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IN CONFORMAL GEOMETRY

WEIMIN SHENG AND LI-XIA YUAN

In this paper, we solve a class of Neumann problems on a manifold with
totally geodesic smooth boundary. As a consequence, we also solve the
prescribing k-curvature problem of the modified Schouten tensor on such
manifolds; that is, if the initial k-curvature of the modified Schouten tensor
is positive for τ > n − 1 or negative for τ < 1, then there exists a conformal
metric such that its k-curvature defined by the modified Schouten tensor
equals some prescribed function and the boundary remains totally geodesic.

1. Introduction

Let (Mn, g), n ≥ 3, be a compact, smooth Riemannian manifold. The modified
Schouten tensor

Aτg :=
1

n− 2

(
Ricg −

τ Rg

2(n− 1)
· g
)

was introduced by Gursky and Viaclovsky [2003] and A. Li and Y.-Y. Li [2003]
independently, where τ ∈R and Ricg, Rg are the Ricci tensor and the scalar curvature
of g, respectively. Clearly, A0

g is the Ricci tensor, An−1
g is the Einstein tensor and

A1
g is just the Schouten tensor.
Denote by λ(g−1 Aτg) the eigenvalues of Aτg. The k-curvature (or σk curvature) of

Aτg is defined as σk(λ(g−1 Aτg)), where σk is the k-th elementary symmetric function
defined by

σk(λ)=
∑

1≤i1<···<ik≤n

λi1 · · · λik for all λ ∈ Rn,

for any 1≤ k ≤ n. We will use σk(Aτg) := σk(λ(g−1 Aτg)) for convenience.
The prescribing k-curvature problem of the modified Schouten tensor Aτg in

conformal geometry is to find a metric g̃ in the conformal class [g] of g satisfying
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the equation

(1-1) σ
1/k
k (Aτg̃)= ϕ(x),

where ϕ is a given smooth function on M . If τ = 1= k and ϕ is constant, (1-1) is
just the Yamabe problem, which has been solved by Yamabe, Trudinger, Aubin and
Schoen (see [Lee and Parker 1987]). When τ = 1, k≥ 2 and ϕ is constant, then (1-1)
is called k-Yamabe problem, which has attracted enormous interest [Chang et al.
2002; Ge and Wang 2006; Guan and Wang 2003a; 2003b; Gursky and Viaclovsky
2007; Li and Li 2003; 2005; Sheng et al. 2007; Trudinger and Wang 2009; 2010;
Viaclovsky 2000], etc. There are many interesting works on the Yamabe problem
and k-Yamabe problem on a manifold with boundary [Chen 2007; 2009; Escobar
1992b; 1992a; Han and Li 1999; 2000; He and Sheng 2011a; 2011b; 2013; Jin et al.
2007; Jin 2007], etc.

Note that (1-1) is a fully nonlinear partial differential equation for k ≥ 2. In order
to study this problem, we need the following conceptions. Let

0+k = {λ= (λ1, λ2, . . . , λn) ∈ Rn
| σ j (λ) > 0, 1≤ j ≤ k}.

Therefore, we have 0+n ⊂ 0
+

n−1 ⊂ · · · ⊂ 0
+

1 . For a 2-symmetric form B defined
on (Mn, g), B ∈ 0+k means that the eigenvalues of B, say λ(g−1 B), lie in 0+k . Set
0−k =−0

+

k .
According to [Caffarelli et al. 1985], (1-1) is an elliptic equation for Aτg ∈ 0

+

k
or Aτg ∈ 0

−

k . When τ < 1, Aτg ∈ 0
−

k and ϕ < 0, Gursky and Viaclovsky [2003]
proved that there exists a unique conformal metric g̃ ∈ [g] satisfying (1-1) on a
closed manifold. Li and Sheng [2005] studied the same problem by a parabolic
argument. Using a similar argument, Sheng and Zhang [2007] studied the case of
τ > n − 1, Aτg ∈ 0

+

k and ϕ > 0. For the manifold with boundary, Li and Sheng
[2011] considered a Dirichlet problem of (1-1) for τ > n− 1 and Aτg ∈ 0

+

k ; He and
Sheng [2013] discussed more general equations and obtained many useful local
estimates for both τ < 1 and τ > n−1. In [Sheng and Yuan 2013], we investigated
a Neumann problem of (1-1) by a conformal flow and proved:

Theorem 1.1 [Sheng and Yuan 2013]. Let (Mn, g), n ≥ 3, be a compact manifold
with smooth totally geodesic boundary ∂M. If Aτg ∈ 0

+

k and τ > n− 1, or Aτg ∈ 0
−

k
and τ < 1, then there exists a smooth metric g̃ ∈ [g] satisfying (1-1) for ϕ constant
and such that ∂M is still totally geodesic.

In this paper, we are interested in solving a class of Neumann problems on the
manifold with totally geodesic boundary.

Let (M, g) be a compact manifold with smooth boundary ∂M . Denote the second
fundamental form and the mean curvature of ∂M by L and µ. Under the conformal
change of metric g̃ = e2ug, the second fundamental form L with respect to its unit
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inward normal ν satisfies

L̃e−u
=−

∂u
∂ν

g+ L .

The boundary is called umbilic if L = µg, and then totally geodesic if µ≡ 0. Note
that the umbilicity is conformally invariant. Then the mean curvature changes as

(1-2) µ̃=

(
−
∂u
∂ν
+µ

)
e−u .

Under the same conformal change, the modified Schouten tensor changes according
to the formula

(1-3) Aτg̃ =
τ − 1
n− 2

4ug−∇2u+ du⊗ du+
τ − 2

2
|∇u|2g+ Aτg,

where the covariant derivatives and norms are taken with respect to the background
metric g. Let the boundary ∂M be totally geodesic with respect to the metric g. In
order to preserve the boundary being totally geodesic under the conformal change,
µ̃≡ 0. Hence, the two partial differential equations corresponding to Theorem 1.1
are

(1-4)


σ

1/k
k

(
τ−1
n−2
4ug−∇2u+ du⊗ du+ τ−2

2
|∇u|2g+ Aτg

)
= e2u const. in M,

∂u
∂ν
= 0 on ∂M,

for τ > n− 1, and

(1-5)


σ

1/k
k

(
∇

2u+ 1−τ
n−2
4ug− du⊗ du+ 2−τ

2
|∇u|2g− Aτg

)
= e2u const. in M,

∂u
∂ν
= 0 on ∂M,

for τ < 1, respectively.
Now, we consider more general equations than (1-4) and (1-5). Let 0 ⊂ Rn

be an open convex cone with vertex at the origin satisfying 0n ⊂ 0 ⊂ 01, and
F : Rn

→ R be a general smooth, symmetric, homogeneous function of degree one
in 0 normalized by F(e)= F(1, . . . , 1)= 1. Moreover, F = 0 on ∂0 and satisfies
the following structure conditions in 0:

(C1) F is positive.

