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ON THE DISTRIBUTIONAL HESSIAN
OF THE DISTANCE FUNCTION

CARLO MANTEGAZZA, GIOVANNI MASCELLANI AND GENNADY URALTSEV

We describe the precise structure of the distributional Hessian of the dis-
tance function from a point of a Riemannian manifold. At the same time we
discuss some geometrical properties of the cut locus of a point, and compare
some different weak notions of the Hessian and Laplacian.

1. Introduction

Let (M, g) be an n-dimensional, smooth, complete Riemannian manifold; for any
point p ∈ M , we define dp : M→ R to be the distance function from p.

Such distance functions and their relatives, the Busemann functions, come into
several arguments in differential geometry. With few exceptions they are not smooth
in M \ {p} (and are obviously singular at p), but it is easy to see that they are
1-Lipschitz and so (by Rademacher’s theorem) differentiable almost everywhere,
with unit gradient.

In this note we are concerned with the precise description of the distributional
Hessian of dp, having in mind the following Laplacian and Hessian comparison
theorems (see [Petersen 1998], for instance):

Theorem 1.1. If (M, g) satisfies Ric ≥ (n− 1)K then, considering polar coordi-
nates around the points p ∈ M and P in the simply connected, n-dimensional space
SK of constant curvature K ∈ R, we have

1dp(r)≤1K d K
P (r).

If the sectional curvature of (M, g) is greater than or equal to K , then

Hess dp(r)≤ HessK d K
P (r).

Here1K d K
P (r) and HessK d K

P (r) denote respectively the Laplacian and the Hessian
of the distance function d K

P ( · )= d K (P, · ) in SK , at distance r from P.

It is often stated that these inequalities actually hold on the whole manifold (M, g)
in some weak sense, say in the sense of distributions, or viscosity, or barriers. Such
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results can simplify, and sometimes are necessary for, global arguments involving
this comparison theorem. More generally, one often would like to use the (weak
or strong) maximum principle for the Laplacian in situations where the functions
involved are not smooth, for instance in Eschenburg and Heintze’s proof [1984] of
the splitting theorem (first proved in [Cheeger and Gromoll 1971]), or proofs of the
Toponogov theorem and the soul theorem [Cheeger and Gromoll 1972; Gromoll
and Meyer 1969].

To be precise, we give definitions of these notions:

Definition 1.2. Let A be a smooth, symmetric (0, 2)-tensor field on a Riemannian
manifold (M, g).

• We say that a function f : M → R satisfies Hess f ≤ A in the distribu-
tional sense if for every smooth vector field V with compact support we have∫

M f ∇2
j i (V

i V j ) d Vol≤
∫

M Ai j V i V j d Vol.

• For a continuous function f : M → R, we say that Hess f ≤ A at the point
p ∈ M in the barrier sense if for every ε > 0 there exists a neighborhood Uε

of the point p and a C2-function hε :Uε→R such that hε(p)= f (p), hε ≥ f
in Uε and Hess hε(p)≤ A(p)+εg(p) as (0, 2)-tensor fields. (Such a function
hε is called an upper barrier.)

• For a continuous function f :M→R, we say that Hess f ≤ A at the point p∈M
in the viscosity sense if for every C2-function h from a neighborhood U of the
point p such that h(p)= f (p) and h ≤ f in U , we have Hess h(p)≤ A(p).

The weak notions of the inequality 1 f ≤ α for some smooth function α : M→ R

are defined analogously:

• We say that a function f : M→ R satisfies 1 f ≤ α in the distributional sense
if for every smooth, nonnegative function ϕ : M→ R with compact support
we have

∫
M f1ϕ d Vol≤

∫
M αϕ d Vol.

• For a continuous function f : M→R, we say that 1 f ≤ α at the point p ∈ M
in the barrier sense if for every ε > 0 there exists a neighborhood Uε of the
point p and a C2-function hε :Uε→R such that hε(p)= f (p), hε ≥ f in Uε

and 1hε(p)≤ α(p)+ ε.

• For a continuous function f : M→R, we say that 1 f ≤ α at the point p ∈ M
in the viscosity sense if for every C2-function h from a neighborhood U of the
point p such that h(p)= f (p) and h ≤ f in U , we have 1h(p)≤ α(p).

