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We investigate the quasiconformal conjugacy classes of parabolic isometries
acting on complex hyperbolic space. Our main result is that a screw para-
bolic isometry cannot be quasiconformally conjugate to a translation. This
implies that a cyclic group generated by a screw parabolic isometry is not
quasiconformally stable in its deformation space.

We are interested in the quasiconformal deformation theory of a complex hyper-
bolic quasi-Fuchsian group. We mainly focus on the case that the group is a cyclic
group generated by a parabolic isometry.

We recall the definition of quasiconformal stability from Kleinian group theory
(see, for instance, [Bers 1970; Kapovich 2008; Marden 1974; Maskit 1988]). Let
0 be a finitely generated discrete subgroup of the orientation-preserving isometry
group Isom(Hn+1) acting on real hyperbolic (n+1)-space Hn+1. Such a group 0
is called a Kleinian group. A representation ρ : 0 → Isom(Hn+1) is said to
be a deformation if it is a discrete, faithful and type-preserving representation.
The Kleinian group 0 is said to be quasiconformally stable if any deformation
ρ : 0→ Isom(Hn+1) sufficiently near the identity deformation is obtained by a
quasiconformal conjugation. That is, there is a quasiconformal mapping of the
boundary at infinity, φ : ∂Hn+1

→ ∂Hn+1, such that ρ(g)=φ◦g◦φ−1 for any g ∈0.
In H2 and H3, a geometrically finite Kleinian group is quasiconformally stable

[Bers 1970; Marden 1974]. This is one of the fundamental results in the deformation
theory of Kleinian groups. However, there is a nonelementary geometrically finite
Kleinian group of hyperbolic 4-space which is not quasiconformally stable [Kim
2011]. This is mainly due to the presence of screw parabolic isometries in hyperbolic
4-space.

This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-
2011-0021240).
MSC2010: primary 20H10, 30C65; secondary 51M10, 22E40, 32G07.
Keywords: Heisenberg group, parabolic isometry, complex hyperbolic space, quasiconformal

stability.

129

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.270-1
http://dx.doi.org/10.2140/pjm.2014.270.129


130 YOUNGJU KIM

Hyperbolic (n+1)-space Hn+1 has the natural boundary at infinity R̂n . Every
isometry of Hn+1 extends continuously to a Möbius transformation of R̂n which is a
finite composition of reflections in codimension-1 spheres or hyperplanes, and vice
versa. On the boundary at infinity R̂n , a parabolic isometry is Möbius conjugate to
x 7→ Ax+e1 with A ∈ SO(n), A(e1)= e1, where e1= (1, 0, . . . , 0)∈Rn . If A= I ,
then it is called a strictly parabolic isometry or a translation; otherwise it is a screw
parabolic isometry. There are no screw parabolic isometries if n < 3. This means
that there is only one conformal, and hence quasiconformal, conjugacy class of
parabolic isometries in lower dimensions. In H4, screw parabolic isometries are not
quasiconformally conjugate to translations. Furthermore, there are infinitely many
distinct quasiconformal conjugacy classes of screw parabolic isometries. Let 0 be a
cyclic group generated by a translation. Then we can deform 0 into a cyclic group
0′ generated by a screw parabolic isometry such that 0 is arbitrary close to 0′.
Hence, the cyclic group 0 is not quasiconformally stable in its deformation space.
We can generalize this to a nonelementary Kleinian group of H4 (see [Kim 2011] for
details). On the other hand, it is known that a convex cocompact (i.e., geometrically
finite without parabolic isometries) Kleinian group is quasiconformally stable in
any dimension [Izeki 2000].

Now, we consider the case of complex hyperbolic space H2
C

. A complex hyper-
bolic quasi-Fuchsian group is a discrete, faithful, type-preserving and geometrically
finite representation of the fundamental group of a surface in the group PU(2, 1)
of holomorphic isometries acting on complex hyperbolic space H2

C
[Goldman

1999; Parker and Platis 2010; Schwartz 2007]. It is the complex counterpart of a
Kleinian group of real hyperbolic space. The deformation space is the set of all
such groups factored by the conjugation action of the holomorphic isometry group
PU(2, 1). Naturally, we can ask if a complex hyperbolic quasi-Fuchsian group is
quasiconformally stable in its deformation space (see [Parker and Platis 2010] for
more related questions). To that end, we consider a cyclic group generated by a
parabolic isometry of H2

C
.

The boundary at infinity of complex hyperbolic space can be identified with
the one-point compactification of the Heisenberg group H: ∂H2

C
= H∪ {∞}. A

holomorphic isometry of H2
C

extends continuously to an extended Heisenberg
group automorphism of ∂H2

C
, and vice versa. On ∂H2

C
, a parabolic isometry of

H2
C

is conjugate to either a Heisenberg translation or the composition of a vertical
translation and a rotation by an element of PU(2, 1). We call the latter a screw
parabolic isometry.

