
Pacific
Journal of
Mathematics

LEGENDRIAN θ -GRAPHS

DANIELLE O’DONNOL AND ELENA PAVELESCU

Volume 270 No. 1 July 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 270, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.270.191

LEGENDRIAN θ -GRAPHS

DANIELLE O’DONNOL AND ELENA PAVELESCU

We give necessary and sufficient conditions for two triples of integers to be
realized as the Thurston–Bennequin number and the rotation number of a
Legendrian θ -graph with all cycles unknotted. We show that these invari-
ants are not enough to determine the Legendrian class of a topologically
planar θ -graph. We define the transverse push-off of a Legendrian graph,
and we determine its self linking number for Legendrian θ -graphs. In the
case of topologically planar θ -graphs, we prove that the topological type of
the transverse push-off is that of a pretzel link.

1. Introduction

In this paper, we continue the systematic study of Legendrian graphs in (R3, ξstd)

initiated in [O’Donnol and Pavelescu 2012]. Legendrian graphs have appeared
naturally in several important contexts in the study of contact manifolds. They are
used in Giroux’s proof [2002] of existence of open book decompositions compatible
with a given contact structure. Legendrian graphs also appeared in Eliashberg and
Fraser’s proof [2009] of the Legendrian simplicity of the unknot.

In this article we focus on Legendrian θ-graphs. We predominantly work with
topologically planar embeddings and embeddings where all the cycles are unknots.
In the first part, we investigate questions about realizability of the classical invariants
and whether the Legendrian type can be determined by these invariants. In the
second part, we introduce the transverse push-off a Legendrian graph and investigate
its properties in the case of θ -graphs.

O’Donnol and Pavelescu [2012] extended the classical invariants Thurston–
Bennequin number, tb, and rotation number, rot, from Legendrian knots to Leg-
endrian graphs. Here we prove that all possible pairs of (tb, rot) for a θ-graph
with unknotted cycles are realized. It is easily shown that all pairs of integers
(tb, rot) of different parities and such that tb+ |rot| ≤ −1 can be realized as the
Thurston–Bennequin number and the rotation number of a Legendrian unknot. We
call a pair of integers acceptable if they satisfy the two restrictions above. For
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Figure 1. Non-Legendrian isotopic graphs with the same invariants.

θ -graphs, we show the following:

Theorem 1. Any two triples of integers (tb1, tb2, tb3) and (rot1, rot2, rot3) for which
(tbi , roti ) are acceptable and R = rot1− rot2+ rot3 ∈ {0,−1} can be realized as
the Thurston–Bennequin number and the rotation number of a Legendrian θ -graph
with all cycles unknotted.

It is known that certain Legendrian knots and links are determined by the invari-
ants tb and rot: the unknot [Eliashberg and Fraser 2009], torus knots and the figure
eight knot [Etnyre and Honda 2001], and links consisting of an unknot and a cable
of that unknot [Ding and Geiges 2007]. To ask the same question in the context
of Legendrian graphs, we restrict to topologically planar Legendrian θ-graphs. A
topologically planar graph is one which is ambient isotopic to a planar embedding.
The answer is no, the Thurston–Bennequin number and the rotation number do
not determine the Legendrian type of a topologically planar θ-graph. The pair of
graphs in Figure 1 provides a counterexample.

The second part of this article is concerned with Legendrian ribbons of Legendrian
θ-graphs and their boundary. Roughly, a ribbon of a Legendrian graph g is a
compact oriented surface Rg containing g in its interior, such that there is a natural
contraction of Rg to g and ∂Rg is a transverse knot or link. We define the transverse
push-off of g to be the boundary of Rg. This introduces two new invariants of
Legendrian graphs, the transverse push-off and its self linking number. In the case
of a Legendrian knot, this definition gives a two component link consisting of
both the positive and the negative transverse push-offs. However, with graphs the
transverse push-off can have various numbers of components, depending on the
structure of the abstract graph and Legendrian type.

We show the push-off of a Legendrian θ -graph is either a transverse knot K with
sl= 1 or a three component transverse link whose three components are the positive
transverse push-offs of the three Legendrian cycles given the correct orientation.
For topologically planar graphs, the topological type of ∂Rg is determined solely
by the Thurston–Bennequin number of g, thus:

Theorem 2. Let G represent a topologically planar Legendrian θ-graph with
tb= (tb1, tb2, tb3). Then the transverse push-off of G is an (a1, a2, a3)-pretzel link,
where a1 = tb1+ tb2− tb3, a2 = tb1+ tb3− tb2, a3 = tb2+ tb3− tb1.
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This elegant relation is specific to θ -graphs and does not generalize to θn-graphs
for n > 3. We give examples to sustain this claim in the last part of the article. This
phenomenon is due to the relationship between flat vertex graphs and pliable vertex
graphs in the special case of all vertices of degree at most three.

2. Background

We give a short overview of contact structures, Legendrian and transverse knots and
their invariants. We recall how the invariants of Legendrian knots can be extended
to Legendrian graphs. Let M be an oriented 3-manifold and let ξ be a 2-plane
field on M . If ξ = kerα for some 1-form α on M satisfying α ∧ dα > 0, then ξ
is a contact structure on M . On R3, the 1-form α = dz− y dx defines a contact
structure called the standard contact structure, ξstd. Throughout this article we work
in (R3, ξstd).

