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HERMITIAN CATEGORIES, EXTENSION OF SCALARS
AND SYSTEMS OF SESQUILINEAR FORMS

EVA BAYER-FLUCKIGER, URIYA A. FIRST AND DANIEL A. MOLDOVAN

We prove that the category of systems of sesquilinear forms over a given
hermitian category is equivalent to the category of unimodular 1-hermitian
forms over another hermitian category. The sesquilinear forms are not re-
quired to be unimodular or defined on a reflexive object (i.e., the standard
map from the object to its double dual is not assumed to be bijective), and
the forms in the system can be defined with respect to different hermitian
structures on the given category. This extends an earlier result of the first
and third authors.

We use the equivalence to define a Witt group of sesquilinear forms over
a hermitian category and to generalize results such as Witt’s cancellation
theorem, Springer’s theorem, the weak Hasse principle, and finiteness of
genus to systems of sesquilinear forms over hermitian categories.

Introduction

Quadratic and hermitian forms were studied extensively by various authors, who
have developed a rich array of tools to study them. It is well known that in many
cases (e.g., over fields), the theory of sesquilinear forms can be reduced to the theory
of hermitian forms (e.g., see [Riehm 1974; Riehm and Shrader-Frechette 1976] and
works based on them). In [Bayer-Fluckiger and Moldovan 2014], an explanation of
this reduction was provided in the form of an equivalence between the category of
sesquilinear forms over a ring and the category of unimodular 1-hermitian forms
over a special hermitian category.

In this paper, we extend the equivalence of [Bayer-Fluckiger and Moldovan 2014]
to hermitian categories, and, moreover, improve it in such a way that it applies to
systems of sesquilinear forms in hermitian categories that admit nonreflexive objects
(see Section 2). That is, we prove that the category of systems of sesquilinear forms
over a hermitian category C is equivalent to the category of unimodular 1-hermitian
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forms over anther hermitian category C′. The sesquilinear forms are not required to
be unimodular or defined on a reflexive object, and the forms in the system can be
defined with respect to different hermitian structures on the category C.

Using the equivalence, we present a notion of a Witt group of sesquilinear forms,
which is analogous to the standard Witt group of hermitian forms over rings with
involution (e.g., see [Knus 1991; Scharlau 1985]). We also extend various results
(Witt’s cancellation theorem, Springer’s theorem, finiteness of genus, the Hasse
principle, etc.) to systems of sesquilinear forms over hermitian categories (and in
particular to systems of sesquilinear forms over rings with a family of involutions).

Sections 1 and 2 recall the basics of sesquilinear forms over rings and hermitian
categories, respectively. In Section 3, we prove the equivalence of the category of
sesquilinear forms over a given hermitian category to a category of unimodular
1-hermitian forms over another hermitian category, and in Section 4 we extend
this result to systems of sesquilinear forms. Section 5 presents applications of the
equivalence.

1. Sesquilinear and hermitian forms

Let A be a ring. An involution on A is an additive map σ : A → A such that
σ(ab) = σ(b)σ (a) for all a, b ∈ A and σ 2

= idA. Let V be a right A-module.
A sesquilinear form over (A, σ ) is a biadditive map s : V × V → A satisfying
s(xa, yb) = σ(a)s(x, y)b for all x, y ∈ V and a, b ∈ A. The pair (V, s) is also
called a sesquilinear form in this case.1 The orthogonal sum of two sesquilinear
forms (V, s) and (V ′, s ′) is defined to be (V ⊕ V ′, s⊕ s ′) where s⊕ s ′ is given by

(s⊕ s ′)(x ⊕ x ′, y⊕ y′)= s(x, y)+ s ′(x ′, y′)

for all x, y ∈ V and x ′, y′ ∈ V ′. Two sesquilinear forms (V, s) and (V ′, s ′) are
called isometric if there exists an isomorphism of A-modules f : V −→∼ V ′ such
that s ′( f (x), f (y))= s(x, y) for all x, y ∈ V .

Let V ∗ = HomA(V, A). Then V ∗ has a right A-module structure given by
( f · a)(x) = σ(a) f (x) for all f ∈ V ∗, a ∈ A. We say that V is reflexive if the
homomorphism of right A-modules ωV : V→ V ∗∗ defined by ωV (x)( f )=σ( f (x))
for all x ∈ V , f ∈ V ∗ is bijective.

A sesquilinear space (V, s) over (A, σ ) induces two homomorphisms of right
A-modules s`, sr : V → V ∗, called the left and right adjoint of s, respectively. They
are given by s`(x)(y)= s(x, y) and sr (x)(y)= σ(s(y, x)) for all x, y ∈ V . Observe
that sr = s∗`ωV and s` = s∗r ωV . The form s is called unimodular if sr and s` are
isomorphisms. In this case, V must be reflexive.

1 Some texts use the term sesquilinear space.
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Let ε = ±1. A sesquilinear form (V, s) over (A, σ ) is called ε-hermitian if
σ(s(x, y)) = εs(y, x) for all x, y ∈ V , that is, if sr = εs`. A 1-hermitian form is
also called a hermitian form.

There exists a classical notion of Witt group for unimodular ε-hermitian forms
over (A, σ ) (e.g., see [Knus 1991]): denote by WGε(A, σ ) the Grothendieck group
of isometry classes of unimodular ε-hermitian forms (V, s) over (A, σ ), with V
finitely generated projective, addition being the orthogonal sum. A unimodular
ε-hermitian form over (A, σ ) is called hyperbolic if it is isometric to (V ⊕V ∗,Hε

V )

for some finitely generated projective right A-module V , where Hε
V is defined by

Hε
V (x ⊕ f, y⊕ g)= f (y)+ εσ (g(x)) for all x, y ∈ V, f, g ∈ V ∗.

We let HV = H1
V . The quotient of WGε(A, σ ) by the subgroup generated by the

unimodular ε-hermitian hyperbolic forms is called the Witt group of unimodular
ε-hermitian forms over (A, σ ) and is denoted by Wε(A, σ ).

We denote by Sesq(A, σ ) and UHε(A, σ ) the categories of sesquilinear and
unimodular ε-hermitian forms over (A, σ ), respectively. The morphisms of these
categories are (bijective) isometries. For simplicity, we let UH(A, σ ) :=UH1(A, σ ).

2. Hermitian categories

This section recalls some basic notions about hermitian categories, as presented in
[Scharlau 1985] (see also [Knus 1991; Quebbemann et al. 1979]).

2A. Preliminaries. Recall that a hermitian category consists of a triple (C, ∗, ω),
where C is an additive category, ∗ : C→ C is a contravariant functor and ω =
(ωC)C∈C : id→∗∗ is a natural transformation satisfying ω∗CωC∗ = idC∗ for all C ∈C.
In this case, the pair (∗, ω) is called a hermitian structure on C. It is customary to
assume that ω is a natural isomorphism rather than a natural transformation. Such
hermitian categories will be called reflexive. In general, an object C ∈ C for which
ωC is an isomorphism is called reflexive, so the category C is reflexive precisely
when all its objects are reflexive. We will often drop ∗ and ω from the notation and
use these symbols to denote the functor and natural transformation associated with
any hermitian category under discussion.

A sesquilinear form over the category C is a pair (C, s)with C ∈C and s :C→C∗.
A sesquilinear form (C, s) is called unimodular if s and s∗ωC are isomorphisms.
(If C is reflexive, then s is bijective if and only if s∗ωC is bijective.) Let ε =±1. A
sesquilinear form (C, s) is called ε-hermitian if s= εs∗ωC . For brevity, 1-hermitian
forms are often called hermitian forms. Orthogonal sums of forms are defined in the
obvious way. Let (C, s) and (C ′, s ′) be two sesquilinear forms over C. An isometry
from (C, s) to (C ′, s ′) is an isomorphism f : C −→∼ C ′ satisfying s = f ∗s ′ f . In
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this case, (C, s) and (C ′, s ′) are said to be isometric. We let Sesq(C) stand for the
category of sesquilinear forms over C with isometries as morphisms.

Denote by UHε(C) the category of unimodular ε-hermitian forms over C. The
morphisms are isometries. For brevity, let UH(C) := UH1(C). The hyperbolic
unimodular ε-hermitian forms over C are the forms isometric to (Q ⊕ Q∗,Hε

Q),
where Q is any reflexive object in C and Hε

Q is given by

Hε
Q =

[
0 idQ∗

εωQ 0

]
: Q⊕ Q∗→ (Q⊕ Q∗)∗ = Q∗⊕ Q∗∗.

Again, let HQ =H1
Q . The quotient of WGε(C), the Grothendieck group of isometry

classes of unimodular ε-hermitian forms over C (with respect to the orthogonal
sum), by the subgroup generated by the hyperbolic forms is called the Witt group
of unimodular ε-hermitian forms over C and is denoted by Wε(C). For brevity, set
W(C)=W1(C).

