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HERMITIAN CATEGORIES, EXTENSION OF SCALARS
AND SYSTEMS OF SESQUILINEAR FORMS

EVA BAYER-FLUCKIGER, URIYA A. FIRST AND DANIEL A. MOLDOVAN

We prove that the category of systems of sesquilinear forms over a given
hermitian category is equivalent to the category of unimodular 1-hermitian
forms over another hermitian category. The sesquilinear forms are not re-
quired to be unimodular or defined on a reflexive object (i.e., the standard
map from the object to its double dual is not assumed to be bijective), and
the forms in the system can be defined with respect to different hermitian
structures on the given category. This extends an earlier result of the first
and third authors.

We use the equivalence to define a Witt group of sesquilinear forms over
a hermitian category and to generalize results such as Witt’s cancellation
theorem, Springer’s theorem, the weak Hasse principle, and finiteness of
genus to systems of sesquilinear forms over hermitian categories.

Introduction

Quadratic and hermitian forms were studied extensively by various authors, who
have developed a rich array of tools to study them. It is well known that in many
cases (e.g., over fields), the theory of sesquilinear forms can be reduced to the theory
of hermitian forms (e.g., see [Riehm 1974; Riehm and Shrader-Frechette 1976] and
works based on them). In [Bayer-Fluckiger and Moldovan 2014], an explanation of
this reduction was provided in the form of an equivalence between the category of
sesquilinear forms over a ring and the category of unimodular 1-hermitian forms
over a special hermitian category.

In this paper, we extend the equivalence of [Bayer-Fluckiger and Moldovan 2014]
to hermitian categories, and, moreover, improve it in such a way that it applies to
systems of sesquilinear forms in hermitian categories that admit nonreflexive objects
(see Section 2). That is, we prove that the category of systems of sesquilinear forms
over a hermitian category C is equivalent to the category of unimodular 1-hermitian

First is partially supported by an Israel–US BSF grant #2010/149 and an ERC grant #226135.
Moldovan was partially supported by the Swiss National Science Foundation, grant 200020-109174/1.
MSC2010: 11E39, 11E81.
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forms over anther hermitian category C′. The sesquilinear forms are not required to
be unimodular or defined on a reflexive object, and the forms in the system can be
defined with respect to different hermitian structures on the category C.

Using the equivalence, we present a notion of a Witt group of sesquilinear forms,
which is analogous to the standard Witt group of hermitian forms over rings with
involution (e.g., see [Knus 1991; Scharlau 1985]). We also extend various results
(Witt’s cancellation theorem, Springer’s theorem, finiteness of genus, the Hasse
principle, etc.) to systems of sesquilinear forms over hermitian categories (and in
particular to systems of sesquilinear forms over rings with a family of involutions).

Sections 1 and 2 recall the basics of sesquilinear forms over rings and hermitian
categories, respectively. In Section 3, we prove the equivalence of the category of
sesquilinear forms over a given hermitian category to a category of unimodular
1-hermitian forms over another hermitian category, and in Section 4 we extend
this result to systems of sesquilinear forms. Section 5 presents applications of the
equivalence.

1. Sesquilinear and hermitian forms

Let A be a ring. An involution on A is an additive map σ : A → A such that
σ(ab) = σ(b)σ (a) for all a, b ∈ A and σ 2

= idA. Let V be a right A-module.
A sesquilinear form over (A, σ ) is a biadditive map s : V × V → A satisfying
s(xa, yb) = σ(a)s(x, y)b for all x, y ∈ V and a, b ∈ A. The pair (V, s) is also
called a sesquilinear form in this case.1 The orthogonal sum of two sesquilinear
forms (V, s) and (V ′, s ′) is defined to be (V ⊕ V ′, s⊕ s ′) where s⊕ s ′ is given by

(s⊕ s ′)(x ⊕ x ′, y⊕ y′)= s(x, y)+ s ′(x ′, y′)

for all x, y ∈ V and x ′, y′ ∈ V ′. Two sesquilinear forms (V, s) and (V ′, s ′) are
called isometric if there exists an isomorphism of A-modules f : V −→∼ V ′ such
that s ′( f (x), f (y))= s(x, y) for all x, y ∈ V .

Let V ∗ = HomA(V, A). Then V ∗ has a right A-module structure given by
( f · a)(x) = σ(a) f (x) for all f ∈ V ∗, a ∈ A. We say that V is reflexive if the
homomorphism of right A-modules ωV : V→ V ∗∗ defined by ωV (x)( f )=σ( f (x))
for all x ∈ V , f ∈ V ∗ is bijective.

A sesquilinear space (V, s) over (A, σ ) induces two homomorphisms of right
A-modules s`, sr : V → V ∗, called the left and right adjoint of s, respectively. They
are given by s`(x)(y)= s(x, y) and sr (x)(y)= σ(s(y, x)) for all x, y ∈ V . Observe
that sr = s∗`ωV and s` = s∗r ωV . The form s is called unimodular if sr and s` are
isomorphisms. In this case, V must be reflexive.

1 Some texts use the term sesquilinear space.
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Let ε = ±1. A sesquilinear form (V, s) over (A, σ ) is called ε-hermitian if
σ(s(x, y)) = εs(y, x) for all x, y ∈ V , that is, if sr = εs`. A 1-hermitian form is
also called a hermitian form.

There exists a classical notion of Witt group for unimodular ε-hermitian forms
over (A, σ ) (e.g., see [Knus 1991]): denote by WGε(A, σ ) the Grothendieck group
of isometry classes of unimodular ε-hermitian forms (V, s) over (A, σ ), with V
finitely generated projective, addition being the orthogonal sum. A unimodular
ε-hermitian form over (A, σ ) is called hyperbolic if it is isometric to (V ⊕V ∗,Hε

V )

for some finitely generated projective right A-module V , where Hε
V is defined by

Hε
V (x ⊕ f, y⊕ g)= f (y)+ εσ (g(x)) for all x, y ∈ V, f, g ∈ V ∗.

We let HV = H1
V . The quotient of WGε(A, σ ) by the subgroup generated by the

unimodular ε-hermitian hyperbolic forms is called the Witt group of unimodular
ε-hermitian forms over (A, σ ) and is denoted by Wε(A, σ ).

We denote by Sesq(A, σ ) and UHε(A, σ ) the categories of sesquilinear and
unimodular ε-hermitian forms over (A, σ ), respectively. The morphisms of these
categories are (bijective) isometries. For simplicity, we let UH(A, σ ) :=UH1(A, σ ).

2. Hermitian categories

This section recalls some basic notions about hermitian categories, as presented in
[Scharlau 1985] (see also [Knus 1991; Quebbemann et al. 1979]).

2A. Preliminaries. Recall that a hermitian category consists of a triple (C, ∗, ω),
where C is an additive category, ∗ : C→ C is a contravariant functor and ω =
(ωC)C∈C : id→∗∗ is a natural transformation satisfying ω∗CωC∗ = idC∗ for all C ∈C.
In this case, the pair (∗, ω) is called a hermitian structure on C. It is customary to
assume that ω is a natural isomorphism rather than a natural transformation. Such
hermitian categories will be called reflexive. In general, an object C ∈ C for which
ωC is an isomorphism is called reflexive, so the category C is reflexive precisely
when all its objects are reflexive. We will often drop ∗ and ω from the notation and
use these symbols to denote the functor and natural transformation associated with
any hermitian category under discussion.

A sesquilinear form over the category C is a pair (C, s)with C ∈C and s :C→C∗.
A sesquilinear form (C, s) is called unimodular if s and s∗ωC are isomorphisms.
(If C is reflexive, then s is bijective if and only if s∗ωC is bijective.) Let ε =±1. A
sesquilinear form (C, s) is called ε-hermitian if s= εs∗ωC . For brevity, 1-hermitian
forms are often called hermitian forms. Orthogonal sums of forms are defined in the
obvious way. Let (C, s) and (C ′, s ′) be two sesquilinear forms over C. An isometry
from (C, s) to (C ′, s ′) is an isomorphism f : C −→∼ C ′ satisfying s = f ∗s ′ f . In
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this case, (C, s) and (C ′, s ′) are said to be isometric. We let Sesq(C) stand for the
category of sesquilinear forms over C with isometries as morphisms.

Denote by UHε(C) the category of unimodular ε-hermitian forms over C. The
morphisms are isometries. For brevity, let UH(C) := UH1(C). The hyperbolic
unimodular ε-hermitian forms over C are the forms isometric to (Q ⊕ Q∗,Hε

Q),
where Q is any reflexive object in C and Hε

Q is given by

Hε
Q =

[
0 idQ∗

εωQ 0

]
: Q⊕ Q∗→ (Q⊕ Q∗)∗ = Q∗⊕ Q∗∗.

Again, let HQ =H1
Q . The quotient of WGε(C), the Grothendieck group of isometry

classes of unimodular ε-hermitian forms over C (with respect to the orthogonal
sum), by the subgroup generated by the hyperbolic forms is called the Witt group
of unimodular ε-hermitian forms over C and is denoted by Wε(C). For brevity, set
W(C)=W1(C).

Example 2.1. Let (A, σ ) be a ring with involution. If we take C to be Mod-A,
the category of right A-modules, and define ∗ and ω as in Section 1, then C

becomes a hermitian category. Furthermore, the sesquilinear forms (M, s) over
(A, σ ) correspond to the sesquilinear forms over C via (M, s) 7→ (M, sr ). This
correspondence gives rise to isomorphisms of categories Sesq(A, σ ) ∼= Sesq(C)
and UHε(A, σ )∼=UHε(C). Now let C be a subcategory of Mod-A such that M ∈C

implies M∗ ∈ C. Then C is still a hermitian category, and is reflexive if and only
if C consists of reflexive A-modules (as defined in Section 1). For example, this
happens if C=P(A), the category of projective A-modules of finite type. In this
case, the Witt group Wε(C)=Wε(P(A)) is isomorphic to Wε(A, σ ).

2B. Duality-preserving functors. Let C and C′ be two hermitian categories. A
duality-preserving functor from C to C′ is an additive functor F : C→ C′ together
with a natural isomorphism i = (iM)M∈C : F∗ → ∗F . This means that for any
M ∈C, there exists an isomorphism iM : F(M∗)−→∼ (F M)∗ such that for all N ∈C

and f ∈ HomC(M, N ), the following diagram commutes:

F(N ∗)
F( f ∗) //

iN
��

F(M∗)

iM
��

(F N )∗
(F f )∗ // (F M)∗

Any duality-preserving functor induces a functor Sesq(C)→ Sesq(C′), which we
also denote by F . It is given by

F(M, s)= (F M, iM F(s))



HERMITIAN CATEGORIES 5

for every (M, s) ∈ Sesq(C). If the functor F : C→ C′ is faithful, faithful and full,
or induces an equivalence, then the functor F : Sesq(C)→ Sesq(C′) shares the
same property.

Let λ=±1. A duality-preserving functor F is called λ-hermitian if

iM∗F(ωM)= λi∗MωF M

for all M ∈ C. Let ε = ±1. We recall from [Knus 1991, pp. 80–81] that in this
case the functor F : Sesq(C)→ Sesq(C′) maps UHε(C) to UHελ(C′) and sends
ε-hermitian hyperbolic forms to ελ-hermitian hyperbolic forms. Therefore, F
induces a homomorphism between the corresponding Witt groups:

Wε(F) :Wε(C)→Wελ(C′).

If F is an equivalence of categories, then F : UHε(C) → UHελ(C′) is also an
equivalence of categories and the induced group homomorphism Wε(F) is an
isomorphism of groups.

2C. Transfer into the endomorphism ring. The aim of this subsection is to intro-
duce the method of transfer into the endomorphism ring, which allows us to pass
from the abstract setting of hermitian categories to that of a ring with involution,
which is more concrete. This method will be applied repeatedly in Section 5. Note
that it applies well only to reflexive hermitian categories.

Let C be a reflexive hermitian category, and let M be an object of C, on which we
suppose that there exists a unimodular ε0-hermitian form h0 for a certain ε0 =±1.
Put E = EndC(M). According to [Quebbemann et al. 1979, Lemma 1.2], the form
(M, h0) induces on E an involution σ , defined by σ( f )= h−1

0 f ∗h0 for all f ∈ E .
Let P(E) denote the category of projective right E-modules of finite type. Then,
using σ , we can consider P(E) as a reflexive hermitian category (see Example 2.1).

Recall that an idempotent e ∈ EndC(M) splits if there exist an object M ′ ∈C and
morphisms i : M ′→ M , j : M→ M ′ such that j i = idM ′ and i j = e.

Denote by C|M the full subcategory of C each object of which is isomorphic to
a direct summand of a finite direct sum of copies of M . We consider the functor

T = T(M,h0) := Hom(M, ) : C|M → P(E)

given by

N 7→ Hom(M, N ) for all N ∈ C|M ,

f 7→ T( f ) for all f ∈ Hom(N , N ′), N , N ′ ∈ C|M ,

where for all g ∈ Hom(M, N ), T( f )(g) = f g. In [Quebbemann et al. 1979,
Proposition 2.4], it was proved that the functor T is fully faithful and duality-
preserving with respect to the natural isomorphism i = (iN )N∈C|M : T∗→ ∗T given
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by iN ( f )= T(h−1
0 f ∗ωN ) for every N ∈ C|M and f ∈ Hom(M, N ∗). In addition,

if all the idempotents of C|M split, then T is an equivalence of categories. By
computation, we easily see that T is ε0-hermitian.

Note that for any finite list of (reflexive) objects M1, . . . ,Mt ∈C and any ε0=±1,
there exists a unimodular ε0-hermitian form (M, h0) such that M1, . . . ,Mt ∈ C|M .
Indeed, let N =

⊕t
i=1 Mi and take (M, h0) = (N ⊕ N ∗,Hε0

N ). This means that
as long as we treat finitely many hermitian forms, we may pass to the context of
hermitian forms over rings with involution.

2D. Linear hermitian categories and ring extension. In this subsection we intro-
duce the notion of extension of rings in hermitian categories.

Let K be a commutative ring. Recall that a K -category is an additive category C

such that for every A, B ∈ C, HomC(A, B) is endowed with a K -module structure
such that composition is K -bilinear. For example, any additive category is in fact a
Z-category. An additive covariant functor F : C→ C′ between two K -categories
is K -linear if the map F : HomC(A, B)→ HomC′(F A, F B) is K -linear for all
A, B ∈ C. K -linear contravariant functors are defined in the same manner. A
K -linear hermitian category is a hermitian category (C, ∗, ω) such that C is a
K -category and ∗ is K -linear.

Fix a commutative ring K . Let C be an additive K -category and let R be a
K -algebra (with unity, not necessarily commutative). We define the extension of
the category C to the ring R, denoted C⊗K R, to be the category whose objects are
formal symbols C ⊗K R, with C ∈ C, and whose Hom-sets are defined by

HomC⊗K R(A⊗K R, B⊗K R)= HomC(A, B)⊗K R.

The composition in C⊗K R is defined in the obvious way. It is straightforward to
check that C⊗K R is also a K -category. Moreover, when R is commutative, C⊗K R
is an R-category. We define the scalar extension functor, RR/K : C→ C⊗K R by

RR/K M = M ⊗K R for all M ∈ C,

RR/K f = f ⊗K 1 for all f ∈ Hom(M, N ).

The functor RR/K is additive and K -linear.
In case K is obvious from the context, we write CR , MR , fR instead of C⊗K R,

M ⊗K R, f ⊗K 1, respectively. (Here, M ∈ C and f is a morphism in C.)

Remark 2.2. The scalar extension we have just defined agrees with scalar extension
of modules under mild assumptions, but not in general: Let S and R be two K -
algebras, and write SR = S⊗K R. There is an additive functor G : (Mod-S)R→

Mod-(SR) given by

G(MR)= M ⊗S SR and G( f ⊗ a)(m⊗ b)= f m⊗ ab
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for all M, N ∈Mod-S, f ∈HomS(M, N ), and a, b ∈ R, and the following diagram
commutes:

Mod-S
RR/K // (Mod-S)R

G
��

Mod-S
⊗S SR // Mod-(SR)

In general, G is neither full nor faithful. However, using standard tensor-Hom
relations, it is easy to verify that the map

(1) G : Hom(Mod-S)R (MR,M ′R)→ HomMod-(SR)(G MR,G M ′R)

is bijective if either (a) M is finitely generated projective, or (b) R is a flat K -module
and M is finitely presented. In particular, if C is an additive subcategory of Mod-S
consisting of finitely presented modules and R is flat as a K -module, then CR can
be understood as a full subcategory of Mod-(SR) in the obvious way. An example
in which the map G of (1) is neither injective nor surjective can be obtained by
taking S = K = Z, R =Q and M = M ′ = Z[1/p]/Z.

If (C, ∗, ω) is a K -linear hermitian category and R/K is a commutative ring
extension, then CR also has a hermitian structure given by (MR)

∗
= (M∗)R ,

( f ⊗a)∗= f ∗⊗a and ωMR = (ωM)R=ωM⊗1 for all M, N ∈C, f ∈HomC(M, N )
and a ∈ R. In this case, the functor RR/K is a 1-hermitian duality-preserving functor
(the natural transformation i :RR/K∗→ ∗RR/K is just the identity). In particular,
we get a functor RR/K : Sesq(C)→ Sesq(CR) given by RR/K (M, s) := (MR, sR),
and RR/K sends ε-hermitian (hyperbolic) forms to ε-hermitian (hyperbolic) forms.

2E. Scalar extension commutes with transfer. Let R/K be a commutative ring
extension, let C be a reflexive K -linear hermitian category and let M be an object
of C admitting a unimodular ε-hermitian form h. Then (MR, h R) is a unimodular
ε-hermitian form over CR . Let E = EndC(M) and ER = EndCR (MR)= E ⊗K R.
It is easy to verify that the following diagram (of functors) commutes:

C|M
T(M,h) //

RR/K

��

P(E)

⊗E ER

��
CR|MR

T(MR ,h R ) // P(ER)

(Note that by Remark 2.2, P(ER) and ⊗E ER can be understood as P(E)R

and RR/K , respectively.) Since all the functors are ε- or 1-hermitian, we get the
following commutative diagram, in which the horizontal arrows are full and faithful:
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UHλ(C|M)
T(M,h) //

RR/K
��

UHλε(P(E))

⊗E ER
��

UHλ(CR|MR )
T(MR ,h R ) // UHλε(P(ER))

This diagram means that in order to study the behavior of RR/K on arbitrary K -
linear hermitian categories, it is enough to study its behavior on hermitian categories
obtained from K -algebras with K -involution (as in Example 2.1).

3. An equivalence of categories

Let C be a (not necessarily reflexive) hermitian category. In this section we prove
that there exists a reflexive hermitian category C′ such that the category Sesq(C)
is equivalent to UH1(C′). (We explain how to extend this result to systems of
sesquilinear forms in the next section.)

The category C′ resembles the category of double arrows presented in [Bayer-
Fluckiger and Moldovan 2014, §3], but is not identical to it. This difference makes
our construction work for nonreflexive hermitian categories and, as we shall explain
in the next section, for systems of sesquilinear forms, where the forms can be
defined with respect to different hermitian structures on C.

3A. The category of twisted double arrows. Let (C, ∗, ω) be a hermitian category.
We construct the category of twisted double arrows in C, denoted Ar̃2(C), as follows:
The objects of Ar̃2(C) are quadruples (M, N , f, g) such that f, g ∈HomC(M, N ∗).
A morphism from (M, N , f, g) to (M ′, N ′, f ′, g′) is a pair (φ, ψop) such that
φ ∈Hom(M,M ′), ψ ∈Hom(N ′, N ), f ′φ=ψ∗ f and g′φ=ψ∗g. The composition
of two morphisms is given by (φ, ψop)(φ′, ψ ′op)= (φφ′, (ψ ′ψ)op).

The category Ar̃2(C) is easily seen to be an additive category. Moreover, it has
a hermitian structure: For every (M, N , f, g) ∈ Ar̃2(C), define (M, N , f, g)∗ =
(N ,M, g∗ωN , f ∗ωN ) andω(M,N , f,g)= id(M,N , f,g)=(idM , idop

N ). In addition, for ev-
ery morphism (φ, ψop) : (M, N , f, g)→ (M ′, N ′, f ′, g′), let (φ, ψop)∗= (ψ, φop).
It is now routine to check that (Ar̃2(C), ∗, ω) is a reflexive hermitian category. Also
observe that ∗∗ is just the identity functor on Ar̃2(C). The following proposition
describes the hermitian forms over Ar̃2(C):

Proposition 3.1. Let Z := (M, N , f, g) ∈ Ar̃2(C) and let α, β ∈ HomC(M, N ).
Then (Z , (α, βop)) is a hermitian form over Ar̃2(C) if and only if α = β and
α∗ f = g∗ωNα; equivalently, if and only if α = β and α∗g = f ∗ωNα.

Proof. By definition, Z∗= (N ,M, g∗ωN , f ∗ωN ), so (α, βop) is a morphism from Z
to Z∗ if and only if β∗ f = g∗ωNα and β∗g= f ∗ωNα. In addition, by computation,
we see (α, βop)= (α, βop)∗◦ωZ precisely when α=β. Therefore, (Z , (α, βop)) is a
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hermitian form if and only if α=β, α∗ f = g∗ωNα and α∗g= f ∗ωNα. It is therefore
enough to show α∗ f = g∗ωNα if and only if α∗g = f ∗ωNα. Indeed, if α∗ f =
g∗ωNα, then α∗ω∗N g∗∗ = f ∗α∗∗. Therefore, α∗g = α∗ω∗NωN∗g = α∗ω∗N g∗∗ωM =

f ∗α∗∗ωM = f ∗ωNα, as required (we used the naturality of ω and the identity
ω∗NωN∗ = idN∗ in the computation). The other direction follows by symmetry. �

Theorem 3.2. Let C be a hermitian category. Define a functor F : Sesq(C)→
UH(Ar̃2(C)) by

F(M, s)= ((M,M, s∗ωM , s), (idM , idop
M )) and F(ψ)= (ψ, (ψ−1)op)

for all (M, s) ∈ Sesq(C) and any morphism ψ in Sesq(C). Then F induces an
equivalence of categories between Sesq(C) and UH(Ar̃2(C)).

Proof. Let (M, s) ∈ Sesq(C). That F(M, s) lies in UH(Ar̃2(C)) follows from
Proposition 3.1. Let ψ : (M, s)→ (M ′, s ′) be an isometry. Then

F(ψ)∗(idM ′, idop
M ′)F(ψ)= (ψ, (ψ

−1)op)∗(idM ′, idop
M ′)(ψ, (ψ

−1)op)

= (ψ−1, ψop)(idM ′, idop
M ′)(ψ, (ψ

−1)op)

= (ψ−1 idM ′ ψ, (ψ
−1 idM ′ ψ)

op)

= (idM , idop
M ).

Thus, F(ψ) is an isometry from F(M, s) to F(M ′, s ′). It is clear that F respects
composition, so we conclude that F is a functor.

To see that F induces an equivalence, we construct a functor G such that F and
G are mutual inverses. Let G : UH(Ar̃2(C))→ Sesq(C) be defined by

G((M, N , f, g), (α, αop))= (M, α∗g) and G(φ, ψop)= φ

for all ((M, N , f, g), (α, αop)) ∈ UH(Ar̃2(C)) and any morphism (φ, ψop) in
UH(Ar̃2(C)).

Let (Z , (α, αop)), (Z ′, (α′, α′op)) ∈ UH(Ar̃2(C)) and let (φ, ψop) be a mor-
phism (Z , (α, αop))→ (Z ′, (α′, α′op)). It is easy to see that G(Z , (α, αop)) lies
in Sesq(C), so we now check that G(φ, ψop) is an isometry from G(Z , (α, αop))

to G(Z ′, (α′, α′op)). Writing Z = (M, N , f, g) and Z ′ = (M ′, N ′, f ′, g′), this
amounts to showing α∗g = φ∗α′∗g′φ. Indeed, since (φ, ψop) is a morphism from
Z to Z ′, we have g′φ = ψ∗g, and since (φ, ψop) is an isometry, we also have
(φ, ψop)∗(α′, α′op)(φ, ψop)= (α, αop), which in turn implies ψα′φ = α. We now
have φ∗α′∗g′φ = φ∗α′∗ψ∗g = (ψα′φ)∗g = α∗g, as required. That G preserves
composition is straightforward.

It is easy to see that G F is the identity functor on Sesq(C), so it is left to show
that there is a natural isomorphism from FG to idUH(Ar̃2(C)). Keeping the notation
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of the previous paragraph, we have

FG((M, N , f, g), (α, αop))=
(
(M,M, (α∗g)∗ωM , α

∗g), (idM , idop
M )
)
.

By Proposition 3.1 we have α∗ f = g∗ωNα, hence (α∗g)∗ωM = g∗α∗∗ωM =

g∗ωNα = α
∗ f . Thus,

(2) FG((M, N , f, g), (α, αop))=
(
(M,M, α∗ f, α∗g), (idM , idop

M )
)
.

Define a natural isomorphism t : idUH(Ar̃2(C)) → FG by t(Z ,(α,αop)) = (idM , α
op).

Using (2), it is easy to see that t(Z ,(α,αop)) is indeed an isometry from (Z , (α, αop))

to FG(Z , (α, αop)). The map t is natural, since for Z ′, (φ, ψop) as above, we have
FG(φ, ψop)t(Z ,(α,αop))= (φ, (φ

−1)op)(idM , α
op)= (φ, (αφ−1)op)= (φ, (ψα′)op)=

(idM ′, α
′op)(φ, ψop)= t(Z ′,(α′,α′op))(φ, ψ

op) (we used the identity ψα′φ=α verified
above). �

Remark 3.3. Following [Bayer-Fluckiger and Moldovan 2014, §3], one can also
construct the category of (nontwisted) double arrows in C, denoted Ar2(C). Its
objects are quadruples (M, N , f, g) with M, N ∈ C and f, g ∈ Hom(M, N ).
A morphism from (M, N , f, g) to (M ′, N ′, f ′, g′) is a pair (φ, ψ) where φ ∈
Hom(M,M ′) and ψ ∈Hom(N , N ′) satisfy ψ f = f ′φ and ψg= g′φ. The category
Ar2(C) is obviously additive, and, moreover, it admits a hermitian structure given by
(M, N , f, g)∗= (N ∗,M∗, g∗, f ∗), (φ, ψ)∗= (ψ∗, φ∗) and ω(M,N , f,g)= (ωM , ωN ).

There is a functor T :Ar̃2(C)→Ar2(C) given by T (M, N , f, g)= (M, N ∗, f, g)
and T (φ, ψop) = (φ, ψ∗). This functor induces an equivalence if C is reflexive,
but otherwise it need neither be faithful nor full. In addition, provided C is re-
flexive, one can define a functor F ′ : Sesq(C) → UH(Ar2(C)) by F ′(M, s) =
((M,M∗, s∗ωM , s), (ωM , idM∗)) and F ′(ψ)= (ψ, (ψ−1)∗). This functor induces
an equivalence of categories; the proof is analogous to [Bayer-Fluckiger and
Moldovan 2014, Theorem 4.1].

3B. Hyperbolic sesquilinear forms. Let C be a hermitian category. The equiva-
lence Sesq(C)∼UH(Ar̃2(C)) of Theorem 3.2 allows us to pull back notions defined
for unimodular hermitian forms over Ar̃2(C) to sesquilinear form over C. In this
subsection, we will do this for hyperbolicity, and thus obtain a notion of a Witt
group of sesquilinear forms.

Throughout, F denotes the functor Sesq(C)→ UH(Ar̃2(C)) from Theorem 3.2.

Definition 3.4. A sesquilinear form (M, s) over C is called hyperbolic if F(M, s)
is hyperbolic as a unimodular hermitian form over Ar̃2(C).

The following proposition gives a more concrete meaning to hyperbolicity of
sesquilinear forms over C.
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Proposition 3.5. Up to isometry, the hyperbolic sesquilinear forms over C are
given by (

M ⊕ N ,
[

0 f
g 0

])
,

where M, N ∈ C, f ∈ HomC(N ,M∗), g ∈ HomC(M, N ∗) and
[ 0

g
f
0

]
is an element

of HomC(M ⊕ N ,M∗ ⊕ N ∗) given in matrix form. Furthermore, a unimodu-
lar ε-hermitian form is hyperbolic as a sesquilinear form (i.e., in the sense of
Definition 3.4) if and only if it is hyperbolic as a unimodular ε-hermitian form (see
Section 2).

Proof. Let G be the functor UH(Ar̃2(C)) → Sesq(C) defined in the proof of
Theorem 3.2. Since F and G are mutual inverses, the hyperbolic sesquilinear
forms over C are the forms isometric to G(Z ⊕ Z∗,HZ ) for Z ∈ Ar̃2(C). Write
Z = (M, N , h, g). Then

(Z ⊕ Z∗,HZ )=

((
M ⊕ N , N ⊕M,

[
h 0
0 g∗ωN

]
,

[
g 0
0 h∗ωN

])
,

[
0 idZ∗

ωZ 0

])
.

Observe that[
0 idZ∗

ωZ 0

]
=

[
0 (idN , idop

M )

(idM , idop
N ) 0

]
=

([
0 idN

idM 0

]
,

[
0 idN

idM 0

]op)
.

Thus,

G(Z ⊕ Z∗,HZ )=

(
M ⊕ N ,

[
0 idN

idM 0

]∗ [
g 0
0 h∗ωN

])
,

and since[
0 idN

idM 0

]∗ [
g 0
0 h∗ωN

]
=

[
0 idM∗

idN∗ 0

] [
g 0
0 h∗ωN

]
=

[
0 h∗ωN

g 0

]
,

we see that G(Z ⊕ Z∗,HZ ) matches the description in the proposition. Further-
more, by putting h = f ∗ωM for f ∈ HomC(N ,M∗), we get h∗ωN = ω

∗

M f ∗∗ωN =

ω∗MωM∗ f = f . Thus,
(
M ⊕ N ,

[ 0
g

f
0

])
is hyperbolic for all M, N , f, g, as required.

To finish, note that we have clearly shown that (Q⊕ Q∗,Hε
Q) is hyperbolic as a

sesquilinear form for every Q ∈ C. To see the converse, assume
(
M ⊕ N ,

[ 0
g

f
0

])
is

ε-hermitian and unimodular. Then[
0 f
g 0

]
= ε

[
0 f
g 0

]∗
ωM⊕N = ε

[
0 g∗

f ∗ 0

] [
ωM 0
0 ωN

]
=

[
0 εg∗ωN

ε f ∗ωM 0

]
,

hence g= ε f ∗ωN and f = εg∗ωM . Since
[ 0

g
f
0

]
is unimodular, f and g are bijective

and hence so are ωN and ωM . In particular, M is reflexive. It is now routine to verify
that the map idM ⊕ f : M ⊕ N → M ⊕M∗ is an isometry from

(
M ⊕ N ,

[ 0
g

f
0

])
to

(M ⊕M∗,Hε
M), so the former is hyperbolic in the sense of Section 2. �
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Let (A, σ ) be a ring with involution. When C is the category of right A-modules,
considered as a hermitian category as in Example 2.1, we obtain a notion of hyper-
bolic sesquilinear forms over (A, σ ). These hyperbolic forms can be characterized
as follows:

Proposition 3.6. A sesquilinear form (M, s) over (A, σ ) is hyperbolic if and only
if there are submodules M1,M2 ≤ M such that s(M1,M1) = s(M2,M2) = 0 and
M = M1⊕M2. Furthermore, if (M, s) is unimodular and ε-hermitian, then (M, s)
is hyperbolic as a sesquilinear space if and only if it is hyperbolic as an ε-hermitian
unimodular space.

Proof. Recall that for any two right A-modules M1,M2, we identify (M1⊕M2)
∗

with M∗1 ⊕ M∗2 via f ↔ ( f |M1, f |M2). Let (M, s) be a sesquilinear space, and
assume M=M1⊕M2. By straightforward computation, we see that sr is of the form[ 0

g
f
0

]
∈HomA(M,M∗)=HomA(M1⊕M2,M∗1 ⊕M∗2 ) if and only if s(M1,M1)=

s(M2,M2)= 0. The proposition therefore follows from Proposition 3.5. �

3C. Witt groups of sesquilinear forms. Let C be a hermitian category. Denote by
WGS(C) the Grothendieck group of isometry classes of sesquilinear forms over
C, with respect to orthogonal sum. It is easy to see that the hyperbolic isometry
classes span a subgroup of WGS(C), which we denote by H(C). The Witt group of
sesquilinear forms over C is defined to the quotient

WS(C)=WGS(C)/H(C).

By definition, we have WS(C) ∼= W(Ar̃2(C)). Taking C to be the category of
projective right A-modules (or, with a different result, reflexive right A-modules, or
again arbitrary ones) of finite type and their duals, we obtain a notion of a Witt group
for sesquilinear forms over (A, σ ). Also observe that there is a homomorphism of
groups Wε(C)→WS(C) given by sending the class of a unimodular ε-hermitian
form to its corresponding class in WS(C). Corollary 5.14 below presents sufficient
conditions for the injectivity of this homomorphism.

3D. Extension of scalars. Let R/K be a commutative ring extension and let C

be a K -linear hermitian category. Then the category Ar̃2(C) is also K -linear. For
later use, we now check that the scalar extension functor RR/K of Section 2D
“commutes” with the functor F of Theorem 3.2.

Proposition 3.7. There is a 1-hermitian duality-preserving functor J : Ar̃2(C)R→

Ar̃2(CR) making the following diagram commute:

Sesq(C) F //

RR/K

��

UH(Ar̃2(C))

RR/K

��
Sesq(CR)

F // UH(Ar̃2(CR)) UH(Ar̃2(C)R)
Joo
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It is given by
J ((M, N , f, g)R)= (MR, NR, fR, gR),

J ((φ, ψop)⊗ a)= (φ⊗ a, (ψ ⊗ a)op)

for all (M, N , f, g) ∈ Ar̃2(C) and any morphism (φ, ψop) in Ar̃2(C). (The associ-
ated natural isomorphism i : J∗→ ∗J is the identity map.) Furthermore, when R
is flat as a K -module, J is faithful and full.

Proof. We only check that J is faithful and full when R is flat as a K -module. All
other assertions follow by computation. Let Z = (M, N , f, g), Z ′= (M ′, N ′, f ′, g′)
be objects in Ar̃2(C). Set

U = {( f, gop) | ( f, g) ∈ HomC(M,M ′)×HomC(N ′, N )},

V = HomC(M, N ′∗)×HomC(M, N ′∗),

and define λ :U → V by

λ(φ,ψop)= (ψ∗ f − f ′φ, ψ∗g− g′φ).

Unfolding the definitions, we see that HomAr̃2(C)R (Z R, Z ′R) = (ker λ)⊗K R and
HomAr̃2(CR)(J Z R, J Z ′R) = ker(λ⊗K idR). Furthermore, the standard map from
(ker λ)⊗K R to ker(λ⊗K idR) is just application of the functor J . When R is flat
as a K -module, this map is an isomorphism; hence we are done. �

Corollary 3.8. Let (M, s), (M ′, s ′) be two sesquilinear forms over C, and assume
R is flat as a K -module. Then RR/K (M, s) is isometric to RR/K (M ′, s ′) if and
only if RR/K F(M, s) is isometric to RR/K F(M ′, s ′).

4. Systems of sesquilinear forms

In this section, we explain how to generalize the results of Section 3 to systems of
sesquilinear forms.

Let A be a ring, and let {σi }i∈I be a nonempty family of (not necessarily dis-
tinct) involutions of A. A system of sesquilinear forms over (A, {σi }i∈I ) is a pair
(M, {si }i∈I ) such that (M, si ) is a sesquilinear space over (A, σi ) for all i . An
isometry between two systems of sesquilinear forms (M, {si }i∈I ), (M ′, {s ′i }i∈I ) is
an isomorphism f : M → M ′ such that s ′i ( f x, f y) = si (x, y) for all x, y ∈ M ,
i ∈ I .

Observe that each of the involutions σi gives rise to a hermitian structure (∗i , ωi )

on Mod-A, the category of right A-modules. In particular, a system of sesquilinear
forms (M, {si }) gives rise to homomorphisms (si )r , (si )` : M → M∗i given by
(si )r (x)(y)= σi (si (y, x)) and (si )`(x)(y)= si (x, y), where M∗i = HomA(M, A),
considered as a right A-module via the action ( f · a)m = σi (a) f (m). This leads to
the notion of systems of sesquilinear forms over hermitian categories.
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Let C be an additive category and let {∗i , ωi }i∈I be a nonempty family of hermit-
ian structures on C. A system of sesquilinear forms over (C, {∗i , ωi }i∈I ) is a pair
(M, {si }i∈I ) such that M ∈C and (M, si ) is a sesquilinear form over (C, ∗i , ωi ). An
isometry between two systems of sesquilinear forms (M, {si }i∈I ) and (M ′, {s ′i }i∈I )

is an isomorphism f :M −→∼ M ′ such that f ∗i s ′i f = si for all i ∈ I . We let SesqI (C)

(or SesqI (C, {∗i , ωi })) denote the category of systems of sesquilinear forms over
(C, {∗i , ωi }i∈I ) with isometries as morphisms.

Keeping the notation of the previous paragraph, the results of Section 3 can
be extended to systems of sesquilinear forms as follows: Define the category of
twisted double I -arrows over (C, {∗i , ωi }i∈I ), denoted Ar̃2I (C), to be the cate-
gory whose objects are quadruples (M, N , { fi }i∈I , {gi }i∈I ) with M, N ∈ C and
fi , gi ∈ HomC(M, N ∗i ). A morphism (M, N , { fi }, {gi })→ (M ′, N ′, { f ′i }, {g

′

i })

is a formal pair (φ, ψop) such that φ ∈ Hom(M,M ′), ψ ∈ Hom(N ′, N ) and
ψ∗i fi = f ′i φ, ψ∗i gi = g′iφ for all i ∈ I . The composition is defined by the formula
(φ, ψop)(φ′, ψ ′op)= (φφ′, (ψ ′ψ)op).

The category Ar̃2I (C) can be made into a reflexive hermitian category by let-
ting (M, N , { fi }, {gi })

∗
= (N ,M, {g∗i

i ωi,N }, { f ∗i
i ωi,M}), (φ, ψop)∗= (ψ, φop) and

ω(M,N ,{ fi },{gi }) = (idM , idop
N ). It is now possible to prove the following theorem,

whose proof is completely analogous to the proof of Theorem 3.2:

Theorem 4.1. Define a functor F : SesqI (C)→ UH(Ar̃2I (C)) by

F(M, {si })= ((M,M, {s∗i
i ωi,M}, {si }), (idM , idop

M )) and F(ψ)= (ψ, (ψ−1)op).

Then F induces an equivalence of categories.

Sketch of proof. It is easy to see that any hermitian form over UH(Ar̃2I (C)) has the
form ((M, N , { fi }, {gi }), (α, α

op)). Define a functor G :UH(Ar̃2I (C))→SesqI (C)

by

G((M, N , { fi }, {gi }), (α, α
op))= (M, {α∗i gi }) and G(φ, ψop)= φ.

Arguing as in the proof of Theorem 3.2, we see that F and G are mutual inverses. �

As we did in Section 3, we can use Theorem 4.1 to define hyperbolic systems
of sesquilinear forms. Namely, a system of forms (M, {si }) over C will be called
hyperbolic if F(M, {si }) is hyperbolic over Ar̃2I (C). The following two propositions
are proved in the same manner as Propositions 3.5 and 3.6, respectively:

Proposition 4.2. A system of sesquilinear forms (M, {si }) over C is hyperbolic if
and only if there are M1,M2 ∈ C, fi ∈ Hom(M2,M∗i

1 ), gi ∈ Hom(M1,M∗i
2 ) such

that M = M1⊕M2 and, for all i ∈ I ,

si =

[
0 fi

gi 0

]
∈ Hom(M,M∗i )= Hom(M1⊕M2,M∗i

1 ⊕M∗i
2 ).
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In this case, each of the sesquilinear forms (M, si ) (over (C, ∗i , ωi )) is hyperbolic.

Proposition 4.3. Let A be a ring and let {σi }i∈I be a nonempty family of involutions
of A. A system of sesquilinear forms (M, {si }) over (A, {σi }) is hyperbolic if
and only if there are submodules M1,M2 ≤ M such that M = M1 ⊕ M2 and
si (M1,M1) = si (M2,M2) = 0 for all i ∈ I . In this case, each of the sesquilinear
forms (M, si ) (over (A, σi )) is hyperbolic.

The notion of hyperbolic systems of sesquilinear forms can be used to define
Witt groups. We leave the details to the reader.

Let R/K be a commutative ring extension. If C and all the hermitian structures
{∗i , ωi }i∈I are K -linear, then the scalar extension functor RR/K : C→ CR is 1-
hermitian and duality-preserving with respect to (∗i , ωi ) for all i ∈ I . Therefore,
we have a functor RR/K : SesqI (C)→ SesqI (CR) given by RR/K (M, {si }i∈I ) =

(MR, {(si )R}i∈I ). We thus have a notion of scalar extension for systems of bilinear
forms (and it agrees with the obvious scalar extension for systems of bilinear forms
over a ring with a family of involutions, provided the assumptions of Remark 2.2
hold). Using the ideas of Section 3D, one can show:

Corollary 4.4. Let (M, {si }), (M ′, {s ′i }) be two systems of sesquilinear forms over
(C, {∗i , ωi }), and assume R is flat as a K -module. Then RR/K (M, {si }) is isometric
to RR/K (M ′, {s ′i }) if and only if RR/K F(M, {si }) is isometric to RR/K F(M ′, {s ′i }).

5. Applications

This section uses the previous results to generalize various known results about
hermitian forms (over rings or reflexive hermitian categories) to systems of sesqui-
linear forms over (not necessarily reflexive) hermitian categories. Some of the
consequences to follow were obtained in [Bayer-Fluckiger and Moldovan 2014]
for hermitian forms over rings. Here we rephrase them for hermitian categories,
extend them to systems of sesquilinear forms and drop the assumption that the base
module (or object) is reflexive.

5A. Witt’s cancellation theorem. Quebbemann, Scharlau and Schulte [Quebbe-
mann et al. 1979, §3.4] proved Witt’s cancellation theorem for unimodular hermitian
forms over hermitian categories C satisfying the following conditions:

(a) All idempotents in C split (see Section 2C).

(b) For all C ∈ C, E := EndC(C) is a complete semilocal ring in which 2 is
invertible.

Recall that complete semilocal means that E/ Jac(E) is semisimple (i.e., E is
semilocal) and that the standard map E→ lim

←−
{E/ Jac(R)n}n∈N is an isomorphism

(i.e., E is complete in the Jac(E)-adic topology). In fact, condition (a) can be
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dropped since idempotents can be split artificially (see Section 5E below), or,
alternatively, since by applying transfer (see Section 2C) one can move to a module
category in which idempotents split.

We shall now use the Quebbemann–Scharlau–Schulte cancellation theorem
together with Theorem 4.1 to give several conditions guaranteeing cancellation for
systems of sesquilinear forms.

Our first criterion is based on the following well-known lemma:

Lemma 5.1. Let K be a commutative noetherian complete semilocal ring (e.g., a
complete discrete valuation ring). Then any K -algebra A which is finitely generated
as a K -module is complete semilocal.

Proof. For brevity, write I = Jac(K ) and J = Jac(A). By [Hinohara 1960,
Theorem 2] and the proof of [First 2013, Proposition 8.8(i)] (for instance), A =
lim
←−
{A/A(I n)}n∈N. That A= lim

←−
{A/J n

}n∈N follows if we verify that J m
⊆ AI ⊆ J

for some m ∈N. The right inclusion holds since 1+ AI consists of right-invertible
elements. Indeed, for all a ∈ AI , we have a A+ AI = A, so by Nakayama’s lemma
(applied to the K -module A), a A = A. The existence of m, as well as the fact that
A is semilocal, follows by arguing as in [Rowen 1988, Example 2.7.19′(ii)] (for
instance). �

Theorem 5.2. Let K be a commutative noetherian complete semilocal ring with 2∈
K×, let C be a K -category equipped with K -linear hermitian structures {∗i , ωi }i∈I ,
and let (M, {si }), (M ′, {s ′i }), (M

′′, {s ′′i }) be systems of sesquilinear forms over
(C, {∗i , ωi }). Assume that HomC(M, N ) is finitely generated as a K -module for all
M, N ∈ C. Then

(M, {si })⊕ (M ′, {s ′i })' (M, {si })⊕ (M ′′, {s ′′i }) ⇐⇒ (M ′, {s ′i })' (M
′′, {s ′′i }).

Proof. In light of Theorem 4.1, it is enough to prove cancellation of unimodular 1-
hermitian forms over the category Ar̃2I (C) (note that the equivalence of Theorem 4.1
respects orthogonal sums). This would follow from the cancellation theorem of
[Quebbemann et al. 1979, §3.4] if we show that the endomorphism rings of objects
in Ar̃2I (C) are complete semilocal rings in which 2 is invertible. Indeed, let
Z := (M, N , { fi }, {gi }) ∈Ar̃2I (C). Then E := End(Z) is a subring of EndC(M)×
EndC(N )op, which is a K -algebra by assumption. Since the hermitian structures
{∗i , ωi } are K -linear, E is in fact a K -subalgebra, which must be finitely generated
as a K -module (because this is true for EndC(M)×EndC(N )op and K is noetherian).
Thus, we are done by Lemma 5.1 and the fact that 2 ∈ K×. �

As corollary, we get the following result, which resembles [Bayer-Fluckiger and
Moldovan 2014, Theorem 8.1]:

Corollary 5.3. Let K be a commutative noetherian complete semilocal ring with
2 ∈ K×, let A be a K -algebra which is finitely generated as a K -module, and let
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{σi }i∈I be a family of K -involutions on A. Then cancellation holds for systems
of sesquilinear forms over (A, {σi }) which are defined on finitely generated right
A-modules.

For the next theorem, recall that a ring R is said to be semiprimary if R is
semilocal and Jac(R) is nilpotent. For example, all artinian rings are semiprimary.
Note that all semiprimary rings are complete semilocal. It is well-known that
for a ring R and an idempotent e ∈ R, R is semiprimary if and only if eRe and
(1−e)R(1−e) are semiprimary. As a result, if M, N are two objects in an additive
category, then End(M ⊕ N ) is semiprimary if and only if End(M) and End(N ) are
semiprimary.

Theorem 5.4. Let C be an additive category with hermitian structures {∗i , ωi },
and let (M, {si }), (M ′, {s ′i }), (M

′′, {s ′′i }) be systems of sesquilinear forms over
(C, {∗i , ωi }). Assume that EndC(M), EndC(M ′), EndC(M ′′) are semiprimary rings
in which 2 is invertible. Then

(M, {si })⊕ (M ′, {s ′i })' (M, {si })⊕ (M ′′, {s ′′i }) ⇐⇒ (M ′, {s ′i })' (M
′′, {s ′′i }).

Proof. As in the proof of Theorem 5.2, it is enough to show that the objects in
Ar̃2I (C) have a complete semilocal endomorphism ring. In fact, we may restrict
to those objects Z := (M, N , { fi }, {gi }) for which EndC(M) and EndC(N ) are
semiprimary. (These do form a hermitian subcategory of Ar̃2I (C) by the comments
above.) Fix such a Z and let H=

⊕
i∈I HomC(M, N ∗i ). We view the morphism { fi }

and {gi } as elements of H in the obvious way. Let A = End(M) and B = End(N ).
We endow H with a (Bop, A)-bimodule structure by setting bop(

⊕
i∈I hi )a =⊕

i∈I (b
∗i ◦ hi ◦a) for all a ∈ A, b ∈ B,

⊕
i hi ∈ H . This allows us to construct the

ring S :=
[ A

H Bop

]
. It is now straightforward to check that End(Z) consists of those

elements in A× Bop
=
[ A

Bop

]
that commute with

[ 0
fi 0

]
and

[ 0
gi 0

]
for all i ∈ I .

Thus, End(Z) is a semicentralizer subring of A× Bop in the sense of [First 2013,
§1]. By [First 2013, Theorem 4.6], a semicentralizer subring of a semiprimary ring
is semiprimary, so End(Z) is semiprimary, and in particular complete semilocal. �

Corollary 5.5. Let A be a semiprimary ring with 2∈ A×, and let {σi }i∈I be a family
of involutions on A. Then cancellation holds for systems of sesquilinear forms over
(A, {σi }) which are defined on finitely presented right A-modules.

Proof. By [Björk 1971, Theorem 4.1] (or [First 2013, Theorem 7.3]), the en-
domorphism ring of a finitely presented A-module is semiprimary. Now apply
Theorem 5.4. �

Corollary 5.6. Let C be an abelian category equipped with hermitian structures
{∗i , ωi }. Assume that C consists of objects of finite length. Then cancellation holds
for systems of sesquilinear forms over (C, {∗i , ωi }).
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Proof. By the Harada–Sai lemma [Rowen 1988, Proposition 2.9.29], the endomor-
phism ring of an object of finite length in an abelian category is semiprimary, so we
are done by Theorem 5.4. Alternatively, one can check directly that the category
Ar̃2I (C) is abelian and consists of objects of finite length, apply the Harada–Sai
lemma to Ar̃2I (C), and then use the cancellation theorem of [Quebbemann et al.
1979, §3.4]. �

Remark 5.7. It is not hard to deduce from a theorem of Camps and Dicks [1993,
Corollary 2] that if the endomorphism rings of C are semilocal, then so are the
endomorphism rings of Ar̃2I (C). (Simply check that End(M, N , { fi }, {gi }) is a
rationally closed subring of EndC(M)× EndC(N )op in the sense of [Camps and
Dicks 1993, p. 204].) By applying transfer (see Section 2C) to Ar̃2I (C), one can
then move to the context of unimodular 1-hermitian forms over semilocal rings.
Cancellation theorems for such forms were obtained by various authors, including
Knebusch [1969], Reiter [1975] and Keller [1988]. However, none of these apply
to the general case, as in fact cancellation is no longer true; see [Keller 1988, §2].
Nevertheless, the cancellation results of [ibid.] can still be used to get some partial
results about systems of sesquilinear forms over C; we leave the details to the
reader.

5B. Finiteness results. In this subsection and the next, we generalize the finiteness
results of [Bayer-Fluckiger and Moldovan 2014, §10] to systems of sesquilinear
forms.

For a ring A, we denote by T (A) the Z-torsion subgroup of A. Recall that if R is
a commutative ring, A is said to be R-finite if AR = A⊗Z R is a finitely generated
R-module and T (A) is finite. Note that being R-finite passes to subrings.

The proofs of the results to follow are completely analogous to the proofs of the
corresponding statements in [Bayer-Fluckiger and Moldovan 2014, §10]; they are
based on applying the equivalence of Theorem 4.1 and then using the finiteness
results of [Bayer-Fluckiger et al. 1989], possibly after applying transfer.