A Heisenberg translation can be conjugate to either a horizontal translation or
a vertical translation by an element of PU(2, 1). We can conjugate a horizontal
translation (or a vertical translation) further by an element of PU(2, 1) so that the
translation length is 1 with respect to the Cygan norm of the Heisenberg group.
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Therefore, we have the following classification of conformal classes of parabolic
isometries up to the conjugation action of PU(2, 1):

(1)

• a horizontal translation T(1,0),

• a vertical translation T(0,1),

• a 1-parameter family of screw parabolic isometries {Aθ : θ ∈ (0, 2π)},

where

(2) T(ζ,ν) =

1 −
√

2ζ −|ζ |2+ iν
0 1

√
2ζ

0 0 1

 ∈ SU(2, 1)

for ζ ∈ C, ν ∈ R, and

(3) Aθ =

1 0 i
0 eiθ 0
0 0 1

 ∈ SU(2, 1)

for θ ∈ (0, 2π) (see Section 1B for details).
Miner [1994] showed that a horizontal translation and a vertical translation are not

quasiconformally conjugate. That is, no quasiconformal mapping of the Heisenberg
group conjugates a horizontal translation to a vertical one. We prove here that a
screw parabolic isometry is not quasiconformally conjugate to a translation, as
follows:

Theorem 3.3. Let T(0,1)(z, t) = (z, t + 1) be a vertical translation and A(z, t) =
(eiθ z, t+1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the Heisenberg
group H. Then A is not quasiconformally conjugate to T(0,1).

Theorem 3.7. Let T(1,0)(z, t)= (z+ 1, t + 2 Im z̄) be a horizontal translation and
Aθ (z, t)= (eiθ z, t + 1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the
Heisenberg group H. Then Aθ is not quasiconformally conjugate to T(1,0).

A screw parabolic isometry is called rational if some iteration of it becomes a
translation; otherwise, it is called irrational. For a rational screw parabolic isometry
A, the order of A is the smallest positive integer n such that An becomes a translation.
For the 1-parameter family of screw parabolic isometries from (1), we prove that
a rational screw parabolic isometry cannot be quasiconformally conjugate to an
irrational screw parabolic isometry in Corollary 3.4, that two distinct rational screw
parabolic isometries are quasiconformally conjugate only if they have the same
order in Corollary 3.5, and that two distinct irrational screw parabolic isometries
are not quasiconformally conjugate to each other in Proposition 3.6. In summary,
together with the result of [ibid.], we have the following distinct quasiconformal
conjugacy classes of parabolic isometries of H2

C
(compare with the list (1)):
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• a horizontal translation T(1,0);

• a vertical translation T(0,1);

• a subfamily of irrational screw parabolic isometries {Aϑ :ϑ ∈(0,2π) irrational};

• a subfamily of rational screw parabolic isometries {A2π i/n : n = 2, 3, . . . }.

Let 0 < PU(2, 1) be a cyclic group generated by a vertical translation. Then we
can deform 0 into a cyclic group 0′ generated by a screw parabolic isometry such
that 0 is arbitrary close to 0′ with respect to the l2 norm of PU(2, 1). Applying
Theorem 3.3, this shows that 0 is not quasiconformally stable in its deformation
space. Thus, we have:

Theorem. Let 0 < PU(2, 1) be a cyclic group generated by a vertical translation.
Then it is not quasiconformally stable in its deformation space.

This paper is organized as follows. In Section 1, we recall some basic facts
related to complex hyperbolic geometry, the Heisenberg group and the theory
of quasiconformal mappings. In Section 2, we construct a family of horizontal
curves in a cylindrical region and compute the modulus of the curve family. This
curve family will be used to prove Theorem 3.3 in Section 3. We will also prove
Theorem 3.7 in Section 3.

1. Preliminaries

Throughout this section, we use [Goldman 1999] as references for the basic defini-
tions of complex hyperbolic geometry and [Korányi and Reimann 1985; 1995] for
the theory of quasiconformal mappings.

1A. Complex hyperbolic space. Let C2,1 be the complex vector space C3 with the
Hermitian form of signature (2, 1) given by

(4) 〈z,w〉 = w∗ J z = z1w3+ z2w2+ z3w1,

where the Hermitian matrix is

J =

0 0 1
0 1 0
1 0 0

 .
Consider the following subspaces of C2,1:

(5)
V− = {z ∈ C2,1

: 〈z, z〉< 0},

V0 = {z ∈ C2,1
−{0} : 〈z, z〉 = 0}.

Let P : C2,1
− {0} → CP2 be the canonical projection onto complex projective

space. Then complex hyperbolic space H2
C

is defined to be PV− and the boundary at
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infinity ∂H2
C

to be PV0. We define the Siegel domain model of complex hyperbolic
space by considering the section defined by z3 = 1. For any z = (z1, z2) ∈ C2,
we lift the point z to z = (z1, z2, 1) ∈ C2,1, called the standard lift of z. Then
〈z, z〉 = z1 + z2 z̄2 + z̄1. Hence the Siegel domain model of complex hyperbolic
space is defined by

(6) H2
C = {(z1, z2) ∈ C2

: 2 Re(z1)+ |z2|
2 < 0}.

The boundary is the one-point compactification of the paraboloid defined by
{(z1, z2) ∈ C2

: 2 Re(z1)+ |z2|
2
= 0}. The standard lift of∞ is (1, 0, 0) ∈ C2,1.

The Bergman metric ρ on H2
C

is defined by

(7) cosh2
(
ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

,

where z and w are the standard lifts of z and w ∈H2
C

. Let SU(2, 1) be the group of
unitary matrices which preserve the given Hermitian form with determinant 1. Then
the group of holomorphic isometries of H2

C
is PU(2, 1)= SU(2, 1)/{I, ωI, ω2 I },

where ω = (−1+ i
√

3)/2 is a cube root of unity.
Let z= (z1, z2)∈ ∂H2

C
be a finite point with standard lift z= (z1, z2, 1) satisfying

(8) 2 Re(z1)+ |z2|
2
= 0.