A knot K ⊂ (M, ξ) is called Legendrian if, for all p ∈ K , the tangent Tp K is
contained in the contact plane ξp at p. A spatial graph G is called Legendrian if all
its edges are Legendrian curves that are nontangent to each other at the vertices.
If all edges around a vertex are oriented outward, then no two tangent vectors at
the vertex coincide in the contact plane. However, two tangent vectors may have
the same direction but different orientations resulting in a smooth arc through the
vertex. It is a result of this structure that the order of the edges around a vertex in a
contact plane is not changed up to cyclic permutation under Legendrian isotopy.
We study Legendrian knots and graphs via their front projection, the projection on
the xz-plane. Two generic front projections of a Legendrian graph are related by
Reidemeister moves I, II and III, together with three moves IV, V and VI, given by
the mutual position of vertices and edges [Baader and Ishikawa 2009]; see Figure 2.
Here forward we will refer to these moves as RI, RII, RIII, RIV, RV and RVI.

Apart from the topological knot class, there are two classical invariants of
Legendrian knots: the Thurston–Bennequin number, tb, and the rotation number,
rot. The Thurston–Bennequin number is independent of the orientation on K and
measures the twisting of the contact framing on K with respect to the Seifert framing.
To compute tb of a Legendrian knot K , consider a nonzero vector field v transverse
to ξ , take the push-off K ′ of K in the direction of v, and define tb(K ) := lk(K , K ′).
For a Legendrian knot K , tb(K ) can be computed in terms of the writhe and the
number of cusps in its front projection K̃ as

tb(K )= writhe(K̃ )− 1
2 cusps(K̃ ).

To define the rotation number, rot(K ), consider the positively oriented trivial-
ization {d1 = ∂/∂y, d2 =−y ∂/∂z− ∂/∂x} for ξstd. Let v be a nonzero vector field
tangent to K pointing in the direction of the orientation on K . The winding number
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Figure 2. Legendrian isotopy moves for graphs: RI, RII and RIII,
a vertex passing through a cusp (RIV), an edge passing under or
over a vertex (RV), an edge adjacent to a vertex rotates to the
other side of the vertex (RVI). Reflections of these moves that are
Legendrian front projections are also allowed.

of v about the origin with respect to this trivialization is the rotation number of K ,
denoted rot(K ). One can check that for K̃ the front projection for K ,

rot(K )= 1
2(↓cusps(K̃ )− ↑cusps(K̃ )),

where ↓cusps (↑cusps) denotes the number of down (up) cusps in the diagram.
Given a Legendrian knot K , Legendrian knots in the same topological class as

K can be obtained by stabilizations. A stabilization means replacing a strand of K
in the front projection of K by one of the zig-zags in Figure 3. The stabilization
is said to be positive if down cusps are introduced and negative if up cusps are
introduced. The Legendrian isotopy type of K changes through stabilization and so
do the Thurston–Bennequin number and rotation number: tb(S±(K ))= tb(K )− 1
and rot(S±(K ))= rot(K )± 1.

Both the Thurston–Bennequin number and the rotation number can be extended
to piecewise smooth Legendrian knots and to Legendrian graphs [O’Donnol and
Pavelescu 2012]. For a Legendrian graph G, fix an order on the cycles of G and

K
S+(K )

S−(K )

Figure 3. Positive and negative stabilizations in the front projection.
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define tb(G) as the ordered list of Thurston–Bennequin numbers of the cycles of G.
Once we fix an order on the cycles of G with orientation, we define rot(G) to be
the ordered list of rotation numbers of the cycles of G. If G has no cycles, define
both tb(G) and rot(G) to be the empty list.

An oriented knot t ⊂ (R3, ξstd) is called transverse if, for all p ∈ t , the tangent
Tpt is positively transverse to the contact plane ξp at p. If t is transverse, we let
6 be an oriented surface with t = ∂6. Then, ξ |6 is trivial, so there is a nonzero
vector field v over 6 in ξ . If t ′ is obtained by pushing t slightly in the direction
of v, then the self linking number of t is sl(t)= lk(t, t ′). It is easily seen that if t̃ is
the front projection of t , then sl(t)= writhe( t̃ ).

For an embedded surface 6 ⊂ (R3, ξstd), the intersection lx = Tx6 ∩ ξx is a line
for most x ∈6, except where the contact plane and the plane tangent to 6 coincide.
We denote by l :=

⋃
lx ⊂ T6 this singular line field, where the union includes lines

of intersection only. Then, there is a singular foliation F, called the characteristic
foliation on 6, whose leaves are tangent to l. The characteristic foliation is used in
the precise definition of Legendrian ribbon, given in Section 4.

3. Realization theorem

In this section we find which triples of integers can be realized as tb and rot of
Legendrian θ-graphs with all cycles unknotted. Both the structure of the θ-graph
and the required unknotted cycles impose restrictions on these integers. We also
investigate whether tb and rot uniquely determine the Legendrian type.

Eliashberg and Fraser [2009] showed that a Legendrian unknot K is Legendrian
isotopic to a unique unknot in standard form. The standard forms are shown in
Figure 4. The number of cusps and the number of crossings of the unknot in
standard form are uniquely determined by tb(K ) and rot(K ) as follows:

(1) If rot(K ) 6= 0 (Figure 4, left), then tb(K )=−(2t + 1+ s) and

rot(K )=
{

s if the leftmost cusp is a down cusp,
−s if the leftmost cusp is an up cusp.

