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The main goal of this paper is to construct an algebraic analogue of quasi-
plurisubharmonic function (qpsh for short) from complex analysis and ge-
ometry. We define a notion of qpsh function on a valuation space associated
to a quite general scheme. We then define the multiplier ideals of these
functions and prove some basic results about them, such as subadditivity
property, the approximation theorem. We also treat some applications in
complex algebraic geometry.

1. Introduction

Given a line bundle L on a smooth projective complex variety, a classical theorem
of Kodaira asserts that if L carries on a smooth metric with positive curvature, then
L is ample; equivalently, the global sections of a multiple of L give an embedding
to a projective space and hence induce such a metric on L . More generally, global
sections of a multiple of L induce a semipositive singular metric. Conversely,
given a semipositive singular metric h, the local weight function ϕ, which is
plurisubharmonic (psh for short), should be related to sections of multiples of L , or
perhaps of a small perturbation of L . See [Lehmann 2011] for more details.

On the other hand, if we work locally near the origin of Cn , then Section 5 of
[Boucksom et al. 2008] shows that we can transform a psh germ ϕ to a formal
psh function ϕ̂ on quasimonomial valuations centred at the origin. This valuative
transform usually loses much information on the original psh function, however, it
preserves the information on the singularity of ϕ. In particular, they give the same
multiplier ideals which essentially means that they characterize the same singularity
because of the Demailly’s approximation. The idea of studying psh functions using
valuations was systematically developed in the work just cited and its predecessors
[Favre and Jonsson 2004; 2005a; 2005b]. The main purpose of this paper is to
define a similar notion of qpsh functions on a separated, regular, connected and
excellent schemes over Q, and we then study these functions.

Although we don’t discuss Berkovich spaces in this paper, our work should
be related to the qpsh functions (or metrics on line bundles) on the Berkovich
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space associated to a smooth projective variety over a trivially valued field. See
[Boucksom et al. 2012b; 2012c].

Let us briefly introduce some terminology. Roughly speaking, we consider a
function ϕ on divisorial valuations on a scheme X such that ϕ(t ordE)= tϕ(ordE)

and supE |ϕ(ordE)|/A(ordE) <+∞, where E runs over all prime divisors over X .
We prove that such functions form a Banach space BH(X) if we equip it with
the norm ‖ϕ‖ = supE |ϕ(ordE)|/A(ordE) (see Proposition 3.2). By convention we
set log |a|(ordE) = − ordE(a) for a nonzero coherent ideal sheaf a, and one can
easily check that log |a| is a valuative function in BH(X). We define the set of qpsh
functions QPSH(X) to be the closed convex cone generated by functions of the
form log |a|. We then define the multiplier ideal J(ϕ) of a qpsh function ϕ to be the
largest ideal a such that supE(− ordE(a)−ϕ(ordE))/A(ordE) < 1. This definition
is reasonable because of Proposition 4.3 and Corollary 4.14.

Our first main result is that a qpsh function is a decreasing limit of a sequence
of qpsh functions of the form ck log |bk |. In complex analysis and geometry, such
a regularization is crucial. See [Demailly 1992; 1993]. Moreover, we prove that
we can actually choose bk = J(kϕ) satisfying the subadditivity property. See
Proposition 4.22(1). Readers can compare this result with [Demailly et al. 2000].

Theorem 1.1 (cf. Theorem 4.24). Let ϕ be a bounded homogeneous function. Then
ϕ is qpsh if and only if ϕ is the limit function, in norm, of a decreasing sequence of
qpsh functions of the form ck log |bk |. Furthermore, we can choose ck = 1/k and
bk = J(kϕ) which form a subadditive sequence of ideals.

Given an ideal a on a scheme X , the log canonical threshold lct(a) is a fundamen-
tal invariant both in singularity theory and birational geometry (see [Lazarsfeld 2004;
Kollár and Mori 1998], etc.). The log canonical threshold admits the following
description in terms of valuations:

lct(a)= inf
E

A(ordE)

ordE(a)
,

where E runs over all prime divisors over X and A(ordE)= ordE(KY/X )+ 1. In
fact in the above formulae one can take the infimum over all real valuations centred
on X . It is well-known that if Y is a log resolution of a, then there exists some
prime divisor E on Y such that ordE computes the log canonical threshold, that
is, lct(a) = A(ordE)/ordE(a). Given a qpsh function ϕ, we can define the log
canonical threshold lct(ϕ) as the limit of 1/ck lct(ak), where ck log |ak | converges
to ϕ strongly in norm. We show that

lct(ϕ)= inf
E

A(ordE)

−ϕ(ordE)
.
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Unfortunately, there might be no divisorial valuation that computes the log canonical
threshold in general. However, we can prove that there exists a real valuation that
computes the log canonical threshold. This has been heavily studied in [Jonsson
and Mustat,ă 2012; 2014] and other references. Conjecture B of [Jonsson and
Mustat,ă 2012] suggests that a valuation that computes the norm is quasimonomial
(see Conjecture 5.9). Equivalently we consider the reciprocal of the log canonical
threshold, which is exactly the norm of ϕ by definition. More generally, for a
nonzero ideal q we consider ‖ϕ‖q := supE(−ϕ(ordE)/(A(ordE)+ ordE(q)), and
we prove that there exists a real valuation that computes this norm. The proof in
this paper mainly follows the strategy of [Jonsson and Mustat,ă 2012]. A similar
result appears in [Jonsson and Mustat,ă 2014].

Theorem 1.2 (Theorem 5.2). Let ϕ ∈ QPSH(X) be a qpsh function and let q be
a nonzero ideal on X. Then there exists a nontrivial tempered valuation v that
computes ‖ϕ‖q.

If X is a complex projective variety, then we can provide QPSH(X) with more
structures. Namely, given a Q-line bundle L on X , we say that the function λ log |a|
is L-psh if λ is a nonnegative rational number and L ⊗ aλ is semi-ample. We can
then define PSH(L) ⊆ QPSH(X) as the closure of the set of such functions. We
also define the set of pseudo L-psh functions as PSHσ (L) :=

⋂
ε>0 PSH(L + εA),

where A is an ample line bundle. See the section on D-psh functions (page 118)
for more details.

In this setting, we show that there exists the maximal L-psh function ϕ that
can be written explicitly as ϕ(v) = −v(‖L‖), and that there exists the maximal
pseudo L-psh function φ that can be written explicitly as φ(v)=−σv(‖L‖) (see
Propositions 6.10 and 6.11). As an immediate corollary we generalize Theorem 6.14
of [Lehmann 2011] as follows (see that paper for the definitions of the perturbed
ideal and the diminished ideal).

Theorem 1.3 (Theorem 6.16). Let D be a pseudo-effective divisor. Assume that
φmax is the maximal pseudo D-psh function. Then the perturbed ideal and the
diminished ideal are Jσ,−(D)= J−(φmax) and Jσ (D)= J(φmax), respectively. In
particular, we can write Jσ (D) explicitly as

0(U,Jσ (L))= { f ∈ 0(U,OX ) | v( f )+ A(v)− σv(‖L‖) > 0 for all v ∈ V∗U }.

Further, a nonzero ideal q⊆ Jσ (‖L‖) if and only if v(q)+ A(v)−σv(‖L‖) > 0 for
all v ∈ V∗X .

In the last subsection of this paper, we prove the finite generation of a divisorial
module as another application. The proposition below can also be obtained using
minimal model theory (see Remark 6.21). Note that our proof here avoids using
“the length of extremal rays” (see [Birkar and Hu 2012]).
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Proposition 1.4 (Proposition 6.18). Let (X, B) be a log canonical pair. Assume that
K X+B is Q-Cartier and abundant, and that R(K X+B) is finitely generated. Then,
if F is any reflexive sheaf , M p

F(K X + B) is a finitely generated R(K X + B)-module.

This proposition can be slightly generalized (see Proposition 6.24).

2. Valuation spaces

Throughout this paper, all schemes are assumed to be separated, regular, connected
and excellent schemes over Q. All rings are assumed to be integral, regular and
excellent rings containing Q. An ideal on a scheme means a coherent ideal sheaf on
a scheme. A birational model of a scheme is a model birational to and proper over
this scheme, and a divisor over a scheme is a divisor on a birational model of the
scheme. For definitions and properties of valuations, multiplier ideals, singularities
in birational geometry, etc., see [Kollár and Mori 1998; Lazarsfeld 2004; Jonsson
and Mustat,ă 2012]. From now on we abbreviate this last reference as [JM12].

Real valuations. Let X be a scheme, and let K (X) be its function field. A real
valuation v is a function v : K (X)∗ → R such that v( f g) = v( f ) + v(g) and
v( f + g)≥min{v( f ), v(g)}. By convention we set v(0) := +∞. Let

Ov := { f | v( f )≥ 0}

be its valuation ring. If there exists a point ξ ∈ X such that the morphism OX,ξ ↪→Ov
is a local homomorphism, then ξ is called the centre of v on X and denoted by
cX (v). Note that ξ is unique since X is separated, and also note that the centre
always exists provided that X is complete. A real valuation with centred on X is
called a real valuation on X or simply a valuation on X , and we denote by ValX the
set of valuations on X . The set of valuations ValX is independent of the choice of a
birational model of X . More precisely, if Y → X is a proper birational morphism
of schemes, then ValX =ValY . A valuation v on X is said to be the trivial valuation
if its centre cX (v) is the generic point of X . We denote by Val∗X ⊆ ValX the set of
nontrivial valuations on X .

The set ValX can be equipped with an induced topology defined by the maps
v→ v( f ) for all rational functions f ∈ K (X)∗. For every nonzero ideal a, we have
that v(a) is well defined and v(a)= v(a), where a denotes the integral closure of a.
Note that the topology on ValX defined by pointwise convergence on ideals on X is
equivalent to that on functions in K (X). Readers can consult [JM12, Section 1] for
more details.

In this topology, the map cX : ValX → X is anti-continuous. That is, the inverse
image of an open subset is closed. More precisely, if U ⊆ X is an open subset and
m is the defining ideal of X \U , then ValU = {v ∈ ValX | v(m) = 0} and ValU is
closed in ValX .
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For two valuations v, w on X , we say that v ≤ w if v(a) ≤ w(a) for every
nonzero ideal a. This is equivalent to that the centre η := cX (w) ∈ cX (v) and that
v( f )≤ w( f ) for every nonzero local function f ∈ OX,η.

Quasimonomial valuations. Let X be a scheme, let ξ ∈ X be a point, and let
x = (x1, . . . , xr ) be a regular system of parameters at ξ . If f ∈ OX,ξ is a local
regular function, then f can be expressed as f =

∑
β cβxβ in ÔX,ξ with each

coefficient cβ either zero or a unit. For each α = (α1, . . . , αr ) ∈ Rr
≥0, we define a

real valuation by valξ,α( f )=min{〈α, β〉 | cβ 6= 0}, where 〈α, β〉 :=
∑

i αiβ
i , which

is called a monomial valuation on X .
A pair (Y, D) is called log smooth if Y is a scheme and D is a reduced divisor

whose components are regular subschemes intersecting each other transversally. A
pair (Y, D) is called a log resolution of X if there is a birational projective morphism
π : Y→ X and (Y, D+KY/X ) is log smooth. Let (Y ′, D′) be another log resolution
of X , we say (Y ′, D′) � (Y, D) if Y ′ is projective over Y and the support of D′

contains the support of the pullback of D. Note that log resolutions of X form an
inverse system.