We write ζ = z2/
√

2 ∈ C. Then (8) implies that 2 Re(z1) = −2|ζ |2. We can also
write z1 =−|ζ |

2
+ iν for ν ∈ R. Thus,

(9) z =

−|ζ |2+ iν
√

2ζ
1


for ζ ∈ C and ν ∈ R. Thus, we identify the boundary ∂H2

C
with the one-point

compactification of C×R. Furthermore, an element T(ζ,ν) ∈ SU(2, 1) of (2) is the
unique unipotent upper triangular matrix which sends (0, 0) ∈ C×R to the finite
point (ζ, ν) ∈C×R. The group structure of the unipotent upper triangular matrices
induces a group multiplication on C×R, which is the Heisenberg group structure.

1B. Heisenberg group. The Heisenberg group H can be described as the set of
pairs (z, t) ∈ C×R with the group multiplication

(10) (z1, t1) · (z2, t2)= (z1+ z2, t1+ t2+ 2 Im z1 z̄2).

The Cygan norm on H is defined by |(z, t)| = (|z|4+ t2)1/4, and the Cygan metric
d is given by

(11) d((z1, t1), (z2, t2))= |(z1, t1)−1
·(z2, t2)|.
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The Heisenberg group H acts on itself by left translation: T(z0,t0)(z, t)= (z0, t0)·(z, t)
for (z0, t0) ∈ H. A Heisenberg translation of the form T(0,t) for t ∈ R is called a
vertical translation. The unitary group U (1) acts by rotations: (z, t) 7→ (λz, t) for
a unit λ ∈ C−{1}. Real dilation is defined by (z, t) 7→ (r z, r2t) for r ∈ R+−{1}.
A parabolic Heisenberg group automorphism is either a Heisenberg translation
or the composition of a vertical translation and a rotation. We call the latter
type screw parabolic. A screw parabolic automorphism A(z, t)= (eiθ z, t + s), for
θ ∈ (0, 2π), s ∈R, is said to be rational if some iteration of it becomes a Heisenberg
translation. Otherwise, it is said to be irrational. The Heisenberg similarity group
is generated by Heisenberg translations, rotations, and real dilations.

It is known to many people that there are two conformal conjugacy classes of
Heisenberg translations. More precisely, we can conjugate a Heisenberg translation
by a holomorphic isometry of H2

C
to obtain a horizontal translation or a vertical

translation in the following way. Let T be a nonvertical translation. We may
conjugate T by a Heisenberg automorphism m(z, t) = (λeiθ z, λ2t) for λ ∈ R+,
θ ∈ [0, 2π), such that

(12) m ◦ T ◦m−1
= T(r,s),

where T(r,s)(z, t)= (z+r, t+s+2r Im z̄) for some real numbers r and s with r 6= 0.
For a computation, we note that for w ∈C, (w, t)(r, s)(−w,−t)= (r, s+4r Imw)

and hence s+ 4r Imw = 0 if Imw =−s/4r . We conjugate both sides of (12) by a
Heisenberg translation T(w,t) with Imw =−s/4r as follows:

(13) T(w,t)mT m−1T−1
(w,t) = T(w,t)T(r,s)T−1

(w,t) = T(r,0).

Conjugating both sides of (13) by a dilation L(z, t)= (Lz, L2t) for some L ∈ R+,
we have

(14) LT(w,t)mT m−1T−1
(w,t)L

−1
= LT(r,0)L−1

= T(1,0),

where T(1,0)(z, t) = (z + 1, t + 2 Im z̄). Thus, any nonvertical translation T is
conjugate to T(1,0) by a Heisenberg automorphism.

A screw parabolic isometry can be conjugated to Aθ (z, t)= (eiθ z, t + 1), with
θ ∈ (0, 2π), by an element of SU(2, 1). In addition, two distinct normalized screw
parabolic isometries are not SU(2, 1)-conjugate to each other. Therefore, we have
the following classification of conformal classes of parabolic isometries up to the
conjugation action of the holomorphic isometries of H2

C
:

• a horizontal translation T(1,0)(z, t)= (z+ 1, t + 2 Im z̄);

• a vertical translation T(0,1)(z, t)= (z, t + 1);
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• a 1-parameter family of screw parabolic isometries

{Aθ (z, t)= (eiθ z, t + 1) : θ ∈ (0, 2π)}.

1C. Quasiconformal mappings. Let φ :H→H be a homeomorphism. We define

(15) M(p, r)= sup
{q:d(p,q)=r}

d(φp, φq) and m(p, r)= inf
{q:d(p,q)=r}

d(φp, φq)

for p ∈H and r > 0.

Definition 1.1. A homeomorphism φ : H → H is called K -quasiconformal if
the function

(16) H(p)= lim sup
r→0

M(p, r)
m(p, r)

for p ∈H is uniformly bounded by K .

We also need to use the Carnot–Carathéodory metric dcc for our proof with
quasiconformal mappings. A smooth curve γ : [0, 1] →H is horizontal if, for all
t ∈ [0, 1], its tangent vector γ̇ (t) lies in the subspace of the tangent space spanned by
the vector fields X = ∂/∂x+2y ∂/∂t and Y = ∂/∂y−2x ∂/∂t for (x, y, t)∈C×R.
We define a quadratic form g on the planes generated by vector fields X and Y
such that X and Y are orthonormal. Then the Carnot–Carathéodory length of γ is
given by

(17) l(γ )=
∫ 1

0
g(γ̇ (t), γ̇ (t))1/2 dt

and the Carnot–Carathéodory distance dcc between two points p, q ∈ H is the
infimum of the Carnot–Carathéodory lengths of all horizontal curves connecting p
to q .