(C2) F is concave (i.e., ∂2 F/(∂λi∂λ j ) is negative semidefinite).

(C3) F is monotone (i.e., ∂F/∂λi is positive).
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According to [Lin and Trudinger 1994; Trudinger 1990], for any 0≤ l < k ≤ n,
the elementary symmetric functions and their quotients (σk/σl)

1/(k−l) with σ0 = 1
satisfy all the properties and structure conditions above on 0+k .

For some positive function 8(x, z) ∈ C∞(M)×R, we study the equation

(1-6)

{
F(g−1V [u])=8(x, u) in M,
∂u
∂ν
= 0 on ∂M,

where for constant θ̄ := (τ − 1)/(n − 2) > 1, a, b ∈ C∞(M), and the smooth
symmetric 2-tensor S ∈ 0, the matrix (V [u]) is defined by

(1-7) V [u] = θ̄4ug−∇2u+ a(x)du⊗ du+ b(x)|∇u|2g+ S.

We call a function v ∈ C2(M) admissible if λ(g−1V [v]) ∈ 0.
Assume S is the symmetric 2-tensor on M satisfying one of the following

conditions:

(S1) S(ν, X)= 0, for any X ∈ T (∂M).

(S2) S = Aτg.

Theorem 1.2 (main result). Let (Mn, g), n≥ 3, be a compact manifold with smooth
totally geodesic boundary ∂M. Suppose θ̄ > 1 and the positive function 8(x, z) ∈
C∞(M)×R satisfies

(1-8) ∂z8> 0, lim
z→+∞

8(x, z)=+∞, lim
z→−∞

8(x, z)= 0.

Then for any functions a, b ∈C∞(M) and S ∈0 satisfying (S1) or (S2), there exists
a function u ∈ C∞(M) solving the equation (1-6).

For the other elliptic branch (1-5), we consider the equation

(1-9)

{
F(g−1W [u])=8(x, u) in M,
∂u
∂ν
= 0 on ∂M,

where for constant θ := (1 − τ)/(n − 2) > 0, a, b ∈ C∞(M), and the smooth
symmetric 2-tensor T ∈ 0, the matrix (W [u]) is defined by

(1-10) W [u] = ∇2u+ θ4ug+ a(x)du⊗ du+ b(x)|∇u|2g+ T .

Theorem 1.3. Let (Mn, g), n ≥ 3, be a compact manifold with smooth totally geo-
desic boundary ∂M. Suppose θ > 0 and the positive function8(x, z)∈C∞(M)×R

satisfies (1-8). Then for any functions a, b ∈ C∞(M) and T ∈ 0 with (S1) or
T =−Aτg, there exists a function u ∈ C∞(M) solving the equation (1-9).

Applying Theorems 1.2 and 1.3 to the quotient of the elementary symmetric
functions, i.e., F = (σk/σl)

1/(k−l) on 0+k , we have the following corollaries.
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Corollary 1.4. Let (Mn, g), n ≥ 3, be a compact manifold with smooth totally
geodesic boundary ∂M. If τ > n− 1 and Aτg ∈ 0

+

k , then for any smooth function
ϕ > 0, there exists a smooth metric g̃ ∈ [g] preserving ∂M totally geodesic and
satisfying

(1-11)
(
σk

σl

) 1
k−l
(Aτg̃)= ϕ(x) in M.

Corollary 1.5. Let (Mn, g), n ≥ 3, be a compact manifold with smooth totally
geodesic boundary ∂M. If τ < 1 and Aτg ∈ 0

−

k , then for any smooth function ϕ < 0,
there exists a smooth metric g̃ ∈ [g] preserving ∂M totally geodesic and satisfying
(1-11).

Remark 1.6. By choosing l = 0 and ϕ constant in Corollaries 1.4 and 1.5, we can
get Theorem 1.1 directly. Different from the results in [Li and Sheng 2011; Sheng
et al. 2007], we need not subjoin any restriction on a(x) and b(x) in Theorems 1.2
and 1.3. Contrary to this fact, [Sheng et al. 2007] gives a counterexample to show
that there is no regularity if a(x)= 0 and b(x) > 0 when τ = 1 and Aτg ∈ 0

−

k .

This paper is organized as follows. We introduce some lemmas in Section 2.
By use of these lemmas, we can get the a priori global C0 estimate for (1-6) in
Section 3. Then we obtain the a priori global gradient and Hessian derivatives
estimates in Section 4 and Section 5 respectively. By the a priori estimates and the
standard continuity method, we show Theorem 1.2 in Section 6. In the last section,
we consider (1-9) by the similar arguments in Sections 3–6, and prove Theorem 1.3.

2. Preliminaries

In this section, we first recall some facts of the function F satisfying the structure
conditions (C1)–(C3) in 0.

Lemma 2.1 (see [Chen 2005; 2009]). Let 0 be an open convex cone with vertex at
the origin satisfying 0+n ⊂ 0, and let e = (1, . . . , 1) be the identity. Suppose that F
is a homogeneous symmetric function of degree one normalized with F(e)= 1, and
that F is concave in 0. Then:

(a)
∑

i λi∂F(λ)/∂λi = F(λ), for λ ∈ 0.

(b)
∑

i ∂F(λ)/∂λi ≥ F(e)= 1, for λ ∈ 0.

To get the boundary estimates, we need some facts. For any point x0 ∈ ∂M ,
we consider Fermi coordinates {xi }1≤i≤n around x0, where ∂/∂xn is the unit inner
normal with respect to the background metric g. A half-ball centered at x0 of
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radius r is defined by

B+r =
{

xn ≥ 0,
( n∑

i=1

x2
i

)
≤ r2

}
.

Denote the boundary of B+r on ∂M by 6r =
{

xn = 0,
∑

i x2
i ≤ r2

}
.