Let (Y, D) be a log resolution of X , and let η be the generic point of an irreducible
component of the intersection of some prime components of D. We denote by
QMη(Y, D) the set of real valuations which can be defined as a monomial valuation
at η. Note that η ∈ cX (v) and QMη(Y, D) ∼= Rr

≥0 as topological spaces. We also
define

QM(Y, D)=
⋃
η QMη(Y, D),

where η runs over every generic point of some component of the intersection of
some prime components of D. A real valuation v is said to be quasimonomial if
there exists a log resolution (Y, D) such that v ∈ QM(Y, D).

Remark 2.1. Let0v=v(K (X)∗)⊆R be the value group of v. Denote by ratrk(v)=
dimQ(0v ⊗Z Q) the rational rank of v, and let kv, k(ξ) be the residue fields of Ov,
OX,ξ respectively, where ξ = cX (v). If we let trdegX (v) = trdeg(kv/k(ξ)) be the
transcendental degree of v over X , we have Abhyankar’s inequality ratrk(v)+
trdegX (v)≤ dim(OX,ξ ). Quasimonomial valuations are exactly the ones that give
equality in the Abhyankar’s inequality; see [JM12, Proposition 3.7].

Let v ∈ ValX be a quasimonomial valuation. A log smooth pair (Y, D) is said
to be adapted to v if v ∈ QM(Y, D). We say (Y, D) is a good pair adapted to v if
{v(Di ) | v(Di ) > 0} are rationally independent.

Lemma 2.2 [JM12, Lemma 3.6]. Let v ∈ ValX be a quasimonomial valuation.
There exists a good pair (Y, D) adapted to v. If (Y ′, D′)� (Y, D) and (Y, D) is a
good pair adapted to v, then (Y ′, D′) is also a good pair adapted to v.
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An important class of valuations are divisorial valuations. A valuation is called
divisorial if it is positively proportional to ordE for some prime divisor E over X ,
where ordE is the vanishing order along E . One easily verifies that the trivial
valuation is quasimonomial of rational rank zero, and a divisorial valuation is
quasimonomial of rational rank one. Let (Y, D) be a log smooth pair adapted to v.
It can be verified that v is divisorial if and only if R≥0[v] ⊆QMη(Y, D)∼= Rr

≥0 is a
rational ray, that is, R≥0[v] contains some rational point in Rr

≥0.
For every log resolution (Y, D) we can define the retraction map

rY,D : ValX → QM(Y, D)

by taking v to a quasimonomial valuation in QM(Y, D) with rY,D(v)(Di )= v(Di ).
Note that rY,D is continuous and that v ≥ rY,D(v) with equality if and only if
v ∈ QM(Y, D). Furthermore, if (Y ′, D′) � (Y, D) is another resolution, then the
retraction map rY,D : QM(Y ′, D′)→ QM(Y, D) (by abuse of notation if without
confusion) is a surjective mapping that is integral linear on every QMη′(Y ′, D′) and
we have that rY,D ◦ rY ′,D′ = rY,D . Therefore we can naturally regard QM(Y, D) as
a subset of QM(Y ′, D′), and hence of the set of quasimonomial valuations on X .
Also note that v(a) ≥ rY,D(v)(a) for an ideal a on X , with equality if (Y, D) is a
log resolution of a; see [Lazarsfeld 2004] and [JM12, Corollary 4.8].

Tempered valuations. We first introduce the log discrepancy on an arbitrary scheme.
Let π : Y → X be a birational proper morphism. The 0-th Fitting ideal Fitt0(�Y/X )

is a locally principal ideal with its corresponding effective divisor denoted by KY/X ;
see [JM12, Section 1.3]. For a quasimonomial valuation v ∈ QM(Y, D), we define
the log discrepancy

AX (v)=
∑

v(Di ) · AX (ordDi )=
∑

v(Di ) · (1+ ordDi (KY/X )).

We simply denote this by A when the scheme X is obvious. Note that A is
strictly positive linear on every QMη(Y, D), and in particular continuous on every
QMη(Y, D) (or is weakly continuous according to Definition 3.4). Also note that if
(Y ′, D′)� (Y, D) and v ∈ QM(Y ′, D′), then A(v)≥ A(rY,D(v)) and equality holds
only when v ∈ QM(Y, D). For an arbitrary valuation v ∈ ValX , we define

A(v)= sup
(Y,D)

A(rY,D(v)) ∈ [0,+∞].

Note that A is lower-semicontinuous (lsc) as a valuative function.

Definition 2.3. A valuation v is said to be tempered if A(v) <∞. The valuation
space VX of X is defined to be the space of tempered valuations as a subspace of
ValX .
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We similarly denote by V∗X the subset of nontrivial tempered valuations. If
f : X ′→ X is a proper birational morphism, then AX (v) = AX ′(v)+ v(K X ′/X )

(see [JM12, Proposition 5.1(3)]) and hence VX ′ = VX . Since VX is a topological
subspace of ValX , it is naturally a subspace of the Berkovich space Xan . See [JM12,
Section 6.3] for a comparison.

With the aid of the log discrepancy, we can normalize V∗X by letting A(v)= 1,
that is, we define 3X := {v ∈ V∗X | A(v) = 1}. In particular, we normalize every
cone complex QM(Y, D) by setting 1(Y, D) := {v ∈ QM(Y, D) | A(v)= 1}. It is
clear that 1(Y, D) naturally possesses the structure of a simplicial complex, and
by convention we say that 1(Y, D) is a dual complex. Readers can compare the
constructions here with [Boucksom et al. 2008; 2012b; 2012c].

The following lemma allows us to compare v and ordξ , where ξ = cX (v), which
is quite useful (see [Lazarsfeld 2004] or [JM12, Section 5.3] for the definition of
ordξ ). See [JM12, Proposition 5.10] for a proof. Recently S. Boucksom, C. Favre
and M. Jonsson [Boucksom et al. 2012a] gave a refinement of the following lemma.

Lemma 2.4 (Izumi-type inequality). Let ξ = cX (v) and mξ be the defining ideal of
{ξ}. Then we have v(mξ ) ordξ ≤ v ≤ A(v) ordξ .

Passing to the completion. A morphism f : X ′→ X is regular if it is flat and its
fibres are geometrically regular (see [JM12, Section 1.1]). The following lemma on
log discrepancy is essential for finding a valuation that computes the log canonical
threshold or norms in Section 5.

Lemma 2.5 [JM12, Proposition 5.13]. Let f : X ′→ X be a regular morphism, and
let f∗ : ValX ′→ ValX be the induced map. If v′ ∈ ValX ′ is a valuation on X ′, then
A(v′) ≥ A( f∗(v′)). If we assume further that X ′ = Spec ÔX,ξ and v′ is centred at
the closed point of X ′, then A(v′)= A( f∗(v′)).

Definition 2.6. If ξ ∈ X is a point, then we define VX,ξ := c−1
X (ξ) as a subspace

of VX . We can normalize VX,ξ by letting v(m)= 1, where m is the defining ideal
of {ξ}. More precisely we define VX,ξ := {v ∈ VX,ξ | v(m)= 1}. Let M > 0 be a
positive real number. We also define VX,ξ,M := {v ∈ VX,ξ | A(v)≤ M}. According
to [JM12, Proposition 5.9] the space VX,ξ,M is compact. If X = Spec A and m is
the defining ideal of {ξ}, we often use the notation VA,m instead of VX,ξ .

Let (R,m) be a local ring. Given a tempered valuation v ∈ VR,m, we define
v′( f )= limk→∞ v(ak) for every f ∈ R̂, where ak · R̂= f +m̂k . This is well-defined
since v(ak) ≤ A(v) ordξ (ak) ≤ A(v) ordξ ′( f ) < ∞ by Lemma 2.4. The above
definition leads to a correspondence between the valuation spaces of Spec R and
Spec R̂ as follows. Throughout this paper we will use the notations v and v′ to
indicate that v = f∗v′ for simplicity if without confusion.
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Proposition 2.7. Let (R,m) be a local ring, and let (R̂, m̂) be its m-adic com-
pletion. If we denote by f : Spec R̂→ Spec R the canonical morphism, then the
induced map f∗ : VR̂,m̂→ VR,m is bijective. If K ′ is a compact subspace of VR̂,m̂,
then f∗ is a homeomorphism from K ′ to its image. In particular, VR̂,m̂,M

∼= VR,m,M

for any positive number M.

Proof. The bijectivity of f∗ follows from [JM12, Corollary 5.11], and we will prove
the latter statement. Let K = f∗(K ′). It suffices to show that K ′ is homeomorphic
to K . Let h ∈ R̂ be a nonzero function. We have that maxv′∈K ′ v

′(h) = α <∞
since K ′ is compact. If g ∈ R is a nonzero function such that g − h ∈ m̂n in R̂
for some n > α. Then v′(g− h) ≥ nv′(m̂) > v′(h) for all v′ ∈ K ′. It follows that
v(g)= v′(g)= v′(h) for all v′ ∈ K ′ and hence they induce the same topology. �

3. Functions on valuation spaces

In this section we will discuss various classes of functions on valuation space with
an emphasis on the quasi-plurisubharmonic (qpsh for short) functions.

Bounded homogeneous functions. Let X be a scheme and VX be its valuation
space. A valuative function ϕ is homogeneous if ϕ(tv)= tϕ(v) for all v ∈ VX and
t ∈ R+. A valuative function ϕ is bounded if supv∈V∗X

|ϕ(v)|/A(v) <∞. The set
of bounded homogeneous functions (denoted by BH(X)) forms an R-linear space,
which can be equipped with the norm ‖ϕ‖= supv∈V∗X

|ϕ(v)|/A(v). If q is a nonzero
ideal on X , then we define the q-norm as ‖ϕ‖q = supv∈V∗X

|ϕ(v)|/(A(v)+ v(q)).
We also define

‖ϕ‖+q := sup
v∈V∗X

ϕ(v)

A(v)+ v(q)
and

‖ϕ‖−q := sup
v∈V∗X

−ϕ(v)

A(v)+ v(q)
.

Clearly, ‖ϕ‖+q = ‖−ϕ‖
−
q and ‖ · ‖q =max{‖ · ‖+q , ‖ · ‖

−
q }.

Lemma 3.1. Given two nonzero ideals p, q on X , the p-norm and the q-norm are
equivalent.

Proof. We first assume that p= OX . Then we have the inequalities

‖ · ‖q ≤ ‖ · ‖ ≤

(
1+ sup

v∈V∗X

v(q)

A(v)

)
‖ · ‖q.

Note that supv∈V∗X
v(q)/A(v) = maxDi (ordDi (q)/A(ordDi )) <∞, where Di runs

over all irreducible components of D on a birational model Y such that (Y, D) is a
log resolution of q. This implies that 1+ supv∈V∗X

v(q)/A(v) <∞ and leads to the
conclusion. �
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Proposition 3.2. Given a scheme X , BH(X) is a Banach space. If f : X ′ → X
is a regular morphism and f∗ : VX ′ → VX is the induced map, then the induced
map f ∗ : BH(X)→ BH(X ′) by taking ϕ to ϕ ◦ f∗ is a bounded linear operator of
Banach spaces. More precisely, ‖ f ∗(ϕ)‖q·OX ′

≤ ‖ϕ‖q for any nonzero ideal q on X.

