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This paper is dedicated to Robert Wilson.

We describe the universal central extension of the three-point current alge-
bra s1(2, ®), where & =C[¢, t~1, u | u* = t*4+4¢], and construct realizations
of it in terms of sums of partial differential operators.

1. Introduction

It is well known from the work of Kassel and Loday (see [Kassel and Loday 1982;
1984]) that if R is a commutative algebra and g is a simple Lie algebra, both defined
over the complex numbers, then the universal central extension § of g ® R is the
vector space (g @ R) @ Q}e /dR, where Q2 }e /dR is the space of Kihler differentials
modulo exact forms (see [Kassel 1984]). The vector space g is made into a Lie
algebra by defining

x®fy®gl:=[xy]IQ fg+(x,y) fdg, [x®f w]=0

forx,yeg, f,geR, we Q}e/dR, where (—, —) denotes the Killing form on g.
Here a denotes the image of a € Q}Q in the quotient Q}Q /dR. A somewhat vague
but natural question is whether there exist free field or Wakimoto-type realizations
of these algebras. It is well known from the work of Wakimoto and of Feigin
and Frenkel what the answer is when R is the ring of Laurent polynomials in one
variable (see [Wakimoto 1986] and [Feigin and Frenkel 1990]). We find such a
realization in the setting where g = s((2, C), R = C[t, ' u|u?=1>+4¢], and g
is the three-point algebra.

In Kazhdan and Lusztig’s explicit study [1991; 1993] of the tensor structure of
modules for affine Lie algebras the ring of functions regular everywhere except at
a finite number of points appears naturally. This algebra Bremner gave the name
n-point algebra. In particular, in [Frenkel and Ben-Zvi 2001, Chapter 12], algebras
of the form €B}_; g((t — x;)) ® Cc appear in the description of the conformal blocks.
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These contain the n-point algebras g ® C[( — x)~ L L, (t—xn) '@ Ce modulo
part of the center Qg/dR. Bremner [1994a] explicitly described the universal
central extension of such an algebra.

Consider now the Riemann sphere C U {oo} with coordinate function s, and
fix three distinct points ay, az, a3 on this Riemann sphere. Let R denote the ring
of rational functions with poles only in the set {a;, a2, az}. It is known that the
automorphism group PGL,(C) of C(s) is simply 3-transitive, and R is a subring of
C(s) that is isomorphic to the ring of rational functions with poles at {00, 0, 1, a}.
Motivated by this isomorphism, one sets a = a4 and here the four-point ring is R =
R,=C[s,s™ ", (s—1)7!, (s—a)~'], where a € C\{0, 1}. Let S := S, =C[z, t ™", ul,
where u? = t> — 2bt + 1 with b a complex number not equal to &=1. Then Bremner
has shown us that R, = Sj. As the latter, being Z,-graded, is a cousin to super Lie
algebras, it is thus more immediately amendable to the theatrics of conformal field
theory. Moreover, Bremner has given an explicit description of the universal central
extension of g ® R in terms of ultraspherical (Gegenbauer) polynomials where R is
the four-point algebra (see [Bremner 1995]). In [Cox 2008] a realization was given
for the four-point algebra where the center acts nontrivially.

In his study of the elliptic affine Lie algebras s[(2, R) ® (2g/dR) where R =
Clx, x~ ', y| y*> =4x> — gox — g3], Bremner [1994b] has also explicitly described
the universal central extension of this algebra in terms of Pollaczek polynomials.
Essentially the same algebras appear in [Fialowski and Schlichenmaier 2007; 2005].
Together with Bueno and Futorny, the first author described free-field-type realiza-
tions of the elliptic Lie algebra where R = C[t, 1!, u | u?> =13 —2bt*> —t], b # +1
(see [Bueno et al. 2009]).

Below, we study the three-point algebra case where R denotes the ring of rational
functions with poles only in the set {aj, a2, az}. This algebra is isomorphic to
Cls, s~ ', (s — 1)~!]. Schlichenmaier [2003a] has a slightly different description of
the three-point algebra as C[(z> — a)*, z(z> —a®)* | k € Z], where a # 0. We show
that R = C[t, ¢, u| u? = 12 + 4¢], thus resembling S; above. Our main result,
Theorem 5.1, provides a natural free field realization in terms of a 8-y -system and
the oscillator algebra of the three-point affine Lie algebra when g = s[(2, C). Just as
in the case of intermediate Wakimoto modules defined in [Cox and Futorny 2006],
there are two different realizations depending on two different normal orderings.
Besides Bremner’s article mentioned above, other work on the universal central
extension of three-point algebras can be found in [Benkart and Terwilliger 2007].
Previous related work on highest-weight modules of s[(2, R) can be found in
[Jakobsen and Kac 1985].