Throughout this paper, the Greek letters α, β, γ, . . . = 1, . . . , n − 1 stand for
the tangential direction indices, while the Latin letters i, j, k, . . .= 1, . . . , n stand
for the full indices. In Fermi coordinates {xi }1≤i≤n , the metric is expressed as
g = gαβ dxα dxβ + (dxn)

2. Then the Christoffel symbols on the boundary satisfy

(2-1) 0n
αβ = Lαβ, 0βαn=−Lαγ gγβ, 0n

αn=0, 0n
nn=0, 0γnn=0, 0

γ

αβ = 0̃
γ

αβ

on the boundary, where we denote the tensors and covariant differentiation with
respect to the induced metric gαβ on the boundary by a tilde (e.g., 0̃γαβ, µα̃β̃). When
the boundary is totally geodesic, we have

(2-2) 0n
αβ = 0, 0βαn = 0, 0n

αn = 0.

Lemma 2.2 [Chen 2007; He and Sheng 2013]. Suppose ∂M is totally geodesic and
un = 0 on ∂M. Then we have on the boundary that

(2-3) unα = 0 and uαβn = 0.

Lemma 2.3 [He and Sheng 2013]. Let (M, g) be a compact Riemannian manifold
with boundary and dimension n ≥ 3. Assume the boundary ∂M is totally geodesic.
Then at any boundary point P ∈ ∂M , there exists a conformal metric ḡ= e2ūg0 such
that (i) ūn = 0 on ∂M and the boundary ∂M is still totally geodesic, (ii) Ri j (P)= 0
for 1 ≤ i , j ≤ n, (iii) Rnn,n(P) = 0, Rαn,β(P) = 0, 1 ≤ α, β ≤ n − 1, and
(iv) Rαβ,n(P)= 0, 1≤ α, β ≤ n− 1.

3. Ellipticity and the global C0 estimates

We first sketch the ellipticity properties of operator F ; see [Li and Sheng 2011] for
details.

For any function h on M , we define

P[h] := F(V [h])−8(x, h).

Then any solution u of (1-6) satisfies P[u] = 0. Denote us = u+ sv, s ∈ R. The
linearized operator of (1-6) is

(3-1) Lv :=
d
ds

P[us]
∣∣
s=0

= P i jvi j + 2aF i jvi u j + 2bvlulT− ∂z8(x, u)v,
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where F i j
:= (∂F/∂Vi j )(V [u]), T= tr(F i j )= F i j gi j and

P i j
:= θ̄Tgi j

− F i j
≥ (θ̄ − 1)Tgi j .

Since u is admissible, (F i j ) is positive definite [Caffarelli et al. 1985]. Denote
ε0 := θ̄ − 1> 0. Hence, (P i j ) is positive definite, too.

Note that the coefficient of the zero order term in (3-1) is negative when ∂z8 is
positive on M ×R.

Lemma 3.1. Equation (1-6) is elliptic at any admissible solution. If ∂z8 is positive
on M × R, then the linearized operator L : C2,α(M)→ Cα(M)(0 < α < 1) is
invertible.

Now, we use the compactness of the manifold to get the global C0 estimates of
(1-6).

Proposition 3.2. Suppose S ∈ 0 and the positive function 8(x, z) ∈ C∞(M)×R

satisfies (1-8). Then for any admissible solution u ∈ C2(M) of (1-6), we have

sup
M
|u| ≤ C0,

where the constant C0 depends only on S and 8.

Proof. Suppose x0 be the maximum point of u on M . Denote umax = u(x0).
If x0 ∈ ∂M , at this point we have un(x0)< 0, which contradicts with the boundary

condition un|∂M ≡ 0. Hence, x0 must be an interior point of M . Then at this point
we have

(3-2) ∇u = 0 and ∇
2u ≥ 0.

Substituting (3-2) into (1-6), we have

8(x0, umax)≤ F(S)(x0)≤max
x∈M

F(S)≤ C.

Now, by the condition ∂z8> 0 and limz→+∞8(x, z)=+∞, we know that

max
x∈M

u = umax ≤ C.

By a similar argument, we can get the lower bound of u by considering its
minimum point on M and using the other condition of 8. �

4. Gradient estimates

In this section we first consider the boundary gradient estimates of (1-6), then derive
the global estimates.
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For any point y0 ∈ ∂M , let B+r and B+r/2 be any two half-balls centered at y0 in
the Fermi coordinates {xi }1≤i≤n . Choosing a cutoff function η depending only on r
such that 0≤ η ≤ 1, η = 1 in B+r/2, η = 0 outside B+r . Moreover,

(4-1) |∇η| ≤ b0
η1/2

r
and |∇

2η| ≤
b0

r2 ,

for a universal constant b0, where the covariant derivatives and the norms | · | are
taken with respect to g. Since η only depends on r , we have

(4-2)
∂η

∂n
= 0 on ∂M.

We also need the function ψ : R→ R defined in [Gursky and Viaclovsky 2003]
by

(4-3) ψ(s)= α1(α2+ s)p, −δ1 < s < δ2,

where the positive constants δ1 and δ2 are given, and the constants α1, α2 and p
will be fixed as follows. We have

ψ ′ = pα1(α2+ s)p−1 and ψ ′′ = p(p− 1)α1(α2+ s)p−2
=

p− 1
α2+ s

ψ ′.

Let α2 and p be positive constants satisfying α2 > δ1 and p > 3. Take

α1 =
1

p2 max{(α2+ s)p}
;

then

(4-4) ψ ≤
1
p2 , ψ ′ > 0 and ψ ′′−ψ ′2 =

ψ ′

α2+s
(p−1− pψ)≥

ψ ′ p
2(α2+s)

.

Proposition 4.1. Suppose u is a C3 solution of (1-6) on B+r . Then there is a positive
constant C depending only on n, k, θ̄ , g, r , |S|C1(B+r ), |8|C1(B+r )×[−C0,C0]

, |a|C1(B+r ),
|b|C1(B+r ) and C0 such that

sup
B+r/2

|∇u|g ≤ C.

Proof. Consider the auxiliary function

G := 1
2ηeβ |∇u|2, β := xn +ψ(u),

where the function ψ defined by (4-3). Let x0 be the maximum point of G on B+r .
Without loss of generality, we may assume r = 1 and |∇u| (x0)� 1.
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Suppose x0 ∈6r . Then Gn(x0)≤ 0. However, by (4-2), the boundary condition
un = 0 and Lemma 2.2, we have

Gn(x0)=
1
2 eψ

(
(1+ψ ′un)|∇u|2+ 2ununn + 2

n−1∑
α=1

uαuαn

)
(x0)

=
1
2 eψ |∇u|2(x0) > 0.

It is a contradiction. Hence x0 must be an interior point of B+r . Then at x0, for
1≤ i ≤ n, we have

0= (log G)i , 0≥ (log G)i j ,

that is,

(4-5)
2ususi

|∇u|2
=−

(
ηi

η
+βi

)
,

and

(4-6) 0≥
(
ηi j

η
−
ηiη j

η2

)
+βi j +

2us j usi + 2ususi j

|∇u|2
−

4ususi ulul j

|∇u|4
.