Proof. Note that a bounded homogeneous function ϕ is also a function on 3X ,
defined by {v ∈ V∗X | A(v) = 1}, with the norm supv∈3X

|ϕ(v)| <∞. If {ϕm} is
a Cauchy sequence in BH(X), then ϕm converges pointwise to a homogeneous
function ϕ. Since supv∈3X

|ϕ(v)| ≤ supv∈3X
|ϕ(v)−ϕm(v)|+supv∈3X

|ϕm(v)|<∞,
ϕ is a bounded homogeneous function. This proves that BH(X) is a Banach space.
For the second statement, simply note that

‖ f ∗(ϕ)‖q·OX ′
= sup
v′∈V∗X ′

|ϕ(v)|

A(v′)+ v′(q ·OX ′)
≤ sup
v∈V∗X

|ϕ(v)|

A(v)+ v(q)
= ‖ϕ‖q.

by Lemma 2.5. �

Remark 3.3. Let ϕ be a bounded homogeneous function such that ϕ(v)=−v(a)
for some nonzero ideal a on X . It is easy to see that the norm ‖ϕ‖q is exactly the
Arnold multiplicity Arnqa, and its reciprocal is the log canonical threshold lctqa.
We will discuss this type of functions in detail later.

Definition 3.4. A bounded homogeneous function ϕ is said to be weakly continuous
if ϕ is continuous on every dual complex 1(Y, D).

Example 3.5. (1) As we already mentioned, the log discrepancy A is a weakly
bounded homogeneous function.

(2) If {ϕk} is a sequence of continuous, bounded homogeneous functions that
converges to a function ϕ strongly in norm, then ϕ is weakly continuous.

Ideal functions and qpsh functions. Given a nonzero ideal a, we define |a|(v)=
−ev(a) by convention. It is obvious that log |a| is a continuous, bounded homoge-
neous function.

Definition 3.6. A bounded homogeneous function ϕ is said to be an ideal function
if there exists a finite number of nonzero ideals a j and positive real numbers c j

such that ϕ =
∑l

j=1 c j log |a j |.

Lemma 3.7. Let ϕ=
∑l

j=1 c j log |a j | be an ideal function on X and q be a nonzero
ideal. Then,

‖ϕ‖q =max
E

{ ∑l
j=1 c j ordE a j

A(ordE)+ ordE q

}
for some prime divisor E over X.
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Proof. Let (Y, D) be a log resolution of q ·
∏l

j=1 a j , and let Di ’s be the irreducible
components of D. By an easy computation, we see that

‖ϕ‖q =max
Di

{ ∑l
j=1 c j ordDi a j

A(ordDi )+ ordDi q

}
,

where Di runs over all irreducible components of D. �

Lemma 3.8. Let ϕ be a bounded homogeneous function which is determined on
some dual complex 1(Y, D) in the sense of ϕ = ϕ ◦ rY,D . Assume that ϕ is affine on
each face of the dual complex1(Y, D) and that (Y ′, D′)� (Y, D). Then ϕ=ϕ◦rY ′,D′

which is also affine on each face of the dual complex 1(Y ′, D′).

Proof. The assumption that ϕ is affine on each face of the dual complex 1(Y, D) is
equivalent to that ϕ is linear on each simplicial cone of QM(Y, D). The conclusion
follows from the fact that rY,D is linear on each simplicial cone of QM(Y ′, D′). �

Definition 3.9. A bounded homogeneous function ϕ is a quasi-plurisubharmonic
(qpsh for short) function if there exists a sequence of ideal functions that converges
to ϕ strongly in norm. The set of qpsh functions, which is a closed convex cone in
BH(X), is denoted by QPSH(X).

Definition 3.10. The support of a qpsh function is the set of elements of the form
cX (v), for some nontrivial tempered valuation v such that ϕ(v) < 0.

If ϕ =
∑l

j=1 ci log |ai | is an ideal function, then the support of ϕ is the union of
the vanishing loci V (a j ) and hence proper closed. We will see that the support of a
qpsh function is a countable union of proper closed subsets. See Corollary 4.26.

Proposition 3.11. Let ϕ ∈QPSH(X) be a qpsh function. Then, ϕ is convex on each
face of every dual complex 1(Y, D). Moreover, ϕ ◦ rY,D form a decreasing net
of continuous functions that converges to ϕ strongly in norm. In particular, ϕ is
weakly continuous and upper-semicontinuous (usc for short).

Proof. To show that ϕ is convex on each face of every dual complex 1(Y, D), it
suffices to prove this when ϕ is an ideal function. We can assume that ϕ = c log |a|.
Let η be a generic point of the intersection of D1, . . . , Dl . We will prove that
ϕ is convex on QMη(Y, D), which essentially implies the convexity on 1(Y, D).
To this end, assume that v =

∑k
j=1λ jv j such that v, v j ∈ QMη(Y, D), λ j > 0 for

every j and
∑k

j=1λ j = 1. Assume further that a ·OY is principal near η generated
by f . If we consider the local coordinates y = {y1, . . . , yl} with the origin η, then
v and v j can be represented by α = (α1, . . . , αl) and α j = (α

1
j , . . . , α

l
j ) with the

values v( f )=min
{
〈α, β〉 | f =

∑
cβ yβ

}
and v j ( f )=min

{
〈α j , β〉 | f =

∑
cβ yβ

}
.

Obviously, v( f )≥
∑k

j=1λ jv j ( f ) and we obtain the required convexity. If a ·OY is
not principal, then ϕ is the maximum of a finite number of convex functions and
hence convex.
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Given an arbitrary qpsh function ϕ, the functions ϕ ◦ rY,D form a decreasing net
because v≤ rY,D(v), and ϕ is continuous on1(Y, D) because it is the uniform limit
function of continuous functions. It suffices to show that ϕ ◦ rY,D converges to ϕ
strongly in norm. To this end, consider a sequence of ideal functions ϕ j = c j log |a j |

that converges to ϕ strongly in norm. We then obtain that

‖ϕ−ϕ ◦ rY,D‖ ≤ ‖ϕ−ϕ j‖+‖ϕ j −ϕ ◦ rY,D‖ ≤ 2‖ϕ−ϕ j‖

if (Y, D) is a log resolution of a j , which completes the proof. �

Remark 3.12. The proposition above implies that a qpsh function is uniquely
determined by its values on divisorial valuations. In fact, if ϕ and φ have the same
values on divisorial valuations, then ϕ = φ on every dual complex 1(Y, D) by
continuity and hence ϕ = φ on VX .

The following example shows that the pointwise limit of a decreasing sequence
of ideal functions is not qpsh in general.

Example 3.13. Let X = Spec k[x] be an affine line, and let φk =
∑k

j=1 log | f j |,
where f j = x − j . We see that φk is a decreasing sequence of ideal functions and
the pointwise limit function ϕ exists. But ϕ is not qpsh because ‖ϕ−φ‖ ≥ 1 for
any ideal function φ.

If f : X ′→ X is a regular morphism and ϕ is a qpsh function on X , then f ∗ϕ
is a qpsh function on VX ′ by Proposition 3.2. In particular if f : U → X (resp.
f : Spec OX,ξ → X ) is an open inclusion, we say that f ∗ϕ is the restriction (resp.
germ) of ϕ, denoted by ϕ|U (resp. ϕξ ). Also, restrictions to the neighbourhoods of
a point ξ induce a map QPSH(X)→ lim

−→U3 ξ
QPSH(U ), and the image of ϕ is also

said to be the germ of ϕ, denoted by ϕ|ξ .
If ξ is not contained in the support of a qpsh function ϕ, then ϕξ = 0 by

Proposition 3.11. However, the following example shows that it could happen
that the germ of ϕ is nonzero in the set lim

−→U3 ξ
QPSH(U ).

Example 3.14. Let X=Spec k[x] be an affine line, and let φk=
∑k

m=1 2−m log | fm |,
where fm = x − 1/m. It is easy to see that φk converges to a function φ strongly in
norm. Note that the origin is not contained in the support of φ, but the germ of φ
in lim
−→U3 0

QPSH(U ) is nonzero.

From this example we see that if we define ‖ϕ|ξ‖ := infU3 ξ ‖ϕ|U‖, then ‖ · ‖ is
only a seminorm.

Proposition 3.15. There is a surjective map of convex cones

r : lim
−−→
U3 ξ

QPSH(U )→ QPSH(Spec OX,ξ )

which preserves the seminorm, and also preserves ‖ · ‖+ and ‖ · ‖−.
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Proof. If ϕ=c log |a| and ϕ′=c′ log |a|, then we claim that ‖ϕ|ξ−ϕ′|ξ‖=‖ϕξ−ϕ′ξ‖.
To this end, let µ : (Y, D)→ X be a log resolution of a ·a′, and let a ·OY = OY (−F)
and a′ ·OY = OY (−F ′). One can easily check that

‖ϕ|ξ −ϕ
′
|ξ‖ = max

Di∈S

| ordDi F − ordDi F ′|
A(ordDi )

,

where S consists of irreducible components Di of D such that µ(Di ) contains ξ in
its support. This implies the claim.

Given a qpsh function ϕξ ∈ QPSH(Spec OX,ξ ), there exists a sequence of ideal
functions ϕξ,i = ci log |aξ,i | that converges to ϕξ strongly in norm. Let ai be ideals
on X such that ai · OX,ξ = aξ,i . We have that ϕi = ci log |ai | converges to a qpsh
function in lim

−→U3 ξ
QPSH(U ) strongly in norm due to the previous claim. Therefore

we obtain the surjectivity of r .
Finally, for two qpsh functions ϕ and ϕ′ on an open neighbourhood of ξ , the

equality ‖ϕ|ξ − ϕ′|ξ‖ = ‖ϕξ − ϕ′ξ‖ follows from the claim in the first paragraph.
Apply a similar argument to ‖ · ‖+ and ‖ · ‖−, we obtain the conclusion. �

From the discussion above, we see that ϕ|ξ provides more information while it is
not a valuative function. We sometimes identify ϕ|ξ and ϕξ as the germ of ϕ at ξ .

4. Multiplier ideals

We will now discuss the multiplier ideals of qpsh functions. Recall that a graded
sequence of ideals a• is a sequence of ideals that satisfies am · an ⊆ am+n . By
convention we put a0 = OX , and we say a• is nontrivial if am 6= 0 for some positive
integer m. Note that in this case there are infinitely many m such that am 6= 0. A
subadditive sequence of ideals b• is a one-parameter family bt satisfying bs ·bt⊇bs+t

for every s, t ∈ R+. Similarly, we put b0 = OX and we say that b• is nontrivial if
bt 6= 0 for all t ∈ R+. Throughout this paper, every sequence of ideals is assumed
to be nontrivial. We define v(a•)= infm≥1 v(am)/m and v(b•)= supt>0 v(bt)/t as
in [Ein et al. 2006]. We similarly define |a•|(v)= e−v(a•) and |b•|(v)= e−v(b•) for
a graded sequence and a subadditive sequence of ideals respectively.

Multiplier ideals.

Definition 4.1. For a bounded homogeneous function ϕ ∈ BH(X), the multiplier
ideal J(ϕ) of ϕ is the largest ideal in the set of nonzero ideals {a | ‖log |a|−ϕ‖+<1}.
If this set is empty, then we define J(ϕ)= (0).

Remark 4.2. We will see that the set above is always nonempty when ϕ is qpsh
and J(ϕ) is therefore nonzero (see Remark 4.21). Moreover, we have the inequality
ϕ ≤ log |J(ϕ)| (see Remark 4.21), and hence ‖log |J(ϕ)| −ϕ‖< 1 holds.
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The following proposition shows that our definition of multiplier ideals coincides
with the classical definition of multiplier ideals.

Proposition 4.3. If ϕ is an ideal function and we write ϕ =
∑l

i=1 ci log |ai |, then
J(ϕ)= J

(∏l
i=1 ai

ci
)
.