The three-point algebra is perhaps the simplest nontrivial example of a Krichever—
Novikov algebra beyond an affine Kac—Moody algebra (see [Krichever and Novikov
1987a; 1987b; 1989]). A fair amount of interesting and fundamental work has
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been done by Krichever, Novikov, Schlichenmaier, and Sheinman on the represen-
tation theory of Krichever—Novikov algebras. In particular, Wess—Zumino—Witten—
Novikov theory and analogues of the Knizhnik—Zamolodchikov (KZ) equations are
developed for these algebras (see the survey article [Sheinman 2005], and, for exam-
ple, [Schlichenmaier and Sheinman 1996; 1999; Sheinman 2003; Schlichenmaier
2003a; 2003b]).

The initial motivation for the use of Wakimoto’s realization was to prove a conjec-
ture of Kac and Kazhdan on the characters of certain irreducible representations of
affine Kac—-Moody algebras at the critical level (see [Wakimoto 1986] and [Frenkel
2005]). Another motivation for constructing free field realizations is that they are
used to provide integral solutions to the KZ equations (see for example [Schechtman
and Varchenko 1990] and [Etingof et al. 1998] and their references). A third is that
they are used in determining the center of a certain completion of the enveloping
algebra of an affine Lie algebra at the critical level, which is an important ingredient
in the geometric Langland’s correspondence [Frenkel 2007]. Yet a fourth is that
free field realizations of an affine Lie algebra appear naturally in the context of the
generalized AKNS hierarchies [Feigin and Frenkel 1999].

2. The three-point ring

The three-point algebra has at least four incarnations.

Three-point algebras. Fix a nonzero a € C. Let

$:=Cls, s, s =D,

R:=Clt,t ", ulu?®=1>+41],

o=, =ClE* —aM)', 22 —a®) |k, j € 7.
Note that Bremner introduced the ring & and Schlichenmaier [2003a] introduced
A. Variants of &R were introduced by Bremner for elliptic and three-point algebras.

Proposition 2.1. (1) The rings % and & are isomorphic by t — s~ (s — 1)? and

Ml—)S—Sil.

(2) The rings R and A are isomorphic.
Proof. (1) Let f : Clt, u] — & be the ring homomorphism defined by f_ () =
sTis—1)2=5s—2+s"", fw)y=s—s""
We first check that

fa? =@+ =(—s")—(-2+s) —4s-2+5") =0

and f_ (t) = s~ (s — 1)? is invertible in &. Hence the map f descends to a well-
defined ring homomorphism f : ® — <. To show that it is onto, we essentially
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solve for s and s~! in terms of # and u. The inverse ring homomorphism of f is
¢ : S — R, given by
t+2+4+u

) =—>—, P =

t+2—u
7 .

In particular, ¢((s — D™ = ¢ 'u —1)/2.

For part (2), observe sl = C[z, (z —a)~", (z+a)~!], so, mapping z to 2as — a,
we get A = Cls, s~ (s = D~!]. Thus an isomorphism between & and R is
implemented by the assignment
t+2—u ~u—1

z—a) ' —. O

-1
t s s
z—>at+u), ((z+a) +— 1 1

The universal central extension of the current algebra g ® . Let R be a com-
mutative algebra defined over C. Consider the left R-module F = R ® R with left
action given by f(g®h) = fg®h for f, g, h € R, and let K be the submodule
generated by the elements | ® fg— f®g—g® f. Then Q}e = F/K is the module
of Kdhler differentials. The element f ® g+ K is traditionally denoted by fdg.
The canonical map d : R — Q}e isgiven by df =1® f + K. The exact differentials
are the elements of the subspace dR. The coset of fdg modulo dR is denoted by
fdg. As Kassel has shown, the universal central extension of the current algebra
g ® R, where g is a simple finite-dimensional Lie algebra defined over C, is the
vector space § = (g ® R) ® Q% /dR, with Lie bracket given by

x®fY®gl=[xyl® fg+(x,y)fdg, [x®f w]=0, [0 o]=0,

where x,y € g, w, 0 € Q}e/dR, and (x, y) denotes the Killing form on g.

There are at least four incarnations of the three-point algebras, three of which are
defined as g® R® Qg /dR where R =%, R, s given above. The fourth incarnation
appears in [Benkart and Terwilliger 2007] and is given in terms of the tetrahedron
algebra. We will only work with R = R.

Proposition 2.2 ([Bremner 1994a]; see also [Bremner 1995]). Let R be as above.
The set
{wo:=t"1dt, w; =t ludt}

is a basis of 525t JdR.

Proof. The proof follows almost exactly along the lines of [Bremner 1995] and
[Bremner 1994a]. We know by the Riemann—Roch theorem that the space Qg /dR
of Kihler differentials modulo exact forms on the sphere with three punctures has
dimension 2 (see [Bremner 1994a]). We have the following formulae:
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d(*) = ki* ' dz,
(2-1) d(t*u) = t* du + kt*'u dt,

_ k43
4k+6

(2-3) *ldr = %d(r") =0 mod d% for k # 0.