Substituting (4-5) into (4-6), we have

0≥
(
ηi j

η
− 2

ηiη j

η2

)
+ (βi j −βiβ j )+

2us j usi + 2ususi j

|∇u|2
−

1
η
(ηiβ j + η jβi ).(4-7)

By (4-7), we have

(4-8) 0≥ P i j
(
ηi j

η
− 2

ηiη j

η2

)
+ P i j (βi j −βiβ j )

+
2
|∇u|2

P i j usi us j +
2
|∇u|2

us P i j usi j −
2
η

P i jηiβ j ,

where P i j
= θ̄Tgi j

− F i j is positive definite. It follows from (4-1) and (4-8) that

(4-9) 0≥
2
|∇u|2

us P i j usi j + P i j (βi j −βiβ j )−
2
η

P i jηiβ j −
C
η

T,

where the constant C depends only on n and b0.
Differentiating (1-6), we have

(4-10) ∇s8= P i j ui js+ F i j (asui u j +2auisu j + Si j ,s )+ (bs |∇u|2+2bulsul)T.

Then by (4-10) and Ricci identities usi j = ui js + Ris j pu p, we obtain

2
|∇u|2

us P i j usi j ≥
2
|∇u|2

us∇s8−
2
|∇u|2

us F i j (asui u j + 2auisu j )

−
2
|∇u|2

us(bs |∇u|2+ 2bulsus)T−C(1+
1
|∇u|

)T.
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where the constant C depends only on n, g and |∇S|.
Since ∇s8= 8x +8zus , by (4-5) and the inequality above, we have

(4-11)
2
|∇u|2

us P i j usi j ≥28z+
2
|∇u|2

us8x−
2asus

|∇u|2
F i j ui u j+2aF i j u j

(
ηi

η
+βi

)
− 2bsusT+2b

(
ηs

η
+βs

)
usT−C

(
1+

1
|∇u|

)
T

≥ C∗+ 2aF i j u jβi + 2busβsT−
C
√
η
(1+ |∇u|)T,

where the constant C∗ depends only on |8x |, |8z|, C0, and C depends on n, b0,
|a|C1 , |b|C1 and |∇S|.

Then by (4-9) and (4-11), we obtain

(4-12) 0≥ C∗+ 2aF i j u jβi + 2busβsT

+ P i j (βi j −βiβ j )−
2ηi

η
P i jβ j −C

1
√
η
(|∇u| + 1)T.

Since β := xn +ψ(u), we have

βi = δin +ψ
′ui , βi j = ψ

′′ui u j +ψ
′ui j

and

βi j −βiβ j = ψ
′ui j + (ψ

′′
−ψ ′2)ui u j −ψ

′(δinu j + δ jnui )− δinδ jn.

Therefore, we have the inequalities

2aF i j u jβi = 2aF i j u j (δin +ψ
′ui )≥ 2aψ ′F i j ui u j −C |∇u|T,(4-13)

2busβsT= 2bus(δsn +ψ
′us)T≥ 2bψ ′|∇u|2T−C |∇u|T,(4-14)

−
2ηi

η
P i jβ j =−

2
η

P i jηi (δ jn +ψ
′u j )≥−

C
√
η
(|∇u| + 1)T,(4-15)

P i j (βi j −βiβ j )≥ ψ
′P i j ui j + (ψ

′′
−ψ ′2)P i j ui u j −C(|∇u| + 1)T.(4-16)

Plugging (4-13)–(4-16) into (4-12), we have

(4-17) 0≥ C∗+ψ ′P i j ui j + (ψ
′′
−ψ ′2)P i j ui u j + 2aψ ′F i j ui u j

+ 2bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T.

By Lemma 2.1, we know that F i j Vi j = F(V )=8. Then

(4-18) ψ ′P i j ui j = ψ
′F i j Vi j −ψ

′F i j (aui u j + b|∇u|2gi j + Si j )

≥ ψ ′8− aψ ′F i j ui u j − bψ ′|∇u|2T−CT.
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Substituting (4-18) into (4-17), we get

(4-19) 0≥ C∗+ψ ′8+ (ψ ′′−ψ ′2)P i j ui u j + aψ ′F i j ui u j

+ bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T

= C∗+ψ ′8+ (ψ ′′−ψ ′2− aψ ′)P i j ui u j

+ (aθ̄ + b)ψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T.

Claim 4.2. If −δ1 < u < δ2, then there exist positive constants α1, α2 and p
depending only on θ̄ , δ1, δ2, |a|L∞(M) and |b|L∞(M), such that ψ ′ > 0, and

(4-20) (ψ ′′−ψ ′2− |a|L∞ψ ′)ε0− (θ̄ |a|L∞ + |b|L∞)ψ ′ ≥ ε1 > 0,

for some constant ε1 depending only on θ̄ , δ1 and δ2.

Note that 8> 0. Then by Claim 4.2, we have

0≥ C∗+ ε1|∇u|2T−
C
√
η
(|∇u| + 1)T.

Multiplying η2 both sides of the inequality above, we have

(4-21) ε1η
2
|∇u|2T≤ 2C |∇u|T+C∗.

By Lemma 2.1, T≥ 1. Then (4-21) implies the gradient estimates.

Proof of Claim 4.2. Since −δ1 ≤ u ≤ δ2. By (4-4), for

δ1+ δ2

2
≤ α2 ≤ δ2, p >max{3, 8|a|L∞δ2},

we have α1 = 1/(p2(2δ2)
p), ψ ′ > 0, and

ψ ′′−ψ ′2− aψ ′ ≥ ψ ′
(

p
4δ2
− |a|L∞

)
≥
ψ ′ p
8δ2

.

Furthermore, we can choose

p >max
{

3, 8|a|L∞δ2,
16
ε0
(θ̄ |a|L∞ + |b|L∞)δ2

}
,

such that

(ψ ′′−ψ ′2− |a|L∞ψ ′)ε0− (θ̄ |a|L∞ + |b|L∞)ψ ′

≥ ψ ′
(

pε0

8δ2
− (θ̄ |a|L∞ + |b|L∞)

)
≥
ψ ′ pε0

16δ2
≥
ε0(δ2− δ1)

p−1

2p+3δ2
≥ ε1 > 0. �
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Remark 4.3. If B+r and B+r/2 are replaced by two local geodesic open balls in the
interior of M and β = ψ(u) in the auxiliary function G, we can get the interior
gradient estimates for (1-6) by the proof of Proposition 4.1.