Throughout, C is an additive category and {∗i , ωi }i∈I is a nonempty family of
hermitian structures on C. Fix a system of sesquilinear forms (V, {si }i∈I ) over
(C, {i , ωi }) and let Z(V, {si }) = (V, V, {s∗i

i ωi,V }, {si r }) ∈ Ar̃2I (C). (Note that
F(V, {si })= (Z , (idV , idop

V )) with F as in Theorem 4.1.)

Theorem 5.8. If there exists a nonzero integer m such that EndC(V ) is Z[1/m]-
finite, then there are finitely many isometry classes of summands of (V, {si }).

Theorem 5.9. Assume that there exists a nonzero integer m such that the ring
EndAr̃2I (C)(Z(V, {si })) is Z[1/m]-finite (e.g., if EndC(V ) is Z[1/m]-finite). Then
there exist only finitely many isometry classes of systems of sesquilinear forms
(V ′, {s ′i }i∈I ) over C such that Z(V ′, {s ′i })' Z(V, {si }) (as objects in Ar̃2I (C)).
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5C. Finiteness of the genus. Let C be a hermitian category admitting a nonempty
family of hermitian structures {∗i , ωi }i∈I . We say that two systems of sesquilinear
forms (M, {si }), (M ′, {s ′i }) are of the same genus if they become isometric after
applying RZp/Z for every prime number p (where Zp are the p-adic integer). (See
Remark 2.2 for conditions under which this definition of genus agrees with the naive
definition of genus for module categories.) As in [Bayer-Fluckiger and Moldovan
2014, Theorem 10.3], we have:

Theorem 5.10. Let (M, {si }) be a system of sesquilinear forms over (C, {∗i , ωi }),
and assume that End(M) is Q-finite. Then the genus of (M, {si }) contains only a
finite number of isometry classes of systems of sesquilinear forms.

5D. Forms that are trivial in the Witt group. Let C be a hermitian category. By
definition, a unimodular ε-hermitian (resp. sesquilinear) form (M, s) is trivial
in Wε(C) (resp. WS(C)) if and only if there are unimodular ε-hermitian (resp.
sesquilinear) hyperbolic forms (H1, h1), (H2, h2) such that (M, s)⊕ (H1, h1) '

(H2, h2). In this section, we will show that under mild assumptions, this implies
that (M, s) is hyperbolic.

Lemma 5.11. Let M ∈C, and assume that M is a (finite) direct sum of objects with
local endomorphism ring. Then, up to isometry, there is at most one ε-hermitian
hyperbolic form on M.

Proof. For X ∈ C, let [X ] denote the isomorphism class of X . The Krull–Schmidt
theorem (e.g., see [Rowen 1988, p. 237 ff.]) implies that if M ∼=

⊕t
i=1 Mi with each

Mi indecomposable, then the unordered list [M1], . . . , [Mt ] is determined by M .
Let (M, s) be an ε-hermitian hyperbolic form on M , say (M, s)' (N⊕N ∗,Hε

N ).
Write N ∼=

⊕r
i=1 Ni with each Ni indecomposable. Then s '

⊕r
i=1 Hε

Ni
. It is

easy to check that the isometry class of Hε
Ni

depends only on the set {[Ni ], [N ∗i ]}.
Furthermore, using the Krull–Schmidt theorem, one easily verifies that the unordered
list {[N1], [N ∗1 ]}, . . . , {[Nr ], [N ∗r ]} is uniquely determined by M . It follows that
(M, s) is isometric to a sesquilinear form which is determined by M up to isometry.

�

Proposition 5.12. Let C be a hermitian category satisfying conditions (a), (b) on
page 15. Then a unimodular ε-hermitian form (M, s) is trivial in Wε(C) if and only
if it is hyperbolic.

Proof. Note first that conditions (a) and (b) imply that every object of C is a sum of
objects with local endomorphism rings, hence we may apply the Krull–Schmidt
theorem to C. (For example, this follows from [Rowen 1988, Theorem 2.8.40]
since the endomorphism rings of C are semiperfect.) Let (M, s) be a unimodular
ε-hermitian form such that (M, s)≡ 0 in Wε(C). There are unimodular ε-hermitian
hyperbolic forms (H1, h1), (H2, h2) such that (M, s)⊕ (H1, h1)' (H2, h2). Using
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the Krull–Schmidt theorem, it is easy to see that there is N ∈C such that M∼=N⊕N ∗.
Thus, we may consider Hε

N as a hermitian form on M . By Lemma 5.11, we have
Hε

N ⊕h1 ' h2, implying Hε
N ⊕h2 ' s⊕h2. Therefore, by the cancellation theorem

of [Quebbemann et al. 1979, §3.4], s ' Hε
N , as required. �

Proposition 5.13. Let C be a hermitian category in which all idempotents split and
such that either

(1) C is K -linear, where K is a noetherian complete semilocal ring with 2 ∈ K×,
and all Hom-sets in C are finitely generated as K -modules, or

(2) for all M ∈ C, EndC(M) is semiprimary and 2 ∈ EndC(M)×.

Then a sesquilinear form (M, s) is trivial in WS(C) if and only if it is hyperbolic.

Proof. It is enough to verify that F(M, s) is hyperbolic in Ar̃2(C) (Theorem 3.2).
The proofs of Theorems 5.2 and 5.4 imply that Ar̃2(C) satisfies condition (b) of
Section 5A, and condition (a) is routine (see also Lemma 5.17(ii) below). Therefore,
F(M, s) is hyperbolic by Proposition 5.12. �

Corollary 5.14. Under the assumptions of Proposition 5.13, the map W(C)→

WS(C) is injective.

Proof. This follows from Propositions 5.13 and 3.5. �

5E. Odd degree extensions. Throughout this subsection, L/K is an odd degree
field extension and char K 6= 2. A well-known theorem of Springer asserts that
two unimodular hermitian forms over K become isometric over L if and only
if they are already isometric over K . Moreover, the restriction map (the scalar
extension map) rL/K :W(K )→W(L) is injective. Both statements were extended
to hermitian forms over finite-dimensional K -algebras with K -linear involution in
[Bayer-Fluckiger and Lenstra 1990, Proposition 1.2 and Theorem 2.1] (see also
[Fainsilber 1994] for a version in which L/K is replaced with an extension of
complete discrete valuation rings). In this section, we extend these results to
sesquilinear forms over hermitian categories.

Theorem 5.15. Let C be an additive K -category such that dimK Hom(M,M ′)
is finite for all M,M ′ ∈ C. Let {∗i , ωi }i∈I be a nonempty family of K -linear
hermitian structures on C and let (M, {si }), (M ′, {s ′i }) be two systems of sesquilinear
forms over (C, {∗i , ωi }). Then RL/K (M, {si }) ' RL/K (M ′, {s ′i }) if and only if
(M, {si })' (M ′, {s ′i }).

Proof. By Corollary 4.4, it is enough to prove RL/K F(M, {si })'RL/K F(M ′, {s ′i })
if and only if F(M, {si }) ' F(M ′, {s ′i }) (with F as in Theorem 4.1). Write
(Z , (α, αop)) = F(M, {si })⊕ F(M ′, {s ′i }) and let E = End(Z). Then E is a K -
subalgebra of End(M ⊕ M ′)× End(M ⊕ M ′)op, which is finite-dimensional. By
applying T(Z ,(α,αop)) (see Section 2C), we reduce to showing that two 1-hermitian
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forms over E are isometric over E ⊗K L if and only if they are isometric over E ,
which is just [Bayer-Fluckiger and Lenstra 1990, Theorem 2.1]. (Note that we used
the fact that transfer commutes with RL/K in the sense of Section 2E.) �

Corollary 5.16. Let A be a finite-dimensional K -algebra and let {σi }i∈I be a
nonempty family of K -involutions on A. Let (M, {si }), (M ′, {s ′i }) be two sys-
tems of sesquilinear forms over (A, {σi }). If M and M ′ are of finite type, then
RL/K (M, {si })'RL/K (M ′, {s ′i }) if and only if (M, {si })' (M ′, {s ′i }).

To state the analogue of the injectivity of rL/K :W(K )→W(L) for hermitian
categories, we need to introduce additional notation.

An additive category C is called pseudoabelian if all idempotents in C split.
Any additive category C admits a pseudoabelian closure (e.g., see [Karoubi 1978,
Theorem 6.10]), namely, a pseudoabelian additive category C◦ equipped with an
additive functor A 7→ A◦ : C→ C◦, such that the pair (C◦, A 7→ A◦) is universal.
The category C◦ is unique up to equivalence and the functor A 7→ A◦ turns out
to be faithful and full. The category C◦ can be realized as the category of pairs
(M, e) with M ∈C and e ∈EndC(M) an idempotent. The Hom-sets in C◦ are given
by HomC◦((M, e), (M ′, e′))= e′HomC(M,M ′)e and the composition is the same
as in C. Finally, set M◦ = (M, idM) and f ◦ = f for any object M ∈ C and any
morphism f in C. For simplicity, we will use only this particular realization of
C◦. Nevertheless, the universality implies that the statements to follow hold for any
pseudoabelian closure.

Assume C admits a K -linear hermitian structure (∗, ω). Then C◦ is clearly a
K -category, and, moreover, has a K -linear hermitian structure given by (M, e)∗ =
(M∗, e∗) and ω(M,e) = e∗∗ωM e ∈ HomC◦((M, e), (M∗∗, e∗∗)). Also, the functor
M 7→ M◦ is 1-hermitian and duality-preserving (the isomorphism (M∗)◦→ (M◦)∗

being idM ), so we have a faithful and full functor (M, s) 7→ (M, s)◦= (M◦, s) from
Sesq(C) to Sesq(C◦). Henceforth, consider C and Sesq(C) as full subcategories of
C◦ and Sesq(C◦), respectively; i.e., identify M◦ with M and (M, s)◦ with (M, s).

Lemma 5.17. Let C, C′ be two hermitian categories and let F : C→ C′ be an
ε-hermitian duality-preserving functor. Then:

(i) F extends to an ε-hermitian duality-preserving functor F◦ : C◦→ C′◦. If F is
faithful and full, then so is F◦.

(ii) There is a 1-hermitian duality-preserving functor G :Ar̃2(C)
◦
→Ar̃2(C

◦). The
functor G fixes Ar̃2(C) and induces an equivalence of categories.

Proof. (i) Define F◦(M, e)= (F M, Fe) ∈ C′◦. The rest is routine.

(ii) Let G send ((M,M ′, f,g), (e,e′op))∈Ar̃2(C)
◦ to ((M,e), (M,e′),e′∗ f e,e′∗ge)

and any morphism to itself. The details are left to the reader. �
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Observe that the category CL may not be pseudoabelian even when C is. We
thus set C◦L := (CL)

◦.

Theorem 5.18. Let (C, ∗, ω) be a pseudoabelian K -linear hermitian category such
that dimK Hom(M,M ′) is finite for all M,M ′ ∈ C. Then the maps

Wε(RL/K ) :Wε(C)→Wε(C◦L) and W(RL/K ) :WS(C)→WS(C
◦

L)

are injective.

Proof. We begin by showing that Wε(RL/K ) :Wε(C)→Wε(C◦L) is injective. Let
(M, s) ∈ UHε(C) be such that (ML , sL) ≡ 0 in Wε(C◦L). Then there are objects
N , N ′ ∈ C◦L such that sL ⊕Hε

N ' Hε
N ′ . Let

(U, h)= (M, s)⊕ (N ′⊕ N ′ ∗,Hε
N ′) and E = EndC◦(U ),

and let σ be the involution induced by h on E . Set EL = E⊗K L =EndC◦L
(UL) and

σL=σ⊗K idL . Section 2E implies that RL/K (T(U,h)(M, s))=T(UL ,hL )(ML , sL)≡0
in Wε(EL , σL), and by [Bayer-Fluckiger and Lenstra 1990, Proposition 1.2], this
means T(U,h)(M, s) ≡ 0 in Wε(E, σ ) (here we need dimK E <∞). Since C is
pseudoabelian, the map T(U,h) : C|U → P(E) is an equivalence of categories,
hence the induced map Wε(T(U,h)) : Wε(C|U )→ W(P(E)) = Wε(E, σ ) is an
isomorphism of groups. Therefore, (M, s)≡ 0 in Wε(C|U ). In particular, the same
identity holds in Wε(C).

Now let (M, s) ∈ Sesq(C) be such that (ML , sL) ≡ 0 in WS(C
◦

L). Then by
Proposition 5.13, (ML , sL) is hyperbolic in C◦L (but not, a priori, in CL ). Let F be
the functor defined in Theorem 3.2 and let J be the functor Ar̃2(C)L → Ar̃2(CL)

of Proposition 3.7. By the lemma, there is a fully faithful 1-hermitian duality-
preserving functor J ′ := G J ◦ : Ar̃2(C)

◦

L → Ar̃2(C
◦

L). Since (ML , sL) is hyper-
bolic in C◦L , there is Q ∈ Ar̃2(C

◦

L) such that F(ML , sL) ' (Q ⊕ Q∗,HQ). Let
Z(M, s) := (M,M, s∗ωM , s) and Z(ML , sL) = (ML ,ML , s∗LωML , sL). Recall
that F(ML , sL) = FRL/K (M, s) = JRL/K F(M, s) (Proposition 3.7) and hence
Q⊕ Q∗ ' Z(ML , sL)= J (Z(M, s)L)= J ′(Z(M, s)L). As J ′ is fully faithful and
its image is pseudoabelian, we may assume Q = J ′H for some H ∈ Ar̃2(C)

◦

L .
We now have J ′(H⊕H∗,HH )= (Q⊕Q∗,HQ)' F(ML , sL)= J ′RL/K F(M, s),
hence (H⊕H∗,HH )'RL/K F(M, s) in Ar̃2(C)

◦

L . In particular, RL/K F(M, s)≡ 0
in W(Ar̃2(C)

◦

L). By the previous paragraph, this means F(M, s)≡ 0 in W(Ar̃2(C))

and hence; (M, s)≡ 0 in WS(C). �

We also have the following weaker version of Springer’s theorem that works
without assuming C is pseudoabelian:

Theorem 5.19. Suppose that (C, ∗, ω) is a K -linear hermitian category such that
dimK Hom(M,M ′) is finite for all M,M ′∈C. Then Wε(RL/K ) :Wε(C)→Wε(CL)

is injective.
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Proof. Let (M, s) ∈ UHε(C) be such that (ML , sL)≡ 0 in Wε(CL). Then there are
objects NL , N ′L such that sL⊕Hε

NL
'Hε

N ′L
. Since Hε

NL
= (Hε

N )L and Hε
N ′L
= (Hε

N ′)L ,
we have (s⊕Hε

N )L ' (H
ε
N ′)L . By Theorem 5.15, this means that s⊕Hε

N ' Hε
N ′ ,

hence (M, s)≡ 0 in Wε(C). �

5F. Weak Hasse principle. In this final subsection, we prove a version of the weak
Hasse principle for systems of sesquilinear forms over hermitian categories. Recall
that the weak Hasse principle asserts that two quadratic forms over a global field k
are isometric if and only if they are isometric over all completions of k. This actually
fails for systems of quadratic forms, and we refer the reader to [Bayer-Fluckiger
1985; 1987] for necessary and sufficient conditions for the weak Hasse principle
to hold in this case. A weak Hasse principle for sesquilinear forms defined over a
skew field with a unitary involution was obtained in [Bayer-Fluckiger and Moldovan
2014].

Let K be a commutative ring admitting an involution σ , and let k be the fixed
ring of σ . Let C be an additive K -category. A hermitian structure (∗, ω) on C is
called (K , σ )-linear if ( f a)∗ = f ∗σ(a) for all a ∈ K and any morphism f in C.
(This means that the functor ∗ is k-linear.) In this case, End(M) is a K -algebra for
all M ∈ C, and for any unimodular ε-hermitian form (M, s) over C, the restriction
of the involution f 7→ s−1 f ∗s to K · idM is σ .

Suppose now that K is a global field of characteristic not 2 admitting an involution
σ of the second kind with fixed field k, and that C admits a nonempty family of
(K , σ )-linear hermitian structures {∗i , ωi }i∈I . For every prime spot p of k, let
kp be the completion of k at p, and set K p = K ⊗k kp, σp = σ ⊗k idkp and
Cp = C ⊗k kp. Then each of the hermitian structures (∗i , ωi ) gives rise to a
(K p, σp)-linear hermitian structure on Cp, which we also denote by (∗i , ωi ).

Theorem 5.20. Let K be a global field of characteristic not 2 admitting an invo-
lution σ of the second kind with fixed field k. Let C be a K -category such that
dimK Hom(M, N ) is finite for all M, N ∈C, and assume there is a nonempty family
{∗i , ωi }i∈I of (K , σ )-linear hermitian structures on C. Then the weak Hasse prin-
ciple (with respect to k) holds for systems of sesquilinear forms over (C, {∗i , ωi }).
That is, two systems of sesquilinear forms over (C, {∗i , ωi }) are isometric if and
only if they are isometric after applying Rkp/k for all p.

We will need the following lemma. (The lemma seems to be known, but we
could not find an explicit reference, and hence included here an ad hoc proof.)

Lemma 5.21. Let L/K be any field extension, and let C be an additive K -category
such that dimK HomC(M, N ) is finite for all M, N ∈C. Then for all N ,M ∈C, we
have N ∼= M if and only if NL ∼= ML .
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Sketch of proof. By applying HomC(M ⊕ N , ), we may assume M and N are
finitely generated projective right modules over R := End(M ⊕ N ), which is a
finite-dimensional K -algebra by assumption. Let J be the Jacobson radical of R.
By tensoring with R/J , we may assume R is semisimple. Let {Vi }i be a complete
list of the simple right R-modules and write

(Vi )L =
⊕

j W ni j
i j ,

the {Wi j } j being pairwise nonisomorphic indecomposable RL -modules. The RL -
modules {Wi j }i, j are pairwise nonisomorphic because Wi j and Wi ′ j ′ are nonisomor-
phic as R-modules when i 6= i ′ (Wi j is isomorphic as an R-module to a direct sum
of copies of Vi ). Assume ML ∼= NL and write M ∼=

⊕
i V mi

i , N ∼=
⊕

i V m′i
i . Then⊕

i, j W mi ni j
i j
∼= ML ∼= NL ∼=

⊕
i, j W m′i ni j

i j . By the Krull–Schmidt theorem, we have
mi ni j = m′i ni j for all i, j , hence mi = m′i and M ∼= N . �

Proof of Theorem 5.20. By Corollary 4.4, it is enough to verify the Hasse principle
(with respect to k) for 1-hermitian forms in the category G := Ar̃2I (C). Our
assumptions imply that G is a (K , σ )-linear category such that dimK Hom(Z , Z ′)
is finite for all Z , Z ′ ∈ G. We now use the ideas developed in [Bayer-Fluckiger and
Moldovan 2014, §9].

Let (Z , h), (Z ′, h′) be two unimodular 1-hermitian forms over G such that
Rkp/k(Z , h)'Rkp/k(Z ′, h′) for all p. By Lemma 5.21, this implies that Z ∼= Z ′,
so we may assume Z = Z ′.

Fix a 1-hermitian form h0 on Z and let τ be the involution induced by h0 on
E := End(Z) (i.e., τ(x) = h−1

0 x∗h0). There is an equivalence relation on the
elements of E defined by x ∼ y if and only if there exists an invertible z ∈ E
such that x = zyτ(z). Let H(τ, E×) be the set of equivalence classes of invertible
elements x ∈ E× for which x= τ(x). In the same manner as in [Bayer-Fluckiger and
Moldovan 2014, Theorem 5.1], we see that there is a one-to-one correspondence
between isometry classes of unimodular 1-hermitian forms on Z and elements
H(τ, E×). It is given by (Z , t) 7→ h−1

0 t .
Applying the same argument to Z p =Rkp/k Z ∈ Gp, we see that the weak Hasse

principle is equivalent to the injectivity of the standard map

8 : H(τ, E×)→
∏

p

H(τp, E×p ),

where E p = End(Z p) = E ⊗k kp and τp = τ ⊗k idkp . Observe that since G is
(K , σ )-linear, τ is a unitary involution (and in fact, τ |K = σ ). By [Bayer-Fluckiger
and Moldovan 2014, §9], this means that 8 is injective, hence the weak Hasse
holds. �
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Corollary 5.22. Let K be a global field of characteristic not 2 admitting an involu-
tion σ of the second kind with fixed field k. Let A be a finite-dimensional K -algebra
admitting a nonempty family of involutions {σi }i∈I such that σi |K = σ . Then the
weak Hasse principle (with respect to k) holds for systems of sesquilinear forms
over (A, {σi }).
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REALIZATIONS OF THE THREE-POINT LIE ALGEBRA
sl(2,R)⊕ (�R/dR)

BEN COX AND ELIZABETH JURISICH

This paper is dedicated to Robert Wilson.

We describe the universal central extension of the three-point current alge-
bra sl(2,R), where R=C[t, t−1, u | u2= t2+4t], and construct realizations
of it in terms of sums of partial differential operators.

1. Introduction

It is well known from the work of Kassel and Loday (see [Kassel and Loday 1982;
1984]) that if R is a commutative algebra and g is a simple Lie algebra, both defined
over the complex numbers, then the universal central extension ĝ of g⊗ R is the
vector space (g⊗ R)⊕�1

R/dR, where �1
R/dR is the space of Kähler differentials

modulo exact forms (see [Kassel 1984]). The vector space ĝ is made into a Lie
algebra by defining

[x ⊗ f, y⊗ g] := [xy]⊗ f g+ (x, y) f dg, [x ⊗ f, ω] = 0

for x, y ∈ g, f, g ∈ R, ω ∈�1
R/dR, where (− ,− ) denotes the Killing form on g.

Here a denotes the image of a ∈�1
R in the quotient �1

R/dR. A somewhat vague
but natural question is whether there exist free field or Wakimoto-type realizations
of these algebras. It is well known from the work of Wakimoto and of Feigin
and Frenkel what the answer is when R is the ring of Laurent polynomials in one
variable (see [Wakimoto 1986] and [Feigin and Frenkel 1990]). We find such a
realization in the setting where g= sl(2,C), R = C[t, t−1, u | u2

= t2
+ 4t], and ĝ

is the three-point algebra.
In Kazhdan and Lusztig’s explicit study [1991; 1993] of the tensor structure of

modules for affine Lie algebras the ring of functions regular everywhere except at
a finite number of points appears naturally. This algebra Bremner gave the name
n-point algebra. In particular, in [Frenkel and Ben-Zvi 2001, Chapter 12], algebras
of the form

⊕n
i=1 g((t− xi ))⊕Cc appear in the description of the conformal blocks.

MSC2010: primary 17B67; secondary 81R10.
Keywords: three point algebras, Krichever–Novikov algebras, free field realizations, Wakimoto

modules, affine Lie algebras, Fock spaces.
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These contain the n-point algebras g⊗C[(t− x1)
−1, . . . , (t− xN )

−1
]⊕Cc modulo

part of the center �R/dR. Bremner [1994a] explicitly described the universal
central extension of such an algebra.

Consider now the Riemann sphere C ∪ {∞} with coordinate function s, and
fix three distinct points a1, a2, a3 on this Riemann sphere. Let R denote the ring
of rational functions with poles only in the set {a1, a2, a3}. It is known that the
automorphism group PGL2(C) of C(s) is simply 3-transitive, and R is a subring of
C(s) that is isomorphic to the ring of rational functions with poles at {∞, 0, 1, a}.
Motivated by this isomorphism, one sets a = a4 and here the four-point ring is R =
Ra=C[s, s−1, (s−1)−1, (s−a)−1

], where a ∈C\{0, 1}. Let S := Sb=C[t, t−1, u],
where u2

= t2
− 2bt + 1 with b a complex number not equal to ±1. Then Bremner

has shown us that Ra ∼= Sb. As the latter, being Z2-graded, is a cousin to super Lie
algebras, it is thus more immediately amendable to the theatrics of conformal field
theory. Moreover, Bremner has given an explicit description of the universal central
extension of g⊗ R in terms of ultraspherical (Gegenbauer) polynomials where R is
the four-point algebra (see [Bremner 1995]). In [Cox 2008] a realization was given
for the four-point algebra where the center acts nontrivially.

In his study of the elliptic affine Lie algebras sl(2, R)⊕ (�R/dR) where R =
C[x, x−1, y | y2

= 4x3
− g2x − g3], Bremner [1994b] has also explicitly described

the universal central extension of this algebra in terms of Pollaczek polynomials.
Essentially the same algebras appear in [Fialowski and Schlichenmaier 2007; 2005].
Together with Bueno and Futorny, the first author described free-field-type realiza-
tions of the elliptic Lie algebra where R = C[t, t−1, u | u2

= t3
−2bt2

− t], b 6= ±1
(see [Bueno et al. 2009]).

Below, we study the three-point algebra case where R denotes the ring of rational
functions with poles only in the set {a1, a2, a3}. This algebra is isomorphic to
C[s, s−1, (s− 1)−1

]. Schlichenmaier [2003a] has a slightly different description of
the three-point algebra as C[(z2

−a2)k, z(z2
−a2)k | k ∈ Z], where a 6= 0. We show

that R ∼= C[t, t−1, u | u2
= t2
+ 4t], thus resembling Sb above. Our main result,

Theorem 5.1, provides a natural free field realization in terms of a β-γ -system and
the oscillator algebra of the three-point affine Lie algebra when g= sl(2,C). Just as
in the case of intermediate Wakimoto modules defined in [Cox and Futorny 2006],
there are two different realizations depending on two different normal orderings.
Besides Bremner’s article mentioned above, other work on the universal central
extension of three-point algebras can be found in [Benkart and Terwilliger 2007].
Previous related work on highest-weight modules of sl(2, R) can be found in
[Jakobsen and Kac 1985].

The three-point algebra is perhaps the simplest nontrivial example of a Krichever–
Novikov algebra beyond an affine Kac–Moody algebra (see [Krichever and Novikov
1987a; 1987b; 1989]). A fair amount of interesting and fundamental work has
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been done by Krichever, Novikov, Schlichenmaier, and Sheinman on the represen-
tation theory of Krichever–Novikov algebras. In particular, Wess–Zumino–Witten–
Novikov theory and analogues of the Knizhnik–Zamolodchikov (KZ) equations are
developed for these algebras (see the survey article [Sheinman 2005], and, for exam-
ple, [Schlichenmaier and Sheinman 1996; 1999; Sheinman 2003; Schlichenmaier
2003a; 2003b]).

The initial motivation for the use of Wakimoto’s realization was to prove a conjec-
ture of Kac and Kazhdan on the characters of certain irreducible representations of
affine Kac–Moody algebras at the critical level (see [Wakimoto 1986] and [Frenkel
2005]). Another motivation for constructing free field realizations is that they are
used to provide integral solutions to the KZ equations (see for example [Schechtman
and Varchenko 1990] and [Etingof et al. 1998] and their references). A third is that
they are used in determining the center of a certain completion of the enveloping
algebra of an affine Lie algebra at the critical level, which is an important ingredient
in the geometric Langland’s correspondence [Frenkel 2007]. Yet a fourth is that
free field realizations of an affine Lie algebra appear naturally in the context of the
generalized AKNS hierarchies [Feigin and Frenkel 1999].

2. The three-point ring

The three-point algebra has at least four incarnations.

Three-point algebras. Fix a nonzero a ∈ C. Let

S := C[s, s−1, (s− 1)−1
],

R := C[t, t−1, u | u2
= t2
+ 4t],

A :=Aa = C[(z2
− a2)k, z(z2

− a2) j
| k, j ∈ Z].

Note that Bremner introduced the ring S and Schlichenmaier [2003a] introduced
A. Variants of R were introduced by Bremner for elliptic and three-point algebras.

Proposition 2.1. (1) The rings R and S are isomorphic by t 7→ s−1(s− 1)2 and
u 7→ s− s−1.

(2) The rings R and A are isomorphic.

Proof. (1) Let f̄ : C[t, u] → S be the ring homomorphism defined by f̄ (t) =
s−1(s− 1)2 = s− 2+ s−1, f̄ (u)= s− s−1.

We first check that

f̄ (u2
− (t2

+ 4t))= (s− s−1)2− (s− 2+ s−1)2− 4(s− 2+ s−1)= 0

and f̄ (t) = s−1(s − 1)2 is invertible in S. Hence the map f̄ descends to a well-
defined ring homomorphism f : R→ S. To show that it is onto, we essentially
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solve for s and s−1 in terms of t and u. The inverse ring homomorphism of f is
φ : S→R, given by

φ(s)=
t + 2+ u

2
, φ(s−1)=

t + 2− u
2

.

In particular, φ((s− 1)−1)= (t−1u− 1)/2.
For part (2), observe A= C[z, (z− a)−1, (z+ a)−1

], so, mapping z to 2as− a,
we get A ∼= C[s, s−1, (s − 1)−1

]. Thus an isomorphism between A and R is
implemented by the assignment

z 7→ a(t + u), (z+ a)−1
7→

t + 2− u
4a

, (z− a)−1
7→

t−1u− 1
4a

. �

The universal central extension of the current algebra g⊗A. Let R be a com-
mutative algebra defined over C. Consider the left R-module F = R⊗ R with left
action given by f (g⊗ h) = f g⊗ h for f, g, h ∈ R, and let K be the submodule
generated by the elements 1⊗ f g− f ⊗g−g⊗ f . Then �1

R = F/K is the module
of Kähler differentials. The element f ⊗ g+ K is traditionally denoted by f dg.
The canonical map d : R→�1

R is given by d f = 1⊗ f +K . The exact differentials
are the elements of the subspace dR. The coset of f dg modulo dR is denoted by
f dg. As Kassel has shown, the universal central extension of the current algebra
g⊗ R, where g is a simple finite-dimensional Lie algebra defined over C, is the
vector space ĝ= (g⊗ R)⊕�1

R/dR, with Lie bracket given by

[x ⊗ f, Y ⊗ g] = [xy]⊗ f g+ (x, y) f dg, [x ⊗ f, ω] = 0, [ω,ω′] = 0,

where x, y ∈ g, ω,ω′ ∈�1
R/dR, and (x, y) denotes the Killing form on g.

There are at least four incarnations of the three-point algebras, three of which are
defined as g⊗ R⊕�R/dR where R=S,R,A given above. The fourth incarnation
appears in [Benkart and Terwilliger 2007] and is given in terms of the tetrahedron
algebra. We will only work with R =R.

Proposition 2.2 ([Bremner 1994a]; see also [Bremner 1995]). Let R be as above.
The set

{ω0 := t−1 dt, ω1 := t−1u dt}

is a basis of �1
R/dR.

Proof. The proof follows almost exactly along the lines of [Bremner 1995] and
[Bremner 1994a]. We know by the Riemann–Roch theorem that the space �R/dR

of Kähler differentials modulo exact forms on the sphere with three punctures has
dimension 2 (see [Bremner 1994a]). We have the following formulae:
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d(tk)= ktk−1 dt,

d(tku)= tk du+ ktk−1u dt,(2-1)

tku dt ≡− k+3
4k+6

tk+1u dt mod dR,(2-2)

tk−1 dt ≡ 1
k

d(tk)≡ 0 mod dR for k 6= 0.(2-3)

By Equations (2-1), (2-2), and (2-3), we conclude that �R/dR is spanned by
{t−1 dt, t−1u dt}. �

Corollary 2.3. In �1
R/dR, one has

tk dt l =−kδl,−kω0,(2-4)

tku d(t lu)= ((l + 1)δk+l,−2+ (4l + 2)δk+l,−1)ω0,(2-5)

tk d(t lu)=−kδk,−lω1.(2-6)

Proof. Using (2-1) above, we obtain

tk d(t lu)≡ tk(lt l−1u dt + t l du)

≡ lt l+k−1u dt + t l+k du

≡ lt l+k−1u dt − (l + k)t l+k−1u dt

≡−kt l+k−1u dt

≡−kδl+k,0t−1u dt mod dR

in �R/R.
Next we observe u du = 1

2 d(u2)= 1
2 d(t2

+ 4t)= (t + 2) dt , so in �R,

(2-7) tku du = (tk+1
+ 2tk) dt.

By (2-7) and (2-3),

tku d(t lu)= tku(lt l−1u dt + t l du) in �R

= (lt l+k−1u2 dt + t l+ku du)

= (lt l+k−1(t2
+ 4t) dt + (t l+k+1

+ 2t l+k) dt)

= l(tk+l+1
+ 4tk+l) dt + (t l+k+1

+ 2t l+k) dt)

= (l + 1)tk+l+1 dt + (4l + 2)tk+l dt

≡ ((l + 1)δk+l,−2+ (4l + 2)δk+l,−1)t−1 dt mod R.

This completes the proof of the corollary. �
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Theorem 2.4. The universal central extension of the algebra sl(2,C)⊗R is iso-
morphic to the Lie algebra with generators en, e1

n, fn, f 1
n , hn, h1

n , n ∈ Z, ω0, ω1,
and relations given by

[xm, xn] := [xm, x1
n ] = [x

1
m, x1

n ] = 0 for x = e, f,(2-8)

[hm, hn] := −2mδm,−nω0 = (n−m)δm,−nω0,(2-9)

[h1
m, h1

n] := 2((n+ 1)δm+n,−2+ (4n+ 2)δm+n,−1)ω0(2-10)

= (n−m)(δm+n,−2+ 4δm+n,−1)ω0,

[hm, h1
n] := −2mδm,−nω1,(2-11)

[ωi , xm] := [ωi , ω j ] = 0 for x = e, f, h and i, j ∈ {0, 1}(2-12)

[em, fn] := hm+n −mδm,−nω0,(2-13)

[em, f 1
n ] := h1

m+n −mδm,−nω1 =: [e1
m, fn],(2-14)

[e1
m, f 1

n ] := hm+n+2+ 4hm+n+1+ ((n+ 1)δm+n,−2+ (4n+ 2)δm+n,−1)ω0(2-15)

= hm+n+2+ 4hm+n+1+
1
2(n−m)(δm+n,−2+ 4δm+n,−1)ω0,

[hm, en] := 2em+n,(2-16)

[hm, e1
n] := 2e1

m+n =: [h
1
m, em],(2-17)

[h1
m, e1

n] := 2em+n+2+ 8em+n+1,(2-18)

[hm, fn] := −2 fm+n,(2-19)

[hm, f 1
n ] := −2 f 1

m+n =: [h
1
m, fm],(2-20)

[h1
m, f 1

n ] := −2 fm+n+2− 8 fm+n+1,(2-21)

for all m, n ∈ Z.

Proof. Let f denote the free Lie algebra with generators en, e1
n, fn, f 1

n , hn, h1
n , n ∈Z,

ω0, ω1, and relations given above in (2-8) through (2-21). The map

φ : f→ (sl(2,C)⊗R)⊕ (�R/dR)

given by
φ(en) := e⊗ tn, φ(e1

n)= e⊗ utn,

φ( fn) := f ⊗ tn, φ( f 1
n )= f ⊗ utn,

φ(hn) := h⊗ tn, φ(h1
n)= h⊗ utn,

φ(ω0) := t−1 dt, φ(ω1)= t−1u dt,

for n ∈ Z, is a surjective Lie algebra homomorphism.
Consider the subalgebras S+=〈en, e1

n | n ∈Z〉, S0=〈hn, h1
n, ω0, ω1 | n ∈Z〉, and

S− = 〈 fn, f 1
n | n ∈ Z〉, and set S = S−+ S0+ S+. By (2-8) through (2-12), we have
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S+ =
∑
n∈Z

Cen +
∑
n∈Z

Ce1
n, S− =

∑
n∈Z

C fn +
∑
n∈Z

C f 1
n ,

S0 =
∑
n∈Z

Chn +
∑
n∈Z

Ch1
n +Cω0+Cω1.

By (2-13) through (2-18), we see that

[en, S+] = [e1
n, S+] = 0, [hn, S+] ⊆ S+, [h1

n, S+] ⊆ S+,

[ fn, S+] ⊆ S0, [ f 1
n , S+] ⊆ S0,

and similarly [xn, S−] = [x1
n , S−] ⊆ S, [xn, S0] = [x1

n , S0] ⊆ S for x = e, f, h. To
sum up, we observe that [xn, S] ⊆ S and [x1

n , S] ⊆ S for n ∈ Z, x = h, e, f . Thus
[S, S] ⊂ S. Now, S contains the generators of f and is a subalgebra. Hence S = f.
Now it is clear that φ is a Lie algebra isomorphism. �

3. A triangular decomposition of the three-point loop algebras g⊗ R

From now on we identify Ra with S and set R = S, which has a basis t i , t i u
for i ∈ Z. Let p : R→ R be the automorphism given by p(t)= t and p(u)=−u.
Then one can decompose R= R0

⊕R1, where R0
=C[t±1

]= {r ∈ R | p(r)= r} and
R1
=C[t±1

]u = {r ∈ R | p(r)=−r} are the eigenspaces of p. From now on, g will
denote a simple Lie algebra over C with triangular decomposition g= n−⊕h⊕n+,
and then the three-point loop algebra L(g) := g⊗ R has a corresponding Z/2Z-
grading: L(g)i := g⊗ Ri for i = 0, 1. However, the degree of t does not render
L(g) a Z-graded Lie algebra. This leads us to the following notion:

Suppose I is an additive subgroup of the rational numbers Q and A is a C-algebra
such that A=

⊕
i∈I Ai , and that there exists a fixed l ∈ N with

Ai A j ⊂
⊕

|k−(i+ j)|≤l

Ak

for all i, j ∈ Z. Then A is said to be an l-quasigraded algebra. For nonzero x ∈Ai ,
one says that x is homogeneous of degree i and one writes deg x = i .

For example, R has the structure of a 1-quasigraded algebra, where I = 1
2 Z and

deg t i
= i , deg t i u = i + 1

2 .
A weak triangular decomposition of a Lie algebra l is a triple (H, l+, σ ) satisfying

(1) h and l+ are subalgebras of l,

(2) h is abelian and [h, l+] ⊂ l+,

(3) σ is an antiautomorphism of l of order 2 which is the identity on h, and

(4) l= l+⊕ h⊕ σ(l+).

We will let σ(l+) be denoted by l−.
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Theorem 3.1 [Bremner 1995, Theorem 2.1]. The three-point loop algebra L(g) is
a 1-quasigraded Lie algebra where deg(x ⊗ f )= deg f for f homogeneous. Set
R+ = C(1+ u)⊕ C[t, u]t and R− = p(R+). Then L(g) has a weak triangular
decomposition given by

L(g)± = g⊗ R±, H := h⊗C.

Formal distributions. We need some more notation that will simplify some of
the arguments later. This notation follows roughly [Kac 1998] and [Matsuo and
Nagatomo 1999]: The formal delta function δ(z/w) is the formal distribution

δ(z/w)= z−1
∑
n∈Z

z−nwn
= w−1

∑
n∈Z

znw−n.

For any sequence of elements {am}m∈Z in the ring End(V ), V a vector space, the
formal distribution

a(z) :=
∑
m∈Z

amz−m−1

is called a field if for any v ∈ V , amv = 0 for m� 0. If a(z) is a field, then we set

(3-1) a(z)− :=
∑
m≥0

amz−m−1 and a(z)+ :=
∑
m<0

amz−m−1.

The normal ordered product of two distributions a(z) and b(w) (and their coeffi-
cients) is defined by

(3-2)
∑
m∈Z

∑
n∈Z

:ambn :z−m−1w−n−1
= :a(z)b(w) : = a(z)+b(w)+ b(w)a(z)−.

Now we should point out that while :a1(z1) · · · am(zm) : is always defined as a
formal series, we will only define :a(z)b(z) : := lim

w→z
:a(z)b(w) : for certain pairs

(a(z), b(w)).
Then one defines recursively

:a1(z1) · · · ak(zk) : = :a1(z1)
(
:a2(z2)( : · · · :ak−1(zk−1)ak(zk) :) · · · :

)
:,

while the normal ordered product

:a1(z) · · · ak(z) : = lim
z1,z2,...,zk→z

:a1(z1)
(
:a2(z2)( : · · · :ak−1(zk−1)ak(zk) :) · · ·

)
:

will only be defined for certain k-tuples (a1, . . . , ak).
Let

(3-3) babc = a(z)b(w)− :a(z)b(w) : = [a(z)−, b(w)],

(half of [a(z), b(w)]) denote the contraction of any two formal distributions a(z)
and b(w). Note that the variables z, w are usually suppressed in this notation when
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no confusion will arise.
For m= i− 1

2 , i ∈Z+ 1
2 and x ∈g, define xm+ 1

2
= x⊗t i− 1

2 u= x1
m and xm := x⊗tm .

Motivated by conformal field theory, we set

x1(z) :=
∑
m∈Z

xm+ 1
2
z−m−1, x(z) :=

∑
m∈Z

xmz−m−1.

Then the relations in Theorem 2.4 can be rewritten as

[x(z), y(w)] = [x, y](w)δ(z/w)− (x, y)ω0∂wδ(z/w),(3-4)

[x1(z), y1(w)] = P
(
[x, y](w)δ(z/w)− (x, y)ω0∂wδ(z/w)

)
(3-5)

−
1
2(x, y)(∂P)ω0δ(z/w),

[x(z), y1(w)] = [x, y]1(w)δ(z/w)− (x, y)ω1∂wδ(z/w)= [x1(z), y(w)],(3-6)

where x, y ∈ {e, f, h}.

4. Oscillator algebras

The β-γ system. In the physics literature, the following construction is often called
the β-γ system, which corresponds to our a and a∗ below. Let â be the infinite-
dimensional oscillator algebra with generators an, a∗n , a1

n, a1∗
n , n ∈Z together with 1,

satisfying the relations

[an, am] = [am, a1
n] = [am, a1∗

n ] = [a
∗

n , a∗m] = [a
∗

n , a1
m] = [a

∗

n , a1∗
m ] = 0,

[a1
n, a1

m] = [a
1∗
n , a1∗

m ] = 0= [a, 1],
[an, a∗m] = δm+n,0 1= [a1

n, a1∗
m ].

For c = a, a1, and respectively X = x, x1, with r = 0 or r = 1, we define C[x] :=
C[xn, x1

n | n ∈ Z] and ρr : â→ gl(C[x]) by

ρr (cm) : =

{
∂/∂Xm if m ≥ 0 and r = 0,
Xm otherwise,

(4-1)

ρr (c∗m) : =
{

X−m if m ≤ 0, and r = 0,
−∂/∂X−m otherwise,

(4-2)

and ρr (1)= 1. These two representations can be constructed using induction: For
r = 0, the representation ρ0 is the â-module generated by 1=: |0〉, where

am |0〉 = a1
m |0〉 = 0 for m ≥ 0 and a∗m |0〉 = a1∗

m |0〉 = 0 for m > 0.

For r = 1, the representation ρ1 is the â-module generated by 1=: |0〉, where

a∗m |0〉 = a1∗
m |0〉 = 0 for m ∈ Z.
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If we define

(4-3) α(z) :=
∑
n∈Z

anz−n−1, α∗(z) :=
∑
n∈Z

a∗n z−n

and

(4-4) α1(z) :=
∑
n∈Z

a1
n z−n−1, α1∗(z) :=

∑
n∈Z

a1∗
n z−n,

then

[α(z), α(w)] = [α∗(z), α∗(w)] = [α1(z), α1(w)] = [α1∗(z), α1∗(w)] = 0,

[α(z), α∗(w)] = [α1(z), α1∗(w)] = 1δ(z/w).

Note that ρ1(α(z)) and ρ1(α
1(z)) are not fields, whereas ρr (α

∗(z)) and ρr (α
1∗(z))

are always fields. Corresponding to these two representations there are two possible
normal orderings: For r = 0 we use the usual normal ordering given by (3-1) and
for r = 1 we define the natural normal ordering to be

α(z)+ = α(z), α(z)− = 0,

α1(z)+ = α1(z), α1(z)− = 0,

α∗(z)+ = 0, α∗(z)− = α∗(z),

α1∗(z)+ = 0, α1∗(z)− = α1∗(z).

This means in particular that for r = 0 we get

bαα∗c = bα(z), α∗(w)c =
∑
m≥0

δm+n,0 z−m−1w−n(4-5)

= δ−(z/w)= ιz,w
( 1

z−w

)
,

bα∗αc = −
∑
m≥1

δm+n,0 z−mw−n−1
=−δ+(w/z)= ιz,w

( 1
w−z

)
,(4-6)

(where ιz,w denotes Taylor series expansion in the “region” |z| > |w|), and, for
r = 1,

bαα∗c = [α(z)−, α∗(w)] = 0,(4-7)

bα∗αc = [α∗(z)−, α(w)] = −
∑

m,n∈Z

δm+n,0 z−mw−n−1
=−δ(w/z),(4-8)

while similar results hold for α1(z). Notice that in both cases we have

[α(z), α∗(w)] = bα(z)α∗(w)c− bα∗(w)α(z)c = δ(z/w).

Recall that the singular part of the operator product expansion
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babc =
N−1∑
j=0

ιz,w

(
1

(z−w) j+1

)
c j (w)

completely determines the bracket of mutually local formal distributions a(z) and
b(w). (See Theorem A.3 of the appendix). One writes

a(z)b(w)∼
N−1∑
j=0

c j (w)

(z−w) j+1 .

The three-point Heisenberg algebra. The Cartan subalgebra h tensored with R

generates a subalgebra of ĝ which is an extension of an oscillator algebra. This
extension motivates the following definition: The Lie algebra with generators
bm, b1

m , m ∈ Z, 10, 11, and relations

[bm, bn] = (n−m) δm+n,0 10 =−2m δm+n,0 10,(4-9)

[b1
m, b1

n] = (n−m)(δm+n,−2+ 4δm+n,−1)10(4-10)

= 2((n+ 1)δm+n,−2+ (4n+ 2)δm+n,−1)10,

[b1
m, bn] = (n−m)δm,−n11 =−2mδm,−n11,(4-11)

[bm, 10] = [b1
m, 10] = [bm, 11] = [b1

m, 11] = 0.(4-12)

We will give it the appellation the three-point (affine) Heisenberg algebra, and
denote it by ĥ3.

If we introduce the formal distributions

(4-13) β(z) :=
∑
n∈Z

bnz−n−1, β1(z) :=
∑
n∈Z

b1
nz−n−1

=

∑
n∈Z

bn+ 1
2
z−n−1,

(where bn+ 1
2
:= b1

n), then, using calculations done earlier for the three-point Lie
algebra, we can see that the relations above can be rewritten in the form

[β(z), β(w)] = 210∂zδ(z/w)=−2∂wδ(z/w)10,

[β1(z), β1(w)] = −2
(
(w2
+ 4w)∂wδ(z/w)+ (2+w)δ(z/w)

)
10,

[β1(z), β(w)] = 2∂zδ(z/w)11 =−2∂wδ(z/w)11.

Set
ĥ±3 :=

∑
n≷0

(Cbn +Cb1
n), ĥ0

3 := C10⊕C11⊕Cb0⊕Cb1
0.

We introduce a Borel-type subalgebra

b̂3 = ĥ+3 ⊕ ĥ0
3.

From the defining relations above, one can see that b̂3 is a subalgebra.
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Lemma 4.1. Let V= Cv0⊕Cv1 be a two-dimensional representation of ĥ+3 with
ĥ+3 vi = 0 for i = 0, 1. Suppose λ,µ, ν, ~, χ1, κ0 ∈ C are such that

b0v0 = λv0, b0v1 = λv1,

b1
0v0 = µv0+ νv1, b1

0v1 = ~v0+µv1,

11vi = χ1vi , 10vi = κ0vi for i = 0, 1.

Then the above equations define a representation of b̂3 on V.

Proof. Since bm acts by scalar multiplication for m, n ≥ 0, the first defining relation
(4-9) is satisfied for m, n ≥ 0. The second relation (4-10) is also satisfied as the
right-hand side is zero if m, n ≥ 0. If n = 0, then since b0 acts by a scalar, the
relation (4-11) leads to no condition on λ,µ, ν, ~, χ1, κ0 ∈ h

0
4. If m ≥ 0 and n > 0,

the third relation doesn’t give us a condition on χ1 as

0= b1
mbnvi − bnb1

mvi = [b1
m, bn]vi =−2δm,−nmχ1vi = 0.

If m = n = 0, the third relation however becomes

0= λb1
0vi − b1

0λvi = b1
0b0vi − b0b1

0vi = [b1
0, b0]vi =−2 · 0χ1vi = 0,

so there is no condition on χ1. �

Let B1
0 denote the linear transformation on V that agrees with the action of

b1
0. If we define the notion of a b̂3-submodule as is done in [Sheinman 1995,

Definition 1.2], then V above is an irreducible b̂3-module when ~ν 6= 0, that is,
when det B1

0 6=µ
2. If one induces from V, the resulting representation for the three-

point affine algebra cannot be irreducible if V is not irreducible as a quasigraded
module itself.

Let C[ y] := C[y−n, y1
−m |m, n ∈ N∗]. The following is a straightforward com-

putation:

Lemma 4.2. The linear map ρ : b̂3→ End(C[ y]⊗V) defined by

ρ(bn)= yn for n < 0,(4-14)

ρ(b1
n)= y1

n + δn,−1∂y1
−3
χ0− δn,−3∂y1

−1
χ0 for n < 0,(4-15)

ρ(bn)=−n(2∂y−nχ0+ 2∂y1
−n
χ1) for n > 0,(4-16)

ρ(b1
n)=−2n∂y−nχ1+ 2(n+2)∂y1

−n−4
χ0− 4c(n+1)∂y1

−n−2
χ0+ 2n∂y1

−n
χ0(4-17)

for n > 0,

ρ(b0)= λ,(4-18)

ρ(b1
0)= 4∂y1

−4
χ0− 2c∂y1

−2
χ0+ B1

0 ,(4-19)

is a representation of b̂3.
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5. Two realizations of the affine three-point algebra ĝ

Assume that χ0 ∈ C, and define V as in Lemma 4.1. The α(z), α1(z), α∗(z), and
α1∗(z) are generating series of oscillator algebra elements as in (4-3) and (4-4).
Our main result is the following:

Theorem 5.1. Fix r ∈ {0, 1}, which then fixes the corresponding normal ordering
convention defined in the previous section. Set ĝ = (sl(2,C)⊗R)⊕Cω0⊕Cω1.
Then, using (4-1), (4-2) and Lemma 4.2, the following defines a representation of
the three-point algebra ĝ on C[x]⊗C[ y]⊗V:

τ(ω1)= 0, τ (ω0)= χ0 = κ0+ 4δr,0,

τ ( f (z))=−α(z), τ ( f 1(z))=−α1(z),

τ (h(z))= 2( :α(z)α∗(z) : + :α1(z)α1∗(z) :)+β,

τ(h1(z))= 2( :α1(z)α∗(z) : + (z2
+ 4z) :α(z)α1∗(z) :)+β1(z),

τ (e(z))=:α(z)(α∗(z))2 : + (z2
+ 4z) :α(z)(α1∗(z))2 : + 2 :α1(z)α∗(z)α1∗(z) :

+β(z)α∗(z)+β1(z)α1∗(z)+χ0∂α
∗(z),

τ (e1(z))= α1(z)α∗(z)α∗(z)+ (z2
+ 4z)(α1(z)(α1∗(z))2+ 2 :α(z)α∗(z)α1∗(z) :)

+β1(z)α∗+(z2
+4z)β(z)α1∗(z)+χ0((z2

+4z)∂zα
1∗(z)+(z+2)α1∗(z)).