(2-2) t*udr = *udr  mod d®R,

By Equations (2-1), (2-2), and (2-3), we conclude that Qg /d?R is spanned by
{t=Vdt, t udt}. O

Corollary 2.3. In Q}e /dR, one has

(2-4) thdt! = —k5[’_k wq,
(2-5) thud(t'u) = (L + Dk, -2 + (4 +2)8k11,—1) o,
(2-6) *d(tlu) = k& _ 1.

Proof. Using (2-1) above, we obtain

*d(t'u) =1 wde 41 du)
=1y de + 1 du
=1 de — (+ k) de
= —kt'"* 1y dr
= —k84x.0t 'udt mod dR

in Qg /%.
Next we observe u du = $d(u?) = 1d(t*> + 4t) = (t +2) dt, so in Qg,

(2-7) *udu = ¢ 4+ 26%) dr.
By (2-7) and (2-3),
Fud(d'w) =tud\udt +t du)  in Qg

= (lt“’k_lu2 dt +t"+*y du)
— (ltl+k—1(t2 +4t) dt+(tl+k+1 +2tl+k) dt)
:l(tk+l+l +4tk+l) dt + (tl-i-k-i-l +2[l+k) d[)
=+ D" dr + @1+ 2)f5 dr
= (4 D8kss—2+ (AL +2)847 1)t~ dt  mod R.

This completes the proof of the corollary. (]
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Theorem 2.4. The universal central extension of the algebra s1(2, C) Q R is iso-
morphic to the Lie algebra with generators e,, e,lq, s n], hy, h,ll, nez,wy wi,
and relations given by

(2-8)  [xm, xnl:=[xm, x,ll] = [x,L, x,]l] =0 forx=e,f,

2-9)  [hm, hn] == —2mby —pwo = (n — M)y, —y wo,

(2-10) [hy. iyl :=2((1 + D8, —2 + (41 +2)8p 0,10
= (n—m)(mtn,—2 +48min,—1)w0,

Q-11) [y, b} = —2m8, 01,

(2-12) [wi, xp] :=lwi, w;j]=0 forx=e, f,handi, j € {0, 1}

(2-13) lem, ful :=hmen —mbp —nwo,

2-14) [em, f1:=hpy iy — M o1 =t [e},, fu],

(2-15) [ep. £11:= hurns2 + Shminsr + (0 + Dmgn,—2 + (A1 +2)8 10,1 )0
= Ringns2 + Yhmsnsr + 50— m) Spin,—2 + 48m4n,—1) w0,

(2-16) [hp, en] :=2em+n,

Q-17) [h, €] :=2e,, ., =: [hy,, em],

(2-18) [hy, €] = 2€m4n12 + 8emint1,

(2-19) [hm, ful = =2 fntn.

(2-20) [, f1:==2fprp =t [Apy. fnl.

2-21) [hy,, fi1:= =2 fmins2 = 8 fmint1,

forallm,neZ.

Proof. Let  denote the free Lie algebra with generators e,,, e,ll, ) nl, hy, h,ll, ne’z,
wyp, @1, and relations given above in (2-8) through (2-21). The map

¢:f— 5I2,C)RR) B (QLar/dR)
given by

pen) =e®@1t",  Ple,) =eQ@ut",

p(f0)=f&1", ¢(f)=f®ut",

P(hy):=h®t", $(hy)=h@ut",

P(wo)i=17Vdt,  ¢(w) =t"ludr,

for n € Z, is a surjective Lie algebra homomorphism.
Consider the subalgebras Sy = (e,, e\ |n € Z), Sy = (hn, h., wy, w1 |n € Z), and
S_={fu, fn1 |neZ),and set S =S_+ 5o+ S4+. By (2-8) through (2-12), we have
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Sy=) Cen+) Cep. S_=Y Cf,+Y Cf,.
neZ nez nez neZ
So=Y Chy+Y_ Ch,+Cawo+Co.

neZ nez

By (2-13) through (2-18), we see that

len, Sil=1[e), S,1=0, [h,, S;1SS,, [h),S,1CS,,
[fnr S+1C S0, [f), S:1S S0,

and similarly [x,, S_]1 =[x}, S_1C S, [x4, Sol = [x,}, So] C S for x = e, f, h. To
sum up, we observe that [x,, ST C S and [x,%, S]CSforneZ,x=h,e, f. Thus
[S, S]C S. Now, S contains the generators of f and is a subalgebra. Hence S = f.
Now it is clear that ¢ is a Lie algebra isomorphism. ([