Proof. Let π : (Y, D)→ X be a log resolution of
∏l

i=1 ai, and ai ·OY = OY (−Fi )

with Fi being supported in D. Since J
(∏l

i=1 ai
ci
)
= π∗OY

(
KY/X − x

∑l
i=1 ci Fiy

)
,

it is easy to check that
∥∥log

∣∣J(∏l
i=1 ai

ci
)∣∣−ϕ∥∥+ < 1, which immediately implies

that J(ϕ)⊇ J
(∏l

i=1 ai
ci
)
.

Conversely, if f ∈ 0(U,J(ϕ)) is a regular function on an affine open subset U ,
then ‖log | f |−ϕ|U‖+< 1. It follows that v( f )+ A(v)+ϕ( f ) > 0 for all nontrivial
tempered valuations v on U . In particular, ordE f + ordE KY/X + 1>−ϕ(ordE)

for any prime divisor E on π−1U . Thus f ∈ 0
(
U,J

(∏l
i=1 ai

ci
))

and it follows
that J(ϕ)⊆ J

(∏l
i=1 ai

ci
)
. �

The lemmas below will be frequently used in this paper.

Lemma 4.4. Given a nonzero ideal q and a qpsh function ϕ ∈QPSH(X), q⊆J(λϕ)

if and only if λ−1 > ‖ϕ‖q. Thus ‖ϕ‖−1
q =min{t | q* J(tϕ)}.

Proof. If q⊆ J(λϕ), then ‖ log |q| − λϕ‖+ < 1 by definition. That is,

sup
v∈V∗X

−v(q)− λϕ(v)

A(v)
< 1.

This implies that −v(q)− λϕ(v)≤ (1− ε)A(v) for every v ∈ V∗X . Thus

−λϕ(v)

A(v)+ v(q)
≤
(1− ε)A(v)+ v(q)

A(v)+ v(q)
≤ (1− ε)+ ε‖log |q|‖q < 1

by Lemma 3.7. We obtain λ−1 > ‖ϕ‖q by definition.
Conversely we assume that ‖ϕ‖q = supv∈V∗X

(−λϕ(v))/(A(v)+ v(q)) < 1. Then
−λϕ(v)≤ (1− ε)(A(v)+ v(q)). Therefore

−v(q)− λϕ(v)

A(v)
≤ 1− ε− ε

v(q)

A(v)
≤ 1− ε

for a sufficiently small ε which leads to the conclusion q⊆ J(λϕ). �

Lemma 4.5. Let ξ be a point of a scheme X , and ϕ be a qpsh function. Assume
that the multiplier ideal J(ϕ) is nonzero. (In fact, this assumption automatically
holds by Lemma 4.20 and Remark 4.21.) Then:

(1) J(ϕ|U )= J(ϕ) ·OU .

(2) J(ϕξ )= J(ϕ) ·OX,ξ .

(3) Set λ−1
:= ‖ϕ‖q. If ξ ∈ V(J(λϕ) : q), then ‖ϕ‖q = ‖ϕξ‖q·OX,ξ .
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Proof. (1) Since ‖log |J(ϕ) · OU | − ϕ|U‖
+
≤ ‖log |J(ϕ)| − ϕ‖+ < 1, we have

J(ϕ) · OU ⊆ J(ϕ|U ). On the other hand, if we denote by m the defining ideal of
X \U , then there exists a sufficiently large integer k such that v(J(ϕ))≤ v(mk) for
all valuations v centred in X \U . Now we extend J(ϕ|U ) to X and still denote it by
J(ϕ|U ). Therefore ‖log |J(ϕ|U )·mk

|−ϕ‖+< 1, which implies J(ϕ|U )⊆J(ϕ)·OU .

(2) First note that ‖log |J(ϕ) ·OX,ξ |−ϕξ‖
+
≤ ‖log |J(ϕ)|−ϕ‖+< 1, and it follows

that J(ϕ) ·OX,ξ ⊆ J(ϕξ ). For the inverse inclusion, we see that if f ∈ J(ϕξ ), then
there exists an open neighbourhood U of ξ such that ‖log | f | − ϕ|U‖+ < 1 by
Proposition 3.15. Thus f ∈ J(ϕ|U ) ·OX,ξ = J(ϕ) ·OX,ξ .

(3) It is obvious that ‖ϕ‖q ≥ ‖ϕξ‖q·OX,ξ by Proposition 3.2. If ξ ∈ V(J(λϕ) : q),
then (J(λϕξ ) : q ·OX,ξ )= (J(λϕ) : q) ·OX,ξ 6= OX,ξ . Therefore q ·OX,ξ * J(λϕ|ξ )

and λ−1
≤ ‖ϕξ‖q·OX,ξ by Lemma 4.4. �

Algebraic qpsh functions.

Definition 4.6. A qpsh function ϕ ∈QPSH(X) is algebraic if it is the limit function
of an increasing sequence of ideal functions ϕ = limm→∞ ϕm (in norm). Note that
ϕ being algebraic implies that tϕ is algebraic for any t ∈ R>0, and that ϕ + ψ
is algebraic provided that ψ is another algebraic qpsh function. Thus the set of
algebraic qpsh functions is a convex subcone of QPSH(X), denoted by QPSHa(X).

An algebraic function is lower-semicontinuous (lsc for short) on VX by its
definition, and usc by Proposition 3.11, so it is continuous. We will see that in
Definition 4.6 the phrase “in norm” is not necessary; that is, the pointwise limit of
an increasing sequence of ideal functions is algebraic qpsh (see Lemma 4.15). One
can compare this fact with Remark 4.25. The following example shows that a qpsh
function is not necessarily algebraic.

Example 4.7. Let X = Spec k[x1, x2] be the affine plane. If we set

φk =

k∑
l=1

1
2l log | fl |, where fl = x1+ x2l

2 ,

then φk converges to a qpsh function φ strongly in norm. However, the qpsh function
φ is not algebraic since there is no ideal function ϕ ≤ φ.

The following lemma shows that a graded system of ideals naturally induces an
algebraic qpsh function.

Lemma 4.8. Let a• be a graded sequence of ideals. If we let log |a•|(v) = v(a•),
then log |a•| is an algebraic qpsh function.

Proof. It suffices to find a subsequence of {am} such that {ϕk := (1/mk) log |amk |} is
an increasing sequence of ideal functions that converges to a qpsh function strongly
in norm. Let b• be a sequence of ideals such that bt = J(at

•
) (see [Lazarsfeld
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2004]). Note that b• is subadditive of controlled growth (see [JM12, Section 2,
Section 6, Appendix]). Now we fix an integer m such that am 6= 0. Since bm ⊇

J(am)⊇ am , we have v(bm)≤ v(am). Since v(bm)+ A(v)− (1/k)v(amk) > 0 for
all nontrivial tempered valuations v, where k is a sufficiently divisible integer, we
have v(amk)/(mk) < v(bm)/m+ A(v)/m. From the inequalities

v(bm)

m
≤
v(amk)

mk
<
v(bm)

m
+

A(v)
m

we have
∥∥ 1

mk log |amk | −
1

mkl log |amkl |
∥∥ < 1

m for every positive integer l. As we
multiply m, we obtain the desired sequence of ideal functions. �

Definition 4.9. Let ϕ ∈ BH(X) be a bounded homogeneous function. Its envelope
ideal a(ϕ) is the largest ideal in the set {a| log |a| ≤ ϕ} if this set is nonempty. If it
is empty, we set a(ϕ)= 0.

Proposition 4.10. If ϕ is qpsh and a(ϕ) is nonzero, then the envelope ideal can be
written explicitly as 0(U, a(ϕ)) := { f ∈OX (U ) | v( f )+ϕ(v)≥ 0 for every v ∈V∗U }
on every open subset U.

Proof. Since the question is local, we can assume that X = Spec A is affine. It
suffices to prove that the ideal a, defined by

a(U ) := { f ∈ OX (U ) | v( f )+ϕ(v)≥ 0 for every v ∈ V∗U }

on every open subset U , is coherent. To this end, we write I := a(X), and we will
prove that a(Ug)= Ig for any nonzero regular function g ∈ A, where Ug denotes
the affine open subset defined by g. Since a(Ug)⊇ Ig by definition, we only need
to prove the converse inclusion. Note that there exists a large integer k such that
kv(g) ≥ v(a(ϕ)) for every nontrivial tempered valuation v centred in the locus
V (g), and hence k log |g|(v) ≤ ϕ(v). If f is a regular function on Ug such that
v( f )+ϕ(v)≥ 0 for every v ∈V∗Ug

, then v( f gk)+ϕ(v)≥ 0 for every v ∈V∗X . This
implies that f ∈ Ig. �

If we set a(ϕ)m = a(mϕ), then {a(ϕ)•} is a (possibly trivial) graded sequence
of ideals. The following lemma shows that every algebraic qpsh function is of the
form log |a•|.

Lemma 4.11. If ϕ ∈QPSHa(X) is an algebraic qpsh function, then ϕ= log |a(ϕ)•|.

Proof. Given an arbitrarily small positive number ε, there exist an ideal a on
X and an integer m such that 1

m log |a| ≤ ϕ and
∥∥ 1

m log |a| − ϕ
∥∥ < ε. We have

1
m log |a(ϕ)m | ≥ 1

m log |a| by definition and the conclusion follows. �

By combining Proposition 4.3, Lemmas 4.8 and 4.11, we see that a bounded
homogeneous function is algebraic qpsh if and only if it is derived from a graded
sequence of ideals. Readers can compare the following theorem with Theorem 4.24.
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Theorem 4.12. If ϕ is a bounded homogeneous function, the following statements
are equivalent.

(1) ϕ ∈ QPSHa(X) is algebraic qpsh.

(2) There exists a graded sequence of ideals a• such that ϕ = log |a•|.

(3) The graded system of ideals a(ϕ)• is nontrivial and ϕ = log |a(ϕ)•|.

Proof. If we assume (1), then (3) holds by Lemma 4.11. Note that (3) implies (2) if
we simply put a• = a(ϕ)•. Finally, (1) follows from (2) by Lemma 4.8. �

We will use the following easy lemma. For the convenience of readers we present
a proof here.

Lemma 4.13. Let ϕ ∈ QPSHa(X) be an algebraic qpsh function.

(1) Assume that {ϕm} is an increasing sequence of qpsh functions that converges
to ϕ strongly in norm. Then J(ϕ)= J(ϕm) for sufficiently large m.

(2) Assume that f : X ′ → X is a regular morphism of schemes. Then f ∗ϕ is
algebraic qpsh.

Proof. (1) We see that ‖log |J(ϕ)| − ϕ‖+ = 1− ε for some positive number ε.
If ‖ϕ − ϕm‖ < ε, then ‖log |J(ϕ)| − ϕm‖

+ < 1 and J(ϕ) ⊆ J(ϕm). The inverse
inclusion J(ϕ)⊇ J(ϕm) is obvious because ϕ ≥ ϕm .

(2) Assume ϕm is an increasing sequence of ideal functions that converges to ϕ
strongly in norm. Then f ∗ϕm is also an increasing sequence of ideal functions that
converges to f ∗ϕ strongly in norm by Proposition 3.2. This implies that f ∗ϕ is
algebraic qpsh. �

By combining Lemmas 4.8 and 4.13(1), we see that the definition of valuative
multiplier ideals of algebraic functions coincides with the classical definition of
asymptotic multiplier ideals.

Corollary 4.14. Let a• be a graded sequence of ideals. If we write ϕ = log |a•|,
then J(ϕ)= J(a•).