Before we go through the proof, it will be fruitful to review Kac’s λ-notation
(see [Kac 1998, Section 2.2] and [Wakimoto 2001] for some of its properties), used
in operator product expansions. If a(z) and b(w) are formal distributions, then

[a(z), b(w)] =
∞∑
j=0

(a( j)b)(w)
(z−w) j+1

is transformed under the formal Fourier transform

Fλz,wa(z, w)= Resz eλ(z−w)a(z, w)

into the sum

[aλb] =
∞∑
j=0

λ j

j !
a( j)b.

Set

P(w)= w2
+ 4w.

So for example we have the following:
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Lemma 5.2. Given the definitions in the previous section, we have

(1) [β1
λβ

1
] = −(2(w2

+ 4w)λ+ (2w+ 4))κ0 =−(2Pλ+ ∂P)κ0,

(2) [:αα∗ :λ :αα∗ :] = −δr,0λ,

(3) [:α(α∗)2 :λ :α(α∗)2 :] = −4δr,0 :α
∗∂α∗ : − 4δr,0 :(α

∗)2 :λ.

Note that similar expressions hold for α1(z) and α1∗(z) (the λ-notation suppresses
the variables z and w, which are understood).

Proof. We’ll prove (2) and (3). By Wick’s theorem,

:α(z)α∗(z) : :α(w)α∗(w) :
= :α(z)α∗(z)α(w)α∗(w) : + bα(z), α∗(w)c:α(w)α∗(z) :

+ bα∗(z), α(w)c:α(z)α∗(w) : + bα(z), α∗(w)cbα∗(z), α(w)c

= :α(z)α(w)α∗(z)α∗(w) : + :α(w)α∗(z) :ιz,w
( 1

z−w

)
+ :α(z)α∗(w) :ιz,w

( 1
w−z

)
− δr,0ιz,w

( 1
z−w

)2

and

[:α(z)α∗(z)2 :, :α(w)α∗(w)2 :]

= 2 :α(z)α∗(z)α∗(w)2 :δ(z/w)− 2 :α(w)α∗(z)2α∗(w) :δ(z/w)

− 4δr,0 :α
∗(z)α∗(w) :∂wδ(z/w)

=−4δr,0 :α
∗(z)∂w(α∗(w) :δ(z/w))+ 4δr,0 :α

∗(z)∂wα∗(w) :δ(z/w)

=−4δr,0 :∂w(α
∗(w)α∗(w) :δ(z/w))+ 4δr,0 :α

∗(w)∂wα
∗(w) :δ(z/w)

=−4δr,0 :∂wα
∗(w)α∗(w) :δ(z/w)− 4δr,0 :α

∗(w)α∗(w) :∂wδ(z/w). �

Proof of Theorem 5.1. We need to check the following table is preserved under τ :

[ · λ · ] f (w) f 1(w) h(w) h1(w) e(w) e1(w)

f (z) 0 0 ∗ ∗ ∗ ∗

f 1(z) 0 ∗ ∗ ∗ ∗

h(z) ∗ ∗ ∗ ∗

h1(z) ∗ ∗ ∗

e(z) 0 0
e1(z) 0

Here, ∗ indicates nonzero formal distributions that are obtained from the defining
relations (3-4), (3-5), and (3-6). The proof is carried out using Wick’s theorem,
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Taylor’s theorem, and Lemma 5.2, as one can see below:

[τ( f )λτ( f )] = 0, [τ( f )λτ( f 1)] = 0, [τ( f 1)λτ( f 1)] = 0,

[τ( f )λτ(h)] = −[αλ(2(αα∗+α1α1∗)+β)] = −2α = 2τ( f ),

[τ( f )λτ(h1)] = −[αλ(2(α1α∗+ Pαα1∗)+β1)] = −2α1
= 2τ( f 1),

[τ( f )λτ(e)] = −
[
αλ( :α(α

∗)2 : + P :α(α1∗)2 :

+ 2 :α1α∗α1∗
: +βα∗+β1α1∗

+χ0∂α
∗)
]

=−2( :αα∗ : + :α1α1∗
:)−β −χ0λ=−τ(h)−χ0λ,

[τ( f )λτ(e1)] = −
[
αλ(α

1(α∗)2+ P(α1(α1∗)2+ 2 :αα∗α1∗
:)

+β1α∗+ Pβα1∗
+χ0(P∂α1∗

+
1
2∂Pα1∗))

]
=−2( :α1α∗ : + P :αα1∗

:)−β1
=−τ(h1),

[τ( f 1)λτ(h)] = −[α1
λ(2( :αα

∗
: + :α1α1∗

:)+β)] = −2α1
= 2τ( f 1),

[τ( f 1)λτ(h1)] = −[α1
λ(2( :α

1α∗ : + P :αα1∗
:)+β1)] = −2Pα1

= 2Pτ( f 1),

[τ( f 1)λτ(e)] = −[α1
λ( :α(α

∗)2 : + P :α(α1∗)2 :

+ 2 :α1α∗α1∗
: +βα∗+β1α1∗

+χ0∂α
∗)]

= −(2P :αα1∗
: + 2 :α1α∗ : +β1)=−τ(h1),

[τ( f 1)λτ(e1)] = −
[
α1
λ(α

1(α∗)2+ P(α1(α1∗)2+ 2 :αα∗α1∗
:)

+β1α∗+ Pβα1∗
+χ0(P∂α1∗

+
1
2(∂P)α1∗))

]
=−(P(2( :α1α1∗

: + :αα∗ :)+β +χ0λ)+
1
2χ0∂P)

=−(Pτ(h)+ Pχ0λ+χ0
1
2∂P).

Note that :a(z)b(z) : and :b(z)a(z) : are usually not equal, but :α1(w)α∗1(w) : =

:α1∗(w)α1(w) : and :α(w)α∗(w) : = :α∗(w)α(w) : . Thus, we calculate

[τ(h)λτ(h)] = [(2( :αα∗ : + :α1α1∗
:)+β)λ(2( :αα∗ : + :α1α1∗

:)+β)]

= 4(−:αα∗ : + :α∗α : − :α1α1∗
: + :α1∗α1

:)− 8δr,0λ+ [βλβ]

= −2(4δr,0+ κ0)λ,

which can be put into the form of (3-4):

[τ(h(z)), τ (h(w))] = −2(4δr,0+ κ0)∂wδ(z/w)

=−2χ0∂wδ(z/w)= τ(−2ω0∂wδ(z/w)).

Next, we calculate

[τ(h)λτ(h1)] = 4
(
( :α∗α1

: − :α1α∗ :)+ P(−:αα1∗
: + :α1∗α :)

)
+ [βλβ

1
].
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Since [an, a1∗
m ] = [a

1
n, a∗m] = 0, we have [τ(h(z)), τ (h1(w))] = [β(z), β1(w)] = 0.

As τ(ω1)= 0, relation (3-6) is satisfied.
We continue with

[τ(h1)λτ(h1)] = [(2( :α1α∗ : + P :αα1∗
:)+β1)λ(2( :α1α∗ : + P :αα1∗

:)+β1)]

= −8δr,0 Pλ− 4δr,0∂P − 2κ0(Pλ+ 1
2∂P),

yielding the relation

[τ(h1(z)), τ (h1(w))] = −2(4δr,0+ κ0)((w
2
+ 4w)∂wδ(z/w)+ (w+ 2))δ(z/w))

= τ(−(h, h)ω0 P∂wδ(z/w)− 1
2(h, h)∂Pω0δ(z/w)).

Next we calculate the h paired with the e:

[τ(h)λτ(e)] =
[
(2( :αα∗ : + :α1α1∗

:)+β)λ

( :α(α∗)2 : + P :α(α1∗)2 : + 2 :α1α∗α1∗
: +βα∗+β1α1∗

+χ0∂α
∗)
]

= 4 :α(α∗)2 : − 2 :α(α∗)2 : − 4δr,0α
∗λ

− 2P :α(α1∗)2 : + 4 :α∗α1α1∗
: + 2α∗β + 2χ0α

∗λ+ 2χ0∂α
∗

+ 4P :α(α1∗)2 : − 4δr,0α
∗λ+ 2β1α1∗

− 2λα∗κ0

= 2τ(e)
and

[τ(h1)λτ(e)] = 2 :α1(α∗)2 : + 2P :α1(α1∗)2 : + 4P :αα∗α1∗
:

+ 2δ(z/w)α∗β1
+ 2Pβα1∗

+ 2Pχ0∂α
1∗
+ ∂Pα1∗χ0

= 2τ(e1)

Similarly, [τ(h)λτ(e1)] = 2τ(e1) and [τ(h1)λτ(e1)] = 2τ(e1).
We prove the Serre relation for just one of the relations, [τ(e)λτ(e1)]; the proof

of the others, [τ(e)λτ(e)] and [τ(e1)λτ(e1)], is similar, as the reader can verify.
After expanding the definitions and collecting terms, we have

[τ(e)λτ(e1)]

= [:α(α∗)2 :λ( :α
1(α∗)2 : + 2P :αα∗α1∗

: +β1α∗)]

+ [P :α(α1∗)2 :λ( :α
1(α∗)2 : + P( :α1(α1∗)2 : + 2 :αα∗α1∗

:)+β1α∗)]

+
[
2 :α1α∗α1∗

:λ(α
1(α∗)2+ P( :α1(α1∗)2 : + 2 :αα∗α1∗

:)+ Pβα1∗

+χ0((w
2
+ 4w)∂wα1∗

+ (w+ 2)α1∗))
]

+ [βα∗λ(2P :αα∗α1∗
: +β1α∗+ Pβα1∗)]

+ [β1α1∗
λ( :α

1(α∗)2 : + Pα1(α1∗)2+β1α∗+ Pβα1∗)]

+ [χ0∂α
∗
λ(2P :αα∗α1∗

:)]
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= 2 :α1α∗(α∗)2 : + 2P :α(α∗)2α1∗
: − 4P :α(α∗)2α1∗

: − 4δr,0 P :α∗α1∗
:λ

− 4δr,0 P :∂(α∗)α1∗
: +β1(α∗)2− 2P :α(α∗)2α1∗

: + 2Pα1α∗(α1∗)2

− 4δr,0 P :α1∗α∗ :λ− 4δr,0∂P :α1∗α∗ : − 4δr,0 P :∂α1∗α∗ :

− 2P2
:α(α1∗)3 : + 2P2

:α(α1∗)3 : + Pβ1(α1∗)2

− 2 :α1α∗(α∗)2 : + 4P :α1α∗(α1∗)2 : − 2P :α1α∗(α1∗)2 :

− 4δr,0 P :α∗α1∗
:λ− 4δr,0 P :∂(α∗)α1∗

:

+ 4P :α(α∗)2α1∗
: − 4P :α1α∗(α1∗)2 :

− 4δr,0 P :α∗α1∗
:λ− 4δr,0 P :α∗∂α1∗

: + 2Pβ :α∗α1∗
:

+ 2χ0(P :∂α∗α1∗
: + P :α∗∂α1∗

: + P :α∗α1∗
:λ+ 1

2(∂P) :α∗α1∗
:)

− 2Pβα∗α1∗
− 2κ0 Pα∗α1∗λ− 2κ0 P∂α∗α1∗

−β1(α∗)2− Pβ1(α1∗)2− κ0(2Pα∗α1∗λ+ 2Pα∗∂α1∗
+ ∂Pα∗α1∗)

+ 2χ0 Pα∗α1∗λ

=−4δr,0 P :α∗α1∗
:λ− 4δr,0 P :∂(α∗)α1∗

: +χ1(2 :α∗∂α∗ : + :(α∗)2 :λ)
− 4δr,0 P :α1∗α∗ :λ− 4δr,0∂P :α1∗α∗ : − 4δr,0 P :∂α1∗α∗ :

− 4δr,0 P :α∗α1∗
:λ− 4δr,0 P :∂(α∗)α1∗

: − 4δr,0 P :α∗α1∗
:λ− 4δr,0 P :α∗∂α1∗

:

+ 2χ0(P :∂α∗α1∗
: + P :α∗∂α1∗

: + P :α∗α1∗
:λ+ 1

2(∂P) :α∗α1∗
:)

− κ0 Pα∗α1∗λ− κ0 P∂α∗α1∗

− κ0(2Pα∗α1∗λ+ 2Pα∗∂α1∗
+ ∂Pα∗α1∗)

− 2χ0 Pα∗α1∗λ

= 0. �

6. Further comments

We plan to use the above construction to help elucidate the structure of these
representations of a three-point algebra, describe the space of their intertwining
operators, and eventually describe the center of a certain completion of the universal
enveloping algebra for the three-point algebra.

Appendix

For the convenience of the reader we include the following results, which are useful
for performing the computations necessary for proving our results:

Theorem A.1 (Wick’s theorem [Bogoliubov and Shirkov 1980; Huang 1998; Kac
1998]). Let ai (z) and b j (z) be formal distributions with coefficients in the associa-
tive algebra End(C[x]⊗C[ y]), satisfying:

(1) [bai (z)b j (w)c, ck(x)±]=[bai b j
c, ck(x)±]=0 for all i, j, k and ck(x)=ak(z)

or ck(x)= bk(w).
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(2) [ai (z)±, b j (w)±] = 0 for all i and j .

(3) The products

bai1b j1c · · · bais bisc : a1(z) · · · aM(z)b1(w) · · · bN (w) :(i1,...,is ; j1,..., js)

have coefficients in End(C[x]⊗C[ y]) for all subsets {i1, . . . , is}⊂ {1, . . . ,M},
{ j1, . . . , js} ⊂ {1, · · · N }. Here, the subscript (i1, . . . , is; j1, . . . , js) means
that those factors ai (z), b j (w) with indices i ∈ {i1, . . . , is}, j ∈ { j1, . . . , js}
are to be omitted from the product : a1

· · · aM b1
· · · bN

:, and when s = 0 we
do not omit any factors.

Then

: a1(z) · · · aM(z) : : b1(w) · · · bN (w) :

=

min(M,N )∑
s=0

∑
i1<···<is
j1 6=···6= js

bai1b j1c · · · bais b jsc :a1(z) · · · aM(z)b1(w) · · · bN (w) :(i1,...,is ; j1,..., js) .

Theorem A.2 (Taylor’s theorem [Kac 1998, Theorem 2.4.3]). Let a(z) be a formal
distribution. Then, in the region |z−w|< |w|,

(A-1) a(z)=
∞∑
j=0

∂( j)
w a(w)(z−w) j .

Theorem A.3 [Kac 1998, Theorem 2.3.2]. Set C[x]=C[xn, x1
n | n ∈Z] and C[ y]=

C[ym, y1
m |m ∈ N∗]. Let a(z) and b(z) be formal distributions with coefficients in

the associative algebra End(C[x] ⊗C[ y]), where we are using the usual normal
ordering. The following are equivalent:

(i) [a(z), b(w)] =
N−1∑
j=0

∂( j)
w δ(z−w)c j (w),

where c j (w) ∈ End(C[x]⊗C[ y])[[w,w−1
]].

(ii) babc =
N−1∑
j=0

ιz,w

(
1

(z−w) j+1

)
c j (w).
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MULTI-BUMP BOUND STATE SOLUTIONS
FOR THE QUASILINEAR SCHRÖDINGER EQUATION

WITH CRITICAL FREQUENCY

YUXIA GUO AND ZHONGWEI TANG

We study the existence of single- and multi-bump solutions of quasilinear
Schrödinger equations

−1u+λV (x)u− 1
2 (1|u|

2)u = |u| p−2u,

the function V being a critical frequency in the sense that infx∈RN V (x)= 0.
We show that if the zero set of V has several isolated connected components
�1, . . . ,�k such that the interior of �i is not empty and ∂�i is smooth,
then for λ> 0 large, there exists, for any nonempty subset J ⊂{1, 2, . . . , k},
a standing wave solution trapped in a neighborhood of

⋃
j∈J
� j .

1. Introduction and main results

Consider the following quasilinear Schrödinger equation:

(1-1) −1u+ λV (x)u− 1
2(1|u|

2)u = |u|p−2u in RN ,

where N ≥ 3, λ > 0 is a parameter, 4< p < 2 · 2∗, and 2∗ is the critical Sobolev
exponent.

We are interested in the ground state solutions for (1-1), i.e., the positive solutions
with least energy. Solutions of this type are related to the existence of standing
wave solutions for the following quasilinear Schrödinger equation:

(1-2) i∂tw =−h̄21w+ V (x)w− f (|w|2)w− k1h(|w|2)h′(|w|2)w in RN ,

where V is a given potential, h̄ is the Planck constant, k is a real constant, and f, h are
real functions. Such quasilinear equations appear naturally in mathematical physics,
and have been derived as models of several physical phenomena corresponding to
various types of h (see, for example, [Brizhik et al. 2003; Brihaye and Hartmann
2006; Brüll and Lange 1986; Hartmann and Zakrzewski 2003; Kurihura 1981], and
the references therein).

Guo was supported by NSFC(11171171, 11331010). Tang was supported by NSFC(11171028).
MSC2010: primary 35Q55; secondary 35J65.
Keywords: multi-bump bound states, quasilinear Schrödinger equation, Orlicz space.
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Due to its significant application in mathematical physics, the equation (1-2)
with k = 0 (the semilinear case) has attracted much attention in recent years. Many
authors have obtained existence results for one-bump or multi-bump bound state
solutions under different assumptions on the potential function V . We refer the
readers to [Ambrosetti et al. 1997; Ambrosetti et al. 2001; Bartsch and Wang 2000;
Cingolani and Lazzo 2000; Cingolani and Nolasco 1998; del Pino and Felmer 1998;
del Pino and Felmer 1997], and the references therein.

In the quasilinear case (that is, the equation (1-2) with k 6= 0) we observe that, due
to the presence of the quasilinear term, there is a different critical exponent than in the
semilinear case, as observed in [Liu et al. 2003]; the number q= 2·2∗= 4N/(N−2)
behaves as a critical exponent for the quasilinear equation. There has been much
recent work concerned with the quasilinear Schrödinger equations (1-1) and (1-2).
For instance, in [Colin 2003], a change of variables was used to prove the existence
of soliton wave solutions; see also the paper by Liu, Wang and Wang [2003], where
a change of variables was also used. In [Colin and Jeanjean 2004], various existence
results for standing wave solutions to (1-1) for special f and h are obtained. For the
stability and instability results for a special case of (1-2), we also refer the reader
to [Colin et al. 2010].

For more recent related work on the quasilinear Schrödinger equation with critical
exponents, we refer the reader to, for instance, [Liu et al. 2013; 2012; do Ó et al.
2010a; 2010b, Lins and Silva 2009], and to the references therein.

The current paper is concerned with the existence of one-bump or multi-bump
bound states for the following quasilinear equation with frequency V :

−1u+ λV (x)u− 1
2(1|u|

2)u = |u|p−2u in RN.

Our hypotheses on V are:

(V1) V ∈ C(RN ,R) satisfies V (x)≥ 0 and lim inf|x |→∞ V (x) > 0;

(V2) � := int V−1(0) is nonempty, bounded, has smooth boundary, and�=V−1(0);

(V3) � consists of k components:

�=�1 ∪�2 ∪ · · · ∪�k,

and �i ∩� j =∅ for all i 6= j .

For the proof of the main theorem, we follow the idea of Y. Ding and K. Tanaka
[2003] to modify the nonlinearity and use the decay flow. We point out that,
although this idea has been used before to deal with other problems, it is not at all
trivial to adapt the procedure for our problem. The appearance of the quasilinear
term 1(|u|2)u forces us to consider our problem in an Orlicz space, and more
delicate estimates are also needed.
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To state the main results, we first introduce some necessary notation. We denote
λV (x) by Vλ(x). Formally, we define the functional Jλ by

(1-3) Jλ(u)= 1
2

∫
RN
(1+ u2)|∇u|2 dx + 1

2

∫
RN

Vλ(x)u2 dx − 1
p

∫
RN
|u|p dx,

where u∈ X := {u∈H 1(RN ) |
∫

RN Vλ(x)u2<∞}. Note that, under our assumptions,
the functional Jλ is not well defined on X . We make the following change of
variables, which was first used by Liu, Wang, and Wang [2003].

Let v = h(u) = 1
2 u
√

1+ u2 + 1
2 ln(u +

√
1+ u2), so dv =

√
1+ u2du. More-

over, h(u) satisfies

(1-4) h(u)∼
{

u if |u| � 1,
1
2 u|u| if |u| � 1.

Since h′(u) > 0, h(u) is strictly monotone and hence has an inverse function
denoted by u = f (v). Obviously,

(1-5) f (v)∼
{
v if |u| � 1,
√

2/|v|v if |v| � 1,
f ′(v)=

1√
1+ f 2(v)

.

Let G(v)= f 2(v). Then

(1-6) G(v)= f 2(v)∼

{
v2 if |v| � 1,
2|v| if |v| � 1,

and G(v) is convex, so there exists C0 > 0 such that G(2v)≤ C0G(v),

(1-7) G ′(v)=
2 f (v)√

1+ f 2(v)
, G ′′(v)=

2
(1+ f 2(v))2

> 0.

Now we introduce the Orlicz space (see [Rao and Ren 1991])

EλG =
{
v

∣∣∣ ∫
RN

VλG(v) <+∞
}

equipped with the norm

|v|λG := inf
ξ>0

ξ

(
1+

∫
RN

VλG(ξ−1v) dx
)
.

Then EλG is a Banach space (see [Liu et al. 2003]).
Let

Hλ
G :=

{
v ∈ EλG

∣∣∣ ∫
RN
|∇v|2 dx <∞

}
,

equipped with the norm
‖v‖λ = ‖∇v‖L2 + |v|λG .
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Using the change of variable, we define the functional 8λ on Hλ
G by

(1-8) 8λ(v)=
1
2

∫
RN
(|∇v|2+ Vλ f 2(v)) dx − 1

p

∫
RN
| f (v)|p dx .

Then8λ is Gâteaux differentiable, and the Gâteaux derivative8′λ(v) has the form

(1-9) 〈8′λ(v), w〉 =∫
RN
∇v∇w dx+

∫
RN

Vλ(x) f (v) f ′(v)w dx−
∫

RN
| f (v)|p−2 f (v) f ′(v)w dx .

Obviously, v ∈ Hλ
G is a critical point of 8λ if and only if v is a solution of the

following equation:

(1-10) −1v+ Vλ f (v) f ′(v)= | f (v)|p−2 f (v) f ′(v), x ∈ RN .

Moreover, one can easily check that v is solution of (1-10) if and only if u = f (v)
is a solution of (1-1).

We define the Nehari manifold Nλ by Nλ = {v ∈ Hλ
G \ {0} | 〈8

′

λ(v), v〉 = 0},
and let

cλ = inf
v∈Nλ

8λ(v).

We say that u = f (v) is a least energy solution of (1-1) if v ∈ Nλ is such that cλ
is achieved.

Note that under our assumptions, for λ large enough, the following Dirichlet
problem is a kind of limit problem:

(1-11)
{
−1u− 1

2(1|u|
2)u = |u|p−2u, u > 0 in �,

u = 0 in ∂�,

where �= int{V−1(0)}.
In fact, by a minor change of the arguments in Guo and Tang [2012], one can

easily see that under the conditions (V1), (V2), and 4< p < 2 · 2∗, for λ large, cλ is
achieved by a critical point vλ of 8λ such that uλ = f (vλ) is a solution of (1-1).
Furthermore, for any sequence λn→+∞, {vλn } has a subsequence converging to v
such that u = f (v) is a least energy solution of (1-11). Thus by assumption (V3),
there is �i0 (1≤ i0≤ k) such that u= f (v) is indeed a least energy solution defined
on �i0 and u = f (v)= 0 elsewhere. Thus it is natural to ask whether, for a given
j ∈ {1, 2, . . . , k}, (1-1) has a family of solutions {uλ} which converges to a least
energy solution in � j and to 0 elsewhere. In this paper, we answer this question in
the affirmative. Moreover, we can also construct multi-bump type solutions.

Our main results are:
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Theorem 1.1. Suppose (V1)–(V3) hold. Then for any ε > 0 and any nonempty
subset J of {1, 2, . . . , k}, there exists 3=3(ε) > 0 such that, for λ≥3, (1-1) has
a solution uλ such that vλ = h(uλ) satisfies∣∣∣8λ(vλ)−∑

j∈J

c(� j )

∣∣∣≤ ε,(1-12)

∫
RN \�J

(|∇vλ|
2
+ Vλ f 2(vλ)) dx ≤ ε,(1-13)

where �J =
⋃

j∈J � j . Moreover, for any sequence λn →∞, we can extract a
subsequence {λni } such that vλni

converges strongly in H 1
G to a function v that

satisfies v(x)= 0 for x 6∈�J , and u = f (v)|� j is a least energy solution of

(1-14)
{
−1u− 1

2(1|u|
2)u = |u|p−2u, u > 0 in � j ,

u = 0 in ∂� j ,

for j ∈ J . Here c(� j ) in (1-12) is the least energy of (1-14).

Corollary 1.2. Under the same assumptions as in Theorem 1.1, there exists 3> 0
such that for λ > 3, (1-1) has at least 2k

− 1 bound states.

The paper is organized as follows. In Section 2, we give some estimates in Orlicz
space. In Section 3, we modify the functional by penalizing the nonlinearity. In
Section 4, we consider compactness for the modified functional. In Section 5, we
give some asymptotic properties for some sequences and prove that, for λ large, the
critical points of the modified functional are indeed critical points of the original
one. Section 6 is devoted to the properties of the limit problem. In Section 7, we
give a minimax argument. In Section 8, we prove the existence of critical points by
a flow argument; the proofs of the main results are also delivered in this section.

In the following, without specific notification, all the integral variables are x ,
and for simplicity we omit dx in every integral.

2. Some estimates in the Orlicz space

We begin with a precise estimate between the Orlicz norm and some integrals in
Orlicz space Hλ

G , namely:

Lemma 2.1 [Guo and Tang 2012]. There exist constants C1,C2 > 0 such that, for
any v ∈ Hλ

G ,

(2-1) C1 min{‖v‖λ, ‖v‖2λ} ≤
∫

RN
|∇v|2+

∫
RN

Vλ f 2(v)≤ C2 max{‖v‖λ, ‖v‖2λ}.

Let �′j (1 ≤ j ≤ k) be bounded open subsets with smooth boundary such that
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�′i and �′j are disjoint if i 6= j and that � j ⊂ �
′

j for all j . Let K be one of the
following sets:

(2-2) RN , �′j ( j = 1, 2, . . . , k), or RN
\

⋃
j∈J

�′j (J ⊂ {1, 2, . . . , k}).

Lemma 2.2. There exist δ0 > 0, ν0 > 0 such that, for λ≥ 1,

(2-3) δ0

∫
K

(
|∇v|2+ Vλ f 2(v)

)
≤

∫
K

(
|∇v|2+ Vλ f 2(v)

)
− ν0

∫
K

f 2(v).

Proof. We follow similar arguments as in the proof of Proposition 3.1 in [Tang
2008], but with necessary modifications. We omit it. �

3. Penalization of the functional

To proceed, we introduce the cut-off function l(t) : R→ R defined by

l(t)=
{

min{t (p−2)/2, ν0} for t ≥ 0,
0 for t < 0,

where ν0 is as in Lemma 2.2. For a fixed nonempty subset J ⊂ {1, 2, . . . , k}, set

�J =
⋃
j∈J

� j , �′J =
⋃
j∈J

�′j , χ�′J (x)=
{

1 for x ∈�′J ,
0 for x 6∈�′J ,

and

w(x, ξ 2)= χ�′J (x)ξ
p−2
+ (1−χ�′J (x))l(ξ

2),

W (x, ξ 2)=

∫ ξ2

0
w(x, t) dt.

We define 9λ : Hλ
G→ R by

9λ(v)=
1
2

∫
RN

(
|∇v|2+ Vλ f 2(v)

)
−

1
2

∫
RN

W (x, f 2(v)).

Then one can check that 9λ ∈ C2(Hλ
G,R) and that its critical points are solu-

tions of

−1v+ Vλ f (v) f ′(v)= w(x, f 2(v)) f (v) f ′(v) in RN .

Note that l(t) = t (p−2)/2 for t ∈
[
0, ν2/(p−2)

0

]
, hence a critical point v of 9λ is a

solution of (1-10) if and only if | f (v)|2 ≤ ν2/(p−2)
0 in RN

\�′J .
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4. Compactness of the modified functional

Proposition 4.1. For λ≥ 1, 9λ satisfies the (PS)c condition for all c ∈ R. That is,
any sequence {vn} ⊂ Hλ

G satisfying

9λ(vn)→ c,(4-1)

9 ′λ(vn)→ 0 strongly in (Hλ
G)
∗,(4-2)

has a strongly convergent subsequence in Hλ
G , where (Hλ

G)
∗ is the dual space of Hλ

G .

To prove Proposition 4.1, we require the following lemma:

Lemma 4.2. Suppose that {vn} ⊂ Hλ
G is a (PS)c sequence. Then there exist two

positive constants, m(c) and M(c), which are independent of λ≥ 1, such that

m(c)≤ lim inf
n→∞

‖vn‖
2
λ ≤ lim sup

n→∞
‖vn‖

2
λ ≤ M(c).

Proof. Let wn = f (vn)/ f ′(vn). It follows from (4-1) and (4-2) that

9λ(vn)−
1
p
9 ′λ(vn)wn = c+ o(1)+ εn‖wn‖λ,

where εn→ 0 as n→∞. Thus∫
RN

(1
2
−

1
p

(
1+

f 2(vn)

1+ f 2(vn)

))
|∇vn|

2
+

(1
2
−

1
p

) ∫
RN

Vλ f 2(vn)

−
1
2

∫
RN

W (x, f 2(vn))+
1
p

∫
RN
w(x, f 2(vn)) f 2(vn)

= c+ o(1)+ εn‖un‖λ.

Let L(t)=
∫ t

0 l(t) dt ; we have

1
2

∫
RN

W (x, f 2(vn))−
1
p

∫
RN
w(x, f 2(vn)) f 2(vn)

=

∫
RN \�′J

(1
2

L( f 2(vn))−
1
p

l( f 2(vn)) f 2(vn)
)
.

Note that for t ∈
[
ν

2/(p−2)
0 ,∞

)
,

1
2

L(t2)−
1
p

l(t2)t2
=

1
2

(
ν0t2
−

p− 2
p

ν
p/(p−2)
0

)
−

1
p

t2

=

(1
2
−

1
p

)(
ν0t2
− ν

p/(p−2)
0

)
≤

(1
2
−

1
p

)
ν0t2,

and for t ≤ ν2/(p−2)
0 ,

1
2

L(t2)−
1
p

l(t2)t2
= 0.
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We obtain that(1
2
−

2
p

) ∫
RN
|∇vn|

2
+

(1
2
−

1
p

) ∫
RN

Vλ f 2(vn)−
(1

2
−

1
p

)
ν0

∫
RN

f 2(vn)

≤ c+ o(1)+ εn‖vn‖λ.

Since 4< p < 4N/(N − 2), we have∫
RN
|∇vn|

2
+

∫
RN

Vλ f 2(vn)− ν0

∫
RN

f 2(vn)≤
( p− 4

2p

)−1
c+ o(1)+ o(‖vn‖λ).

By Lemma 2.2, we get

δ0

∫
RN

(
|∇vn|

2 dx + Vλ f 2(vn)
)
≤

( p− 4
2p

)−1
c+ o(1)+ εn‖vn‖λ.

It follows from Lemma 2.1 that

C1 min{‖vn‖λ, ‖vn‖
2
λ} ≤ δ

−1
0

( p− 4
2p

)−1
c+ o(1)+ o(‖vn‖λ).

Thus ‖vn‖λ is bounded as n→∞, and

lim sup
n→∞

‖vn‖λ ≤ M(c) :=max
{(1

2
−

1
p

)−1
δ−1

0 c,

√(1
2
−

1
p

)−1
δ−1

0 c
}
.

On the other hand, since

1
2

L(t2)−
1
p

l(t2)t2
≥ 0 for all t ∈ R,

we have
c+ o(1)+ εn‖wn‖λ ≤

(1
2
−

1
p

)
C2 max{‖vn‖λ, ‖vn‖

2
λ}.

Therefore

lim inf
n→∞

‖vn‖
2
λ ≥ m(c) :=min

{(1
2
−

1
p

)−1
C−1

2 c,

√(1
2
−

1
p

)−1
C−1

2 c
}
.

This completes the proof of Lemma 4.2. �

Proof of Proposition 4.1. By Lemma 4.2, we know that {vn} is bounded in Hλ
G and

thus is bounded in D1,2(RN ) and L p(RN ), so there exists a subsequence of {vn}

(still denoted by {vn}) such that:

∇vn ⇀ ∇v weakly in L2(RN ),

vn→ v a.e. in RN ,

f (vn) ⇀ f (v) weakly in Lq(RN ) for 2≤ q ≤ 2 · 2∗,

f (vn)→ f (v) strongly in L p
loc(R

N ).
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Moreover, by Proposition 2.8 of [Guo and Tang 2012], v is a critical point of 9λ,
that is, for any ψ ∈ Hλ

G ,∫
RN

(
∇v∇ψ + Vλ f (v) f ′(v)ψ

)
=

∫
RN
w(x, f 2(v)) f (v) f ′(v)ψ.

Next we show that vn → v strongly in Hλ
G . Indeed, it follows from (4-1) and

(4-2) that

o(1)= (9 ′λ(vn)−9
′

λ(v))

(
f (vn)

f ′(vn)
−

f (v)
f ′(v)

)
=9 ′λ(vn)

f (vn)

f ′(vn)
−9 ′λ(vn)

f (v)
f ′(v)

−9 ′λ(v)
f (vn)

f ′(vn)
−9 ′λ(v)

f (v)
f ′(v)

=

∫
RN

(
1+

f 2(vn)

1+ f 2(vn)

)
|∇vn|

2
+

∫
RN

Vλ f 2(vn)−

∫
RN
w(x, f 2(vn)) f 2(vn)

−

∫
RN

(
1+

f 2(v)

1+ f 2(v)

)
∇vn∇v−

∫
RN

Vλ
f (vn)√

1+ f 2(vn)
f (v)

√
1+ f 2(v)

+

∫
RN
w(x, f 2(vn)) f (vn) f ′(vn)

f (v)
f ′(v)

−

∫
RN

(
1+

f 2(vn)

1+ f 2(vn)

)
∇vn∇v

−

∫
RN

Vλ
f (v)√

1+ f 2(v)
f (vn)

√
1+ f 2(vn)

+

∫
RN
w(x, f 2(v)) f (v) f ′(v)

f (vn)

f ′(vn)

+

∫
RN

(
1+

f 2(v)

1+ f 2(v)

)
|∇v|2+

∫
RN

Vλ f 2(v)−

∫
RN
w(x, f 2(v)) f 2(v)

=

∫
RN

(
1+

f 2(vn)

1+ f 2(vn)

)
(∇vn −∇v)

2

+

∫
RN

(
f 2(vn)

1+ f 2(vn)
−

f 2(v)

1+ f 2(v)

)
∇v(∇vn −∇v) (I)

+

∫
RN

Vλ

(
f 2(vn)−

f (v)√
1+ f 2(v)

f (vn)
√

1+ f 2(vn)

)
(II)

+

∫
RN

Vλ

(
f 2(v)−

f (vn)√
1+ f 2(vn)

f (v)
√

1+ f 2(v)

)
(III)

+

∫
RN
w(x, f 2(vn))

(
f (vn) f ′(vn)

f (v)
f ′(v)

− f 2(vn)

)
(IV)

+

∫
RN
w(x, f 2(v))

(
f (v) f ′(v)

f (vn)

f ′(vn)
− f 2(v)

)
(V)

=:

∫
RN

(
1+

f 2(vn)

1+ f 2(vn)

)
(∇vn −∇v)

2
+ I+ II+ III+ IV+V.
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In the following we shall estimate the above terms one by one. First of all, note
that since ∇vn ⇀ ∇v weakly in L2(RN ) and

f 2(vn)

1+ f 2(vn)
−

f 2(v)

1+ f 2(v)

is bounded, we have I= o(1) as n→∞. Moreover,

II+ III=
∫

RN
Vλ

(
f 2(vn)−

f (v)√
1+ f 2(v)

f (vn)
√

1+ f 2(vn)

)
+

∫
RN

Vλ

(
f 2(v)−

f (vn)√
1+ f 2(vn)

f (v)
√

1+ f 2(v)

)
=

∫
RN

Vλ f (vn)( f (vn)− f (v))+ Vλ f (vn) f (v)
(

1−

√
1+ f 2(vn)√
1+ f 2(v)

)
+

∫
RN

Vλ f (v)( f (v)− f (vn))+ Vλ f (v) f (vn)

(
1−

√
1+ f 2(v)√
1+ f 2(vn)

)
=

∫
RN

Vλ( f (vn)− f (v))2

+

∫
RN

Vλ
f (vn) f (v)√

1+ f 2(v)
(√

1+ f 2(vn)+
√

1+ f 2(v)
)( f 2(v)− f 2(vn))

+

∫
RN

Vλ
f (v) f (vn)√

1+ f 2(vn)
(√

1+ f 2(vn)+
√

1+ f 2(v)
)( f 2(vn)− f 2(v))

=

∫
RN

Vλ( f (vn)− f (v))2+ o(1) as n→∞.

In the last equality, we use the facts that f 2(vn) ⇀ f 2(v) weakly and that the
two terms

f (v) f (vn)√
1+ f 2(v)

(√
1+ f 2(vn)+

√
1+ f 2(v)

)
and

f (v) f (vn)√
1+ f 2(vn)

(√
1+ f 2(vn)+

√
1+ f 2(v)

)
are bounded. For the last two terms, we have

IV+V=
∫

RN
w(x, f 2(vn)) f (vn)

(
f (vn)

f ′(v)
f (v)− f (vn)

)
+

∫
RN
w(x, f 2(v)) f (v)

(
f (v)

f ′(vn)
f (vn)− f (v)

)
=

∫
�′J

| f (vn)|
p−2 f (vn)

(
f ′(vn)

f ′(v)
f (v)− f (vn)

)
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+

∫
RN \�′J

l( f 2(vn)) f (vn)

(
f (v′n)
f ′(v)

f (v)− f (vn)

)

+

∫
�′J

| f (v)|p−2 f (v)
(

f ′(v)
f ′(vn)

f (vn)− f (v)
)

+

∫
RN \�′J

l( f 2(v)) f (v)
(

f ′(v)
f ′(vn)

f (vn)− f (v)
)

=

∫
�′J

( f (vn)− f (v))( f p−1(v)− f p−1(vn))

+

∫
�′J

| f (vn)|
p−2 f (vn)

(
f ′(vn)

f ′(v)
− 1

)
f (v) (I1)

+

∫
�′J

| f (v)|p−2 f (v)
(

f ′(v)
f ′(vn)

− 1
)

f (vn) (I2)

+

∫
RN \�′J

l( f 2(vn)) f (vn)

(
f (v′n)
f ′(v)

f (v)− f (vn)

)
(I3)

+

∫
RN \�′J

l( f 2(v)) f (v)
(

f ′(v)
f ′(vn)

f (vn)− f (v)
)

(I4)

=

∫
�′J

( f (vn)− f (v))( f p−1(v)− f p−1(vn))+ I1+ I2+ I3+ I4,

where

I1 =

∫
�′J

| f (vn)|
p−2 f (vn)

(
f ′(vn)

f ′(v)
− 1

)
f (v)

=

∫
�′J

| f (vn)|
p−2 f (vn)

√
1+ f 2(v)−

√
1+ f 2(vn)√

1+ f 2(vn)
f (v)

=

∫
�′J

| f (vn)|
p−2 f (v)( f (v)− f (vn))

f (vn)( f (v)+ f (vn))√
1+ f 2(vn)

(√
1+ f 2(v)+

√
1+ f 2(vn)

)
≤ C

(∫
�′J

f p(vn)

)(p−2/p)(∫
�′J

f p(v)

)1/p(∫
�′J

( f (v)− f (vn))
p
)1/p

= o(1) as n→∞ (since f (vn)→ f (v) strongly in L p
loc(R

N )).

Similarly, we have I2 = o(1) as n→∞.
As for I3+ I4, we have

I3+ I4 =

∫
RN \�′J

l( f 2(vn)) f (vn)

(
f (v′n)
f ′(v)

f (v)− f (vn)

)
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+

∫
RN \�′J

l( f 2(v)) f (v)
(

f ′(v)
f ′(vn)

f (vn)− f (v)
)

=

∫
RN \�′J

l( f 2(vn)) f (vn)( f (v)− f (vn))

+

∫
RN \�′J

l( f 2(v)) f (v)( f (vn)− f (v))

+

∫
RN \�′J

l( f 2(vn)) f (vn)

(
f ′(vn)

f ′(v)
− 1

)
f (v)

+

∫
RN \�′J

l( f 2(v)) f (v)
(

f ′(v)
f ′(vn)

− 1
)

f (vn).

For the same reasons that we used in the above estimates for I1, we can see that the
last two terms in the above equalities go to zero as n goes to infinity.

Thus

I3+ I4 =

∫
RN \�′J

l( f 2(vn)) f (vn)( f (v)− f (vn))

+

∫
RN \�′J

l( f 2(v)) f (v)( f (vn)− f (v))+ o(1)

=

∫
RN \�′J

(l( f 2(vn))− l( f 2(v))) f (v)( f (v)− f (vn))

−

∫
RN \�′J

l( f 2(vn))( f (v)− f (vn))
2
+ o(1).

On the other hand, since f (vn)→ f (v) strongly in L p
loc(R

N ), f (vn)⇀ f (v)weakly
in Lq(RN ) for 2≤ q ≤ 2 · 2∗, and l(t)≤ ν0 for all t ≥ 0, we have∫

�′J

( f (vn)− f (v))( f p−1(v)− f p−1(vn))= o(1)

and ∫
RN \�′J

(l( f 2(vn))− l( f 2(v))) f (v)( f (v)− f (vn))= o(1).

At last, we obtain the following estimate:

o(1)=
∫

RN

(
1+

f 2(vn)

1+ f 2(vn)

)
|∇vn −∇v|

2

+

∫
RN

Vλ( f (v)− f (vn))
2
−

∫
RN \�′J

l( f 2(vn))( f (v)− f (vn))
2.

On the other hand, we can write
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RN
|∇( f (v)− f (vn))|

2

=

∫
RN

∣∣∣∣ ∇v√
1+ f 2(v)

−
∇vn√

1+ f 2(vn)

∣∣∣∣2
=

∫
RN

1√
1+ f 2(vn)

∣∣∣∣∇vn −∇v+

(
1−

√
1+ f 2(vn)√
1+ f 2(v)

)
∇v

∣∣∣∣2
=

∫
RN

|∇v−∇vn|
2√

1+ f 2(vn)
+2

∫
RN

1√
1+ f 2(vn)

(
1−

√
1+ f 2(vn)√
1+ f 2(v)

)
∇v(∇v−∇vn)

+

∫
RN

1√
1+ f 2(vn)

(
1−

√
1+ f 2(vn)√
1+ f 2(v)

)2

|∇v|2.

We claim that both of the last two terms in the above last equality are o(1) as
n→∞. In fact, the first term goes to zero because ∇vn ⇀ ∇v, while the second
term goes to zero by the dominated convergence theorem.

Thus we have ∫
RN
|∇( f (v)− f (vn))|

2
≤

∫
RN
|∇v−∇vn|

2

by Lemma 2.2 and the definition of l(t), so we get

δ0

∫
RN

(
|∇( f (v)− f (vn))|

2
+ Vλ( f (v)− f (vn))

2)
<

∫
RN

(
1+

f 2(vn)

1+ f 2(vn)

)
|∇vn −∇v|

2
+

∫
RN

Vλ( f (v)− f (vn))
2

−ν0

∫
RN \�′J

( f (v)− f (vn))
2
= o(1).

Obviously,
∫

RN Vλ
(

f (vn)− f (v)
)2
→ 0 as n→∞. Hence∫

RN
Vλ( f 2(vn)− f 2(v))=

∫
RN
( f (vn)− f (v))( f (vn)+ f (v))

≤ C
(∫

RN
Vλ( f (vn)− f (v))2

)1/2

for some constant C . By Proposition 2.1(3) of [Liu et al. 2003], we have vn→ v

strongly in Hλ
G . This completes the proof of Proposition 4.1. �

5. Some asymptotic behavior

We denote by H 0,1
G (� j ) the closure of C∞0 (�) under the norm of H 1

G(�).
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Proposition 5.1. Assume that the sequences {vn} ⊂ H 1
G and {λn} ⊂ [0,∞) satisfy

λn→∞,(5-1)

9λn (vn)→ c,(5-2)

‖9 ′λn
(vn)‖

∗

λn
→ 0.(5-3)

Then there exists a subsequence of {vn} (still denoted by {vn}) such that

vn ⇀v weakly in H 1
G

for some v ∈ H 1
G . Moreover, we have:

(i) v ≡ 0 in RN
\�J , and v is a solution of

(5-4)
{
−1v = | f (v)|p−2 f (v) f ′(v), in � j ,

v ∈ H 0,1
G (� j ) for j ∈ J.

(ii) vn converges to v in a stronger sense, namely

vn→ v strongly in H 1
G as λn→∞.

(iii) The functions {vn} satisfy:∫
RN

Vλn f 2(vn)→ 0,

9λ(vn)→
∑
j∈J

I� j (v),

‖vn‖λn,RN \�′J
→ 0,

‖vn‖λn,�
′

j
→

∫
� j

|∇v|2 for j ∈ J, as n→∞.

Proof. By arguments similar to those used in the proof of Lemma 4.2, we have

m(c)≤ lim inf
n→∞

‖vn‖
2
λn
≤ lim sup

n→∞
‖vn‖

2
λn
≤ M(c).

Thus {vn} is bounded in H 1
G . Hence there is a subsequence of {vn} (still denoted

by {vn}) such that:

∇vn ⇀ ∇v weakly in L2(RN ),

vn ⇀v weakly in Lq(RN ) for 2≤ q ≤ 2 · 2∗,

vn→ v a.e. in RN ,

f (vn)→ f (v) strongly in Lq
loc(R

N ) for 2≤ q < 2 · 2∗,

f (vn) ⇀ f (v) weakly in Lq(RN ) for 2≤ q ≤ 2 · 2∗.
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(i) Let Cm := {x ∈ RN
| V (x)≥ 1/m}. Then for n large, we have∫

Cm

f 2(vn)≤
m
λn

∫
RN
λnV f 2(vn)≤

m
λn

∫
RN
(Vλn f 2(vn)+ |∇vn|

2)

≤
m
λn

C max{‖vn‖λn , ‖vn‖
2
λn
} → 0 as λn→∞.

Thus

0≤
∫

Cm

f 2(v)≤ lim
n→∞

∫
Cm

f 2(vn)= 0.

Hence f (v) = 0 on
⋃
∞

m=1 Cm = RN
\ �̄. Note that 9 ′λn

(vn)→ 0 as λn→∞, so
we have

o(1)=9 ′λn
(vn) ·

f (v)
f ′(v)

=

∫
� j

(
1+

f 2(v)

1+ f 2(v)

)
∇vn∇v−

∫
� j

w(x, f 2(vn)) f (vn) f ′(vn)
f (v)
f ′(v)

=

∫
� j

(
1+

f 2(v)

1+ f 2(v)

)
|∇v|2−

∫
� j

w(x, f 2(v)) f 2(v)+ o(1);

here we use the fact that f (vn)→ f (v) strongly in Lq
loc(R

N ).
On the other hand, by Lemma 2.2, we have

δ0‖v‖λn ≤

∫
� j

(|∇v|2− ν0 f 2(v))

≤

∫
� j

(
1+

f 2(v)

1+ f 2(v)

)
|∇v|2−

∫
� j

w(x, f 2(v)) f 2(v)= 0

Note that ‖v‖λn indeed does not dependent on λn . We have that v ≡ 0 in � j for
j ∈ {1, 2, . . . , k} \ J , and this completes the proof of part (i).

(ii) Indeed, by a similar argument as in the proof of Proposition 4.1, for n large,
we have

o(1)=
∫

RN
|∇vn −∇v|

2
+

∫
RN

Vλn ( f (vn)− f (v))2− ν0

∫
RN \�J

( f (v)− f (vn))
2

≥ δ0

(∫
RN
|∇vn −∇v|

2
+

∫
RN

Vλn ( f (vn)− f (v))2
)

≥ δ0 C min
{
‖vn − v‖Hλn

G
, ‖vn − v‖

2
Hλn

G

}
.

Hence ‖vn − v‖H1
G
→ 0 as n→∞. This completes the proof of part (ii).
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(iii) This is a direct consequence of parts (i) and (ii). In fact, from (ii) and (i), one
can see that

1
2

∫
RN

Vλn f 2(vn)=
1
2

∫
RN \� j

Vλn f 2(vn)

=

∫
RN \� j

Vλn f 2(vn)( f (vn)− f (v))2→ 0 as n→∞.

Thus we have

lim
n→∞

1
2

∫
RN \� j

Vλn f 2(vn)=
1
2

∫
RN \� j

Vλn f 2(v)= 0.

Obviously, we get

9λn (vn)=
1
2

∫
RN
|∇vn|

2
+ Vλn f 2(vn)−

1
p

∫
RN

W (x, f 2(vn))→
∑
j∈J

I� j (v),

where I� j (v)=
1
2

∫
� j
|∇v|2− (1/p)

∫
� j
| f (v)|p. Furthermore,

lim
n→∞
‖ f 2(vn)‖Hλn

G (RN \�′J )
= 0,

lim
n→∞
‖∇vn‖ =

∫
� j

|∇v|2 for j ∈ J.

This completes the proof of Proposition 5.1. �

Proposition 5.2. There exist constants M > 0,30 > 0 such that if vλ is a critical
point of 9λ for λ≥30, then | f (vλ)|2 ≤ ν

2/(p−2)
0 and 9λ(v)≤ M. In particular, vλ

solves the problem (1-10).

Proof. Let Br (x)={y ∈RN
| |x− y|< r}. Since vλ is a critical point of9λ, we have

−1vλ+ Vλ f (vλ) f ′(vλ)

= χ(� j )| f (vλ)|p−1 f ′(vλ)+ (1−χ(� j ))l(x, f 2(vλ)) f (vλ) f ′(vλ).

That is,

−1vλ+
(
Vλ−χ(� j )| f (vλ)|p−12

− (1−χ(� j ))l(x, f 2(vλ))
) f (vλ) f ′(vλ)

vλ
vλ = 0.

Let

V0 =
(
Vλ−χ(� j )| f (vλ)|p−12

− (1−χ(� j ))l(x, f 2(vλ))
) f (vλ) f ′(vλ)

vλ
.

