ai j =−1 or a j i =−1.

The lemma is proved by direct checking of the lists.
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Remark 4.2. The lemma is not true for the case n = 3.

Lemma 4.3. Let A be an indecomposable and nonsymmetrizable hyperbolic Cartan
matrix with n = 3. Then A contains a 2×2 principal submatrix of affine type, or all
the 2× 2 principal submatrices of A are of finite type. In the latter case, A satisfies
conditions (C1) and (C2).

Feingold and Nicolai [2004] proved the following theorem:

Theorem 4.4. Let g(A) be the Kac–Moody Lie algebra associated to a symmetriz-
able Cartan matrix A = (ai j )n×n which is generated by α∨i , ei , fi , 1≤ i ≤ n, and
let β1, . . . , βm be a set of positive real roots of g(A) such that βi − β j is not a
root for 1 ≤ i 6= j ≤ m. Let Ei , Fi be root vectors in the one-dimensional root
spaces corresponding to the positive real roots βi and negative real roots −βi ,
respectively, and let Hi = [Ei , Fi ]. Then the Lie subalgebra of g generated by
{Ei , Fi , Hi | 1 ≤ i ≤ m} is a regular Kac–Moody subalgebra with Cartan matrix
B = (bi j )n×n = (2(β j , βi )/(βi , βi ))n×n .

In the formulas below, subscripts not in the range from 1 to n are to be taken
modulo n in that range. By using the ideas in the theorem of Feingold and Nicolai,
we can prove the following lemma:

Lemma 4.5. Let A be an n× n Cartan matrix satisfying conditions (C1) and (C2)
in Lemma 4.1, with simple root system {α1, α2, . . . , αn}, then βi = αi+1 + αi+2,
1 ≤ i ≤ n is a set of positive real roots of g(A), and βi − β j for i 6= j are not
roots. Let α∨i , ei , fi , 1 ≤ i ≤ n be the generators of g(A), Ei = [ei+1, ei+2],
Fi = −[ fi+1, fi+2] and Hi = [Ei , Fi ]. Then Hi , Ei , Fi , 1 ≤ i ≤ n generate a full
rank regular Kac–Moody subalgebra with simple root system {β1, β2, . . . , βn} and
Cartan matrix B = (bi j )= (β j (Hi ))n×n .

Proof. For βi = αi+1+αi+2,

Hi = [Ei , Fi ]

= −[[ei+1, ei+2], [ fi+1, fi+2]]

= −
[
[[ei+1, ei+2], fi+1], fi+2

]
− [ fi+1, [[ei+1, ei+2], fi+2]]

=
[
[[ fi+1, ei+1], ei+2], fi+2

]
+ [[ei+1, [ fi+1, ei+2]], fi+2]

+ [ fi+1, [[ fi+2, ei+1], ei+2]]+
[

fi+1, [ei+1, [ fi+2, ei+2]]
]

=−[[α∨i+1, ei+2], fi+2] − [ fi+1, [ei+1, α
∨

i+2]]

= −(ai+1,i+2α
∨

i+2+ ai+2,i+1α
∨

i+1).

Then [Hi , Ei ] = −2(ai+1,i+2+ ai+2,i+1+ ai+1,i+2 ai+2,i+1)Ei .
Since, for each 1≤ i ≤ n,

−2(ai+1,i+2+ai+2,i+1+ai+1,i+2 ai+2,i+1)=2(1−(ai+1,i+2+1)(ai+2,i+1+1))=2,
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a routine check shows that β j (Hi )≤ 0. Therefore the matrix B with bi j = β j (Hi )

is a Cartan matrix. The Serre relations for Hi , Ei , Fi , 1≤ i ≤ n from B are checked
as in [Feingold and Nicolai 2004], so Hi , Ei , Fi , 1≤ i ≤ n generate a Kac–Moody
Lie algebra g(B) inside g(A). �

We can’t say Lemma 4.5 is a corollary of the previous theorem, since we don’t
know whether the theorem is true for nonsymmetrizable Cartan matrices A. So we
must prove Lemma 4.5 by direct computation.