(2) If rot(K )= 0 (Figure 4, right), then

tb(K )=−(2t + 1).

The following lemma identifies restrictions on the invariants of Legendrian
unknots.

Lemma 3. A pair of integers (tb, rot) can be realized as the Thurston–Bennequin
number and the rotation number of a Legendrian unknot if and only if they are of
different parities and

tb+ |rot| ≤ −1.
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2t + 1

s

2t

Figure 4. Legendrian unknot in standard form. Left: rot(K ) > 0
(the reverse orientation gives rot(K ) < 0). Right: rot(K )= 0.

Proof. We know from [Eliashberg 1992] that for a Legendrian unknot K in (R3, ξstd),
we have tb(K )+ |rot(K )| ≤ −1. From [Eliashberg and Fraser 2009], explained
above, we see that tb and rot have different parities.

For a pair (tb, rot):

• If rot > 0, the pair (tb, rot) is realized via the Legendrian unknot with front
projection as in Figure 4, left, for (t, s)=

(
−

1
2(tb+ rot+ 1), rot

)
.

• If rot < 0, the pair (tb, rot) is realized via the Legendrian unknot with front
projection as in Figure 4, left, for (t, s)=

(
−

1
2(tb− rot+ 1),−rot

)
.

• If rot = 0, the pair (tb, rot) is realized via the Legendrian unknot with front
projection as in Figure 4, right, for t =− 1

2(tb+ 1). �

We have described the pairs (tb, rot) that can occur for the unknot.
Towards the proof of Theorem 1, we show in the next lemma that Legendrian

θ -graphs can be standardized near their two vertices.

Lemma 4. Any Legendrian θ-graph G can be Legendrian isotoped to a graph G̃
whose front projection looks as in Figure 5 in the neighborhood of its two vertices.

Proof. Label the vertices of G by a and b. In the front projection of G, use RVI,
if necessary, to move the three strands on the right of vertex a while near a and
on the left of vertex b while near b. Then, small enough neighborhoods of the two
vertices look as in Figure 5. �

For the remainder of this section, we assume that near its two vertices, a and b,
the front projection of the graph looks as in Figure 5. We fix notation: e1, e2, e3 are

a b

Figure 5. A Legendrian θ -graph near its two vertices.
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IV VI

e1 e1 e1

Figure 6. Moving edge e1 at the right vertex.

respectively the top, middle, and lower strands at a in the front projection; C1 is
the oriented cycle going out of vertex a along e1 and into a along e2; C2 exits a
along e1 and enters a along e3; and C3 exits a along e2 and enters a along e3. We
note that there is no consistent way of orienting the three edges which gives three
oriented cycles. It should also be noted that the above edge labeling is given after
the graph is embedded. If a labeled graph is embedded, relabeling of the graph and
reorienting of the cycles may be necessary in order to have Lemma 6 apply.

Remark 5. Once the edges at the left vertex a are labeled e1, e2, e3 from top to
bottom, the edges can be moved around the right vertex (using a combination of RVI
and RIV) so that edge e1 is also in top position at vertex b in the front projection.
An example of moving e1 from bottom position to top position next to b is shown in
Figure 6. There are two possibilities for the order of edges at the right vertex b. The
first case, where the edges are e1, e2, e3 from top to bottom, we will call parallel
vertices. The second case, where the edges are e1, e3, e2 from top to bottom, we
will call antiparallel vertices.

In the next lemma we show what additional restrictions occur as a result of the
structure of the θ -graph.

Lemma 6. Let rot1, rot2 and rot3 be integers representing rotation numbers for
cycles C1, C2 and C3, in the above notation. Then rot1− rot2+ rot3 ∈ {0,−1}.

Proof. Consider an arbitrary Legendrian θ-graph in front projection that has been
labeled and isotoped as described above. For i = 1, 2, 3, let ki (k ′i ) represent the
number of down (up) cusps along the edge ei when oriented from vertex a to vertex
b. Let si :=

1
2(ki − k ′i ) for i = 1, 2, 3. Then, since C1 has a down cusp at b, we

know rot1 = s1− s2; since C2 has a down cusp at b, we know rot2 = s1− s3; and

rot3 =
{

s2− s3 if C3 has a down cusp at b (parallel vertices),
s2− s3− 1 if C3 has an up cusp at b (antiparallel vertices).

This gives two possible values for R = rot1− rot2+ rot3 ∈ {0,−1}. �

Remark 7. The proof of Lemma 6 implies for Legendrian θ -graphs that the cyclic
order of the edges at one vertex is determined by the cyclic order of edges at the
other vertex and the parity of the sum of the rotation numbers.
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rot1 rot2 rot3 R = 0 R =−1

(i) + + + r1− r2+ r3 = 0 r1+ r3+ 1= r2

(ii) + + − r1− r2− r3 = 0 r1+ 1= r2+ r3

(iii) + − + r1+ r2+ r3 = 0 r1+ r2+ r3+ 1= 0
(iv) + − − r1+ r2− r3 = 0 r1+ r2+ 1= r3

(v) − + + −r1− r2+ r3 = 0 r1+ r2 = r3+ 1
(vi) − + − −r1− r2− r3 = 0 r1+ r2+ r3 = 1
(vii) − − + −r1+ r2+ r3 = 0 r1 = r2+ r3+ 1
(viii) − − − −r1+ r2− r3 = 0 r1+ r3 = r2+ 1

Table 1. The + stands for roti ≥ 0, and the − stands for roti < 0.