Then our assumptions on V imply that V0 belongs to K loc
N , the local Kato class,
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and thus |vλ(x)|L∞ is bounded (see Theorem C1.2 of [Simon 1982]). It follows
from Theorem 8.17 of [Gilbarg and Trudinger 1983] that

|vλ(x)| ≤ C
∫

B(x,r)
|vλ(y)|p dy.

By Proposition 5.1, we see that for any sequence λn →∞, we can extract a
subsequence of {λn} (still denoted by {λn}) such that vλn→ v ∈ H 1

0 (� j ) strongly in
L2(RN

\� j ). Since the sequence {λn} can be chosen arbitrarily, we conclude that

vλ→ v ∈ H 1
0 (� j ) strongly as λ→∞.

Now choose r ∈ (0, dist(�J ,RN
\�′J )); we have, uniformly in x ∈ RN

\�′J , that

|vλ(x)| ≤ C(r)
∫

Br (x)
|vλ(x)|p

≤ C(r)(meas Br (x))1−q/2∗
(∫

B(x,r)
|vλ(x)|2

∗

)p/2∗

≤ C(r)(meas Br (x))1−q/2∗
(∫

B(x,r)
|∇vλ(x)|2

)p/2

≤ C(r)
((∫

RN \�′J

|∇vλ|
2
)1/2

+ Vλ f 2(vλ)

)
≤ C max{‖vλ‖, ‖vλ‖1/2}

→ 0 uniformly in x ∈ RN
\�′J ,

which implies that f (|vλ|)→ 0 uniformly in x ∈ RN
\�′J . This completes the

proof of Proposition 5.2. �

Remark 5.3. The critical points of 9λ are not necessarily positive. In fact, if we
replace the function v by its positive part v+ in the nonlinearity term W (x, f 2(v))

of 9λ, and the new functional is denoted by 9+λ , then by arguments similar to those
above, one can see that the new functional 9+λ still satisfies properties analogous to
all those proved for 9λ in previous sections. As a consequence, the critical points
of 9+ are positive. In the following, for convenience we only consider 9λ instead
of 9+λ .

Remark 5.4. Proposition 4.1 shows that 9λ satisfies the Palais–Smale condition.
We can easily check that 9λ has mountain pass geometry. Hence, a mountain pass
argument shows that, for each λ > 0, 9λ admits a nontrivial critical point uλ. In
fact, 9λ(uλ)≤maxt>0 I� j (tω j ) (see Section 6 for the definition of I� j and ω j ) and
thus 9λ(uλ) ≤ M , where M is independent of λ. As a result, by Proposition 5.2,
we deduce the existence of a positive solution to (1-10) and thus a positive solution
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to the original problem (1-1) for λ > 3. However, it is not clear whether such
solutions concentrate on the set �J . The aim of the following parts of the paper is
to focus on the solutions with such properties.

6. Limit problem

For j ∈ J we define the following two functionals:

I� j (v)=
1
2

∫
� j

|∇v|2−
1
p

∫
� j

| f (v)|p for v ∈ H 1,0
G (� j ),

and

(6-1) 9λ,�′j (u)=
1
2

∫
�′j

(|∇v|2+ Vλ f 2(v))−
1
p

∫
�′j

| f (v)|p for v ∈ H 1
G(�

′

j ).

By Lemma 2.2 of [Guo and Tang 2012] and the following inequality

‖ f (v)‖L p ≤ ‖ f (v)‖θ2‖ f (v)‖1−θ
L2·2∗ for 0< θ < 1,

following a standard argument (see [Tang 2008]), one can see that both I� j and9�′j
satisfy the mountain pass geometry conditions. That is:

(i) I� j (0)=9λ,�′j (0)= 0.

(ii) There exist ρ0 > 0 and ρ1 > 0, independent of λ≥ 0, such that

(6-2)
‖v‖H1,0

G (� j )
≤ ρ0 =⇒ I� j (v)≥ 0,

‖v‖H1,0
G (� j )

= ρ0 =⇒ I� j (v)≥ ρ1,

and

(6-3)
‖v‖H1

G(�
′

j )
≤ ρ0 =⇒9λ,�′j (v)≥ 0,

‖v‖H1
G(�

′

j )
= ρ0 =⇒9λ,�′j (v)≥ ρ1.

Here we use the notation

‖v‖H1,0
G (� j )

=

∫
� j

|∇v|2 for v ∈ H 0,1
G (� j ).

(iii) There exists ψ j ∈ C∞0 (� j ) such that

‖ψ j (x)‖Hλ
G(� j )

= ‖ψ j (x)‖Hλ,0
G (� j )

≥ ρ1,

9λ,�′j (ψ j )= I� j (ψ j ) < 0.

We define

(6-4) c j = inf
γ∈0 j

max
t∈[0,1]

I� j (γ (t)),

cλ, j = inf
γ∈0λ, j

max
t∈[0,1]

9λ,�′j (γ (t)),
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where

0 j = {γ ∈ C([0, 1], H 0,1
G (� j )) | γ (0)= 0, I� j (γ (1)) < 0},

0λ, j = {γ ∈ C([0, 1], H 1
G(�

′

j )) | γ (0)= 0, 9λ,�′j (γ (1)) < 0}.

By Proposition 2.3 and Lemma 2.2 of [Guo and Tang 2012], it is standard to verify
that 8λ,�′j and I� j satisfy the Palais–Smale condition and that c j , cλ, j are achieved
by critical points. We denote the corresponding critical points by ω j and ωλ, j

respectively.

Lemma 6.1. (i) 0< ρ1 ≤ cλ, j ≤ c j for all λ≥ 0.

(ii) c j and cλ, j are least energy levels for I� j and 8λ,�′j , respectively, i.e.,

c j = inf{I� j (v) | v ∈ H 0,1
G (� j ) \ {0} is a critical point of I� j },

cλ, j = inf{9λ,�′j (v) | v ∈ H 1
G(�

′

j ) \ {0} is a critical point of 9λ,�′j }.

(iii) c j =maxr>0 I� j (rω j ), cλ, j =maxr>08λ,�′j (rωλ, j ).

(iv) cλ, j → c j as λ→∞.

Proof. By (6-3), it is easy to see that cλ, j ≥ ρ1. On the other hand, for any
v ∈ H 0,1

G (� j ), we may extend v to ṽ ∈ H 1
G(�

′

j ) by

ṽ(x)=
{
v(x) if x ∈� j ,

0 if x ∈�′j \ �̄ j ,

so we may regard H 0,1
G (� j )⊂ H 1

G(�
′

j ). Thus we have 0 j ⊂ 0λ, j and

(6-5)

cλ, j = inf
γ∈0λ, j

max
t∈[0,1]

9λ,�′j (γ (t))

≤ inf
γ∈0 j

max
t∈[0,1]

9λ,�′j (γ (t))

= inf
γ∈0 j

max
t∈[0,1]

I� j (γ (t))= c j .

This proves (i).
Note that, since f (v) is monotone with respect to v, and so is | f (v)|p with

respect to | f (v)|, the proofs of (ii) and (iii) are standard; see [Tang 2008].
Now we prove (iv). Using Proposition 5.1, we may extract a subsequence

λn→∞ such that
ωλn, j → v0 strongly in H 1

G(�
′

j ),

where v0 ∈ H 0,1
G (� j ) is a solution of (5-4) and

9λn,�
′

j
(ωλn, j )→ I� j (v0).
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By the definition of c j , we have

lim sup
λ→∞

cλ, j = lim sup
λ→∞

9λ,�′j (ωλ, j )≥ I� j (u0)≥ c j .

Comparing with (6-5), we get (iv). This completes the proof of Lemma 6.1. �

7. Minimax arguments

Now we give a minimax argument for 8λ (see (1-8)).
We choose R ≥ 2 such that

(7-1) I� j (Rω j ) < 0.

Without loss of generality, we assume that J = {1, 2, . . . , l} (l ≤ k). Set

γ0(s1, s2, . . . , sl)=

l∑
j=1

s j Rω j for (s1, s2, . . . , sl) ∈ [0, 1]l,(7-2)

0J =

{
γ ∈ C([0, 1]l, H 1

G)

∣∣∣ γ (s1, s2, . . . , sl)= γ0(s1, s2, . . . , sl)

for (s1, s2, . . . , sl) ∈ ∂([0, l]l)

}
.

We define
bλ,J = inf

γ∈0J
max

(s1,s2,...,sl )∈∂([0,1]l )
8λ(γ (s1, s2, . . . , sl)).

Note that the projection t 7→ t Rω j belongs to 0 j and satisfies

max
t∈[0,1]

I� j (t Rω j )= c j

for any j ∈ J . Hence γ0 ∈ 0J , 0J 6= ∅, and bλ,J is well defined. We denote
cJ =

∑l
j=1 c j . Then we have:

Lemma 7.1. (i)
∑l

j=1 cλ, j ≤ bλ,J ≤ cJ for all λ≥ 0.

(ii) 9λ(γ (s1, s2, . . . , sl)) ≤ cJ − ρ1 for all λ ≥ 0, γ ∈ 0J and (s1, s2, . . . , sl) ∈

∂([0, 1]l), where ρ1 is given in (6-2), (6-3).

Proof. For any given γ ∈ 0J , let

T j (s1, . . . , sl)

=

∫
�′j
| f (γ (s1, . . . , sl))|

p−1 f ′(γ (s1, . . . , sl))γ (s1, . . . , sl)∫
�′j
|∇γ (s1, . . . , sl)|2+ Vλ f (γ (s1, . . . , sl)) f ′(γ (s1, . . . , sl))γ (s1, . . . , sl)

for j = 1, 2, . . . , l.
We define a map T : [0, 1]l→ Rl by

T( · )= (T1( · ), . . . , Tl( · )).
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Thus for (s1, s2, . . . , sl) ∈ ∂([0, 1]l), we have

T(s1, . . . , sl)=(∫
�′1
| f (s1 Rω1)|

p−1 f ′(s1 Rω1)s1 Rω1∫
�′1
|∇(s1 Rω1)|2+Vλ f (s1 Rω1)s1 Rω1

, . . . ,

∫
�′l
| f (sl Rωl)|

p−1 f ′(sl Rωl)sl Rωl∫
�′l
|∇(sl Rωl)|2+Vλ f (sl Rωl)sl Rωl

)
.

To proceed, we consider the function ρ defined by

ρ(α)=

∫
� j
| f (αv)|p−1 f ′(αv)αv

α2
∫
� j
|∇v|2+

∫
� j

Vλ f (αv) f ′(αv)αv
=

ρ1(α)∫
� j
|∇v|2+ ρ2(α)

,

where

ρ1(α)=

∫
� j

f (αv)| f (αv)|p−1v

α
√

1+ f 2(αv)
, ρ2(α)=

∫
� j

Vλ
f (αv)v

α
√

1+ f 2(αv)
.

By the proof of Lemma 3.2 of [Guo and Tang 2012], we see that ρ1 is monotone
increasing and ρ2 is monotone decreasing; as a result, we see that ρ is monotone
with respect to α. On the other hand, we note that I� j (Rω j ) < 0, j = 1, 2, . . . , l,
for the same reason as in the proof of Lemma 4.2 of [Tang 2008], so we obtain

deg(T, [0, 1]l, (1, 1, . . . , 1))= 1.

Hence there exists (s1, s2, . . . , sl) ∈ [0, 1]l such that

(7-3) T j (s1, s2, . . . , sl)= 1 for j = 1, 2, . . . , l.

Now we prove (i).
Since γ0 ∈ 0J , we have

bλ,J ≤ max
(s1,s2,...,sl )∈[0,1]l

9λ(γ0(s1, s2, . . . , sl))

= max
(s1,s2,...,sl )∈[0,1]l

l∑
j=1

I� j (s j Rω j )=

l∑
j=1

c j = cJ .

On the other hand, by (7-3), for any γ ∈ 0J , there exists sγ ∈ [0, 1]l such that∫
�′j
| f (γ (sγ ))|p−1 f ′(γ (sγ ))γ (sγ )∫

�′j
|∇γ (sγ )|2+ Vλ f (γ sγ )γ (sγ )

= 1 for j = 1, 2, . . . , l.

This implies that 9 ′
λ,�′j

(γ (sγ )) · γ (sγ )= 0 for j = 1, 2, . . . , l. Thus, if we define
u(x)= γ (sγ )(x), we have

9λ(u)=9λ,RN \�′J
(u)+

l∑
j=1

9λ,�′j (u),
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where

9λ,RN \�′J
(u)= 1

2

∫
RN \�′J

(|∇v|2+ Vλ f 2(v))− 1
2

∫
RN \�′J

W ( f 2(v)).

Since W ( f 2(v))≤ ν0 f 2(v), we have

9λ,RN \�′J
(u)= 1

2

∫
RN \�′J

(|∇v|2+ Vλ f 2(v))− 1
2

∫
RN \�′J

W ( f 2(v))

≥
1
2‖u‖

2
Hλ

G(R
N \�′j )

−
1
2‖u‖

2
L2(RN \�′j )

≥
δ0

2
‖u‖2Hλ

G(R
N \�′j )

≥ 0.

Thus

9λ(u)=9λ,RN \�′J
(u)+

l∑
j=1

9λ,�′j (u)≥
l∑

j=1

9λ,�′j (u)

≥

l∑
j=1

inf
{
9λ,�′j (v) | v ∈ H 1

G(�
′

j ), 9
′

λ,�′j
(v) · v = 0

}
=

l∑
j=1

cλ, j .

Since γ ∈ 0J is arbitrary, we have bλ,J ≥ cλ,J .
For (ii), by the definition of γ0, for (s1, s2, . . . , sl) ∈ ∂([0, 1]l) we have

9λ(γ0(s1, s2, . . . , sl))=

l∑
j=1

I� j (s j Rω j ),

and I� j (s j Rω j )≤ c j for j = 1, 2, . . . , l. On the other hand, for some j0 ∈ J , either
s j0 = 1 or s j0 = 0, and thus I� j0

(s j0 Rω j0)≤ 0. Therefore

9λ(γ0(s1, s2, . . . , sl))≤
∑
j 6= j0

I� j (s j Rω j )≤ cJ − ρ1.

This completes the proof of Lemma 7.1. �

Corollary 7.2. We have bλ,J → cJ as λ→∞. Moreover, bλ,J is a critical value
of 9λ for large λ.

Proof. From Lemma 6.1, we know that cλ, j → c j as λ→∞. It follows from
Lemma 7.1 that bλ,J → cJ as λ→∞. Thus, we may choose 3 large enough such
that for all λ ≥ 3, we have bλ,J > cJ − ρ1. Since 9λ satisfies the Palais–Smale
condition, by the standard deformation argument we can see that bλ,J is a critical
value of 9λ for λ≥3. �
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8. Flow arguments and the proofs of the main results

Let
9

cJ
λ = {v ∈ Hλ

G |9λ(v)≤ cJ }.

We choose

(8-1) 0< µ< 1
3 min

j∈J
c j ,

and define

Dµ
λ = {v ∈ Hλ

G | ‖v‖Hλ
G(R

N \�′J )
≤ µ, |9λ,�′j (v)− c j | ≤ µ for all j ∈ J }.

Note that ω j is the least energy solution of (5-4), and

9λ,�′j (ω j )=
1
2

∫
� j

|∇ω j |
2
−

∫
� j

| f (ω j )|
p
= c j .

Thus Dµ
λ ∩9

cJ
λ contains all the functions of the following form:

ω(x)=
{
ω j (x) if x ∈� j ,

0 if x ∈ RN
\�J .

Lemma 8.1. There exists σ0 > 0 and 30 ≥ 0, independent of λ, such that

(8-2) ‖9 ′λ(u)‖
∗

λ ≥ σ0 for all λ≥30 and for all u ∈ (D2µ
λ \ Dµ

λ )∩9
cJ
λ .

Proof. We prove it by contradiction. Suppose that there exist λn → ∞ and
vn ∈ (D

2µ
λn
\ Dµ

λn
) ∩ 9

cJ
λn

such that ‖9 ′λn
(u)‖∗λn

→ 0. Since vn ∈ D2µ
λn

, thus vn

is bounded in H 1
G , and it turns out that 9λn (vn) stays bounded as n→∞. We may

assume that (up to a subsequence)

9λn (vn)→ c ≤ cJ .

Applying Proposition 5.1, we can extract a subsequence of {vn} (still denoted
by {vn}) such that vn→ v in H 1

G and such that the following hold:

lim
n→∞

9λn (vn)=

l∑
j=1

I� j (v)≤ cJ ,(8-3)

lim
n→∞
‖vn‖

2
Hλn

G (�′j )
=

∫
� j

|∇v|2 for all j ∈ J,(8-4)

lim
n→∞

∫
�′j

| f (vn)|
p
=

∫
� j

| f (v)|p,(8-5)

lim
n→∞

∫
RN \�′J

(|∇vn|
2
+ Vλn f 2(vn))= 0.(8-6)
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Since cJ =
∑l

j=1 c j and c j is the least energy level for I� j (u), we have two
possibilities:

(1) I� j (v|� j )= c j for all j ∈ J .

(2) I� j0
(v|� j0

)= 0, that is, u|� j0
= 0 for some j0 ∈ J .

In case (1), we have

1
2

∫
� j

|∇v|2− 1
2

∫
� j

| f (v)|p = c j for all j ∈ J

and it follows from (8-3), (8-4), and (8-6) that vn ∈Dµ
λn

for large n, which contradicts

the fact that to vn ∈ D2µ
λn
\ Dµ

λn
.

In case (2), it follows from (8-3) and (8-4) that

|9Hλn
G (�′j )

(vn)− cj0 | → cj0 ≥ 3µ.

This also contradicts the fact that vn ∈ D2µ
λn
\ Dµ

λn
. This completes the proof. �

Proposition 8.2. Let µ satisfy (7-3) and let 30 be the constant given in Lemma 8.1.
Then for λ≥30, there exists a solution vλ of (1-1) such that vλ ∈ Dµ

λ ∩9
cJ
λ .

Proof. Assume, to the contrary, that9λ has no critical points in Dµ
λ ∩9

cJ
λ . Since9λ

satisfies the Palais–Smale condition, there exists a constant dλ > 0 such that

‖9 ′λ(v)‖
∗

λ ≥ dλ for all v ∈ Dµ
λ ∩9

cJ
λ ,

where ‖ · ‖∗λ is the norm of the dual space of Hλ
G . By Lemma 8.1 we have

‖9 ′λ(v)‖
∗

λ ≥ σ0 for all v ∈ (D2µ
λ \ Dµ

λ )∩9
cJ
λ .

Let ϕ : Hλ
G→ R be a Lipschitz continuous function such that

ϕ(v)=

{
1 for v ∈ D3µ/2

λ ,

0 for v 6∈ D2µ
λ ,

and 0≤ ϕ(v)≤ 1 for any v ∈ Hλ
G .

Since 9λ ∈ C1(Hλ
G,R), we denote by G : Hλ∗

G → Hλ
G the pseudogradient field

of 9, which satisfies

(8-7) ‖G(u)‖Hλ
G
≤ 2‖9 ′(u)‖∗λ, 〈9

′(u),G(u)〉 ≥ (‖9 ′(u)‖∗λ)
2.

Now for v ∈9cJ
λ , we define W̃ (v) :9

cJ
λ → Hλ

G by

W̃ (v)=−ϕ(v)
G(u)
‖9 ′λ(v)‖

∗

λ

.

We consider the deformation η : [0,∞)×9cJ
λ →9

cJ
λ defined by



BOUND STATE SOLUTIONS FOR THE QUASILINEAR SCHRÖDINGER EQUATION 73

dη
dt
= W̃ (η(t, v)), η(0, v)= v ∈9cJ

λ .

Then η(t, v) satisfies

d
dt
9λ(η(t, v))=−ϕ(η(t, v))

〈9 ′λ(η(t, v)),G(η(t, v))〉
‖9 ′λ(u)(η(t, v))‖

∗

λ

≤ 0,(8-8) ∥∥∥∥dη
dt

∥∥∥∥
λ

≤ 2 for all t, v,(8-9)

η(t, v)= v for all t ≥ 0 and v ∈9cJ
λ \ D2µ

λ .(8-10)

Let γ0(s1, s2, . . . , sl) ∈ 0J be the path defined in (7-2). We consider

η(t, γ0(s1, s2, . . . , sl))

for large t . Since for all (s1, s2, . . . , sl) ∈ ∂([0, 1]l), γ0(s1, s2, . . . , sl) 6∈ D2µ
λ , we

have by (8-10) that

η(t, γ0(s1, s2, . . . , sl))= γ0(s1, s2, . . . , sl) for all (s1, s2, . . . , sl) ∈ ∂([0, 1]l),

and η(t, γ0(s1, s2, . . . , sl)) ∈ 0J for all t ≥ 0.
Since supp γ0(s1, s2, . . . , sl)(x) ⊂ �J for all (s1, s2, . . . , sl) ∈ ∂([0, 1]l), it fol-

lows that9λ(γ0(s1, s2, . . . , sl)(x)) and ‖γ0(s1, s2, . . . , sl)(x)‖Hλ
G(�

′

j )
do not depend

on λ≥ 0. On the other hand,

9λ(γ0(s1, s2, . . . , sl)(x))≤ cJ for all (s1, s2, . . . , sl) ∈ [0, 1]l,

and 9λ(γ0(s1, s2, . . . , sl)(x))= cJ if and only if s j = 1/R; that is,

γ0(s1, s2, . . . , sl)(x)|� j = ω j

for all j ∈ J . Thus we have that

(8-11) m0 :=max{9λ(v) | v ∈ γ0([0, 1]l) \ Dµ
λ }

is independent of λ, and m0 < cJ .
By (8-9), one can see that for any t > 0,

‖η(0, γ0(s1, . . . , sl))− η(t, γ0(s1, . . . , sl))‖Hλ
G
≤ 2t.

Since 9λ,�′j ∈ C2(Hλ
G) for all j = 1, . . . , l, by the same arguments as in Propo-

sition 4.5 of [Tang 2008], we have that for a large number T , there exists a positive
number µ0, which is independent of λ, such that for all j =1, 2, . . . , l and t ∈ [0, T ],

‖9 ′
λ,�′j

(η(t, γ0(s1, . . . , sl)))‖
∗

Hλ
G
≤ µ0.

We claim that for large T ,
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(8-12) max
(s1,s2,...,sl )∈[0,1]l

9λ(η(T, γ0(s1, s2, . . . , sl)(x)))≤max
{
m0, cJ −

1
2τ0µ

}
,

where τ0 =max{σ0, σ0/µ0}, and m0 is given in (8-11) .
In fact, if γ0(s1, s2, . . . , sl)(x) 6∈ Dµ

λ , then by (8-11) we have

9λ(η(T, γ0(s1, s2, . . . , sl)(x)))≤ m0,

and thus (8-12) holds.
Now we consider the case when γ0(s1, s2, . . . , sl)(x) ∈ Dµ

λ . Set

d̃λ :=min{dλ, σ0}, T =
σ0µ

4d̃λ
, and η̃(t) := η(t, γ0(s1, s2, . . . , sl)).

We have two cases:

(1) η̃(t) ∈ D3µ/2
λ for all t ∈ [0, T ].

(2) η̃(t0) ∈ ∂D3µ/2
λ for some t0 ∈ [0, T ].

If (1) holds, then ϕ(η̃(t))= 1 and ‖9 ′λ(η̃(t))‖
∗

λ ≥ d̃λ for all t ∈ [0, T ]. It follows
from (8-8) that

9λ(η̃(T ))=9λ(γ0(s1, s2, . . . , sl))+

∫ T

0

d
ds
9λ(η̃(t))

≤ cJ − 2
∫ T

0
d̃λ ds = cJ − 2d̃λT ≤ cJ −

1
2τ0µ.

If (2) holds, there exists 0≤ t1 < t2 ≤ T such that

η̃(t1) ∈ ∂Dµ
λ ,(8-13)

η̃(t2) ∈ ∂D3µ/2
λ ,(8-14)

η̃(t) ∈ D3µ/2
λ \ Dµ

λ for all t ∈ [t1, t2].(8-15)

By (8-14), either

‖η̃(t2)‖Hλ
G(R

N \�′j )
=

3µ
2

or

|9λ,�′j0
(η̃(t2))− cj0 | =

3µ
2

for some j0 ∈ J.

We only address the latter case; the former can be proved in a similar way. By
(8-14), we have

|9λ,�′j0
(η̃(t1))− cj0 | ≤ µ,

and hence

|9λ,�′j0
(η̃(t2))−9λ,�′j0

(η̃(t1))| ≥ |9λ,�′j0
(η̃(t2))−cj0 |−|9λ,�′j0

(η̃(t1))−cj0 | ≥
1
2µ.
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On the other hand, by the mean value theorem, there exists t ′ ∈ (t1, t2) such that

|9λ,�′j0
(η̃(t2))−9λ,�′j0

(η̃(t1))| =
∣∣∣∣9 ′λ,�′j0 (η̃(t ′)) · dη̃dt

∣∣∣∣(t2− t1).

Thus we have

9λ(η̃(T ))=9λ(γ0(s1, s2, . . . , sl)(x))−
∫ T

0
ϕ(η̃(s)))

〈9 ′(η̃(s))),G(η̃(s)))〉
‖9 ′λ(η̃(s)))‖

∗

λ

v

≤ cJ −

∫ t2

t1
ϕ(η̃(s)))‖9 ′λ(η̃(s))‖

∗

λ ds

= cJ − σ0(t2− t1)≤ cJ −
1
2τ0µ.

Thus (8-12) is proved. Recall that η̃(T )= η(T, γ0(s1, s2, . . . , sl)) ∈ 0J . Hence

(8-16) bλ,J ≤9λ(η̃(T ))≤max{m0, cJ −
1
2τ0µ}.

However, by Corollary 7.2, we have bλ,J → cJ as λ→∞. This contradicts (8-16),
and hence 9λ has a critical point vλ ∈ Dµ

λ for large λ, so by Proposition 5.2, vλ is
a solution of the problem (1-10). �

Proof of Theorem 1.1. Let vλ be a solution to the problem (1-1) obtained in
Proposition 8.2. For any given sequence {λn} such that λn→∞, we can extract a
subsequence (still denoted by {λn}). Arguing as in the proof of Proposition 5.1, we
can extract a subsequence of {vλn } (still denoted {vλn }) such that vλn→ v in H 1

G and

lim
n→∞

9λn (vn)= c j for all j ∈ J,(8-17)

lim
n→∞

∫
RN \�′J

(|∇vλn |
2
+ Vλn | f (vλn )|

2)= 0.(8-18)

Since the limits in (8-17) and (8-18) do not depend on the choice of sequence {λn}

(λn→∞), then both (1-12) and (1-13) hold, and the limit function v(x) satisfies:

(1) v(x)= 0 for x ∈ RN
\�J .

(2) v|� j is a least energy solution of

{
−1v(x)= | f (v)|p−1 f (v), x ∈� j ,

v(x) ∈ H 0,1
G (� j )

for j ∈ J .

This completes the proof of Theorem 1.1. �
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ON STABLE SOLUTIONS OF THE BIHARMONIC PROBLEM
WITH POLYNOMIAL GROWTH

HATEM HAJLAOUI, ABDELLAZIZ HARRABI AND DONG YE

We prove the nonexistence of smooth stable solutions to the biharmonic
problem 12u= u p, u> 0 in RN for 1< p<∞ and N < 2(1+ x0), where x0

is the largest root of the equation

x4
−

32 p( p+ 1)
( p− 1)2

x2
+

32 p( p+ 1)( p+ 3)
( p− 1)3

x−
64 p( p+ 1)2

( p− 1)4
= 0.

In particular, as x0 > 5 when p > 1, we obtain the nonexistence of smooth
stable solutions for any N ≤ 12 and p > 1. Moreover, we consider also
the corresponding problem in the half-space RN

+ , and the elliptic problem
12u = λ(u + 1) p on a bounded smooth domain � with the Navier bound-
ary conditions. We prove the regularity of the extremal solution in lower
dimensions.

1. Introduction

Consider the biharmonic equation

(1-1) 12u = u p, u > 0 in RN

where N ≥ 5 and p > 1. Let

(1-2) 3(φ) :=

∫
RN
|1φ|2 dx − p

∫
RN

u p−1φ2 dx for all φ ∈ H 2(RN ).

A solution u is said to be stable if 3(φ)≥ 0 for any test function φ ∈ H 2(RN ).
In this note, we prove the following classification result.

Theorem 1.1. Let N ≥ 5 and p> 1. Equation (1-1) has no classical stable solution
if N < 2+ 2x0, where x0 is the largest root of the polynomial

(1-3) H(x)= x4
−

32p(p+ 1)
(p− 1)2

x2
+

32p(p+ 1)(p+ 3)
(p− 1)3

x −
64p(p+ 1)2

(p− 1)4
.

Moreover, we have x0 > 5 for any p > 1. Consequently, if N ≤ 12, (1-1) has no
classical stable solution for all p > 1.

MSC2010: primary 35J91; secondary 35J30, 35J40.
Keywords: stable solutions, biharmonic equations, polynomial growths.

79

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.270-1
http://dx.doi.org/10.2140/pjm.2014.270.79


80 HATEM HAJLAOUI, ABDELLAZIZ HARRABI AND DONG YE

For the corresponding second-order problem,

(1-4) 1u+ |u|p−1u = 0 in RN , p > 1,

Farina has obtained the optimal Liouville type result for all finite Morse index
solutions. He proved in [Farina 2007] that a smooth finite Morse index solution to
(1-4) exists if and only if p ≥ pJL and N ≥ 11, or p = N+2

N−2 and N ≥ 3. Here pJL
is the so-called Joseph–Lundgren exponent; see (1.11) in [Gui et al. 1992].

The nonexistence of positive solutions to (1-1) is shown if p < N+4
N−4 , and all

entire solutions are classified if p = N+4
N−4 ; see [Lin 1998; Wei and Xu 1999]. On

the other hand, the radially symmetric solutions to (1-1) are studied in [Ferrero
et al. 2009; Gazzola and Grunau 2006; Guo and Wei 2010; Karageorgis 2009].
In particular, Karageorgis [2009] proved that the radial entire solution to (1-1) is
stable if and only if p ≥ pJL4

and N ≥ 13. Here pJL4
stands for the corresponding

Joseph–Lundgren exponent to 12.
The general fourth-order case (1-1) is more delicate, since the integration by

parts argument used by Farina cannot be adapted easily. The first nonexistence
result for general stable solutions was proved by Wei and Ye [2013], who proposed
we consider (1-1) as a system

(1-5) −1u = v, −1v = u p in RN ,

and introduced the idea to use different test functions with u but also v. Using
estimates in [Souplet 2009] they showed that for N ≤ 8, (1-1) has no smooth stable
solutions. For N ≥ 9, using a blow-up argument, they proved that the classification
holds still for p < N/(N − 8)+ εN with εN > 0, but without any explicit value of
εN . This result was improved by Wei, Xu and Yang in [Wei et al. 2013] for N ≥ 20
with a more explicit bound.

Using the stability of system (1-5) and an interesting iteration argument, Cowan
[2013, Theorem 2] proved that there is no smooth stable solution to (1-1) if N <

2+ 4(p+1)
p−1 t0, where

(1-6) t0 =
√

2p
p+1

+

√
2p

p+1
−

√
2p

p+1
for all p > 1.

In particular, if N ≤ 10, (1-1) has no stable solution for any p > 1.
However, the study for radial solutions in [Karageorgis 2009] suggests the

following conjecture.

Conjecture. A smooth stable solution to (1-1) exists if and only if p ≥ pJL4
and

N ≥ 13.

Consequently, the Liouville type result for stable solutions of (1-1) should hold
true for N ≤ 12 with any p > 1; that’s what we prove here. More precisely, by
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[Karageorgis 2009, Theorem 1], the radial entire solutions to (1-1) are unstable if
and only if

(1-7)
N 2(N − 4)2

16
< pQ4

(
−

4
p−1

)
,

where Q4(m)=m(m−2)(m+N −2)(m+N −4). The left-hand side comes from
the best constant of the Hardy–Rellich inequality (see [Rellich 1969]): Let N ≥ 5,∫

RN
|1ϕ|2 dx ≥

N 2(N − 4)2

16

∫
RN

ϕ2

|x |4
dx for all ϕ ∈ H 2(RN ).

The right-hand side of (1-7) comes from the weak radial solutionw(x)=|x |−4/(p−1).
When p > N+4

N−4 , we can check that w ∈ H 2
loc(R

N ) and

12w = Q4

(
−

4
p−1

)
w p in D′(RN ).

Since w p−1(x)= |x |−4, and in view of the Hardy–Rellich inequality, the condition
(1-7) means just thatw is not a stable solution in RN, that is, there exists ϕ ∈H 2(RN )

such that

3w(ϕ) :=

∫
RN
|1ϕ|2 dx − p

∫
RN

Q4

(
−

4
p−1

)
w p−1ϕ2 dx < 0.

If we set N = 2+2x , a direct calculation shows that (1-7) is equivalent to HJL4(x)<
0, where

HJL4
(x) := (x2

− 1)2−
32p(p+ 1)
(p− 1)2

x2
+

32p(p+ 1)(p+ 3)
(p− 1)3

x −
64p(p+ 1)2

(p− 1)4
.

By [Gazzola and Grunau 2006], (1-7) is equivalent to N < 2+ 2x1 if x1 denotes
the largest root of HJL4

. Note that closeness between the fourth-order polynomials
HJL4

and H (in Theorem 1.1); they differ only by H(x)− HJL4
(x)= 2x2

− 1.
Furthermore, Theorem 1.1 improves the bound given in [Cowan 2013] for all

p > 1. Indeed, Lemmas 2.2 and 2.4 below imply that x0 >
2(p+1)

p−1 t0.
Recall that to handle the equation (1-1), we prove in general that v=−1u> 0 in

RN by studying function averages on the sphere; see [Wei and Xu 1999]. Applying
the blow-up argument as in [Souplet 2009; Wei and Ye 2013], we can assume that
u and v are uniformly bounded in RN. Therefore the following Souplet’s estimate
[2009] holds true in RN, which was established for any bounded solution u of (1-1):

(1-8) v ≥

√
2

p+1
u(p+1)/2.

Here we propose a new approach. Without assuming the boundedness of u or
showing immediately the positivity of v, we prove first some integral estimates for
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stable solutions of (1-1), which will enable us the estimate (1-8). This idea permits
us to handle more general biharmonic equations: let N ≥ 5 and p> 1, and consider

(1-9) 12u = u p, u > 0 in 6 ⊂ RN , u =1u = 0 on ∂6.

Let E = H 2(6)∩ H 1
0 (6) and

(1-10) 30(φ) :=

∫
6

|1φ|2 dx − p
∫
6

u p−1φ2 dx for all φ ∈ E .

A solution u of (1-9) is said to be stable if 30(φ)≥ 0 for any φ ∈ E .

Proposition 1.2. Let u be a classical stable solution of (1-9) where 6 is one of
RN , the half-space 6 = RN

+
, or the exterior domain 6 = RN

\� or RN
+
\�, where

� is a bounded smooth domain of RN. Then the inequality (1-8) holds in 6, and
consequently v > 0 in 6.

Using this, we obtain a Liouville type result for (1-9) in the half-space situation,
which improves the result in [Wei and Ye 2013] for a wider range of N , and without
assuming the boundedness of u or v =−1u.

Theorem 1.3. Let x0 be defined as in Theorem 1.1. If N < 2+ 2x0, there exists no
classical stable solution of (1-9) if 6 = RN

+
.

Our proof combines also many ideas from [Wei and Ye 2013; Cowan and
Ghoussoub 2014; Cowan 2013]. Briefly, for (1-1), we apply different test functions
to both equations of the system (1-5) and make use of the following inequality in
[Cowan and Ghoussoub 2014] (see also [Cowan 2013; Dupaigne et al. 2013a]): if
u is a stable solution of (1-1), then

(1-11)
∫

RN

√
pu(p−1)/2ϕ2 dx ≤

∫
RN
|∇ϕ|2 dx for all ϕ ∈ C1

0(R
N ).

This will enable us to make two estimates. From these estimates, we prove that for
any stable solution u of (1-1), φ ∈ C2

0(R
N ) and s ≥ 1,

(1-12) L(s) < 0 ⇒
∫

RN
u pvs−1φ2 dx ≤ C

∫
RN
vs(
|1(φ2)| + |∇φ|2

)
dx .

Here L is a polynomial of degree 4, see (2-9) below, and the constant C depends
only on p and s. Applying then the iteration argument of Cowan [2013], we show
that u ≡ 0 if N < 2+ 2x0, which is a contradiction, since u is positive.

Using similar ideas, we consider the elliptic equation on bounded domains:

(Pλ)
{
12u = λ(u+ 1)p in a bounded smooth domain �⊂ RN, N ≥ 1
u =1u = 0 on ∂�.

It is well known (see [Berchio and Gazzola 2005; Gazzola et al. 2010]) that there
exists a critical value λ∗ > 0 depending on p > 1 and � such that:
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• If λ ∈ (0, λ∗), (Pλ) has a minimal and classical solution uλ which is stable.

• If λ = λ∗, then u∗ = lim
λ→λ∗

uλ is a weak solution to (Pλ∗); u∗ is called the
extremal solution.

• No solution of (Pλ) exists whenever λ > λ∗.

In [Cowan et al. 2010; Wei and Ye 2013], it was proved that if 1 < p < ((N −
8)/N )−1

+ , or equivalently N < 8p/(p − 1), the extremal solution u∗ is smooth.
Recently, Cowan and Ghoussoub improved the above result by showing that u∗

is smooth if N < 2+ 4(p+ 1)/(p− 1)t0 with t0 in (1-6), so u∗ is smooth for any
p > 1 when N ≤ 10. Our result is this:

Theorem 1.4. The extremal solution u∗ is smooth if N < 2+ 2x0 with x0 given by
Theorem 1.1. In particular, u∗ is smooth for any p > 1 if N ≤ 12.

We remark that our proof does not use the a priori estimate of v =−1u as in
[Cowan et al. 2010; Cowan and Ghoussoub 2014].

The paper is organized as follows. We prove some preliminary results and
Proposition 1.2 in Section 2. The proofs of Theorems 1.1, 1.3 and 1.4 are given in
Sections 3 and 4.

2. Preliminaries

We show first how to obtain the estimate (1-8) for stable solutions of (1-9). Our
idea is to use the stability condition (1-10) to get some decay estimates for stable
solutions of (1-9). In the following, we denote by Br the ball of center 0 and radius
r > 0.

Lemma 2.1. Let u be a stable solution to (1-9) and set v =−1u. Then

(2-1)
∫
6∩BR

(v2
+ u p+1) dx ≤ C RN−4−8/(p−1) for all R > 0.

Proof. We proceed similarly as in Step 1 of the proof for [Wei and Ye 2013,
Theorem 1.1], but we do not assume here that v > 0 or u is bounded in 6. For any
ξ ∈ C4(6) satisfying ξ =1ξ = 0 on ∂6 and η ∈ C∞0 (R

N ), we have

(2-2)
∫
6

(12ξ)ξη2 dx =
∫
6

[1(ξη)]2 dx +
∫
6

[
−4(∇ξ · ∇η)2+ 2ξ1ξ |∇η|2

]
dx

+

∫
6

ξ 2[2∇(1η) · ∇η+ (1η)2] dx .

The proof is direct as in [Wei and Ye 2013, Lemma 2.3], noticing just that in the
integrations by parts, all boundary integration terms on ∂6 vanish under the Navier
conditions for ξ .
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Let u be a solution of (1-9). Taking ξ = u in (2-2), we have∫
6

[1(uη)]2 dx −
∫
6

u p+1η2 dx

= 4
∫
6

(∇u∇η)2 dx + 2
∫
6

uv|∇η|2 dx −
∫
6

u2[2∇(1η) · ∇η+ (1η)2] dx,

where v =−1u. Using φ = uη in (1-10), we obtain easily

(2-3)
∫
6

[
(1(uη))2+ u p+1η2] dx

≤C1

∫
6

[
|∇u|2|∇η|2+u2

|∇(1η)·∇η|+u2(1η)2
]

dx+C2

∫
6

uv|∇η|2 dx .

Here and below, C and Ci denote generic positive constants independent of u,
which can change from one line to another. Since 1(uη)= 2∇u · ∇η+ u1η− vη
we get from (2-3)

(2-4)
∫
6

[
v2η2
+ u p+1η2] dx

≤C1

∫
6

[
|∇u|2|∇η|2+u2

|∇(1η)·∇η|+u2(1η)2
]

dx+C2

∫
6

uv|∇η|2 dx .

On the other hand, since u = 0 on ∂6,

2
∫
6

|∇u|2|∇η|2 dx =
∫
6

1(u2)|∇η|2 dx + 2
∫
6

uv|∇η|2 dx

=

∫
6

u21(|∇η|2) dx + 2
∫
6

uv|∇η|2 dx .

By inputting this into (2-4), we arrive at

(2-5)
∫
6

[
v2η2
+ u p+1η2] dx

≤ C1

∫
6

u2[
|∇(1η) · ∇η| + (1η)2+ |1(|∇η|2)|

]
dx +C2

∫
6

uv|∇η|2 dx .

If we let η = ϕm with m > 2 and ϕ ∈ C∞0 (R
N ), ϕ ≥ 0, it follows that∫

6

uv|∇η|2 dx = m2
∫
6

uvϕ2(m−1)
|∇ϕ|2 dx

≤
1

2C

∫
6

(vϕm)2 dx +C
∫
6

u2ϕ2(m−2)
|∇ϕ|4 dx .

Now choose a cutoff function ϕ0 in C∞0 (B2) satisfying 0≤ ϕ0 ≤ 1 and ϕ0 = 1 for
|x |< 1. Inputting the above inequality into (2-5) with ϕ = ϕ0(R−1x) for R > 0 and
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η = ϕm with m = (2p+ 2)/(p− 1) > 2, we arrive at

(2-6)
∫
6

(v2
+u p+1)ϕ2m dx ≤ C

R4

∫
6

u2ϕ2m−4 dx

≤
C
R4

(∫
6

u p+1ϕ(p+1)(m−2) dx
)2/(p+1)

RN (p−1)/(p+1)

=
C
R4

(∫
6

u p+1ϕ2m dx
)2/(p+1)

RN (p−1)/(p+1).

Hence ∫
6

u p+1ϕ2m dx ≤ C RN−4(p+1)/(p−1).

Combining with (2-6) we get (2-1), since ϕ2m
= 1 for x ∈ BR := {x ∈RN

: |x | ≤ R}.
�

Proof of Proposition 1.2. Let

ζ = βu(p+1)/2
− v, where β =

√
2

p+1
.

Then a direct computation shows that 1ζ ≥ β−1u(p−1)/2ζ in 6. Consider ζ+ :=
max(ζ, 0). For any R > 0, we have

(2-7)
∫
6∩BR

|∇ζ+|
2 dx =−

∫
6∩BR

ζ+1ζ dx +
∫
∂(6∩BR)

ζ+
∂ζ

∂ν
dσ

≤

∫
6∩∂BR

ζ+
∂ζ

∂ν
dσ.

Here we used ζ+1ζ ≥ 0 in 6 and ζ = 0 on ∂6. Now let SN−1 denote the unit
sphere in RN and

e(r)=
∫

SN−1∩(r−16)

ζ 2
+
(rσ) dσ for r > 0.

We remark that there exists an R0 > 0 satisfying

(2-8)
∫
6∩∂Br

ζ+
∂ζ

∂ν
dσ = r N−1

2
e′(r) for all r ≥ R0.

Moreover, for R ≥ R0, we deduce from (2-1) that∫ R

R0

r N−1e(r) dr ≤
∫

BR∩6

ζ 2
+

dx ≤ C
∫

BR∩6

(v2
+ u p+1) dx

≤ C RN−4−8/(p−1)
= o(RN ).

This means that the function e cannot be nondecreasing at infinity, so there exists
a sequence R j → ∞ satisfying e′(R j ) ≤ 0. Combining (2-7) and (2-8) with
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R = R j →∞, we obtain ∫
6

|∇ζ+|
2 dx = 0.

Using ζ = 0 on ∂6, we have ζ+ ≡ 0 in 6, or equivalently (1-8) holds true in 6.
Clearly v > 0 in 6 by (1-8). �

In the following, we show some properties of the polynomials L and H , useful
for our proofs. Let

(2-9) L(s)= s4
− 32

p
p+ 1

s2
+ 32

p(p+ 3)
(p+ 1)2

s− 64
p

(p+ 1)2
, s ∈ R.

Lemma 2.2. L(2t0) < 0 and L has a unique root s0 in the interval (2t0,∞).

Proof. Obviously

L(2t0)= 16t4
0 − 128

p
p+ 1

t2
0 + 64

p(p+ 3)
(p+ 1)2

t0− 64
p

(p+ 1)2
.

Since t2
0/(2t0−1)=

√
2p/(p+ 1) (see [Cowan 2013]), we have t4

0 =
2p

p+ 1
(2t0−1)2.

A direct computation yields

(p+ 1)2L(2t0)
32p

= (p+ 1)(2t0− 1)2− 4(p+ 1)t2
0 + 2(p+ 3)t0− 2

= (p− 1)(1− 2t0).

Since t0 > 1 for any p> 1, we have L(2t0) < 0. Furthermore, for all p> 1, s ≥ 2t0,
we have

(p+ 1)L ′′(s)= 12(p+ 1)s2
− 64p ≥ 48(p+ 1)t2

0 − 64p

≥ 48(p+ 1)
2p

p+ 1
− 64p = 32p > 0

in [2t0,∞), where we used t2
0 ≥ 2p/(p+ 1), which holds by (1-6). Therefore L

is convex in [2t0,∞). Since lims→∞ L(s) =∞ and L(2t0) < 0, it’s clear that L
admits a unique root in (2t0,∞). �

Remark 2.3. After the change of variable x = p+1
p−1

s, a direct calculation gives

H(x)=
(

p+ 1
p− 1

)4

L(s),

hence H(x) < 0 if and only if L(s) < 0. Using the lemma above, we see that
x0 =

p+1
p−1 s0 is the largest root of H , and x0 is the only root of H for x ≥ 2(p+1)

p−1 t0.

Lemma 2.4. If x0 =
p+1
p−1

s0 is the largest root of H , then x0 > 5 for any p > 1.



STABLE SOLUTIONS OF BIHARMONIC PROBLEM WITH POLYNOMIAL GROWTH 87

Proof. Since x0 is the largest root of H , to have x0 > 5 it suffices to show H(5) < 0.
Let J (p)= (p−1)4 H(5); then J (p)=−15p4

−1284p3
+4262p2

−3844p+625.
Therefore,

J ′(p)=−60p3
−3852p2

+8524p−3844, J ′′(p)=−180p2
−7704p+8524.

We see that J ′′ < 0 in [2,∞). Consequently J ′(p) < 0 and J (p) < 0 for p ≥ 2.
Hence x0 > 5 if p ≥ 2. For p ∈ (1, 2), we have x0 >

2(p+1)
p−1 t0 ≥ 6t0, which exceeds

5 since t0 > 1. �

3. Proof of Theorems 1.1 and 1.3

We will prove only Theorem 1.1, since the proof of Theorem 1.3 is completely
similar, just changing Br to Br ∩RN

+
.

The following result generalizes [Cowan 2013, Lemma 4], which is a crucial
argument for our proof. As above, the constant C always denotes a positive number
which may change term by term, but does not depend on the solution u. For k ∈ N,
let Rk := 2k R with R > 0.

Lemma 3.1. Assume that u is a classical stable solution of (1-1). Then for all
2≤ s < s0, there is C <∞ such that

(3-1)
∫

BRk

u pvs−1 dx ≤ C
R2

∫
BRk+1

vs dx for all R > 0.

Proof. Let u be a classical stable solution of (1-1). Let φ ∈ C2
0(R

N ) and ϕ =
u(q+1)/2φ with q ≥ 1. With this ϕ, the stability inequality (1-11) gives

(3-2)
√

p
∫

RN
u(p−1)/2uq+1φ2

≤

∫
RN

uq+1
|∇φ|2+

∫
RN

∣∣∇u(q+1)/2∣∣2φ2
+ (q + 1)

∫
RN

uqφ∇u∇φ.

Integrating by parts, we get

(3-3)
∫

RN

∣∣∇u
q+1

2
∣∣2φ2 dx =

(q+1)2

4

∫
RN

uq−1
|∇u|2φ2 dx

=
(q+1)2

4q

∫
RN
φ2
∇(uq)∇u dx

=
(q+1)2

4q

∫
RN

uqvφ2 dx−
q+1
4q

∫
RN
∇(uq+1)∇(φ2) dx

=
(q+1)2

4q

∫
RN

uqvφ2 dx+
q+1
4q

∫
RN

uq+11(φ2) dx
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and

(3-4) (q + 1)
∫

RN
uqφ∇u∇φ dx = 1

2

∫
RN
∇(uq+1)∇(φ2) dx

=−
1
2

∫
RN

uq+11(φ2) dx .

Combining (3-2)–(3-4), we conclude that
(3-5)

a1

∫
RN

u(p−1)/2uq+1φ2 dx ≤
∫

RN
uqvφ2 dx +C

∫
RN

uq+1(
|1(φ2)| + |∇φ|2

)
dx

where a1 = (4q
√

p )/(q + 1)2. Now choose φ(x)= h(R−1
k x), where h ∈ C∞0 (B2)

is such that h ≡ 1 in B1. Then

(3-6)
∫

RN
u(p−1)/2uq+1φ2 dx ≤ 1

a1

∫
RN

uqvφ2 dx + C
R2

∫
BRk+1

uq+1 dx .

Now, apply the stability inequality (1-11) with ϕ = v(r+1)/2φ, r ≥ 1, to obtain

√
p
∫

RN
u(p−1)/2vr+1φ2

≤

∫
RN
vr+1
|∇φ|2+

∫
RN

∣∣∇v(r+1)/2∣∣2φ2
+ (r + 1)

∫
RN
vrφ∇v∇φ.

By a very similar computation (recalling that −1v = u p), we have

(3-7)
∫

RN
u(p−1)/2vr+1φ2 dx ≤ 1

a2

∫
RN

u pvrφ2 dx + C
R2

∫
BRk+1

vr+1 dx

where a2 = (4r
√

p )/(r + 1)2.
Using (3-6) and (3-7), we get

(3-8) I1+ ar+1
2 I2 :=

∫
RN

u(p−1)/2uq+1φ2 dx + ar+1
2

∫
RN

u(p−1)/2vr+1φ2 dx

≤
1
a1

∫
RN

uqvφ2 dx + ar
2

∫
RN

u pvrφ2 dx

+
C
R2

∫
BRk+1

(uq+1
+ vr+1) dx .

Now fix

(3-9) 2q = (p+ 1)r + p− 1, or equivalently q + 1= 1
2(p+ 1)(r + 1).
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By Young’s inequality, we get

1
a1

∫
RN

uqvφ2 dx

=
1
a1

∫
RN

u(p−1)/2u(p+1)/2rvφ2 dx

=
1
a1

∫
RN

u(p−1)/2u(q+1)r/(r+1)vφ2 dx

≤
r

r+1

∫
RN

u(p−1)/2uq+1φ2 dx +
1

ar+1
1 (r + 1)

∫
RN

u(p−1)/2vr+1φ2 dx

=
r

r + 1
I1+

1

ar+1
1 (r + 1)

I2,

and similarly

ar
2

∫
RN

u pvrφ2 dx ≤ 1
r+1

I1+
ar+1

2 r
r + 1

I2.