Corollary 4.6. Let A be an n×n indecomposable and nonsymmetrizable hyperbolic
Cartan matrix. Then in g(A) there is a full rank indecomposable and nonhyperbolic
regular indefinite Kac–Moody subalgebra g(B).

This corollary is proved by using Lemma 4.5 and checking the list of inde-
composable, nonsymmetrizable hyperbolic Cartan matrices. We have written a
computer program to do the checking. The computation results show that except
for the hyperbolic Lie algebras labeled 131, 132, 133, 137, 139, 141 in the list
in [Carbone et al. 2010], all the subalgebras we constructed are nonsymmetriz-
able.

Below is a simple example:

Example 4.7. For the hyperbolic Cartan matrix

A =

 2 −1 −1
−1 2 −1
−2 −1 2

,
we obtain a regular subalgebra g(B) of g(A) with simple roots

β1 = α2+α3, β2 = α3+α1, β3 = α1+α2,

and its Cartan matrix is

B =

 2 −2 −2
−3 2 −1
−1 −1 2

.
It is nonsymmetrizable and indefinite, but nonhyperbolic.

5. Proof of the main theorem

Some preparatory lemmas. Let A be an n×n Cartan matrix and S= {1, 2, . . . , n}.
For J ⊂ S, let AJ be the principal submatrix (ai j )i, j∈J corresponding to J . Then
A′ = AS−{n} is the upper-left (n− 1)× (n− 1) principal submatrix of A. Let h′ be
the subspace of h spanned by α∨1 , . . . , α

∨

n−1 and h′∗ the subspace of h∗ spanned
by ω1, . . . , ωn−1; then h = h′⊕Rα∨n and h∗ = h′∗⊕Rωn . Let αi ∈ h∗, 1 ≤ i ≤ n
and α′i ∈ h′∗, 1 ≤ i ≤ n − 1 be the simple roots of Cartan matrices A and A′
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respectively, and σi , 1≤ i ≤ n and σ ′i , 1≤ i ≤ n− 1 be the Weyl reflections in h∗

and h′∗ respectively. For 1≤ i 6= j ≤ n−1, αi = α
′

i +aniωn , σi (ω j )= σ
′

i (ω j ), and
σi (ωi )= ωi −αi = σ

′

i (ωi )− aniωn .

Lemma 5.1. Let ω = (ω1, . . . , ωn−1, ωn) and ω′ = (ω1, . . . , ωn−1). If f (ω) is
a degree l invariant polynomial under the action of σ1, . . . , σn−1 and f (ω) =∑l

i=0 fi (ω
′)ωl−i

n , with each fi (ω
′) a degree i homogeneous polynomial in S(h′∗),

then fl(ω
′) is invariant under the action of σ ′1, . . . , σ

′

n−1.

Proof. For k 6= n,

f (ω)= σk( f (ω))=
l∑

i=0
σk( fi (ω

′))ωl−i
n

=

l∑
i=0

fi (σk(ω1), σk(ω2), . . . , σk(ωk), . . . , σk(ωn−1))ω
l−i
n

=

l∑
i=0

fi (σ
′

k(ω1), σ
′

k(ω2), . . . , σ
′

k(ωk)− ankωn, . . . , σ
′

k(ωn−1))ω
l−i
n .

Setting ωn = 0, we get fl(ω
′)= fl(σ

′

k(ω
′))= σ ′k( fl(ω

′)). �

Corollary 5.2. If f (ω)=
l∑

i=0
fi (ω

′)ωl−i
n ∈ I (A), then fl(ω

′) ∈ I (A′) .

Lemma 5.3. If the degree l polynomial f (ω) is invariant under the action of
σ1, . . . , σn−1 and f (ω)=

∑l
i=0 fi (ω

′)ωl−i
n , then for k 6= n and 0≤ i ≤ l,

(3) σ ′k( fi (ω
′))=

l−i∑
j=0

(−ank)
j

j !
∂ j fi+ j (ω

′)

(∂ωk) j .