General qpsh functions.

Lemma 4.15. If {ϕλ} is a family of (algebraic) qpsh functions, then supλ ϕλ is an
(algebraic) qpsh function. Therefore, the convex cone QPSH(X) (resp. QPSHa(X))
is closed under taking the supremum.

Proof. We firstly assume that {ϕλ} is a family of algebraic qpsh functions, and we
write ψ = supλ ϕλ. Since ψ ≥ ϕλ for every λ, a(ψ)m ⊇ a(ϕλ)m . It follows that
log |a(ψ)•| ≥ log |a(ϕλ)•| = ϕλ. Therefore ψ = log |a(ψ)•| is algebraic qpsh.

Now we treat the case when {ϕλ} is a family of general qpsh functions. For
each λ, we assume that {ϕλ,m} is a sequence of ideal functions that converges to ϕλ
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strongly in norm such that ‖ϕλ− ϕλ,m‖< 1
m . If we set ψm = supλ ϕλ,m , which is

an algebraic qpsh by the previous argument, then ‖ψ −ψm‖ ≤
1
m and it follows

that {ψm} is a sequence that converges to ψ strongly in norm. �

Since the convex cones QPSH(X) and QPSHa(X) are closed under taking the
supremum by Lemma 4.15, we can introduce the following definition.

Definition 4.16. Let ϕ be a bounded homogeneous function. Assume that the set
{ψ ∈ QPSH(X) | ψ ≤ ϕ} is nonempty. Then we say the maximal function in this
set the qpsh envelope function. We similarly define the algebraic qpsh envelope
function of ϕ if it exists.

In general, we cannot ensure the sets defined as above are nonempty. For instance,
the function in Example 3.13 is bounded homogeneous but its qpsh envelope function
does not exist. Also note that the function φ in Example 4.7 is qpsh itself but its
algebraic qpsh envelope function does not exist.

Lemma 4.17. Let ϕ be a bounded homogeneous function that is determined on
some dual complex 1(Y, D) in the sense of ϕ = ϕ ◦ rY,D. Then, its qpsh envelope
function ψ exists. Further, ψ is algebraic qpsh.

Proof. Let Z ⊆ X be the image of the reduced divisor D on X , and m be the
defining ideal of Z . Since log |m| is strictly negative on 1(Y, D) and ϕ is bounded
on 1(Y, D), there exists an integer k such that k log |m| ≤ ϕ on 1(Y, D). Because
ϕ is determined on the dual complex 1(Y, D) in the sense of ϕ = ϕ ◦rY,D , we have
that k log |m| ≤ ϕ on VX . It follows that its algebraic qpsh envelope function φ
exists. In particular, its qpsh envelope function ψ exists.

Now we will show that ψ = φ. Set

µ1 = max
v∈1(Y,D)

|v(m)| and µ2 = min
v∈1(Y,D)

|v(m)|.

For any small number ε > 0, we choose δ� 1 such that (1+µ1/µ2)δ < ε and an
ideal function φ′ such that ‖φ′−ψ‖< δ. Note that for every valuation v ∈1(Y, D)
we have

ψ(v) > φ′(v)−
δ

µ2
v(m)≥ φ′(v)−

δµ1
µ2

>ψ(v)−

(
1+ µ1

µ2

)
δ.

We can assume that φ′ ≤ ψ and |ψ(v)−φ′(v)|< ε on 1(Y, D) after replacing φ′

by φ′ + (δ/µ2) log |m|. Because ϕ = ϕ ◦ rY,D, we obtain that φ′ ≤ ϕ. It follows
that φ′ ≤ φ ≤ ψ by the definition of the qpsh envelope function. Since ε can be
chosen arbitrarily small, this forces φ = ψ on 1(Y, D). If we pick any higher log
resolution (Y ′, D′), we can show that φ = ψ on 1(Y ′, D′) by the same argument.
The conclusion therefore follows from Proposition 3.11. �

The above lemma leads to the following definition.
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Definition 4.18. Let ϕ ∈ QPSH(X) be a qpsh function. We denote by ϕY,D the
qpsh envelop function of ϕ ◦ rY,D .

Lemma 4.19. Let ϕ be a qpsh function. Then there exists a decreasing sequence of
algebraic functions that converges to ϕ strongly in norm.

Proof. Let {ϕm} be a sequence of ideal functions that converges to ϕ strongly
in norm. We can assume that ϕm = cm log |am | and ‖ϕ − ϕm‖ <

1
m . Let (Y, D)

be a log resolution a1. It is easy to see that ‖ϕ ◦ rY,D − ϕ1‖ < 1, and therefore
‖ϕY,D − ϕ1‖ < 1. We deduce that ‖ϕY,D − ϕ‖ < 2. Now we replace ϕ1 by ϕY,D

and continue this process. Note that if (Y ′, D′) � (Y, D), then ϕY ′,D′ ≤ ϕY,D by
Proposition 3.11. We easily obtain the required decreasing sequence of algebraic
functions. �

Lemma 4.20. Let {ϕm} be a sequence of qpsh functions that converges to a qpsh
function ϕ strongly in norm. Then J(ϕ) = J((1+ ε)ϕm) for a sufficiently small
positive real number ε > 0 and a sufficiently large integer m.

Proof. First we prove that J(ϕ) ⊆ J((1+ ε)ϕm) for a sufficiently small number
ε > 0 and a sufficiently large integer m. To this end, we pick a sufficiently small
number ε > 0 such that J(ϕ) = J((1+ ε)ϕ). Since J((1+ ε)ϕ) ⊆ J((1+ ε)ϕm)

provided that m is sufficiently large, we have J(ϕ) ⊆ J((1+ ε)ϕm). Conversely,
we pick a sufficiently large integer m such that ‖ϕ − ϕm‖ < 1− 1

1+ε . Applying
Lemma 4.4 again, we see that if f ∈ J((1+ ε)ϕm) then ‖ϕm‖ f <

1
1+ε and hence

‖ϕ‖ f ≤ ‖ϕm‖ f +‖ϕ−ϕm‖ f < 1, which implies that f ∈ J(ϕ). �

Remark 4.21. Note that we always have φ ≤ log |J(φ)| for an algebraic qpsh
function φ by [JM12, Propositions 6.2 and 6.5]. It follows by Lemmas 4.19
and 4.20 that J(ϕ) is nonzero and (1+ ε)ϕ ≤ (1+ ε)ϕm ≤ log |J(ϕ)|, where {ϕm}

is a decreasing sequence of algebraic functions that converges to a qpsh function ϕ
strongly in norm. Since ε can be chosen arbitrarily small, we immediately obtain
that ϕ ≤ log |J(ϕ)|.

Now we discuss the multiplier ideals of general qpsh functions.

Proposition 4.22. Let ϕ ∈ QPSH(X) be a qpsh function on X.

(1) Assume that ψ is another qpsh function on X. Then,

J(ϕ+ψ)⊆ J(ϕ) ·J(ψ).

(2) Assume that f : X ′→ X is a regular morphism of schemes. Then,

J(ϕ) ·OX ′ = J( f ∗ϕ).

Proof. (1) By Lemma 4.19 we can assume that there are decreasing sequences
of algebraic functions {ϕm} and {ψm} converging to ϕ and ψ strongly in norm
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respectively. Then for some sufficiently large integer m, by Lemma 4.20 we have
J(ϕ+ψ) = J((1+ ε)(ϕm +ψm)) ⊆ J((1+ ε)ϕm) ·J((1+ ε)ψm) = J(ϕ) ·J(ψ)

since ϕm +ψm converges to ϕ+ψ strongly in norm. The inclusion appearing in
this expression follows from [JM12, Theorem A.2].

(2) Since f is regular, for any ideal function φ =
∑

i ci log ai , we have

J(φ) ·OX ′ = J

(∏
i

aci
i

)
·OX ′ = J

(∏
i

(ai ·OX ′)
ci

)
= J( f ∗φ)

by the argument of [JM12, Proposition 1.9]. If {ϕm} is a sequence of ideal functions
that converges to ϕ strongly in norm, then f ∗ϕm is a decreasing sequence of ideal
functions that converges to f ∗ϕ strongly in norm by Proposition 3.2. Therefore we
have J(ϕ) ·OX ′ = J((1+ ε)ϕm) ·OX ′ = J((1+ ε) f ∗ϕm)= J( f ∗ϕ). �

Recall from [JM12] that if b• is subadditive, then the limit

v(b•) := lim
m→∞

1
m
v(bm) ∈ [0,+∞]

is well-defined. For the purpose of constructing a “good” valuative function, we
introduce the notion of a subadditive sequence of ideals of controlled growth as
follows.

Definition 4.23 [JM12, Definition 2.9]. A subadditive sequence of ideals b• is of
controlled growth if

v(bt)

t
> v(b•)−

A(v)
t

for every nontrivial tempered valuation v and every t > 0.

We see that v(b•) := limm→∞
1
m v(bm) < +∞ for every nontrivial tempered

valuation v. Furthermore, if we define log |b•|(v) = −v(b•), then log |b•| is ap-
proximated by 1

m log |bm | strongly in norm and hence qpsh. Given a qpsh function,
if we define J(ϕ)t := J(tϕ), then J(ϕ)• is a subadditive sequence of controlled
growth by Proposition 4.22, Definition 4.1 and Remark 4.2. This allows us to give a
characterization of qpsh functions as follows. Readers could compare the following
theorem with Theorem 4.12.

Theorem 4.24. If ϕ is a bounded homogeneous function, the following statements
are equivalent.

(1) ϕ is qpsh.

(2) There is a subadditive sequence of ideals b• of controlled growth such that
ϕ = log |b•|.

(3) The ideal J(tϕ) is nonzero for every t > 0 and ϕ = log |J(ϕ)•|.
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Proof. If we assume (1), then (3) follows from the previous argument together
with Definition 4.1 and Remark 4.2. Note that (3) implies (2) if we simply put
b• = J(ϕ)•. Finally, (1) follows from (2) by the previous argument. �

Remark 4.25. From the theorem we see that every qpsh function ϕ can be ap-
proximated by a decreasing sequence of ideal functions ϕk in norm. Indeed, we
can take ϕk =

1
2k log |J(2kϕ)|. However, if ϕ is only the pointwise limit of a

decreasing sequence of ideal functions on VX , then ϕ is not necessarily qpsh (see
Example 3.13).

An immediate application of the preceding discussion is the following result on
the support of a qpsh function.

Corollary 4.26. Let ϕ be a qpsh function. Then its support suppϕ is a countable
union of proper Zariski closed subsets of X.

Remark 4.27. Readers can compare the constructions here with [Boucksom et al.
2008]. If we work on X = Spec R̂, where R is the localization of C[x1, . . . , xn]

at the origin, then our definition of qpsh functions coincides the notion of formal
psh functions. A brief argument is as follows. Given a formal psh function g, we
have a subadditive sequence of ideals {L2(tg)}t>0 in R̂, that satisfies v(L2(tg))+
A(v)+ (1+ ε)g(v)≥ 0 for every quasimonomial valuation v centred at the origin
and an arbitrarily small ε; see [Boucksom et al. 2008, Theorems 3.10 and 3.9].
It follows that {L2(tg)}t>0 form a subadditive sequence of ideals of controlled
growth that induces to a qpsh function ϕ on X . Therefore ϕ(v)= g(v) for every
divisorial valuation v centred at the origin. Conversely, a qpsh function can be
naturally viewed as a formal psh function by definition. Therefore we construct an
one-to-one correspondence. The details are left to the readers.