Example 2.1. Let (A, σ ) be a ring with involution. If we take C to be Mod-A,
the category of right A-modules, and define ∗ and ω as in Section 1, then C

becomes a hermitian category. Furthermore, the sesquilinear forms (M, s) over
(A, σ ) correspond to the sesquilinear forms over C via (M, s) 7→ (M, sr ). This
correspondence gives rise to isomorphisms of categories Sesq(A, σ ) ∼= Sesq(C)
and UHε(A, σ )∼=UHε(C). Now let C be a subcategory of Mod-A such that M ∈C

implies M∗ ∈ C. Then C is still a hermitian category, and is reflexive if and only
if C consists of reflexive A-modules (as defined in Section 1). For example, this
happens if C=P(A), the category of projective A-modules of finite type. In this
case, the Witt group Wε(C)=Wε(P(A)) is isomorphic to Wε(A, σ ).

2B. Duality-preserving functors. Let C and C′ be two hermitian categories. A
duality-preserving functor from C to C′ is an additive functor F : C→ C′ together
with a natural isomorphism i = (iM)M∈C : F∗ → ∗F . This means that for any
M ∈C, there exists an isomorphism iM : F(M∗)−→∼ (F M)∗ such that for all N ∈C

and f ∈ HomC(M, N ), the following diagram commutes:

F(N ∗)
F( f ∗) //

iN
��

F(M∗)

iM
��

(F N )∗
(F f )∗ // (F M)∗

Any duality-preserving functor induces a functor Sesq(C)→ Sesq(C′), which we
also denote by F . It is given by

F(M, s)= (F M, iM F(s))
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for every (M, s) ∈ Sesq(C). If the functor F : C→ C′ is faithful, faithful and full,
or induces an equivalence, then the functor F : Sesq(C)→ Sesq(C′) shares the
same property.

Let λ=±1. A duality-preserving functor F is called λ-hermitian if

iM∗F(ωM)= λi∗MωF M

for all M ∈ C. Let ε = ±1. We recall from [Knus 1991, pp. 80–81] that in this
case the functor F : Sesq(C)→ Sesq(C′) maps UHε(C) to UHελ(C′) and sends
ε-hermitian hyperbolic forms to ελ-hermitian hyperbolic forms. Therefore, F
induces a homomorphism between the corresponding Witt groups:

Wε(F) :Wε(C)→Wελ(C′).

If F is an equivalence of categories, then F : UHε(C) → UHελ(C′) is also an
equivalence of categories and the induced group homomorphism Wε(F) is an
isomorphism of groups.

2C. Transfer into the endomorphism ring. The aim of this subsection is to intro-
duce the method of transfer into the endomorphism ring, which allows us to pass
from the abstract setting of hermitian categories to that of a ring with involution,
which is more concrete. This method will be applied repeatedly in Section 5. Note
that it applies well only to reflexive hermitian categories.

Let C be a reflexive hermitian category, and let M be an object of C, on which we
suppose that there exists a unimodular ε0-hermitian form h0 for a certain ε0 =±1.
Put E = EndC(M). According to [Quebbemann et al. 1979, Lemma 1.2], the form
(M, h0) induces on E an involution σ , defined by σ( f )= h−1

0 f ∗h0 for all f ∈ E .
Let P(E) denote the category of projective right E-modules of finite type. Then,
using σ , we can consider P(E) as a reflexive hermitian category (see Example 2.1).

Recall that an idempotent e ∈ EndC(M) splits if there exist an object M ′ ∈C and
morphisms i : M ′→ M , j : M→ M ′ such that j i = idM ′ and i j = e.

Denote by C|M the full subcategory of C each object of which is isomorphic to
a direct summand of a finite direct sum of copies of M . We consider the functor

T = T(M,h0) := Hom(M, ) : C|M → P(E)

given by

N 7→ Hom(M, N ) for all N ∈ C|M ,

f 7→ T( f ) for all f ∈ Hom(N , N ′), N , N ′ ∈ C|M ,

where for all g ∈ Hom(M, N ), T( f )(g) = f g. In [Quebbemann et al. 1979,
Proposition 2.4], it was proved that the functor T is fully faithful and duality-
preserving with respect to the natural isomorphism i = (iN )N∈C|M : T∗→ ∗T given
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by iN ( f )= T(h−1
0 f ∗ωN ) for every N ∈ C|M and f ∈ Hom(M, N ∗). In addition,

if all the idempotents of C|M split, then T is an equivalence of categories. By
computation, we easily see that T is ε0-hermitian.

Note that for any finite list of (reflexive) objects M1, . . . ,Mt ∈C and any ε0=±1,
there exists a unimodular ε0-hermitian form (M, h0) such that M1, . . . ,Mt ∈ C|M .
Indeed, let N =

⊕t
i=1 Mi and take (M, h0) = (N ⊕ N ∗,Hε0

N ). This means that
as long as we treat finitely many hermitian forms, we may pass to the context of
hermitian forms over rings with involution.

2D. Linear hermitian categories and ring extension. In this subsection we intro-
duce the notion of extension of rings in hermitian categories.

Let K be a commutative ring. Recall that a K -category is an additive category C

such that for every A, B ∈ C, HomC(A, B) is endowed with a K -module structure
such that composition is K -bilinear. For example, any additive category is in fact a
Z-category. An additive covariant functor F : C→ C′ between two K -categories
is K -linear if the map F : HomC(A, B)→ HomC′(F A, F B) is K -linear for all
A, B ∈ C. K -linear contravariant functors are defined in the same manner. A
K -linear hermitian category is a hermitian category (C, ∗, ω) such that C is a
K -category and ∗ is K -linear.

Fix a commutative ring K . Let C be an additive K -category and let R be a
K -algebra (with unity, not necessarily commutative). We define the extension of
the category C to the ring R, denoted C⊗K R, to be the category whose objects are
formal symbols C ⊗K R, with C ∈ C, and whose Hom-sets are defined by

HomC⊗K R(A⊗K R, B⊗K R)= HomC(A, B)⊗K R.

The composition in C⊗K R is defined in the obvious way. It is straightforward to
check that C⊗K R is also a K -category. Moreover, when R is commutative, C⊗K R
is an R-category. We define the scalar extension functor, RR/K : C→ C⊗K R by

RR/K M = M ⊗K R for all M ∈ C,

RR/K f = f ⊗K 1 for all f ∈ Hom(M, N ).

The functor RR/K is additive and K -linear.
In case K is obvious from the context, we write CR , MR , fR instead of C⊗K R,

M ⊗K R, f ⊗K 1, respectively. (Here, M ∈ C and f is a morphism in C.)

Remark 2.2. The scalar extension we have just defined agrees with scalar extension
of modules under mild assumptions, but not in general: Let S and R be two K -
algebras, and write SR = S⊗K R. There is an additive functor G : (Mod-S)R→

Mod-(SR) given by

G(MR)= M ⊗S SR and G( f ⊗ a)(m⊗ b)= f m⊗ ab
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for all M, N ∈Mod-S, f ∈HomS(M, N ), and a, b ∈ R, and the following diagram
commutes:

Mod-S
RR/K // (Mod-S)R

G
��

Mod-S
⊗S SR // Mod-(SR)

In general, G is neither full nor faithful. However, using standard tensor-Hom
relations, it is easy to verify that the map

(1) G : Hom(Mod-S)R (MR,M ′R)→ HomMod-(SR)(G MR,G M ′R)

is bijective if either (a) M is finitely generated projective, or (b) R is a flat K -module
and M is finitely presented. In particular, if C is an additive subcategory of Mod-S
consisting of finitely presented modules and R is flat as a K -module, then CR can
be understood as a full subcategory of Mod-(SR) in the obvious way. An example
in which the map G of (1) is neither injective nor surjective can be obtained by
taking S = K = Z, R =Q and M = M ′ = Z[1/p]/Z.

If (C, ∗, ω) is a K -linear hermitian category and R/K is a commutative ring
extension, then CR also has a hermitian structure given by (MR)

∗
= (M∗)R ,

( f ⊗a)∗= f ∗⊗a and ωMR = (ωM)R=ωM⊗1 for all M, N ∈C, f ∈HomC(M, N )
and a ∈ R. In this case, the functor RR/K is a 1-hermitian duality-preserving functor
(the natural transformation i :RR/K∗→ ∗RR/K is just the identity). In particular,
we get a functor RR/K : Sesq(C)→ Sesq(CR) given by RR/K (M, s) := (MR, sR),
and RR/K sends ε-hermitian (hyperbolic) forms to ε-hermitian (hyperbolic) forms.

2E. Scalar extension commutes with transfer. Let R/K be a commutative ring
extension, let C be a reflexive K -linear hermitian category and let M be an object
of C admitting a unimodular ε-hermitian form h. Then (MR, h R) is a unimodular
ε-hermitian form over CR . Let E = EndC(M) and ER = EndCR (MR)= E ⊗K R.
It is easy to verify that the following diagram (of functors) commutes:

C|M
T(M,h) //

RR/K

��

P(E)

⊗E ER

��
CR|MR

T(MR ,h R ) // P(ER)

(Note that by Remark 2.2, P(ER) and ⊗E ER can be understood as P(E)R

and RR/K , respectively.) Since all the functors are ε- or 1-hermitian, we get the
following commutative diagram, in which the horizontal arrows are full and faithful:
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UHλ(C|M)
T(M,h) //

RR/K
��

UHλε(P(E))

⊗E ER
��

UHλ(CR|MR )
T(MR ,h R ) // UHλε(P(ER))

This diagram means that in order to study the behavior of RR/K on arbitrary K -
linear hermitian categories, it is enough to study its behavior on hermitian categories
obtained from K -algebras with K -involution (as in Example 2.1).