Proof. Continuing the calculation of f (w) as in Lemma 5.1, for k 6= n, we get

l∑
i=0

fi (ω
′)ωl−i

n

= f (ω)=
l∑

i=0
fi (σ

′

k(ω1), σ
′

k(ω2), . . . , σ
′

k(ωk)− ankωn, . . . , σ
′

k(ωn−1))ω
l−i
n

=

l∑
i=0

i∑
j=0

1
j !
∂ j fi

(∂ωk) j (σ
′

k(ω1), σ
′

k(ω2), . . . , σ
′

k(ωk), . . . , σ
′

k(ωn−1))(−ankωn)
jωl−i

n

=

l∑
i=0

i∑
j=0

(−ank)
j

j !
∂ j fi

(∂ωk) j (σ
′

k(ω1), σ
′

k(ω2), . . . , σ
′

k(ωk), . . . , σ
′

k(ωn−1))ω
l−i+ j
n

=

l∑
i=0

(
l−i∑
j=0

(−ank)
j

j !
∂ j fi+ j

(∂ωk) j (σ
′

k(ω
′))

)
ωl−i

n .
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By comparing the coefficients of ωl−i
n in the two sides, we get

fi (ω
′)=

l−i∑
j=0

(−ank)
j

j !
∂ j fi+ j

(∂ωk) j (σ
′

k(ω
′)).

Acting by σ ′k on both sides, we prove the lemma. �

In the following, given an n × n Cartan matrix A, we denote its upper-left
(n− 1)× (n− 1) principal submatrix by A′.

Lemma 5.4. Let A be an indefinite n × n Cartan matrix. If both A and A′ are
indecomposable and symmetrizable, then the restriction of the invariant symmetric
bilinear form ψ to h′ gives an invariant symmetric bilinear form ψ ′.

The proof is obvious by checking ψ |h′ 6= 0 and ψ ′ = ψ |h′ is invariant under the
action of σ ′1, . . . , σ

′

n−1.

Lemma 5.5. Let f be a W (A)-invariant polynomial and f (ω)=
∑l

i=0 fi (ω
′)ωl−i

n .
Then for 1≤ j ≤ l,

(4) f j (ω
′)=

j∑
i=0

(−1)l−i fi (ω
′)
( l−i

l

)
− jω′n

j−i
,

where ω′n =
∑
j 6=n

a jnω j .

Proof. We have σn(ωn)= ωn −αn =−ωn −
∑
j 6=n

a jnω j =−ωn −ω
′
n , and

f = σn( f )=
l∑

i=0

fi (ω
′)σn(ω

l−i
n )

=

l∑
i=0

fi (ω
′)(−ωn −

∑
j 6=n

a jnω j )
l−i

=

l∑
i=0

fi (ω
′)

l−i∑
j=0

(−1)l−i
( l−i

j

)
ω j

nω
′

n
l−i− j

=

l∑
j=0

[ l− j∑
i=0

(−1)l−i fi (ω
′)
( l−i

j

)
ω′n

l−i− j
]
ω j

n

=

l∑
j=0

[ j∑
i=0

(−1)l−i fi (ω
′)
( l−i

l

)
− jω′n

j−i
]
ωl− j

n .

By comparing the coefficients of ωl− j
n , we prove the lemma. �
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Remark 5.6. In fact, equations (3) and (4) are just corollaries of (1) applied to
f (ω)=

∑l
i=0 fi (ω

′)ωl−i
n .

Lemma 5.7. Let f be a W (A)-invariant polynomial of degree l and let f (ω) =∑l
i=0 fi (ω

′)ωl−i
n . If l = 2m, then for each i ≤ m − 1, there exist constants ai

j (l),
0≤ j ≤ i , depending on l, such that f2i+1=

∑i
j=0 ai

j (l) f2(i− j)ω
′2 j+1
n . If l= 2m+1,

then f0 = 0, and for each i ≤ m, there exist constants bi
j (l), 1 ≤ j ≤ i , such that

f2i =
∑i

j=1 bi
j (l) f2(i− j)+1ω

′2 j−1
n . And the coefficients ai

j (l) and bi
j (l) can be

computed.