Remark 4.28. Recall from complex geometry that a function ϕ : X→[−∞,+∞)
from a complex manifold is qpsh if it is locally equal to the sum of a smooth
function and a psh function. If X is a smooth complex variety, we should be able to
define the valuative transform of ϕ, which is expected to be a qpsh function on the
valuation space VX as defined in this paper. This was done locally in [Boucksom
et al. 2008] and its predecessors [Favre and Jonsson 2004; 2005a; 2005b]. However,
the global situation is not fully understood by us at this point.

5. Computing norms

Generalities.

Definition 5.1. Let ϕ be a bounded homogeneous function and q be a nonzero
ideal on X . We say a nontrivial tempered valuation v ∈ V∗X computes ‖ϕ‖q if the
equality ‖ϕ‖q = |ϕ(v)|/(A(v)+ v(q)) holds.
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The main result of this section is the following theorem.

Theorem 5.2. Let ϕ ∈ QPSH(X) be a qpsh function and let q be a nonzero ideal
on X. Then there exists a nontrivial tempered valuation v that computes ‖ϕ‖q.

Before we prove this theorem, we need some preparations.

Proposition 5.3. Let ϕ be a bounded homogeneous function that is determined on
some dual complex 1(Y, D) in the sense of ϕ = ϕ ◦ rY,D . Assume that ϕ is weakly
continuous (see Definition 3.4). Then there exists a quasimonomial valuation v that
computes ‖ϕ‖q. If we assume further that ϕ is affine on each face of 1(Y, D), then
there exists a divisorial valuation v that computes ‖ϕ‖q.

Proof. For every nontrivial tempered valuation v ∈ V ∗X , we have

|ϕ(v)|

A(v)+ v(q)
≥

|ϕ ◦ rY,D(v)|

A(rY,D(v))+ rY,D(v)(q)

with equality if and only if v ∈ QM(Y, D). Thus

‖ϕ‖q = sup
v∈QM(Y,D)

|ϕ(v)|

A(v)+ v(q)
= sup
v∈1(Y,D)

|ϕ(v)|

1+ v(q)
.

Since ϕ is weakly continuous, the function v→|ϕ(v)|/(A(v)+v(q)) is continuous
on QM(Y, D). Therefore the function v→ |ϕ(v)|/(1+ v(q)) is continuous on the
dual complex 1(Y, D) and hence achieves its maximum in 1(Y, D).

Assume that ϕ is affine on 1(Y, D), and denote by {Di } the irreducible com-
ponents of D. After replacing (Y, D) by some higher log resolution, we can
assume that (Y, D) is a log resolution of q by Lemma 3.8. Then we have ‖ϕ‖q =
maxDi (|ϕ(ordDi )|/(A(ordDi )+ordDi (q))), where Di runs over all irreducible com-
ponents of D since the functions ϕ, A and log |q| are all affine on 1(Y, D). �

Computing norms of qpsh functions. This subsection is devoted to the proof of
Theorem 5.2. The proof here follows the strategy of [JM12]. We first consider the
local case.

Lemma 5.4. Let (R,m) be a local ring, let ϕ ∈ QPSH(Spec R) be a qpsh function,
and let q be a nonzero ideal on Spec R. We set λ−1

= ‖ϕ‖q and assume that
√
(J(λϕ) : q)=m. If we define another qpsh function ψ =max{ϕ, p log |m|} for a

sufficiently large integer p, then ‖ϕ‖q = ‖ψ‖q. Moreover, if a nontrivial tempered
valuation v computes ‖ψ‖q, then v also computes ‖ϕ‖q.

Proof. Since
√
(J(λϕ) : q) = m, we have mn

· q ⊆ J(λϕ) for some integer n. Set
λ′−1
=‖ϕ‖mn ·q, it follows that λ′>λ by Lemma 4.4. Pick an integer p> n/(λ′−λ),

and fix a sufficiently small number ε� 1 such that p> n/((1−ε)λ′−λ). Observe
that

‖ψ‖q = sup
v∈V∗R

min{−ϕ(v), pv(m)}
A(v)+ v(q)

≥ sup
v∈V∗ε

min{−ϕ(v), pv(m)}
A(v)+ v(q)

,
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where V∗ε is the set of v ∈ V∗R satisfying −ϕ(v)/(A(v)+ v(q))≥ (1− ε)/λ.
By the definition of λ′ we have nv(m)/(−ϕ(v))≥ λ′− (A(v)+ v(q))/(−ϕ(v))

for every nontrivial tempered valuation v. This implies that

‖ψ‖q ≥ sup
v∈Vε

−ϕ(v)

A(v)+ v(q)
min

{
1,

p
n

(
λ′−

A(v)+ v(q)
−ϕ(v)

)}
≥ sup
v∈Vε

−ϕ(v)

A(v)+ v(q)
min

{
1,

p
n

(
λ′−

λ

1− ε

)}
= sup
v∈Vε

−ϕ(v)

A(v)+ v(q)
= ‖ϕ‖q.

Moreover, if a nontrivial tempered valuation v computes ‖ψ‖q, we see from these
inequalities that v also computes ‖ϕ‖q. �

Lemma 5.5. Let (R,m) be a local ring, let ϕ be an ideal function on Spec R such
that ϕ ≥ p log |m| for some integer p, and let q be a nonzero ideal on Spec R. Then
there exists a nontrivial tempered valuation v ∈ VR,m,M (see Definition 2.6) that
computes ‖ψ‖q provided that M > p · ‖ϕ‖−1

q .

Proof. If we write c = p/M , then 0 < c < ‖ψ‖q. For every v ∈ VR,m such
that −ϕ(v)/(A(v)+ v(q)) > c , we have A(v) ≤ A(v)+ v(q) < p/c = M . Thus
‖ϕ‖q= sup v ∈ VR,m,M−ϕ(v)/(A(v)+v(q)). Note that VR,m,M is compact. Since
the function v→−ϕ(v)/(A(v)+v(q)) is usc as the valuative function A is lsc, the
maximum can be achieved in VR,m,M . �

Lemma 5.6. Let ϕ ∈ QPSH(X) be a qpsh function on X and {ϕm} be a decreasing
sequence of algebraic functions converging to ϕ strongly in norm. Set λ−1

= ‖ϕ‖q

and λ−1
m = ‖ϕm‖q. Then, J(λϕ)⊆ J(λmϕm) for every sufficiently large integer m.

Proof. If f ∈ J(λϕ), then ‖ϕ‖ f < (1− ε)/λ for a sufficiently small number ε > 0.
We have ‖ϕm‖ f ≤ ‖ϕ‖ f < (1− ε)/λ < λ−1

m since λm < λ/(1− ε) for sufficiently
large m. It follows that f ∈ J(λmϕm) by Lemma 4.4. �

Lemma 5.7. Let (R,m) be a local ring, let ϕ be a qpsh function on Spec R such
that ϕ ≥ p log |m|, and let q be a nonzero ideal on Spec R. Then there exists a
nontrivial tempered valuation v ∈ VR,m,M which computes ‖ϕ‖q provided that
M > p · ‖ϕ‖−1

q .

Proof. Assume that {ϕm} is a decreasing sequence of ideal functions which converges
to ψ strongly in norm. Then mn

·q⊆ J(λϕ)⊆ J(λmϕm) for every sufficiently large
integer m by Lemma 5.6. We set λ′−1

= ‖ϕ‖mn ·q and λ′−1
m = ‖ϕm‖mn ·q. Note that

M > p · λm for every sufficiently large integer m. Therefore for every sufficiently
large integer m, there exists vm ∈ VR,m,M that computes ‖ϕm‖q by Lemma 5.5. By
passing {ϕm} to a subsequence, we can assume {vm} is a sequence of points that
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converges to some point v ∈ VR,m,M . Note that

−λϕ(v)

A(v)+ v(q)
≥
−λϕm(v)

A(v)+ v(q)
≥
−λϕm(vn)

A(vn)+ vn(q)
− δ

≥ 1−‖λϕm − λnϕn‖q− δ

≥ 1− λ‖ϕm −ϕn‖q− δ− (λn − λ)‖ϕ‖q,

where the second inequality holds because the function v→−λϕm(v)/(A(v)+v(q))
is usc. Since ‖ψm −ψn‖q, δ and λn − λ can be chosen arbitrarily small, we have
−λψ(v)/(A(v)+ v(q))≥ 1 and the conclusion follows. �

Now we turn to treat the global case.

Proof of Theorem 5.2. Pick a generic point ξ of V (J(λϕ) : q). Note that by
Lemma 4.5(3) ‖ϕ‖q = ‖ϕξ‖q·OX,ξ . After replacing X and ϕ by Spec OX,ξ and ϕξ ,
respectively, we reduce the global case to the local case. After replacing ϕ by
max{ϕ, p log |m|} for a sufficiently large integer p by Lemma 5.4, we can assume
that ϕ ≥ p log |m|. Finally by Lemma 5.7, there exists a valuation v ∈ VX,ξ,M that
computes ‖ϕ‖q. �

An immediate consequence of Theorem 5.2 is the following corollary.

Corollary 5.8. Let ϕ be a qpsh function on X. Then, on every open subset U , we
can explicitly write

0(U,J(ϕ))= { f ∈ 0(U,OX ) | v( f )+ A(v)+ϕ(v) > 0 for every v ∈ V∗U }.

Let q be a nonzero ideal on X. Then, q⊆J(ϕ) if and only if v(q)+ A(v)+ϕ(v) > 0
for every v ∈ V∗X .

The following conjecture was raised as [JM12, Conjecture B] (cf. [JM12, The-
orem 7.8]). It is already known for several special cases (see [JM12, Sections 8
and 9]).

Conjecture 5.9. Let ϕ be a qpsh function on X and q be a nonzero ideal on X.
Then there exists a nontrivial quasimonomial valuation v which computes ‖ϕ‖q.
Conversely, if a nontrivial tempered valuation v computes the norm of some qpsh
function, then v is quasimonomial.

6. Applications

If X is a smooth complex projective variety, we are interested in associating a
qpsh function to a line bundle that plays the role of a semipositive singular metric.
The starting point is the following easy observation. Given a pseudo-effective line
bundle L , an ideal a together with a nonnegative rational number λ such that L⊗aλ

is semi-ample corresponds to a semipositive singular metric h in the sense that
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they give the same multiplier ideals J(aλm) = J(h⊗m) for every integer m > 0.
However in general, this correspondence becomes quite mysterious since many
analogue notions cannot be constructed. This has been studied in many relevant
references [Boucksom 2004; Ein et al. 2006; 2009; Ein and Popa 2008; Lehmann
2011; Nakayama 2004]. We will discuss the qpsh function associated to a line
bundle in detail within this section. Besides, it might be possible to generalize the
results in this section to varieties with mild singularities such as klt singularities
(see [Boucksom et al. 2012d; Boucksom et al. 2013b]).

Throughout this section X will be a projective smooth variety over C for sim-
plicity. The term “divisor” will always refer to a Q-Cartier Q-divisor. Given a
section s ∈ H 0(X, L) of a line bundle, the notation log |s| denotes the qpsh function
defined locally by a regular function corresponding to s.

D-psh functions.

Definition 6.1. Let D be a divisor. We define the set

LD :=

{
log |a|

k

∣∣∣km D⊗am is globally generated for every sufficiently divisible m
}
.

We then define set of D-psh functions to be the closure PSH(D)= LD in norm.

Lemma 6.2. (1) PSH(D) is compact and convex in QPSH(X).

(2) PSH(t D)= tPSH(D) for any t ∈Q>0.