3. A triangular decomposition of the three-point loop algebras g ® R

From now on we identify R, with & and set R = &, which has a basis t', t'u
fori € Z. Let p: R — R be the automorphism given by p(¢) =t and p(u) = —u.
Then one can decompose R = RO°®R', where RO =C[t*'] = {reR|p(r)=r}and
R'=C[tT lu={reR| p(r) = —r} are the eigenspaces of p. From now on, g will
denote a simple Lie algebra over C with triangular decomposition g=n_@®HPn,
and then the three-point loop algebra L(g) := g ® R has a corresponding Z/27-
grading: L(g)' :=g® R’ for i =0, 1. However, the degree of ¢ does not render
L(g) a Z-graded Lie algebra. This leads us to the following notion:

Suppose [ is an additive subgroup of the rational numbers Q and o is a C-algebra
such that d = €p,_; sd;, and that there exists a fixed / € N with

ﬂi-ﬁj C @ A
lk=(+ =l

iel

for all i, j € Z. Then « is said to be an [-quasigraded algebra. For nonzero x € i;,
one says that x is homogeneous of degree i and one writes degx = .
For example, R has the structure of a 1-quasigraded algebra, where I = %Z and
degt’ =i, degtiu=i+3.
A weak triangular decomposition of a Lie algebra [is a triple (9, [, o) satisfying
(1) b and [, are subalgebras of I,
(2) his abelian and [, [L] C 4,
(3) o is an antiautomorphism of [ of order 2 which is the identity on b, and
@ I=Lebeo(ly).
We will let o ([;) be denoted by [_.
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Theorem 3.1 [Bremner 1995, Theorem 2.1]. The three-point loop algebra L(g) is
a 1-quasigraded Lie algebra where deg(x ® f) = deg f for f homogeneous. Set
R, =C0 +u)®Cl[t,ult and R_ = p(Ry). Then L(g) has a weak triangular
decomposition given by

L@+=9®R:, #H:=HeC.

Formal distributions. We need some more notation that will simplify some of
the arguments later. This notation follows roughly [Kac 1998] and [Matsuo and
Nagatomo 1999]: The formal delta function §(z/w) is the formal distribution

S(Z/IU) :Z_l Zz—nwn — w—l Zznw—n‘
neZ neZ

For any sequence of elements {a,, };<z in the ring End(V), V a vector space, the

formal distribution
a(z) == Zamz_m_l
meZ
is called a field if for any v € V, a,,v =0 for m > 0. If a(z) is a field, then we set
(3-1) a@-=Y anz """ and a@y=) anz "
m=>0 m<0

The normal ordered product of two distributions a(z) and b(w) (and their coeffi-
cients) is defined by

(3-2) Z Z cambn 27" T = ta()b(w): =a(z)+b(w) +b(w)a(z)_.

meZ neZ

Now we should point out that while qal(zy) -+ a™(zy): is always defined as a
formal series, we will only define :a(z)b(z): := lim :a(z)b(w): for certain pairs
w—z
(a(z), b(w)).

Then one defines recursively

:al @)tz = a' @) (@ @) G d T @D @) )
while the normal ordered product
:a'(2) - d"(2): =ZI’Z2’1_i_r_gM:al(zn(:azm)(: id N gepd @) )
will only be defined for certain k-tuples (a', ..., ak).
Let
(3-3) lab] = a(z)b(w) — :a(2)b(w): = [a(z)-, b(w)],

(half of [a(z), b(w)]) denote the contraction of any two formal distributions a(z)
and b(w). Note that the variables z, w are usually suppressed in this notation when
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no confusion will arise.
1 1 _ i—-+ 1 ._
Form_z—i,zEZ+§andxeg,deﬁnexm+%_x®t 2u=ux, and x, :=xQt".

Motivated by conformal field theory, we set
D DNE L NIEE) P
meZ meZ

Then the relations in Theorem 2.4 can be rewritten as

G4 [x(), yw)] =[x, yIw)8(z/w) — (x, Y)wodwd(z/w),
(3-5) [x'(@), y' )] = P([x, yl(w)d(z/w) — (x, y)wodwd (z/w))

— 5(x, )@ P)wod (z/w),
(3-6)  [x(2). y' (W)l =[x, yI' W)d(z/w) — (x, Y)w19,8 (z/w) = [x' (2), yw)],

where x, y € {e, f, h}.

4. Oscillator algebras

The B-y system. In the physics literature, the following construction is often called
the 8-y system, which corresponds to our a and a* below Let a be the infinite-
dimensional oscillator algebra with generators a,,, a* al,al* nez together with 1,

n’ n’ I’l ’
satisfying the relations
[an, am] = [am, a)] = [am, al*] = [a, a;;;] =[a’, a)1=1[a} a'*1=0,
lal,al1=1al* a*1=0= [a, 1],
[an, am] = 8mqn0l = [an7 m 1.