Proof. Letting j = 0 in (4), we get f0 = (−1)l f0. So there are two cases:

Case 1: l is even. Let j = 1 in (4). Then f1 =− f1+
(l

1

)
f0ω
′
n . That is,

(5) f1 =
1
2

( l
1

)
f0ω
′

n.

For j = 2, we get f2 = f2 −
(l−1

1

)
f1ω
′
n +

(l
2

)
f0ω
′2
n; equivalently, f1 =

1
2

(l
1

)
f0ω
′
n .

For j = 3, we get

f3 =− f3+

( l−2
1

)
f2ω
′

n −

( l−1
2

)
f1ω
′2
n +

( l
3

)
f0ω
′3
n.

Substituting (5), we get

(6) f3 =
1
2

( l−2
1

)
f2ω
′

n −
1
4

( l
3

)
f0ω
′3
n.

Continuing this procedure, we’ve proved the lemma when l is even.

Case 2: l is odd. Then f0 = 0, and the proof is similar to the previous case. �

Corollary 5.8. Let f be a W(A)-invariant polynomial and f (ω)=
∑l

i=0 fi (ω
′)ωl−i

n .
Then ω′n | fl−1(ω

′).

Computation motivates us to make the following conjecture:

Conjecture. If l is even, then equation (4) for j = 2k can be derived from the set
of equations for j = 0, 1, 2, . . . , 2k − 1. If l is odd, Equation (4) for j = 2k − 1
can be derived from the set of equations for j = 0, 1, 2, . . . , 2k− 2.

The conjecture is verified for k ≤ 3.

Lemma 5.9. Let A be an n × n Cartan matrix. If f (ω), g(ω) ∈ S(h∗) satisfy
σk( f (ω))− f (ω)= σk(g(ω))− g(ω) for each 1≤ k ≤ n, then f − g ∈ I (A).

The proof is trivial.

Lemma 5.10. Let A be an indefinite n × n Cartan matrix and A′ its upper-left
(n− 1)× (n− 1) principal submatrix. If the ring of W (A′) polynomial invariants
I (A′) is equal to Q[ψ ′] and l = 2m, then for each W (A)-invariant polynomial
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f (ω) =
∑l

i=0 fi (ω
′)ωl−i

n of degree l, there exists a constant k such that fl(ω
′) =

kψ ′m and fl−1(ω
′)= kmψ ′m−1ω∗n , where ω∗n =

∑
k 6=n λkkankωk .

Proof. By Corollary 5.2, fl(ω
′) ∈ I (A′). Since I (A′)=Q[ψ ′], there exists k such

that fl(ω
′)= kψ ′m . In (3), letting j = l − 1, we get for 1≤ k ≤ n− 1 that

σ ′k( fl−1(ω
′))− fl−1(ω

′)=−ank
∂ fl

∂ωk
.

Let g(ω′)= kmψ ′m−1ω∗n; then it is easy to check

−ank
∂ fl

∂ωk
= σ ′k(g(ω

′))− g(ω′),

so σ ′k( fl−1(ω
′))− fl−1(ω

′)= σ ′k(g(ω
′))− g(ω′). Applying Lemma 5.9 to fl−1, g

for the Cartan matrix A′, we get fl−1(ω
′)− g(ω′) ∈ I l−1(A′). But I l−1(A′) =

I 2m−1(A′)= {0}, hence fl−1(ω
′)= g(ω′). �

Proof of three propositions.

Proposition 5.11. Let A be an n× n indecomposable and indefinite Cartan matrix.
If I (A′)=Q, then I (A)=Q.