Theorem 8. Any two triples of integers (tb1, tb2, tb3) and (rot1, rot2, rot3) for which
tbi + |roti | ≤ −1, tbi and roti are of different parities for i = 1, 2, 3 and R =
rot1− rot2+ rot3 ∈ {0,−1} can be realized as the Thurston–Bennequin number and
the rotation number of a Legendrian θ -graph with all cycles unknotted.

Proof. Let tb= (tb1, tb2, tb3) and rot= (rot1, rot2, rot3) be triples of integers as in
the hypothesis. We give front projections of Legendrian θ-graphs realizing these
triples. In these projections the edges at vertex a are labeled e1, e2, e3 from top
to bottom and are in varying order at vertex b. Let ri := |roti | for i = 1, 2, 3. We
differentiate our examples according to the values of rot1, rot2 and rot3 and the
relationship between r1, r2 and r3.

When R = 0, for the sign combinations (i)–(viii) shown in Table 1 there is a
choice of indices i, j, k with {i, j, k} = {1, 2, 3} such that ri ≥ r j + rk (in fact,
ri = r j + rk).

When R =−1, for the sign combinations (i), (iv), (vi) and (vii) there is a choice
of indices i, j, k with {i, j, k} = {1, 2, 3} such that ri ≥ r j + rk ; combination (iii)
is not realized; and for each combination (ii), (v) and (viii), there is a choice of
indices i, j, k with {i, j, k} = {1, 2, 3} such that ri + 1= r j + rk .

Thus any realizable (rot1, rot2, rot3) falls into at least one of the following six
cases: (1) r1 ≥ r2 + r3, (2) r2 ≥ r1 + r3, (3) r3 ≥ r1 + r2, (4) r1 + 1 = r2 + r3,
(5) r2 + 1 = r1 + r3 and (6) r3 + 1 = r1 + r2. We describe ways of realizing the
invariants for these six cases.

The cycles C1,C2 and C3 are as described earlier. The choice of orientations for
the three cycles implies that e1 is oriented from a to b in both C1 and C2, while e3

is oriented from b to a in both C2 and C3. A box along a single strand designates
the number of stabilizations along the strand. We take

• ri positive stabilizations if roti ≥ 0,

• ri negative stabilizations if roti < 0,
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when edges e1, e2 and e3 are oriented as in cycle Ci . A box along a pair of strands
designates the number of crossings between the two strands. All the crossings are
as those in Figure 4.

Case 1 (r1 ≥ r2+ r3). The figure represents the front projection of a Legendrian
θ -graph with the prescribed tb and rot.

r2

r3

e1

e2

e3

e1

e3−tb2−r2−1
−tb3−r3−1

−tb1−r2−r3−1

Since tbi+|roti | ≤−1, the integers −tb2−r2−1 and −tb3−r3−1 are nonnegative.
Since r1 ≥ r2+ r3, we have −tb1− r2− r3− 1≥−tb1− r1− 1≥ 0. So all of the
indicated number of half twists are nonnegative integers as needed. The number
−tb1− r2− r3− 1 changes parity according to whether rot1− rot2+ rot3 equals
−1 or 0.

We check that the Thurston–Bennequin number and the rotation number for this
embedding have the correct values. For a cycle C we use

tb(C)= w(C)− 1
2 cusps(C), rot(C)= 1

2(↓cusps(C)− ↑cusps(C)),

where w=writhe, cusps= total number of cusps, ↓cusps= number of down cusps,
↑cusps= number of up cusps.

• tb(C1)= w(C1)−
1
2 cusps(C1)= (tb1+ r2+ r3+ 3)− (r2+ r3+ 3)= tb1.

• tb(C2)= w(C2)−
1
2 cusps(C2)= (tb2+ r2+ 3)− (r2+ 3)= tb2.

• tb(C3)= w(C3)−
1
2 cusps(C3)= (tb3+ r3+ 1)− (r3+ 1)= tb3.

If rot1− rot2+ rot3= 0, then −tb1−r2−r3−1 has the same parity as −tb1−r1−1.
They are both even, since tb1 and rot1 have different parities. This implies that at
vertex b the upper strand is e1 and the middle strand is e2.

• rot(C1)=
1
2(↓cusps(C1)− ↑cusps(C1))

=
1
2(2 · sgn(rot2) · r2+ 3− 2 · sgn(rot3) · r3− 3)= rot2− rot3 = rot1.

• rot(C2)=
1
2(↓cusps(C2)− ↑cusps(C2))=

1
2(2 · sgn(rot2) · r2+ 3− 3)= rot2.

• rot(C3)=
1
2(↓cusps(C3)− ↑cusps(C3))=

1
2(2 · sgn(rot3) · r3+ 1− 1)= rot3.

If rot1−rot2+rot3=−1, then−tb1−r2−r3−1 has different parity than−tb1−r1−1.
Since tb1 and rot1 have different parities, −tb1−r1−1 is even and−tb1−r2−r3−1
is odd. This implies that at vertex b the upper strand is e2 and the middle strand
is e1. Computations for rot(C2) and rot(C3) are the same as above.