3. An equivalence of categories

Let C be a (not necessarily reflexive) hermitian category. In this section we prove
that there exists a reflexive hermitian category C′ such that the category Sesq(C)
is equivalent to UH1(C′). (We explain how to extend this result to systems of
sesquilinear forms in the next section.)

The category C′ resembles the category of double arrows presented in [Bayer-
Fluckiger and Moldovan 2014, §3], but is not identical to it. This difference makes
our construction work for nonreflexive hermitian categories and, as we shall explain
in the next section, for systems of sesquilinear forms, where the forms can be
defined with respect to different hermitian structures on C.

3A. The category of twisted double arrows. Let (C, ∗, ω) be a hermitian category.
We construct the category of twisted double arrows in C, denoted Ar̃2(C), as follows:
The objects of Ar̃2(C) are quadruples (M, N , f, g) such that f, g ∈HomC(M, N ∗).
A morphism from (M, N , f, g) to (M ′, N ′, f ′, g′) is a pair (φ, ψop) such that
φ ∈Hom(M,M ′), ψ ∈Hom(N ′, N ), f ′φ=ψ∗ f and g′φ=ψ∗g. The composition
of two morphisms is given by (φ, ψop)(φ′, ψ ′op)= (φφ′, (ψ ′ψ)op).

The category Ar̃2(C) is easily seen to be an additive category. Moreover, it has
a hermitian structure: For every (M, N , f, g) ∈ Ar̃2(C), define (M, N , f, g)∗ =
(N ,M, g∗ωN , f ∗ωN ) andω(M,N , f,g)= id(M,N , f,g)=(idM , idop

N ). In addition, for ev-
ery morphism (φ, ψop) : (M, N , f, g)→ (M ′, N ′, f ′, g′), let (φ, ψop)∗= (ψ, φop).
It is now routine to check that (Ar̃2(C), ∗, ω) is a reflexive hermitian category. Also
observe that ∗∗ is just the identity functor on Ar̃2(C). The following proposition
describes the hermitian forms over Ar̃2(C):

Proposition 3.1. Let Z := (M, N , f, g) ∈ Ar̃2(C) and let α, β ∈ HomC(M, N ).
Then (Z , (α, βop)) is a hermitian form over Ar̃2(C) if and only if α = β and
α∗ f = g∗ωNα; equivalently, if and only if α = β and α∗g = f ∗ωNα.

Proof. By definition, Z∗= (N ,M, g∗ωN , f ∗ωN ), so (α, βop) is a morphism from Z
to Z∗ if and only if β∗ f = g∗ωNα and β∗g= f ∗ωNα. In addition, by computation,
we see (α, βop)= (α, βop)∗◦ωZ precisely when α=β. Therefore, (Z , (α, βop)) is a
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hermitian form if and only if α=β, α∗ f = g∗ωNα and α∗g= f ∗ωNα. It is therefore
enough to show α∗ f = g∗ωNα if and only if α∗g = f ∗ωNα. Indeed, if α∗ f =
g∗ωNα, then α∗ω∗N g∗∗ = f ∗α∗∗. Therefore, α∗g = α∗ω∗NωN∗g = α∗ω∗N g∗∗ωM =

f ∗α∗∗ωM = f ∗ωNα, as required (we used the naturality of ω and the identity
ω∗NωN∗ = idN∗ in the computation). The other direction follows by symmetry. �

Theorem 3.2. Let C be a hermitian category. Define a functor F : Sesq(C)→
UH(Ar̃2(C)) by

F(M, s)= ((M,M, s∗ωM , s), (idM , idop
M )) and F(ψ)= (ψ, (ψ−1)op)

for all (M, s) ∈ Sesq(C) and any morphism ψ in Sesq(C). Then F induces an
equivalence of categories between Sesq(C) and UH(Ar̃2(C)).

Proof. Let (M, s) ∈ Sesq(C). That F(M, s) lies in UH(Ar̃2(C)) follows from
Proposition 3.1. Let ψ : (M, s)→ (M ′, s ′) be an isometry. Then

F(ψ)∗(idM ′, idop
M ′)F(ψ)= (ψ, (ψ

−1)op)∗(idM ′, idop
M ′)(ψ, (ψ

−1)op)

= (ψ−1, ψop)(idM ′, idop
M ′)(ψ, (ψ

−1)op)

= (ψ−1 idM ′ ψ, (ψ
−1 idM ′ ψ)

op)

= (idM , idop
M ).

Thus, F(ψ) is an isometry from F(M, s) to F(M ′, s ′). It is clear that F respects
composition, so we conclude that F is a functor.

To see that F induces an equivalence, we construct a functor G such that F and
G are mutual inverses. Let G : UH(Ar̃2(C))→ Sesq(C) be defined by

G((M, N , f, g), (α, αop))= (M, α∗g) and G(φ, ψop)= φ

for all ((M, N , f, g), (α, αop)) ∈ UH(Ar̃2(C)) and any morphism (φ, ψop) in
UH(Ar̃2(C)).

Let (Z , (α, αop)), (Z ′, (α′, α′op)) ∈ UH(Ar̃2(C)) and let (φ, ψop) be a mor-
phism (Z , (α, αop))→ (Z ′, (α′, α′op)). It is easy to see that G(Z , (α, αop)) lies
in Sesq(C), so we now check that G(φ, ψop) is an isometry from G(Z , (α, αop))

to G(Z ′, (α′, α′op)). Writing Z = (M, N , f, g) and Z ′ = (M ′, N ′, f ′, g′), this
amounts to showing α∗g = φ∗α′∗g′φ. Indeed, since (φ, ψop) is a morphism from
Z to Z ′, we have g′φ = ψ∗g, and since (φ, ψop) is an isometry, we also have
(φ, ψop)∗(α′, α′op)(φ, ψop)= (α, αop), which in turn implies ψα′φ = α. We now
have φ∗α′∗g′φ = φ∗α′∗ψ∗g = (ψα′φ)∗g = α∗g, as required. That G preserves
composition is straightforward.

It is easy to see that G F is the identity functor on Sesq(C), so it is left to show
that there is a natural isomorphism from FG to idUH(Ar̃2(C)). Keeping the notation



10 EVA BAYER-FLUCKIGER, URIYA A. FIRST AND DANIEL A. MOLDOVAN

of the previous paragraph, we have

FG((M, N , f, g), (α, αop))=
(
(M,M, (α∗g)∗ωM , α

∗g), (idM , idop
M )
)
.

By Proposition 3.1 we have α∗ f = g∗ωNα, hence (α∗g)∗ωM = g∗α∗∗ωM =

g∗ωNα = α
∗ f . Thus,

(2) FG((M, N , f, g), (α, αop))=
(
(M,M, α∗ f, α∗g), (idM , idop

M )
)
.

Define a natural isomorphism t : idUH(Ar̃2(C)) → FG by t(Z ,(α,αop)) = (idM , α
op).

Using (2), it is easy to see that t(Z ,(α,αop)) is indeed an isometry from (Z , (α, αop))

to FG(Z , (α, αop)). The map t is natural, since for Z ′, (φ, ψop) as above, we have
FG(φ, ψop)t(Z ,(α,αop))= (φ, (φ

−1)op)(idM , α
op)= (φ, (αφ−1)op)= (φ, (ψα′)op)=

(idM ′, α
′op)(φ, ψop)= t(Z ′,(α′,α′op))(φ, ψ

op) (we used the identity ψα′φ=α verified
above). �

Remark 3.3. Following [Bayer-Fluckiger and Moldovan 2014, §3], one can also
construct the category of (nontwisted) double arrows in C, denoted Ar2(C). Its
objects are quadruples (M, N , f, g) with M, N ∈ C and f, g ∈ Hom(M, N ).
A morphism from (M, N , f, g) to (M ′, N ′, f ′, g′) is a pair (φ, ψ) where φ ∈
Hom(M,M ′) and ψ ∈Hom(N , N ′) satisfy ψ f = f ′φ and ψg= g′φ. The category
Ar2(C) is obviously additive, and, moreover, it admits a hermitian structure given by
(M, N , f, g)∗= (N ∗,M∗, g∗, f ∗), (φ, ψ)∗= (ψ∗, φ∗) and ω(M,N , f,g)= (ωM , ωN ).

There is a functor T :Ar̃2(C)→Ar2(C) given by T (M, N , f, g)= (M, N ∗, f, g)
and T (φ, ψop) = (φ, ψ∗). This functor induces an equivalence if C is reflexive,
but otherwise it need neither be faithful nor full. In addition, provided C is re-
flexive, one can define a functor F ′ : Sesq(C) → UH(Ar2(C)) by F ′(M, s) =
((M,M∗, s∗ωM , s), (ωM , idM∗)) and F ′(ψ)= (ψ, (ψ−1)∗). This functor induces
an equivalence of categories; the proof is analogous to [Bayer-Fluckiger and
Moldovan 2014, Theorem 4.1].