Combining the above two inequalities and (3-8), we deduce that

ar+1
2 I2 ≤

(
ar+1

2 r
r + 1

+
1

ar+1
1 (r+1)

)
I2+

C
R2

∫
BRk+1

(uq+1
+ vr+1) dx;

hence
(a1a2)

r+1
− 1

r + 1
I2 ≤

Car+1
1

R2

∫
BRk+1

(uq+1
+ vr+1) dx .

Thus, if a1a2 > 1, by the choice of φ,∫
BRk

u(p−1)/2vr+1 dx ≤ I2 ≤
C
R2

∫
BRk+1

(uq+1
+ vr+1) dx .

From (1-8) and (3-9), we get uq+1
≤ Cvr+1. Setting s = r + 1, we can conclude

that if a1a2 > 1,

(3-10)
∫

BRk

u pvs−1 dx ≤ C1

∫
BRk

u(p−1)/2vs dx ≤
C2

R2

∫
BRk+1

(uq+1
+ vr+1) dx

≤
C3

R2

∫
BRk+1

vs dx .

On the other hand, a simple verification shows that a1a2 > 1 is equivalent to
L(s) < 0. By Lemma 2.2, for s ∈ [2t0, s0), this last inequality holds. So the
inequality (3-10), which is (3-1), holds for any 2t0 ≤ s < s0. On the other hand,
the estimate (3-1) is valid for 2 ≤ s < 2t0 [Cowan 2013, Lemma 4], hence for
2≤ s < s0. �
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We can then follow the iteration process in [Cowan 2013] (see Proposition 1 or
Corollary 2 there) to obtain this consequence:

Corollary 3.2. Suppose u is a classical stable solution of (1-1). For all 2 ≤ β <
N

N−2 s0, there are ` ∈ N and C <∞ such that

(∫
BR

vβ dx
)1/β

≤ C R
1
2

N (2/β−1)
(∫

BR3`

v2 dx
)1/2

for all R > 0.

Now we are in position to complete the proof of Theorem 1.1. Let u be a smooth
stable solution to (1-1). Corollary 3.2 and (2-1) imply that for any 2≤ β < N

N−2 s0,
there exists C > 0 such that(∫

BR

vβ dx
)1/β

≤ C R
1
2

N (2/β−1)+ 1
2 N−2−4/(p−1)

for all R > 0.

Note that

1
2

N (2/β − 1)+ 1
2

N − 2− 4
p−1

< 0 ⇐⇒ N <
2(p+ 1)

p− 1
β.

Considering the allowable range of β given in Corollary 3.2, if N < 2+ 2(p+1)
p−1 s0,

after sending R→∞ we get ‖v‖Lβ (RN )= 0, which is impossible since v is positive.
To conclude, the equation (1-1) has no classical stable solution if N < 2+ 2x0

where x0 =
p+1
p−1 s0.

Moreover, by Lemma 2.4, x0 > 5 for any p > 1, which means that if N ≤ 12,
(1-1) has no classical stable solution for all p > 1. �

4. Proof of Theorem 1.4

In this section, we consider the elliptic problem (Pλ). Let uλ be the minimal solution
of (Pλ). It is well known that uλ is stable. To simplify the presentation, we erase
the index λ. By [Cowan and Ghoussoub 2014; Dupaigne et al. 2013a],

(4-1)
√
λp
∫
�

(u+ 1)(p−1)/2ϕ2 dx ≤
∫
�

|∇ϕ|2 dx for all ϕ ∈ H 1
0 (�).

Using ϕ = u(q+1)/2 as a test function in (3-2), by similar computation as for (3-5)
in Section 3, we obtain

(4-2) a1
√
λ

∫
�

(u+ 1)(p−1)/2uq+1 dx ≤
∫
�

uqv dx, where a1 =
4q
√

p
(q + 1)2

.

Here we do not need a cutoff function φ, because all boundary terms appearing in
the integrations by parts vanish under the Navier boundary conditions, hence the
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calculations are even easier. We can use Young’s inequality as for Theorem 1.1,
but we show here a proof inspired by [Dupaigne et al. 2013b].

Similarly as for (3-7), using ϕ = v(r+1)/2 in (4-1), we have
(4-3)

a2
√
λ

∫
�

(u+ 1)(p−1)/2vr+1 dx ≤
∫
�

λ(u+ 1)pvr dx, where a2 =
4r
√

p
(r + 1)2

.

Fix 2q = (p+ 1)r + p− 1. Applying Hölder’s inequality,
(4-4)∫

�

uqv dx ≤
(∫

�

u(p−1)/2vr+1 dx
)1/(r+1)(∫

�

u(p−1)/2+q+1 dx
)r/(r+1)

≤

(∫
�

(u+ 1)(p−1)/2vr+1 dx
)1/(r+1)(∫

�

u(p−1)/2+q+1 dx
)r/(r+1)

and
(4-5)∫
�

(u+1)pvr dx≤
(∫

�

(u+1)(p−1)/2vr+1 dx
)r/(r+1)(∫

�

(u+1)(p−1)/2+q+1 dx
)1/(r+1)

.

Multiplying (4-2) with (4-3), using (4-4) and (4-5), we get immediately

(4-6)
(∫

�

(u+1)(p−1)/2uq+1 dx
)1/(r+1)

≤
1

a1a2

(∫
�

(u+1)(p−1)/2+q+1 dx
)1/(r+1)

.

On the other hand, for any ε > 0 there exists Cε > 0 such that

(u+ 1)(p−1)/2+q+1
≤ (1+ ε)(u+ 1)(p−1)/2uq+1

+Cε in R+.

If a1a2 > 1, there exists ε0 > 0 satisfying 1+ ε0 < (a1a2)
r+1. We deduce from

(4-6) that (
1−

1+ ε0

(a1a2)r+1

)∫
�

(u+ 1)(p−1)/2uq+1 dx ≤ C.

Therefore, when L(s) < 0, or equivalently when a1a2 > 1, there is C > 0 such that∫
�

u(p−1)/2+q+1 dx ≤
∫
�

(u+ 1)(p−1)/2uq+1 dx ≤ C.

Since u∗ = limλ→λ∗ uλ, we conclude, using Lemma 2.2,

(4-7) u∗ ∈ L(p−1)/2+q+1(�) for all q satisfying
2(q + 1)

p+ 1
= r + 1= s < s0.

Furthermore, by [Gazzola et al. 2010], we know that u∗ ∈ H 2(�). Since u∗ ≥ 0
satisfies 12u∗ = λ∗(u∗ + 1)p

≤ C(u∗)p−1u∗ +C with u∗ = 1u∗ = 0 on ∂�, by
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standard elliptic estimate, we know that u∗ is smooth if

N
4
<
( p− 1

2
+ q + 1

) 1
p−1

=
1
2

(
1+

p+ 1
p− 1

s
)
.

Therefore, u∗ is smooth if N < 2+2x0. By Lemma 2.4, u∗ is smooth for any p> 1
if N ≤ 12. �
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VALUATIVE MULTIPLIER IDEALS

ZHENGYU HU

The main goal of this paper is to construct an algebraic analogue of quasi-
plurisubharmonic function (qpsh for short) from complex analysis and ge-
ometry. We define a notion of qpsh function on a valuation space associated
to a quite general scheme. We then define the multiplier ideals of these
functions and prove some basic results about them, such as subadditivity
property, the approximation theorem. We also treat some applications in
complex algebraic geometry.

1. Introduction

Given a line bundle L on a smooth projective complex variety, a classical theorem
of Kodaira asserts that if L carries on a smooth metric with positive curvature, then
L is ample; equivalently, the global sections of a multiple of L give an embedding
to a projective space and hence induce such a metric on L . More generally, global
sections of a multiple of L induce a semipositive singular metric. Conversely,
given a semipositive singular metric h, the local weight function ϕ, which is
plurisubharmonic (psh for short), should be related to sections of multiples of L , or
perhaps of a small perturbation of L . See [Lehmann 2011] for more details.

On the other hand, if we work locally near the origin of Cn , then Section 5 of
[Boucksom et al. 2008] shows that we can transform a psh germ ϕ to a formal
psh function ϕ̂ on quasimonomial valuations centred at the origin. This valuative
transform usually loses much information on the original psh function, however, it
preserves the information on the singularity of ϕ. In particular, they give the same
multiplier ideals which essentially means that they characterize the same singularity
because of the Demailly’s approximation. The idea of studying psh functions using
valuations was systematically developed in the work just cited and its predecessors
[Favre and Jonsson 2004; 2005a; 2005b]. The main purpose of this paper is to
define a similar notion of qpsh functions on a separated, regular, connected and
excellent schemes over Q, and we then study these functions.

Although we don’t discuss Berkovich spaces in this paper, our work should
be related to the qpsh functions (or metrics on line bundles) on the Berkovich

MSC2010: primary 14F18; secondary 12J20.
Keywords: multiplier ideals, valuations.
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space associated to a smooth projective variety over a trivially valued field. See
[Boucksom et al. 2012b; 2012c].

Let us briefly introduce some terminology. Roughly speaking, we consider a
function ϕ on divisorial valuations on a scheme X such that ϕ(t ordE)= tϕ(ordE)

and supE |ϕ(ordE)|/A(ordE) <+∞, where E runs over all prime divisors over X .
We prove that such functions form a Banach space BH(X) if we equip it with
the norm ‖ϕ‖ = supE |ϕ(ordE)|/A(ordE) (see Proposition 3.2). By convention we
set log |a|(ordE) = − ordE(a) for a nonzero coherent ideal sheaf a, and one can
easily check that log |a| is a valuative function in BH(X). We define the set of qpsh
functions QPSH(X) to be the closed convex cone generated by functions of the
form log |a|. We then define the multiplier ideal J(ϕ) of a qpsh function ϕ to be the
largest ideal a such that supE(− ordE(a)−ϕ(ordE))/A(ordE) < 1. This definition
is reasonable because of Proposition 4.3 and Corollary 4.14.

Our first main result is that a qpsh function is a decreasing limit of a sequence
of qpsh functions of the form ck log |bk |. In complex analysis and geometry, such
a regularization is crucial. See [Demailly 1992; 1993]. Moreover, we prove that
we can actually choose bk = J(kϕ) satisfying the subadditivity property. See
Proposition 4.22(1). Readers can compare this result with [Demailly et al. 2000].

Theorem 1.1 (cf. Theorem 4.24). Let ϕ be a bounded homogeneous function. Then
ϕ is qpsh if and only if ϕ is the limit function, in norm, of a decreasing sequence of
qpsh functions of the form ck log |bk |. Furthermore, we can choose ck = 1/k and
bk = J(kϕ) which form a subadditive sequence of ideals.

Given an ideal a on a scheme X , the log canonical threshold lct(a) is a fundamen-
tal invariant both in singularity theory and birational geometry (see [Lazarsfeld 2004;
Kollár and Mori 1998], etc.). The log canonical threshold admits the following
description in terms of valuations:

lct(a)= inf
E

A(ordE)

ordE(a)
,

where E runs over all prime divisors over X and A(ordE)= ordE(KY/X )+ 1. In
fact in the above formulae one can take the infimum over all real valuations centred
on X . It is well-known that if Y is a log resolution of a, then there exists some
prime divisor E on Y such that ordE computes the log canonical threshold, that
is, lct(a) = A(ordE)/ordE(a). Given a qpsh function ϕ, we can define the log
canonical threshold lct(ϕ) as the limit of 1/ck lct(ak), where ck log |ak | converges
to ϕ strongly in norm. We show that

lct(ϕ)= inf
E

A(ordE)

−ϕ(ordE)
.
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Unfortunately, there might be no divisorial valuation that computes the log canonical
threshold in general. However, we can prove that there exists a real valuation that
computes the log canonical threshold. This has been heavily studied in [Jonsson
and Mustat,ă 2012; 2014] and other references. Conjecture B of [Jonsson and
Mustat,ă 2012] suggests that a valuation that computes the norm is quasimonomial
(see Conjecture 5.9). Equivalently we consider the reciprocal of the log canonical
threshold, which is exactly the norm of ϕ by definition. More generally, for a
nonzero ideal q we consider ‖ϕ‖q := supE(−ϕ(ordE)/(A(ordE)+ ordE(q)), and
we prove that there exists a real valuation that computes this norm. The proof in
this paper mainly follows the strategy of [Jonsson and Mustat,ă 2012]. A similar
result appears in [Jonsson and Mustat,ă 2014].

Theorem 1.2 (Theorem 5.2). Let ϕ ∈ QPSH(X) be a qpsh function and let q be
a nonzero ideal on X. Then there exists a nontrivial tempered valuation v that
computes ‖ϕ‖q.

If X is a complex projective variety, then we can provide QPSH(X) with more
structures. Namely, given a Q-line bundle L on X , we say that the function λ log |a|
is L-psh if λ is a nonnegative rational number and L ⊗ aλ is semi-ample. We can
then define PSH(L) ⊆ QPSH(X) as the closure of the set of such functions. We
also define the set of pseudo L-psh functions as PSHσ (L) :=

⋂
ε>0 PSH(L + εA),

where A is an ample line bundle. See the section on D-psh functions (page 118)
for more details.

In this setting, we show that there exists the maximal L-psh function ϕ that
can be written explicitly as ϕ(v) = −v(‖L‖), and that there exists the maximal
pseudo L-psh function φ that can be written explicitly as φ(v)=−σv(‖L‖) (see
Propositions 6.10 and 6.11). As an immediate corollary we generalize Theorem 6.14
of [Lehmann 2011] as follows (see that paper for the definitions of the perturbed
ideal and the diminished ideal).

Theorem 1.3 (Theorem 6.16). Let D be a pseudo-effective divisor. Assume that
φmax is the maximal pseudo D-psh function. Then the perturbed ideal and the
diminished ideal are Jσ,−(D)= J−(φmax) and Jσ (D)= J(φmax), respectively. In
particular, we can write Jσ (D) explicitly as

0(U,Jσ (L))= { f ∈ 0(U,OX ) | v( f )+ A(v)− σv(‖L‖) > 0 for all v ∈ V∗U }.

Further, a nonzero ideal q⊆ Jσ (‖L‖) if and only if v(q)+ A(v)−σv(‖L‖) > 0 for
all v ∈ V∗X .

In the last subsection of this paper, we prove the finite generation of a divisorial
module as another application. The proposition below can also be obtained using
minimal model theory (see Remark 6.21). Note that our proof here avoids using
“the length of extremal rays” (see [Birkar and Hu 2012]).
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Proposition 1.4 (Proposition 6.18). Let (X, B) be a log canonical pair. Assume that
K X+B is Q-Cartier and abundant, and that R(K X+B) is finitely generated. Then,
if F is any reflexive sheaf , M p

F(K X + B) is a finitely generated R(K X + B)-module.

This proposition can be slightly generalized (see Proposition 6.24).

2. Valuation spaces

Throughout this paper, all schemes are assumed to be separated, regular, connected
and excellent schemes over Q. All rings are assumed to be integral, regular and
excellent rings containing Q. An ideal on a scheme means a coherent ideal sheaf on
a scheme. A birational model of a scheme is a model birational to and proper over
this scheme, and a divisor over a scheme is a divisor on a birational model of the
scheme. For definitions and properties of valuations, multiplier ideals, singularities
in birational geometry, etc., see [Kollár and Mori 1998; Lazarsfeld 2004; Jonsson
and Mustat,ă 2012]. From now on we abbreviate this last reference as [JM12].

Real valuations. Let X be a scheme, and let K (X) be its function field. A real
valuation v is a function v : K (X)∗ → R such that v( f g) = v( f ) + v(g) and
v( f + g)≥min{v( f ), v(g)}. By convention we set v(0) := +∞. Let

Ov := { f | v( f )≥ 0}

be its valuation ring. If there exists a point ξ ∈ X such that the morphism OX,ξ ↪→Ov
is a local homomorphism, then ξ is called the centre of v on X and denoted by
cX (v). Note that ξ is unique since X is separated, and also note that the centre
always exists provided that X is complete. A real valuation with centred on X is
called a real valuation on X or simply a valuation on X , and we denote by ValX the
set of valuations on X . The set of valuations ValX is independent of the choice of a
birational model of X . More precisely, if Y → X is a proper birational morphism
of schemes, then ValX =ValY . A valuation v on X is said to be the trivial valuation
if its centre cX (v) is the generic point of X . We denote by Val∗X ⊆ ValX the set of
nontrivial valuations on X .

The set ValX can be equipped with an induced topology defined by the maps
v→ v( f ) for all rational functions f ∈ K (X)∗. For every nonzero ideal a, we have
that v(a) is well defined and v(a)= v(a), where a denotes the integral closure of a.
Note that the topology on ValX defined by pointwise convergence on ideals on X is
equivalent to that on functions in K (X). Readers can consult [JM12, Section 1] for
more details.

In this topology, the map cX : ValX → X is anti-continuous. That is, the inverse
image of an open subset is closed. More precisely, if U ⊆ X is an open subset and
m is the defining ideal of X \U , then ValU = {v ∈ ValX | v(m) = 0} and ValU is
closed in ValX .



VALUATIVE MULTIPLIER IDEALS 99

For two valuations v, w on X , we say that v ≤ w if v(a) ≤ w(a) for every
nonzero ideal a. This is equivalent to that the centre η := cX (w) ∈ cX (v) and that
v( f )≤ w( f ) for every nonzero local function f ∈ OX,η.

Quasimonomial valuations. Let X be a scheme, let ξ ∈ X be a point, and let
x = (x1, . . . , xr ) be a regular system of parameters at ξ . If f ∈ OX,ξ is a local
regular function, then f can be expressed as f =

∑
β cβxβ in ÔX,ξ with each

coefficient cβ either zero or a unit. For each α = (α1, . . . , αr ) ∈ Rr
≥0, we define a

real valuation by valξ,α( f )=min{〈α, β〉 | cβ 6= 0}, where 〈α, β〉 :=
∑

i αiβ
i , which

is called a monomial valuation on X .
A pair (Y, D) is called log smooth if Y is a scheme and D is a reduced divisor

whose components are regular subschemes intersecting each other transversally. A
pair (Y, D) is called a log resolution of X if there is a birational projective morphism
π : Y→ X and (Y, D+KY/X ) is log smooth. Let (Y ′, D′) be another log resolution
of X , we say (Y ′, D′) � (Y, D) if Y ′ is projective over Y and the support of D′

contains the support of the pullback of D. Note that log resolutions of X form an
inverse system.

Let (Y, D) be a log resolution of X , and let η be the generic point of an irreducible
component of the intersection of some prime components of D. We denote by
QMη(Y, D) the set of real valuations which can be defined as a monomial valuation
at η. Note that η ∈ cX (v) and QMη(Y, D) ∼= Rr

≥0 as topological spaces. We also
define

QM(Y, D)=
⋃
η QMη(Y, D),

where η runs over every generic point of some component of the intersection of
some prime components of D. A real valuation v is said to be quasimonomial if
there exists a log resolution (Y, D) such that v ∈ QM(Y, D).

Remark 2.1. Let0v=v(K (X)∗)⊆R be the value group of v. Denote by ratrk(v)=
dimQ(0v ⊗Z Q) the rational rank of v, and let kv, k(ξ) be the residue fields of Ov,
OX,ξ respectively, where ξ = cX (v). If we let trdegX (v) = trdeg(kv/k(ξ)) be the
transcendental degree of v over X , we have Abhyankar’s inequality ratrk(v)+
trdegX (v)≤ dim(OX,ξ ). Quasimonomial valuations are exactly the ones that give
equality in the Abhyankar’s inequality; see [JM12, Proposition 3.7].

Let v ∈ ValX be a quasimonomial valuation. A log smooth pair (Y, D) is said
to be adapted to v if v ∈ QM(Y, D). We say (Y, D) is a good pair adapted to v if
{v(Di ) | v(Di ) > 0} are rationally independent.

Lemma 2.2 [JM12, Lemma 3.6]. Let v ∈ ValX be a quasimonomial valuation.
There exists a good pair (Y, D) adapted to v. If (Y ′, D′)� (Y, D) and (Y, D) is a
good pair adapted to v, then (Y ′, D′) is also a good pair adapted to v.
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An important class of valuations are divisorial valuations. A valuation is called
divisorial if it is positively proportional to ordE for some prime divisor E over X ,
where ordE is the vanishing order along E . One easily verifies that the trivial
valuation is quasimonomial of rational rank zero, and a divisorial valuation is
quasimonomial of rational rank one. Let (Y, D) be a log smooth pair adapted to v.
It can be verified that v is divisorial if and only if R≥0[v] ⊆QMη(Y, D)∼= Rr

≥0 is a
rational ray, that is, R≥0[v] contains some rational point in Rr

≥0.
For every log resolution (Y, D) we can define the retraction map

rY,D : ValX → QM(Y, D)

by taking v to a quasimonomial valuation in QM(Y, D) with rY,D(v)(Di )= v(Di ).
Note that rY,D is continuous and that v ≥ rY,D(v) with equality if and only if
v ∈ QM(Y, D). Furthermore, if (Y ′, D′) � (Y, D) is another resolution, then the
retraction map rY,D : QM(Y ′, D′)→ QM(Y, D) (by abuse of notation if without
confusion) is a surjective mapping that is integral linear on every QMη′(Y ′, D′) and
we have that rY,D ◦ rY ′,D′ = rY,D . Therefore we can naturally regard QM(Y, D) as
a subset of QM(Y ′, D′), and hence of the set of quasimonomial valuations on X .
Also note that v(a) ≥ rY,D(v)(a) for an ideal a on X , with equality if (Y, D) is a
log resolution of a; see [Lazarsfeld 2004] and [JM12, Corollary 4.8].

Tempered valuations. We first introduce the log discrepancy on an arbitrary scheme.
Let π : Y → X be a birational proper morphism. The 0-th Fitting ideal Fitt0(�Y/X )

is a locally principal ideal with its corresponding effective divisor denoted by KY/X ;
see [JM12, Section 1.3]. For a quasimonomial valuation v ∈ QM(Y, D), we define
the log discrepancy

AX (v)=
∑

v(Di ) · AX (ordDi )=
∑

v(Di ) · (1+ ordDi (KY/X )).

We simply denote this by A when the scheme X is obvious. Note that A is
strictly positive linear on every QMη(Y, D), and in particular continuous on every
QMη(Y, D) (or is weakly continuous according to Definition 3.4). Also note that if
(Y ′, D′)� (Y, D) and v ∈ QM(Y ′, D′), then A(v)≥ A(rY,D(v)) and equality holds
only when v ∈ QM(Y, D). For an arbitrary valuation v ∈ ValX , we define

A(v)= sup
(Y,D)

A(rY,D(v)) ∈ [0,+∞].

Note that A is lower-semicontinuous (lsc) as a valuative function.

Definition 2.3. A valuation v is said to be tempered if A(v) <∞. The valuation
space VX of X is defined to be the space of tempered valuations as a subspace of
ValX .
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We similarly denote by V∗X the subset of nontrivial tempered valuations. If
f : X ′→ X is a proper birational morphism, then AX (v) = AX ′(v)+ v(K X ′/X )

(see [JM12, Proposition 5.1(3)]) and hence VX ′ = VX . Since VX is a topological
subspace of ValX , it is naturally a subspace of the Berkovich space Xan . See [JM12,
Section 6.3] for a comparison.

With the aid of the log discrepancy, we can normalize V∗X by letting A(v)= 1,
that is, we define 3X := {v ∈ V∗X | A(v) = 1}. In particular, we normalize every
cone complex QM(Y, D) by setting 1(Y, D) := {v ∈ QM(Y, D) | A(v)= 1}. It is
clear that 1(Y, D) naturally possesses the structure of a simplicial complex, and
by convention we say that 1(Y, D) is a dual complex. Readers can compare the
constructions here with [Boucksom et al. 2008; 2012b; 2012c].

The following lemma allows us to compare v and ordξ , where ξ = cX (v), which
is quite useful (see [Lazarsfeld 2004] or [JM12, Section 5.3] for the definition of
ordξ ). See [JM12, Proposition 5.10] for a proof. Recently S. Boucksom, C. Favre
and M. Jonsson [Boucksom et al. 2012a] gave a refinement of the following lemma.

Lemma 2.4 (Izumi-type inequality). Let ξ = cX (v) and mξ be the defining ideal of
{ξ}. Then we have v(mξ ) ordξ ≤ v ≤ A(v) ordξ .

Passing to the completion. A morphism f : X ′→ X is regular if it is flat and its
fibres are geometrically regular (see [JM12, Section 1.1]). The following lemma on
log discrepancy is essential for finding a valuation that computes the log canonical
threshold or norms in Section 5.

Lemma 2.5 [JM12, Proposition 5.13]. Let f : X ′→ X be a regular morphism, and
let f∗ : ValX ′→ ValX be the induced map. If v′ ∈ ValX ′ is a valuation on X ′, then
A(v′) ≥ A( f∗(v′)). If we assume further that X ′ = Spec ÔX,ξ and v′ is centred at
the closed point of X ′, then A(v′)= A( f∗(v′)).

Definition 2.6. If ξ ∈ X is a point, then we define VX,ξ := c−1
X (ξ) as a subspace

of VX . We can normalize VX,ξ by letting v(m)= 1, where m is the defining ideal
of {ξ}. More precisely we define VX,ξ := {v ∈ VX,ξ | v(m)= 1}. Let M > 0 be a
positive real number. We also define VX,ξ,M := {v ∈ VX,ξ | A(v)≤ M}. According
to [JM12, Proposition 5.9] the space VX,ξ,M is compact. If X = Spec A and m is
the defining ideal of {ξ}, we often use the notation VA,m instead of VX,ξ .

Let (R,m) be a local ring. Given a tempered valuation v ∈ VR,m, we define
v′( f )= limk→∞ v(ak) for every f ∈ R̂, where ak · R̂= f +m̂k . This is well-defined
since v(ak) ≤ A(v) ordξ (ak) ≤ A(v) ordξ ′( f ) < ∞ by Lemma 2.4. The above
definition leads to a correspondence between the valuation spaces of Spec R and
Spec R̂ as follows. Throughout this paper we will use the notations v and v′ to
indicate that v = f∗v′ for simplicity if without confusion.
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Proposition 2.7. Let (R,m) be a local ring, and let (R̂, m̂) be its m-adic com-
pletion. If we denote by f : Spec R̂→ Spec R the canonical morphism, then the
induced map f∗ : VR̂,m̂→ VR,m is bijective. If K ′ is a compact subspace of VR̂,m̂,
then f∗ is a homeomorphism from K ′ to its image. In particular, VR̂,m̂,M

∼= VR,m,M

for any positive number M.

Proof. The bijectivity of f∗ follows from [JM12, Corollary 5.11], and we will prove
the latter statement. Let K = f∗(K ′). It suffices to show that K ′ is homeomorphic
to K . Let h ∈ R̂ be a nonzero function. We have that maxv′∈K ′ v

′(h) = α <∞
since K ′ is compact. If g ∈ R is a nonzero function such that g − h ∈ m̂n in R̂
for some n > α. Then v′(g− h) ≥ nv′(m̂) > v′(h) for all v′ ∈ K ′. It follows that
v(g)= v′(g)= v′(h) for all v′ ∈ K ′ and hence they induce the same topology. �

3. Functions on valuation spaces

In this section we will discuss various classes of functions on valuation space with
an emphasis on the quasi-plurisubharmonic (qpsh for short) functions.

Bounded homogeneous functions. Let X be a scheme and VX be its valuation
space. A valuative function ϕ is homogeneous if ϕ(tv)= tϕ(v) for all v ∈ VX and
t ∈ R+. A valuative function ϕ is bounded if supv∈V∗X

|ϕ(v)|/A(v) <∞. The set
of bounded homogeneous functions (denoted by BH(X)) forms an R-linear space,
which can be equipped with the norm ‖ϕ‖= supv∈V∗X

|ϕ(v)|/A(v). If q is a nonzero
ideal on X , then we define the q-norm as ‖ϕ‖q = supv∈V∗X

|ϕ(v)|/(A(v)+ v(q)).
We also define

‖ϕ‖+q := sup
v∈V∗X

ϕ(v)

A(v)+ v(q)
and

‖ϕ‖−q := sup
v∈V∗X

−ϕ(v)

A(v)+ v(q)
.

Clearly, ‖ϕ‖+q = ‖−ϕ‖
−
q and ‖ · ‖q =max{‖ · ‖+q , ‖ · ‖

−
q }.

Lemma 3.1. Given two nonzero ideals p, q on X , the p-norm and the q-norm are
equivalent.

Proof. We first assume that p= OX . Then we have the inequalities

‖ · ‖q ≤ ‖ · ‖ ≤

(
1+ sup

v∈V∗X

v(q)

A(v)

)
‖ · ‖q.

Note that supv∈V∗X
v(q)/A(v) = maxDi (ordDi (q)/A(ordDi )) <∞, where Di runs

over all irreducible components of D on a birational model Y such that (Y, D) is a
log resolution of q. This implies that 1+ supv∈V∗X

v(q)/A(v) <∞ and leads to the
conclusion. �
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Proposition 3.2. Given a scheme X , BH(X) is a Banach space. If f : X ′ → X
is a regular morphism and f∗ : VX ′ → VX is the induced map, then the induced
map f ∗ : BH(X)→ BH(X ′) by taking ϕ to ϕ ◦ f∗ is a bounded linear operator of
Banach spaces. More precisely, ‖ f ∗(ϕ)‖q·OX ′

≤ ‖ϕ‖q for any nonzero ideal q on X.

Proof. Note that a bounded homogeneous function ϕ is also a function on 3X ,
defined by {v ∈ V∗X | A(v) = 1}, with the norm supv∈3X

|ϕ(v)| <∞. If {ϕm} is
a Cauchy sequence in BH(X), then ϕm converges pointwise to a homogeneous
function ϕ. Since supv∈3X

|ϕ(v)| ≤ supv∈3X
|ϕ(v)−ϕm(v)|+supv∈3X

|ϕm(v)|<∞,
ϕ is a bounded homogeneous function. This proves that BH(X) is a Banach space.
For the second statement, simply note that

‖ f ∗(ϕ)‖q·OX ′
= sup
v′∈V∗X ′

|ϕ(v)|

A(v′)+ v′(q ·OX ′)
≤ sup
v∈V∗X

|ϕ(v)|

A(v)+ v(q)
= ‖ϕ‖q.

by Lemma 2.5. �

Remark 3.3. Let ϕ be a bounded homogeneous function such that ϕ(v)=−v(a)
for some nonzero ideal a on X . It is easy to see that the norm ‖ϕ‖q is exactly the
Arnold multiplicity Arnqa, and its reciprocal is the log canonical threshold lctqa.
We will discuss this type of functions in detail later.

Definition 3.4. A bounded homogeneous function ϕ is said to be weakly continuous
if ϕ is continuous on every dual complex 1(Y, D).

Example 3.5. (1) As we already mentioned, the log discrepancy A is a weakly
bounded homogeneous function.

(2) If {ϕk} is a sequence of continuous, bounded homogeneous functions that
converges to a function ϕ strongly in norm, then ϕ is weakly continuous.

Ideal functions and qpsh functions. Given a nonzero ideal a, we define |a|(v)=
−ev(a) by convention. It is obvious that log |a| is a continuous, bounded homoge-
neous function.

Definition 3.6. A bounded homogeneous function ϕ is said to be an ideal function
if there exists a finite number of nonzero ideals a j and positive real numbers c j

such that ϕ =
∑l

j=1 c j log |a j |.

Lemma 3.7. Let ϕ=
∑l

j=1 c j log |a j | be an ideal function on X and q be a nonzero
ideal. Then,

‖ϕ‖q =max
E

{ ∑l
j=1 c j ordE a j

A(ordE)+ ordE q

}
for some prime divisor E over X.
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Proof. Let (Y, D) be a log resolution of q ·
∏l

j=1 a j , and let Di ’s be the irreducible
components of D. By an easy computation, we see that

‖ϕ‖q =max
Di

{ ∑l
j=1 c j ordDi a j

A(ordDi )+ ordDi q

}
,

where Di runs over all irreducible components of D. �

Lemma 3.8. Let ϕ be a bounded homogeneous function which is determined on
some dual complex 1(Y, D) in the sense of ϕ = ϕ ◦ rY,D . Assume that ϕ is affine on
each face of the dual complex1(Y, D) and that (Y ′, D′)� (Y, D). Then ϕ=ϕ◦rY ′,D′

which is also affine on each face of the dual complex 1(Y ′, D′).

Proof. The assumption that ϕ is affine on each face of the dual complex 1(Y, D) is
equivalent to that ϕ is linear on each simplicial cone of QM(Y, D). The conclusion
follows from the fact that rY,D is linear on each simplicial cone of QM(Y ′, D′). �

Definition 3.9. A bounded homogeneous function ϕ is a quasi-plurisubharmonic
(qpsh for short) function if there exists a sequence of ideal functions that converges
to ϕ strongly in norm. The set of qpsh functions, which is a closed convex cone in
BH(X), is denoted by QPSH(X).

Definition 3.10. The support of a qpsh function is the set of elements of the form
cX (v), for some nontrivial tempered valuation v such that ϕ(v) < 0.

If ϕ =
∑l

j=1 ci log |ai | is an ideal function, then the support of ϕ is the union of
the vanishing loci V (a j ) and hence proper closed. We will see that the support of a
qpsh function is a countable union of proper closed subsets. See Corollary 4.26.

Proposition 3.11. Let ϕ ∈QPSH(X) be a qpsh function. Then, ϕ is convex on each
face of every dual complex 1(Y, D). Moreover, ϕ ◦ rY,D form a decreasing net
of continuous functions that converges to ϕ strongly in norm. In particular, ϕ is
weakly continuous and upper-semicontinuous (usc for short).

Proof. To show that ϕ is convex on each face of every dual complex 1(Y, D), it
suffices to prove this when ϕ is an ideal function. We can assume that ϕ = c log |a|.
Let η be a generic point of the intersection of D1, . . . , Dl . We will prove that
ϕ is convex on QMη(Y, D), which essentially implies the convexity on 1(Y, D).
To this end, assume that v =

∑k
j=1λ jv j such that v, v j ∈ QMη(Y, D), λ j > 0 for

every j and
∑k

j=1λ j = 1. Assume further that a ·OY is principal near η generated
by f . If we consider the local coordinates y = {y1, . . . , yl} with the origin η, then
v and v j can be represented by α = (α1, . . . , αl) and α j = (α

1
j , . . . , α

l
j ) with the

values v( f )=min
{
〈α, β〉 | f =

∑
cβ yβ

}
and v j ( f )=min

{
〈α j , β〉 | f =

∑
cβ yβ

}
.

Obviously, v( f )≥
∑k

j=1λ jv j ( f ) and we obtain the required convexity. If a ·OY is
not principal, then ϕ is the maximum of a finite number of convex functions and
hence convex.
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Given an arbitrary qpsh function ϕ, the functions ϕ ◦ rY,D form a decreasing net
because v≤ rY,D(v), and ϕ is continuous on1(Y, D) because it is the uniform limit
function of continuous functions. It suffices to show that ϕ ◦ rY,D converges to ϕ
strongly in norm. To this end, consider a sequence of ideal functions ϕ j = c j log |a j |

that converges to ϕ strongly in norm. We then obtain that

‖ϕ−ϕ ◦ rY,D‖ ≤ ‖ϕ−ϕ j‖+‖ϕ j −ϕ ◦ rY,D‖ ≤ 2‖ϕ−ϕ j‖

if (Y, D) is a log resolution of a j , which completes the proof. �

Remark 3.12. The proposition above implies that a qpsh function is uniquely
determined by its values on divisorial valuations. In fact, if ϕ and φ have the same
values on divisorial valuations, then ϕ = φ on every dual complex 1(Y, D) by
continuity and hence ϕ = φ on VX .

The following example shows that the pointwise limit of a decreasing sequence
of ideal functions is not qpsh in general.

Example 3.13. Let X = Spec k[x] be an affine line, and let φk =
∑k

j=1 log | f j |,
where f j = x − j . We see that φk is a decreasing sequence of ideal functions and
the pointwise limit function ϕ exists. But ϕ is not qpsh because ‖ϕ−φ‖ ≥ 1 for
any ideal function φ.

If f : X ′→ X is a regular morphism and ϕ is a qpsh function on X , then f ∗ϕ
is a qpsh function on VX ′ by Proposition 3.2. In particular if f : U → X (resp.
f : Spec OX,ξ → X ) is an open inclusion, we say that f ∗ϕ is the restriction (resp.
germ) of ϕ, denoted by ϕ|U (resp. ϕξ ). Also, restrictions to the neighbourhoods of
a point ξ induce a map QPSH(X)→ lim

−→U3 ξ
QPSH(U ), and the image of ϕ is also

said to be the germ of ϕ, denoted by ϕ|ξ .
If ξ is not contained in the support of a qpsh function ϕ, then ϕξ = 0 by

Proposition 3.11. However, the following example shows that it could happen
that the germ of ϕ is nonzero in the set lim

−→U3 ξ
QPSH(U ).

Example 3.14. Let X=Spec k[x] be an affine line, and let φk=
∑k

m=1 2−m log | fm |,
where fm = x − 1/m. It is easy to see that φk converges to a function φ strongly in
norm. Note that the origin is not contained in the support of φ, but the germ of φ
in lim
−→U3 0

QPSH(U ) is nonzero.

From this example we see that if we define ‖ϕ|ξ‖ := infU3 ξ ‖ϕ|U‖, then ‖ · ‖ is
only a seminorm.

Proposition 3.15. There is a surjective map of convex cones

r : lim
−−→
U3 ξ

QPSH(U )→ QPSH(Spec OX,ξ )

which preserves the seminorm, and also preserves ‖ · ‖+ and ‖ · ‖−.
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Proof. If ϕ=c log |a| and ϕ′=c′ log |a|, then we claim that ‖ϕ|ξ−ϕ′|ξ‖=‖ϕξ−ϕ′ξ‖.
To this end, let µ : (Y, D)→ X be a log resolution of a ·a′, and let a ·OY = OY (−F)
and a′ ·OY = OY (−F ′). One can easily check that

‖ϕ|ξ −ϕ
′
|ξ‖ = max

Di∈S

| ordDi F − ordDi F ′|
A(ordDi )

,

where S consists of irreducible components Di of D such that µ(Di ) contains ξ in
its support. This implies the claim.

Given a qpsh function ϕξ ∈ QPSH(Spec OX,ξ ), there exists a sequence of ideal
functions ϕξ,i = ci log |aξ,i | that converges to ϕξ strongly in norm. Let ai be ideals
on X such that ai · OX,ξ = aξ,i . We have that ϕi = ci log |ai | converges to a qpsh
function in lim

−→U3 ξ
QPSH(U ) strongly in norm due to the previous claim. Therefore

we obtain the surjectivity of r .
Finally, for two qpsh functions ϕ and ϕ′ on an open neighbourhood of ξ , the

equality ‖ϕ|ξ − ϕ′|ξ‖ = ‖ϕξ − ϕ′ξ‖ follows from the claim in the first paragraph.
Apply a similar argument to ‖ · ‖+ and ‖ · ‖−, we obtain the conclusion. �

From the discussion above, we see that ϕ|ξ provides more information while it is
not a valuative function. We sometimes identify ϕ|ξ and ϕξ as the germ of ϕ at ξ .

4. Multiplier ideals

We will now discuss the multiplier ideals of qpsh functions. Recall that a graded
sequence of ideals a• is a sequence of ideals that satisfies am · an ⊆ am+n . By
convention we put a0 = OX , and we say a• is nontrivial if am 6= 0 for some positive
integer m. Note that in this case there are infinitely many m such that am 6= 0. A
subadditive sequence of ideals b• is a one-parameter family bt satisfying bs ·bt⊇bs+t

for every s, t ∈ R+. Similarly, we put b0 = OX and we say that b• is nontrivial if
bt 6= 0 for all t ∈ R+. Throughout this paper, every sequence of ideals is assumed
to be nontrivial. We define v(a•)= infm≥1 v(am)/m and v(b•)= supt>0 v(bt)/t as
in [Ein et al. 2006]. We similarly define |a•|(v)= e−v(a•) and |b•|(v)= e−v(b•) for
a graded sequence and a subadditive sequence of ideals respectively.

Multiplier ideals.

Definition 4.1. For a bounded homogeneous function ϕ ∈ BH(X), the multiplier
ideal J(ϕ) of ϕ is the largest ideal in the set of nonzero ideals {a | ‖log |a|−ϕ‖+<1}.
If this set is empty, then we define J(ϕ)= (0).

Remark 4.2. We will see that the set above is always nonempty when ϕ is qpsh
and J(ϕ) is therefore nonzero (see Remark 4.21). Moreover, we have the inequality
ϕ ≤ log |J(ϕ)| (see Remark 4.21), and hence ‖log |J(ϕ)| −ϕ‖< 1 holds.
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The following proposition shows that our definition of multiplier ideals coincides
with the classical definition of multiplier ideals.

Proposition 4.3. If ϕ is an ideal function and we write ϕ =
∑l

i=1 ci log |ai |, then
J(ϕ)= J

(∏l
i=1 ai

ci
)
.

Proof. Let π : (Y, D)→ X be a log resolution of
∏l

i=1 ai, and ai ·OY = OY (−Fi )

with Fi being supported in D. Since J
(∏l

i=1 ai
ci
)
= π∗OY

(
KY/X − x

∑l
i=1 ci Fiy

)
,

it is easy to check that
∥∥log

∣∣J(∏l
i=1 ai

ci
)∣∣−ϕ∥∥+ < 1, which immediately implies

that J(ϕ)⊇ J
(∏l

i=1 ai
ci
)
.

Conversely, if f ∈ 0(U,J(ϕ)) is a regular function on an affine open subset U ,
then ‖log | f |−ϕ|U‖+< 1. It follows that v( f )+ A(v)+ϕ( f ) > 0 for all nontrivial
tempered valuations v on U . In particular, ordE f + ordE KY/X + 1>−ϕ(ordE)

for any prime divisor E on π−1U . Thus f ∈ 0
(
U,J

(∏l
i=1 ai

ci
))

and it follows
that J(ϕ)⊆ J

(∏l
i=1 ai

ci
)
. �

The lemmas below will be frequently used in this paper.

Lemma 4.4. Given a nonzero ideal q and a qpsh function ϕ ∈QPSH(X), q⊆J(λϕ)

if and only if λ−1 > ‖ϕ‖q. Thus ‖ϕ‖−1
q =min{t | q* J(tϕ)}.

Proof. If q⊆ J(λϕ), then ‖ log |q| − λϕ‖+ < 1 by definition. That is,

sup
v∈V∗X

−v(q)− λϕ(v)

A(v)
< 1.

This implies that −v(q)− λϕ(v)≤ (1− ε)A(v) for every v ∈ V∗X . Thus

−λϕ(v)

A(v)+ v(q)
≤
(1− ε)A(v)+ v(q)

A(v)+ v(q)
≤ (1− ε)+ ε‖log |q|‖q < 1

by Lemma 3.7. We obtain λ−1 > ‖ϕ‖q by definition.
Conversely we assume that ‖ϕ‖q = supv∈V∗X

(−λϕ(v))/(A(v)+ v(q)) < 1. Then
−λϕ(v)≤ (1− ε)(A(v)+ v(q)). Therefore

−v(q)− λϕ(v)

A(v)
≤ 1− ε− ε

v(q)

A(v)
≤ 1− ε

for a sufficiently small ε which leads to the conclusion q⊆ J(λϕ). �

Lemma 4.5. Let ξ be a point of a scheme X , and ϕ be a qpsh function. Assume
that the multiplier ideal J(ϕ) is nonzero. (In fact, this assumption automatically
holds by Lemma 4.20 and Remark 4.21.) Then:

(1) J(ϕ|U )= J(ϕ) ·OU .

(2) J(ϕξ )= J(ϕ) ·OX,ξ .

(3) Set λ−1
:= ‖ϕ‖q. If ξ ∈ V(J(λϕ) : q), then ‖ϕ‖q = ‖ϕξ‖q·OX,ξ .
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Proof. (1) Since ‖log |J(ϕ) · OU | − ϕ|U‖
+
≤ ‖log |J(ϕ)| − ϕ‖+ < 1, we have

J(ϕ) · OU ⊆ J(ϕ|U ). On the other hand, if we denote by m the defining ideal of
X \U , then there exists a sufficiently large integer k such that v(J(ϕ))≤ v(mk) for
all valuations v centred in X \U . Now we extend J(ϕ|U ) to X and still denote it by
J(ϕ|U ). Therefore ‖log |J(ϕ|U )·mk

|−ϕ‖+< 1, which implies J(ϕ|U )⊆J(ϕ)·OU .

(2) First note that ‖log |J(ϕ) ·OX,ξ |−ϕξ‖
+
≤ ‖log |J(ϕ)|−ϕ‖+< 1, and it follows

that J(ϕ) ·OX,ξ ⊆ J(ϕξ ). For the inverse inclusion, we see that if f ∈ J(ϕξ ), then
there exists an open neighbourhood U of ξ such that ‖log | f | − ϕ|U‖+ < 1 by
Proposition 3.15. Thus f ∈ J(ϕ|U ) ·OX,ξ = J(ϕ) ·OX,ξ .

(3) It is obvious that ‖ϕ‖q ≥ ‖ϕξ‖q·OX,ξ by Proposition 3.2. If ξ ∈ V(J(λϕ) : q),
then (J(λϕξ ) : q ·OX,ξ )= (J(λϕ) : q) ·OX,ξ 6= OX,ξ . Therefore q ·OX,ξ * J(λϕ|ξ )

and λ−1
≤ ‖ϕξ‖q·OX,ξ by Lemma 4.4. �

Algebraic qpsh functions.

Definition 4.6. A qpsh function ϕ ∈QPSH(X) is algebraic if it is the limit function
of an increasing sequence of ideal functions ϕ = limm→∞ ϕm (in norm). Note that
ϕ being algebraic implies that tϕ is algebraic for any t ∈ R>0, and that ϕ + ψ
is algebraic provided that ψ is another algebraic qpsh function. Thus the set of
algebraic qpsh functions is a convex subcone of QPSH(X), denoted by QPSHa(X).

An algebraic function is lower-semicontinuous (lsc for short) on VX by its
definition, and usc by Proposition 3.11, so it is continuous. We will see that in
Definition 4.6 the phrase “in norm” is not necessary; that is, the pointwise limit of
an increasing sequence of ideal functions is algebraic qpsh (see Lemma 4.15). One
can compare this fact with Remark 4.25. The following example shows that a qpsh
function is not necessarily algebraic.

Example 4.7. Let X = Spec k[x1, x2] be the affine plane. If we set

φk =

k∑
l=1

1
2l log | fl |, where fl = x1+ x2l

2 ,

then φk converges to a qpsh function φ strongly in norm. However, the qpsh function
φ is not algebraic since there is no ideal function ϕ ≤ φ.

The following lemma shows that a graded system of ideals naturally induces an
algebraic qpsh function.

Lemma 4.8. Let a• be a graded sequence of ideals. If we let log |a•|(v) = v(a•),
then log |a•| is an algebraic qpsh function.

Proof. It suffices to find a subsequence of {am} such that {ϕk := (1/mk) log |amk |} is
an increasing sequence of ideal functions that converges to a qpsh function strongly
in norm. Let b• be a sequence of ideals such that bt = J(at

•
) (see [Lazarsfeld
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2004]). Note that b• is subadditive of controlled growth (see [JM12, Section 2,
Section 6, Appendix]). Now we fix an integer m such that am 6= 0. Since bm ⊇

J(am)⊇ am , we have v(bm)≤ v(am). Since v(bm)+ A(v)− (1/k)v(amk) > 0 for
all nontrivial tempered valuations v, where k is a sufficiently divisible integer, we
have v(amk)/(mk) < v(bm)/m+ A(v)/m. From the inequalities

v(bm)

m
≤
v(amk)

mk
<
v(bm)

m
+

A(v)
m

we have
∥∥ 1

mk log |amk | −
1

mkl log |amkl |
∥∥ < 1

m for every positive integer l. As we
multiply m, we obtain the desired sequence of ideal functions. �

Definition 4.9. Let ϕ ∈ BH(X) be a bounded homogeneous function. Its envelope
ideal a(ϕ) is the largest ideal in the set {a| log |a| ≤ ϕ} if this set is nonempty. If it
is empty, we set a(ϕ)= 0.

Proposition 4.10. If ϕ is qpsh and a(ϕ) is nonzero, then the envelope ideal can be
written explicitly as 0(U, a(ϕ)) := { f ∈OX (U ) | v( f )+ϕ(v)≥ 0 for every v ∈V∗U }
on every open subset U.

Proof. Since the question is local, we can assume that X = Spec A is affine. It
suffices to prove that the ideal a, defined by

a(U ) := { f ∈ OX (U ) | v( f )+ϕ(v)≥ 0 for every v ∈ V∗U }

on every open subset U , is coherent. To this end, we write I := a(X), and we will
prove that a(Ug)= Ig for any nonzero regular function g ∈ A, where Ug denotes
the affine open subset defined by g. Since a(Ug)⊇ Ig by definition, we only need
to prove the converse inclusion. Note that there exists a large integer k such that
kv(g) ≥ v(a(ϕ)) for every nontrivial tempered valuation v centred in the locus
V (g), and hence k log |g|(v) ≤ ϕ(v). If f is a regular function on Ug such that
v( f )+ϕ(v)≥ 0 for every v ∈V∗Ug

, then v( f gk)+ϕ(v)≥ 0 for every v ∈V∗X . This
implies that f ∈ Ig. �

If we set a(ϕ)m = a(mϕ), then {a(ϕ)•} is a (possibly trivial) graded sequence
of ideals. The following lemma shows that every algebraic qpsh function is of the
form log |a•|.

Lemma 4.11. If ϕ ∈QPSHa(X) is an algebraic qpsh function, then ϕ= log |a(ϕ)•|.

Proof. Given an arbitrarily small positive number ε, there exist an ideal a on
X and an integer m such that 1

m log |a| ≤ ϕ and
∥∥ 1

m log |a| − ϕ
∥∥ < ε. We have

1
m log |a(ϕ)m | ≥ 1

m log |a| by definition and the conclusion follows. �

By combining Proposition 4.3, Lemmas 4.8 and 4.11, we see that a bounded
homogeneous function is algebraic qpsh if and only if it is derived from a graded
sequence of ideals. Readers can compare the following theorem with Theorem 4.24.
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Theorem 4.12. If ϕ is a bounded homogeneous function, the following statements
are equivalent.

(1) ϕ ∈ QPSHa(X) is algebraic qpsh.

(2) There exists a graded sequence of ideals a• such that ϕ = log |a•|.