• rot(C1)=
1
2(↓cusps(C1)− ↑cusps(C1))

=
1
2(2 · sgn(rot2) ·r2+2−2 · sgn(rot3) ·r3−4)= rot2− rot3−1= rot1.
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In the remaining cases, a similar check may be done to verify that they have the
correct tb and rot.

Case 2 (r2 ≥ r1 + r3). The figure below represents the front projection of a
Legendrian θ-graph with the prescribed tb and rot. Since r2 ≥ r1 + r3, we have
−tb2− r1− r3− 1≥−tb2− r2− 1≥ 0.

e1
e2

e3

r1

r3

−tb1−r1−1
−tb3−r3−1

−tb2−r1−r3−1

Case 3 (r3 ≥ r1 + r2). Again, the figure represents the front projection of a
Legendrian θ-graph with the prescribed tb and rot. Since r3 ≥ r1 + r2, we have
−tb3− r1− r2− 1≥−tb3− r3− 1≥ 0.

e1

e2

e3

r1

r3

−tb1−r1−1

−tb2−r2−1

−tb3−r1−r2−1

Case 4 (r1 + 1 = r2 + r3). In this case the graph below realizes (tb, rot). Since
r2+ r3 = r1+ 1, we have −tb1− r2− r3 =−tb1− r1− 1≥ 0.

e1

e2

e3

r2

r3−1
−tb1−r2−r3

−tb3−r3

−tb2−r2−1

Case 5 (r2+ 1 = r1+ r3). For this case the graph below realizes (tb, rot). Given
r1+ r3 = r2+ 1, we have −tb2− r1− r3+ 1=−tb2− r2 > 0.

e1

e2
e3

r1−1

r3−1

−tb1−r1

−tb2−r1−r3+1
−tb3−r3

Case 6 (r3 + 1 = r1 + r2). In this case the graph below realizes (tb, rot). Since
r1+ r2 = r3+ 1, we have −tb3− r1− r2 =−tb3− r3− 1≥ 0.

e1

e2

e3

r1−1

r2
−tb3−r2−r1

−tb1−r1

−tb2−r2−1

This completes the proof. �
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3.1. Topologically planar θ -graphs are not Legendrian simple. We ask whether
the invariants tb and rot determine the Legendrian type of a planar θ-graph. If we
do not require that the cyclic order of the edges around the vertex a (or b) is the
same in both embeddings, the answer is negative. We give a counterexample:

Example 9. The two graphs in Figure 1 have the same invariants but they are not
Legendrian isotopic. Let C1, C2 and C3 be the three cycles of G determined by the
pairs of edges {e1, e2}, {e1, e3} and {e2, e3}, respectively. Let C′1, C′2 and C′3 be the
three cycles of G ′ determined by { f2, f1}, { f2, f3} and { f1, f3}, respectively. The
cycles have tb(C1)= tb(C′1)=−1, tb(C2)= tb(C′2)=−5, tb(C3)= tb(C′3)=−3
and rot(Ci )= rot(C′i )= 0 for i = 1, 2, 3.

Assume the two graphs are Legendrian isotopic. Since the cycles with same
invariants should correspond to each other via the Legendrian isotopy (which we
denote by ι), the edges correspond as e1 ↔ ι(e1) = f2, e2 ↔ ι(e2) = f1 and
e3↔ ι(e3)= f3. But at both vertices of G the (counterclockwise) order of edges in
the contact plane is e1−e2−e3 and at both vertices of G ′ the (counterclockwise) order
of edges in the contact plane is ι(e1)− ι(e3)− ι(e2). This leads to a contradiction,
since a Legendrian isotopy preserves the cyclic order of edges at each vertex.

Corollary 10. The invariants tb and rot are not enough to distinguish the Legen-
drian class of an θn-graph for n ≥ 3.

Proof. For n≥4, a pair of graphs with the same invariants but of different Legendrian
type can be obtained from (G,G ′) in Example 9 by adding n− 3 unknotted edges
at the top of the three existing ones. �

4. Legendrian ribbons and transverse push-offs

In this section we work with Legendrian ribbons of θ-graphs. We examine the
relationship between the Legendrian graph and the boundary of its ribbon, the
transverse push-off. The transverse push-off is another invariant of Legendrian
graphs. We explore whether it contains more information than the classical invariants
rotation number and Thurston–Bennequin number. We determine the number of
components and the self linking number for the push-off of a Legendrian θ -graph.
In the special case of topologically planar graphs, we prove that the topological
type of the transverse push-off of a θ-graph is that of a pretzel-type curve whose
coefficients are determined by the Thurston–Bennequin invariant of the graph.

Let g be a Legendrian graph. A ribbon for g is a compact oriented surface Rg

such that:

(1) g in contained in the interior of Rg;

(2) there exists a choice of orientations for Rg such that ξ has no negative tangency
with Rg;
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(a) (b) (c) (d) (e)

Figure 6. Attaching a ribbon surface to a Legendrian graph. The
two sides of the surface are marked by different colors.

(3) there exists a vector field X on Rg tangent to the characteristic foliation whose
time flow φt satisfies

⋂
t≥0 φt(Rg)= g; and

(4) the boundary of Rg is transverse to the contact structure.