Proof. Let f be a W (A)-invariant polynomial and f (ω)=
∑l

i=0 fi (ω
′)ωl−i

n . Then
by Corollary 5.2, fl(ω

′) ∈ I (A′), so fl(ω
′)= 0.

For i = l − 1, Equation (3) is

σ ′k( fl−1(ω
′))= fl−1(ω

′)− ank
∂ fl

∂ωk
(ω′).

Substituting fl(ω
′)= 0 in the above equation, we get σ ′k( fl−1(ω

′))= fl−1(ω
′), so

fl−1(ω
′)= 0. Continuing this procedure, we show that fi (ω

′)= 0 for all i > 0 and
f0 is a constant. Hence f (ω)= f0ω

l
n . By Corollary 2.4, f = 0. �

Proposition 5.12. Let A be an n× n symmetrizable and indefinite Cartan matrix.
If I (A′)=Q[ψ ′], then I (A)=Q[ψ].

Proof. Let f be a W (A)-invariant polynomial and f (ω)=
∑l

i=0 fi (ω
′)ωl−i

n . Then
by Corollary 5.2, fl(ω

′) ∈ I (A′), so fl(ω
′) = 0 or there exists λ 6= 0 such that

fl =λψ
′m . If fl = 0, then ωn | f , so f = 0. If fl =λψ

′m , then by Lemma 5.4 we can
assume ψ |h′ =ψ ′, so f −λψm is a W (A)-invariant polynomial and ωn | ( f −λψm).
Hence f = λψm . �

Proposition 5.13. Let A be an n×n indecomposable and nonsymmetrizable Cartan
matrix. If A′ is symmetrizable and I (A′)=Q[ψ ′], then I (A)=Q.

Proof. Let f be a W (A)-invariant polynomial and f (ω)=
∑l

i=0 fi (ω
′)ωl−i

n . Sup-
pose ψ ′ =

∑n−1
i, j=1 λi jωiω j with λi j = λ j i for all 1≤ i, j ≤ n− 1.

If l is even, suppose l = 2m. We prove fl = 0 first. Suppose fl 6= 0; then
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by Lemma 5.10, there exists k 6= 0 such that fl = kψ ′m and fl−1 = kmψ ′m−1ω∗n .
By Corollary 5.8, ω′n | fl−1 = kmψ ′m−1ω∗n . So ω′n | ψ

′ or ω′n | ω
∗
n . Since ψ ′ is

W (A)-invariant and −ω′n is in the Tits cone, by Corollary 2.4 ω′n |ψ
′ is impossible.

Therefore ω′n | ω
∗
n . Because A is indecomposable, both ω′n and ω∗n are not 0.

Therefore there exists a constant dn 6= 0 such that ω∗n=dnω
′
n . But ω′n=

∑
j 6=n a jnω j

and ω∗n =
∑

j 6=n λ j j anjω j , so a jndn = anjλ j j . Let di = λi i , 1 ≤ i ≤ n − 1; since
A′ is symmetrizable, by Lemma 2.8 we know ai j d j = a j i di for all i, j ≤ n − 1.
Combining with a jndn = anjλ j j , we get ai j d j = a j i di for all i, j ≤ n. This shows
A is symmetrizable, contradicting our assumption, so fl = 0.

If l is odd, then fl ∈ I l(A′) also implies fl = 0.
If fl = 0, then the remaining procedure of the proof is similar to the proof of

Proposition 5.12. �

Proof of the main theorem. To prove the main theorem we need the following
lemma:

Lemma 5.14. Let A be a nonhyperbolic, indecomposable and indefinite Cartan ma-
trix. Then there exists an integer k, 1≤ k ≤ n such that AS−{k} is an indecomposable
and indefinite Cartan matrix.