For ¢ = a, a', and respectively X = x, x!, with r =0 or r = 1, we define C[x] :=
(an,x |n € Z]and p, : a — gl(C[x]) by

9/0X,, if m>0andr =0,
4-1 i=
-1 Pr{em) {X m otherwise,

X_ ifm <0, and r =0,
4-2) pr(cy) = " .

—d/0X_,, otherwise,

and p, (1) = 1. These two representations can be constructed using induction: For
r = 0, the representation py is the a-module generated by 1 =: |0), where

anl0) =al|0)=0form >0 and a|0) =a,}1*|0) =0form > 0.
For r = 1, the representation p; is the a-module generated by 1 =: |0), where

a*)0) =a'*|0y =0 form € Z.
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If we define

(4-3) a(z) = Zan["*l, a*(2) = Za:z*”
neZ neZ

and

(4-4) al(z) = Za,ll["*l, a*(z) = Za}l*z’",
nez nez

then

[2(2), a(w)] = [ (2), &* ()] = [a' (2), &' (w)] = [0 (2), &« (w)] = 0,
[2(2), o*(w)] = [ (2), & (w)] = 18 (z/w).
Note that p;((z)) and p;(a!(z)) are not fields, whereas p, (¢*(z)) and p, (a'*(z2))
are always fields. Corresponding to these two representations there are two possible

normal orderings: For r = 0 we use the usual normal ordering given by (3-1) and
for r = 1 we define the natural normal ordering to be

a(z)y =a(z), a(z)- =0,
'@y =a'(2), a'(z)-=0,
a*(z)+ =0, o (z)- =a*(2),

a(2); =0, a*(2)_ = a(2).

This means in particular that for r = 0 we get

(4-5) lea*] = (@), &* ()] =Y Sminoz " w "

m>0

=5 (z/w) = Lz’w<z+)7

w

(4-6) LO[*OlJ = - Z 8m+n,05_mw_n_l = —8+(w/z) = LZ»w(w1_Z>’

m>1

(where (; ,, denotes Taylor series expansion in the “region” |z| > |w|), and, for
r=1,

(4-7) lae™| =[a(2)-, " (w)] =0,
(4-8) lofa] =[a* (@), a)] == > Sninoz "w ™" =—8(w/2),

m,neZ

while similar results hold for ' (z). Notice that in both cases we have

lo(2), " (w)] = le(@)e™ (W) | — [ (w)a(2) | =8(z/w).

Recall that the singular part of the operator product expansion
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N—-1

1 .
lab] = Z Lz,w(m)cj (w)

j=0
completely determines the bracket of mutually local formal distributions a(z) and
b(w). (See Theorem A.3 of the appendix). One writes

N-1

a(z)b(w) ~ Z

j=0

¢/ (w)
(z —w)/tl’

The three-point Heisenberg algebra. The Cartan subalgebra b tensored with R
generates a subalgebra of § which is an extension of an oscillator algebra. This
extension motivates the following definition: The Lie algebra with generators
bm,bl,m e 7,1y, 1, and relations

4-9) (b, byl = (n —m) 840,010 = —2m 800 Lo,
(4-10) (b, by] = (0 — M) Spsn,—2 + 48m4n.—1) 1o

= 2((n+ D)8pin,—2+ (41 +2)8min 1) 1o,
“4-11) [b}n,bn] =m—m)by,—nl1 = —2mé, _,11,
(4-12) (b, 101 = [b),, 1] = [, 1] = [b,,, 1;] = 0.

We will give it the appellation the three-point (affine) Heisenberg algebra, and
denote it by 3.
If we introduce the formal distributions

@13)  B@i=) bz B@=) b =) bz
nez neZ nez

(where b, 1= b,ll), then, using calculations done earlier for the three-point Lie
algebra, we can see that the relations above can be rewritten in the form

[B(2), B(w)] =2103,8(z/w) = —28,,6(z/w)1y,
[8'(2), B' (w)] = —2((w? + 4w) 3,8 (z/w) + (2 + w)8(z/w) )10,
[8' (@), B(w)] =29,8(z/w)1; = —23,,8(z/w)1;.

Set
by =) (Cb,+Cbh)), HY:=Cly®Cl, & Chy& Ch.

nz0

We introduce a Borel-type subalgebra
b3 = 6; 52 6(3)

From the defining relations above, one can see that b3 is a subalgebra.
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Lemma 4.1. Let V' = Cvg & Cv; be a two-dimensional representation of 6; with
63+v,- =0fori=0,1. Suppose \, u, v, x, x1, ko € C are such that

bovy = Ay, bovy = Avy,
b(l,vo = uvg + vvy, b(l)vl = XV + uvq,

111),‘:)(11),‘, loviIKov,‘ fOl’iIO,l.

Then the above equations define a representation of 63 onV.