Since M is a compact manifold, by Proposition 4.1 and Remark 4.3, we can
derive the global gradient estimate of (1-6).

Proposition 4.4. Let u be a C3 solution of (1-6) on M. Then there is a positive
constant C1 depending only on n, k, θ̄ , g, a, b,8, S and C0 such that

(4-22) sup
M
|∇u|g ≤ C1.

5. Estimates for the second derivatives

Lemma 5.1. Let u be a C4 solution of (1-6). Then there is a positive constant C ′

depending only on n, k, θ̄ , g, |S|C1(B+r ), |a|C1(B+r ), |b|C1(B+r ), |8|C1(B+r )×[−C0,C0]
and

C1, such that

(5-1) unnn ≥−C ′ on ∂M.

Proof. We consider this lemma for S satisfying condition (S1) or (S2), respectively.

(i) Suppose S satisfy (S1). Then Sαn = S(∂/∂xα, ∂/∂xn)= 0 on the boundary ∂M .
By the boundary condition un = 0 and the Lemma 2.2, we have V [u]αn = Sαn = 0.
Applying an argument of Lemma 13 in [Chen 2009], we know that

(5-2) Fαn(V [u])= 0.

Also by Lemma 2.2, we calculate that

(5-3) V [u]αβ,n = θ̄unnngαβ + θ̄uγ γ ngαβ − uαβn + 2auαnuβ + anuαuβ
+ 2buαnuαgαβ + 2bunnungαβ + bn|∇u|2gαβ + Sαβ,n

= θ̄unnngαβ + anuαuβ + bn|∇u|2gαβ + Sαβ,n
≤ θ̄unnngαβ +C,

where the constant C depends only on |∇a|, |∇b|,C1, g and |∇S|.
Similarly, we have

(5-4) V [u]nnn = θ̄uγ γ n + θ̄unnn − unnn + anu2
n + 2aununn + 2buαnuα
+ 2bununn + bn|∇u|2+ Snn,n

≤ θ̄unnn − unnn +C.



A CLASS OF NEUMANN PROBLEMS ARISING IN CONFORMAL GEOMETRY 223

By differentiating (1-6) along the normal direction the on boundary, using (5-2)–
(5-4), we have

∇n8= FnnV [u]nnn + FαβV [u]αβn

≤ Fnn(θ̄unnn − unnn)+ θ̄unnn Fαβgαβ +CT

=−Fnnunnn + θ̄unnnT+CT,

where we have used gαn = 0 and gnn = 1. Since T> 1, we have

0≤−Fnnunnn + (θ̄unnn +C)T,(5-5)

where C also depends on |∇8|.
If θ̄unnn +C > 0, we get unnn >−C/θ̄ , which implies (5-1). If θ̄unnn +C < 0,

by Fnn < T we have

0≤−Fnnunnn + (θ̄unnn +C)Fnn
= ((θ̄ − 1)unnn +C)Fnn.

Since Fnn > 0, we have

(5-6) (θ̄ − 1)unnn +C ≥ 0.

Note that θ̄ − 1= ε0 > 0; then (5-6) implies (5-1).

(ii) Suppose S = Aτg. For any x0 ∈ ∂M , using the metric ḡ in Lemma 2.3, we
consider a metric ĝ = e2v ḡ such that u = ū+ v is a solution of (1-6). Now,

(5-7) V [u]i j = θ̄4ūgi j + θ̄4vgi j − ūi j − vi j + a(ūi ū j + ūiv j + vi ū j + viv j )

+ b(|∇ū|2+ 2〈∇ū,∇v〉+ |∇v|2)gi j + (Aτg)i j .

By (1-3), we have

(5-8) (Aτḡ)i j = θ̄4ūgi j − ūi j + ūi ū j +
(n− 2)θ̄ − 1

2
|∇ū|2gi j + (Aτg)i j .

Substituting (5-8) into (5-7), we obtain

V [u]i j = θ̄4vgi j − vi j + a(ūiv j + vi ū j + viv j )+ (a− 1)ūi ū j

+ b(2〈∇ū,∇v〉+ |∇v|2)gi j +

(
b−

(n− 2)θ̄ − 1
2

)
|∇ū|2gi j + (Aτḡ)i j .
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Since ḡ = e2ūg, we have

(5-9) V [u]i j = θ̄4̄vḡi j −∇
2
i jv+ θ̄ ḡsl(0k

sl(ḡ)−0
k
sl(g))vk ḡi j

− (0k
i j (ḡ)−0

k
i j (g))vk + a(ūiv j + vi ū j + viv j )

+ (a− 1)ūi ū j + b(2〈∇ū,∇v〉ḡ + |∇v|2ḡ)ḡi j

+

(
b−

(n− 2)θ̄ − 1
2

)
|∇ū|2ḡ ḡi j + (Aτḡ)i j .

Denote V [v]i j := V [u]i j . Then (1-6) becomes

(5-10)

{
F(V [v])=8(x, ū+ v) in M,
∂v

∂n
= 0 on ∂M.

By the boundary condition un = 0, ūn = 0 and Lemma 2.2, we have

(5-11) unα = 0, uαβn = 0, ūnα = 0, ūαβn = 0.

Therefore vn = 0, vnα = 0 and vαβn = 0 on ∂M . Since ḡαn = e2ūgαn = 0, we have

V [v]αn =−∇
2
αnv− (0

δ
αn(ḡ)−0

δ
αn(g0))vδ + (A

τ
ḡ)αn.

It follows from (2-2) and the boundary condition un = 0 that

(5-12) 0δαn(ḡ)= 0
δ
αn(g)= 0, 0n

αβ = 0
n
αβ = 0, 0n

nn = 0
n
nn = 0.

Then

(5-13) ∇
2
αnv = vαn = 0 and ∇n∇

2
αβv = vαβn = 0.

By Lemma 2.3, we get

(Aτḡ)αn(x0)=−
1

n− 2

(
Rαn −

τ R
2(n− 1)

ḡαn

)
= 0.

Hence, V [v]αn(x0)= 0. Then

Fαn(V [v])= 0.

Now differentiating (5-10) along the normal direction and taking its value at x0,
we have

(5-14) ∇n8(x, ū+ v)= FnnV nnn + FαβV αβn.