In this definition and the rest of this paper we have used the Einstein summation
convention on repeated indices. In particular, by∇2

i j (V
i V j )we mean∇2

i j (V ⊗ V )i j ,
the function obtained by contracting twice the second covariant derivative of the
tensor product V ⊗ V .
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The notion of inequalities in the barrier sense was defined by Calabi [1958] for
the Laplacian (he used the terminology “weak sense” rather than “barrier sense”).
He also proved the relative global “weak” Laplacian comparison theorem (see
[Petersen 1998, Section 9.3]).

The notion of a viscosity solution (which is connected to the definition of in-
equality “in the viscosity sense”; see the Appendix) was introduced by Crandall and
Lions [1983, Definition 3.2] for partial differential equations; the above definition
for the Hessian is a generalization to a very special system of PDEs.

The distributional notion is useful when integrations (by parts) are involved, the
other two concepts when the arguments are based on the maximum principle.

From the definitions it is easy to see that the barrier sense implies the viscosity
sense; moreover, by [Ishii 1995], if f : M→ R satisfies 1 f ≤ α in the viscosity
sense it also satisfies 1 f ≤ α as distributions, and vice versa. In the Appendix we
will discuss in detail the relations between these definitions.

In the next section we will describe the distributional structure of the Hessian
(and hence of the Laplacian) of dp, which will imply the mentioned validity of the
above inequalities on the whole manifold.

It is a standard fact that the function dp is smooth in the set M \ ({p} ∪Cutp),
where Cutp is the cut locus of the point p, which we are now going to define and
state some general properties of (we keep [Gallot et al. 1990; Sakai 1996] as general
references). It is anyway well known that Cutp is a closed set of zero (canonical)
measure. Hence, in the open set M \ ({p} ∪Cutp) the Hessian and Laplacian of
dp are the usual ones (even seen as distributions or using other weak definitions),
and all the analysis is concerned with what happens on Cutp (the situation at the
point p is straightforward, as dp is easily seen to behave as the function ‖x‖ at the
origin of Rn).

We let Up = {v ∈ Tp M | gp(v, v)= 1} be the set of unit tangent vectors to M at
p. Given v ∈Up, we consider the geodesic γv(t)= expp(tv), and we let σv ∈ R+

(or possibly equal to +∞) be the maximal time such that γv([0, σv]) is minimal
between any pair of its points. This defines a map σ :Up→ R+ ∪ {+∞}, and the
point γv(σv) (when σv <+∞) is called the cut point of the geodesic γv.

Definition 1.3. The set of all cut points γv(σv) for v ∈Up with σv <+∞ is called
the cut locus of the point p ∈ M .

There are two reasons why a geodesic can cease to be minimal:

Proposition 1.4. If for a geodesic γv(t) from the point p ∈ M we have σv <+∞,
at least one of the following two conditions is satisfied:

(1) Another minimal geodesic from p arrives at the cut point q = γv(σvv).

(2) The differential d expp is not invertible at the point σvv ∈ Tp M.
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Conversely, if at least one of these conditions is satisfied, the geodesic γv(t) cannot
be minimal on any interval larger that [0, σv].

It is well known that the subset of points q ∈Cutp where more than one minimal
geodesic from p arrive coincides with Sing, the singular set of the distance func-
tion dp in M \ {p}. We also define Conj, the set of points q = γv(σv) ∈ Cutp with
d expp not invertible at σvv ∈ Tp M ; we call Conj the locus of optimal conjugate
points. See [Gallot et al. 1990; Sakai 1996].

2. The structure of the distributional Hessian of the distance function

The following properties of the function dp and the cut locus of p ∈ M are proved
in [Mantegazza and Mennucci 2003, Section 3] (see also the wonderful [Li and
Nirenberg 2005] for other fine properties, notably the local Lipschitz continuity of
the function σ :Up→ R+ ∪ {+∞} in Theorem 1.1 there).

Given an open set � ⊂ Rn , we say that a continuous function u : �→ R is
locally semiconcave if for any open convex set K ⊂� with compact closure in �,
the function u|K is the sum of a C2 function and a concave function.

A continuous function u : M→ R is called locally semiconcave if for any local
chart ψ : Rn

→U ⊂ M , the function u ◦ψ is locally semiconcave in Rn according
to the above definition.

Proposition 2.1 [Mantegazza and Mennucci 2003, Proposition 3.4]. The function
dp is locally semiconcave in M \ {p}.

This fact, which follows from recognizing dp as a viscosity solution of the eikonal
equation |∇u| = 1 (see [Mantegazza and Mennucci 2003]), has some significant
consequences; we need some definitions for the precise statements.