Proof. Since b,, acts by scalar multiplication for m, n > 0, the first defining relation
(4-9) is satisfied for m, n > 0. The second relation (4-10) is also satisfied as the
right-hand side is zero if m,n > 0. If n = 0, then since by acts by a scalar, the
relation (4-11) leads to no condition on A, 1, v, %, X1, ko € bg. If m>0andn >0,
the third relation doesn’t give us a condition on x| as

0=">b! b,v; —b,blv; =[], b,Jv; = =28, _.mx1v; =0.
If m = n =0, the third relation however becomes
0 = Abyv; — byAv; = bibov; — bobjv; = [b, bolv; = =2 - 0x1v; =0,

so there is no condition on ;. O

Let Bé denote the linear transformation on V" that agrees with the action of
b(l). If we define the notion of a 63-submodule as is done in [Sheinman 1995,
Definition 1.2], then V" above is an irreducible 63—m0dule when »xv # 0, that is,
when det B} # °. If one induces from ', the resulting representation for the three-
point affine algebra cannot be irreducible if " is not irreducible as a quasigraded
module itself.

Let C[y] := Cly_,, y.,, |m, n € N*]. The following is a straightforward com-
putation:

Lemma 4.2. The linear map p : 63 — End(Cly] ® V') defined by

4-14) p(bn) = yu forn <0,
(4-15) p(by) =y, +8n-19,1 X0 = 8n,—33y1 X0 forn <0,
(4-16) p(b,) = —n(20,_,x0 +28ylnX1) forn >0,
4-17) ,o(b,i) =—2ndy_, x1+ 2(n+2)8y1_n_4)(0 — 4c(n+l)8y1_n_2)(0 + 2n8yln X0
forn >0,

(4-18) p(bo) = 1.
(4-19) p(by) =431 x0 —2cd,1 X0+ By,

is a representation of bs.
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5. Two realizations of the affine three-point algebra g

Assume that xo € C, and define ¥ as in Lemma 4.1. The «(z), ! (z), @*(z), and
a'*(z) are generating series of oscillator algebra elements as in (4-3) and (4-4).
Our main result is the following:

Theorem 5.1. Fix r € {0, 1}, which then fixes the corresponding normal ordering
convention defined in the previous section. Set § = (s(2, C) @ R) & Cwy ® Cwy.
Then, using (4-1), (4-2) and Lemma 4.2, the following defines a representation of
the three-point algebra § on C[x] Q C[y] ® V-

T(w1) =0, T(wo) = X0 = ko + 43,0,
7(f(2)) = —a(2), t(f' () =—a'(2),
T(h(2)) =2Ca(@)e*(@): + @' @a*(2):) + B,
t(h'(2)) =2Cal @)a*(2): + (2 +42):a(@a'*(2):) + BL(z),
T(e(2)) =:a(2)(@*(2))*: + (2> +42):a(2) (@ (2)*: +2:a' ()" (D) (2):
+B@e* (@) + B (@) (2) + xo0de* (2),
(' (2)) = o' (@a*(D)a*(2) + I +42) (' () (@ (2)* +2:a(R)a* (D) (2)1)
+B1 (2 +(2+42) B(D)a* (2)+x0 (22 +42) 0.0 () + (2 +2)a ¥ (2)).

Before we go through the proof, it will be fruitful to review Kac’s A-notation
(see [Kac 1998, Section 2.2] and [Wakimoto 2001] for some of its properties), used
in operator product expansions. If a(z) and b(w) are formal distributions, then

o0

[a(2), bw)] =)

j=0

(agjb)(w)
(Z _ w)j-H

is transformed under the formal Fourier transform
sz’wa(z, w) = Res, " a(z, w)
into the sum
o .
A
[ab] = A
j=0
Set
P(w) = w? +4w.

So for example we have the following:
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Lemma 5.2. Given the definitions in the previous section, we have

(D [BL 8= —QW? +4w)r + Quw +4))ko = —(2PA + 3 P)xo,
2) [raa™:) aa™:]= =604,
(3) La(a®)?:; ta(a*)?:] = —48,0:a*da*: — 48,01 (a*)?: M.

Note that similar expressions hold for o' (z) and &'*(z) (the A-notation suppresses
the variables z and w, which are understood).