(3) The graded system of ideals a(ϕ)• is nontrivial and ϕ = log |a(ϕ)•|.

Proof. If we assume (1), then (3) holds by Lemma 4.11. Note that (3) implies (2) if
we simply put a• = a(ϕ)•. Finally, (1) follows from (2) by Lemma 4.8. �

We will use the following easy lemma. For the convenience of readers we present
a proof here.

Lemma 4.13. Let ϕ ∈ QPSHa(X) be an algebraic qpsh function.

(1) Assume that {ϕm} is an increasing sequence of qpsh functions that converges
to ϕ strongly in norm. Then J(ϕ)= J(ϕm) for sufficiently large m.

(2) Assume that f : X ′ → X is a regular morphism of schemes. Then f ∗ϕ is
algebraic qpsh.

Proof. (1) We see that ‖log |J(ϕ)| − ϕ‖+ = 1− ε for some positive number ε.
If ‖ϕ − ϕm‖ < ε, then ‖log |J(ϕ)| − ϕm‖

+ < 1 and J(ϕ) ⊆ J(ϕm). The inverse
inclusion J(ϕ)⊇ J(ϕm) is obvious because ϕ ≥ ϕm .

(2) Assume ϕm is an increasing sequence of ideal functions that converges to ϕ
strongly in norm. Then f ∗ϕm is also an increasing sequence of ideal functions that
converges to f ∗ϕ strongly in norm by Proposition 3.2. This implies that f ∗ϕ is
algebraic qpsh. �

By combining Lemmas 4.8 and 4.13(1), we see that the definition of valuative
multiplier ideals of algebraic functions coincides with the classical definition of
asymptotic multiplier ideals.

Corollary 4.14. Let a• be a graded sequence of ideals. If we write ϕ = log |a•|,
then J(ϕ)= J(a•).

General qpsh functions.

Lemma 4.15. If {ϕλ} is a family of (algebraic) qpsh functions, then supλ ϕλ is an
(algebraic) qpsh function. Therefore, the convex cone QPSH(X) (resp. QPSHa(X))
is closed under taking the supremum.

Proof. We firstly assume that {ϕλ} is a family of algebraic qpsh functions, and we
write ψ = supλ ϕλ. Since ψ ≥ ϕλ for every λ, a(ψ)m ⊇ a(ϕλ)m . It follows that
log |a(ψ)•| ≥ log |a(ϕλ)•| = ϕλ. Therefore ψ = log |a(ψ)•| is algebraic qpsh.

Now we treat the case when {ϕλ} is a family of general qpsh functions. For
each λ, we assume that {ϕλ,m} is a sequence of ideal functions that converges to ϕλ
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strongly in norm such that ‖ϕλ− ϕλ,m‖< 1
m . If we set ψm = supλ ϕλ,m , which is

an algebraic qpsh by the previous argument, then ‖ψ −ψm‖ ≤
1
m and it follows

that {ψm} is a sequence that converges to ψ strongly in norm. �

Since the convex cones QPSH(X) and QPSHa(X) are closed under taking the
supremum by Lemma 4.15, we can introduce the following definition.

Definition 4.16. Let ϕ be a bounded homogeneous function. Assume that the set
{ψ ∈ QPSH(X) | ψ ≤ ϕ} is nonempty. Then we say the maximal function in this
set the qpsh envelope function. We similarly define the algebraic qpsh envelope
function of ϕ if it exists.

In general, we cannot ensure the sets defined as above are nonempty. For instance,
the function in Example 3.13 is bounded homogeneous but its qpsh envelope function
does not exist. Also note that the function φ in Example 4.7 is qpsh itself but its
algebraic qpsh envelope function does not exist.

Lemma 4.17. Let ϕ be a bounded homogeneous function that is determined on
some dual complex 1(Y, D) in the sense of ϕ = ϕ ◦ rY,D. Then, its qpsh envelope
function ψ exists. Further, ψ is algebraic qpsh.

Proof. Let Z ⊆ X be the image of the reduced divisor D on X , and m be the
defining ideal of Z . Since log |m| is strictly negative on 1(Y, D) and ϕ is bounded
on 1(Y, D), there exists an integer k such that k log |m| ≤ ϕ on 1(Y, D). Because
ϕ is determined on the dual complex 1(Y, D) in the sense of ϕ = ϕ ◦rY,D , we have
that k log |m| ≤ ϕ on VX . It follows that its algebraic qpsh envelope function φ
exists. In particular, its qpsh envelope function ψ exists.

Now we will show that ψ = φ. Set

µ1 = max
v∈1(Y,D)

|v(m)| and µ2 = min
v∈1(Y,D)

|v(m)|.

For any small number ε > 0, we choose δ� 1 such that (1+µ1/µ2)δ < ε and an
ideal function φ′ such that ‖φ′−ψ‖< δ. Note that for every valuation v ∈1(Y, D)
we have

ψ(v) > φ′(v)−
δ

µ2
v(m)≥ φ′(v)−

δµ1
µ2

>ψ(v)−

(
1+ µ1

µ2

)
δ.

We can assume that φ′ ≤ ψ and |ψ(v)−φ′(v)|< ε on 1(Y, D) after replacing φ′

by φ′ + (δ/µ2) log |m|. Because ϕ = ϕ ◦ rY,D, we obtain that φ′ ≤ ϕ. It follows
that φ′ ≤ φ ≤ ψ by the definition of the qpsh envelope function. Since ε can be
chosen arbitrarily small, this forces φ = ψ on 1(Y, D). If we pick any higher log
resolution (Y ′, D′), we can show that φ = ψ on 1(Y ′, D′) by the same argument.
The conclusion therefore follows from Proposition 3.11. �

The above lemma leads to the following definition.
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Definition 4.18. Let ϕ ∈ QPSH(X) be a qpsh function. We denote by ϕY,D the
qpsh envelop function of ϕ ◦ rY,D .

Lemma 4.19. Let ϕ be a qpsh function. Then there exists a decreasing sequence of
algebraic functions that converges to ϕ strongly in norm.

Proof. Let {ϕm} be a sequence of ideal functions that converges to ϕ strongly
in norm. We can assume that ϕm = cm log |am | and ‖ϕ − ϕm‖ <

1
m . Let (Y, D)

be a log resolution a1. It is easy to see that ‖ϕ ◦ rY,D − ϕ1‖ < 1, and therefore
‖ϕY,D − ϕ1‖ < 1. We deduce that ‖ϕY,D − ϕ‖ < 2. Now we replace ϕ1 by ϕY,D

and continue this process. Note that if (Y ′, D′) � (Y, D), then ϕY ′,D′ ≤ ϕY,D by
Proposition 3.11. We easily obtain the required decreasing sequence of algebraic
functions. �

Lemma 4.20. Let {ϕm} be a sequence of qpsh functions that converges to a qpsh
function ϕ strongly in norm. Then J(ϕ) = J((1+ ε)ϕm) for a sufficiently small
positive real number ε > 0 and a sufficiently large integer m.

Proof. First we prove that J(ϕ) ⊆ J((1+ ε)ϕm) for a sufficiently small number
ε > 0 and a sufficiently large integer m. To this end, we pick a sufficiently small
number ε > 0 such that J(ϕ) = J((1+ ε)ϕ). Since J((1+ ε)ϕ) ⊆ J((1+ ε)ϕm)

provided that m is sufficiently large, we have J(ϕ) ⊆ J((1+ ε)ϕm). Conversely,
we pick a sufficiently large integer m such that ‖ϕ − ϕm‖ < 1− 1

1+ε . Applying
Lemma 4.4 again, we see that if f ∈ J((1+ ε)ϕm) then ‖ϕm‖ f <

1
1+ε and hence

‖ϕ‖ f ≤ ‖ϕm‖ f +‖ϕ−ϕm‖ f < 1, which implies that f ∈ J(ϕ). �

Remark 4.21. Note that we always have φ ≤ log |J(φ)| for an algebraic qpsh
function φ by [JM12, Propositions 6.2 and 6.5]. It follows by Lemmas 4.19
and 4.20 that J(ϕ) is nonzero and (1+ ε)ϕ ≤ (1+ ε)ϕm ≤ log |J(ϕ)|, where {ϕm}

is a decreasing sequence of algebraic functions that converges to a qpsh function ϕ
strongly in norm. Since ε can be chosen arbitrarily small, we immediately obtain
that ϕ ≤ log |J(ϕ)|.

Now we discuss the multiplier ideals of general qpsh functions.

Proposition 4.22. Let ϕ ∈ QPSH(X) be a qpsh function on X.

(1) Assume that ψ is another qpsh function on X. Then,

J(ϕ+ψ)⊆ J(ϕ) ·J(ψ).

(2) Assume that f : X ′→ X is a regular morphism of schemes. Then,

J(ϕ) ·OX ′ = J( f ∗ϕ).

Proof. (1) By Lemma 4.19 we can assume that there are decreasing sequences
of algebraic functions {ϕm} and {ψm} converging to ϕ and ψ strongly in norm
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respectively. Then for some sufficiently large integer m, by Lemma 4.20 we have
J(ϕ+ψ) = J((1+ ε)(ϕm +ψm)) ⊆ J((1+ ε)ϕm) ·J((1+ ε)ψm) = J(ϕ) ·J(ψ)

since ϕm +ψm converges to ϕ+ψ strongly in norm. The inclusion appearing in
this expression follows from [JM12, Theorem A.2].

(2) Since f is regular, for any ideal function φ =
∑

i ci log ai , we have

J(φ) ·OX ′ = J

(∏
i

aci
i

)
·OX ′ = J

(∏
i

(ai ·OX ′)
ci

)
= J( f ∗φ)

by the argument of [JM12, Proposition 1.9]. If {ϕm} is a sequence of ideal functions
that converges to ϕ strongly in norm, then f ∗ϕm is a decreasing sequence of ideal
functions that converges to f ∗ϕ strongly in norm by Proposition 3.2. Therefore we
have J(ϕ) ·OX ′ = J((1+ ε)ϕm) ·OX ′ = J((1+ ε) f ∗ϕm)= J( f ∗ϕ). �

Recall from [JM12] that if b• is subadditive, then the limit

v(b•) := lim
m→∞

1
m
v(bm) ∈ [0,+∞]

is well-defined. For the purpose of constructing a “good” valuative function, we
introduce the notion of a subadditive sequence of ideals of controlled growth as
follows.

Definition 4.23 [JM12, Definition 2.9]. A subadditive sequence of ideals b• is of
controlled growth if

v(bt)

t
> v(b•)−

A(v)
t

for every nontrivial tempered valuation v and every t > 0.

We see that v(b•) := limm→∞
1
m v(bm) < +∞ for every nontrivial tempered

valuation v. Furthermore, if we define log |b•|(v) = −v(b•), then log |b•| is ap-
proximated by 1

m log |bm | strongly in norm and hence qpsh. Given a qpsh function,
if we define J(ϕ)t := J(tϕ), then J(ϕ)• is a subadditive sequence of controlled
growth by Proposition 4.22, Definition 4.1 and Remark 4.2. This allows us to give a
characterization of qpsh functions as follows. Readers could compare the following
theorem with Theorem 4.12.

Theorem 4.24. If ϕ is a bounded homogeneous function, the following statements
are equivalent.

(1) ϕ is qpsh.

(2) There is a subadditive sequence of ideals b• of controlled growth such that
ϕ = log |b•|.

(3) The ideal J(tϕ) is nonzero for every t > 0 and ϕ = log |J(ϕ)•|.
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Proof. If we assume (1), then (3) follows from the previous argument together
with Definition 4.1 and Remark 4.2. Note that (3) implies (2) if we simply put
b• = J(ϕ)•. Finally, (1) follows from (2) by the previous argument. �

Remark 4.25. From the theorem we see that every qpsh function ϕ can be ap-
proximated by a decreasing sequence of ideal functions ϕk in norm. Indeed, we
can take ϕk =

1
2k log |J(2kϕ)|. However, if ϕ is only the pointwise limit of a

decreasing sequence of ideal functions on VX , then ϕ is not necessarily qpsh (see
Example 3.13).

An immediate application of the preceding discussion is the following result on
the support of a qpsh function.

Corollary 4.26. Let ϕ be a qpsh function. Then its support suppϕ is a countable
union of proper Zariski closed subsets of X.

Remark 4.27. Readers can compare the constructions here with [Boucksom et al.
2008]. If we work on X = Spec R̂, where R is the localization of C[x1, . . . , xn]

at the origin, then our definition of qpsh functions coincides the notion of formal
psh functions. A brief argument is as follows. Given a formal psh function g, we
have a subadditive sequence of ideals {L2(tg)}t>0 in R̂, that satisfies v(L2(tg))+
A(v)+ (1+ ε)g(v)≥ 0 for every quasimonomial valuation v centred at the origin
and an arbitrarily small ε; see [Boucksom et al. 2008, Theorems 3.10 and 3.9].
It follows that {L2(tg)}t>0 form a subadditive sequence of ideals of controlled
growth that induces to a qpsh function ϕ on X . Therefore ϕ(v)= g(v) for every
divisorial valuation v centred at the origin. Conversely, a qpsh function can be
naturally viewed as a formal psh function by definition. Therefore we construct an
one-to-one correspondence. The details are left to the readers.

Remark 4.28. Recall from complex geometry that a function ϕ : X→[−∞,+∞)
from a complex manifold is qpsh if it is locally equal to the sum of a smooth
function and a psh function. If X is a smooth complex variety, we should be able to
define the valuative transform of ϕ, which is expected to be a qpsh function on the
valuation space VX as defined in this paper. This was done locally in [Boucksom
et al. 2008] and its predecessors [Favre and Jonsson 2004; 2005a; 2005b]. However,
the global situation is not fully understood by us at this point.

5. Computing norms

Generalities.

Definition 5.1. Let ϕ be a bounded homogeneous function and q be a nonzero
ideal on X . We say a nontrivial tempered valuation v ∈ V∗X computes ‖ϕ‖q if the
equality ‖ϕ‖q = |ϕ(v)|/(A(v)+ v(q)) holds.
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The main result of this section is the following theorem.

Theorem 5.2. Let ϕ ∈ QPSH(X) be a qpsh function and let q be a nonzero ideal
on X. Then there exists a nontrivial tempered valuation v that computes ‖ϕ‖q.

Before we prove this theorem, we need some preparations.

Proposition 5.3. Let ϕ be a bounded homogeneous function that is determined on
some dual complex 1(Y, D) in the sense of ϕ = ϕ ◦ rY,D . Assume that ϕ is weakly
continuous (see Definition 3.4). Then there exists a quasimonomial valuation v that
computes ‖ϕ‖q. If we assume further that ϕ is affine on each face of 1(Y, D), then
there exists a divisorial valuation v that computes ‖ϕ‖q.

Proof. For every nontrivial tempered valuation v ∈ V ∗X , we have

|ϕ(v)|

A(v)+ v(q)
≥

|ϕ ◦ rY,D(v)|

A(rY,D(v))+ rY,D(v)(q)

with equality if and only if v ∈ QM(Y, D). Thus

‖ϕ‖q = sup
v∈QM(Y,D)

|ϕ(v)|

A(v)+ v(q)
= sup
v∈1(Y,D)

|ϕ(v)|

1+ v(q)
.

Since ϕ is weakly continuous, the function v→|ϕ(v)|/(A(v)+v(q)) is continuous
on QM(Y, D). Therefore the function v→ |ϕ(v)|/(1+ v(q)) is continuous on the
dual complex 1(Y, D) and hence achieves its maximum in 1(Y, D).

Assume that ϕ is affine on 1(Y, D), and denote by {Di } the irreducible com-
ponents of D. After replacing (Y, D) by some higher log resolution, we can
assume that (Y, D) is a log resolution of q by Lemma 3.8. Then we have ‖ϕ‖q =
maxDi (|ϕ(ordDi )|/(A(ordDi )+ordDi (q))), where Di runs over all irreducible com-
ponents of D since the functions ϕ, A and log |q| are all affine on 1(Y, D). �

Computing norms of qpsh functions. This subsection is devoted to the proof of
Theorem 5.2. The proof here follows the strategy of [JM12]. We first consider the
local case.

Lemma 5.4. Let (R,m) be a local ring, let ϕ ∈ QPSH(Spec R) be a qpsh function,
and let q be a nonzero ideal on Spec R. We set λ−1

= ‖ϕ‖q and assume that
√
(J(λϕ) : q)=m. If we define another qpsh function ψ =max{ϕ, p log |m|} for a

sufficiently large integer p, then ‖ϕ‖q = ‖ψ‖q. Moreover, if a nontrivial tempered
valuation v computes ‖ψ‖q, then v also computes ‖ϕ‖q.

Proof. Since
√
(J(λϕ) : q) = m, we have mn

· q ⊆ J(λϕ) for some integer n. Set
λ′−1
=‖ϕ‖mn ·q, it follows that λ′>λ by Lemma 4.4. Pick an integer p> n/(λ′−λ),

and fix a sufficiently small number ε� 1 such that p> n/((1−ε)λ′−λ). Observe
that

‖ψ‖q = sup
v∈V∗R

min{−ϕ(v), pv(m)}
A(v)+ v(q)

≥ sup
v∈V∗ε

min{−ϕ(v), pv(m)}
A(v)+ v(q)

,
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where V∗ε is the set of v ∈ V∗R satisfying −ϕ(v)/(A(v)+ v(q))≥ (1− ε)/λ.
By the definition of λ′ we have nv(m)/(−ϕ(v))≥ λ′− (A(v)+ v(q))/(−ϕ(v))

for every nontrivial tempered valuation v. This implies that

‖ψ‖q ≥ sup
v∈Vε

−ϕ(v)

A(v)+ v(q)
min

{
1,

p
n

(
λ′−

A(v)+ v(q)
−ϕ(v)

)}
≥ sup
v∈Vε

−ϕ(v)

A(v)+ v(q)
min

{
1,

p
n

(
λ′−

λ

1− ε

)}
= sup
v∈Vε

−ϕ(v)

A(v)+ v(q)
= ‖ϕ‖q.

Moreover, if a nontrivial tempered valuation v computes ‖ψ‖q, we see from these
inequalities that v also computes ‖ϕ‖q. �

Lemma 5.5. Let (R,m) be a local ring, let ϕ be an ideal function on Spec R such
that ϕ ≥ p log |m| for some integer p, and let q be a nonzero ideal on Spec R. Then
there exists a nontrivial tempered valuation v ∈ VR,m,M (see Definition 2.6) that
computes ‖ψ‖q provided that M > p · ‖ϕ‖−1

q .

Proof. If we write c = p/M , then 0 < c < ‖ψ‖q. For every v ∈ VR,m such
that −ϕ(v)/(A(v)+ v(q)) > c , we have A(v) ≤ A(v)+ v(q) < p/c = M . Thus
‖ϕ‖q= sup v ∈ VR,m,M−ϕ(v)/(A(v)+v(q)). Note that VR,m,M is compact. Since
the function v→−ϕ(v)/(A(v)+v(q)) is usc as the valuative function A is lsc, the
maximum can be achieved in VR,m,M . �

Lemma 5.6. Let ϕ ∈ QPSH(X) be a qpsh function on X and {ϕm} be a decreasing
sequence of algebraic functions converging to ϕ strongly in norm. Set λ−1

= ‖ϕ‖q

and λ−1
m = ‖ϕm‖q. Then, J(λϕ)⊆ J(λmϕm) for every sufficiently large integer m.

Proof. If f ∈ J(λϕ), then ‖ϕ‖ f < (1− ε)/λ for a sufficiently small number ε > 0.
We have ‖ϕm‖ f ≤ ‖ϕ‖ f < (1− ε)/λ < λ−1

m since λm < λ/(1− ε) for sufficiently
large m. It follows that f ∈ J(λmϕm) by Lemma 4.4. �

Lemma 5.7. Let (R,m) be a local ring, let ϕ be a qpsh function on Spec R such
that ϕ ≥ p log |m|, and let q be a nonzero ideal on Spec R. Then there exists a
nontrivial tempered valuation v ∈ VR,m,M which computes ‖ϕ‖q provided that
M > p · ‖ϕ‖−1

q .

Proof. Assume that {ϕm} is a decreasing sequence of ideal functions which converges
to ψ strongly in norm. Then mn

·q⊆ J(λϕ)⊆ J(λmϕm) for every sufficiently large
integer m by Lemma 5.6. We set λ′−1

= ‖ϕ‖mn ·q and λ′−1
m = ‖ϕm‖mn ·q. Note that

M > p · λm for every sufficiently large integer m. Therefore for every sufficiently
large integer m, there exists vm ∈ VR,m,M that computes ‖ϕm‖q by Lemma 5.5. By
passing {ϕm} to a subsequence, we can assume {vm} is a sequence of points that
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converges to some point v ∈ VR,m,M . Note that

−λϕ(v)

A(v)+ v(q)
≥
−λϕm(v)

A(v)+ v(q)
≥
−λϕm(vn)

A(vn)+ vn(q)
− δ

≥ 1−‖λϕm − λnϕn‖q− δ

≥ 1− λ‖ϕm −ϕn‖q− δ− (λn − λ)‖ϕ‖q,

where the second inequality holds because the function v→−λϕm(v)/(A(v)+v(q))
is usc. Since ‖ψm −ψn‖q, δ and λn − λ can be chosen arbitrarily small, we have
−λψ(v)/(A(v)+ v(q))≥ 1 and the conclusion follows. �

Now we turn to treat the global case.

Proof of Theorem 5.2. Pick a generic point ξ of V (J(λϕ) : q). Note that by
Lemma 4.5(3) ‖ϕ‖q = ‖ϕξ‖q·OX,ξ . After replacing X and ϕ by Spec OX,ξ and ϕξ ,
respectively, we reduce the global case to the local case. After replacing ϕ by
max{ϕ, p log |m|} for a sufficiently large integer p by Lemma 5.4, we can assume
that ϕ ≥ p log |m|. Finally by Lemma 5.7, there exists a valuation v ∈ VX,ξ,M that
computes ‖ϕ‖q. �

An immediate consequence of Theorem 5.2 is the following corollary.

Corollary 5.8. Let ϕ be a qpsh function on X. Then, on every open subset U , we
can explicitly write

0(U,J(ϕ))= { f ∈ 0(U,OX ) | v( f )+ A(v)+ϕ(v) > 0 for every v ∈ V∗U }.

Let q be a nonzero ideal on X. Then, q⊆J(ϕ) if and only if v(q)+ A(v)+ϕ(v) > 0
for every v ∈ V∗X .

The following conjecture was raised as [JM12, Conjecture B] (cf. [JM12, The-
orem 7.8]). It is already known for several special cases (see [JM12, Sections 8
and 9]).

Conjecture 5.9. Let ϕ be a qpsh function on X and q be a nonzero ideal on X.
Then there exists a nontrivial quasimonomial valuation v which computes ‖ϕ‖q.
Conversely, if a nontrivial tempered valuation v computes the norm of some qpsh
function, then v is quasimonomial.

6. Applications

If X is a smooth complex projective variety, we are interested in associating a
qpsh function to a line bundle that plays the role of a semipositive singular metric.
The starting point is the following easy observation. Given a pseudo-effective line
bundle L , an ideal a together with a nonnegative rational number λ such that L⊗aλ

is semi-ample corresponds to a semipositive singular metric h in the sense that
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they give the same multiplier ideals J(aλm) = J(h⊗m) for every integer m > 0.
However in general, this correspondence becomes quite mysterious since many
analogue notions cannot be constructed. This has been studied in many relevant
references [Boucksom 2004; Ein et al. 2006; 2009; Ein and Popa 2008; Lehmann
2011; Nakayama 2004]. We will discuss the qpsh function associated to a line
bundle in detail within this section. Besides, it might be possible to generalize the
results in this section to varieties with mild singularities such as klt singularities
(see [Boucksom et al. 2012d; Boucksom et al. 2013b]).

Throughout this section X will be a projective smooth variety over C for sim-
plicity. The term “divisor” will always refer to a Q-Cartier Q-divisor. Given a
section s ∈ H 0(X, L) of a line bundle, the notation log |s| denotes the qpsh function
defined locally by a regular function corresponding to s.

D-psh functions.

Definition 6.1. Let D be a divisor. We define the set

LD :=

{
log |a|

k

∣∣∣km D⊗am is globally generated for every sufficiently divisible m
}
.

We then define set of D-psh functions to be the closure PSH(D)= LD in norm.

Lemma 6.2. (1) PSH(D) is compact and convex in QPSH(X).

(2) PSH(t D)= tPSH(D) for any t ∈Q>0.

(3) PSH(D)+PSH(D′)⊆ PSH(D+ D′).

(4) If A is a semiample divisor, then PSH(D)⊆ PSH(D+ A).

Proof. We firstly prove (1). To prove that PSH(D) is convex, it suffices to show that
LD is convex. Given qpsh functions ϕ, ϕ′ ∈ LD and a rational number 0< λ < 1,
we will show that λϕ+ (1− λ)ϕ′ ∈ LD. If we write ϕ = 1

k log |a|, ϕ′ = 1
k′ log |a′|

and λ= q/p, then

λϕ+ (1− λ)ϕ′ =
1

kp
log |aq

| +
1

k ′ p
log |a′p−q

|

=
1

kk ′ p
log |aqk′

· a′k(p−q)
|.

It is easy to check that kk ′ pmL ⊗ amqk′
· a′mk(p−q) is globally generated for every

sufficiently divisible integer m and the conclusion follows. Note that (2), (3) and
(4) can be proved in a similar way. �

Question 6.3. Let ϕ be a general qpsh function. Does there exist a divisor D such
that ϕ ∈ PSH(D)?



VALUATIVE MULTIPLIER IDEALS 119

Definition 6.4. For an ample divisor A, the set of pseudo D-psh functions is defined
to be PSHσ (D) :=

⋂
ε>0 PSH(D+ εA).

Note that this definition is independent of the choice of the ample divisor A, and
that the set PSHσ (D) also satisfies the properties listed in Lemma 6.2.

Theorem 6.5 (Nadel vanishing). Let L be a line bundle on a smooth projective
variety X and L ≡ A + D, where A is a nef and big Q-divisor. Assume that
ϕ ∈ PSHσ (D). Then

H i (X, (K X + L)⊗J(ϕ))= 0

for all i > 0.

Proof. By Kodaira’s lemma, A− δE is ample for some effective divisor E and
every sufficiently small number δ > 0. If we write ϕE = log |OX (−E)|, then by
semicontinuity of multiplier ideals we have J(ϕ)=J(ϕ+δϕE) for every sufficiently
small number δ > 0. After replacing A and ϕ with A−δE and ϕ+δϕE , respectively,
we can assume that A is ample.

By definition we can assume that there exists a sequence of ideal functions {ϕk}

that converges to ϕ strongly in norm, such that ϕk ∈LD+εk A and εk→ 0+. Choose
ε � 1 such that A − εD is ample. We see that J(ϕ) = J((1+ ε)ϕk) for every
sufficiently large integer k by Lemma 4.20. Note that (1+ ε)ϕk ∈ L(1+ε)(D+εk A).
For a sufficiently large integer k, A− εD− (1+ ε)εk A is ample. After replacing
A and ϕ by A− εD − (1+ ε)εk A and (1+ ε)ϕk , respectively, we reduce to the
classical Nadel vanishing (see [Lazarsfeld 2004]). �

As an application of this theorem, one can easily deduce the following theorem
by letting G = K X + (n+ 1)H , where H is a hypersurface of X and n = dim X ,
with the aid of the Castelnuovo–Mumford regularity.

Theorem 6.6 (global generation). Let D be a divisor on X. A qpsh function ϕ lies
in PSHσ (D) if and only if there exists a line bundle G such that (m D+G)⊗J(mϕ)
is globally generated for all m ∈ Z+ with m D integral.

Given a qpsh function ϕ, a positive real number λ is said to be the (higher)
jumping number of ϕ if J((λ− ε)ϕ)) J(λϕ) for every positive real number ε.

Definition 6.7. Let ϕ be a qpsh function. We define the ideal J−(ϕ) to be the
largest ideal in the set {a | ‖log |a|−ϕ‖≤ 1}. One can see that J−(ϕ) can be written
explicitly as

0(U,J−(ϕ))= { f ∈ OX (U ) | v( f )+ A(v)+ϕ(v)≥ 0 for every v ∈ V ∗U }

for every open subset U .
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Lemma 6.8. If ϕ is D-psh for some divisor D, then the descending chain of ideals
J((1− ε)ϕ) stabilizes as ε → 0+. Further, J((1− ε)ϕ) = J−(ϕ) for ε � 1. It
follows that the set of its (higher) jumping numbers is discrete.

Proof. By adding an ample divisor to D, we can assume that D is Cartier. By
Theorem 6.5 and the Castelnuovo–Mumford regularity there exists an ample line
bundle G such that OX (D + G)⊗ J((1− ε)ϕ) is globally generated for ε � 1.
Since the descending chain of vector spaces H 0(X, OX (D +G)⊗ J((1− ε)ϕ))
will stabilize as ε→ 0+, the descending chain of ideals J((1− ε)ϕ) will stabilize.
The reader can find more details in [Lehmann 2011, Theorem 4.2].

Fix a sufficiently small number ε′. Since ‖log |J((1− ε′)ϕ)| − (1− ε)ϕ‖ < 1
for every sufficiently small number ε, we see that ‖log |J((1− ε′)ϕ)| −ϕ‖ ≤ 1. It
follows that J((1− ε)ϕ)⊆ J−(ϕ). To prove the converse inclusion, simply notice
that

0(U,J−(ϕ))= { f ∈ OX (U )|v( f )+ A(v)+ϕ(v)≥ 0 for every v ∈ V ∗U }

and hence J((1− ε)ϕ)⊇ J−(ϕ) for ε� 1 by Corollary 5.8. �

To investigate the structure of the sets PSH(D) and PSHσ (D), we need the
following construction. Given an integer k, a divisor D and a qpsh function ϕ, we
define the linear system Vm(D, ϕ, t) := {L ∈ |xm Dy| | 1

m log |sL | ≤
1
t log |J−(tϕ)|},

where sL is the section associated to the divisor L and ε � 1. If we choose
a(D, ϕ, t)m := b(Vm(D, ϕ, t)), the base ideal of the linear system Vm(D, ϕ, t),
then a(D, ϕ, t)• is a graded sequence of ideals. Moreover, for every positive
rational number t , we define ϕD

t := log |a(D, ϕ, t)•|.

Lemma 6.9. Let D be a divisor on X and ϕ be a qpsh function. Then, ϕ ∈ PSH(D)
if and only if ϕ = limt→∞ ϕ

D
t pointwise.

Proof. First assume that ϕ ∈ PSH(D). Let {ϕm} be a sequence of ideal functions
that converges to ϕ such that each ϕm ∈ LD . If t is not a (higher) jumping number
of ϕ, then, by Lemma 4.20 we have

J−(tϕ)= J((t − ε)ϕ)= J((t − ε+ ε′)ϕm)⊇ J−(tϕm)

and
J−(tϕ)= J(tϕ)= J((t + ε)ϕm)⊆ J−(tϕm)

for every sufficiently large integer m. It follows that J−(tϕ) = J−(tϕm) and
ϕD

t = ϕ
D
m,t . Note that ϕD

m.t ≥ ϕm , and hence 1
t log |J−(tϕ)| ≥ ϕD

t ≥ ϕ. If t is a
(higher) jumping number, then ϕD

t ≥ ϕ
D
t−ε ≥ ϕ. Therefore, we have ‖ϕD

t −ϕ‖ ≤
1
t

and hence ϕ = limt→∞ ϕ
D
t .

Conversely, we assume that ϕ= limt→∞ ϕ
D
t . Since ϕD

t is algebraic from a(D, ϕ, t)•
for each t , ϕD

t is D-psh for every t > 0. Since 1
t log |J−(tϕ)| ≥ ϕD

t and ϕD
t has a
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decreasing subsequence, ϕD
t converges to ϕ strongly in norm, which implies the

conclusion immediately. �

For every nontrivial tempered valuation v, we define v(‖D‖) = v(a•), where
am = b(|xm Dy|).

Proposition 6.10. The set PSH(D) is closed under taking the supremum. The
maximal D-psh function ϕmax can be written explicitly as ϕmax(v)=−v(‖D‖) for
all v ∈ V∗X .

Proof. Let ϕλ be a family of D-psh functions. By Lemma 6.9 ϕλ = limt→∞ ϕ
D
λ,t .

Note that ϕD
λ,t = log |a(D, ϕλ, t)•|, where a(D, ϕλ, t)m = b(Vm(D, ϕλ, t)).

If we write ϕ = supλ ϕλ, then J−(tϕλ) ⊆ J−(tϕ) for every λ and every t . It
follows that b(Vm(D, ϕλ, t)) ⊆ b(Vm(D, ϕ, t)) for every m, λ and t . We deduce
that supλ ϕ

D
λ,t ≤ ϕ

D
t and hence

ϕ(v)= sup
λ

lim
t→∞

ϕD
λ,t(v)≤ lim

t→∞
sup
λ

ϕD
λ,t(v)≤ lim

t→∞
ϕD

t (v)

for every v ∈ V∗X . Note that the pointwise limits appearing in these inequalities
exist because we can take decreasing subsequences which are bounded from below.
Since 1

t log |J−(tϕ)| ≥ ϕD
t , we obtain the equality ϕ = limt→∞ ϕ

D
t and ϕ is D-psh

by Lemma 6.9.
Now we prove that ϕmax(v)=−v(‖D‖) for all v∈V ∗X . Let ϕ be a qpsh function such
that ϕ(v)=−v(‖D‖). Because ϕ is algebraic from a•, where am = b(|xm Dy|), ϕ is
D-psh. It suffices to show that ϕmax ≤ ϕ. For each t , ϕD

max,t = log |a(D, ϕmax, t)•|,
where a(D, ϕmax, t)m = b(Vm(D, ϕmax, t)). It follows that a(D, ϕmax, t)m ⊆ am

and ϕD
max,t ≤ ϕ. Therefore, ϕmax = limt→∞ ϕ

D
max,t ≤ ϕ, which forces ϕmax = ϕ. �

For every nontrivial tempered valuation v, we define

σv(‖D‖) := lim
ε→0+

v(‖D+ εA‖)

for some ample divisor A. Note that [Nakayama 2004] verifies that this definition
is independent of the choice of the ample divisor A.

Proposition 6.11. The set PSHσ (D) is closed under taking the supremum. The
maximal pseudo D-psh function φmax can be expressed as φmax(v) = −σv(‖D‖)
explicitly for all v ∈ V ∗X .

Proof. Let ϕλ be a family of pseudo D-psh functions, and let ϕ = supλ ϕλ. By
Theorem 6.6 there exists an ample divisor G such that ϕλ,k ∈ PSH(D + 1

k G),
where ϕλ,k = 1

k log |J(kϕλ)|. We have supλ ϕλ,k ∈ PSH(D + 1
k G) for every k by

Proposition 6.10. Since
∑
λ

J(kϕλ)⊆ J(kϕ), we have ϕk ≥ supλ ϕλ,k ≥ ϕ. Hence

ϕ = lim
k→∞

(supλ ϕλ,k) ∈ PSHσ (D).
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Now we prove that φmax(v) = −σv(‖D‖) for all v ∈ V ∗X . Let φ(v) = −σv(‖D‖),
and let ϕεmax be the maximal (D+ εA)-psh function for every ε� 1. We see that
φ = limε→0+ ϕ

ε
max pointwise. Because ϕεmax is decreasing as ε→ 0+, J(mϕεmax)

form a descending chain of ideals as ε→ 0+ for every integer m > 0. If we fix
an integer m and a sequence ε1 > ε2 > · · · such that limk→∞ εk = 0, then the
descending chain stabilizes when k� 0 because there exists an ample divisor G
such that m D+G is Cartier and OX (m D+G)⊗J(mϕεk

max) is globally generated
for every k � 0. It follows that ‖ϕεk

max − ϕ
εk′
max‖ <

1
m for all sufficiently large k

and k ′. Equivalently, ϕεk
max form a Cauchy sequence with respect to the norm.

Therefore ϕεk
max converges to φ strongly in norm, and hence φ ∈ PSHσ (D). Note

that φmax ≤ ϕ
ε
max, and hence φmax ≤ φ, which implies the conclusion. �

Question 6.12 [Lehmann 2011, Question 6.15]. Is the maximal pseudo D-psh
function algebraic?

Abundant divisors, introduced in [Nakayama 2004; Boucksom et al. 2013a],
form a class of pseudo-effective divisors with nice asymptotic behaviour. We denote
by κσ (D) the numerical Kodaira dimension. A pseudo-effective divisor D is said
to be abundant if κ(D)= κσ (D). We present the following easy corollary for the
reader’s convenience.

Corollary 6.13. (1) The set PSH(D) is nonempty if and only if D is Q-effective.

(2) 0 ∈ PSH(D) if and only if D is nef and abundant.

(3) The set PSHσ (D) is nonempty if and only if D is pseudo-effective.

(4) 0 ∈ PSHσ (D) if and only if D is nef.

(5) Let ϕmax be the maximal D-psh function, and φmax be the maximal pseudo
D-psh function. Then, D is abundant if and only if ϕmax=φmax.

Proof. The first statement is trivial. The second is a consequence of the main result
of [Russo 2009], and (4) follows from (2) immediately. If D is not pseudo-effective,
then PSHσ (D) is empty from (1). We prove (3) as follows. If D pseudo-effective,
then PSHσ (D) is nonempty by Proposition 6.11. To prove (5), simply notice that
D is abundant if and only if v(‖D‖)= σv(‖D‖) for every divisorial valuation v by
[Lehmann 2011, Proposition 6.18] and the last statement follows by Propositions
6.10 and 6.11. �

Question 6.14. Assume that the divisor D is abundant. Is the set PSH(D) equal to
the set PSHσ (D)?

We introduce the following definition of the perturbed ideal and the diminished
ideal as [Lehmann 2011, Definitions 4.3 and 6.2]. We use the notation Jσ,−(D)
instead of J−(D) to avoid that readers may confuse it with the notation J−(ϕ).
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Definition 6.15. Let D be a pseudo-effective divisor. In the finite descending chain{
J
(∥∥L + 1

m A
∥∥)}∞

m=1, we define the perturbed ideal Jσ,−(D) to be the smallest
ideal, and we define the diminished ideal Jσ (D) to be the largest ideal in the set
{Jσ,−((1+ ε)D)}ε>0.

Finally, we obtain a generalization of [Lehmann 2011, Theorem 6.14].

Theorem 6.16. Let D be a pseudo-effective divisor. Assume that φmax is the maxi-
mal pseudo D-psh function. Then, the perturbed ideal Jσ,−(D)= J−(φmax), and
the diminished ideal Jσ (D)=J(φmax). In particular, we can write Jσ (D) explicitly
as 0(U,Jσ (L)) = { f ∈ 0(U,OX ) | v( f )+ A(v)− σv(‖L‖) > 0 for all v ∈ V∗U }.
Further, a nonzero ideal q⊆ Jσ (‖L‖) if and only if v(q)+ A(v)−σv(‖L‖) > 0 for
all v ∈ V∗X .

Proof. That Jσ,−(D)= J−(φmax) follows from [Lehmann 2011, Proposition 4.7].
To prove the second equality, note that by definition Jσ (D)=J((1+ε)ϕδmax), where
ϕδmax denotes the maximal (D+δA)-psh function for an ample divisor A, sufficiently
small ε and sufficiently small δ = δ(ε). From the proof of Proposition 6.11,
ϕδmax converges to φmax strongly in norm. Therefore, Lemma 4.20 asserts that
J(φmax)= J((1+ ε)ϕδmax)= Jσ (D) as δ→ 0+. The last statement is obvious by
Corollary 5.8. �

Remark 6.17. It should not be too difficult to generalize most results in this
subsection from Q-divisors to R-divisors, that is, one can define D-psh functions
for an R-divisor D and obtain similar results.

Finite generation. The goal of this subsection is to prove the finite generation
proposition below as an application of qpsh functions. For definitions and properties
of different types of Zariski decompositions, divisorial algebras and modules, we
refer to [Nakayama 2004].

Proposition 6.18. Let (X, B) be a log canonical pair. Assume that K X + B is
Q-Cartier and abundant, and that R(K X + B) is finitely generated. Then, for any
reflexive sheaf F, M p

F(K X + B) is a finitely generated R(K X + B)-module.

Before we prove the proposition, we need a lemma.

Lemma 6.19 (global division). Let X be a smooth projective variety of dimension n.
Consider line bundles L and D, a linear system V ⊆ |L| spanned by the sections
{s1, . . . , sl}, and a D-psh function ϕ. If we denote by φV the L-psh function
max1≤ j≤l log |s j |, then for every integer m ≥ n+ 2, any section σ in

H 0(X,OX (K X +mL + D)⊗J(mφV +ϕ))

can be written as a linear combination
∑

j s j g j of sections g j in

H 0(X,OX (K X + (m− 1)L + D)).
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Proof. Let {ϕk ∈ LD} be a sequence of ideal functions that converges to ϕ strongly
in norm. Since J(mφV +ϕk)⊇ J(mφV +ϕ), the section σ vanishes along the ideal
J(mφV + ϕk). If we denote by a the base ideal b(V ), then φV = log |a|. Apply
[Ein and Popa 2008, Theorem 4.1], and we deduce the conclusion. �

Remark 6.20. In the statement of the theorem just cited, one can verify that the
assumption that D⊗ bλ is nef and abundant implies that λ log |b| is D-psh. Note
that Lemma 6.19 is not a generalization of the theorem because we did not obtain
that every g j is in

H 0(X,OX (K X + (m− 1)L + D)⊗J((m− 1)φV +ϕ)).

Nonetheless, it should be possible to generalize in the sense that

g j ∈ H 0(X,OX (K X + (m− 1)L + D)⊗J((m− 1)φV +ϕ)),

if one can develop a theory on the restriction of qpsh functions to subvarieties (see
the proof of [Ein and Popa 2008, Theorem 3.2]).

Proof of Proposition 6.18. We can assume that (X, B) is log smooth of dimension n;
K X + B is a Q-Cartier Q-divisor; and F= OX (A) is a very ample line bundle by
[Birkar 2010, Theorem 1.1]. Since R = R(K X + B) is finitely generated, after a
possible truncation we can assume that R is generated by R1 = H 0(m0(K X + B))
for some integer m0 such that m0(K X + B) is Cartier (see [ibid., Remarks 2.2
and 2.3]). If we set a= b(|m0(K X + B)|) and L :=m0(K X + B), then φ := log |a|
is the maximal L-psh function. The rest of the proof is an analogue of [Demailly
et al. 2013, Section 3]. Let m be a sufficiently large integer (to be specified later),
and let σ be a global section of m(K X + B)+ A. We have

m(K X + B)+ A = K X + (n+ 2)L + D,

where

D := B+ (m− (n+ 2)m0− 1)
(

K X + B+
1
m

A
)
+

m0(n+ 2)+ 1
m

A.

Set
ϕ = ψm + (m− (n+ 2)m0− 1)ϕm,

where ψm is (B + 1
m (m0(n + 2)+ 1)A)-psh such that ‖ψm‖ < 1, and ϕm is the

maximal (K X + B+ 1
m A)-psh function. Notice that

‖log |σ | − (n+ 2)φ−ϕ‖+ ≤ ‖(m0(n+ 2)+ 1)ϕm − (n+ 2)φ−ψm‖
+.

We will show that (m0(n+ 2)+ 1)ϕm ≤ (n+ 2)φ for sufficiently large m, which
implies that ‖log |σ | − (n + 2)φ − ϕ‖+ < 1 and that by definition σ vanishes
along J((n+ 2)φ+ϕ). Since φ is determined on some dual complex 1(Y, D), it
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suffices to prove that (m0(n+ 2)+ 1)ϕm ≤ (n+ 2)φ on 1(Y, D). Further, we can
assume that φ is affine on 1(Y, D). It suffices to check the inequality at vertices
because ϕm is convex on the dual complex. From the argument of Proposition 6.11,
we see that m0ϕm converges to φ strongly in norm since K X + B is abundant.
Therefore for sufficiently large m the inequality (m0(n+ 2)+ 1)/(n+ 2)ϕm ≤ φ

holds at vertices of 1(Y, D), and hence for every nontrivial tempered valuation.
Finally, σ can be written as a linear combination

∑
j s j g j , where g j are sections in

H 0(X,OX ((m−m0)(K X+B)+ A) by Lemma 6.19, which completes the proof. �

Remark 6.21. The above finite generation proposition can be proved in another
way as follows. Since the conclusion that M p

F(K X + B) is a finitely generated
R(K X + B)-module is equivalent to that (X, B) has a good minimal model by
[Birkar 2010, Theorem 1.3], it suffices to prove that (X, B) has a good minimal
model. By [Birkar and Hu 2012, Theorem 5.3] we conclude that (X, B) has a log
minimal model (X ′, B ′). Since the positive part of the CKM-Zariski decomposition
is semi-ample, the log minimal model (X, B) is good. We here give a different
proof without using the minimal model theory, in particular the length of extremal
rays.

Proposition 6.18 can be slightly generalized as follows.

Definition 6.22. [Birkar et al. 2010, Definitions 3.6.4 and 3.6.6] Let D be a divisor
on X . A normal projective variety Z is said to be the ample model of D if there is a
rational map g : X 99K Z and an ample R-divisor H on Z such that if p :W → X
and q :W→ Z resolve g then q is a contraction and we can write p∗D= q∗H+N ,
where N ≥ 0 is an R-divisor and for every B ∼Q p∗D then B ≥ N . Let (X, B) be
a pair. A normal variety Z is said to be the log canonical model of (X, B) if it is
the ample model of K X + B.

Lemma 6.23. Let D be an abundant divisor on a normal projective variety X.
Assume that D has the ample model. Then, R(D) is finitely generated.

Proof. After replacing X by a log resolution, we can assume that g : X 99K Z is a
morphism and D= P+N = g∗H+N , where H is an ample R-divisor on the ample
model Z and N ≥ 0 is an R-divisor such that for every B ∼Q D we have B ≥ N .
Note that D = P + N is a CKM-Zariski decomposition. Since D is abundant, we
have that Fix‖D‖ = Nσ (D)≤ N ≤ Fix‖D‖ by [Lehmann 2011, Proposition 6.18]
and hence P = Pσ (D). Furthermore, we can assume that there exist a smooth
projective variety T and a big Q-divisor G on T such that µ : X→ T is a contraction
and Pσ (D) = Pσ (µ∗G) by [Lehmann 2014, Theorems 5.7 and 6.1]. It follows
that Z is also the ample model of G. Notice that the rational map h : T 99K Z
is birational. Therefore H = p∗G is an R-Cartier Q-divisor and hence Q-Cartier,
which completes the proof. �
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Finally, we obtain the proposition below by combining Proposition 6.18 and
Lemma 6.23.

Proposition 6.24. Let (X, B) be a log canonical pair. Assume that K X + B is
Q-Cartier and abundant, and that (X, B) has the log canonical model. Then,
R(K X + B) is finitely generated. Further, for any reflexive sheaf F, M p

F(K X + B)
is a finitely generated R(K X + B)-module.
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my questions and providing many valuable comments. The author is supported by
the EPSRC grant EP/I004130/1.

References

[Birkar 2010] C. Birkar, “Divisorial algebras and modules on schemes”, preprint, 2010. To appear in
J. Math. Soc. Japan. arXiv 1105.0441

[Birkar and Hu 2012] C. Birkar and Z. Hu, “Polarized pairs, log minimal models, and Zariski
decompositions”, preprint, 2012. To appear in J. Math. Soc. Japan. arXiv 1302.4015

[Birkar et al. 2010] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, “Existence of minimal
models for varieties of log general type”, J. Amer. Math. Soc. 23:2 (2010), 405–468. MR 2011f:14023
Zbl 1210.14019

[Boucksom 2004] S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”,
Ann. Sci. École Norm. Sup. (4) 37:1 (2004), 45–76. MR 2005i:32018 Zbl 1054.32010

[Boucksom et al. 2008] S. Boucksom, C. Favre, and M. Jonsson, “Valuations and plurisubharmonic
singularities”, Publ. Res. Inst. Math. Sci. 44:2 (2008), 449–494. MR 2009g:32068 Zbl 1146.32017

[Boucksom et al. 2012a] S. Boucksom, C. Favre, and M. Jonsson, “A refinement of Izumi’s Theorem”,
preprint, 2012. arXiv 1209.4104

[Boucksom et al. 2012b] S. Boucksom, C. Favre, and M. Jonsson, “Singular semipositive metrics in
non-Archimedean geometry”, preprint, 2012. arXiv 1201.0187

[Boucksom et al. 2012c] S. Boucksom, C. Favre, and M. Jonsson, “Solution to a non-Archimedean
Monge-Ampère equation”, preprint, 2012. arXiv 1201.0188

[Boucksom et al. 2012d] S. Boucksom, T. de Fernex, and C. Favre, “The volume of an isolated
singularity”, Duke Math. J. 161:8 (2012), 1455–1520. MR 2931273 Zbl 1251.14026

[Boucksom et al. 2013a] S. Boucksom, J.-P. Demailly, M. Păun, and T. Peternell, “The pseudo-
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QUASICONFORMAL CONJUGACY CLASSES
OF PARABOLIC ISOMETRIES

OF COMPLEX HYPERBOLIC SPACE

YOUNGJU KIM

We investigate the quasiconformal conjugacy classes of parabolic isometries
acting on complex hyperbolic space. Our main result is that a screw para-
bolic isometry cannot be quasiconformally conjugate to a translation. This
implies that a cyclic group generated by a screw parabolic isometry is not
quasiconformally stable in its deformation space.

We are interested in the quasiconformal deformation theory of a complex hyper-
bolic quasi-Fuchsian group. We mainly focus on the case that the group is a cyclic
group generated by a parabolic isometry.