The following is a construction which takes a graph in the front projection and
produces its ribbon viewed in the front projection. Portions of this construction
were previously examined by Avdek [2013, Algorithm 2, Steps 4–6]. Starting with
a front projection of the graph, we construct a ribbon surface containing the graph
as described in Figure 6:

(a) To each arc between consecutive cusps of an edge we attach a band with a
single negative half twist.

(b) To each left and right cusp along a strand we attach disks containing a positive
half twist.

(c,d) To each vertex we attach twisted disks as in Figure 6(c,d).

(e) Crossings in the diagram of the graph are preserved.

Legendrian ribbons were first introduced by Giroux [2002] to have a well-
defined way to contract a contact handlebody onto the Legendrian graph at the core
of the handlebody. We are interested in some particular features of Legendrian
ribbons. The boundary of a Legendrian ribbon is an oriented transverse link with
the orientation inherited from the ribbon surface. The ribbon associated with a
given Legendrian graph is unique up to isotopy and therefore gives a natural way
to associate a transverse link to the graph.

Definition 11. The transverse push-off of a Legendrian graph is the boundary of
its ribbon.

In the case of Legendrian knots the above definition gives a two component link
of both the positive and negative transverse push-offs. However, with graphs the
transverse push-off can have various numbers of components, depending on the
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(a) (b) (c)
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Figure 7. Transverse push-off: (a) at cusps and crossings (b) of
a Legendrian θ-graph with one component (c) of a Legendrian
θ -graph with three components.

abstract graph and Legendrian type. The transverse push-off is a new invariant of
Legendrian graphs.

4.1. Self linking of transverse push-offs. Here we determine possible self linking
numbers and the number of components of the transverse push-off of a Legendrian
θ -graph.

Theorem 12. The transverse push-off of a Legendrian θ -graph is either a transverse
knot K with sl= 1 or a three component transverse link whose three components are
the transverse push-offs of the three Legendrian cycles given the correct orientation.

Proof. Given an arbitrary Legendrian θ -graph, by Lemma 4, it can be isotoped to an
embedding where near the vertices it has a projection like that shown in Figure 5,
where the edges at the left vertex are labeled e1, e2, e3 from top to bottom. Then
using Remark 5, move the edges around the right vertex so that edge e1 is also in
the top position in the front projection. There are two possibilities for the order of
edges at the right vertex: parallel vertices, shown in Figure 7(b), and antiparallel
vertices, shown in Figure 7(c).

Now we will focus on the number of components of the transverse push-off.
For simplicity of bookkeeping we will place the negative half twists that occur on
each arc between consecutive cusps to the left on that portion of the edge. For
the projections shown in Figure 7(b,c) the portion of the graph not pictured could
have any number of crossings and cusps. Along each edge, the top and bottom
positions of the strands are preserved through cusps and crossings. See Figure 7(a).
So we see that the arc of the transverse push-off which lies above (resp. below) the
Legendrian arc in the projection on one side of the diagram still lies above (resp.
below) on the other side. Thus the number of components in the transverse push-off
can be determined by a careful tracing of the diagrams in Figure 7(b,c). Graphs
with parallel vertices have a transverse push-off with one component, and graphs
with antiparallel vertices have a transverse push-off with three components.
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If the boundary of the Legendrian ribbon is a knot T , then sl(T ) equals the
signed count of crossings in a front diagram for T . Crossings in the diagram of the
graph and cusps along the three edges do not contribute to this count. A crossing in
the diagram of the graph contributes two negative and two positive crossings. A
cusp contributes a canceling pair of positive and negative crossings; see Figure 7(a).
Apart from these, there is one positive crossing along each edge and one negative
crossing for every disk at each vertex, giving sl(T )= 1; see Figure 7(b).

If the boundary has three components T1, T2 and T3, then they have the same self
linking as the transverse push-offs of the cycles of the Legendrian graph with the
correct orientation. Let Ci be the cycle Ci with the opposite orientation. Then T1,
T2 and T3, are the positive transverse push-offs of C1, C2 and C3, respectively. �

4.2. Topologically planar Legendrian θ -graphs. To be able to better understand
the topological type of a Legendrian ribbon and the transverse push-off (its boundary)
we will model the ribbon with a flat vertex graph. A flat vertex graph (or rigid
vertex graph) is an embedded graph where the vertices are rigid disks with the edges
being flexible tubes or strings between the vertices. This is in contrast with pliable
vertex graphs (or just spatial graphs) where the edges have freedom of motion at
the vertices. Both flat vertex and pliable vertex graphs are studied up to ambient
isotopy and have sets of five Reidemeister moves. For both of them, the first three
Reidemeister moves are the same as those for knots and links and RIV consists of
moving an edge over or under a vertex; see Figure 8. For flat vertex graphs, RV is
the move where the flat vertex is flipped over. For pliable vertex graphs, RV is the
move where two of the edges are moved near the vertex in such a way that their
order around the vertex is changed in the projection.

For a Legendrian ribbon, the associated flat vertex graph is given by the following
construction: a vertex is placed on each twisted disk where the original vertices
were, and an edge replaces each band in the ribbon. The information that is lost
with this model is the amount of twisting that occurs on each edge. The flat vertex
graph model is particularly useful when working with the θ-graph because it is a
trivalent graph. We see with the following lemma the relationship between trivalent
flat vertex and trivalent pliable vertex graphs.