Given a continuous function u :�→ R and a point q ∈ M , the superdifferential
of u at q is the subset of T ∗q M defined by

∂+u(q)= {dϕ(q) |ϕ ∈ C1(M), ϕ(q)− u(q)=min
M
(ϕ− u)}.

For any locally Lipschitz function u, the set ∂+u(q) is a compact convex set, almost
everywhere coinciding with the differential of the function u, by Rademacher’s
theorem.

Proposition 2.2 [Alberti et al. 1992, Proposition 2.1]. Let the function u :M→R be
semiconcave. Then the superdifferential ∂+u is not empty at each point; moreover,
∂+v is upper semicontinuous, that is,

qk→ q, vk→ v, vk ∈ ∂
+u(qk) H⇒ v ∈ ∂+u(q).

In particular, if the differential du exists at every point of M , then u ∈ C1(M).
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Proposition 2.3 [Alberti et al. 1992, Remark 3.6]. The set Ext(∂+dp(q)) of extremal
points of the (convex) superdifferential set of dp at q is in one-to-one correspondence
with the family G(q) of minimal geodesics from p to q. In symbols,

G(q)= {t 7→ expq(−vt) | v ∈ Ext(∂+dp(q))},

where t ∈ [0, 1].

We now deal with the structure of the cut locus of p ∈ M . Let Hn−1 denote
the (n− 1)-dimensional Hausdorff measure on (M, g) (see [Federer 1969; Simon
1983]).

Definition 2.4. We say that a subset S ⊂ M is Cr -rectifiable, for r ≥ 1, if it can be
covered by a countable family of embedded Cr -submanifolds of dimension n−1,
with the exception of a set of Hn−1-measure zero. (See the references just cited for
a complete discussion of the notion of rectifiability.)

Proposition 2.5 [Mantegazza and Mennucci 2003, Theorem 4.10]. The cut locus
of p ∈ M is C∞-rectifiable. Hence, its Hausdorff dimension is at most n − 1.
Moreover, for any compact subset K of M , the measure Hn−1(Cutp ∩ K ) is finite
[Li and Nirenberg 2005, Corollary 1.3].

To explain the following consequence of such rectifiability, we need to briefly
introduce the theory of functions with bounded variation; see [Ambrosio et al.
2000; Braides 1998; Federer 1969; Simon 1983] for details. We say that a function
u : Rn

→ Rm is a function with locally bounded variation, denoted u ∈ BVloc, if its
distributional derivative Du is a Radon measure. This notion can be easily extended
to maps between manifolds using smooth local charts.

A standard result says that the derivative of a locally semiconcave function stays
in BVloc; in view of Proposition 2.1, this implies that the vector field ∇dp belongs
to BVloc in the open set M \ {p}.

Then we define the subspace of BVloc of functions (or vector fields, as before)
with locally special bounded variation, called SBVloc (see [Ambrosio 1989a; 1989b;
1990; Ambrosio et al. 2000; Braides 1998]).

The Radon measure representing the distributional derivative Du of a function
u : Rn

→ Rm with locally bounded variation can be always uniquely separated into
three mutually singular measures

Du = D̃u+ Ju+Cu,

where the first term is the part absolutely continuous with respect to the Lebesgue
measure Ln , Ju is a measure concentrated on an (n−1)-rectifiable set and Cu, called
the Cantor part, vanishes on subsets of Hausdorff dimension n−1.
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The space SBVloc is defined as the class of functions u ∈BVloc such that Cu= 0;
that is, the Cantor part of the distributional derivative of u is zero. Again, by means
of local charts, this notion is easily generalized to Riemannian manifolds.

Proposition 2.6 [Mantegazza and Mennucci 2003, Corollary 4.13]. The (Hn−1-
almost everywhere defined) measurable unit vector field ∇dp belongs to the space
SBVloc(M \ {p}) of vector fields with locally special bounded variation.

An immediate consequence of this proposition is that the (0, 2)-tensor field valued
distribution Hess dp is actually a Radon measure with an absolutely continuous
part, with respect to the canonical volume measure Vol of (M, g), concentrated
in M \ ({p} ∪ Cutp), where dp is a smooth function. Hence in this set Hess dp

coincides with the standard Hessian H̃ess dp times the volume measure Vol. When
the dimension of M is at least two, the singular part of the measure Hess dp does
not “see” the singular point p; hence, it is concentrated on Cutp and absolutely
continuous with respect to the Hausdorff measure Hn−1 restricted to Cutp.