We recall the definition of quasiconformal stability from Kleinian group theory
(see, for instance, [Bers 1970; Kapovich 2008; Marden 1974; Maskit 1988]). Let
0 be a finitely generated discrete subgroup of the orientation-preserving isometry
group Isom(Hn+1) acting on real hyperbolic (n+1)-space Hn+1. Such a group 0
is called a Kleinian group. A representation ρ : 0 → Isom(Hn+1) is said to
be a deformation if it is a discrete, faithful and type-preserving representation.
The Kleinian group 0 is said to be quasiconformally stable if any deformation
ρ : 0→ Isom(Hn+1) sufficiently near the identity deformation is obtained by a
quasiconformal conjugation. That is, there is a quasiconformal mapping of the
boundary at infinity, φ : ∂Hn+1

→ ∂Hn+1, such that ρ(g)=φ◦g◦φ−1 for any g ∈0.
In H2 and H3, a geometrically finite Kleinian group is quasiconformally stable

[Bers 1970; Marden 1974]. This is one of the fundamental results in the deformation
theory of Kleinian groups. However, there is a nonelementary geometrically finite
Kleinian group of hyperbolic 4-space which is not quasiconformally stable [Kim
2011]. This is mainly due to the presence of screw parabolic isometries in hyperbolic
4-space.
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Hyperbolic (n+1)-space Hn+1 has the natural boundary at infinity R̂n . Every
isometry of Hn+1 extends continuously to a Möbius transformation of R̂n which is a
finite composition of reflections in codimension-1 spheres or hyperplanes, and vice
versa. On the boundary at infinity R̂n , a parabolic isometry is Möbius conjugate to
x 7→ Ax+e1 with A ∈ SO(n), A(e1)= e1, where e1= (1, 0, . . . , 0)∈Rn . If A= I ,
then it is called a strictly parabolic isometry or a translation; otherwise it is a screw
parabolic isometry. There are no screw parabolic isometries if n < 3. This means
that there is only one conformal, and hence quasiconformal, conjugacy class of
parabolic isometries in lower dimensions. In H4, screw parabolic isometries are not
quasiconformally conjugate to translations. Furthermore, there are infinitely many
distinct quasiconformal conjugacy classes of screw parabolic isometries. Let 0 be a
cyclic group generated by a translation. Then we can deform 0 into a cyclic group
0′ generated by a screw parabolic isometry such that 0 is arbitrary close to 0′.
Hence, the cyclic group 0 is not quasiconformally stable in its deformation space.
We can generalize this to a nonelementary Kleinian group of H4 (see [Kim 2011] for
details). On the other hand, it is known that a convex cocompact (i.e., geometrically
finite without parabolic isometries) Kleinian group is quasiconformally stable in
any dimension [Izeki 2000].

Now, we consider the case of complex hyperbolic space H2
C

. A complex hyper-
bolic quasi-Fuchsian group is a discrete, faithful, type-preserving and geometrically
finite representation of the fundamental group of a surface in the group PU(2, 1)
of holomorphic isometries acting on complex hyperbolic space H2

C
[Goldman

1999; Parker and Platis 2010; Schwartz 2007]. It is the complex counterpart of a
Kleinian group of real hyperbolic space. The deformation space is the set of all
such groups factored by the conjugation action of the holomorphic isometry group
PU(2, 1). Naturally, we can ask if a complex hyperbolic quasi-Fuchsian group is
quasiconformally stable in its deformation space (see [Parker and Platis 2010] for
more related questions). To that end, we consider a cyclic group generated by a
parabolic isometry of H2

C
.

The boundary at infinity of complex hyperbolic space can be identified with
the one-point compactification of the Heisenberg group H: ∂H2

C
= H∪ {∞}. A

holomorphic isometry of H2
C

extends continuously to an extended Heisenberg
group automorphism of ∂H2

C
, and vice versa. On ∂H2

C
, a parabolic isometry of

H2
C

is conjugate to either a Heisenberg translation or the composition of a vertical
translation and a rotation by an element of PU(2, 1). We call the latter a screw
parabolic isometry.

A Heisenberg translation can be conjugate to either a horizontal translation or
a vertical translation by an element of PU(2, 1). We can conjugate a horizontal
translation (or a vertical translation) further by an element of PU(2, 1) so that the
translation length is 1 with respect to the Cygan norm of the Heisenberg group.
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Therefore, we have the following classification of conformal classes of parabolic
isometries up to the conjugation action of PU(2, 1):

(1)

• a horizontal translation T(1,0),

• a vertical translation T(0,1),

• a 1-parameter family of screw parabolic isometries {Aθ : θ ∈ (0, 2π)},

where

(2) T(ζ,ν) =

1 −
√

2ζ −|ζ |2+ iν
0 1

√
2ζ

0 0 1

 ∈ SU(2, 1)

for ζ ∈ C, ν ∈ R, and

(3) Aθ =

1 0 i
0 eiθ 0
0 0 1

 ∈ SU(2, 1)

for θ ∈ (0, 2π) (see Section 1B for details).
Miner [1994] showed that a horizontal translation and a vertical translation are not

quasiconformally conjugate. That is, no quasiconformal mapping of the Heisenberg
group conjugates a horizontal translation to a vertical one. We prove here that a
screw parabolic isometry is not quasiconformally conjugate to a translation, as
follows:

Theorem 3.3. Let T(0,1)(z, t) = (z, t + 1) be a vertical translation and A(z, t) =
(eiθ z, t+1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the Heisenberg
group H. Then A is not quasiconformally conjugate to T(0,1).

Theorem 3.7. Let T(1,0)(z, t)= (z+ 1, t + 2 Im z̄) be a horizontal translation and
Aθ (z, t)= (eiθ z, t + 1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the
Heisenberg group H. Then Aθ is not quasiconformally conjugate to T(1,0).

A screw parabolic isometry is called rational if some iteration of it becomes a
translation; otherwise, it is called irrational. For a rational screw parabolic isometry
A, the order of A is the smallest positive integer n such that An becomes a translation.
For the 1-parameter family of screw parabolic isometries from (1), we prove that
a rational screw parabolic isometry cannot be quasiconformally conjugate to an
irrational screw parabolic isometry in Corollary 3.4, that two distinct rational screw
parabolic isometries are quasiconformally conjugate only if they have the same
order in Corollary 3.5, and that two distinct irrational screw parabolic isometries
are not quasiconformally conjugate to each other in Proposition 3.6. In summary,
together with the result of [ibid.], we have the following distinct quasiconformal
conjugacy classes of parabolic isometries of H2

C
(compare with the list (1)):
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• a horizontal translation T(1,0);

• a vertical translation T(0,1);

• a subfamily of irrational screw parabolic isometries {Aϑ :ϑ ∈(0,2π) irrational};

• a subfamily of rational screw parabolic isometries {A2π i/n : n = 2, 3, . . . }.

Let 0 < PU(2, 1) be a cyclic group generated by a vertical translation. Then we
can deform 0 into a cyclic group 0′ generated by a screw parabolic isometry such
that 0 is arbitrary close to 0′ with respect to the l2 norm of PU(2, 1). Applying
Theorem 3.3, this shows that 0 is not quasiconformally stable in its deformation
space. Thus, we have:

Theorem. Let 0 < PU(2, 1) be a cyclic group generated by a vertical translation.
Then it is not quasiconformally stable in its deformation space.

This paper is organized as follows. In Section 1, we recall some basic facts
related to complex hyperbolic geometry, the Heisenberg group and the theory
of quasiconformal mappings. In Section 2, we construct a family of horizontal
curves in a cylindrical region and compute the modulus of the curve family. This
curve family will be used to prove Theorem 3.3 in Section 3. We will also prove
Theorem 3.7 in Section 3.

1. Preliminaries

Throughout this section, we use [Goldman 1999] as references for the basic defini-
tions of complex hyperbolic geometry and [Korányi and Reimann 1985; 1995] for
the theory of quasiconformal mappings.

1A. Complex hyperbolic space. Let C2,1 be the complex vector space C3 with the
Hermitian form of signature (2, 1) given by

(4) 〈z,w〉 = w∗ J z = z1w3+ z2w2+ z3w1,

where the Hermitian matrix is

J =

0 0 1
0 1 0
1 0 0

 .
Consider the following subspaces of C2,1:

(5)
V− = {z ∈ C2,1

: 〈z, z〉< 0},

V0 = {z ∈ C2,1
−{0} : 〈z, z〉 = 0}.

Let P : C2,1
− {0} → CP2 be the canonical projection onto complex projective

space. Then complex hyperbolic space H2
C

is defined to be PV− and the boundary at
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infinity ∂H2
C

to be PV0. We define the Siegel domain model of complex hyperbolic
space by considering the section defined by z3 = 1. For any z = (z1, z2) ∈ C2,
we lift the point z to z = (z1, z2, 1) ∈ C2,1, called the standard lift of z. Then
〈z, z〉 = z1 + z2 z̄2 + z̄1. Hence the Siegel domain model of complex hyperbolic
space is defined by

(6) H2
C = {(z1, z2) ∈ C2

: 2 Re(z1)+ |z2|
2 < 0}.

The boundary is the one-point compactification of the paraboloid defined by
{(z1, z2) ∈ C2

: 2 Re(z1)+ |z2|
2
= 0}. The standard lift of∞ is (1, 0, 0) ∈ C2,1.

The Bergman metric ρ on H2
C

is defined by

(7) cosh2
(
ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

,

where z and w are the standard lifts of z and w ∈H2
C

. Let SU(2, 1) be the group of
unitary matrices which preserve the given Hermitian form with determinant 1. Then
the group of holomorphic isometries of H2

C
is PU(2, 1)= SU(2, 1)/{I, ωI, ω2 I },

where ω = (−1+ i
√

3)/2 is a cube root of unity.
Let z= (z1, z2)∈ ∂H2

C
be a finite point with standard lift z= (z1, z2, 1) satisfying

(8) 2 Re(z1)+ |z2|
2
= 0.

We write ζ = z2/
√

2 ∈ C. Then (8) implies that 2 Re(z1) = −2|ζ |2. We can also
write z1 =−|ζ |

2
+ iν for ν ∈ R. Thus,

(9) z =

−|ζ |2+ iν
√

2ζ
1


for ζ ∈ C and ν ∈ R. Thus, we identify the boundary ∂H2

C
with the one-point

compactification of C×R. Furthermore, an element T(ζ,ν) ∈ SU(2, 1) of (2) is the
unique unipotent upper triangular matrix which sends (0, 0) ∈ C×R to the finite
point (ζ, ν) ∈C×R. The group structure of the unipotent upper triangular matrices
induces a group multiplication on C×R, which is the Heisenberg group structure.

1B. Heisenberg group. The Heisenberg group H can be described as the set of
pairs (z, t) ∈ C×R with the group multiplication

(10) (z1, t1) · (z2, t2)= (z1+ z2, t1+ t2+ 2 Im z1 z̄2).

The Cygan norm on H is defined by |(z, t)| = (|z|4+ t2)1/4, and the Cygan metric
d is given by

(11) d((z1, t1), (z2, t2))= |(z1, t1)−1
·(z2, t2)|.
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The Heisenberg group H acts on itself by left translation: T(z0,t0)(z, t)= (z0, t0)·(z, t)
for (z0, t0) ∈ H. A Heisenberg translation of the form T(0,t) for t ∈ R is called a
vertical translation. The unitary group U (1) acts by rotations: (z, t) 7→ (λz, t) for
a unit λ ∈ C−{1}. Real dilation is defined by (z, t) 7→ (r z, r2t) for r ∈ R+−{1}.
A parabolic Heisenberg group automorphism is either a Heisenberg translation
or the composition of a vertical translation and a rotation. We call the latter
type screw parabolic. A screw parabolic automorphism A(z, t)= (eiθ z, t + s), for
θ ∈ (0, 2π), s ∈R, is said to be rational if some iteration of it becomes a Heisenberg
translation. Otherwise, it is said to be irrational. The Heisenberg similarity group
is generated by Heisenberg translations, rotations, and real dilations.

It is known to many people that there are two conformal conjugacy classes of
Heisenberg translations. More precisely, we can conjugate a Heisenberg translation
by a holomorphic isometry of H2

C
to obtain a horizontal translation or a vertical

translation in the following way. Let T be a nonvertical translation. We may
conjugate T by a Heisenberg automorphism m(z, t) = (λeiθ z, λ2t) for λ ∈ R+,
θ ∈ [0, 2π), such that

(12) m ◦ T ◦m−1
= T(r,s),

where T(r,s)(z, t)= (z+r, t+s+2r Im z̄) for some real numbers r and s with r 6= 0.
For a computation, we note that for w ∈C, (w, t)(r, s)(−w,−t)= (r, s+4r Imw)

and hence s+ 4r Imw = 0 if Imw =−s/4r . We conjugate both sides of (12) by a
Heisenberg translation T(w,t) with Imw =−s/4r as follows:

(13) T(w,t)mT m−1T−1
(w,t) = T(w,t)T(r,s)T−1

(w,t) = T(r,0).

Conjugating both sides of (13) by a dilation L(z, t)= (Lz, L2t) for some L ∈ R+,
we have

(14) LT(w,t)mT m−1T−1
(w,t)L

−1
= LT(r,0)L−1

= T(1,0),

where T(1,0)(z, t) = (z + 1, t + 2 Im z̄). Thus, any nonvertical translation T is
conjugate to T(1,0) by a Heisenberg automorphism.

A screw parabolic isometry can be conjugated to Aθ (z, t)= (eiθ z, t + 1), with
θ ∈ (0, 2π), by an element of SU(2, 1). In addition, two distinct normalized screw
parabolic isometries are not SU(2, 1)-conjugate to each other. Therefore, we have
the following classification of conformal classes of parabolic isometries up to the
conjugation action of the holomorphic isometries of H2

C
:

• a horizontal translation T(1,0)(z, t)= (z+ 1, t + 2 Im z̄);

• a vertical translation T(0,1)(z, t)= (z, t + 1);
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• a 1-parameter family of screw parabolic isometries

{Aθ (z, t)= (eiθ z, t + 1) : θ ∈ (0, 2π)}.

1C. Quasiconformal mappings. Let φ :H→H be a homeomorphism. We define

(15) M(p, r)= sup
{q:d(p,q)=r}

d(φp, φq) and m(p, r)= inf
{q:d(p,q)=r}

d(φp, φq)

for p ∈H and r > 0.

Definition 1.1. A homeomorphism φ : H → H is called K -quasiconformal if
the function

(16) H(p)= lim sup
r→0

M(p, r)
m(p, r)

for p ∈H is uniformly bounded by K .

We also need to use the Carnot–Carathéodory metric dcc for our proof with
quasiconformal mappings. A smooth curve γ : [0, 1] →H is horizontal if, for all
t ∈ [0, 1], its tangent vector γ̇ (t) lies in the subspace of the tangent space spanned by
the vector fields X = ∂/∂x+2y ∂/∂t and Y = ∂/∂y−2x ∂/∂t for (x, y, t)∈C×R.
We define a quadratic form g on the planes generated by vector fields X and Y
such that X and Y are orthonormal. Then the Carnot–Carathéodory length of γ is
given by

(17) l(γ )=
∫ 1

0
g(γ̇ (t), γ̇ (t))1/2 dt

and the Carnot–Carathéodory distance dcc between two points p, q ∈ H is the
infimum of the Carnot–Carathéodory lengths of all horizontal curves connecting p
to q .

Let 0 be a family of piecewise-C1 horizontal curves. Denote by60 the collection
of nonnegative Borel measurable functions σ :H→ R such that

∫
γ
σ ≥ 1 for all

γ ∈ 0. These are the so-called admissible functions. Then we define the modulus
of 0 by

(18) M(0)= inf
σ∈60

∫
H
σ 4 dvol.

We now relate the modulus of a curve family to a quasiconformal mapping.

Theorem 1.2 [Korányi and Reimann 1995]. If a homeomorphism φ : H→ H is
K -quasiconformal, then

(19)
1

K 2 M(0)≤M(φ0)≤ K 2M(0)

for any curve family 0.
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The Cygan metric d and the Carnot–Carathéodory metric dcc give us the same
classes of quasiconformal mappings since they are bi-Lipschitz related:

Theorem 1.3 [Basmajian and Miner 1998]. For any p, q ∈H,

d(p, q)≤ dcc(p, q)≤
√
πd(p, q).

Finally, we need the following property of quasiconformal mappings.

Proposition 1.4 [Korányi and Reimann 1995]. There exists a constant C such that
for any K -quasiconformal mapping φ :H→H,

M(p, r)
m(p, r)

≤ eK C

for any p ∈H and r > 0.

2. The modulus of a cylinder

We construct here a family of piecewise smooth horizontal curves in a cylindrical
region and compute its modulus. Let α0 : [0, 1] → H be a piecewise smooth
horizontal curve defined by α0(t)=α1(t)∗α2(t)∗α3(t)∗α4(t) (see Figure 1), where

(20)

α1(t)= (2ti, 0), 0≤ t ≤ 1
4 ,

α2(t)=
(
2t − 1

2 +
1
2 i, 2t − 1

2

)
, 1

4 ≤ t ≤ 1
2 ,

α3(t)=
( 1

2 +
( 3

2 − 2t
)
i, 2t − 1

2

)
, 1

2 ≤ t ≤ 3
4 ,

α4(t)= (2− 2t, 1), 3
4 ≤ t ≤ 1.

x

y

t

(0; 1)
�

1
2
; 1

�

�
1Ci

2
; 1

2

�

�
i
2
; 0

�

(0; 0)

Figure 1. A piecewise smooth horizontal curve α0(t).
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Note that α0(0)= (0, 0), α0(1)= (0, 1), and |α̇i (t)| = 2. The Carnot–Carathéodory
length of α0 is

l(α0)=

4∑
i=1

∫ 1/4

0
|α̇i (t)| dt = 2.

Translating α0 by T(z,0), for (z, 0) ∈H, produces a piecewise smooth horizontal
curve αz , given by

(21) αz(t)= T(z,0)α0(t), 0≤ t ≤ 1,

from αz(0) = (z, 0) to αz(1) = (z, 1). Let αi
z(t) = T(z,0)αi (t). Then αz(t) =

α1
z (t) ∗α

2
z (t) ∗α

3
z (t) ∗α

4
z (t), where

α1
z (t)= (x, y+ 2t,−4xt), 0≤ t ≤ 1

4 ,(22)

α2
z (t)=

(
x + 2t − 1

2 , y+ 1
2 , 2t − 1

2 − x + 4t y− y
)
, 1

4 ≤ t ≤ 1
2 ,(23)

α3
z (t)=

(
x + 1

2 , y+ 3
2 − 2t, 2t − 1

2 − 3x + 4t x + y
)
, 1

2 ≤ t ≤ 3
4 ,(24)

α4
z (t)= (x + 2− 2t, y, 1+ 2(2− 2t)y), 3

4 ≤ t ≤ 1.(25)

Since Heisenberg translations are isometries with respect to the Carnot–Carathéo-
dory metric, all curves αz have Carnot–Carathéodory length 2. Define a family of
curves 0r,R for 0< r < R by

(26) 0r,R = {αz : r ≤ |z| ≤ R}.

This family of curves defines a mapping α from the cylindrical region

D = {(x, y) ∈ C : r2 < x2
+ y2 < R2

}× [0, 1]

to H, given by

(27) α(x, y, t)= αx+yi (t).

Let Di = {(x, y) : r2 < x2
+ y2 < R2

} × [(i − 1)/4, i/4], i = 1, 2, 3, 4, so that
D =

⋃4
i=1 Di . Then the Jacobian determinant of α is given by

(28) |Jα(x, y, t)| =


4|x | on D1,

4|1+ y| on D2,

4|1+ x | on D3,

4|y| on D4.

Lemma 2.1. For 1< r < R, we have the following lower bound for the modulus of
the curve family:

M(0r,R)≥
1

256(R
2
− r2)

(
π

2
− 2 arctan

1
√

r2− 1

)
.
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Proof. Let σ be an arbitrary admissible function in 60√r ,
√

R
. By Hölder’s inequality,

(29) 1≤
∫
αz

σ ≤

(∫ 1

0
σ 2(αz(t)) dt

)1/2(∫ 1

0
|α̇z(t)|2 dt

)1/2

.

Since
∫ 1

0 |α̇z(t)|2 dt = 2,

(30) 1
2
≤

∫ 1

0
σ 2(αz(t)) dt =

4∑
i=1

∫ i
4

i−1
4

σ 2(αi
z(t)) dt.

Applying Hölder’s inequality to each term of the right-hand side, we have

(31)
∫ i

4

i−1
4

σ 2(αi
z(t))|Jα|

1/2 1
|Jα|1/2

dt

≤

(∫ i
4

i−1
4

σ 4(αi
z(t))|Jα| dt

)1/2(∫ i
4

i−1
4

1
|Jα|

dt
)1/2

.

From (30), using the Jacobian determinant (28) and (31), we have

(32) 1
2
≤

4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1
2
(∫ i

4

i−1
4

1
|Jα|

dt
)1

2

≤

( 4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1
2
)( 4∑

i=1

(∫ i
4

i−1
4

1
|Jα|

dt
)1

2
)

≤
1
4

( 4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1
2
)(

1
√
|x |
+

1
√
|x+1|

+
1
√
|y|
+

1
√
|y+1|

)
.

Thus,

(33) 2
(

1
√
|x |
+

1
√
|x + 1|

+
1
√
|y|
+

1
√
|y+ 1|

)−1

≤

4∑
i=1

(∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1/2

≤ 4
( 4∑

i=1

∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt

)1/2

.

Equations (31), (32) and (33) only hold if |Jα| 6= 0. However, when we estimate a
lower bound of the modulus in (35), we will restrict the domain of the integration
so that we may assume |Jα| 6= 0.

Using the trivial inequality

(34) 4
∫
α(D)

σ 4 dvol≥
4∑

i=1

∫
α(Di )

σ 4 dvol
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and defining U = {x, y : r2
≤ x2
+ y2
≤ R2, x ≥ 1, y ≥ 1}, we have

(35)
∫

H
σ 4 dvol≥

∫
α(D)

σ 4 dvol= 1
4

4∑
i=1

∫
α(Di )

σ 4 dvol

≥

4∑
i=1

∫∫
U

∫ i
4

i−1
4

σ 4(αi
z(t)) |Jα| dt dx dy

≥

∫∫
U

1
4

(
1
√
|x |
+

1
√
|x + 1|

+
1
√
|y|
+

1
√
|y+ 1|

)−2

dx dy

≥
1

256 Area(U );

the third inequality follows from (33) and the fact that dvol= 4 dx dy dt ; for the
last inequality we argue as follows:(

1
√
|x |
+

1
√
|x + 1|

+
1
√
|y|
+

1
√
|y+ 1|

)−2

≥

( √
|x(x + 1)y(y+ 1)

√
|(x + 1)y(y+ 1)|+

√
|xy(y+ 1)|+

√
|x(x + 1)(y+ 1)|+

√
|x(x + 1)y|

)2

≥

( √
|x(x + 1)y(y+ 1)|

4
√
|(x + 1)y(y+ 1)| + |xy(y+ 1)| + |x(x + 1)(y+ 1)| + |x(x + 1)y|

)2

≥
1
16
·

|x(x + 1)y(y+ 1)|
|(x + 1)y(y+ 1)| + |xy(y+ 1)| + |x(x + 1)(y+ 1)| + |x(x + 1)y|

≥
1
16
·

x(x + 1)y(y+ 1)
4x(x + 1)y(y+ 1)

=
1

64
if x ≥ 1, y ≥ 1.

Since σ was arbitrary, we obtain (see Figure 2)

M(0r,R)≥
1

256(R
2
− r2)

(
π

2
− 2 arctan

1
√

r2− 1

)
�

3. Parabolic quasiconformal conjugacy classes

Throughout this section, let A(z, t)= Aθ (z, t)= (eiθ z, t + 1) be a screw parabolic
automorphism of the Heisenberg group H for θ ∈ (0, 2π), and

T(z0,t0)(z, t)= (z+ z0, t + t0+ 2 Im z0 z̄)

be a Heisenberg translation for (z0, t0) ∈H. An injective map φ :H→H is called
quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) such that

(36) d(x, y)≤ t d(x, z) =⇒ d(φx, φy)≤ η(t)d(φx, φz)

for x, y, z ∈H, t ∈ [0,∞).
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1

1

θ

r R x

y

Figure 2. θ = π
2
− 2 arctan 1

√
r2−1

(see previous page).

Theorem 3.1 [Heinonen and Holopainen 1997, Theorem 6.21]. If φ : H→ H is
quasiconformal, then it is quasisymmetric.

Lemma 3.2. Let φ :H→H be a quasiconformal map that fixes all integer points
(0, n) on the vertical axis. Then there exist a nondecreasing function c : [0,∞)→
[0,∞) and a constant r0 > 0 satisfying:

• limr→∞c(r)=∞,

• for any reiθ
∈ C with r > r0,

(37) |p(φ(reiθ , 0))| ≥ c(r),

where p :H→ C is the vertical projection.

Proof. Throughout the proof, [x] denotes the greatest integer less than or equal to x
for any x ∈ R and B(p, r) the ball of radius r ≥ 0 centered at p ∈H.

We use the property that the quasiconformal map φ is quasisymmetric for a
homeomorphism η : [0,∞)→ [0,∞) (Theorem 3.1). For any reiθ

∈ C, r > 0,

d((0, 0), (0, [r ]2))
d((0, 0), (reiθ , 0))

=
[r ]
r
≤ 1

implies that

d(φ(0, 0), φ(0, [r ]2))
d(φ(0, 0), φ(reiθ , 0))

=
[r ]

d((0, 0), φ(reiθ , 0))
≤ η(1).
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Thus we have

(38)
[r ]
η(1)
≤ d((0, 0), φ(reiθ , 0)),

and hence φ(reiθ , 0) lies in the complement of the ball B((0, 0), [r ]/η(1)).
Similarly, for any reiθ

∈ C and any integer n,

(39)
d((0, n), (0, 0))

d((0, n), (reiθ , 0))
=

√
|n|

(r4+ n2)1/4
≤ 1

implies

(40)
d(φ(0, n), φ(0, 0))

d(φ(0, n), φ(reiθ , 0))
=

√
|n|

d((0, n), φ(reiθ , 0))
≤ η(1).

Thus,

(41)
√
|n|

η(1)
≤ d((0, n), φ(reiθ , 0)),

and hence φ(reiθ , 0) lies in the complement of the ball B((0, n),
√
|n|/η(1)). Since

the integer n was arbitrary, the image φ(reiθ , 0) also lies in the complement of
the set ⋃

n∈Z

B
(
(0, n),

√
|n|

η(1)

)
.

Therefore, together with (38), the image φ(reiθ , 0) should lie in the complement of

Dr = B
(
(0, 0),

[r ]
η(1)

)
∪

⋃
n∈Z

B
(
(0, n),

√
|n|

η(1)

)
.

Note that the t-intersects of the sphere of radius [r ]/η(1) centered at (0, 0) are
±(0, [r ]2/η2(1)). We put

nr =

[
[r ]2

η2(1)

]
∈ N.

Take a positive real number r0 large enough that nr0 > η(1).
To finish the proof, we will show that for r > r0, Dr contains an infinite cylinder

Cr = {(z, t) ∈H : |z| ≤ c(r), t ∈ R},

where c(r) is a positive function such that limr→∞ c(r)=∞. Since Dr is symmetric
with respect to the z-plane of H, it suffices to show that the upper half of Dr , denoted
by 1

2 Dr , contains a half cylinder 1
2Cr = {(z, t) ∈H : |z| ≤ c(r), t ≥ 0}.

Since

B
(
(0, n),

√
nr

η(1)

)
⊆ B

(
(0, n),

√
n

η(1)

)
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[r ]
η(1) z-plane

t-axis

nr+2

nr+1

nr

√
nr

η(1)

2
√

nr
η2(1)
−

1
4

[r ]2

η2(1)

Figure 3. A set 1
2 D′r .

for n > nr > 0, the set 1
2 Dr contains a proper subset 1

2 D′r (see Figure 3):

1
2 D′r = B

(
(0, 0),

[r ]
η(1)

)
∪

⋃
n≥nr

B
(
(0, n),

√
nr

η(1)

)
.

Take

c(r)=min
{√

nr
η2(1)

−
1
4
,
[r ]
η(1)

}
.

Then we see that 1
2 D′r contains the half cylinder 1

2Cr ={(z, t)∈H : |z|≤ c(r), t ≥ 0}.
Therefore, we have the lemma. �

Theorem 3.3. Let T(0,1)(z, t) = (z, t + 1) be a vertical translation and A(z, t) =
(eiθ z, t+1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the Heisenberg
group H. Then A is not quasiconformally conjugate to T(0,1).

Proof. Suppose, to the contrary, that a K -quasiconformal map φ :H→H exists
such that

(42) φ ◦ A ◦φ−1
= T(0,1).
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Let 01 and 02 be the cyclic groups generated by A and T(0,1), respectively. Then φ
projects to a K -quasiconformal mapping, called φ again, between the quotients.
That is,

(43) φ :H/01→H/02.

If φ does not fix (0, 0), we compose (42) with a Heisenberg translation m that
sends φ(0, 0) to (0, 0), so that we have

(44) m ◦φ ◦ A = m ◦ T(0,1) ◦φ.

Because the vertical translation T(0,1) commutes with all Heisenberg translations,

(45) m ◦φ ◦ A = T(0,1) ◦m ◦φ,

and since m is conformal, m ◦φ is also K -quasiconformal and fixes (0, 0). Hence,
without loss of generality we may assume that the quasiconformal mapping φ of
(42) fixes (0, 0).

Evaluating (42) at (0, 0) shows that φ(0, 1)= (0, 1). By induction, φ fixes all
integer points {(0, n)} on the vertical axes. The global estimate of Proposition 1.4
implies that there exists a constant c0 such that for any given integer r , there is
some r ′ for which

(46) Br ′ ⊆ φ(B√r )⊆ Bc0r ′,

where Bt is a ball of radius t centered at the origin. Since the integer point (0, r) is
fixed by φ, the point (0, r) also lies in φ(S√r ), where St is the sphere of radius t
centered at the origin. Hence, (46) implies that

(47) r ′ ≤
√

r ≤ c0r ′.

We consider the curve family 0√r ,
√

R from (26), where r and R are square
integers satisfying r0 <

√
r <
√

R and r0 is the constant from Lemma 3.2. We
put 0 = 0√r ,

√
R during this proof. All curves αz in 0 have length

√
π and are

homotopic to the generator of π1(H/01).
We now compute the modulus of the family φ0 consisting of the images of

curves in 0 under φ. For any r > 0, let lr denote the Carnot–Carathéodory distance
from (r, 0) to A(r, 0)= (eiθr, 1). Since the Carnot–Carathéodory distance is larger
than or equal to the Cygan distance (Theorem 1.3), we have

(48) lr ≥ d
(
(r, 0), (reiθ , 1)

)
=

(
24r4 sin4 θ

2
+ 1

)1/4
.

Since the Carnot–Carathéodory distance and the Cygan distance are invariant
under Heisenberg translations, the length of any horizontal curve from (z, t) to
A(z, t)= (eiθ z, t+1) is at least l|z|. Note that φ0 is the family of curves connecting
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φ(p) to Aφ(p), where p belongs to the annulus {(z, 0) ∈ H :
√

r ≤ |z| ≤
√

R}.
Using Lemma 3.2, we see that every curve γ ∈ φ0 has length at least lc(

√
r), where

c : [0,∞)→ [0,∞) is the function from the lemma.
We denote by D the support of the curve family φ0:

D = φ ◦α
({

z ∈ C :
√

r < |z|<
√

R
}
×[0, 1]

)
,

where α is the mapping of (27). Since each curve of 0 is contained in a fundamental
domain for the action of the cyclic group 〈A〉, and the quasiconformal homeomor-
phism φ conjugates A to T (see (42)), D is also contained in a fundamental domain
for the action of the cyclic group 〈T 〉. Note that T is the vertical translation by 1.
Thus, the intersection of a vertical line with D might have several components, but
the total length is bounded by 1.

Now, let σ = 1/lc(
√

r) be a constant function whose support is D. Then for any
γ ∈ φ0,

(49)
∫
γ

σ =
1

lc(
√

r)
l(γ )≥ 1,

and hence σ is an admissible function of φ0. Therefore,

(50) M(φ0)≤
∫

H
σ 4 dvol=

∫
D
σ 4 dvol≤ σ 4

∫
p(D)

1 dx dy,

where p :H→ C is the vertical projection.
Since the curves in 0 belong to the ball B√R+1, D ⊆ φ(B√R+1). Again,

Proposition 1.4 implies that

(51) BR̃ ⊆ φ(B√R+1)⊆ Bc0 R̃

for some R̃ > 0. Because the integer point (0, R+ 1) is fixed by φ, (0, R+ 1) lies
in the image of the sphere φ(S√R+1) and hence R̃ ≤

√
R+ 1≤ c0 R̃. In particular,

we have c0 R̃ ≤ c0
√

R+ 1. Therefore, we have p(D)⊆ p(Bc0
√

R+1). From (50),

(52) σ 4
∫

p(D)
1 dx dy ≤

1
l4
c(
√

r)

∫
p(Bc0

√
R+1)

1 dx dy

=
πc2

0(R+ 1)

l4
c(
√

r)

≤
πc2

0(R+ 1)

24c4(
√

r) sin4 θ
2 + 1

.

Now we finish the proof by deriving a contradiction. Since φ is K -quasiconformal,

(53) M(0)≤ K 2 M(φ0).
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Combining Lemma 2.1, (52), and (53), we have

(54) 1
256(R− r)

(
π

2
− 2 arctan

1
√

r − 1

)
≤

πc2
0 K 2(R+ 1)

24c4(
√

r) sin4 θ
2 + 1

.

Because the square integers r < R are arbitrary, we take R= 4r . Lemma 3.2 implies
that c(

√
r)→∞ as r→∞, and hence we have a contradiction. �

For a positive real number n ∈ R+− {1}, we will denote simply by n the real
dilation (z, t) 7→ (nz, n2t) We will use the following normalization repeatedly:

(
√

n)−1 An
θ (
√

n)(z, t)= (
√

n)−1 An
θ (
√

n z, nt)(55)

= (
√

n)−1(eniθ√n z, nt + n)

= (eniθ z, t + 1)= Anθ (z, t),

n−1T(r,s)n(z, t)= n−1T(r,s)(nz, n2t)(56)

= n−1(nz+ r, n2t + s+ 2rn Im z̄)

=

(
z+ r

n
, t + s

n2 +
2r
n

Im z̄
)
= T(r/n,s/n2)(z, t),

where n ∈ Z, Aθ (z, t)= (eiθ z, t + 1) for θ ∈ [0, 2π), and

T(r,s)(z, t)= (z+ r, t + s+ 2r Im z̄)

for r , s ∈ R.

Corollary 3.4. A rational screw parabolic automorphism is not quasiconformally
conjugate to an irrational screw parabolic automorphism.

Proof. Let Aθ be a rational screw parabolic automorphism and Aϑ be an irra-
tional screw parabolic automorphism of H. Suppose, to the contrary, that a K -
quasiconformal map φ :H→H exists such that φ ◦ Aϑ ◦φ−1

= Aθ . Then for any
integer n,

(57) φ ◦ An
ϑ ◦φ

−1
= An

θ .

Because Aθ is a rational screw parabolic automorphism, An0
θ = T(0,n0) for some

integer n0. We conjugate both sides of (57) by a real dilation
√

n0 and use (55) and
(56) as follows:

(58)
(
√

n0)
−1φAn0

ϑ φ
−1√n0 = (

√
n0)
−1T(0,n0)

√
n0,

(
√

n0)
−1φ(
√

n0 An0ϑ(
√

n0)
−1)φ−1√n0 = T(0,1).

This implies that a screw parabolic An0ϑ(z, t) = (en0ϑi z, t + 1) is conjugate to a
vertical translation T(0,1) by a quasiconformal mapping (

√
n0)
−1φ
√

n0, which is a
contradiction to Theorem 3.3. �
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Applying the same idea as above, we also have:

Corollary 3.5. If two rational screw parabolic automorphisms are quasiconfor-
mally conjugate, then they have the same order.

Proposition 3.6. Let Aθ and Aϑ be two distinct irrational screw parabolic auto-
morphisms for θ, ϑ ∈ (0, 2π). Then Aθ and Aϑ are not quasiconformally conjugate
to each other.

Proof. Using the normalization of (55), the proof follows the same idea of Proposi-
tion 4.15 of [Kim 2011]. �

We need the following theorem to prove that a screw parabolic automorphism is
not quasiconformally conjugate to a horizontal translation.

Theorem F [Korányi and Reimann 1995]. If {ϕn : G→ Ĥ}, for a proper subset
G ⊂H, is a sequence of K -quasiconformal mappings such that every mapping ϕn

omits two points an and bn (depending on ϕn) with a distance at least l (l a fixed
positive number independent of ϕn), then there exists a locally uniformly convergent
subsequence converging to a K -quasiconformal mapping or to a constant.

Theorem 3.7. Let T(1,0)(z, t)= (z+ 1, t + 2 Im z̄) be a horizontal translation and
Aθ (z, t)= (eiθ z, t + 1), for θ ∈ (0, 2π), be a screw parabolic automorphism of the
Heisenberg group H. Then Aθ is not quasiconformally conjugate to T(1,0).

Proof. Suppose, to the contrary, that a K -quasiconformal map φ :H→H exists
such that

(59) φ ◦ Aθ ◦φ−1
= T(1,0).

Then for any integer n, we also have

(60) φ ◦ An
θ ◦φ

−1
= T n

(1,0) = T(n,0).

First consider the case that Aθ is a rational parabolic automorphism. Then there
is a positive integer n0 such that An0

θ = T(0,n0). We conjugate both sides of (60) by
a real dilation n as follows:

(61) n−1(φAn
θφ
−1)n = n−1T(n,0)n = T(1,0).

In particular, when n = n0,

(62) n−1
0 φT(0,n0)φ

−1n0 = T(1,0).

Using that T(0,n0) =
√

n0 T(0,1)(
√

n0)
−1, we rewrite the left-hand side of (62) as

(63) (n−1
0 φ
√

n0)T(0,1)((
√

n0)
−1φ−1n0)= T(1,0).

Because (n0)
−1φ
√

n0 is also a K -quasiconformal mapping, (63) implies that the
vertical translation T(0,1) is conjugate to the horizontal translation T(1,0) by the
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quasiconformal mapping n−1
0 φ
√

n0. This is a contradiction to Theorem 5.1 of
[Miner 1994].

The second case is that Aθ is an irrational screw parabolic automorphism.
Here we use the property that, under a mild condition, an infinite sequence of
K -quasiconformal mappings is a normal family; see Theorem F.

It is possible that the quasiconformal mapping φ of (59) does not fix the origin
(0, 0). Hence, we conjugate both sides of (59) by a Heisenberg translation m which
sends φ(0, 0) to (0, 0) (m might be the identity map) so that we have

(64) mφAθφ−1m−1
= m ◦ T(1,0) ◦m−1.

If m ◦ T(1,0) ◦ m−1 is a vertical translation, then we have proved the theorem.
Otherwise, mT(1,0)m−1 is a nonvertical translation. Now we conjugate (64) by a
rotation λ : (z, t) 7→ (λz, t) for a unit λ ∈C so that λmT(1,0)m−1λ= T(r,s) for some
real numbers r 6= 0 and s:

(65) λmφAθφ−1m−1λ−1
= λmT(1,0)m−1λ−1

= T(r,s).

Let ϕ = λmφ. Then ϕ is a K -quasiconformal mapping, fixes the origin (0, 0) and

(66) ϕ ◦ Aθ ◦ϕ−1
= T(r,s).

(We note that if φ fixes (0, 0), then m and λ are the identity map, T(r,s) = T(1,0),
and ϕ = φ.)

Let n be any integer; then from (66), we have

(67) ϕAn
θϕ
−1
= T n

(r,s) = T(nr,ns)

because r and s are real numbers. Evaluating (67) at (0, 0) shows that

(68) ϕ(0, n)= (nr, ns).

We conjugate both sides of (67) by a real dilation n and use equations (55) and (56)
as follows:

(69)
n−1ϕAn

θϕ
−1n = n−1T(nr,ns)n,

n−1ϕ(
√

n Anθ (
√

n)−1
)ϕ−1n = T(r,s/n).

Because Aθ is an irrational screw parabolic, there is a subsequence {Ankθ : k ∈ N}

which converges to the vertical translation T(0,1). For each k ∈N, let ψk = n−1
k ϕ
√

nk .
Then each ψk is again K -quasiconformal, fixes (0, 0), and

(70) ψk Ankθψ
−1
k = T(r,s/nk).

To apply Theorem F, let G =H−{(0, 0)} and restrict each ψk on G. Thus, we have
an infinite sequence of K -quasiconformal mappings, F={ψk :G→ Ĥ |k∈N}. Note
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that each ψk |G omits (0, 0) and∞ in Ĥ. Hence, the sequence F has a convergent
subsequence whose limit, say ψ , is a K -quasiconformal homeomorphism for the
following reason: for any integer m,

ψk(0,m)= n−1
k ϕ
√

nk (0,m)=
(

mr, ms
nk

)
converges to (mr, 0) as k → ∞. Thus, ψ(0,m) = (mr, 0) for any integer m,
and hence ψ is not a constant function. We now extend ψ to H by defining
ψ(0, 0)= (0, 0). From (70), we haveψ◦T(0,1)◦ψ−1

=T(r,0) which is a contradiction
by Theorem 5.1 of [Miner 1994]. �

Corollary 3.8. Let T(1,0)(z, t)= (z+ 1, t + 2 Im z̄) be a horizontal translation and
A(z, t)= (eiθ z, t + 1), for θ ∈ (0, 2π), be a screw parabolic automorphism in the
Heisenberg group H. Let 01 and 02 be the cyclic groups generated by T(1,0) and A,
respectively. Then there exists no quasiconformal mapping between H/01 and
H/02. In particular, 01 is not quasiconformally conjugate to 02.
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ON THE DISTRIBUTIONAL HESSIAN
OF THE DISTANCE FUNCTION

CARLO MANTEGAZZA, GIOVANNI MASCELLANI AND GENNADY URALTSEV

We describe the precise structure of the distributional Hessian of the dis-
tance function from a point of a Riemannian manifold. At the same time we
discuss some geometrical properties of the cut locus of a point, and compare
some different weak notions of the Hessian and Laplacian.

1. Introduction

Let (M, g) be an n-dimensional, smooth, complete Riemannian manifold; for any
point p ∈ M , we define dp : M→ R to be the distance function from p.

Such distance functions and their relatives, the Busemann functions, come into
several arguments in differential geometry. With few exceptions they are not smooth
in M \ {p} (and are obviously singular at p), but it is easy to see that they are
1-Lipschitz and so (by Rademacher’s theorem) differentiable almost everywhere,
with unit gradient.

In this note we are concerned with the precise description of the distributional
Hessian of dp, having in mind the following Laplacian and Hessian comparison
theorems (see [Petersen 1998], for instance):

Theorem 1.1. If (M, g) satisfies Ric ≥ (n− 1)K then, considering polar coordi-
nates around the points p ∈ M and P in the simply connected, n-dimensional space
SK of constant curvature K ∈ R, we have

1dp(r)≤1K d K
P (r).

If the sectional curvature of (M, g) is greater than or equal to K , then

Hess dp(r)≤ HessK d K
P (r).

Here1K d K
P (r) and HessK d K

P (r) denote respectively the Laplacian and the Hessian
of the distance function d K

P ( · )= d K (P, · ) in SK , at distance r from P.

It is often stated that these inequalities actually hold on the whole manifold (M, g)
in some weak sense, say in the sense of distributions, or viscosity, or barriers. Such
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Keywords: distance function, cut locus.
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results can simplify, and sometimes are necessary for, global arguments involving
this comparison theorem. More generally, one often would like to use the (weak
or strong) maximum principle for the Laplacian in situations where the functions
involved are not smooth, for instance in Eschenburg and Heintze’s proof [1984] of
the splitting theorem (first proved in [Cheeger and Gromoll 1971]), or proofs of the
Toponogov theorem and the soul theorem [Cheeger and Gromoll 1972; Gromoll
and Meyer 1969].

To be precise, we give definitions of these notions:

Definition 1.2. Let A be a smooth, symmetric (0, 2)-tensor field on a Riemannian
manifold (M, g).

• We say that a function f : M → R satisfies Hess f ≤ A in the distribu-
tional sense if for every smooth vector field V with compact support we have∫

M f ∇2
j i (V

i V j ) d Vol≤
∫

M Ai j V i V j d Vol.

• For a continuous function f : M → R, we say that Hess f ≤ A at the point
p ∈ M in the barrier sense if for every ε > 0 there exists a neighborhood Uε

of the point p and a C2-function hε :Uε→R such that hε(p)= f (p), hε ≥ f
in Uε and Hess hε(p)≤ A(p)+εg(p) as (0, 2)-tensor fields. (Such a function
hε is called an upper barrier.)

• For a continuous function f :M→R, we say that Hess f ≤ A at the point p∈M
in the viscosity sense if for every C2-function h from a neighborhood U of the
point p such that h(p)= f (p) and h ≤ f in U , we have Hess h(p)≤ A(p).

The weak notions of the inequality 1 f ≤ α for some smooth function α : M→ R

are defined analogously:

• We say that a function f : M→ R satisfies 1 f ≤ α in the distributional sense
if for every smooth, nonnegative function ϕ : M→ R with compact support
we have

∫
M f1ϕ d Vol≤

∫
M αϕ d Vol.

• For a continuous function f : M→R, we say that 1 f ≤ α at the point p ∈ M
in the barrier sense if for every ε > 0 there exists a neighborhood Uε of the
point p and a C2-function hε :Uε→R such that hε(p)= f (p), hε ≥ f in Uε

and 1hε(p)≤ α(p)+ ε.

• For a continuous function f : M→R, we say that 1 f ≤ α at the point p ∈ M
in the viscosity sense if for every C2-function h from a neighborhood U of the
point p such that h(p)= f (p) and h ≤ f in U , we have 1h(p)≤ α(p).

In this definition and the rest of this paper we have used the Einstein summation
convention on repeated indices. In particular, by∇2

i j (V
i V j )we mean∇2

i j (V ⊗ V )i j ,
the function obtained by contracting twice the second covariant derivative of the
tensor product V ⊗ V .
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The notion of inequalities in the barrier sense was defined by Calabi [1958] for
the Laplacian (he used the terminology “weak sense” rather than “barrier sense”).
He also proved the relative global “weak” Laplacian comparison theorem (see
[Petersen 1998, Section 9.3]).

The notion of a viscosity solution (which is connected to the definition of in-
equality “in the viscosity sense”; see the Appendix) was introduced by Crandall and
Lions [1983, Definition 3.2] for partial differential equations; the above definition
for the Hessian is a generalization to a very special system of PDEs.

The distributional notion is useful when integrations (by parts) are involved, the
other two concepts when the arguments are based on the maximum principle.

From the definitions it is easy to see that the barrier sense implies the viscosity
sense; moreover, by [Ishii 1995], if f : M→ R satisfies 1 f ≤ α in the viscosity
sense it also satisfies 1 f ≤ α as distributions, and vice versa. In the Appendix we
will discuss in detail the relations between these definitions.

In the next section we will describe the distributional structure of the Hessian
(and hence of the Laplacian) of dp, which will imply the mentioned validity of the
above inequalities on the whole manifold.

It is a standard fact that the function dp is smooth in the set M \ ({p} ∪Cutp),
where Cutp is the cut locus of the point p, which we are now going to define and
state some general properties of (we keep [Gallot et al. 1990; Sakai 1996] as general
references). It is anyway well known that Cutp is a closed set of zero (canonical)
measure. Hence, in the open set M \ ({p} ∪Cutp) the Hessian and Laplacian of
dp are the usual ones (even seen as distributions or using other weak definitions),
and all the analysis is concerned with what happens on Cutp (the situation at the
point p is straightforward, as dp is easily seen to behave as the function ‖x‖ at the
origin of Rn).

We let Up = {v ∈ Tp M | gp(v, v)= 1} be the set of unit tangent vectors to M at
p. Given v ∈Up, we consider the geodesic γv(t)= expp(tv), and we let σv ∈ R+

(or possibly equal to +∞) be the maximal time such that γv([0, σv]) is minimal
between any pair of its points. This defines a map σ :Up→ R+ ∪ {+∞}, and the
point γv(σv) (when σv <+∞) is called the cut point of the geodesic γv.

Definition 1.3. The set of all cut points γv(σv) for v ∈Up with σv <+∞ is called
the cut locus of the point p ∈ M .

There are two reasons why a geodesic can cease to be minimal:

Proposition 1.4. If for a geodesic γv(t) from the point p ∈ M we have σv <+∞,
at least one of the following two conditions is satisfied:

(1) Another minimal geodesic from p arrives at the cut point q = γv(σvv).

(2) The differential d expp is not invertible at the point σvv ∈ Tp M.
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Conversely, if at least one of these conditions is satisfied, the geodesic γv(t) cannot
be minimal on any interval larger that [0, σv].

It is well known that the subset of points q ∈Cutp where more than one minimal
geodesic from p arrive coincides with Sing, the singular set of the distance func-
tion dp in M \ {p}. We also define Conj, the set of points q = γv(σv) ∈ Cutp with
d expp not invertible at σvv ∈ Tp M ; we call Conj the locus of optimal conjugate
points. See [Gallot et al. 1990; Sakai 1996].

2. The structure of the distributional Hessian of the distance function

The following properties of the function dp and the cut locus of p ∈ M are proved
in [Mantegazza and Mennucci 2003, Section 3] (see also the wonderful [Li and
Nirenberg 2005] for other fine properties, notably the local Lipschitz continuity of
the function σ :Up→ R+ ∪ {+∞} in Theorem 1.1 there).

Given an open set � ⊂ Rn , we say that a continuous function u : �→ R is
locally semiconcave if for any open convex set K ⊂� with compact closure in �,
the function u|K is the sum of a C2 function and a concave function.

A continuous function u : M→ R is called locally semiconcave if for any local
chart ψ : Rn

→U ⊂ M , the function u ◦ψ is locally semiconcave in Rn according
to the above definition.

Proposition 2.1 [Mantegazza and Mennucci 2003, Proposition 3.4]. The function
dp is locally semiconcave in M \ {p}.

This fact, which follows from recognizing dp as a viscosity solution of the eikonal
equation |∇u| = 1 (see [Mantegazza and Mennucci 2003]), has some significant
consequences; we need some definitions for the precise statements.

Given a continuous function u :�→ R and a point q ∈ M , the superdifferential
of u at q is the subset of T ∗q M defined by

∂+u(q)= {dϕ(q) |ϕ ∈ C1(M), ϕ(q)− u(q)=min
M
(ϕ− u)}.

For any locally Lipschitz function u, the set ∂+u(q) is a compact convex set, almost
everywhere coinciding with the differential of the function u, by Rademacher’s
theorem.

Proposition 2.2 [Alberti et al. 1992, Proposition 2.1]. Let the function u :M→R be
semiconcave. Then the superdifferential ∂+u is not empty at each point; moreover,
∂+v is upper semicontinuous, that is,

qk→ q, vk→ v, vk ∈ ∂
+u(qk) H⇒ v ∈ ∂+u(q).

In particular, if the differential du exists at every point of M , then u ∈ C1(M).



ON THE DISTRIBUTIONAL HESSIAN OF THE DISTANCE FUNCTION 155

Proposition 2.3 [Alberti et al. 1992, Remark 3.6]. The set Ext(∂+dp(q)) of extremal
points of the (convex) superdifferential set of dp at q is in one-to-one correspondence
with the family G(q) of minimal geodesics from p to q. In symbols,

G(q)= {t 7→ expq(−vt) | v ∈ Ext(∂+dp(q))},

where t ∈ [0, 1].

We now deal with the structure of the cut locus of p ∈ M . Let Hn−1 denote
the (n− 1)-dimensional Hausdorff measure on (M, g) (see [Federer 1969; Simon
1983]).

Definition 2.4. We say that a subset S ⊂ M is Cr -rectifiable, for r ≥ 1, if it can be
covered by a countable family of embedded Cr -submanifolds of dimension n−1,
with the exception of a set of Hn−1-measure zero. (See the references just cited for
a complete discussion of the notion of rectifiability.)