Since ḡi j,n = ḡi j
,n = 0, by (5-11)–(5-13), we have

V [v]αβn

= θ̄vnnn ḡαβ − (0δαβ(ḡ)−0
δ
αβ(g)),nvδ + θ̄ ḡsl(0δsl(ḡ)−0

δ
sl(g)),nvδ ḡαβ + (A

τ
ḡ)αβ,n.
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Since ∂M is totally geodesic, using Fermi coordinates, we have on ∂M

0δαβ(g),n = 0
δ
αβ(g),n = 0

(see [He and Sheng 2013]). By Lemma 2.3 again,

Rn(x0)= ḡαβRαβ,n(x0)+ ḡαn Rαn,n(x0)+ ḡnn Rnn,n(x0)= 0.

Therefore

(Aτḡ)αβ,n(x0)=−
1

n− 2

(
Rαβ,n −

τ Rn

2(n− 1)
ḡαβ

)
(x0)= 0.

Hence, we obtain

(5-15) V [v]αβn(x0)= θ̄vnnn ḡαβ .

Similarly, we have

(5-16) V [v]nnn(x0)= θ̄vnnn ḡnn(x0)− vnnn(x0).

Denote T= F i j (V [v])ḡi j ≥ 1. Plugging (5-15) and (5-16) into (5-14), we obtain

(5-17) 0≤ C + θ̄vnnn(x0)T− Fnnvnnn(x0)≤ (C + θ̄vnnn(x0))T− Fnnvnnn(x0).

If C + θ̄vnnn(x0)≥ 0, then we have vnnn(x0)≥−C/θ̄ , which implies that

unnn(x0)≥ ūnnn(x0)−
C
θ̄
>−C ′.

If C + θ̄vnnn(x0) < 0, then by (5-17) we have

0≤ (C + (θ̄ − 1)vnnn(x0))Fnn.

Since Fnn > 0 and θ̄ > 1, we have vnnn(x0)≥−C/(θ̄ − 1), which also implies the
lower bound of unnn(x0). �

Proposition 5.2. Let u be a C4 solution of (1-6) on B+r . Then there is a positive
constant C2 depending only on n, k, θ̄ , r, g, |S|C2(B+r ), |8|C2(B+r )×[−C0,C0]

, |a|C2(B+r ),
|b|C2(B+r ), and C1, such that

(5-18) sup
B+r/2

|∇
2u|g ≤ C2.

Proof. We control the bound of 4u at first. Since V [u] ∈ 0 ⊂ 01, we have

0≤ tr(V [u])= (nθ̄ − 1)4u+ (a+ nb)|∇u|2+ tr S,

which implies that 4u has a lower bound by Proposition 4.4. We may assume
4u > 0.
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Consider the auxiliary function

G := ηexn (4u+m|∇u|2),

where η satisfies (4-1) and (4-2), and m is a larger constant to be fixed. We may
assume r = 1, and

K := 4u+m|∇u|2� 1.

Step 1. We may assume G attains its maximum at an interior point x0 ∈ B+r . If
x0 ∈6r , by Lemmas 2.2 and 5.1 we have

Gn(x0)= K + unnn + uγ γ n + 2muαnuα + 2munnun > K −C ′.

If K −C ′ ≤ 0, we then get the bound of 4u. If K −C ′ > 0, it contradicts with the
maximum of G at the boundary point x0.

Step 2. We must get an upper bound for 4u. By step 1, the maximum point x0 of
G is an interior point in B+r . Then at x0 we have

Gi = 0 and Gi j ≤ 0,

that is,

(5-19) ulli + 2mululi = Ki =−

(
ηi

η
+ δin

)
K ,

and

0≥ Gi j = ηexn

{(
ηi j

η
−
ηiη j

η2

)
K +

(
ηi

η
+ δin

)
K j + Ki j

}
.

Substituting (5-19) into the inequality above, by the definition of η in (4-1), we
have

0≥ Gi j = ηexn (Ki j +3i j K ),

where

3i j =
ηi j

η
− 2

ηiη j

η2 −
1
η
(ηiδ jn + η jδin)− δinδ jn ≥−

C
η
δi j ,

and C depends only on b0. Then we have

(5-20) 0≥ e−xn P i j Gi j ≥ ηP i j Ki j −C K T.

Note that

(5-21) Ki j = ulli j + 2muli ul j + 2mululi j .

By Ricci identities, we have

|ui jl − uli j | ≤ C and |ui jll − ulli j | ≤ C(|∇2u| + 1).
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Then we have

(5-22) P i j Ki j ≥ P i j ui jll + 2m P i j uli ul j + 2mul P i j ui jl −C(|∇2u| + 1)T.

By (4-10), we have

(5-23) 2mul P i j ui jl

= 2mul∇l8− F i j (alui u j + 2auilu j + Si j ,l )− (bl |∇u|2+ 2bulsus)T

≥−C(|∇2u| + 1)T,

since∇ll8=8xx+28xzul+8zull≥−C+8z4u≥−C(|∇2u|+1). Differentiating
the equation (1-6) twice, using the concavity of F , we have

(5-24) P i j ui jll ≥ ∇ll8− F i j (allui u j + 4aluilu j + 2auillu j + 2auilu jl + Si j ,ll )

− (bll |∇u|2+ 4blulsus + 2busllus + 2b|∇2u|2)T

≥−2aF i j uillu j − 2aF i j uilu jl − 2busllulT

− 2b|∇2u|2T−C(|∇2u| + 1)T.

By Ricci identities again, and (5-19) and (5-24), we get

(5-25) P i j ui jll ≥−2aF i j uilu jl − 2b|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T.

Now, plugging (5-23) and (5-25) into (5-22), and choosing

m >max
{

2|a|L∞,
4
ε0
(θ̄ |a|L∞ + |b|L∞)

}
,

we obtain

(5-26) P i j Ki j

≥−2aF i j uilu jl − 2b|∇2u|2T+ 2m P i j uli ul j −
C
η1/2 (|∇

2u| + 1)T

= 2(m+ a)P i j uli ul j − 2(aθ̄ + b)|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2
(
(m− |a|L∞)ε0− (θ̄ |a|L∞ + |b|L∞)

)
|∇

2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2
(

mε0

2
− (θ̄ |a|L∞ + |b|L∞)

)
|∇

2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥
mε0

2
|∇

2u|2T−
C
η1/2 (|∇

2u| + 1)T.

It follows from (5-20) and (5-26) that

η2 mε0

2
|∇

2u|2T≤ C(|∇2u| + 1)T,
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which implies that η|∇2u| ≤ C .