Lemma 13. For graphs with all vertices of degree 3 or less, the set of equivalent
diagrams is the same for both pliable and flat vertex spatial graphs.

Proof. We follow notation in [Kauffman 1989, pages 699, 704]. The lemma can
be reformulated to say, given the diagrams of two ambient isotopic pliable vertex
graphs with maximal degree 3, these are also ambient isotopic as flat vertex graphs,
and vice versa. The Reidemeister moves for pliable vertex graphs and flat vertex
graphs differ only in RV; see Figure 8. For pliable vertex graphs, RV is the move
where two of the edges are moved near the vertex in such a way that this changes
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IV

 V

flat 

 V

pliable 
vertex

flat and pliable 
vertex

vertex

Figure 8. RIV and RV for pliable and flat vertex graphs.

their order around the vertex in the projection. For flat vertex graphs, RV is the move
where the flat vertex is flipped over. For vertices of valence at most 3, these two
moves give the same diagrammatic results. Thus the same sequence of Reidemeister
moves can be used in the special case of graphs with maximal degree 3. �

Here we set up the notation that will be used in the following theorem. For a
Legendrian θ -graph G, we consider a front projection in which the neighborhoods
of the two vertices are as those in Figure 5 and we denote its three cycles by
C1, C2 and C3, following the notation of Section 2. Let cr[ei , e j ] be the signed
intersection count of edges ei and e j in the cycle C1, C2 or C3 which they determine.
Let cr[ei ] be the signed self-intersection count of ei . Let tb1, tb2 and tb3 be the
Thurston–Bennequin numbers of C1, C2 and C3.

Theorem 14. Let G represent a topologically planar Legendrian θ-graph with
tb= (tb1, tb2, tb3). Then the transverse push-off of G is an (a1, a2, a3)-pretzel link,
where a1 = tb1+ tb2− tb3, a2 = tb1+ tb3− tb2 and a3 = tb2+ tb3− tb1.

Proof. The proof will be done in two parts. First, the transverse push-off will be
shown to be a pretzel knot or link. Second, it will be shown to be of a particular
type of pretzel link, an (a1, a2, a3)-pretzel knot or link.

We first look at the ribbon as a topological object. If the ribbon can be moved
through ambient isotopy to a projection where the three bands do not cross over each
other and come together along a flat disk, then the boundary of the ribbon would be
a pretzel link with crossings only occurring as twists on each band. If we model the
ribbon with a flat vertex graph this simplifies our question to whether the resulting
flat vertex graph can be moved so that it is embedded in the plane. The resulting
graph is topologically planar because it is coming from a topologically planar
Legendrian graph. Thus by Lemma 13, it can be moved to a planar embedding.
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In order to show the pretzel knot (or link) is an (a1, a2, a3)-pretzel link, we will
look at what happens to the ribbon as the associated flat vertex graph is moved to a
planar embedding. We will work with the Legendrian θ -graph in the form shown in
Figure 5 near its vertices. We need to count the number of twists in the bands of the
Legendrian ribbon once it has been moved to the embedding where the associated
flat vertex graph is planar. We will prove a1 = tb1+ tb2− tb3 by writing each of
these numbers in terms of the number of cusps and the number of signed crossings
between the edges of the Legendrian graph. The proofs for a2 and a3 are similar.

We will use the following observations to be able to write a1, the number of half
twists in the band associated with edge e1, in terms of the number of cusps, cr[ei ]

and cr[ei , e j ].

(1) Based on the construction of the ribbon surface, c cusps on one of the edges
contribute with c+ 1 negative half twists to the corresponding band.

(2) We look at each of the Reidemeister moves for flat vertex graphs and see how
they change the number of twists on the associated band of the ribbon surface.

(a) A positive (negative) RI adds a full positive (negative) twist to the band;
see Figure 9(a,b).

(b) RII, RIII and RIV do not change the number of twists in any of the bands.
(c) RV adds a half twist on each of the three bands; see Figure 9(c,d). The sign

of the half twists depends on the crossing and which bands are crossed. If
two bands have a positive (resp. negative) crossing, then they each have
the addition of a positive (resp. negative) half twist, and the third band has
the addition of a negative (resp. positive) half twist.

(a) (b)

(c) (d)

I I

V V

Figure 9. (a) A positive RI adds a full positive twist to the band.
(b) A negative RI adds a full negative twist to the band. (c,d) RV
adds a half twist on each of the three bands.
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Since we proved earlier that the flat vertex graph can be moved to a planar
embedding, we know that all of the crossings between edges will be eventually
removed through Reidemeister moves. Thus this gives

a1 =−[cusps on e1] − 1+ 2 cr[e1] + cr[e1, e2] + cr[e1, e3] − cr[e2, e3].

This count is easily seen to be invariant under RII and RIII, since these do not
change the signed crossing of the diagram. We show it is invariant under RIV at
the end of the proof.

Next, we describe tb1+tb2−tb3 in terms of the number of cusps and the crossings
between the edges. Recall that, for a cycle C,

tb(C)= w(C)− 1
2 cusps(C).