Proof. Since the Cartan matrix A is nonhyperbolic, there exists an integer k,
1 ≤ k ≤ n such that AS−{k} is indefinite. If AS−{k} is indecomposable, the lemma
is proved. If AS−{k} is decomposable, then the Dynkin diagram of AS−{k} is split
into r connected subdiagrams 01, . . . , 0r , with r > 1, and there is an s0, 1≤ s0 ≤ r ,
such that the principal submatrix corresponding to 0s0 is indefinite. Since A is
indecomposable, the simple root αk is connected to all 0s , 1≤ s ≤ r .

We find a connected subdiagram 0s , s 6= s0. There must be a vertex αk′ of
0s such that the subdiagram 0s − {αk′} is connected (note that we can choose a
vertex α from a connected finite graph 0 and the resulted subgraph 0−{α} is still
connected). It is obvious that AS−{k′} is indecomposable and indefinite. �

Now we can prove the main theorem:

Theorem. Let A be an n× n indecomposable and indefinite Cartan matrix A. If A
is symmetrizable, then I (A)=Q[ψ]; if A is nonsymmetrizable, then I (A)=Q.

Proof. We prove this theorem by induction on n. For n = 2, this is Lemma 3.1.
Suppose this theorem is true for all (n − 1) × (n − 1) indecomposable and

indefinite Cartan matrices.
For an n×n indecomposable and indefinite Cartan matrix A, if A is not hyperbolic,

then by Lemma 5.14 we can find an (n−1)× (n−1) principal submatrix A′ which
is both indecomposable and indefinite. Without loss of generality, we can assume
A′ is the upper-left (n− 1)× (n− 1) principal submatrix.

Then by considering the symmetrizability of A′ and A, there are three cases:
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(1) Both A′ and A are nonsymmetrizable.

(2) Both A′ and A are symmetrizable.

(3) A′ is symmetrizable and A is nonsymmetrizable.

The proof for these three cases are dealt with by combining the induction as-
sumption and Proposition 5.11, Proposition 5.12, and Proposition 5.13 respectively.

So the theorem has been proven when A is nonhyperbolic. For the hyperbolic case,
if A is symmetrizable, the proof is given in [Moody 1978]; if A is nonsymmetrizable,
it is proved in the following:

Proposition 5.15. For an n × n indecomposable, nonsymmetrizable hyperbolic
Cartan matrix A, I (A)=Q.

Proof. For a Cartan matrix A with n ≥ 4, by Corollary 4.6 we can find an n× n
indecomposable, nonhyperbolic and indefinite Cartan matrix B such that the root
system associated to B is a sub-root system of the root system associated to A, and
the Weyl group W (B) is a subgroup of W (A). Therefore I (A)⊂ I (B).

If B is nonsymmetrizable, then by combining Lemma 5.14, Proposition 5.11
or Proposition 5.13 and the same induction procedure, we can prove I (B) = Q.
Hence I (A)=Q.

If B is symmetrizable, then by combining Lemma 5.14 and Proposition 5.12, we
prove I (B)=Q[ψB]. To prove I (A)=Q, it is sufficient to show the ψm

B , m ≥ 1
are not W (A) invariants.

Suppose ψm
B is a W (A)-invariant polynomial. If m is odd, we get ψB = (ψ

m
B )

1/m

is W (A)-invariant. If m is even, similarly we get for each σ ∈W (A) that σ(ψB)=

ψB or −ψB . But σ(ψB) = −ψB is impossible (a symmetric bilinear form ψ =∑n
i, j=1 λi jωiω j with all the λi i , 1 ≤ i ≤ n having the same sign can’t be linearly

transformed to −ψ). So we get σ(ψB)= ψB . Therefore ψB is a W (A)-invariant
polynomial. Since A is nonsymmetrizable, this is impossible. Hence I (A)=Q.