Let 0 be a family of piecewise-C1 horizontal curves. Denote by60 the collection
of nonnegative Borel measurable functions σ :H→ R such that

∫
γ
σ ≥ 1 for all

γ ∈ 0. These are the so-called admissible functions. Then we define the modulus
of 0 by

(18) M(0)= inf
σ∈60

∫
H
σ 4 dvol.

We now relate the modulus of a curve family to a quasiconformal mapping.

Theorem 1.2 [Korányi and Reimann 1995]. If a homeomorphism φ : H→ H is
K -quasiconformal, then

(19)
1

K 2 M(0)≤M(φ0)≤ K 2M(0)

for any curve family 0.
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The Cygan metric d and the Carnot–Carathéodory metric dcc give us the same
classes of quasiconformal mappings since they are bi-Lipschitz related:

Theorem 1.3 [Basmajian and Miner 1998]. For any p, q ∈H,

d(p, q)≤ dcc(p, q)≤
√
πd(p, q).

Finally, we need the following property of quasiconformal mappings.

Proposition 1.4 [Korányi and Reimann 1995]. There exists a constant C such that
for any K -quasiconformal mapping φ :H→H,

M(p, r)
m(p, r)

≤ eK C

for any p ∈H and r > 0.

2. The modulus of a cylinder

We construct here a family of piecewise smooth horizontal curves in a cylindrical
region and compute its modulus. Let α0 : [0, 1] → H be a piecewise smooth
horizontal curve defined by α0(t)=α1(t)∗α2(t)∗α3(t)∗α4(t) (see Figure 1), where

(20)

α1(t)= (2ti, 0), 0≤ t ≤ 1
4 ,

α2(t)=
(
2t − 1

2 +
1
2 i, 2t − 1

2

)
, 1

4 ≤ t ≤ 1
2 ,

α3(t)=
( 1

2 +
( 3

2 − 2t
)
i, 2t − 1

2

)
, 1

2 ≤ t ≤ 3
4 ,

α4(t)= (2− 2t, 1), 3
4 ≤ t ≤ 1.

x

y

t

(0; 1)
�

1
2
; 1

�

�
1Ci

2
; 1

2

�

�
i
2
; 0

�

(0; 0)

Figure 1. A piecewise smooth horizontal curve α0(t).
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Note that α0(0)= (0, 0), α0(1)= (0, 1), and |α̇i (t)| = 2. The Carnot–Carathéodory
length of α0 is

l(α0)=

4∑
i=1

∫ 1/4

0
|α̇i (t)| dt = 2.

Translating α0 by T(z,0), for (z, 0) ∈H, produces a piecewise smooth horizontal
curve αz , given by

(21) αz(t)= T(z,0)α0(t), 0≤ t ≤ 1,

from αz(0) = (z, 0) to αz(1) = (z, 1). Let αi
z(t) = T(z,0)αi (t). Then αz(t) =

α1
z (t) ∗α

2
z (t) ∗α

3
z (t) ∗α

4
z (t), where

α1
z (t)= (x, y+ 2t,−4xt), 0≤ t ≤ 1

4 ,(22)

α2
z (t)=

(
x + 2t − 1

2 , y+ 1
2 , 2t − 1

2 − x + 4t y− y
)
, 1

4 ≤ t ≤ 1
2 ,(23)

α3
z (t)=

(
x + 1

2 , y+ 3
2 − 2t, 2t − 1

2 − 3x + 4t x + y
)
, 1

2 ≤ t ≤ 3
4 ,(24)

α4
z (t)= (x + 2− 2t, y, 1+ 2(2− 2t)y), 3

4 ≤ t ≤ 1.(25)

Since Heisenberg translations are isometries with respect to the Carnot–Carathéo-
dory metric, all curves αz have Carnot–Carathéodory length 2. Define a family of
curves 0r,R for 0< r < R by

(26) 0r,R = {αz : r ≤ |z| ≤ R}.

This family of curves defines a mapping α from the cylindrical region

D = {(x, y) ∈ C : r2 < x2
+ y2 < R2

}× [0, 1]

to H, given by

(27) α(x, y, t)= αx+yi (t).

Let Di = {(x, y) : r2 < x2
+ y2 < R2

} × [(i − 1)/4, i/4], i = 1, 2, 3, 4, so that
D =

⋃4
i=1 Di . Then the Jacobian determinant of α is given by

(28) |Jα(x, y, t)| =


4|x | on D1,

4|1+ y| on D2,

4|1+ x | on D3,

4|y| on D4.

Lemma 2.1. For 1< r < R, we have the following lower bound for the modulus of
the curve family:

M(0r,R)≥
1

256(R
2
− r2)

(
π

2
− 2 arctan

1
√

r2− 1

)
.
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Proof. Let σ be an arbitrary admissible function in 60√r ,
√

R
. By Hölder’s inequality,

(29) 1≤
∫
αz

σ ≤

(∫ 1

0
σ 2(αz(t)) dt

)1/2(∫ 1

0
|α̇z(t)|2 dt

)1/2

.

Since
∫ 1

0 |α̇z(t)|2 dt = 2,

(30) 1
2
≤

∫ 1

0
σ 2(αz(t)) dt =

4∑
i=1

∫ i
4

i−1
4

σ 2(αi
z(t)) dt.

Applying Hölder’s inequality to each term of the right-hand side, we have

(31)
∫ i

4

i−1
4

σ 2(αi
z(t))|Jα|

1/2 1
|Jα|1/2

dt

≤

(∫ i
4

i−1
4

σ 4(αi
z(t))|Jα| dt

)1/2(∫ i
4

i−1
4

1
|Jα|

dt
)1/2

.