By the properties of rectifiable sets, at Hn−1-almost every point q ∈ Cutp, there
exists an (n− 1)-dimensional approximate tangent space apTqCutp ⊂ Tq M (in the
sense of geometric measure theory; see [Federer 1969; Simon 1983] for details).
To give an example, we say that a hyperplane T ⊂ Rn is the approximate tangent
space to an (n− 1)-dimensional rectifiable set K ∈ Rn at the point x0 if Hn−1 T
is the limit as ρ→+∞, in the sense of Radon measures, of the blow-up measures
Hn−1 ρ(K − x0) around the point x0. With some technicalities, this notion can
be extended also to Riemannian manifolds.

Moreover (see [Ambrosio et al. 2000]), at Hn−1-almost every point q ∈Cutp, the
field ∇dp has two distinct approximate (in the sense of the Lebesgue differentiation
theorem) limits “on the two sides” of apTqCutp ⊂ Tq M , given by ∇d+p and ∇d−p .

We want to see now that exactly two distinct geodesics and no more arrive
at Hn−1-almost every point of Cutp. We underline that a stronger form of this
theorem was already obtained in [Ardoy and Guijarro 2011] and [Figalli et al.
2011], concluding that the set Cutp \U (where U is as in the following statement)
has Hausdorff dimension not greater that n− 2.

Theorem 2.7. There is an open set U ⊂ M such that Hn−1(Cutp \U ) = 0 and
satisfying these conditions:

(i) The subset Cutp∩U does not contain conjugate points; hence the set of optimal
conjugate points has Hn−1-measure zero.

(ii) Exactly two minimal geodesics from p ∈ M arrive at every point of Cutp ∩U.

(iii) Locally around every point of Cutp ∩ U the set Cutp is a smooth (n−1)-
dimensional hypersurface; hence apTqCutp is actually the classical tangent
space to a hypersurface.
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Proof. First we show that the set of optimal conjugate points Conj is a closed subset
of Hn−1-measure zero, then we will see that the points of Sing \Conj where more
than two geodesics arrive also form a closed subset of Hn−1-measure zero. Claim
(iii) then follows by the analysis in the proof of Proposition 4.7 in [Mantegazza and
Mennucci 2003].

Recalling that Up = {v ∈ Tp M | gp(v, v)= 1} is the set of unit tangent vectors
to M at p, we define the function c : Up → R+ ∪ {+∞} such that the point
γv(cv) is the first conjugate point (if it exists) along the geodesic γv; that is, the
differential d expp is not invertible at the point cvv ∈ Tp M . By Lemma 4.11 and the
proof of Proposition 4.9 in [Mantegazza and Mennucci 2003], in the open subset
V ⊂ Up where the rank of the differential of the map F : Up → M defined by
F(v)= expp(cvv) is n− 1, the map c :Up→ R+ ∪ {+∞} is smooth; hence F(V )
is locally a smooth hypersurface. Since, by Sard’s theorem, the image of Up \ V
is a closed set of Hn−1-measure zero, we only have to deal with the images F(v)
of unit vectors v ∈ V such that cv = σv (see end of the introduction), that is, with
F(V )∩Cutp, which is a closed set.

We then consider the set

D ⊂ (F(V )∩Cutp)

of points q where apTqCutp exists and the density of the rectifiable set F(V )∩Cutp

in the cut locus of the point p with respect to the Hausdorff measure Hn−1 is 1 (see
[Federer 1969; Simon 1983]). It is well known that D and F(V )∩Cutp only differ
by a set of Hn−1-measure zero. If F(v)= q ∈ D, then cv = σv and, by the above
density property, the hypersurface F(V ) is “tangent” to Cutp at the point q; that is,
Tq F(V )= apTqCutp.

We now claim that the minimal geodesic γv is tangent to the hypersurface
F(V ), hence to the cut locus, at the point q. Indeed, since d expp is not invertible
at cvv ∈ Tp M , by the Gauss lemma there exists a vector w ∈ TvUp such that
d expp[cvv](w)= 0, hence

d Fv(w)= (dc[v](w))γ̇v(cv)+ d expp[cvv](cvw)= (dc[v](w))γ̇v(cv);

thus, γ̇v(cv) belongs to the tangent space d F(TvUp) to the hypersurface F(V ) at
the point q , which coincides with apTqCutp, as we claimed.