For the n = 3 case, there are two possibilities. If A contains a 2× 2 principal
submatrix A′ of affine type, then by combining Lemma 3.1 and Proposition 5.13,
we show I (A)=Q. If all the 2× 2 principal submatrices of A are of finite type,
then A satisfies conditions (C1) and (C2). So we can find an indecomposable,
nonhyperbolic and indefinite Cartan matrix B such that g(B) is a regular subalgebra
of g(A). By a similar method as for n ≥ 4, we can also prove I (A) = Q. This
proves the proposition and with it the theorem. �

6. Applications to rational homotopy types of Kac–Moody groups
and their flag manifolds of indefinite type

For the Kac–Moody Lie algebra g(A), there is the Cartan decomposition g(A)=
h⊕

∑
α∈1 gα, where h is the Cartan subalgebra and 1 is the root system of g(A).
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Let b = h ⊕
∑

α∈1+ gα be the Borel subalgebra; then b corresponds to a Borel
subgroup B(A) in the Kac–Moody group G(A). The homogeneous space F(A)=
G(A)/B(A) is called the flag manifold of G(A). By [Kumar 2002], F(A) is an
ind-variety.

The cohomologies of Kac–Moody groups and their flag manifolds of finite and
affine types are extensively studied. For reference see [Pontryagin 1935; Hopf 1941;
Borel 1953a; 1953b; 1954; Bott and Samelson 1955; Bott 1956; Milnor and Moore
1965; Chevalley 1994]. But for the indefinite type, little is known.

The rational cohomology rings of Kac–Moody groups and their flag manifolds
are also considered in [Kac 1985b] and [Kumar 1985]. The essentially new part of
our work is that we study the properties of PA(q) and derive the explicit formula
for ik . For details see [Chunhua 2010; Chunhua and Xu-an 2012; Xu-an et al. 2013].

For a Kac–Moody group G(A), H∗(G(A)) is a locally finite free graded com-
mutative algebra over Q. Let the odd-dimensional free generators of H∗(G(A))
be y1, . . . , yl and the even-dimensional free generators be z1, . . . , zk, . . . . By
[Kac 1985b; Kitchloo 1998], l < n. Denote the number of degree k generators of
H∗(G(A)) by ik ; then the Poincaré series of G(A) is

PG(q)=
∞∏

k=1

(1− q2k−1)i2k−1

(1− q2k)i2k
.

The Poincaré series PG(q) determines the isometry type of the cohomology ring
H∗(G(A)) and the rational homotopy type of G(A).

Let BB(A) be the classifying space of the Borel subgroup B(A) and j : F(A)→
BB(A) the classifying map of the principal B(A)-bundle π :G(A)→ F(A). Denote
the cohomology generators of H∗(BB(A)) by ω1, . . . , ωn , degωi = 2. A routine
computation on the Leray–Serre spectral sequences of the fibration G(A)

π
−→

F(A)
j
−→ BB(A) shows

H∗(F(A))∼= E∗,∗3
∼=Q[ω1, . . . , ωn]/〈 f j | 1≤ j ≤ l〉⊗Q[z1, . . . , zk, . . . ],

where each f j corresponds to the differential of y j and the collection of such f j

generates the ring I (A) of W (A) polynomial invariants.
By [Xu-an et al. 2013], there is the following theorem:

Theorem 6.1. Let PA(q) be the Poincaré series of a flag manifold F(A). Then the
sequence i2− i1, i4− i3, . . . , i2k− i2k−1, . . . can be derived from PA(q). In fact we
can recover PA(q) from the sequence i2− i1, i4− i3, . . . , i2k − i2k−1, . . . .

But to determine the rational homotopy type of G(A), we need to determine the
sequence i1, i2, . . . , ik, . . . . So in addition to the Poincaré series PA(q), we need
more ingredients. Note the number of generators of I (A) of degree k is just the
integer i2k−1. So if we can determine the degrees of all the generators in I (A), then
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we can determine the sequence i1, i3, . . . , i2k−1, . . . . And the main theorem of this
paper fills the gap. Now we have:

Theorem 6.2. For an indecomposable and indefinite Cartan matrix A, i2k−1 = 0
for all k > 0 except for k = 2. And for k = 2, if A is symmetrizable, i3 = 1; if A is
nonsymmetrizable, i3 = 0.