Step 3. We get the Hessian bound of u. As in [Chen 2009], we consider the
maximum of

G = η(x)exn (∇2u+mdu⊗ du)

over the set (x, ξ) ∈ (B+r ,Sn). Let G attain its maximum at some point x0 and the
direction ξ ∈ Tx0 M ∩Sn . Denote Kξ = uξξ +mu2

ξ . We may assume Kξ � C ′ > 0,
where C ′ is the one in Lemma 5.1.

Now, we can also show that x0 does not belong to the boundary. Suppose x0 ∈6r .
If ξ is a tangential vector, without loss of generality we may assume ξ = ∂/∂x1.
By Lemma 2.2, we have on the boundary that

(ηexn (u11+mu2
1))n = ηexn ((u11+mu2

1)+ u11n + 2mu1u1n)

≥ u11+mu2
1 = K1 > 0

Therefore, we get a contradiction. If ξ is in the normal direction, by Lemma 2.2
and Lemma 5.1, we also have

(ηexn (unn +mu2
n))n = ηexn ((unn +mu2

n)+ unnn + 2mununn)

≥ unn −C ′ = Kn −C ′ > 0.

Thus x0 must be an interior point. By similar calculations as before, we can get the
Hessian bounds. We omit the details here. �

Remark 5.3. Let Br and Br/2 be two local geodesic balls in the interior of M , and
G = η(4u +m|∇u|2). The same calculations in steps 2 and 3 yield the interior
Hessian estimates for (1-6).

Therefore we have the following global estimates.

Proposition 5.4. Let u be a C4 solution of (1-6) on M. Then there is a positive
constant C2 depending only on n, k, θ̄ , g, a, b, 8, S and C1, such that

sup
M
|∇

2u|g ≤ C2.

6. Proof of Theorem 1.2

We use the continuity method to prove the existence of (1-6). Since the argument is
standard (see [Li and Sheng 2011]), we only sketch it here.

For t ∈ [0, 1], consider the equation

(6-1t ) F
(
g−1(θ̄4ug−∇2u+ a(x)du⊗ du+ b(x)|∇u|2g+ St)

)
=8t(x, u),

where
St = t S+

1− t
F(e)

g and 8t(x, u)= (1− t)e2u
+ t8(x, u).
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Clearly, St and 8t satisfy the following conditions:

• St ∈ 0 and |St |C4(M) ≤ C , where the constant C is independent of t .

• St satisfies (S1) or St = t Aτg when t 6= 0 and S0 =
1

F(e)
g as long as S satisfies

(S1) or (S2).

• 8t(x, u) > 0, ∂z8t > 0, lim
z→+∞

8t(x, z)→+∞, and lim
z→−∞

8t(x, z)→ 0.

• |8t |C2(M×[−C,C]) ≤ C , where C is independent of t .

It follows from Sections 3, 4 and 5 that for each t , the admissible solution of
(6-1t ) has uniform a priori C2 estimates (independent of t). Then we obtain the
uniform C2,α estimates by Evans–Krylov theory [Krylov 1985]. Define

I = {t ∈ [0, 1] | (6-1t ) has admissible solution}.

Clearly, u ≡ 0 is the unique admissible solution of (6.10). Hence, I 6= ∅. By
Lemma 3.1, I ⊂ [0, 1] is open. By the uniform a priori C2,α estimates and the
standard degree theory, we conclude that I is also closed. Then for t = 1, (1-6) is
solvable. �

7. Proof of Theorem 1.3

Before proving Theorem 1.3, we first calculate a priori estimates for (1-9).

Proposition 7.1. Suppose T ∈ 0 and the positive function 8(x, z) ∈ C∞(M)×R

satisfy (1-8). Then there exists a constant C0 only depending on T and 8, such that
any solution u ∈ C2(M) of (1-9) satisfies

sup
M
|u| ≤ C0.

The proof is similar to that of Proposition 3.2. We omit it here.

Proposition 7.2. Suppose u is a C3 solution of (1-9) on B+r . Then there is a positive
constant C depending only on n, k, θ, g, r , |T |C1(B+r ), |8|C1(B+r )×[−C0,C0]

, |a|C1(B+r ),
|b|C1(B+r ) and C0, such that

sup
B+r/2

|∇u|g ≤ C.

Proof. Consider the auxiliary functions

G := 1
2ηeβ |∇u|2, β := xn +ψ(u).
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Then G can not attain its maximum at a boundary point x0 ∈ 6r by the same
arguments in the proof of Proposition 4.1. Since the maximum point x0 is an
interior point, we can also get (4-5)–(4-7). Now, the difference from the proof of
Proposition 4.1 is that we replace the operator P i j in (4-8) by the operator

(7-1) Qi j
:= F i j

+ θTgi j .

Then by similar calculations as in (4-9)–(4-16), we obtain

(7-2) 0≥ C∗+ψ ′Qi j ui j + (ψ
′′
−ψ ′2)Qi j ui u j + 2aψ ′Qi j ui u j

+ 2bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T.

Since

ψ ′Qi j ui j = ψ
′F i j Wi j −ψ

′F i j (aui u j + b|∇u|2gi j + Ti j )(7-3)

≥ ψ ′8− aψ ′F i j ui u j − bψ ′|∇u|2−CT.

Substituting (7-3) into (7-2), we get

(7-4) 0≥ C∗+ψ ′8+ (ψ ′′−ψ ′2)Qi j ui u j + aψ ′F i j ui u j

+ bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T

= C∗+ψ ′8+ (ψ ′′−ψ ′2+ aψ ′)F i j ui u j

+ (θ(ψ ′′−ψ ′2)+ bψ ′)|∇u|2T−
C
√
η
(|∇u| + 1)T.

By the similar argument as in Claim 4.2, we know that there exist positive constants
α1, α2 and p depending only on θ , C0, |a|L∞(M) and |b|L∞(M), such that

ψ ′ > 0, ψ ′′−ψ ′2− |a|L∞ψ ′ > 0, θ(ψ ′′−ψ ′2)− |b|ψ ′ ≥ ε2 > 0,

where the constant ε2 only depends on α1, α2 and p. Then we have

(7-5) 0≥ C∗+ ε2|∇u|2T−
C
√
η
(|∇u| + 1)T.

Then multiplying by η2 both sides of the inequality above and T>1, we have

ε2η
2
|∇u|2T≤ C |∇u|T+C∗,

which implies the gradient estimates. �

To get the boundary Hessian estimates, we first prove the following:
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Lemma 7.3. Let u be a C4 solution of (1-9). Then there is a positive constant C ′

depending only on n, k, θ, g, |T |C1(B+r ), |a|C1(B+r ), |b|C1(B+r ), |8|C1(B+r )×[−C0,C0]
and

C1 such that on ∂M , we have
unnn ≥−C ′.