3B. Hyperbolic sesquilinear forms. Let C be a hermitian category. The equiva-
lence Sesq(C)∼UH(Ar̃2(C)) of Theorem 3.2 allows us to pull back notions defined
for unimodular hermitian forms over Ar̃2(C) to sesquilinear form over C. In this
subsection, we will do this for hyperbolicity, and thus obtain a notion of a Witt
group of sesquilinear forms.

Throughout, F denotes the functor Sesq(C)→ UH(Ar̃2(C)) from Theorem 3.2.

Definition 3.4. A sesquilinear form (M, s) over C is called hyperbolic if F(M, s)
is hyperbolic as a unimodular hermitian form over Ar̃2(C).

The following proposition gives a more concrete meaning to hyperbolicity of
sesquilinear forms over C.
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Proposition 3.5. Up to isometry, the hyperbolic sesquilinear forms over C are
given by (

M ⊕ N ,
[

0 f
g 0

])
,

where M, N ∈ C, f ∈ HomC(N ,M∗), g ∈ HomC(M, N ∗) and
[ 0

g
f
0

]
is an element

of HomC(M ⊕ N ,M∗ ⊕ N ∗) given in matrix form. Furthermore, a unimodu-
lar ε-hermitian form is hyperbolic as a sesquilinear form (i.e., in the sense of
Definition 3.4) if and only if it is hyperbolic as a unimodular ε-hermitian form (see
Section 2).

Proof. Let G be the functor UH(Ar̃2(C)) → Sesq(C) defined in the proof of
Theorem 3.2. Since F and G are mutual inverses, the hyperbolic sesquilinear
forms over C are the forms isometric to G(Z ⊕ Z∗,HZ ) for Z ∈ Ar̃2(C). Write
Z = (M, N , h, g). Then

(Z ⊕ Z∗,HZ )=

((
M ⊕ N , N ⊕M,

[
h 0
0 g∗ωN

]
,

[
g 0
0 h∗ωN

])
,

[
0 idZ∗

ωZ 0

])
.

Observe that[
0 idZ∗

ωZ 0

]
=

[
0 (idN , idop

M )

(idM , idop
N ) 0

]
=

([
0 idN

idM 0

]
,

[
0 idN

idM 0

]op)
.

Thus,

G(Z ⊕ Z∗,HZ )=

(
M ⊕ N ,

[
0 idN

idM 0

]∗ [
g 0
0 h∗ωN

])
,

and since[
0 idN

idM 0

]∗ [
g 0
0 h∗ωN

]
=

[
0 idM∗

idN∗ 0

] [
g 0
0 h∗ωN

]
=

[
0 h∗ωN

g 0

]
,

we see that G(Z ⊕ Z∗,HZ ) matches the description in the proposition. Further-
more, by putting h = f ∗ωM for f ∈ HomC(N ,M∗), we get h∗ωN = ω

∗

M f ∗∗ωN =

ω∗MωM∗ f = f . Thus,
(
M ⊕ N ,

[ 0
g

f
0

])
is hyperbolic for all M, N , f, g, as required.

To finish, note that we have clearly shown that (Q⊕ Q∗,Hε
Q) is hyperbolic as a

sesquilinear form for every Q ∈ C. To see the converse, assume
(
M ⊕ N ,

[ 0
g

f
0

])
is

ε-hermitian and unimodular. Then[
0 f
g 0

]
= ε

[
0 f
g 0

]∗
ωM⊕N = ε

[
0 g∗

f ∗ 0

] [
ωM 0
0 ωN

]
=

[
0 εg∗ωN

ε f ∗ωM 0

]
,

hence g= ε f ∗ωN and f = εg∗ωM . Since
[ 0

g
f
0

]
is unimodular, f and g are bijective

and hence so are ωN and ωM . In particular, M is reflexive. It is now routine to verify
that the map idM ⊕ f : M ⊕ N → M ⊕M∗ is an isometry from

(
M ⊕ N ,

[ 0
g

f
0

])
to

(M ⊕M∗,Hε
M), so the former is hyperbolic in the sense of Section 2. �
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Let (A, σ ) be a ring with involution. When C is the category of right A-modules,
considered as a hermitian category as in Example 2.1, we obtain a notion of hyper-
bolic sesquilinear forms over (A, σ ). These hyperbolic forms can be characterized
as follows:

Proposition 3.6. A sesquilinear form (M, s) over (A, σ ) is hyperbolic if and only
if there are submodules M1,M2 ≤ M such that s(M1,M1) = s(M2,M2) = 0 and
M = M1⊕M2. Furthermore, if (M, s) is unimodular and ε-hermitian, then (M, s)
is hyperbolic as a sesquilinear space if and only if it is hyperbolic as an ε-hermitian
unimodular space.

Proof. Recall that for any two right A-modules M1,M2, we identify (M1⊕M2)
∗

with M∗1 ⊕ M∗2 via f ↔ ( f |M1, f |M2). Let (M, s) be a sesquilinear space, and
assume M=M1⊕M2. By straightforward computation, we see that sr is of the form[ 0

g
f
0

]
∈HomA(M,M∗)=HomA(M1⊕M2,M∗1 ⊕M∗2 ) if and only if s(M1,M1)=

s(M2,M2)= 0. The proposition therefore follows from Proposition 3.5. �

3C. Witt groups of sesquilinear forms. Let C be a hermitian category. Denote by
WGS(C) the Grothendieck group of isometry classes of sesquilinear forms over
C, with respect to orthogonal sum. It is easy to see that the hyperbolic isometry
classes span a subgroup of WGS(C), which we denote by H(C). The Witt group of
sesquilinear forms over C is defined to the quotient

WS(C)=WGS(C)/H(C).

By definition, we have WS(C) ∼= W(Ar̃2(C)). Taking C to be the category of
projective right A-modules (or, with a different result, reflexive right A-modules, or
again arbitrary ones) of finite type and their duals, we obtain a notion of a Witt group
for sesquilinear forms over (A, σ ). Also observe that there is a homomorphism of
groups Wε(C)→WS(C) given by sending the class of a unimodular ε-hermitian
form to its corresponding class in WS(C). Corollary 5.14 below presents sufficient
conditions for the injectivity of this homomorphism.

3D. Extension of scalars. Let R/K be a commutative ring extension and let C

be a K -linear hermitian category. Then the category Ar̃2(C) is also K -linear. For
later use, we now check that the scalar extension functor RR/K of Section 2D
“commutes” with the functor F of Theorem 3.2.

Proposition 3.7. There is a 1-hermitian duality-preserving functor J : Ar̃2(C)R→

Ar̃2(CR) making the following diagram commute:

Sesq(C) F //

RR/K

��

UH(Ar̃2(C))

RR/K

��
Sesq(CR)

F // UH(Ar̃2(CR)) UH(Ar̃2(C)R)
Joo
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It is given by
J ((M, N , f, g)R)= (MR, NR, fR, gR),

J ((φ, ψop)⊗ a)= (φ⊗ a, (ψ ⊗ a)op)

for all (M, N , f, g) ∈ Ar̃2(C) and any morphism (φ, ψop) in Ar̃2(C). (The associ-
ated natural isomorphism i : J∗→ ∗J is the identity map.) Furthermore, when R
is flat as a K -module, J is faithful and full.

Proof. We only check that J is faithful and full when R is flat as a K -module. All
other assertions follow by computation. Let Z = (M, N , f, g), Z ′= (M ′, N ′, f ′, g′)
be objects in Ar̃2(C). Set

U = {( f, gop) | ( f, g) ∈ HomC(M,M ′)×HomC(N ′, N )},

V = HomC(M, N ′∗)×HomC(M, N ′∗),

and define λ :U → V by

λ(φ,ψop)= (ψ∗ f − f ′φ, ψ∗g− g′φ).

Unfolding the definitions, we see that HomAr̃2(C)R (Z R, Z ′R) = (ker λ)⊗K R and
HomAr̃2(CR)(J Z R, J Z ′R) = ker(λ⊗K idR). Furthermore, the standard map from
(ker λ)⊗K R to ker(λ⊗K idR) is just application of the functor J . When R is flat
as a K -module, this map is an isomorphism; hence we are done. �

Corollary 3.8. Let (M, s), (M ′, s ′) be two sesquilinear forms over C, and assume
R is flat as a K -module. Then RR/K (M, s) is isometric to RR/K (M ′, s ′) if and
only if RR/K F(M, s) is isometric to RR/K F(M ′, s ′).

4. Systems of sesquilinear forms

In this section, we explain how to generalize the results of Section 3 to systems of
sesquilinear forms.

Let A be a ring, and let {σi }i∈I be a nonempty family of (not necessarily dis-
tinct) involutions of A. A system of sesquilinear forms over (A, {σi }i∈I ) is a pair
(M, {si }i∈I ) such that (M, si ) is a sesquilinear space over (A, σi ) for all i . An
isometry between two systems of sesquilinear forms (M, {si }i∈I ), (M ′, {s ′i }i∈I ) is
an isomorphism f : M → M ′ such that s ′i ( f x, f y) = si (x, y) for all x, y ∈ M ,
i ∈ I .