Setting ε(A) = 1 or 0 depending on whether A is symmetrizable or not as in
[Kac 1985b], we get:

Theorem 6.3. The sequence i1, i2, i3, . . . , ik, . . . is determined by the Poincaré
series PA(q) and ε(A).

Theorem 6.4. For an indecomposable and indefinite Cartan matrix A, the rational
homotopy types of G(A) are determined by the Poincaré series PA(q) and ε(A).

Kumar [1985] proved that for a Kac–Moody Lie algebra g(A), the Lie algebra
cohomology H∗(g(A),C) is given by H∗(G(A))⊗C. So we also computed the
cohomology of a Kac–Moody Lie algebra g(A) with trivial coefficient.

For a Kac–Moody group G(A), i1 = i2 = 0. And we have:

Corollary 6.5. For an indecomposable and nonsymmetrizable indefinite Cartan
matrix A, G(A) is a 3-connected space.

Corollary 6.6. The dimension of the odd rational homotopy group πodd(G(A))
of an indefinite Kac–Moody group G(A) is 1 or 0 depending on whether A is
symmetrizable or not.

Theorem 6.7. For an indecomposable and indefinite Cartan matrix A, if A is
symmetrizable, then

H∗(G(A))∼=3Q(y3)⊗Q[z1, . . . , zk, . . . ]

and
H∗(F(A))∼=Q[ω1, . . . , ωn]/〈ψ〉⊗Q[z1, . . . , zk, . . . ].

If A is nonsymmetrizable, then

H∗(G(A))∼=Q[z1, . . . , zk, . . . ]

and
H∗(F(A))∼=Q[ω1, . . . , ωn]⊗Q[z1, . . . , zk, . . . ],

where deg zk ≥ 4 is even for all k and can be determined from the Poincaré series
PA(q) and ε(A).

Note that the Poincaré series PA(q) can be computed easily by an inductive pro-
cedure. See [Chunhua 2010; Chunhua and Xu-an 2012] for details. So in principle
the computation of rational homotopy types is solved for all indecomposable and
indefinite Kac–Moody groups, whether they are symmetrizable or not.
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Since Kac–Moody groups and their flag manifolds are products of indecom-
posable Kac–Moody groups and indecomposable Kac–Moody flag manifolds, by
combining the known results for finite and affine types, we have determined the
rational homotopy types of all Kac–Moody groups and their flag manifolds. Since
G(A) and F(A) are rational formal (see [Sullivan 1977; Kumar 2002]), the rational
homotopy groups and rational minimal model of the corresponding Kac–Moody
group G(A) and its flag manifold F(A) can be directly computed from Theorem 6.7.

Theorem 6.8. For an n×n indecomposable and indefinite Cartan matrix A satisfy-
ing ai j a j i ≥ 4 for all 1≤ i, j ≤ n, the rational homotopy type of G(A) is determined
by ε(A).

Since there are a large number of Cartan matrices satisfying the condition of
Theorem 6.8, this assertion may seem very surprising. But the proof is very simple.
It is derived from the equality

PA(q)=
1+ q

1− (n− 1)q
.

See [Chunhua 2010; Chunhua and Xu-an 2012] for explicit computations of PA(q).
It deserves to be mentioned that for a 3× 3 nonsymmetrizable Cartan matrix A

with ai j a j i ≥ 4 for all i, j , the Kac–Moody group G(A) is a 5-connected space.
For an indecomposable and symmetrizable Cartan matrix A, let p, q, r be the

dimensions of the positive, negative and zero vector subspaces of the invariant
bilinear form ψ , and set τ(A)= (p, q, r).

Theorem 6.9. For an indecomposable and indefinite Cartan matrix A, if A is
symmetrizable, then the cohomology ring H∗(F(A),C) is determined by PA(q)
and τ(A). If g(A) is nonsymmetrizable, then the cohomology ring H∗(F(A),C) is
determined by PA(q).

This is obtained from the Theorem 6.7 and the classification of real quadratic
forms.
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