By the properties of SBV functions described before, at Hn−1-almost every point
q ∈ D, the blow-up of the function dp is a “roof”, meaning that exactly two minimal
geodesics arrive at q , both intersecting the cut locus transversally (the vectors ∇d+p
and ∇d−p do not belong to apTq M); hence the above minimal geodesic γv cannot
coincide with any of these two.

We then conclude that Hn−1(D)= 0, and the same for the set Conj.
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Now suppose that q ∈ Cutp \ Conj ⊂ Sing; by the analysis in the proof of
Proposition 4.7 in [Mantegazza and Mennucci 2003] (and Lemma 4.8), a finite
number m ≥ 2 of distinct minimal geodesics arrive at the point q , and when m > 2
the cut locus of p is given by the union of at least m smooth hypersurfaces with
Lipschitz boundary going through the point q . In particular, the above blow-up at q
cannot be a single hyperplane apTqCutp. By the preceding discussion, the set of
such points with m> 2 is then of Hn−1-measure zero; moreover, by Propositions 2.2
and 2.3, the set of points in Cutp \Conj with only two minimal geodesics is open,
and we are done. �

Remark 2.8. In the special two-dimensional and analytic case, more can be said:
the number of optimal conjugate points is locally finite and the cut locus is a locally
finite graph with smooth edges; see [Myers 1935; 1936]. We conjecture that in
general the set of optimal conjugate points is an (n− 2)-dimensional rectifiable set.

By Theorem 2.7(iii), in the open set U the two side limits ∇d+p and ∇d−p of
the gradient field ∇dp are actually smooth and classical limits; moreover, there
is a locally defined smoothly varying unit normal vector νq ∈ Tq M orthogonal to
TqCutp, with the convention that gq(νq , v) is positive for every vector v ∈ Tq M
belonging to the half-space corresponding to the side associated to ∇d+p . Hence,
since Hn−1(Cutp \U )= 0, we have a precise description of the singular jump part
as follows:

J∇dp =−((∇d+p −∇d−p )⊗ ν)Hn−1 Cutp,

and, noticing that the jump in the gradient of dp in U must be orthogonal to the
tangent space TqCutp, and thus parallel to the unit normal vector νq ∈ Tq M , we
conclude

J∇dp =−(ν⊗ ν)
∣∣∇d+p −∇d−p

∣∣
g Hn−1 Cutp.

Notice that the singular part of the distributional Hessian of dp is a rank-1 symmetric
(0, 2)-tensor field.

Remark 2.9. This description of the jump part of the singular measure follows
directly from the structure theorem for BV functions (see [Ambrosio et al. 2000]),
even if we didn’t know from Theorem 2.7 that the cut locus is Hn−1-almost every-
where smooth.

Theorem 2.10. If n ≥ 2, the distributional Hessian of the distance from a point
p ∈ M is given by the Radon measure

Hess dp = H̃ess dp Vol−(ν⊗ ν)
∣∣∇d+p −∇d−p

∣∣
g Hn−1 Cutp,

where H̃ess dp is the standard Hessian of dp, where it exists (Hn−1-almost every-
where on M), and ∇d+p , ∇d−p , ν are defined above.
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Corollary 2.11. If n ≥ 2, the distributional Laplacian of dp is the Radon measure

1dp = 1̃dp Vol−
∣∣∇d+p −∇d−p

∣∣
g Hn−1 Cutp,

where 1̃dp is the standard Laplacian of dp, where it exists.

Corollary 2.12. We have
1dp ≤ 1̃dp Vol

and
Hess dp ≤ H̃ess dp Vol,

as (0, 2)-tensor fields. Hence the Hessian and Laplacian inequalities in Theorem 1.1
hold in the sense of distributions. Moreover,

1dp ≥ 1̃dp Vol−2Hn−1 Cutp

and

Hess dp ≥ H̃ess dp Vol−2(ν⊗ ν)Hn−1 Cutp ≥ H̃ess dp Vol−2g Hn−1 Cutp,

as (0, 2)-tensor fields.

Remark 2.13. From their definition, it is easy to see that the same inequalities hold
also for the Busemann functions; see for instance [Petersen 1998, Subsection 9.3.4]
(in Section 9.3 of the same book, it is shown that the above Laplacian comparison
holds on all of M in the barrier sense, while an analogous result for the Hessian
can be found in Section 11.2). We stress here that Propositions 2.1, 2.2 and 2.3
about the semiconcavity and the structure of the superdifferential of the distance
function dp can also be used to show that the above inequalities hold in the barrier
and viscosity senses.