From (30), using the Jacobian determinant (28) and (31), we have

(32) 1
2
≤

4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1
2
(∫ i

4

i−1
4

1
|Jα|

dt
)1

2

≤

( 4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1
2
)( 4∑

i=1

(∫ i
4

i−1
4

1
|Jα|

dt
)1

2
)

≤
1
4

( 4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1
2
)(

1
√
|x |
+

1
√
|x+1|

+
1
√
|y|
+

1
√
|y+1|

)
.

Thus,

(33) 2
(

1
√
|x |
+

1
√
|x + 1|

+
1
√
|y|
+

1
√
|y+ 1|

)−1

≤

4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1/2

≤ 4
( 4∑

i=1

∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1/2

.

Equations (31), (32) and (33) only hold if |Jα| 6= 0. However, when we estimate a
lower bound of the modulus in (35), we will restrict the domain of the integration
so that we may assume |Jα| 6= 0.

Using the trivial inequality

(34) 4
∫
α(D)

σ 4 dvol≥
4∑

i=1

∫
α(Di )

σ 4 dvol
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and defining U = {x, y : r2
≤ x2
+ y2
≤ R2, x ≥ 1, y ≥ 1}, we have

(35)
∫

H
σ 4 dvol≥

∫
α(D)

σ 4 dvol= 1
4

4∑
i=1

∫
α(Di )

σ 4 dvol

≥

4∑
i=1

∫∫
U

∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt dx dy

≥

∫∫
U

1
4

(
1
√
|x |
+

1
√
|x + 1|

+
1
√
|y|
+

1
√
|y+ 1|

)−2

dx dy

≥
1

256 Area(U );

the third inequality follows from (33) and the fact that dvol= 4 dx dy dt ; for the
last inequality we argue as follows:(

1
√
|x |
+

1
√
|x + 1|

+
1
√
|y|
+

1
√
|y+ 1|

)−2

≥

( √
|x(x + 1)y(y+ 1)

√
|(x + 1)y(y+ 1)|+

√
|xy(y+ 1)|+

√
|x(x + 1)(y+ 1)|+

√
|x(x + 1)y|

)2

≥

( √
|x(x + 1)y(y+ 1)|

4
√
|(x + 1)y(y+ 1)| + |xy(y+ 1)| + |x(x + 1)(y+ 1)| + |x(x + 1)y|

)2

≥
1
16
·

|x(x + 1)y(y+ 1)|
|(x + 1)y(y+ 1)| + |xy(y+ 1)| + |x(x + 1)(y+ 1)| + |x(x + 1)y|

≥
1
16
·

x(x + 1)y(y+ 1)
4x(x + 1)y(y+ 1)

=
1

64
if x ≥ 1, y ≥ 1.

Since σ was arbitrary, we obtain (see Figure 2)

M(0r,R)≥
1

256(R
2
− r2)

(
π

2
− 2 arctan

1
√

r2− 1

)
�

3. Parabolic quasiconformal conjugacy classes

Throughout this section, let A(z, t)= Aθ (z, t)= (eiθ z, t + 1) be a screw parabolic
automorphism of the Heisenberg group H for θ ∈ (0, 2π), and

T(z0,t0)(z, t)= (z+ z0, t + t0+ 2 Im z0 z̄)

be a Heisenberg translation for (z0, t0) ∈H. An injective map φ :H→H is called
quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) such that

(36) d(x, y)≤ t d(x, z) =⇒ d(φx, φy)≤ η(t)d(φx, φz)

for x, y, z ∈H, t ∈ [0,∞).
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1

1

θ

r R x

y

Figure 2. θ = π
2
− 2 arctan 1

√
r2−1

(see previous page).

Theorem 3.1 [Heinonen and Holopainen 1997, Theorem 6.21]. If φ : H→ H is
quasiconformal, then it is quasisymmetric.

Lemma 3.2. Let φ :H→H be a quasiconformal map that fixes all integer points
(0, n) on the vertical axis. Then there exist a nondecreasing function c : [0,∞)→
[0,∞) and a constant r0 > 0 satisfying:

• limr→∞c(r)=∞,

• for any reiθ
∈ C with r > r0,

(37) |p(φ(reiθ , 0))| ≥ c(r),

where p :H→ C is the vertical projection.

Proof. Throughout the proof, [x] denotes the greatest integer less than or equal to x
for any x ∈ R and B(p, r) the ball of radius r ≥ 0 centered at p ∈H.

We use the property that the quasiconformal map φ is quasisymmetric for a
homeomorphism η : [0,∞)→ [0,∞) (Theorem 3.1). For any reiθ

∈ C, r > 0,

d((0, 0), (0, [r ]2))
d((0, 0), (reiθ , 0))

=
[r ]
r
≤ 1

implies that

d(φ(0, 0), φ(0, [r ]2))
d(φ(0, 0), φ(reiθ , 0))

=
[r ]

d((0, 0), φ(reiθ , 0))
≤ η(1).
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Thus we have

(38)
[r ]
η(1)
≤ d((0, 0), φ(reiθ , 0)),

and hence φ(reiθ , 0) lies in the complement of the ball B((0, 0), [r ]/η(1)).
Similarly, for any reiθ

∈ C and any integer n,

(39)
d((0, n), (0, 0))

d((0, n), (reiθ , 0))
=

√
|n|

(r4+ n2)1/4
≤ 1

implies

(40)
d(φ(0, n), φ(0, 0))

d(φ(0, n), φ(reiθ , 0))
=

√
|n|

d((0, n), φ(reiθ , 0))
≤ η(1).