Thus,

tb1+tb2−tb3 = w(C1)−
1
2 cusps(C1)+w(C2)−

1
2 cusps(C2)−w(C3)+

1
2 cusps(C3)

= cr[e1, e2]+cr[e1]+cr[e2]−
1
2

(
[cusps on e1]+[cusps on e2]+2

)
+cr[e1, e3]+cr[e1]+cr[e3]−

1
2

(
[cusps on e1]+[cusps on e3]+2

)
−
(
cr[e2, e3]+cr[e2]+cr[e3]

)
+

1
2

(
[cusps on e2]+[cusps on e3]+2

)
=−[cusps on e1]−1+2 cr[e1]+cr[e1, e2]+cr[e1, e3]−cr[e2, e3].

Thus, a1 = tb1+ tb2− tb3.

Claim. The sum 2cr[e1] + cr[e1, e2] + cr[e1, e3] − cr[e2, e3] is unchanged under
RIV.

Proof of claim. Let b1= 2cr[e1]+cr[e1, e2]+cr[e1, e3]−cr[e2, e3]. Let d represent
the strand that is moved past the vertex. We distinguish two cases, (a) and (b),
according to the number of crossings on each side of the vertex; see Figure 10. We
check that the contributions to b1 of the crossing before the move (left) is the same
as the contribution to b1 of the crossings after the move (right). The strand d can
be part of e1, e2 or e3. For both cases (a) and (b), the equality is shown step by step
for d = e1 and d = e3. In a similar way b1 is unchanged if d = e2.

Case (a1): If d is part of e1, then b1,left = 2cr[e1]+cr[e1, e2] = cr[e1], since the two
crossings have opposite sign when seen in the cycle determined by e1 and e2; and
b1,right = cr[e1, e3] = cr[e1].

IV IV

(a) (b)

e1

e2

d

e3

e1

e2

d

e3

e1
e2
e3

e1
e2
e3

d d

Figure 10. RIV changes crossings between different pairs of edges.
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Case (a2): If d is part of e3, then b1,left= cr[e1, e3]−cr[e2, e3]= cr[e2, e3]−cr[e3]=

0, and b1,right = 0.

Case (b1): If d is part of e1, then b1,left = 2cr[e1] + cr[e1, e2] + cr[e1, e3] = 0, and
b1,right = 0.

Case (b2): If d is part of e3, then b1,left= cr[e1, e3]−cr[e2, e3] = 0, since both these
crossings have sign opposite to cr[e3]; and b1,right = 0.

This completes the proof of the claim and the theorem. �

The combination of Theorem 12 and Theorem 14 gives a complete picture of
the possible transverse push-offs of topologically planar Legendrian θ-graphs. In
this case, the transverse push-off is completely described by the tb of the graph. So
while this does not add to our ability to distinguish topologically planar Legendrian
θ -graphs, it does add to our understanding of the interaction between a Legendrian
graph and its transverse push-off.

It is worth noting that Theorem 14 also implies that the transverse push-off
will either have one or three components. The possible transverse push-offs of
a topologically planar Legendrian θ-graph are more restricted than it may first
appear. Not all pretzel links will occur in this way. In Theorem 14, we found the
pretzel coefficients as linear combinations with coefficients +1 or −1 of tb1, tb2

and tb3. We note that the three pretzel coefficients have the same parity, restricting
the number of components the transverse push-off can have. If exactly one of or all
three of tb1, tb2 and tb3 are odd, then all pretzel coefficients are odd and the pretzel
curve is a knot. If none or exactly two of tb1, tb2 and tb3 are odd, then all pretzel
coefficients are even and the pretzel curve is a three component link. The pairwise
linking between its components is equal to the number of full twists between the
corresponding pair of strands in the pretzel presentation, i.e., a1/2, a2/2 and a3/2.

4.3. The transverse push-off of θn-graphs. We give examples showing the bound-
ary of the Legendrian ribbon associated to an θn-graph, n > 3, is not necessarily a
pretzel-type link. Independent of n, each component of an n-pretzel type link is
linked with at most two other components. The transverse push-offs of the graphs
in Figure 11 have at least one component linking more than two other components
of the link. The characterization as a pretzel curve of the topological type of the
push-off is therefore exclusive to the case n = 3, that of θ -graphs.

For n = 2k, k ≥ 2, let L2k be the Legendrian θ2k-graph whose front projection
is the one in Figure 11, top left. The transverse push-off has the topological type of
the link L∪Lk in Figure 11, top right. If k is odd, L has one component and it links
all k ≥ 3 components of Lk . If k is even, L has two components where each of the
two components links all k ≥ 2 components of Lk and the other component of L .

For n = 2k + 1, k ≥ 3, let L2k+1 be the Legendrian θ2k+1-graph whose front
projection is the one in Figure 11, middle left. The transverse push-off has the



LEGENDRIAN θ -GRAPHS 209

k pairs

k pairs

k

k

k

L

L

L

Lk

n = 2k

Lk

k−1

n = 2k+ 1

n = 5

Figure 11. The θn-graphs on the left have the transverse push-offs
shown on the right, which do not have the topological type of a
pretzel-type curve.

topological type of the link L ∪ Lk in Figure 11, middle right. If k is even, L has
one component and it links all k ≥ 3 components of Lk . If k is odd, L has two
components where each of the two components links all k ≥ 3 components of Lk

and the other component of L .
For n= 5, the link just discussed is a pretzel link and we give a different example

in this case; see the bottom row of Figure 11. The highlighted component of the
transverse push-off links three other components.
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