Remark 2.14. Several of the conclusions of this paper also hold for the distance
function from a closed subset of M with boundary of class at least C3; see [Man-
tegazza and Mennucci 2003] for details.

Appendix: Weak definitions of sub/supersolutions of PDEs

Let (M, g) be a smooth, complete, Riemannian manifold and let A be a smooth
(0, 2)-tensor field.

If f :M→R satisfies Hess f ≤ A at the point p∈M in the barrier sense, for every
ε > 0 there exists a neighborhood Uε of the point p and a C2-function hε :Uε→R

such that hε(p)= f (p), hε≥ f in Uε and Hess hε(p)≤ A(p)+εg(p); hence, every
C2-function h from a neighborhood U of the point p such that h(p)= f (p) and
h ≤ f in U satisfies h(p)= hε(p) and h ≤ hε in U ∩Uε. It is then easy to see that
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Hess h(p)≤Hess hε(p)≤ A(p)+εg(p) for every ε > 0, hence Hess h(p)≤ A(p).
This shows that Hess f ≤ A at the point p ∈ M also in the viscosity sense.

The converse is not true; indeed, it is straightforward to check that the function
f : R → R given by f (x) = x2 sin (1/x) when x 6= 0 and f (0) = 0 satisfies
f ′′(0)≤ 0 in the viscosity sense but not in the barrier sense.

The same argument clearly also applies to the two definitions of 1 f ≤ α for a
smooth function α : M→ R.

Nonetheless, the notions of viscosity sense and distributional sense coincide:

Proposition A.1. If f : M→ R satisfies Hess f ≤ A in the viscosity sense, it also
satisfies Hess f ≤ A in the distributional sense, and vice versa. The same holds for
1 f ≤ α.

In order to show the proposition, we recall the definitions of viscosity (sub/super)
solutions to a second order PDE. Take a continuous map F :�×R×Rn

× Sn
→R,

where � is an open subset of Rn and Sn denotes the space of real n× n symmetric
matrices; also suppose that F satisfies the monotonicity condition

X ≥ Y H⇒ F(x, r, p, X)≤ F(x, r, p, Y )

for every (x, r, p) ∈ �×R×Rn , where X ≥ Y means that the difference matrix
X − Y is nonnegative definite. We consider then the second order PDE given by
F(x, f,∇ f,∇2 f )= 0.

A continuous function f :�→R is said to be a viscosity subsolution of the above
PDE if for every point x ∈� and ϕ ∈C2(�) such that f (x)−ϕ(x)= sup�( f −ϕ),
we have F(x, ϕ,∇ϕ,∇2ϕ)≤0 (see [Crandall et al. 1992; Ishii 1995]). Analogously,
f ∈C0(�) is a viscosity supersolution if for every point x ∈� and ϕ ∈C2(�) such
that f (x)− ϕ(x) = inf�( f − ϕ), we have F(x, ϕ,∇ϕ,∇2ϕ) ≥ 0. If f ∈ C0(�)

is both a viscosity subsolution and supersolution, it is then a viscosity solution of
F(x, f,∇ f,∇2 f )= 0 in �.

It is easy to see that the functions f ∈ C0(�) such that 1 f ≤ α in the viscosity
sense at any point of �, as in Definition 1.2, coincide with the viscosity supersolu-
tions of the equation −1 f +α = 0 at the same point (here the function F is given
by F(x, r, p, X)=− trace X +α(x)).

In the case of a Riemannian manifold (M, g), one works in local charts, and the
operators we are interested in become

HessM
i j f (x)=

∂2 f (x)
∂x i∂x j −0

k
i j (x)

∂ f
∂xk

and
1M f (x)= gi j (x)HessM

i j f (x),

where 0k
i j are the Christoffel symbols.
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Analogously to the case of Rn , taking

F(x, r, p, X)=−gi j (x)X i j + gi j (x)0k
i j (x)pk +α(x)

(which is a smooth function independent of the variable r ), we see that, according
to Definition 1.2, f satisfies 1M f ≤ α in the viscosity sense at any point of M if
and only if it is a viscosity supersolution of the equation F(x, f,∇ f,∇2 f )= 0 at
the same point.