Proof. (i) Let T satisfy the condition (S1). Then Tαn = 0 on the boundary. Hence
W [u]αn = Tαn = 0. Therefore Fαn(W [u]) = 0. By the similar calculations in
Lemma 5.1, we have

(7-6) W [u]αβ,n ≤ θunnngαβ +C

and

(7-7) W [u]nnn ≤ unnn + θunnn +C,

where the constants C depend on n, k, g, |T |C1(B+r ), |a|C1(B+r ), |b|C1(B+r ) and C1.
Now, differentiating (1-9) along the normal direction and taking the value on the

boundary, we have

∇n8= FnnW [u]nnn + FαβW [u]αβn(7-8)

≤ Fnn(unnn + θunnn)+ θunnn Fαβgαβ +CT

= Fnnunnn + θunnnT+CT,

that is,

(7-9) 0≤ Fnnunnn + θunnnT+CT= Fnnunnn + (θunnn +C)T,

where the constant C also depends on |8|C1(B+r )×[−C0,C0].

If θunnn+C ≥ 0, then we get unnn ≥−C/θ . If θunnn+C < 0, by Fnn <T and
(7-9), we have

0≤ Fnnunnn + (θunnn +C)Fnn
= ((θ + 1)unnn +C)Fnn.

Since Fnn > 0, we get
(θ + 1)unnn +C ≥ 0.

Note θ > 0. Then we obtain unnn ≥−C ′ again.

(ii) Suppose T =−Aτg . Using the metric ḡ in Lemma 2.3, we consider a new metric
ǧ = e2w ḡ such that u = ū+w is a solution of (1-9). Then similar to the calculation
in the proof of Lemma 5.1, we have

W [u]i j = θ4̄wḡi j +∇
2
i jw+ θ̄ ḡsl(0k

sl(ḡ)−0
k
sl(g))wk ḡi j + (0

k
i j (ḡ)−0

k
i j (g))wk

+ (a− 1)ūi ū j + a(ūiw j +wi ū j +wiw j )+ b
(
2〈∇ū,∇w〉ḡ + |∇w|2ḡ

)
ḡi j

+

(
b−

1+ (n− 2)θ
2

)
|∇u|2ḡ ḡi j − (Aτḡ)i j .
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Denote W [w]i j :=W [u]i j . Now, (1-9) becomes

(7-10)

{
F(W [w])=8(x, ū+w) in M,
∂w

∂n
= 0 on ∂M.

By Lemma 2.3, we find (Aτḡ)αn(x0) = 0. Then we have W [w]αn(x0) = 0 by
Lemma 2.2 and (5-11)–(5-13), which implies Fαn(W [w]) = 0. By Lemma 2.2
again, we obtain

W [w]αβn(x0)= θwnnn ḡαβ(x0),

and
W [w]nnn(x0)= θwnnn ḡnn(x0)+wnnn(x0).

Then by differentiating (7-10) along the normal direction and taking its value at x0,
we have

0≤ FnnW nnn + FαβW αβn +C

≤ Fnnwnnn(x0)+ (θwnnn(x0)+C)T.

If θwnnn(x0) + C ≥ 0, we have unnn(x0) ≥ −C ′ immediately. Now consider
θwnnn(x0)+C < 0. Since T> Fnn > 0, we have

0< Fnnwnnn(x0)+ (θwnnn(x0)+C)Fnn
≤ ((θ + 1)wnnn(x0)+C)Fnn.

Hence, we must have wnnn(x0)≥−C/(θ + 1). Therefore, unnn(x0)≥−C ′. �

Proposition 7.4. Let u be a C4 solution of (1-9) on B+r . Then there is a positive con-
stant C2 depending only on n, k, θ, g, r , |T |C2(B+r ), |8|C2(B+r )×[−C0,C0]

, |a|C2(B+r ),
|b|C2(B+r ) and C1 such that

sup
B+r/2

|∇
2u|g ≤ C2.

Proof. We first estimate the bound of 4u. By W [u] ∈ 0+k ⊂ 01, we have

0≤ tr(W [u])= (nθ + 1)4u+ (a+ nb)|∇u|2+ tr T,

which implies that 4u has lower bound. Hence, we may assume 4u > 0.
Consider the same auxiliary function in Proposition 5.2

G := ηeqxn (4u+m|∇u|2),

where η satisfies (4-1) and (4-2), m is a larger constant to be fixed. We may assume
r = 1 and K := 4u+m|∇u|2� 1.

Step 1. We show the maximum of G must be attained at an interior point of B+r . If
the maximum point x0 of G belong to 6r , then by Lemma 2.2, Lemma 7.3 and the
same calculations in Proposition 5.2, we know that Gn(x0) > 0. It is a contradiction.
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Step 2. We must get an upper bound for 4u. Since the maximum point of G is an
interior point of B+r by step 1. Then at the maximum point x0, we can get similar
inequalities as in (5-19)–(5-24) by replacing P i j by Qi j . Corresponding to (5-26),
for m >max{|a|L∞(M), (|b|L∞(M)+ ε3)/θ}, ε3 > 0, we obtain

(7-11) Qi j Ki j

≥−2aF i j uilu jl − 2b|∇2u|2T+ 2m Qi j uli ul j −
C
η1/2 (|∇

2u| + 1)T

= 2(m− a)F i j uli ul j + 2(mθ − b)|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2(m− |a|L∞)F i j uli ul j + 2(mθ − |b|L∞)|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2ε3|∇
2u|2T−

C
η1/2 (|∇

2u| + 1)T.

It follows from (5-20) for Qi j and (7-11) that 2η2ε3|∇
2u|2T ≤ C(|∇2u| + 1)T,

which implies that η|∇2u| ≤ C . �

Step 3. By Lemma 7.3 and the same argument in the step 3 of the proof of
Proposition 5.2, we can get the Hessian estimates of u.

Remark 7.5. We can also get the interior gradient and Hessian estimates for the
solutions of (1-9) by the same arguments in Remarks 4.3 and 5.3.

Proof of Theorem 1.3. Since the operator Qi j in (7-1) is positive, by the argument
in Section 3, we know that (1-9) is elliptic at any admissible solutions and its
linearized operator is invertible as ∂z8> 0. Combining Propositions 7.1, 7.2, 7.4
and Remark 7.5, we can obtain

(7-12) |u|C2(M) ≤ C,

where the constant C depends only on n, k, θ, g, S, 8, a and b. By the global
a priori C2 estimates (7-12), we can prove Theorem 1.3 by a same argument in
Section 6. �
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