Observe that each of the involutions σi gives rise to a hermitian structure (∗i , ωi )

on Mod-A, the category of right A-modules. In particular, a system of sesquilinear
forms (M, {si }) gives rise to homomorphisms (si )r , (si )` : M → M∗i given by
(si )r (x)(y)= σi (si (y, x)) and (si )`(x)(y)= si (x, y), where M∗i = HomA(M, A),
considered as a right A-module via the action ( f · a)m = σi (a) f (m). This leads to
the notion of systems of sesquilinear forms over hermitian categories.
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Let C be an additive category and let {∗i , ωi }i∈I be a nonempty family of hermit-
ian structures on C. A system of sesquilinear forms over (C, {∗i , ωi }i∈I ) is a pair
(M, {si }i∈I ) such that M ∈C and (M, si ) is a sesquilinear form over (C, ∗i , ωi ). An
isometry between two systems of sesquilinear forms (M, {si }i∈I ) and (M ′, {s ′i }i∈I )

is an isomorphism f :M −→∼ M ′ such that f ∗i s ′i f = si for all i ∈ I . We let SesqI (C)

(or SesqI (C, {∗i , ωi })) denote the category of systems of sesquilinear forms over
(C, {∗i , ωi }i∈I ) with isometries as morphisms.

Keeping the notation of the previous paragraph, the results of Section 3 can
be extended to systems of sesquilinear forms as follows: Define the category of
twisted double I -arrows over (C, {∗i , ωi }i∈I ), denoted Ar̃2I (C), to be the cate-
gory whose objects are quadruples (M, N , { fi }i∈I , {gi }i∈I ) with M, N ∈ C and
fi , gi ∈ HomC(M, N ∗i ). A morphism (M, N , { fi }, {gi })→ (M ′, N ′, { f ′i }, {g

′

i })

is a formal pair (φ, ψop) such that φ ∈ Hom(M,M ′), ψ ∈ Hom(N ′, N ) and
ψ∗i fi = f ′i φ, ψ∗i gi = g′iφ for all i ∈ I . The composition is defined by the formula
(φ, ψop)(φ′, ψ ′op)= (φφ′, (ψ ′ψ)op).

The category Ar̃2I (C) can be made into a reflexive hermitian category by let-
ting (M, N , { fi }, {gi })

∗
= (N ,M, {g∗i

i ωi,N }, { f ∗i
i ωi,M}), (φ, ψop)∗= (ψ, φop) and

ω(M,N ,{ fi },{gi }) = (idM , idop
N ). It is now possible to prove the following theorem,

whose proof is completely analogous to the proof of Theorem 3.2:

Theorem 4.1. Define a functor F : SesqI (C)→ UH(Ar̃2I (C)) by

F(M, {si })= ((M,M, {s∗i
i ωi,M}, {si }), (idM , idop

M )) and F(ψ)= (ψ, (ψ−1)op).

Then F induces an equivalence of categories.

Sketch of proof. It is easy to see that any hermitian form over UH(Ar̃2I (C)) has the
form ((M, N , { fi }, {gi }), (α, α

op)). Define a functor G :UH(Ar̃2I (C))→SesqI (C)

by

G((M, N , { fi }, {gi }), (α, α
op))= (M, {α∗i gi }) and G(φ, ψop)= φ.

Arguing as in the proof of Theorem 3.2, we see that F and G are mutual inverses. �

As we did in Section 3, we can use Theorem 4.1 to define hyperbolic systems
of sesquilinear forms. Namely, a system of forms (M, {si }) over C will be called
hyperbolic if F(M, {si }) is hyperbolic over Ar̃2I (C). The following two propositions
are proved in the same manner as Propositions 3.5 and 3.6, respectively:

Proposition 4.2. A system of sesquilinear forms (M, {si }) over C is hyperbolic if
and only if there are M1,M2 ∈ C, fi ∈ Hom(M2,M∗i

1 ), gi ∈ Hom(M1,M∗i
2 ) such

that M = M1⊕M2 and, for all i ∈ I ,

si =

[
0 fi

gi 0

]
∈ Hom(M,M∗i )= Hom(M1⊕M2,M∗i

1 ⊕M∗i
2 ).
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In this case, each of the sesquilinear forms (M, si ) (over (C, ∗i , ωi )) is hyperbolic.

Proposition 4.3. Let A be a ring and let {σi }i∈I be a nonempty family of involutions
of A. A system of sesquilinear forms (M, {si }) over (A, {σi }) is hyperbolic if
and only if there are submodules M1,M2 ≤ M such that M = M1 ⊕ M2 and
si (M1,M1) = si (M2,M2) = 0 for all i ∈ I . In this case, each of the sesquilinear
forms (M, si ) (over (A, σi )) is hyperbolic.

The notion of hyperbolic systems of sesquilinear forms can be used to define
Witt groups. We leave the details to the reader.

Let R/K be a commutative ring extension. If C and all the hermitian structures
{∗i , ωi }i∈I are K -linear, then the scalar extension functor RR/K : C→ CR is 1-
hermitian and duality-preserving with respect to (∗i , ωi ) for all i ∈ I . Therefore,
we have a functor RR/K : SesqI (C)→ SesqI (CR) given by RR/K (M, {si }i∈I ) =

(MR, {(si )R}i∈I ). We thus have a notion of scalar extension for systems of bilinear
forms (and it agrees with the obvious scalar extension for systems of bilinear forms
over a ring with a family of involutions, provided the assumptions of Remark 2.2
hold). Using the ideas of Section 3D, one can show:

Corollary 4.4. Let (M, {si }), (M ′, {s ′i }) be two systems of sesquilinear forms over
(C, {∗i , ωi }), and assume R is flat as a K -module. Then RR/K (M, {si }) is isometric
to RR/K (M ′, {s ′i }) if and only if RR/K F(M, {si }) is isometric to RR/K F(M ′, {s ′i }).

5. Applications

This section uses the previous results to generalize various known results about
hermitian forms (over rings or reflexive hermitian categories) to systems of sesqui-
linear forms over (not necessarily reflexive) hermitian categories. Some of the
consequences to follow were obtained in [Bayer-Fluckiger and Moldovan 2014]
for hermitian forms over rings. Here we rephrase them for hermitian categories,
extend them to systems of sesquilinear forms and drop the assumption that the base
module (or object) is reflexive.

5A. Witt’s cancellation theorem. Quebbemann, Scharlau and Schulte [Quebbe-
mann et al. 1979, §3.4] proved Witt’s cancellation theorem for unimodular hermitian
forms over hermitian categories C satisfying the following conditions:

(a) All idempotents in C split (see Section 2C).

(b) For all C ∈ C, E := EndC(C) is a complete semilocal ring in which 2 is
invertible.

Recall that complete semilocal means that E/ Jac(E) is semisimple (i.e., E is
semilocal) and that the standard map E→ lim

←−
{E/ Jac(R)n}n∈N is an isomorphism

(i.e., E is complete in the Jac(E)-adic topology). In fact, condition (a) can be
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dropped since idempotents can be split artificially (see Section 5E below), or,
alternatively, since by applying transfer (see Section 2C) one can move to a module
category in which idempotents split.

We shall now use the Quebbemann–Scharlau–Schulte cancellation theorem
together with Theorem 4.1 to give several conditions guaranteeing cancellation for
systems of sesquilinear forms.

Our first criterion is based on the following well-known lemma:

Lemma 5.1. Let K be a commutative noetherian complete semilocal ring (e.g., a
complete discrete valuation ring). Then any K -algebra A which is finitely generated
as a K -module is complete semilocal.

Proof. For brevity, write I = Jac(K ) and J = Jac(A). By [Hinohara 1960,
Theorem 2] and the proof of [First 2013, Proposition 8.8(i)] (for instance), A =
lim
←−
{A/A(I n)}n∈N. That A= lim

←−
{A/J n

}n∈N follows if we verify that J m
⊆ AI ⊆ J

for some m ∈N. The right inclusion holds since 1+ AI consists of right-invertible
elements. Indeed, for all a ∈ AI , we have a A+ AI = A, so by Nakayama’s lemma
(applied to the K -module A), a A = A. The existence of m, as well as the fact that
A is semilocal, follows by arguing as in [Rowen 1988, Example 2.7.19′(ii)] (for
instance). �

Theorem 5.2. Let K be a commutative noetherian complete semilocal ring with 2∈
K×, let C be a K -category equipped with K -linear hermitian structures {∗i , ωi }i∈I ,
and let (M, {si }), (M ′, {s ′i }), (M

′′, {s ′′i }) be systems of sesquilinear forms over
(C, {∗i , ωi }). Assume that HomC(M, N ) is finitely generated as a K -module for all
M, N ∈ C. Then

(M, {si })⊕ (M ′, {s ′i })' (M, {si })⊕ (M ′′, {s ′′i }) ⇐⇒ (M ′, {s ′i })' (M
′′, {s ′′i }).