Getting back to Rn , given a linear, degenerate elliptic operator L with smooth
coefficients, that is, defined by

L f (x)=−ai j (x)∇2
i j f (x)+ bk(x)∇k f (x)+ c(x) f (x),

and a smooth function α : � → R, we say that f ∈ C0(�) is a distributional
supersolution of the equation L f +α = 0 if∫

�

( f L∗ϕ+αϕ) dx ≥ 0

for every nonnegative, smooth function ϕ ∈ C∞c (�). Here L∗ is the formal adjoint
operator of L:

L∗ϕ(x)=−∇2
j i (a

i jϕ)(x)−∇k(bkϕ)(x)+ c(x)ϕ(x).

Under the hypothesis that the matrix of coefficients (ai j ) (which is nonnegative
definite) has a “square root” matrix belonging to C1(�, Sn), Ishii [1995] showed
the equivalence of the class of continuous viscosity subsolutions and the class of
continuous distributional subsolutions of the equation L f +α = 0. More precisely,
he proved the following two theorems (see also [Lions 1983]):

Theorem A.2 [Ishii 1995, Theorem 1]. If f ∈ C0(�) is a viscosity subsolution of
the equation L f +α = 0, then it is a distribution subsolution of the same equation.

Theorem A.3 [Ishii 1995, Theorem 2]. Assume that the “square root” of the matrix
of coefficients (ai j ) belongs to C1(�). If f ∈ C0(�) is a distributional subsolution
of the equation L f +α = 0, then it is a viscosity subsolution of the same equation.

As the PDE is linear, a function f ∈ C0(�) is a viscosity (distributional)
supersolution of the equation L f + α = 0 if and only if the function − f is a
viscosity (distributional) subsolution of L(− f )− α = 0; in the above theorems
every occurrence of the term “subsolution” can replaced with “supersolution” (and
also with “solution”).

For simplicity, we will work in a single coordinate chart of M mapping onto
�⊆ Rn , while the general situation can be dealt with by standard partition of unity
arguments.
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Consider f ∈ C0(M) which is a viscosity supersolution of −1M f + α = 0.
It is a straightforward computation to check that this happens if and only if f is
a viscosity supersolution of −

√
g1M f + α

√
g = 0, where

√
g =

√
det gi j is the

density of Riemannian volume of (M, g), and vice versa. Moreover, notice that
setting L =−

√
g1M , we have that L∗ = L; that is, L is a self-adjoint operator. L

also satisfies the hypotheses of Ishii’s theorems, since the matrices gi j and gi j are
smooth and positive definite in �. See [Horn and Johnson 1994, Chapter 6], in
particular Example 6.2.14, for instance.

Then, in local coordinates, Ishii’s theorems guarantee that f is a distributional
supersolution of the same equation. That is, for each ϕ ∈ C∞c (�), f satisfies∫

�

f L∗ϕ dx ≥−
∫
�

α
√

gϕ dx;

hence,∫
M
− f1Mϕ d Vol=

∫
�

− f
√

g1Mϕ dx ≥−
∫
�

α
√

gϕ dx =−
∫

M
αϕ d Vol .

This shows that then f satisfies 1M f ≤ α in the distributional sense, as in
Definition 1.2.

Following these steps in reverse order, one gets the converse. Hence, the notions
of 1M

≤ α in the viscosity and distributional senses coincide.
Now we turn our attention to the Hessian inequality; it is not covered directly

by Ishii’s theorems, which are peculiar to PDEs and do not deal with systems (like
the general theory of viscosity solutions). For simplicity, we discuss the case of
an open set �⊂ Rn (with its canonical flat metric), since all the arguments can be
extended to any Riemannian manifold (M, g) by localization and introduction of
the first-order correction given by Christoffel symbols, as above.

The idea is to transform the matrix inequality Hess f ≤ A into a family of
scalar inequalities; indeed, if everything is smooth, such an inequality is satisfied
if and only if for every compactly supported, smooth vector field W we have
W i W j Hessi j f ≤ Ai j W i W j . The only price to pay is that we lose the constant co-
efficients of the Hessian, hence making the linear operator LW , acting on f ∈C2(�)

as LW f =−W i W j Hessi j f , only degenerate elliptic. Notice that Ishii’s condition
in Theorem A.3 is satisfied for every smooth vector field W such that ‖W‖∈C1

c (�),
but not by any arbitrary smooth vector field. This has the collateral effect of making
the proof of the Hessian case in Proposition A.1 slightly asymmetric.