Proof. We’ll prove (2) and (3). By Wick’s theorem,

(D)o () a(w)a®(w):
= (" (Qa(w)a™(w): + [a(z), a™(w) ] :a(w)a™(2):
+ o (2), a(w) | ra()a™(w): + [a(z), a*(w) | la*(2), a(w) ]

= (e (W) @e W) + o (w)a* () :Lz,w(z%u)

1 1 \2
+ ra (D)o (w) ity (—) —80lz.w <—)
w—z 7—w

and
[a()a* ()%, a(w)a* (w)?:]
=2:a(2)a* (D)ot (w)?:8(z/w) — 2:a(w)a*(2) a* (w) :8(z/w)
— 48,00 () (w) 0,8 (z/w)
= —48,0:0"(2) 0y (@ (w):8(z/w)) +48,0:0" (2) D™ (w) :8(z/w)
= —48,.0: 0y (@ (w)a™(w):8(z/w)) + 48, 0:a™ (W)™ (w):8(z/w)
= —48,.0: 00" (W)™ (w):8(z/w) — 48, 0: 0 (W)™ (w): 9,8 (z/w). O

Proof of Theorem 5.1. We need to check the following table is preserved under t:

(-1 ] fw) flw) hw) A'(w) e(w) e'(w)
f @ 0 0 * * * *
() 0 * * *
h(z) * * *
h'(2) * * *
e(2) 0 0
e'(z) 0

Here, * indicates nonzero formal distributions that are obtained from the defining
relations (3-4), (3-5), and (3-6). The proof is carried out using Wick’s theorem,
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Taylor’s theorem, and Lemma 5.2, as one can see below:

[L(r(HI=0, [t(Mr(fHI=0, [c(fe(fHI=0,
[T(Hat ()] = [, 2aa* +a'a'™) + B)] = =20 = 27(f),
[t(/arh)] = —[e,Q'a* + Paa'™) + 1] = —2a' =27(f),
[T(fat(e)] = —[osGala®)?: + Pra(a'™)?:
+2:alata: 4 ot + Bla* + xoda®)]
=2(aa’: +:a'a'™:) = B — xor = —1(h) — x0h,
[t(frtle)] = —[an(e' (@) + Pa' (@) +2:aa*a'*:)
+Bla* + PBa' + xo(Pda™ + J0 Pa'™))]
= 20¢ale*: + Paa) = Bl = —z(hY),
[t(fr)] = —lo;Caa*: +:a'a™:) + B)] = 2o =22(f1),
[t(fDrh)] = —[o) QCa'a*: 4+ Praa'™:) + )] = —2Pa’ =2P7(f),
[z(fHat(e)] = —[a) Ga(@®)?: 4+ P:a(a!™)*:
+2:at ool + Bat + Bla'* + x00a™)]
=—QP:aa™: +2:a'a*: + g = -1,
[r(fDat(e)] = —[o)(@' (@) + P(a' (@) +2:aa*a'™:)
+Bla* + PBa' + xo(Pda"™ + L(@P)a'™))]
=—(PQCa'a"™: + :aa®:) + B+ xoh) + 300 P)
= —(Pt(h)+ Pxoh+ x030P).
Note that :a(z)b(z): and :b(z)a(z): are usually not equal, but sl (e (w): =
ca(w)a' (w): and o(w)a*(w): = :o*(w)a(w):. Thus, we calculate
[t(h),t ()] =[QRGaa™: + :a'a™:) + ), 2Caa™: + :a'a'™:) + B)]
=4(—:aa*: + afa: —ala 4 e ol ) — 88,04+ [B1B]
= —2(48,.0 + ko)A,
which can be put into the form of (3-4):
[t (h(2)), T(h(w))] = —2(43,0 + Kk0)wd (z/w)
= —2x00w8(z/w) = T(—2wpdy,d(z/w)).

Next, we calculate

[t(h),t(hH] = 4((:0[*0(1: ol )+ P(—aa: + :al*(x:)) +[B:.8'1.
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Since [a, ay] = [a,, a1 = 0, we have [z(h(2)), T(h' (w))] = [B(2), B! (w)] =0
As t(w1) =0, relation (3-6) is satisfied.
We continue with

[t(hY)t (WD = [QGa'a*: + Piaa™ ) + B, 2Ca a*: + Praa™:) + )]
= —88, 0P — 48,09 P — 2k0(PA+ 33 P),
yielding the relation