Proof. In light of Theorem 4.1, it is enough to prove cancellation of unimodular 1-
hermitian forms over the category Ar̃2I (C) (note that the equivalence of Theorem 4.1
respects orthogonal sums). This would follow from the cancellation theorem of
[Quebbemann et al. 1979, §3.4] if we show that the endomorphism rings of objects
in Ar̃2I (C) are complete semilocal rings in which 2 is invertible. Indeed, let
Z := (M, N , { fi }, {gi }) ∈Ar̃2I (C). Then E := End(Z) is a subring of EndC(M)×
EndC(N )op, which is a K -algebra by assumption. Since the hermitian structures
{∗i , ωi } are K -linear, E is in fact a K -subalgebra, which must be finitely generated
as a K -module (because this is true for EndC(M)×EndC(N )op and K is noetherian).
Thus, we are done by Lemma 5.1 and the fact that 2 ∈ K×. �

As corollary, we get the following result, which resembles [Bayer-Fluckiger and
Moldovan 2014, Theorem 8.1]:

Corollary 5.3. Let K be a commutative noetherian complete semilocal ring with
2 ∈ K×, let A be a K -algebra which is finitely generated as a K -module, and let
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{σi }i∈I be a family of K -involutions on A. Then cancellation holds for systems
of sesquilinear forms over (A, {σi }) which are defined on finitely generated right
A-modules.

For the next theorem, recall that a ring R is said to be semiprimary if R is
semilocal and Jac(R) is nilpotent. For example, all artinian rings are semiprimary.
Note that all semiprimary rings are complete semilocal. It is well-known that
for a ring R and an idempotent e ∈ R, R is semiprimary if and only if eRe and
(1−e)R(1−e) are semiprimary. As a result, if M, N are two objects in an additive
category, then End(M ⊕ N ) is semiprimary if and only if End(M) and End(N ) are
semiprimary.

Theorem 5.4. Let C be an additive category with hermitian structures {∗i , ωi },
and let (M, {si }), (M ′, {s ′i }), (M

′′, {s ′′i }) be systems of sesquilinear forms over
(C, {∗i , ωi }). Assume that EndC(M), EndC(M ′), EndC(M ′′) are semiprimary rings
in which 2 is invertible. Then

(M, {si })⊕ (M ′, {s ′i })' (M, {si })⊕ (M ′′, {s ′′i }) ⇐⇒ (M ′, {s ′i })' (M
′′, {s ′′i }).

Proof. As in the proof of Theorem 5.2, it is enough to show that the objects in
Ar̃2I (C) have a complete semilocal endomorphism ring. In fact, we may restrict
to those objects Z := (M, N , { fi }, {gi }) for which EndC(M) and EndC(N ) are
semiprimary. (These do form a hermitian subcategory of Ar̃2I (C) by the comments
above.) Fix such a Z and let H=

⊕
i∈I HomC(M, N ∗i ). We view the morphism { fi }

and {gi } as elements of H in the obvious way. Let A = End(M) and B = End(N ).
We endow H with a (Bop, A)-bimodule structure by setting bop(

⊕
i∈I hi )a =⊕

i∈I (b
∗i ◦ hi ◦a) for all a ∈ A, b ∈ B,

⊕
i hi ∈ H . This allows us to construct the

ring S :=
[ A

H Bop

]
. It is now straightforward to check that End(Z) consists of those

elements in A× Bop
=
[ A

Bop

]
that commute with

[ 0
fi 0

]
and

[ 0
gi 0

]
for all i ∈ I .

Thus, End(Z) is a semicentralizer subring of A× Bop in the sense of [First 2013,
§1]. By [First 2013, Theorem 4.6], a semicentralizer subring of a semiprimary ring
is semiprimary, so End(Z) is semiprimary, and in particular complete semilocal. �

Corollary 5.5. Let A be a semiprimary ring with 2∈ A×, and let {σi }i∈I be a family
of involutions on A. Then cancellation holds for systems of sesquilinear forms over
(A, {σi }) which are defined on finitely presented right A-modules.

Proof. By [Björk 1971, Theorem 4.1] (or [First 2013, Theorem 7.3]), the en-
domorphism ring of a finitely presented A-module is semiprimary. Now apply
Theorem 5.4. �

Corollary 5.6. Let C be an abelian category equipped with hermitian structures
{∗i , ωi }. Assume that C consists of objects of finite length. Then cancellation holds
for systems of sesquilinear forms over (C, {∗i , ωi }).
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Proof. By the Harada–Sai lemma [Rowen 1988, Proposition 2.9.29], the endomor-
phism ring of an object of finite length in an abelian category is semiprimary, so we
are done by Theorem 5.4. Alternatively, one can check directly that the category
Ar̃2I (C) is abelian and consists of objects of finite length, apply the Harada–Sai
lemma to Ar̃2I (C), and then use the cancellation theorem of [Quebbemann et al.
1979, §3.4]. �

Remark 5.7. It is not hard to deduce from a theorem of Camps and Dicks [1993,
Corollary 2] that if the endomorphism rings of C are semilocal, then so are the
endomorphism rings of Ar̃2I (C). (Simply check that End(M, N , { fi }, {gi }) is a
rationally closed subring of EndC(M)× EndC(N )op in the sense of [Camps and
Dicks 1993, p. 204].) By applying transfer (see Section 2C) to Ar̃2I (C), one can
then move to the context of unimodular 1-hermitian forms over semilocal rings.
Cancellation theorems for such forms were obtained by various authors, including
Knebusch [1969], Reiter [1975] and Keller [1988]. However, none of these apply
to the general case, as in fact cancellation is no longer true; see [Keller 1988, §2].
Nevertheless, the cancellation results of [ibid.] can still be used to get some partial
results about systems of sesquilinear forms over C; we leave the details to the
reader.

5B. Finiteness results. In this subsection and the next, we generalize the finiteness
results of [Bayer-Fluckiger and Moldovan 2014, §10] to systems of sesquilinear
forms.

For a ring A, we denote by T (A) the Z-torsion subgroup of A. Recall that if R is
a commutative ring, A is said to be R-finite if AR = A⊗Z R is a finitely generated
R-module and T (A) is finite. Note that being R-finite passes to subrings.

The proofs of the results to follow are completely analogous to the proofs of the
corresponding statements in [Bayer-Fluckiger and Moldovan 2014, §10]; they are
based on applying the equivalence of Theorem 4.1 and then using the finiteness
results of [Bayer-Fluckiger et al. 1989], possibly after applying transfer.

Throughout, C is an additive category and {∗i , ωi }i∈I is a nonempty family of
hermitian structures on C. Fix a system of sesquilinear forms (V, {si }i∈I ) over
(C, {i , ωi }) and let Z(V, {si }) = (V, V, {s∗i

i ωi,V }, {si r }) ∈ Ar̃2I (C). (Note that
F(V, {si })= (Z , (idV , idop

V )) with F as in Theorem 4.1.)

Theorem 5.8. If there exists a nonzero integer m such that EndC(V ) is Z[1/m]-
finite, then there are finitely many isometry classes of summands of (V, {si }).

Theorem 5.9. Assume that there exists a nonzero integer m such that the ring
EndAr̃2I (C)(Z(V, {si })) is Z[1/m]-finite (e.g., if EndC(V ) is Z[1/m]-finite). Then
there exist only finitely many isometry classes of systems of sesquilinear forms
(V ′, {s ′i }i∈I ) over C such that Z(V ′, {s ′i })' Z(V, {si }) (as objects in Ar̃2I (C)).
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5C. Finiteness of the genus. Let C be a hermitian category admitting a nonempty
family of hermitian structures {∗i , ωi }i∈I . We say that two systems of sesquilinear
forms (M, {si }), (M ′, {s ′i }) are of the same genus if they become isometric after
applying RZp/Z for every prime number p (where Zp are the p-adic integer). (See
Remark 2.2 for conditions under which this definition of genus agrees with the naive
definition of genus for module categories.) As in [Bayer-Fluckiger and Moldovan
2014, Theorem 10.3], we have:

Theorem 5.10. Let (M, {si }) be a system of sesquilinear forms over (C, {∗i , ωi }),
and assume that End(M) is Q-finite. Then the genus of (M, {si }) contains only a
finite number of isometry classes of systems of sesquilinear forms.

5D. Forms that are trivial in the Witt group. Let C be a hermitian category. By
definition, a unimodular ε-hermitian (resp. sesquilinear) form (M, s) is trivial
in Wε(C) (resp. WS(C)) if and only if there are unimodular ε-hermitian (resp.
sesquilinear) hyperbolic forms (H1, h1), (H2, h2) such that (M, s)⊕ (H1, h1) '

(H2, h2). In this section, we will show that under mild assumptions, this implies
that (M, s) is hyperbolic.

Lemma 5.11. Let M ∈C, and assume that M is a (finite) direct sum of objects with
local endomorphism ring. Then, up to isometry, there is at most one ε-hermitian
hyperbolic form on M.