(3) PSH(D)+PSH(D′)⊆ PSH(D+ D′).

(4) If A is a semiample divisor, then PSH(D)⊆ PSH(D+ A).

Proof. We firstly prove (1). To prove that PSH(D) is convex, it suffices to show that
LD is convex. Given qpsh functions ϕ, ϕ′ ∈ LD and a rational number 0< λ < 1,
we will show that λϕ+ (1− λ)ϕ′ ∈ LD. If we write ϕ = 1

k log |a|, ϕ′ = 1
k′ log |a′|

and λ= q/p, then

λϕ+ (1− λ)ϕ′ =
1

kp
log |aq

| +
1

k ′ p
log |a′p−q

|

=
1

kk ′ p
log |aqk′

· a′k(p−q)
|.

It is easy to check that kk ′ pmL ⊗ amqk′
· a′mk(p−q) is globally generated for every

sufficiently divisible integer m and the conclusion follows. Note that (2), (3) and
(4) can be proved in a similar way. �

Question 6.3. Let ϕ be a general qpsh function. Does there exist a divisor D such
that ϕ ∈ PSH(D)?
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Definition 6.4. For an ample divisor A, the set of pseudo D-psh functions is defined
to be PSHσ (D) :=

⋂
ε>0 PSH(D+ εA).

Note that this definition is independent of the choice of the ample divisor A, and
that the set PSHσ (D) also satisfies the properties listed in Lemma 6.2.

Theorem 6.5 (Nadel vanishing). Let L be a line bundle on a smooth projective
variety X and L ≡ A + D, where A is a nef and big Q-divisor. Assume that
ϕ ∈ PSHσ (D). Then

H i (X, (K X + L)⊗J(ϕ))= 0

for all i > 0.

Proof. By Kodaira’s lemma, A− δE is ample for some effective divisor E and
every sufficiently small number δ > 0. If we write ϕE = log |OX (−E)|, then by
semicontinuity of multiplier ideals we have J(ϕ)=J(ϕ+δϕE) for every sufficiently
small number δ > 0. After replacing A and ϕ with A−δE and ϕ+δϕE , respectively,
we can assume that A is ample.

By definition we can assume that there exists a sequence of ideal functions {ϕk}

that converges to ϕ strongly in norm, such that ϕk ∈LD+εk A and εk→ 0+. Choose
ε � 1 such that A − εD is ample. We see that J(ϕ) = J((1+ ε)ϕk) for every
sufficiently large integer k by Lemma 4.20. Note that (1+ ε)ϕk ∈ L(1+ε)(D+εk A).
For a sufficiently large integer k, A− εD− (1+ ε)εk A is ample. After replacing
A and ϕ by A− εD − (1+ ε)εk A and (1+ ε)ϕk , respectively, we reduce to the
classical Nadel vanishing (see [Lazarsfeld 2004]). �

As an application of this theorem, one can easily deduce the following theorem
by letting G = K X + (n+ 1)H , where H is a hypersurface of X and n = dim X ,
with the aid of the Castelnuovo–Mumford regularity.

Theorem 6.6 (global generation). Let D be a divisor on X. A qpsh function ϕ lies
in PSHσ (D) if and only if there exists a line bundle G such that (m D+G)⊗J(mϕ)
is globally generated for all m ∈ Z+ with m D integral.

Given a qpsh function ϕ, a positive real number λ is said to be the (higher)
jumping number of ϕ if J((λ− ε)ϕ)) J(λϕ) for every positive real number ε.

Definition 6.7. Let ϕ be a qpsh function. We define the ideal J−(ϕ) to be the
largest ideal in the set {a | ‖log |a|−ϕ‖≤ 1}. One can see that J−(ϕ) can be written
explicitly as

0(U,J−(ϕ))= { f ∈ OX (U ) | v( f )+ A(v)+ϕ(v)≥ 0 for every v ∈ V ∗U }

for every open subset U .
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Lemma 6.8. If ϕ is D-psh for some divisor D, then the descending chain of ideals
J((1− ε)ϕ) stabilizes as ε → 0+. Further, J((1− ε)ϕ) = J−(ϕ) for ε � 1. It
follows that the set of its (higher) jumping numbers is discrete.

Proof. By adding an ample divisor to D, we can assume that D is Cartier. By
Theorem 6.5 and the Castelnuovo–Mumford regularity there exists an ample line
bundle G such that OX (D + G)⊗ J((1− ε)ϕ) is globally generated for ε � 1.
Since the descending chain of vector spaces H 0(X, OX (D +G)⊗ J((1− ε)ϕ))
will stabilize as ε→ 0+, the descending chain of ideals J((1− ε)ϕ) will stabilize.
The reader can find more details in [Lehmann 2011, Theorem 4.2].

Fix a sufficiently small number ε′. Since ‖log |J((1− ε′)ϕ)| − (1− ε)ϕ‖ < 1
for every sufficiently small number ε, we see that ‖log |J((1− ε′)ϕ)| −ϕ‖ ≤ 1. It
follows that J((1− ε)ϕ)⊆ J−(ϕ). To prove the converse inclusion, simply notice
that

0(U,J−(ϕ))= { f ∈ OX (U )|v( f )+ A(v)+ϕ(v)≥ 0 for every v ∈ V ∗U }

and hence J((1− ε)ϕ)⊇ J−(ϕ) for ε� 1 by Corollary 5.8. �

To investigate the structure of the sets PSH(D) and PSHσ (D), we need the
following construction. Given an integer k, a divisor D and a qpsh function ϕ, we
define the linear system Vm(D, ϕ, t) := {L ∈ |xm Dy| | 1

m log |sL | ≤
1
t log |J−(tϕ)|},

where sL is the section associated to the divisor L and ε � 1. If we choose
a(D, ϕ, t)m := b(Vm(D, ϕ, t)), the base ideal of the linear system Vm(D, ϕ, t),
then a(D, ϕ, t)• is a graded sequence of ideals. Moreover, for every positive
rational number t , we define ϕD

t := log |a(D, ϕ, t)•|.

Lemma 6.9. Let D be a divisor on X and ϕ be a qpsh function. Then, ϕ ∈ PSH(D)
if and only if ϕ = limt→∞ ϕ

D
t pointwise.

Proof. First assume that ϕ ∈ PSH(D). Let {ϕm} be a sequence of ideal functions
that converges to ϕ such that each ϕm ∈ LD . If t is not a (higher) jumping number
of ϕ, then, by Lemma 4.20 we have

J−(tϕ)= J((t − ε)ϕ)= J((t − ε+ ε′)ϕm)⊇ J−(tϕm)

and
J−(tϕ)= J(tϕ)= J((t + ε)ϕm)⊆ J−(tϕm)

for every sufficiently large integer m. It follows that J−(tϕ) = J−(tϕm) and
ϕD

t = ϕ
D
m,t . Note that ϕD

m.t ≥ ϕm , and hence 1
t log |J−(tϕ)| ≥ ϕD

t ≥ ϕ. If t is a
(higher) jumping number, then ϕD

t ≥ ϕ
D
t−ε ≥ ϕ. Therefore, we have ‖ϕD

t −ϕ‖ ≤
1
t

and hence ϕ = limt→∞ ϕ
D
t .

Conversely, we assume that ϕ= limt→∞ ϕ
D
t . Since ϕD

t is algebraic from a(D, ϕ, t)•
for each t , ϕD

t is D-psh for every t > 0. Since 1
t log |J−(tϕ)| ≥ ϕD

t and ϕD
t has a
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decreasing subsequence, ϕD
t converges to ϕ strongly in norm, which implies the

conclusion immediately. �

For every nontrivial tempered valuation v, we define v(‖D‖) = v(a•), where
am = b(|xm Dy|).

Proposition 6.10. The set PSH(D) is closed under taking the supremum. The
maximal D-psh function ϕmax can be written explicitly as ϕmax(v)=−v(‖D‖) for
all v ∈ V∗X .

Proof. Let ϕλ be a family of D-psh functions. By Lemma 6.9 ϕλ = limt→∞ ϕ
D
λ,t .

Note that ϕD
λ,t = log |a(D, ϕλ, t)•|, where a(D, ϕλ, t)m = b(Vm(D, ϕλ, t)).

If we write ϕ = supλ ϕλ, then J−(tϕλ) ⊆ J−(tϕ) for every λ and every t . It
follows that b(Vm(D, ϕλ, t)) ⊆ b(Vm(D, ϕ, t)) for every m, λ and t . We deduce
that supλ ϕ

D
λ,t ≤ ϕ

D
t and hence

ϕ(v)= sup
λ

lim
t→∞

ϕD
λ,t(v)≤ lim

t→∞
sup
λ

ϕD
λ,t(v)≤ lim

t→∞
ϕD

t (v)

for every v ∈ V∗X . Note that the pointwise limits appearing in these inequalities
exist because we can take decreasing subsequences which are bounded from below.
Since 1

t log |J−(tϕ)| ≥ ϕD
t , we obtain the equality ϕ = limt→∞ ϕ

D
t and ϕ is D-psh

by Lemma 6.9.
Now we prove that ϕmax(v)=−v(‖D‖) for all v∈V ∗X . Let ϕ be a qpsh function such
that ϕ(v)=−v(‖D‖). Because ϕ is algebraic from a•, where am = b(|xm Dy|), ϕ is
D-psh. It suffices to show that ϕmax ≤ ϕ. For each t , ϕD

max,t = log |a(D, ϕmax, t)•|,
where a(D, ϕmax, t)m = b(Vm(D, ϕmax, t)). It follows that a(D, ϕmax, t)m ⊆ am

and ϕD
max,t ≤ ϕ. Therefore, ϕmax = limt→∞ ϕ

D
max,t ≤ ϕ, which forces ϕmax = ϕ. �

For every nontrivial tempered valuation v, we define

σv(‖D‖) := lim
ε→0+

v(‖D+ εA‖)

for some ample divisor A. Note that [Nakayama 2004] verifies that this definition
is independent of the choice of the ample divisor A.

Proposition 6.11. The set PSHσ (D) is closed under taking the supremum. The
maximal pseudo D-psh function φmax can be expressed as φmax(v) = −σv(‖D‖)
explicitly for all v ∈ V ∗X .

Proof. Let ϕλ be a family of pseudo D-psh functions, and let ϕ = supλ ϕλ. By
Theorem 6.6 there exists an ample divisor G such that ϕλ,k ∈ PSH(D + 1

k G),
where ϕλ,k = 1

k log |J(kϕλ)|. We have supλ ϕλ,k ∈ PSH(D + 1
k G) for every k by

Proposition 6.10. Since
∑
λ

J(kϕλ)⊆ J(kϕ), we have ϕk ≥ supλ ϕλ,k ≥ ϕ. Hence

ϕ = lim
k→∞

(supλ ϕλ,k) ∈ PSHσ (D).
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Now we prove that φmax(v) = −σv(‖D‖) for all v ∈ V ∗X . Let φ(v) = −σv(‖D‖),
and let ϕεmax be the maximal (D+ εA)-psh function for every ε� 1. We see that
φ = limε→0+ ϕ

ε
max pointwise. Because ϕεmax is decreasing as ε→ 0+, J(mϕεmax)

form a descending chain of ideals as ε→ 0+ for every integer m > 0. If we fix
an integer m and a sequence ε1 > ε2 > · · · such that limk→∞ εk = 0, then the
descending chain stabilizes when k� 0 because there exists an ample divisor G
such that m D+G is Cartier and OX (m D+G)⊗J(mϕεk

max) is globally generated
for every k � 0. It follows that ‖ϕεk

max − ϕ
εk′
max‖ <

1
m for all sufficiently large k

and k ′. Equivalently, ϕεk
max form a Cauchy sequence with respect to the norm.