Thus,

(41)
√
|n|

η(1)
≤ d((0, n), φ(reiθ , 0)),

and hence φ(reiθ , 0) lies in the complement of the ball B((0, n),
√
|n|/η(1)). Since

the integer n was arbitrary, the image φ(reiθ , 0) also lies in the complement of
the set ⋃

n∈Z

B
(
(0, n),

√
|n|

η(1)

)
.

Therefore, together with (38), the image φ(reiθ , 0) should lie in the complement of

Dr = B
(
(0, 0),

[r ]
η(1)

)
∪

⋃
n∈Z

B
(
(0, n),

√
|n|

η(1)

)
.

Note that the t-intersects of the sphere of radius [r ]/η(1) centered at (0, 0) are
±(0, [r ]2/η2(1)). We put

nr =

[
[r ]2

η2(1)

]
∈ N.

Take a positive real number r0 large enough that nr0 > η(1).
To finish the proof, we will show that for r > r0, Dr contains an infinite cylinder

Cr = {(z, t) ∈H : |z| ≤ c(r), t ∈ R},

where c(r) is a positive function such that limr→∞ c(r)=∞. Since Dr is symmetric
with respect to the z-plane of H, it suffices to show that the upper half of Dr , denoted
by 1

2 Dr , contains a half cylinder 1
2Cr = {(z, t) ∈H : |z| ≤ c(r), t ≥ 0}.

Since

B
(
(0, n),

√
nr

η(1)

)
⊆ B

(
(0, n),

√
n

η(1)

)
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[r ]
η(1) z-plane

t-axis

nr+2

nr+1

nr

√
nr

η(1)

2
√

nr
η2(1)
−

1
4

[r ]2

η2(1)

Figure 3. A set 1
2 D′r .

for n > nr > 0, the set 1
2 Dr contains a proper subset 1

2 D′r (see Figure 3):

1
2 D′r = B

(
(0, 0),

[r ]
η(1)

)
∪

⋃
n≥nr

B
(
(0, n),

√
nr

η(1)

)
.

Take

c(r)=min
{√

nr
η2(1)

−
1
4
,
[r ]
η(1)

}
.

Then we see that 1
2 D′r contains the half cylinder 1

2Cr ={(z, t)∈H : |z|≤ c(r), t ≥ 0}.
Therefore, we have the lemma. �

Theorem 3.3. Let T(0,1)(z, t) = (z, t + 1) be a vertical translation and A(z, t) =
(eiθ z, t+1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the Heisenberg
group H. Then A is not quasiconformally conjugate to T(0,1).

Proof. Suppose, to the contrary, that a K -quasiconformal map φ :H→H exists
such that

(42) φ ◦ A ◦φ−1
= T(0,1).
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Let 01 and 02 be the cyclic groups generated by A and T(0,1), respectively. Then φ
projects to a K -quasiconformal mapping, called φ again, between the quotients.
That is,

(43) φ :H/01→H/02.

If φ does not fix (0, 0), we compose (42) with a Heisenberg translation m that
sends φ(0, 0) to (0, 0), so that we have

(44) m ◦φ ◦ A = m ◦ T(0,1) ◦φ.

Because the vertical translation T(0,1) commutes with all Heisenberg translations,

(45) m ◦φ ◦ A = T(0,1) ◦m ◦φ,

and since m is conformal, m ◦φ is also K -quasiconformal and fixes (0, 0). Hence,
without loss of generality we may assume that the quasiconformal mapping φ of
(42) fixes (0, 0).

Evaluating (42) at (0, 0) shows that φ(0, 1)= (0, 1). By induction, φ fixes all
integer points {(0, n)} on the vertical axes. The global estimate of Proposition 1.4
implies that there exists a constant c0 such that for any given integer r , there is
some r ′ for which

(46) Br ′ ⊆ φ(B√r )⊆ Bc0r ′,

where Bt is a ball of radius t centered at the origin. Since the integer point (0, r) is
fixed by φ, the point (0, r) also lies in φ(S√r ), where St is the sphere of radius t
centered at the origin. Hence, (46) implies that

(47) r ′ ≤
√

r ≤ c0r ′.

We consider the curve family 0√r ,
√

R from (26), where r and R are square
integers satisfying r0 <

√
r <
√

R and r0 is the constant from Lemma 3.2. We
put 0 = 0√r ,

√
R during this proof. All curves αz in 0 have length

√
π and are

homotopic to the generator of π1(H/01).
We now compute the modulus of the family φ0 consisting of the images of

curves in 0 under φ. For any r > 0, let lr denote the Carnot–Carathéodory distance
from (r, 0) to A(r, 0)= (eiθr, 1). Since the Carnot–Carathéodory distance is larger
than or equal to the Cygan distance (Theorem 1.3), we have

(48) lr ≥ d
(
(r, 0), (reiθ , 1)

)
=

(
24r4 sin4 θ

2
+ 1

)1/4
.