Proof. For X ∈ C, let [X ] denote the isomorphism class of X . The Krull–Schmidt
theorem (e.g., see [Rowen 1988, p. 237 ff.]) implies that if M ∼=

⊕t
i=1 Mi with each

Mi indecomposable, then the unordered list [M1], . . . , [Mt ] is determined by M .
Let (M, s) be an ε-hermitian hyperbolic form on M , say (M, s)' (N⊕N ∗,Hε

N ).
Write N ∼=

⊕r
i=1 Ni with each Ni indecomposable. Then s '

⊕r
i=1 Hε

Ni
. It is

easy to check that the isometry class of Hε
Ni

depends only on the set {[Ni ], [N ∗i ]}.
Furthermore, using the Krull–Schmidt theorem, one easily verifies that the unordered
list {[N1], [N ∗1 ]}, . . . , {[Nr ], [N ∗r ]} is uniquely determined by M . It follows that
(M, s) is isometric to a sesquilinear form which is determined by M up to isometry.

�

Proposition 5.12. Let C be a hermitian category satisfying conditions (a), (b) on
page 15. Then a unimodular ε-hermitian form (M, s) is trivial in Wε(C) if and only
if it is hyperbolic.

Proof. Note first that conditions (a) and (b) imply that every object of C is a sum of
objects with local endomorphism rings, hence we may apply the Krull–Schmidt
theorem to C. (For example, this follows from [Rowen 1988, Theorem 2.8.40]
since the endomorphism rings of C are semiperfect.) Let (M, s) be a unimodular
ε-hermitian form such that (M, s)≡ 0 in Wε(C). There are unimodular ε-hermitian
hyperbolic forms (H1, h1), (H2, h2) such that (M, s)⊕ (H1, h1)' (H2, h2). Using
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the Krull–Schmidt theorem, it is easy to see that there is N ∈C such that M∼=N⊕N ∗.
Thus, we may consider Hε

N as a hermitian form on M . By Lemma 5.11, we have
Hε

N ⊕h1 ' h2, implying Hε
N ⊕h2 ' s⊕h2. Therefore, by the cancellation theorem

of [Quebbemann et al. 1979, §3.4], s ' Hε
N , as required. �

Proposition 5.13. Let C be a hermitian category in which all idempotents split and
such that either

(1) C is K -linear, where K is a noetherian complete semilocal ring with 2 ∈ K×,
and all Hom-sets in C are finitely generated as K -modules, or

(2) for all M ∈ C, EndC(M) is semiprimary and 2 ∈ EndC(M)×.

Then a sesquilinear form (M, s) is trivial in WS(C) if and only if it is hyperbolic.

Proof. It is enough to verify that F(M, s) is hyperbolic in Ar̃2(C) (Theorem 3.2).
The proofs of Theorems 5.2 and 5.4 imply that Ar̃2(C) satisfies condition (b) of
Section 5A, and condition (a) is routine (see also Lemma 5.17(ii) below). Therefore,
F(M, s) is hyperbolic by Proposition 5.12. �

Corollary 5.14. Under the assumptions of Proposition 5.13, the map W(C)→

WS(C) is injective.

Proof. This follows from Propositions 5.13 and 3.5. �

5E. Odd degree extensions. Throughout this subsection, L/K is an odd degree
field extension and char K 6= 2. A well-known theorem of Springer asserts that
two unimodular hermitian forms over K become isometric over L if and only
if they are already isometric over K . Moreover, the restriction map (the scalar
extension map) rL/K :W(K )→W(L) is injective. Both statements were extended
to hermitian forms over finite-dimensional K -algebras with K -linear involution in
[Bayer-Fluckiger and Lenstra 1990, Proposition 1.2 and Theorem 2.1] (see also
[Fainsilber 1994] for a version in which L/K is replaced with an extension of
complete discrete valuation rings). In this section, we extend these results to
sesquilinear forms over hermitian categories.

Theorem 5.15. Let C be an additive K -category such that dimK Hom(M,M ′)
is finite for all M,M ′ ∈ C. Let {∗i , ωi }i∈I be a nonempty family of K -linear
hermitian structures on C and let (M, {si }), (M ′, {s ′i }) be two systems of sesquilinear
forms over (C, {∗i , ωi }). Then RL/K (M, {si }) ' RL/K (M ′, {s ′i }) if and only if
(M, {si })' (M ′, {s ′i }).

Proof. By Corollary 4.4, it is enough to prove RL/K F(M, {si })'RL/K F(M ′, {s ′i })
if and only if F(M, {si }) ' F(M ′, {s ′i }) (with F as in Theorem 4.1). Write
(Z , (α, αop)) = F(M, {si })⊕ F(M ′, {s ′i }) and let E = End(Z). Then E is a K -
subalgebra of End(M ⊕ M ′)× End(M ⊕ M ′)op, which is finite-dimensional. By
applying T(Z ,(α,αop)) (see Section 2C), we reduce to showing that two 1-hermitian
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forms over E are isometric over E ⊗K L if and only if they are isometric over E ,
which is just [Bayer-Fluckiger and Lenstra 1990, Theorem 2.1]. (Note that we used
the fact that transfer commutes with RL/K in the sense of Section 2E.) �

Corollary 5.16. Let A be a finite-dimensional K -algebra and let {σi }i∈I be a
nonempty family of K -involutions on A. Let (M, {si }), (M ′, {s ′i }) be two sys-
tems of sesquilinear forms over (A, {σi }). If M and M ′ are of finite type, then
RL/K (M, {si })'RL/K (M ′, {s ′i }) if and only if (M, {si })' (M ′, {s ′i }).

To state the analogue of the injectivity of rL/K :W(K )→W(L) for hermitian
categories, we need to introduce additional notation.

An additive category C is called pseudoabelian if all idempotents in C split.
Any additive category C admits a pseudoabelian closure (e.g., see [Karoubi 1978,
Theorem 6.10]), namely, a pseudoabelian additive category C◦ equipped with an
additive functor A 7→ A◦ : C→ C◦, such that the pair (C◦, A 7→ A◦) is universal.
The category C◦ is unique up to equivalence and the functor A 7→ A◦ turns out
to be faithful and full. The category C◦ can be realized as the category of pairs
(M, e) with M ∈C and e ∈EndC(M) an idempotent. The Hom-sets in C◦ are given
by HomC◦((M, e), (M ′, e′))= e′HomC(M,M ′)e and the composition is the same
as in C. Finally, set M◦ = (M, idM) and f ◦ = f for any object M ∈ C and any
morphism f in C. For simplicity, we will use only this particular realization of
C◦. Nevertheless, the universality implies that the statements to follow hold for any
pseudoabelian closure.

Assume C admits a K -linear hermitian structure (∗, ω). Then C◦ is clearly a
K -category, and, moreover, has a K -linear hermitian structure given by (M, e)∗ =
(M∗, e∗) and ω(M,e) = e∗∗ωM e ∈ HomC◦((M, e), (M∗∗, e∗∗)). Also, the functor
M 7→ M◦ is 1-hermitian and duality-preserving (the isomorphism (M∗)◦→ (M◦)∗

being idM ), so we have a faithful and full functor (M, s) 7→ (M, s)◦= (M◦, s) from
Sesq(C) to Sesq(C◦). Henceforth, consider C and Sesq(C) as full subcategories of
C◦ and Sesq(C◦), respectively; i.e., identify M◦ with M and (M, s)◦ with (M, s).

Lemma 5.17. Let C, C′ be two hermitian categories and let F : C→ C′ be an
ε-hermitian duality-preserving functor. Then:

(i) F extends to an ε-hermitian duality-preserving functor F◦ : C◦→ C′◦. If F is
faithful and full, then so is F◦.

(ii) There is a 1-hermitian duality-preserving functor G :Ar̃2(C)
◦
→Ar̃2(C

◦). The
functor G fixes Ar̃2(C) and induces an equivalence of categories.

Proof. (i) Define F◦(M, e)= (F M, Fe) ∈ C′◦. The rest is routine.

(ii) Let G send ((M,M ′, f,g), (e,e′op))∈Ar̃2(C)
◦ to ((M,e), (M,e′),e′∗ f e,e′∗ge)

and any morphism to itself. The details are left to the reader. �
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Observe that the category CL may not be pseudoabelian even when C is. We
thus set C◦L := (CL)

◦.

Theorem 5.18. Let (C, ∗, ω) be a pseudoabelian K -linear hermitian category such
that dimK Hom(M,M ′) is finite for all M,M ′ ∈ C. Then the maps

Wε(RL/K ) :Wε(C)→Wε(C◦L) and W(RL/K ) :WS(C)→WS(C
◦

L)

are injective.

Proof. We begin by showing that Wε(RL/K ) :Wε(C)→Wε(C◦L) is injective. Let
(M, s) ∈ UHε(C) be such that (ML , sL) ≡ 0 in Wε(C◦L). Then there are objects
N , N ′ ∈ C◦L such that sL ⊕Hε

N ' Hε
N ′ . Let

(U, h)= (M, s)⊕ (N ′⊕ N ′ ∗,Hε
N ′) and E = EndC◦(U ),

and let σ be the involution induced by h on E . Set EL = E⊗K L =EndC◦L
(UL) and

σL=σ⊗K idL . Section 2E implies that RL/K (T(U,h)(M, s))=T(UL ,hL )(ML , sL)≡0
in Wε(EL , σL), and by [Bayer-Fluckiger and Lenstra 1990, Proposition 1.2], this
means T(U,h)(M, s) ≡ 0 in Wε(E, σ ) (here we need dimK E <∞). Since C is
pseudoabelian, the map T(U,h) : C|U → P(E) is an equivalence of categories,
hence the induced map Wε(T(U,h)) : Wε(C|U )→ W(P(E)) = Wε(E, σ ) is an
isomorphism of groups. Therefore, (M, s)≡ 0 in Wε(C|U ). In particular, the same
identity holds in Wε(C).