Therefore ϕεk
max converges to φ strongly in norm, and hence φ ∈ PSHσ (D). Note

that φmax ≤ ϕ
ε
max, and hence φmax ≤ φ, which implies the conclusion. �

Question 6.12 [Lehmann 2011, Question 6.15]. Is the maximal pseudo D-psh
function algebraic?

Abundant divisors, introduced in [Nakayama 2004; Boucksom et al. 2013a],
form a class of pseudo-effective divisors with nice asymptotic behaviour. We denote
by κσ (D) the numerical Kodaira dimension. A pseudo-effective divisor D is said
to be abundant if κ(D)= κσ (D). We present the following easy corollary for the
reader’s convenience.

Corollary 6.13. (1) The set PSH(D) is nonempty if and only if D is Q-effective.

(2) 0 ∈ PSH(D) if and only if D is nef and abundant.

(3) The set PSHσ (D) is nonempty if and only if D is pseudo-effective.

(4) 0 ∈ PSHσ (D) if and only if D is nef.

(5) Let ϕmax be the maximal D-psh function, and φmax be the maximal pseudo
D-psh function. Then, D is abundant if and only if ϕmax=φmax.

Proof. The first statement is trivial. The second is a consequence of the main result
of [Russo 2009], and (4) follows from (2) immediately. If D is not pseudo-effective,
then PSHσ (D) is empty from (1). We prove (3) as follows. If D pseudo-effective,
then PSHσ (D) is nonempty by Proposition 6.11. To prove (5), simply notice that
D is abundant if and only if v(‖D‖)= σv(‖D‖) for every divisorial valuation v by
[Lehmann 2011, Proposition 6.18] and the last statement follows by Propositions
6.10 and 6.11. �

Question 6.14. Assume that the divisor D is abundant. Is the set PSH(D) equal to
the set PSHσ (D)?

We introduce the following definition of the perturbed ideal and the diminished
ideal as [Lehmann 2011, Definitions 4.3 and 6.2]. We use the notation Jσ,−(D)
instead of J−(D) to avoid that readers may confuse it with the notation J−(ϕ).
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Definition 6.15. Let D be a pseudo-effective divisor. In the finite descending chain{
J
(∥∥L + 1

m A
∥∥)}∞

m=1, we define the perturbed ideal Jσ,−(D) to be the smallest
ideal, and we define the diminished ideal Jσ (D) to be the largest ideal in the set
{Jσ,−((1+ ε)D)}ε>0.

Finally, we obtain a generalization of [Lehmann 2011, Theorem 6.14].

Theorem 6.16. Let D be a pseudo-effective divisor. Assume that φmax is the maxi-
mal pseudo D-psh function. Then, the perturbed ideal Jσ,−(D)= J−(φmax), and
the diminished ideal Jσ (D)=J(φmax). In particular, we can write Jσ (D) explicitly
as 0(U,Jσ (L)) = { f ∈ 0(U,OX ) | v( f )+ A(v)− σv(‖L‖) > 0 for all v ∈ V∗U }.
Further, a nonzero ideal q⊆ Jσ (‖L‖) if and only if v(q)+ A(v)−σv(‖L‖) > 0 for
all v ∈ V∗X .

Proof. That Jσ,−(D)= J−(φmax) follows from [Lehmann 2011, Proposition 4.7].
To prove the second equality, note that by definition Jσ (D)=J((1+ε)ϕδmax), where
ϕδmax denotes the maximal (D+δA)-psh function for an ample divisor A, sufficiently
small ε and sufficiently small δ = δ(ε). From the proof of Proposition 6.11,
ϕδmax converges to φmax strongly in norm. Therefore, Lemma 4.20 asserts that
J(φmax)= J((1+ ε)ϕδmax)= Jσ (D) as δ→ 0+. The last statement is obvious by
Corollary 5.8. �

Remark 6.17. It should not be too difficult to generalize most results in this
subsection from Q-divisors to R-divisors, that is, one can define D-psh functions
for an R-divisor D and obtain similar results.

Finite generation. The goal of this subsection is to prove the finite generation
proposition below as an application of qpsh functions. For definitions and properties
of different types of Zariski decompositions, divisorial algebras and modules, we
refer to [Nakayama 2004].

Proposition 6.18. Let (X, B) be a log canonical pair. Assume that K X + B is
Q-Cartier and abundant, and that R(K X + B) is finitely generated. Then, for any
reflexive sheaf F, M p

F(K X + B) is a finitely generated R(K X + B)-module.

Before we prove the proposition, we need a lemma.

Lemma 6.19 (global division). Let X be a smooth projective variety of dimension n.
Consider line bundles L and D, a linear system V ⊆ |L| spanned by the sections
{s1, . . . , sl}, and a D-psh function ϕ. If we denote by φV the L-psh function
max1≤ j≤l log |s j |, then for every integer m ≥ n+ 2, any section σ in

H 0(X,OX (K X +mL + D)⊗J(mφV +ϕ))

can be written as a linear combination
∑

j s j g j of sections g j in

H 0(X,OX (K X + (m− 1)L + D)).
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Proof. Let {ϕk ∈ LD} be a sequence of ideal functions that converges to ϕ strongly
in norm. Since J(mφV +ϕk)⊇ J(mφV +ϕ), the section σ vanishes along the ideal
J(mφV + ϕk). If we denote by a the base ideal b(V ), then φV = log |a|. Apply
[Ein and Popa 2008, Theorem 4.1], and we deduce the conclusion. �

Remark 6.20. In the statement of the theorem just cited, one can verify that the
assumption that D⊗ bλ is nef and abundant implies that λ log |b| is D-psh. Note
that Lemma 6.19 is not a generalization of the theorem because we did not obtain
that every g j is in

H 0(X,OX (K X + (m− 1)L + D)⊗J((m− 1)φV +ϕ)).

Nonetheless, it should be possible to generalize in the sense that

g j ∈ H 0(X,OX (K X + (m− 1)L + D)⊗J((m− 1)φV +ϕ)),

if one can develop a theory on the restriction of qpsh functions to subvarieties (see
the proof of [Ein and Popa 2008, Theorem 3.2]).

Proof of Proposition 6.18. We can assume that (X, B) is log smooth of dimension n;
K X + B is a Q-Cartier Q-divisor; and F= OX (A) is a very ample line bundle by
[Birkar 2010, Theorem 1.1]. Since R = R(K X + B) is finitely generated, after a
possible truncation we can assume that R is generated by R1 = H 0(m0(K X + B))
for some integer m0 such that m0(K X + B) is Cartier (see [ibid., Remarks 2.2
and 2.3]). If we set a= b(|m0(K X + B)|) and L :=m0(K X + B), then φ := log |a|
is the maximal L-psh function. The rest of the proof is an analogue of [Demailly
et al. 2013, Section 3]. Let m be a sufficiently large integer (to be specified later),
and let σ be a global section of m(K X + B)+ A. We have

m(K X + B)+ A = K X + (n+ 2)L + D,

where

D := B+ (m− (n+ 2)m0− 1)
(

K X + B+
1
m

A
)
+

m0(n+ 2)+ 1
m

A.

Set
ϕ = ψm + (m− (n+ 2)m0− 1)ϕm,

where ψm is (B + 1
m (m0(n + 2)+ 1)A)-psh such that ‖ψm‖ < 1, and ϕm is the

maximal (K X + B+ 1
m A)-psh function. Notice that

‖log |σ | − (n+ 2)φ−ϕ‖+ ≤ ‖(m0(n+ 2)+ 1)ϕm − (n+ 2)φ−ψm‖
+.

We will show that (m0(n+ 2)+ 1)ϕm ≤ (n+ 2)φ for sufficiently large m, which
implies that ‖log |σ | − (n + 2)φ − ϕ‖+ < 1 and that by definition σ vanishes
along J((n+ 2)φ+ϕ). Since φ is determined on some dual complex 1(Y, D), it
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suffices to prove that (m0(n+ 2)+ 1)ϕm ≤ (n+ 2)φ on 1(Y, D). Further, we can
assume that φ is affine on 1(Y, D). It suffices to check the inequality at vertices
because ϕm is convex on the dual complex. From the argument of Proposition 6.11,
we see that m0ϕm converges to φ strongly in norm since K X + B is abundant.
Therefore for sufficiently large m the inequality (m0(n+ 2)+ 1)/(n+ 2)ϕm ≤ φ

holds at vertices of 1(Y, D), and hence for every nontrivial tempered valuation.
Finally, σ can be written as a linear combination

∑
j s j g j , where g j are sections in

H 0(X,OX ((m−m0)(K X+B)+ A) by Lemma 6.19, which completes the proof. �

Remark 6.21. The above finite generation proposition can be proved in another
way as follows. Since the conclusion that M p

F(K X + B) is a finitely generated
R(K X + B)-module is equivalent to that (X, B) has a good minimal model by
[Birkar 2010, Theorem 1.3], it suffices to prove that (X, B) has a good minimal
model. By [Birkar and Hu 2012, Theorem 5.3] we conclude that (X, B) has a log
minimal model (X ′, B ′). Since the positive part of the CKM-Zariski decomposition
is semi-ample, the log minimal model (X, B) is good. We here give a different
proof without using the minimal model theory, in particular the length of extremal
rays.

Proposition 6.18 can be slightly generalized as follows.

Definition 6.22. [Birkar et al. 2010, Definitions 3.6.4 and 3.6.6] Let D be a divisor
on X . A normal projective variety Z is said to be the ample model of D if there is a
rational map g : X 99K Z and an ample R-divisor H on Z such that if p :W → X
and q :W→ Z resolve g then q is a contraction and we can write p∗D= q∗H+N ,
where N ≥ 0 is an R-divisor and for every B ∼Q p∗D then B ≥ N . Let (X, B) be
a pair. A normal variety Z is said to be the log canonical model of (X, B) if it is
the ample model of K X + B.

Lemma 6.23. Let D be an abundant divisor on a normal projective variety X.
Assume that D has the ample model. Then, R(D) is finitely generated.

Proof. After replacing X by a log resolution, we can assume that g : X 99K Z is a
morphism and D= P+N = g∗H+N , where H is an ample R-divisor on the ample
model Z and N ≥ 0 is an R-divisor such that for every B ∼Q D we have B ≥ N .
Note that D = P + N is a CKM-Zariski decomposition. Since D is abundant, we
have that Fix‖D‖ = Nσ (D)≤ N ≤ Fix‖D‖ by [Lehmann 2011, Proposition 6.18]
and hence P = Pσ (D). Furthermore, we can assume that there exist a smooth
projective variety T and a big Q-divisor G on T such that µ : X→ T is a contraction
and Pσ (D) = Pσ (µ∗G) by [Lehmann 2014, Theorems 5.7 and 6.1]. It follows
that Z is also the ample model of G. Notice that the rational map h : T 99K Z
is birational. Therefore H = p∗G is an R-Cartier Q-divisor and hence Q-Cartier,
which completes the proof. �
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Finally, we obtain the proposition below by combining Proposition 6.18 and
Lemma 6.23.

Proposition 6.24. Let (X, B) be a log canonical pair. Assume that K X + B is
Q-Cartier and abundant, and that (X, B) has the log canonical model. Then,
R(K X + B) is finitely generated. Further, for any reflexive sheaf F, M p

F(K X + B)
is a finitely generated R(K X + B)-module.
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