Since the Carnot–Carathéodory distance and the Cygan distance are invariant
under Heisenberg translations, the length of any horizontal curve from (z, t) to
A(z, t)= (eiθ z, t+1) is at least l|z|. Note that φ0 is the family of curves connecting
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φ(p) to Aφ(p), where p belongs to the annulus {(z, 0) ∈ H :
√

r ≤ |z| ≤
√

R}.
Using Lemma 3.2, we see that every curve γ ∈ φ0 has length at least lc(

√
r), where

c : [0,∞)→ [0,∞) is the function from the lemma.
We denote by D the support of the curve family φ0:

D = φ ◦α
({

z ∈ C :
√

r < |z|<
√

R
}
×[0, 1]

)
,

where α is the mapping of (27). Since each curve of 0 is contained in a fundamental
domain for the action of the cyclic group 〈A〉, and the quasiconformal homeomor-
phism φ conjugates A to T (see (42)), D is also contained in a fundamental domain
for the action of the cyclic group 〈T 〉. Note that T is the vertical translation by 1.
Thus, the intersection of a vertical line with D might have several components, but
the total length is bounded by 1.

Now, let σ = 1/lc(
√

r) be a constant function whose support is D. Then for any
γ ∈ φ0,

(49)
∫
γ

σ =
1

lc(
√

r)
l(γ )≥ 1,

and hence σ is an admissible function of φ0. Therefore,

(50) M(φ0)≤
∫

H
σ 4 dvol=

∫
D
σ 4 dvol≤ σ 4

∫
p(D)

1 dx dy,

where p :H→ C is the vertical projection.
Since the curves in 0 belong to the ball B√R+1, D ⊆ φ(B√R+1). Again,

Proposition 1.4 implies that

(51) BR̃ ⊆ φ(B√R+1)⊆ Bc0 R̃

for some R̃ > 0. Because the integer point (0, R+ 1) is fixed by φ, (0, R+ 1) lies
in the image of the sphere φ(S√R+1) and hence R̃ ≤

√
R+ 1≤ c0 R̃. In particular,

we have c0 R̃ ≤ c0
√

R+ 1. Therefore, we have p(D)⊆ p(Bc0
√

R+1). From (50),

(52) σ 4
∫

p(D)
1 dx dy ≤

1
l4
c(
√

r)

∫
p(Bc0

√
R+1)

1 dx dy

=
πc2

0(R+ 1)

l4
c(
√

r)

≤
πc2

0(R+ 1)

24c4(
√

r) sin4 θ
2 + 1

.

Now we finish the proof by deriving a contradiction. Since φ is K -quasiconformal,

(53) M(0)≤ K 2 M(φ0).
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Combining Lemma 2.1, (52), and (53), we have

(54) 1
256(R− r)

(
π

2
− 2 arctan

1
√

r − 1

)
≤

πc2
0 K 2(R+ 1)

24c4(
√

r) sin4 θ
2 + 1

.

Because the square integers r < R are arbitrary, we take R= 4r . Lemma 3.2 implies
that c(

√
r)→∞ as r→∞, and hence we have a contradiction. �

For a positive real number n ∈ R+− {1}, we will denote simply by n the real
dilation (z, t) 7→ (nz, n2t) We will use the following normalization repeatedly:

(
√

n)−1 An
θ (
√

n)(z, t)= (
√

n)−1 An
θ (
√

n z, nt)(55)

= (
√

n)−1(eniθ√n z, nt + n)

= (eniθ z, t + 1)= Anθ (z, t),

n−1T(r,s)n(z, t)= n−1T(r,s)(nz, n2t)(56)

= n−1(nz+ r, n2t + s+ 2rn Im z̄)

=

(
z+ r

n
, t + s

n2 +
2r
n

Im z̄
)
= T(r/n,s/n2)(z, t),

where n ∈ Z, Aθ (z, t)= (eiθ z, t + 1) for θ ∈ [0, 2π), and

T(r,s)(z, t)= (z+ r, t + s+ 2r Im z̄)

for r , s ∈ R.

Corollary 3.4. A rational screw parabolic automorphism is not quasiconformally
conjugate to an irrational screw parabolic automorphism.

Proof. Let Aθ be a rational screw parabolic automorphism and Aϑ be an irra-
tional screw parabolic automorphism of H. Suppose, to the contrary, that a K -
quasiconformal map φ :H→H exists such that φ ◦ Aϑ ◦φ−1

= Aθ . Then for any
integer n,

(57) φ ◦ An
ϑ ◦φ

−1
= An

θ .

Because Aθ is a rational screw parabolic automorphism, An0
θ = T(0,n0) for some

integer n0. We conjugate both sides of (57) by a real dilation
√

n0 and use (55) and
(56) as follows:

(58)
(
√

n0)
−1φAn0

ϑ φ
−1√n0 = (

√
n0)
−1T(0,n0)

√
n0,

(
√

n0)
−1φ(
√

n0 An0ϑ(
√

n0)
−1)φ−1√n0 = T(0,1).

This implies that a screw parabolic An0ϑ(z, t) = (en0ϑi z, t + 1) is conjugate to a
vertical translation T(0,1) by a quasiconformal mapping (

√
n0)
−1φ
√

n0, which is a
contradiction to Theorem 3.3. �
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Applying the same idea as above, we also have:

Corollary 3.5. If two rational screw parabolic automorphisms are quasiconfor-
mally conjugate, then they have the same order.

Proposition 3.6. Let Aθ and Aϑ be two distinct irrational screw parabolic auto-
morphisms for θ, ϑ ∈ (0, 2π). Then Aθ and Aϑ are not quasiconformally conjugate
to each other.

Proof. Using the normalization of (55), the proof follows the same idea of Proposi-
tion 4.15 of [Kim 2011]. �

We need the following theorem to prove that a screw parabolic automorphism is
not quasiconformally conjugate to a horizontal translation.