[2(h' (2)), T(h' (W))] = =2(48,0 + K0) (W* +4w)8,, 3 (z/w) + (w +2))8 (z/w))
= 17(=(h, h)wo P, (z/w) — %(h, h)d Pwod(z/w)).
Next we calculate the 4 paired with the e:
[t(it@] = [QCaa™: +:a'a':) + ),
Cale™?: + Pa@™)?: +2:a'a*a: + Ba* + Bla'™ + x09a™)]
— dia(a)?: — 2:a(a*)?: — 48, 00" A
—2P:a(a™)?: +4:aala: 4 20 ,3+2Xoa*)»+2)(08a
+4P a(a'™)?: — 48, 0o 1+ 28 — 20a*k
=21(e)
and
[t(h")t(@)] =2:a' (@) +2P:a' (@) +4P:aa*a™
+28(z/w)a*B +2PBa* + 2P xoda* +dPa'* xo
=27(e")
Similarly, [z (h),t(e')] =2t(e!) and [t (h!),T(e!)] =21 (e").
We prove the Serre relation for just one of the relations, [t (e), T (e")]; the proof
of the others, [t (e);7(e)] and [t (e!); (e")], is similar, as the reader can verify.
After expanding the definitions and collecting terms, we have
[7(e)rz(eh)]
=[a(e®)?:Cal (@) +2P:ac*a': + Bla™)]
+Pra@)?nCal @) + PG (@) + 21 a™:) + Bla")]
+[2:el o e (@ (@) + PGal (@) +2:aat e’ ) + PRa ™
+ xo((w? +4w)da™ + (w +2)a')) ]
+[Ba* QP aa*a: + Bla* + PBa'™)]
F[Bla", ol (@) + Pal@™)? + Bla* + PBat)]
+ [x0da*, 2P :aa*a'*:)]
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=2:a'a* (@) + 2P (@) e — 4P a(a*) e — 48, 0Pt A
—48,0P: 0" 4+ Bl(a*)? —2P:a(a®) e +2Pa a* ('*)?
— 48, 0P:a a* h — 48,00 P o a*: — 48, 0P o ot
—2P%: (@™’ + 2P a(a'): 4+ PB (@')?

—2:ala* (@) + 4P« e (@) = 2P0t a* (@)

— 48, 0P a*a A — 48, 0P: 3 ()

+4P (@)’ — 4P o a* (a')?:

— 48, 0P a*a:h — 45,0P'a*8o{1*:+2P,3'a*a1*
+2x0(P:da*a'™: + Pia*da'™: + Pra*a™ A+ S(3P):aa'™:)
—2PBa*a'* — 2kgPa*a A — 2k PO * '

— Bl @®)? = PB (@) — ko@QPa* oA+ 2Pa*da" + d Pa*a')
+2x0Pofa* A

= —48, 0P :a*a A — 45,0 P3N + 1 (2:a%da*: 4 (@) :0)
— 48, 0P a a* h — 48,00 P ot — 45, 0P da ot
— 48, 0P oA — 45,0 P: 8(a Nal*: — 48, 0P :afa* A — 48, 0P :a*dal*:
+2x0(P:da*a™: 4+ Pia*da™: + Pra*a™: A+ S(OP):a*a'™:)
—koPa*a A — kP
—koQPa*a A +2Pa*da" + dPa*a'®)
—2x0Pa*a'*a

=0. ]

6. Further comments

We plan to use the above construction to help elucidate the structure of these
representations of a three-point algebra, describe the space of their intertwining
operators, and eventually describe the center of a certain completion of the universal
enveloping algebra for the three-point algebra.

Appendix

For the convenience of the reader we include the following results, which are useful
for performing the computations necessary for proving our results:

Theorem A.1 (Wick’s theorem [Bogoliubov and Shirkov 1980; Huang 1998; Kac
1998)). Let a'(z) and b’ (z) be formal distributions with coefficients in the associa-
tive algebra End(C[x] ® Cly])), satisfying:

(1) [la' (@b (w)], () £]=[la’b’ |, F(x)+]1=0foralli, j, k and c*(x) =a*(z)
or c*(x) = bF(w).
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() [@'(2)+, b/ (w)+]1 =0foralli and j.
(3) The products

la" b/ ] - @b’ | ra'(2) - --a ()b (w) - BN (W) 1y i)

have coefficients in End(C[x]Q C[y]) for all subsets {iy, ...,i;} C{1,..., M},
{ji,..., js} € {l,---N}. Here, the subscript (i1, ...,i; ji,.-.., js) means
that those factors a'(z), b’ (w) with indices i € {i1, ..., is}, j € {j1, ..., js}
are to be omitted from the product :a' - --aMb' - .- bN :, and when s = 0 we
do not omit any factors.

Then

ca'(R)---a" (@) b (w) - BV (w) :
min(M,N)
= Z Z @b/ ] - labbP | al(z) - - - a™ ()b (w) - - - BN (w) i yeomsds: 1o ) -

s=0 ij<--<iy

I

Theorem A.2 (Taylor’s theorem [Kac 1998, Theorem 2.4.3]). Let a(z) be a formal
distribution. Then, in the region |z — w| < |w|,

o
(A-1) a(z)=y_ P aw)(z—w).

j=0
Theorem A.3 [Kac 1998, Theorem 2.3.2]. Set C[x]=C|x,, x |neZ]and Cly] =
Clym, L |m € N*1. Let a(z) and b(z) be formal distributions with coefficients in

the associative algebra End(C[x] ® Cly]), where we are using the usual normal
ordering. The following are equivalent:
N-1
(i) laz). bw)] =Y 858(z — w)c/ (w),
j=0
where ¢/ (w) € End(C[x] ® @[ Dlw, w=].

(i) lab] = ZLZ w( YRR >cf(w).
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