Lemma A.4. Let f ∈C0(�). If for every compactly supported, smooth vector field
W with ‖W‖ ∈ C1

c (�), we have that f is a viscosity supersolution of the equation
−W i W j Hessi j f + Ai j W i W j

= 0, then the function f satisfies Hess f ≤ A in the
viscosity sense in all of �.
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Vice versa, if f ∈ C0(�) satisfies Hess f ≤ A in the viscosity sense in �, then
f is a viscosity supersolution of the equation −V i V j Hessi j f + Ai j V i V j

= 0 for
every compactly supported, smooth vector field V .

Proof. Let us take a point x ∈� and a C2-function h in a neighborhood U of the
point x such that h(x)= f (x) and h ≤ f . Choosing a unit vector Wx and a smooth,
nonnegative function ϕ which is 1 at x and zero outside a small ball inside U , we
consider the smooth vector field W (y)=Wxϕ

2(y) for every y ∈�, which clearly
satisfies ‖W‖ = ϕ ∈C1

c (�). By the hypothesis of the first statement, the function f
is then a viscosity supersolution of the equation −W i W j Hessi j f + Ai j W i W j

= 0,
which implies that −W i

x W j
x Hessi j h(x)+ Ai j (x)W i

x W j
x ≥ 0. Since this holds for

every point x ∈ � and unit vector Wx , we conclude that Hess h(x) ≤ A(x) as
(0, 2)-tensor fields, and hence Hess f ≤ A in the viscosity sense in �.

The argument to show the second statement is analogous: given a compactly
supported, smooth vector field V , a point x ∈ � and a function h as above, the
hypothesis implies that−V i

x V j
x Hessi j h(x)+ Ai j (x)V i

x V j
x ≥ 0, hence the thesis. �

Suppose now that f ∈ C0(�) satisfies Hess f ≤ A in the viscosity sense on the
whole �; hence, by this lemma, for every compactly supported, smooth vector field
V , the function f is a viscosity supersolution of the equation −V i V j Hessi j f +
Ai j V i V j

= 0. By Theorem A.2 and the subsequent discussion, it is then a distribu-
tional supersolution of the same equation; that is,∫

�

[
− f∇2

j i (V
i V jϕ)+ Ai j V i V jϕ

]
dx ≥ 0

for every nonnegative, smooth function ϕ ∈ C∞c (�).
Considering a nonnegative, smooth function ϕ ∈ C∞c (�) such that it is 1 on the

support of the vector field V , we conclude∫
�

f∇2
j i (V

i V j ) dx ≤
∫
�

Ai j V i V j dx,

which means that Hess f ≤ A in the distributional sense.
Conversely, if f ∈ C0(�) satisfies Hess f ≤ A in the distributional sense, then

for every compactly supported, smooth vector field W with ‖W‖ ∈ C1
c (�) and

every smooth, nonnegative function ϕ ∈C∞c (�), we define the smooth, nonnegative
functions ϕn=ϕ+ψ/n, whereψ is a smooth, nonnegative and compactly supported
function such that ψ ≡ 1 on the support of W . It follows that the vector field V =
W
√
ϕn is smooth; hence, applying the definition of Hess f ≤ A in the distributional

sense, we get ∫
�

[
− f∇2

j i (W
i W jϕn)+ Ai j W i W jϕn

]
dx ≥ 0.
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As ϕn→ ϕ in C∞c (�) and f is continuous, we can pass to the limit as n→∞ and
conclude that ∫

�

[
− f∇2

j i (W
i W jϕ)+ Ai j W i W jϕ

]
dx ≥ 0

for every nonnegative, smooth function ϕ ∈C∞c (�) and every compactly supported,
smooth vector field W with ‖W‖ ∈C1

c (�). That is, for any vector field W as above,
we have that f is a distributional supersolution of the equation −W i W j Hessi j f +
Ai j W i W j

= 0.
By Theorem A.3 and the subsequent discussion, it is then a viscosity supersolution

of the same equation and, by Lemma A.4, we conclude that the function f satisfies
Hess f ≤ A in the viscosity sense.

Summarizing, we have the following sharp relations among the weak notions of
the partial differential inequalities Hess f ≤ A and 1 f ≤ α:

barrier sense H⇒ viscosity sense ⇐⇒ distributional sense.
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