Theorem F [Korányi and Reimann 1995]. If {ϕn : G→ Ĥ}, for a proper subset
G ⊂H, is a sequence of K -quasiconformal mappings such that every mapping ϕn

omits two points an and bn (depending on ϕn) with a distance at least l (l a fixed
positive number independent of ϕn), then there exists a locally uniformly convergent
subsequence converging to a K -quasiconformal mapping or to a constant.

Theorem 3.7. Let T(1,0)(z, t)= (z+ 1, t + 2 Im z̄) be a horizontal translation and
Aθ (z, t)= (eiθ z, t + 1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the
Heisenberg group H. Then Aθ is not quasiconformally conjugate to T(1,0).

Proof. Suppose, to the contrary, that a K -quasiconformal map φ :H→H exists
such that

(59) φ ◦ Aθ ◦φ−1
= T(1,0).

Then for any integer n, we also have

(60) φ ◦ An
θ ◦φ

−1
= T n

(1,0) = T(n,0).

First consider the case that Aθ is a rational parabolic automorphism. Then there
is a positive integer n0 such that An0

θ = T(0,n0). We conjugate both sides of (60) by
a real dilation n as follows:

(61) n−1(φAn
θφ
−1)n = n−1T(n,0)n = T(1,0).

In particular, when n = n0,

(62) n−1
0 φT(0,n0)φ

−1n0 = T(1,0).

Using that T(0,n0) =
√

n0 T(0,1)(
√

n0)
−1, we rewrite the left-hand side of (62) as

(63) (n−1
0 φ
√

n0)T(0,1)((
√

n0)
−1φ−1n0)= T(1,0).

Because (n0)
−1φ
√

n0 is also a K -quasiconformal mapping, (63) implies that the
vertical translation T(0,1) is conjugate to the horizontal translation T(1,0) by the
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quasiconformal mapping n−1
0 φ
√

n0. This is a contradiction to Theorem 5.1 of
[Miner 1994].

The second case is that Aθ is an irrational screw parabolic automorphism.
Here we use the property that, under a mild condition, an infinite sequence of
K -quasiconformal mappings is a normal family; see Theorem F.

It is possible that the quasiconformal mapping φ of (59) does not fix the origin
(0, 0). Hence, we conjugate both sides of (59) by a Heisenberg translation m which
sends φ(0, 0) to (0, 0) (m might be the identity map) so that we have

(64) mφAθφ−1m−1
= m ◦ T(1,0) ◦m−1.

If m ◦ T(1,0) ◦ m−1 is a vertical translation, then we have proved the theorem.
Otherwise, mT(1,0)m−1 is a nonvertical translation. Now we conjugate (64) by a
rotation λ : (z, t) 7→ (λz, t) for a unit λ ∈C so that λmT(1,0)m−1λ= T(r,s) for some
real numbers r 6= 0 and s:

(65) λmφAθφ−1m−1λ−1
= λmT(1,0)m−1λ−1

= T(r,s).

Let ϕ = λmφ. Then ϕ is a K -quasiconformal mapping, fixes the origin (0, 0) and

(66) ϕ ◦ Aθ ◦ϕ−1
= T(r,s).

(We note that if φ fixes (0, 0), then m and λ are the identity map, T(r,s) = T(1,0),
and ϕ = φ.)

Let n be any integer; then from (66), we have

(67) ϕAn
θϕ
−1
= T n

(r,s) = T(nr,ns)

because r and s are real numbers. Evaluating (67) at (0, 0) shows that

(68) ϕ(0, n)= (nr, ns).

We conjugate both sides of (67) by a real dilation n and use equations (55) and (56)
as follows:

(69)
n−1ϕAn

θϕ
−1n = n−1T(nr,ns)n,

n−1ϕ(
√

n Anθ (
√

n)−1
)ϕ−1n = T(r,s/n).

Because Aθ is an irrational screw parabolic, there is a subsequence {Ankθ : k ∈ N}

which converges to the vertical translation T(0,1). For each k ∈N, let ψk = n−1
k ϕ
√

nk .
Then each ψk is again K -quasiconformal, fixes (0, 0), and

(70) ψk Ankθψ
−1
k = T(r,s/nk).

To apply Theorem F, let G =H−{(0, 0)} and restrict each ψk on G. Thus, we have
an infinite sequence of K -quasiconformal mappings, F={ψk :G→ Ĥ |k∈N}. Note
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that each ψk |G omits (0, 0) and∞ in Ĥ. Hence, the sequence F has a convergent
subsequence whose limit, say ψ , is a K -quasiconformal homeomorphism for the
following reason: for any integer m,

ψk(0,m)= n−1
k ϕ
√

nk (0,m)=
(

mr, ms
nk

)
converges to (mr, 0) as k → ∞. Thus, ψ(0,m) = (mr, 0) for any integer m,
and hence ψ is not a constant function. We now extend ψ to H by defining
ψ(0, 0)= (0, 0). From (70), we haveψ◦T(0,1)◦ψ−1

=T(r,0) which is a contradiction
by Theorem 5.1 of [Miner 1994]. �

Corollary 3.8. Let T(1,0)(z, t)= (z+ 1, t + 2 Im z̄) be a horizontal translation and
A(z, t)= (eiθ z, t + 1), for θ ∈ (0, 2π), be a screw parabolic automorphism in the
Heisenberg group H. Let 01 and 02 be the cyclic groups generated by T(1,0) and A,
respectively. Then there exists no quasiconformal mapping between H/01 and
H/02. In particular, 01 is not quasiconformally conjugate to 02.
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