Now let (M, s) ∈ Sesq(C) be such that (ML , sL) ≡ 0 in WS(C
◦

L). Then by
Proposition 5.13, (ML , sL) is hyperbolic in C◦L (but not, a priori, in CL ). Let F be
the functor defined in Theorem 3.2 and let J be the functor Ar̃2(C)L → Ar̃2(CL)

of Proposition 3.7. By the lemma, there is a fully faithful 1-hermitian duality-
preserving functor J ′ := G J ◦ : Ar̃2(C)

◦

L → Ar̃2(C
◦

L). Since (ML , sL) is hyper-
bolic in C◦L , there is Q ∈ Ar̃2(C

◦

L) such that F(ML , sL) ' (Q ⊕ Q∗,HQ). Let
Z(M, s) := (M,M, s∗ωM , s) and Z(ML , sL) = (ML ,ML , s∗LωML , sL). Recall
that F(ML , sL) = FRL/K (M, s) = JRL/K F(M, s) (Proposition 3.7) and hence
Q⊕ Q∗ ' Z(ML , sL)= J (Z(M, s)L)= J ′(Z(M, s)L). As J ′ is fully faithful and
its image is pseudoabelian, we may assume Q = J ′H for some H ∈ Ar̃2(C)

◦

L .
We now have J ′(H⊕H∗,HH )= (Q⊕Q∗,HQ)' F(ML , sL)= J ′RL/K F(M, s),
hence (H⊕H∗,HH )'RL/K F(M, s) in Ar̃2(C)

◦

L . In particular, RL/K F(M, s)≡ 0
in W(Ar̃2(C)

◦

L). By the previous paragraph, this means F(M, s)≡ 0 in W(Ar̃2(C))

and hence; (M, s)≡ 0 in WS(C). �

We also have the following weaker version of Springer’s theorem that works
without assuming C is pseudoabelian:

Theorem 5.19. Suppose that (C, ∗, ω) is a K -linear hermitian category such that
dimK Hom(M,M ′) is finite for all M,M ′∈C. Then Wε(RL/K ) :Wε(C)→Wε(CL)

is injective.
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Proof. Let (M, s) ∈ UHε(C) be such that (ML , sL)≡ 0 in Wε(CL). Then there are
objects NL , N ′L such that sL⊕Hε

NL
'Hε

N ′L
. Since Hε

NL
= (Hε

N )L and Hε
N ′L
= (Hε

N ′)L ,
we have (s⊕Hε

N )L ' (H
ε
N ′)L . By Theorem 5.15, this means that s⊕Hε

N ' Hε
N ′ ,

hence (M, s)≡ 0 in Wε(C). �

5F. Weak Hasse principle. In this final subsection, we prove a version of the weak
Hasse principle for systems of sesquilinear forms over hermitian categories. Recall
that the weak Hasse principle asserts that two quadratic forms over a global field k
are isometric if and only if they are isometric over all completions of k. This actually
fails for systems of quadratic forms, and we refer the reader to [Bayer-Fluckiger
1985; 1987] for necessary and sufficient conditions for the weak Hasse principle
to hold in this case. A weak Hasse principle for sesquilinear forms defined over a
skew field with a unitary involution was obtained in [Bayer-Fluckiger and Moldovan
2014].

Let K be a commutative ring admitting an involution σ , and let k be the fixed
ring of σ . Let C be an additive K -category. A hermitian structure (∗, ω) on C is
called (K , σ )-linear if ( f a)∗ = f ∗σ(a) for all a ∈ K and any morphism f in C.
(This means that the functor ∗ is k-linear.) In this case, End(M) is a K -algebra for
all M ∈ C, and for any unimodular ε-hermitian form (M, s) over C, the restriction
of the involution f 7→ s−1 f ∗s to K · idM is σ .

Suppose now that K is a global field of characteristic not 2 admitting an involution
σ of the second kind with fixed field k, and that C admits a nonempty family of
(K , σ )-linear hermitian structures {∗i , ωi }i∈I . For every prime spot p of k, let
kp be the completion of k at p, and set K p = K ⊗k kp, σp = σ ⊗k idkp and
Cp = C ⊗k kp. Then each of the hermitian structures (∗i , ωi ) gives rise to a
(K p, σp)-linear hermitian structure on Cp, which we also denote by (∗i , ωi ).

Theorem 5.20. Let K be a global field of characteristic not 2 admitting an invo-
lution σ of the second kind with fixed field k. Let C be a K -category such that
dimK Hom(M, N ) is finite for all M, N ∈C, and assume there is a nonempty family
{∗i , ωi }i∈I of (K , σ )-linear hermitian structures on C. Then the weak Hasse prin-
ciple (with respect to k) holds for systems of sesquilinear forms over (C, {∗i , ωi }).
That is, two systems of sesquilinear forms over (C, {∗i , ωi }) are isometric if and
only if they are isometric after applying Rkp/k for all p.

We will need the following lemma. (The lemma seems to be known, but we
could not find an explicit reference, and hence included here an ad hoc proof.)

Lemma 5.21. Let L/K be any field extension, and let C be an additive K -category
such that dimK HomC(M, N ) is finite for all M, N ∈C. Then for all N ,M ∈C, we
have N ∼= M if and only if NL ∼= ML .
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Sketch of proof. By applying HomC(M ⊕ N , ), we may assume M and N are
finitely generated projective right modules over R := End(M ⊕ N ), which is a
finite-dimensional K -algebra by assumption. Let J be the Jacobson radical of R.
By tensoring with R/J , we may assume R is semisimple. Let {Vi }i be a complete
list of the simple right R-modules and write

(Vi )L =
⊕

j W ni j
i j ,

the {Wi j } j being pairwise nonisomorphic indecomposable RL -modules. The RL -
modules {Wi j }i, j are pairwise nonisomorphic because Wi j and Wi ′ j ′ are nonisomor-
phic as R-modules when i 6= i ′ (Wi j is isomorphic as an R-module to a direct sum
of copies of Vi ). Assume ML ∼= NL and write M ∼=

⊕
i V mi

i , N ∼=
⊕

i V m′i
i . Then⊕

i, j W mi ni j
i j
∼= ML ∼= NL ∼=

⊕
i, j W m′i ni j

i j . By the Krull–Schmidt theorem, we have
mi ni j = m′i ni j for all i, j , hence mi = m′i and M ∼= N . �

Proof of Theorem 5.20. By Corollary 4.4, it is enough to verify the Hasse principle
(with respect to k) for 1-hermitian forms in the category G := Ar̃2I (C). Our
assumptions imply that G is a (K , σ )-linear category such that dimK Hom(Z , Z ′)
is finite for all Z , Z ′ ∈ G. We now use the ideas developed in [Bayer-Fluckiger and
Moldovan 2014, §9].

Let (Z , h), (Z ′, h′) be two unimodular 1-hermitian forms over G such that
Rkp/k(Z , h)'Rkp/k(Z ′, h′) for all p. By Lemma 5.21, this implies that Z ∼= Z ′,
so we may assume Z = Z ′.

Fix a 1-hermitian form h0 on Z and let τ be the involution induced by h0 on
E := End(Z) (i.e., τ(x) = h−1

0 x∗h0). There is an equivalence relation on the
elements of E defined by x ∼ y if and only if there exists an invertible z ∈ E
such that x = zyτ(z). Let H(τ, E×) be the set of equivalence classes of invertible
elements x ∈ E× for which x= τ(x). In the same manner as in [Bayer-Fluckiger and
Moldovan 2014, Theorem 5.1], we see that there is a one-to-one correspondence
between isometry classes of unimodular 1-hermitian forms on Z and elements
H(τ, E×). It is given by (Z , t) 7→ h−1

0 t .
Applying the same argument to Z p =Rkp/k Z ∈ Gp, we see that the weak Hasse

principle is equivalent to the injectivity of the standard map

8 : H(τ, E×)→
∏

p

H(τp, E×p ),

where E p = End(Z p) = E ⊗k kp and τp = τ ⊗k idkp . Observe that since G is
(K , σ )-linear, τ is a unitary involution (and in fact, τ |K = σ ). By [Bayer-Fluckiger
and Moldovan 2014, §9], this means that 8 is injective, hence the weak Hasse
holds. �
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Corollary 5.22. Let K be a global field of characteristic not 2 admitting an involu-
tion σ of the second kind with fixed field k. Let A be a finite-dimensional K -algebra
admitting a nonempty family of involutions {σi }i∈I such that σi |K = σ . Then the
weak Hasse principle (with respect to k) holds for systems of sesquilinear forms
over (A, {σi }).
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