Proposition 2.5 [Mantegazza and Mennucci 2003, Theorem 4.10]. The cut locus
of p ∈ M is C∞-rectifiable. Hence, its Hausdorff dimension is at most n − 1.
Moreover, for any compact subset K of M , the measure Hn−1(Cutp ∩ K ) is finite
[Li and Nirenberg 2005, Corollary 1.3].

To explain the following consequence of such rectifiability, we need to briefly
introduce the theory of functions with bounded variation; see [Ambrosio et al.
2000; Braides 1998; Federer 1969; Simon 1983] for details. We say that a function
u : Rn

→ Rm is a function with locally bounded variation, denoted u ∈ BVloc, if its
distributional derivative Du is a Radon measure. This notion can be easily extended
to maps between manifolds using smooth local charts.

A standard result says that the derivative of a locally semiconcave function stays
in BVloc; in view of Proposition 2.1, this implies that the vector field ∇dp belongs
to BVloc in the open set M \ {p}.

Then we define the subspace of BVloc of functions (or vector fields, as before)
with locally special bounded variation, called SBVloc (see [Ambrosio 1989a; 1989b;
1990; Ambrosio et al. 2000; Braides 1998]).

The Radon measure representing the distributional derivative Du of a function
u : Rn

→ Rm with locally bounded variation can be always uniquely separated into
three mutually singular measures

Du = D̃u+ Ju+Cu,

where the first term is the part absolutely continuous with respect to the Lebesgue
measure Ln , Ju is a measure concentrated on an (n−1)-rectifiable set and Cu, called
the Cantor part, vanishes on subsets of Hausdorff dimension n−1.
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The space SBVloc is defined as the class of functions u ∈BVloc such that Cu= 0;
that is, the Cantor part of the distributional derivative of u is zero. Again, by means
of local charts, this notion is easily generalized to Riemannian manifolds.

Proposition 2.6 [Mantegazza and Mennucci 2003, Corollary 4.13]. The (Hn−1-
almost everywhere defined) measurable unit vector field ∇dp belongs to the space
SBVloc(M \ {p}) of vector fields with locally special bounded variation.

An immediate consequence of this proposition is that the (0, 2)-tensor field valued
distribution Hess dp is actually a Radon measure with an absolutely continuous
part, with respect to the canonical volume measure Vol of (M, g), concentrated
in M \ ({p} ∪ Cutp), where dp is a smooth function. Hence in this set Hess dp

coincides with the standard Hessian H̃ess dp times the volume measure Vol. When
the dimension of M is at least two, the singular part of the measure Hess dp does
not “see” the singular point p; hence, it is concentrated on Cutp and absolutely
continuous with respect to the Hausdorff measure Hn−1 restricted to Cutp.

By the properties of rectifiable sets, at Hn−1-almost every point q ∈ Cutp, there
exists an (n− 1)-dimensional approximate tangent space apTqCutp ⊂ Tq M (in the
sense of geometric measure theory; see [Federer 1969; Simon 1983] for details).
To give an example, we say that a hyperplane T ⊂ Rn is the approximate tangent
space to an (n− 1)-dimensional rectifiable set K ∈ Rn at the point x0 if Hn−1 T
is the limit as ρ→+∞, in the sense of Radon measures, of the blow-up measures
Hn−1 ρ(K − x0) around the point x0. With some technicalities, this notion can
be extended also to Riemannian manifolds.

Moreover (see [Ambrosio et al. 2000]), at Hn−1-almost every point q ∈Cutp, the
field ∇dp has two distinct approximate (in the sense of the Lebesgue differentiation
theorem) limits “on the two sides” of apTqCutp ⊂ Tq M , given by ∇d+p and ∇d−p .

We want to see now that exactly two distinct geodesics and no more arrive
at Hn−1-almost every point of Cutp. We underline that a stronger form of this
theorem was already obtained in [Ardoy and Guijarro 2011] and [Figalli et al.
2011], concluding that the set Cutp \U (where U is as in the following statement)
has Hausdorff dimension not greater that n− 2.

Theorem 2.7. There is an open set U ⊂ M such that Hn−1(Cutp \U ) = 0 and
satisfying these conditions:

(i) The subset Cutp∩U does not contain conjugate points; hence the set of optimal
conjugate points has Hn−1-measure zero.

(ii) Exactly two minimal geodesics from p ∈ M arrive at every point of Cutp ∩U.

(iii) Locally around every point of Cutp ∩ U the set Cutp is a smooth (n−1)-
dimensional hypersurface; hence apTqCutp is actually the classical tangent
space to a hypersurface.
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Proof. First we show that the set of optimal conjugate points Conj is a closed subset
of Hn−1-measure zero, then we will see that the points of Sing \Conj where more
than two geodesics arrive also form a closed subset of Hn−1-measure zero. Claim
(iii) then follows by the analysis in the proof of Proposition 4.7 in [Mantegazza and
Mennucci 2003].

Recalling that Up = {v ∈ Tp M | gp(v, v)= 1} is the set of unit tangent vectors
to M at p, we define the function c : Up → R+ ∪ {+∞} such that the point
γv(cv) is the first conjugate point (if it exists) along the geodesic γv; that is, the
differential d expp is not invertible at the point cvv ∈ Tp M . By Lemma 4.11 and the
proof of Proposition 4.9 in [Mantegazza and Mennucci 2003], in the open subset
V ⊂ Up where the rank of the differential of the map F : Up → M defined by
F(v)= expp(cvv) is n− 1, the map c :Up→ R+ ∪ {+∞} is smooth; hence F(V )
is locally a smooth hypersurface. Since, by Sard’s theorem, the image of Up \ V
is a closed set of Hn−1-measure zero, we only have to deal with the images F(v)
of unit vectors v ∈ V such that cv = σv (see end of the introduction), that is, with
F(V )∩Cutp, which is a closed set.

We then consider the set

D ⊂ (F(V )∩Cutp)

of points q where apTqCutp exists and the density of the rectifiable set F(V )∩Cutp

in the cut locus of the point p with respect to the Hausdorff measure Hn−1 is 1 (see
[Federer 1969; Simon 1983]). It is well known that D and F(V )∩Cutp only differ
by a set of Hn−1-measure zero. If F(v)= q ∈ D, then cv = σv and, by the above
density property, the hypersurface F(V ) is “tangent” to Cutp at the point q; that is,
Tq F(V )= apTqCutp.

We now claim that the minimal geodesic γv is tangent to the hypersurface
F(V ), hence to the cut locus, at the point q. Indeed, since d expp is not invertible
at cvv ∈ Tp M , by the Gauss lemma there exists a vector w ∈ TvUp such that
d expp[cvv](w)= 0, hence

d Fv(w)= (dc[v](w))γ̇v(cv)+ d expp[cvv](cvw)= (dc[v](w))γ̇v(cv);

thus, γ̇v(cv) belongs to the tangent space d F(TvUp) to the hypersurface F(V ) at
the point q , which coincides with apTqCutp, as we claimed.

By the properties of SBV functions described before, at Hn−1-almost every point
q ∈ D, the blow-up of the function dp is a “roof”, meaning that exactly two minimal
geodesics arrive at q , both intersecting the cut locus transversally (the vectors ∇d+p
and ∇d−p do not belong to apTq M); hence the above minimal geodesic γv cannot
coincide with any of these two.

We then conclude that Hn−1(D)= 0, and the same for the set Conj.
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Now suppose that q ∈ Cutp \ Conj ⊂ Sing; by the analysis in the proof of
Proposition 4.7 in [Mantegazza and Mennucci 2003] (and Lemma 4.8), a finite
number m ≥ 2 of distinct minimal geodesics arrive at the point q , and when m > 2
the cut locus of p is given by the union of at least m smooth hypersurfaces with
Lipschitz boundary going through the point q . In particular, the above blow-up at q
cannot be a single hyperplane apTqCutp. By the preceding discussion, the set of
such points with m> 2 is then of Hn−1-measure zero; moreover, by Propositions 2.2
and 2.3, the set of points in Cutp \Conj with only two minimal geodesics is open,
and we are done. �

Remark 2.8. In the special two-dimensional and analytic case, more can be said:
the number of optimal conjugate points is locally finite and the cut locus is a locally
finite graph with smooth edges; see [Myers 1935; 1936]. We conjecture that in
general the set of optimal conjugate points is an (n− 2)-dimensional rectifiable set.

By Theorem 2.7(iii), in the open set U the two side limits ∇d+p and ∇d−p of
the gradient field ∇dp are actually smooth and classical limits; moreover, there
is a locally defined smoothly varying unit normal vector νq ∈ Tq M orthogonal to
TqCutp, with the convention that gq(νq , v) is positive for every vector v ∈ Tq M
belonging to the half-space corresponding to the side associated to ∇d+p . Hence,
since Hn−1(Cutp \U )= 0, we have a precise description of the singular jump part
as follows:

J∇dp =−((∇d+p −∇d−p )⊗ ν)Hn−1 Cutp,

and, noticing that the jump in the gradient of dp in U must be orthogonal to the
tangent space TqCutp, and thus parallel to the unit normal vector νq ∈ Tq M , we
conclude

J∇dp =−(ν⊗ ν)
∣∣∇d+p −∇d−p

∣∣
g Hn−1 Cutp.

Notice that the singular part of the distributional Hessian of dp is a rank-1 symmetric
(0, 2)-tensor field.

Remark 2.9. This description of the jump part of the singular measure follows
directly from the structure theorem for BV functions (see [Ambrosio et al. 2000]),
even if we didn’t know from Theorem 2.7 that the cut locus is Hn−1-almost every-
where smooth.

Theorem 2.10. If n ≥ 2, the distributional Hessian of the distance from a point
p ∈ M is given by the Radon measure

Hess dp = H̃ess dp Vol−(ν⊗ ν)
∣∣∇d+p −∇d−p

∣∣
g Hn−1 Cutp,

where H̃ess dp is the standard Hessian of dp, where it exists (Hn−1-almost every-
where on M), and ∇d+p , ∇d−p , ν are defined above.



ON THE DISTRIBUTIONAL HESSIAN OF THE DISTANCE FUNCTION 159

Corollary 2.11. If n ≥ 2, the distributional Laplacian of dp is the Radon measure

1dp = 1̃dp Vol−
∣∣∇d+p −∇d−p

∣∣
g Hn−1 Cutp,

where 1̃dp is the standard Laplacian of dp, where it exists.

Corollary 2.12. We have
1dp ≤ 1̃dp Vol

and
Hess dp ≤ H̃ess dp Vol,

as (0, 2)-tensor fields. Hence the Hessian and Laplacian inequalities in Theorem 1.1
hold in the sense of distributions. Moreover,

1dp ≥ 1̃dp Vol−2Hn−1 Cutp

and

Hess dp ≥ H̃ess dp Vol−2(ν⊗ ν)Hn−1 Cutp ≥ H̃ess dp Vol−2g Hn−1 Cutp,

as (0, 2)-tensor fields.

Remark 2.13. From their definition, it is easy to see that the same inequalities hold
also for the Busemann functions; see for instance [Petersen 1998, Subsection 9.3.4]
(in Section 9.3 of the same book, it is shown that the above Laplacian comparison
holds on all of M in the barrier sense, while an analogous result for the Hessian
can be found in Section 11.2). We stress here that Propositions 2.1, 2.2 and 2.3
about the semiconcavity and the structure of the superdifferential of the distance
function dp can also be used to show that the above inequalities hold in the barrier
and viscosity senses.

Remark 2.14. Several of the conclusions of this paper also hold for the distance
function from a closed subset of M with boundary of class at least C3; see [Man-
tegazza and Mennucci 2003] for details.

Appendix: Weak definitions of sub/supersolutions of PDEs

Let (M, g) be a smooth, complete, Riemannian manifold and let A be a smooth
(0, 2)-tensor field.

If f :M→R satisfies Hess f ≤ A at the point p∈M in the barrier sense, for every
ε > 0 there exists a neighborhood Uε of the point p and a C2-function hε :Uε→R

such that hε(p)= f (p), hε≥ f in Uε and Hess hε(p)≤ A(p)+εg(p); hence, every
C2-function h from a neighborhood U of the point p such that h(p)= f (p) and
h ≤ f in U satisfies h(p)= hε(p) and h ≤ hε in U ∩Uε. It is then easy to see that
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Hess h(p)≤Hess hε(p)≤ A(p)+εg(p) for every ε > 0, hence Hess h(p)≤ A(p).
This shows that Hess f ≤ A at the point p ∈ M also in the viscosity sense.

The converse is not true; indeed, it is straightforward to check that the function
f : R → R given by f (x) = x2 sin (1/x) when x 6= 0 and f (0) = 0 satisfies
f ′′(0)≤ 0 in the viscosity sense but not in the barrier sense.

The same argument clearly also applies to the two definitions of 1 f ≤ α for a
smooth function α : M→ R.

Nonetheless, the notions of viscosity sense and distributional sense coincide:

Proposition A.1. If f : M→ R satisfies Hess f ≤ A in the viscosity sense, it also
satisfies Hess f ≤ A in the distributional sense, and vice versa. The same holds for
1 f ≤ α.

In order to show the proposition, we recall the definitions of viscosity (sub/super)
solutions to a second order PDE. Take a continuous map F :�×R×Rn

× Sn
→R,

where � is an open subset of Rn and Sn denotes the space of real n× n symmetric
matrices; also suppose that F satisfies the monotonicity condition

X ≥ Y H⇒ F(x, r, p, X)≤ F(x, r, p, Y )

for every (x, r, p) ∈ �×R×Rn , where X ≥ Y means that the difference matrix
X − Y is nonnegative definite. We consider then the second order PDE given by
F(x, f,∇ f,∇2 f )= 0.

A continuous function f :�→R is said to be a viscosity subsolution of the above
PDE if for every point x ∈� and ϕ ∈C2(�) such that f (x)−ϕ(x)= sup�( f −ϕ),
we have F(x, ϕ,∇ϕ,∇2ϕ)≤0 (see [Crandall et al. 1992; Ishii 1995]). Analogously,
f ∈C0(�) is a viscosity supersolution if for every point x ∈� and ϕ ∈C2(�) such
that f (x)− ϕ(x) = inf�( f − ϕ), we have F(x, ϕ,∇ϕ,∇2ϕ) ≥ 0. If f ∈ C0(�)

is both a viscosity subsolution and supersolution, it is then a viscosity solution of
F(x, f,∇ f,∇2 f )= 0 in �.

It is easy to see that the functions f ∈ C0(�) such that 1 f ≤ α in the viscosity
sense at any point of �, as in Definition 1.2, coincide with the viscosity supersolu-
tions of the equation −1 f +α = 0 at the same point (here the function F is given
by F(x, r, p, X)=− trace X +α(x)).

In the case of a Riemannian manifold (M, g), one works in local charts, and the
operators we are interested in become

HessM
i j f (x)=

∂2 f (x)
∂x i∂x j −0

k
i j (x)

∂ f
∂xk

and
1M f (x)= gi j (x)HessM

i j f (x),

where 0k
i j are the Christoffel symbols.
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Analogously to the case of Rn , taking

F(x, r, p, X)=−gi j (x)X i j + gi j (x)0k
i j (x)pk +α(x)

(which is a smooth function independent of the variable r ), we see that, according
to Definition 1.2, f satisfies 1M f ≤ α in the viscosity sense at any point of M if
and only if it is a viscosity supersolution of the equation F(x, f,∇ f,∇2 f )= 0 at
the same point.

Getting back to Rn , given a linear, degenerate elliptic operator L with smooth
coefficients, that is, defined by

L f (x)=−ai j (x)∇2
i j f (x)+ bk(x)∇k f (x)+ c(x) f (x),

and a smooth function α : � → R, we say that f ∈ C0(�) is a distributional
supersolution of the equation L f +α = 0 if∫

�

( f L∗ϕ+αϕ) dx ≥ 0

for every nonnegative, smooth function ϕ ∈ C∞c (�). Here L∗ is the formal adjoint
operator of L:

L∗ϕ(x)=−∇2
j i (a

i jϕ)(x)−∇k(bkϕ)(x)+ c(x)ϕ(x).

Under the hypothesis that the matrix of coefficients (ai j ) (which is nonnegative
definite) has a “square root” matrix belonging to C1(�, Sn), Ishii [1995] showed
the equivalence of the class of continuous viscosity subsolutions and the class of
continuous distributional subsolutions of the equation L f +α = 0. More precisely,
he proved the following two theorems (see also [Lions 1983]):

Theorem A.2 [Ishii 1995, Theorem 1]. If f ∈ C0(�) is a viscosity subsolution of
the equation L f +α = 0, then it is a distribution subsolution of the same equation.

Theorem A.3 [Ishii 1995, Theorem 2]. Assume that the “square root” of the matrix
of coefficients (ai j ) belongs to C1(�). If f ∈ C0(�) is a distributional subsolution
of the equation L f +α = 0, then it is a viscosity subsolution of the same equation.

As the PDE is linear, a function f ∈ C0(�) is a viscosity (distributional)
supersolution of the equation L f + α = 0 if and only if the function − f is a
viscosity (distributional) subsolution of L(− f )− α = 0; in the above theorems
every occurrence of the term “subsolution” can replaced with “supersolution” (and
also with “solution”).

For simplicity, we will work in a single coordinate chart of M mapping onto
�⊆ Rn , while the general situation can be dealt with by standard partition of unity
arguments.
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Consider f ∈ C0(M) which is a viscosity supersolution of −1M f + α = 0.
It is a straightforward computation to check that this happens if and only if f is
a viscosity supersolution of −

√
g1M f + α

√
g = 0, where

√
g =

√
det gi j is the

density of Riemannian volume of (M, g), and vice versa. Moreover, notice that
setting L =−

√
g1M , we have that L∗ = L; that is, L is a self-adjoint operator. L

also satisfies the hypotheses of Ishii’s theorems, since the matrices gi j and gi j are
smooth and positive definite in �. See [Horn and Johnson 1994, Chapter 6], in
particular Example 6.2.14, for instance.

Then, in local coordinates, Ishii’s theorems guarantee that f is a distributional
supersolution of the same equation. That is, for each ϕ ∈ C∞c (�), f satisfies∫

�

f L∗ϕ dx ≥−
∫
�

α
√

gϕ dx;

hence,∫
M
− f1Mϕ d Vol=

∫
�

− f
√

g1Mϕ dx ≥−
∫
�

α
√

gϕ dx =−
∫

M
αϕ d Vol .

This shows that then f satisfies 1M f ≤ α in the distributional sense, as in
Definition 1.2.

Following these steps in reverse order, one gets the converse. Hence, the notions
of 1M

≤ α in the viscosity and distributional senses coincide.
Now we turn our attention to the Hessian inequality; it is not covered directly

by Ishii’s theorems, which are peculiar to PDEs and do not deal with systems (like
the general theory of viscosity solutions). For simplicity, we discuss the case of
an open set �⊂ Rn (with its canonical flat metric), since all the arguments can be
extended to any Riemannian manifold (M, g) by localization and introduction of
the first-order correction given by Christoffel symbols, as above.

The idea is to transform the matrix inequality Hess f ≤ A into a family of
scalar inequalities; indeed, if everything is smooth, such an inequality is satisfied
if and only if for every compactly supported, smooth vector field W we have
W i W j Hessi j f ≤ Ai j W i W j . The only price to pay is that we lose the constant co-
efficients of the Hessian, hence making the linear operator LW , acting on f ∈C2(�)

as LW f =−W i W j Hessi j f , only degenerate elliptic. Notice that Ishii’s condition
in Theorem A.3 is satisfied for every smooth vector field W such that ‖W‖∈C1

c (�),
but not by any arbitrary smooth vector field. This has the collateral effect of making
the proof of the Hessian case in Proposition A.1 slightly asymmetric.

Lemma A.4. Let f ∈C0(�). If for every compactly supported, smooth vector field
W with ‖W‖ ∈ C1

c (�), we have that f is a viscosity supersolution of the equation
−W i W j Hessi j f + Ai j W i W j

= 0, then the function f satisfies Hess f ≤ A in the
viscosity sense in all of �.
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Vice versa, if f ∈ C0(�) satisfies Hess f ≤ A in the viscosity sense in �, then
f is a viscosity supersolution of the equation −V i V j Hessi j f + Ai j V i V j

= 0 for
every compactly supported, smooth vector field V .

Proof. Let us take a point x ∈� and a C2-function h in a neighborhood U of the
point x such that h(x)= f (x) and h ≤ f . Choosing a unit vector Wx and a smooth,
nonnegative function ϕ which is 1 at x and zero outside a small ball inside U , we
consider the smooth vector field W (y)=Wxϕ

2(y) for every y ∈�, which clearly
satisfies ‖W‖ = ϕ ∈C1

c (�). By the hypothesis of the first statement, the function f
is then a viscosity supersolution of the equation −W i W j Hessi j f + Ai j W i W j

= 0,
which implies that −W i

x W j
x Hessi j h(x)+ Ai j (x)W i

x W j
x ≥ 0. Since this holds for

every point x ∈ � and unit vector Wx , we conclude that Hess h(x) ≤ A(x) as
(0, 2)-tensor fields, and hence Hess f ≤ A in the viscosity sense in �.

The argument to show the second statement is analogous: given a compactly
supported, smooth vector field V , a point x ∈ � and a function h as above, the
hypothesis implies that−V i

x V j
x Hessi j h(x)+ Ai j (x)V i

x V j
x ≥ 0, hence the thesis. �

Suppose now that f ∈ C0(�) satisfies Hess f ≤ A in the viscosity sense on the
whole �; hence, by this lemma, for every compactly supported, smooth vector field
V , the function f is a viscosity supersolution of the equation −V i V j Hessi j f +
Ai j V i V j

= 0. By Theorem A.2 and the subsequent discussion, it is then a distribu-
tional supersolution of the same equation; that is,∫

�

[
− f∇2

j i (V
i V jϕ)+ Ai j V i V jϕ

]
dx ≥ 0

for every nonnegative, smooth function ϕ ∈ C∞c (�).
Considering a nonnegative, smooth function ϕ ∈ C∞c (�) such that it is 1 on the

support of the vector field V , we conclude∫
�

f∇2
j i (V

i V j ) dx ≤
∫
�

Ai j V i V j dx,

which means that Hess f ≤ A in the distributional sense.
Conversely, if f ∈ C0(�) satisfies Hess f ≤ A in the distributional sense, then

for every compactly supported, smooth vector field W with ‖W‖ ∈ C1
c (�) and

every smooth, nonnegative function ϕ ∈C∞c (�), we define the smooth, nonnegative
functions ϕn=ϕ+ψ/n, whereψ is a smooth, nonnegative and compactly supported
function such that ψ ≡ 1 on the support of W . It follows that the vector field V =
W
√
ϕn is smooth; hence, applying the definition of Hess f ≤ A in the distributional

sense, we get ∫
�

[
− f∇2

j i (W
i W jϕn)+ Ai j W i W jϕn

]
dx ≥ 0.
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As ϕn→ ϕ in C∞c (�) and f is continuous, we can pass to the limit as n→∞ and
conclude that ∫

�

[
− f∇2

j i (W
i W jϕ)+ Ai j W i W jϕ

]
dx ≥ 0

for every nonnegative, smooth function ϕ ∈C∞c (�) and every compactly supported,
smooth vector field W with ‖W‖ ∈C1

c (�). That is, for any vector field W as above,
we have that f is a distributional supersolution of the equation −W i W j Hessi j f +
Ai j W i W j

= 0.
By Theorem A.3 and the subsequent discussion, it is then a viscosity supersolution

of the same equation and, by Lemma A.4, we conclude that the function f satisfies
Hess f ≤ A in the viscosity sense.

Summarizing, we have the following sharp relations among the weak notions of
the partial differential inequalities Hess f ≤ A and 1 f ≤ α:

barrier sense H⇒ viscosity sense ⇐⇒ distributional sense.
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NOETHER’S PROBLEM FOR ABELIAN EXTENSIONS
OF CYCLIC p-GROUPS

IVO M. MICHAILOV

In loving memory of my dear mother

Let K be a field and G a finite group. Let G act on the rational function field
K (x(g) : g ∈ G) by K -automorphisms defined by g · x(h)= x(gh) for any g,
h ∈ G. Denote by K (G) the fixed field K (x(g) : g ∈ G)G . Noether’s problem
then asks whether K (G) is rational (i.e., purely transcendental) over K . The
first main result of this article is that K (G) is rational over K for a certain
class of p-groups having an abelian subgroup of index p. The second main
result is that K (G) is rational over K for any group of order p5 or p6 (where
p is an odd prime) having an abelian normal subgroup such that its quotient
group is cyclic. (In both theorems we assume that if char K 6= p then K
contains a primitive pe-th root of unity, where pe is the exponent of G.)

1. Introduction

Let K be a field. A field extension L of K is called rational over K (or K -rational,
for short) if L ' K (x1, . . . , xn) for some integer n, with x1, . . . , xn algebraically
independent over K . Now let G be a finite group. Let G act on the rational
function field K (x(g) : g ∈ G) by K -automorphisms defined by g · x(h)= x(gh)
for any g, h ∈ G. Denote by K (G) the fixed field K (x(g) : g ∈ G)G . Noether’s
problem then asks whether K (G) is rational over K . This is related to the inverse
Galois problem, to the existence of generic G-Galois extensions over K , and to the
existence of versal G-torsors over K -rational field extensions [Swan 1983; Saltman
1982; Garibaldi et al. 2003, §33.1, p. 86]. Noether’s problem for abelian groups was
studied extensively by Swan, Voskresenskii, Endo, Miyata and Lenstra, etc. The
reader is referred to [Swan 1983] for a survey of this problem. Fischer’s theorem is a
starting point of investigating Noether’s problem for finite abelian groups in general.

Theorem 1.1 (Fischer [Swan 1983, Theorem 6.1]). Let G be a finite abelian group
of exponent e. Assume that (i) either char K = 0 or char K > 0 with char K - e, and
(ii) K contains a primitive e-th root of unity. Then K (G) is rational over K .

MSC2010: primary 14E08, 14M20; secondary 13A50, 12F12.
Keywords: Noether’s problem, rationality problem, metabelian group actions.
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On the other hand, just a handful of results about Noether’s problem have been
obtained when the groups are nonabelian. This is the case even when the group G
is a p-group. The reader is referred to [Chu and Kang 2001; Hu and Kang 2010;
Kang 2006; 2011; 2009] for previous results on Noether’s problem for p-groups.
The following theorem of Kang generalizes Fischer’s theorem for the metacyclic
p-groups.

Theorem 1.2 [Kang 2006, Theorem 1.5]. Let G be a metacyclic p-group with
exponent pe, and let K be any field such that (i) char K = p, or (ii) char K 6= p and
K contains a primitive pe-th root of unity. Then K (G) is rational over K .

The next job is to study Noether’s problem for metabelian groups. Three results
due to Haeuslein, Hajja and Kang, respectively, are known.

Theorem 1.3 [Haeuslein 1971]. Let K be a field and G be a finite group. Assume
that (i) G contains an abelian normal subgroup H such that G/H is cyclic of prime
order p, (ii) Z[ζp] is a unique factorization domain, and (iii) ζpe ∈ K , where e is
the exponent of G. If G→ GL(V ) is any finite-dimensional linear representation
of G over K , then K (V )G is rational over K .

Theorem 1.4 [Hajja 1983]. Let K be a field and G be a finite group. Assume that
(i) G contains an abelian normal subgroup H such that G/H is cyclic of order n,
(ii) Z[ζn] is a unique factorization domain, and (iii) K is algebraically closed with
char K = 0. If G→ GL(V ) is any finite-dimensional linear representation of G
over K , then K (V )G is rational over K .

Theorem 1.5 [Kang 2009, Theorem 1.4]. Let K be a field and G be a finite group.
Assume that (i) G contains an abelian normal subgroup H such that G/H is cyclic
of order n, (ii) Z[ζn] is a unique factorization domain, and (iii) ζe ∈ K , where e is
the exponent of G. If G→ GL(V ) is any finite-dimensional linear representation
of G over K , then K (V )G is rational over K .

Note that those integers n for which Z[ζn] is a unique factorization domain are
determined by Masley and Montgomery.

Theorem 1.6 [Masley and Montgomery 1976]. Z[ζn] is a unique factorization
domain if and only if 1≤ n ≤ 22, or n = 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36,
38, 40, 42, 45, 48, 50, 54, 60, 66, 70, 84, 90.

Therefore, Theorem 1.3 holds only for primes p such that 1≤ p ≤ 19. One of
the goals of our paper is to show that the this condition can be waived, under some
additional assumptions regarding the structure of the abelian subgroup H .

Consider the following situation. Let G be a group of order pn for n ≥ 2 with an
abelian subgroup H of order pn−1. Bender [1927/28] determined some interesting
properties of these groups. We study further the case when the p-th lower central
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subgroup G(p) is trivial. (Recall that G(0) = G and G(i) = [G,G(i−1)] for i ≥ 1
form the so-called lower central series.) For our purposes we need to classify with
generators and relations these groups. We achieve this in the following lemma.

Lemma 1.7. Let G be a group of order pn for n ≥ 2 with an abelian subgroup H of
order pn−1. Choose any α ∈ G such that α generates G/H , that is, α /∈ H, α p

∈ H.
Define H(p)= {h ∈ H : h p

= 1, h /∈ H p
}∪{1}, and assume that [H(p), α] ⊂ H(p).

Assume also that the p-th lower central subgroup G(p) is trivial. Then H is a direct
product of normal subgroups of G belonging to four types:

(1) (C p)
s for some s ≥ 1. There exist generators α1, . . . , αs of (C p)

s such that
[α j , α] = α j+1 for 1≤ j ≤ s− 1 and αs ∈ Z(G).

(2) C pa for some a≥ 1. There exists a generator β of C pa such that [β, α]=βbpa−1

for some b : 0≤ b ≤ p− 1.

(3) C pa1 × C pa2 × · · · × C pak × (C p)
s for some k ≥ 1, ai ≥ 2, s ≥ 1. There

exist generators α11, α21, . . . , αk1 of C pa1 × C pa2 × · · · × C pak such that
[αi,1, α] = α

pai+1−1

i+1,1 ∈ Z(G) for i = 1, . . . , k − 1. There also exist generators
αk,2, . . . , αk,s+1 of (C p)

s such that [αk, j , α] = αk, j+1 for 1 ≤ j ≤ s and
αk,s+1 ∈ Z(G).

(4) C pa1 ×C pa2 × · · · ×C pak for some k ≥ 2, ai ≥ 2. For any i : 1 ≤ i ≤ k there
exists a generator αi,1 of the factor C pai such that [αi,1, α] = α

pai−1

i+1,1 ∈ Z(G)
and [αk,1, α] ∈

〈
α pa1−1

1,1 , . . . , α pak−1

k,1

〉
.

The first main result of this paper is a generalization of Theorem 1.3:

Theorem 1.8. Let G be a group of order pn for n ≥ 2 with an abelian subgroup H
of order pn−1, and let G be of exponent pe. Choose any α ∈G such that α generates
G/H , that is, α /∈ H, α p

∈ H. Define H(p)= {h ∈ H : h p
= 1, h /∈ H p

}∪ {1}, and
assume that [H(p), α] ⊂ H(p). Let the p-th lower central subgroup G(p) be trivial.
Assume that (i) char K = p > 0, or (ii) char K 6= p and K contains a primitive
pe-th root of unity. Then K (G) is rational over K .

The key idea to prove Theorem 1.8 is to find a faithful G-subspace W of the
regular representation space

⊕
g∈G K ·x(g) and to show that W G is rational over K .

The subspace W is obtained as an induced representation from H by applying
Lemma 1.7.

The next goal of our article is to study Noether’s problem for some groups of
orders p5 and p6 for any odd prime p. We use the list of generators and relations
for these groups, given by James [1980]. It is known that K (G) is always rational
if G is a p-group of order at most p4 and ζe ∈ K , where e is the exponent of G
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(see [Chu and Kang 2001]). However, in [Hoshi and Kang 2011] it is shown that
there exists a group G of order p5 such that C(G) is not rational over C.

The second main result of this article is the following rationality criterion for
the groups of orders p5 and p6 having an abelian normal subgroup such that its
quotient group is cyclic.

Theorem 1.9. Let G be a group of order pn for n ≤ 6 with an abelian normal
subgroup H such that G/H is cyclic. Let G be of exponent pe. Assume that
(i) char K = p > 0, or (ii) char K 6= p and K contains a primitive pe-th root of
unity. Then K (G) is rational over K .

We do not know whether Theorem 1.9 holds for any n ≥ 7. However, we should
not “overgeneralize” Theorem 1.9 to the case of any metabelian group because of
the following theorem of Saltman.

Theorem 1.10 [Saltman 1984]. For any prime number p and for any field K with
char K 6= p (in particular, K may be an algebraically closed field), there is a
metabelian p-group G of order p9 such that K (G) is not rational over K .

We organize this paper as follows. We recall some preliminaries in Section 2
that will be used in the proofs of Theorems 1.8 and 1.9. There we also prove
Lemma 2.5, which is a generalization of Kang’s argument [2011, Case 5, Step
II]. In Section 3 we prove Lemma 1.7, which is of independent interest, since it
provides a list of generators and relations for any p-group G having an abelian
subgroup H of index p, provided that [H(p), α] ⊂ H(p) and G(p) = 1. Our main
results — Theorems 1.8 and 1.9 — are proved in Sections 4 and 5, respectively.

2. Preliminaries

We list several results which will be used in the sequel.

Theorem 2.1 [Hajja and Kang 1995, Theorem 1]. Let G be a finite group acting on
L(x1, . . . , xm), the rational function field of m variables over a field L , such that

(1) for any σ ∈ G, σ (L)⊂ L ,

(2) the restriction of the action of G to L is faithful,

(3) for any σ ∈ G, σ(x1)
...

σ (xm)

= A(σ )

x1
...

xm

+ B(σ ),

where A(σ ) ∈ GLm(L) and B(σ ) is an m× 1 matrix over L. Then there exist
z1, . . . , zm ∈ L(x1, . . . , xm) such that L(x1, . . . , xm)

G
= LG(z1, . . . , zm) and

σ(zi )= zi for any σ ∈ G and 1≤ i ≤ m.
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Theorem 2.2 [Ahmad et al. 2000, Theorem 3.1]. Let G be a finite group acting on
L(x), the rational function field of one variable over a field L. Assume that, for
any σ ∈ G, σ(L)⊂ L and σ(x)= aσ x + bσ for any aσ , bσ ∈ L with aσ 6= 0. Then
L(x)G = LG(z) for some z ∈ L[x].

Theorem 2.3 [Chu and Kang 2001, Theorem 1.7]. If char K = p > 0 and G is a
finite p-group, then K (G) is rational over K .

The following lemma can be extracted from some proofs in [Kang 2011; Hu and
Kang 2010].

Lemma 2.4. Let 〈τ 〉 be a cyclic group of order n > 1, acting on K (v1, . . . , vn−1),
the rational function field of n− 1 variables over a field K , such that

τ : v1 7→ v2 7→ · · · 7→ vn−1 7→ (v1 · · · vn−1)
−1
7→ v1.

Suppose that K contains a primitive n-th root of unity ξ . Then K (v1, . . . , vn−1)=

K (s1, . . . , sn−1), where τ : si 7→ ξ i si for 1≤ i ≤ n− 1.

Proof. Define w0= 1+v1+v1v2+· · ·+v1v2 · · · vn−1, w1= (1/w0)−1/n, wi+1=

(v1v2 · · · vi/w0)−1/n for 1≤ i ≤ n−1. Thus K (v1, . . . , vn−1)= K (w1, . . . , wn)

with w1+w2+ · · ·+wn = 0 and

τ : w1 7→ w2 7→ · · · 7→ wn−1 7→ wn 7→ w1.

Define si =
∑

1≤ j≤n ξ
−i jw j for 1≤ i ≤ n−1. Then τ : si 7→ ξ i si for 1≤ i ≤ n−1

and K (w1, . . . , wn)= K (s1, . . . , sn−1). �

Next, generalizing an argument used in [Kang 2011, Case 5, Step II], we obtain
a result that will play an important role in our work.

Lemma 2.5. Let k > 1, let p be any prime and let 〈α〉 be a cyclic group of order p,
acting on K (y1i , y2i , . . . , yki : 1≤ i ≤ p−1), the rational function field of k(p−1)
variables over a field K , such that

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ (y j1 y j2 · · · y j p−1)
−1 for 1≤ j ≤ k.

Assume that K (v1i , v2i , . . . , vki :1≤ i ≤ p−1)= K (y1i , y2i , . . . , yki :1≤ i ≤ p−1)
where for any j : 1 ≤ j ≤ k and for any i : 1 ≤ i ≤ p − 1 the variable v j i is a
monomial in the variables y1i , y2i , . . . , yki . Assume also that the action of α on
K (v1i , v2i , . . . , vki : 1≤ i ≤ p− 1) is given by

α : v j1 7→ v j1v
p
j2, v j2 7→ v j3 7→ · · · 7→ v j p−1 7→ A j (v j1v

p−1
j2 v

p−2
j3 · · · v

2
j p−1)

−1

for 1 ≤ j ≤ k, where A j is some monomial in v1i , . . . , v j−1i for 2 ≤ j ≤ k and
A1 = 1. If K contains a primitive p-th root of unity ζ , then

K (v1i , v2i , . . . , vki : 1≤ i ≤ p− 1)= K (s1i , s2i , . . . , ski : 1≤ i ≤ p− 1),
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where α : s j i 7→ ζ i s j i for 1≤ j ≤ k, 1≤ i ≤ p− 1.

Proof. We write the additive version of the multiplication action of α; that is,
consider the Z[π ]-module M=

⊕
1≤m≤k

(⊕
1≤i≤p−1 Z·vmi

)
, where π=〈α〉. Define

submodules M j =
⊕

1≤m≤ j

(⊕
1≤i≤p−1 Z · vmi

)
for 1 ≤ j ≤ k. Thus α has the

following additive action

α : v j1 7→ v j1+ pv j2,

v j2 7→ v j3 7→ · · · 7→ v j p−1 7→ A j−v j1−(p−1)v j2−(p−2)v j3−· · ·−2v j p−1,

where A j ∈ M j−1.
By Lemma 2.4, M1 is isomorphic to the Z[π ]-module N =

⊕
1≤i≤p−1 Z · ui ,

where u1 = v12, ui = α
i−1
· v12 for 2≤ i ≤ p− 1, and

α : u1 7→ u2 7→ · · · 7→ u p−1 7→ −u1− u2− · · ·− u p−1 7→ u1.

Let 8p(T )∈Z[T ] be the p-th cyclotomic polynomial. Since Z[π ] is isomorphic
to Z[T ]/(T p

− 1), we find that Z[π ]/8p(α) ' Z[T ]/8p(T ) ' Z[ω], the ring of
p-th cyclotomic integers. As 8p(α) · x = 0 for any x ∈ N , the Z[π ]-module N
can be regarded as a Z[ω]-module through the morphism Z[π ] → Z[π ]/8p(α).
When N is regarded as a Z[ω]-module, we have N ' Z[ω], the rank-one free
Z[ω]-module.

We claim that M itself can be regarded as a Z[ω]-module, that is, 8p(α) ·M = 0.
We return to multiplicative notation. Note that all v j i are monomials in the y j i .

The action of α on y j i given in the statement satisfies
∏

0≤m≤p−1 α
m(y j i )= 1 for

any 1≤ j ≤ k, 1≤ i ≤ p− 1. Using the additive notations, we get 8p(α) · y j i = 0.
Hence 8p(α) ·M = 0.

Define M ′ = M/Mk−1. We have a short exact sequence of Z[π ]-modules

(2-1) 0→ Mk−1→ M→ M ′→ 0.

Since M is a Z[ω]-module, (2-1) is a short exact sequence of Z[ω]-modules. Pro-
ceeding by induction, we obtain that M is a direct sum of free Z[ω]-modules
isomorphic to N . Hence, M '

⊕
1≤ j≤k N j , where N j ' N is a free Z[ω]-module

and so a Z[π ]-module also (for 1≤ j ≤ k).
Finally, we interpret the additive version of M '

⊕
1≤ j≤k N j ' N k in terms of

the multiplicative version as follows: There exist w j i that are monomials in v j i for
1≤ j ≤ k, 1≤ i ≤ p− 1 such that K (w j i )= K (v j i ) and α acts as

α : w j1 7→ w j2 7→ · · · 7→ w j p−1 7→ (w j1w j2 · · ·w j p−1)
−1 for 1≤ j ≤ k.

According to Lemma 2.4, the above action can be linearized as pointed out in the
statement. �
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Now, let G be any metacyclic p-group generated by two elements σ and τ with
relations σ pa

= 1, τ pb
=σ pc

and τ−1στ =σ ε+δpr
where ε= 1 if p is odd, ε=±1 if

p= 2, δ= 0, 1 and a, b, c, r ≥ 0 are subject to some restrictions. For the description
of these restrictions see, for example, [Kang 2006, p. 564].

Theorem 2.6 [Kang 2006, Theorem 4.1]. Let p be a prime number, m, n and r
positive integers, k = 1+ pr if (p, r) 6= (2, 1) or k =−1+ 2r if p = 2 and r ≥ 2.
Let G be a split metacyclic p-group of order pm+n and exponent pe defined by
G = 〈σ, τ : σ pm

= τ pn
= 1, τ−1στ = σ k

〉. Let K be any field such that char K 6= p
and K contains a primitive pe-th root of unity, and let ζ be a primitive pm-th
root of unity. Then K (x0, x1, . . . , x pn−1)

G is rational over K , where G acts on
x0, . . . , x pn−1 by

σ : xi 7→ ζ ki
xi , τ : x0 7→ x1 7→ · · · 7→ x pn−1 7→ x0.

3. Proof of Lemma 1.7

It is well known that H is a normal subgroup of G. We divide the proof into steps.

Step I. Let β1 be any element of H that is not central. Since G(p) = {1}, there exist
β2, . . . , βk ∈ H for some k : 2≤ k≤ p such that [β j , α]=β j+1, where 1≤ j ≤ k−1
and βk 6= 1 is central. We are going to show now that the order of β2 is not greater
than p. In particular, from the multiplication rule [a, α][b, α] = [ab, α] (for any
a, b ∈ H ) it follows that all p-th powers are contained in the center of G.

From [β j , α] = β j+1 there follows the well known formula

(3-1) α−pβ1α
p
= β1β

(p
1)

2 β
(p

2)
3 · · ·β

( p
p−1)

p βp+1,

where we put βk+1 = · · · = βp+1 = 1. Since α p is in H , we obtain the formula

β
(p

1)
2 β

(p
2)

3 · · ·β
( p

k−1)
k = 1.

Hence
(
β2·
∏

j 6=2 β
a j
j

)p
=1 for some integers a j . It is not hard to see that this identity

is impossible if the order of β2 exceeds p. Indeed, if `=max{ j :β p
j 6= 1}, then β p

` is
in the subgroup generated by β p

2 , . . . , β
p
`−1. Thus [β p

` , α] = [β
b2 p
2 · · ·β

b`−1 p
`−1 , α] =

β
b2 p
3 · · ·β

b`−1 p
` 6= 1 for some b2, . . . , b`−1 ∈ Zp. On the other hand, [β p

` , α] =

β
p
`+1 = 1, which is a contradiction.

Step II. Let us write the decomposition of H as a direct product of cyclic subgroups
(not necessarily normal in G): H ' (C p)

t
×C pa1 ×C pa2 × · · · ×C pas for 0 ≤ t ,

2 ≤ a1 ≤ a2 ≤ · · · ≤ as . Choose a generator α11 ∈ C pa1 . Since G(p) = {1}, there
exist α12, . . . , α1k ∈ H for some k : 2 ≤ k ≤ p such that [α1 j , α] = α1 j+1, where
1 ≤ j ≤ k − 1 and α1k 6= 1 is central. From Step I it follows that the order of
α12 is not greater than p. We are going to define a normal subgroup of G which
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depends on the nature of the element α12. We will denote it by 〈〈α11〉〉, and call it
the commutator chain of α11. Simultaneously, we will define a complement in H
denoted by 〈〈α11〉〉.

Case II.1. Let α12 = α
pa1−1

11 c1 for some c1 : 0≤ c1 ≤ p− 1. Define 〈〈α11〉〉 = 〈α11〉

and 〈〈α11〉〉 = (C p)
t
· 〈α21, . . . , αs1〉. Clearly, 〈〈α11〉〉 is a normal subgroup of type 2.

Case II.2. Let α12 /∈ H p. According to the assumptions of our lemma, we have
[H(p), α] ∩ H p

= {1}, so α1 j /∈ H p for all j . Define 〈〈α11〉〉 = 〈α11, . . . , α1k〉.
Then 〈〈α11〉〉 ' C pa1 × (C p)

k−1 is a normal subgroup of type 3. Define 〈〈α11〉〉 =

(C p)
t−k+1

·〈α21, . . . , αs1〉, where (C p)
t−k+1 is the complement of (C p)

k−1 in (C p)
t .

Case II.3. Let α12 ∈ H p. Then α12 =
∏

i∈A α
pai−1di
i1 , where A ⊂ {1, 2, . . . , s},

1≤ di ≤ p− 1. Put i0 =min{i ∈ A}.
If i0 = 1, then α12 =

(
αd1

11
∏

i∈A,i 6=1 α
pai−a1
i1 di

)pa1−1

. We replace the generator α11

with α′11 = α
d1
11
∏

i∈A,i 6=1 α
pai−a1 di
i1 . Clearly, ordα′11 = ordα11 and [α′11, α] ∈ 〈α

′

11〉,
so this case is reduced to Case I.

If i0>1, then α12=
(
α

di0
i01
∏

i∈A,i 6=i0
α pai−ai0 di

i1

)pai0
−1

. We replace the generator αi01

with α′i01 = α
di0
i01
∏

i∈A,i 6=i0
α pai−ai0 di

i1 . Clearly, ordα′i01 = ordαi01 and α′p
ai0
−1

i01 = α12.
Abusing notation we will assume henceforth that i0 = 2 and α pa2−1

21 = α12.
Consider α22 = [α21, α]. We have three possibilities now.

Subcase II.3.1. If α22 ∈ 〈α
pa1−1

11 , α pa1−1

21 〉, define 〈〈α11〉〉 = 〈α11, α21〉. Then 〈〈α11〉〉 '

C pa1 ×C pa2 is a normal subgroup of type 4.

Subcase II.3.2. If α22 /∈ H p, there exist α22, . . . , α2` ∈ H for some ` : 2 ≤ ` ≤ p
such that [α2 j , α] = α2 j+1, where 1 ≤ j ≤ `− 1 and α2` 6= 1 is central. Define
〈〈α11〉〉= 〈α11, α21, α22, . . . , α2`〉. Then 〈〈α11〉〉'C pa1×C pa2×(C p)

`−1 is a normal
subgroup of type 3.

Subcase II.3.3. α22 ∈ H p. According to the observations we have just made, this
subcase leads to the following two final possibilities.

• α22 = α
pa3−1

31 , . . . , αr−12 = α
par−1

r1 , αr2 ∈ 〈α
pa1−1

11 , . . . , α par−1

r1 〉. Define 〈〈α11〉〉 =

〈α11, α21, . . . , αr1〉. Then 〈〈α11〉〉 ' C pa1 ×C pa2 × · · ·×C par is a normal subgroup
of type 4. Define 〈〈α11〉〉 = (C p)

t
· 〈αr+11, . . . , αs1〉.

• α22 = α
pa3−1

31 , . . . , αr−12 = α
par−1

r1 , αr2 /∈ H p. Then there exist αr2, . . . , αr` ∈ H
for some ` : 2 ≤ ` ≤ p such that [αr j , α] = αr j+1, where 1 ≤ j ≤ ` − 1 and
αr` 6= 1 is central. Define 〈〈α11〉〉 = 〈α11, α21, . . . , αr1, αr2, . . . , αr`〉. In this case
〈〈α11〉〉 ' C pa1 × C pa1 × · · · × C par × (C p)

`−1 is a normal subgroup of type 3.
Define 〈〈α11〉〉 = (C p)

t−`+1
· 〈αr+11, . . . , αs1〉, where (C p)

t−`+1 is the complement
of (C p)

`−1 in (C p)
t .

Step III. Put H1= 〈〈α11〉〉 and H2= 〈〈α11〉〉. Note that H1∩H2= {1}. However, H2

may not be a normal subgroup of G. That is why we need to show that there exist
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a commutator chain H1 and a normal subgroup H2 of G such that H =H1×H2.
In this step, we will describe a somewhat algorithmic approach which replaces the
generators of H until the desired result is obtained.

Assume henceforth that H2 is not normal in G. Then there exists a generator
β ∈ H2 such that α−1βα = hh1 for some h ∈ H2, h1 ∈ H1, h1 /∈ H2. Since h = βh2

for some h2 ∈ H2, we get [β, α] = h1h2.
Let us assume first that ordβ = p. If h1 ∈ H p, then h2 /∈ [H(p), α]; otherwise
[H(p), α] ∩ H p

6= {1}. In other words, h2 does not appear in similar chains, so we
can simply put h1h2, instead of h2, as a generator of H2. In this way we obtain a
group that is G-isomorphic to H2. Thus we get that [β, α] is in this new copy of
H2. Similarly, if h1 ∈ H(p) and h2 /∈ [H(p), α], we can obtain a new copy of H2

such that [β, α] is in H2. If h2 ∈ [H(p), α], we may assume that [β, α] ∈ H1. In
this case 〈〈α11〉〉 must be of type 3. Let 〈〈α11〉〉 ' C pa1 ×C pa2 × · · ·×C pak × (C p)

s

be generated by elements α11, . . . , αk1, αk2, . . . , αks+1 with relations given in the
statement of the lemma. Assume that αk` = [β, α] for some ` : 2 ≤ ` ≤ s + 1.
If ` > 2, replace β with β ′ = βα−1

k`−1. Hence [β ′, α] = 1. If ` = 2, we can put
α′k1= αk1β

−1, instead of αk1, as a generator of H1. In this way we obtain a group of
type 4, since [α′k1, α] = 1. Clearly, [β, α] is not in this new commutator chain H1.
It is not hard to see that with similar replacements we can treat the general case
[β, α] =

∏
i α

pai−1ci
i1 ·

∏
j αk j . Thus we obtain the decomposition H = H1 ×H2,

where H1 and H2 are normal subgroups of G.
Next, we are going to assume that ordβ > p. According to the definition of the

commutator chain of α11 we need to consider the three cases of Step II separately.

Case III.1. α12 = α
pa1−1c1
11 for some c1 : 1 ≤ c1 ≤ p − 1. Here we must have

h1 = α
pa1−1d1
11 for some d1 : 1≤ d1 ≤ p− 1. We can replace β with β ′ = βα−d1/c1

11 ,
so [β ′, α] = h2.

Case III.2. α12 /∈ H p. If h1 =
∏

j≥2 α
d j
1 j for some d j : 0 ≤ d j ≤ p − 1, we can

replace β with β ′= β
∏

j≥2 α
−d j
1 j−1. Hence [β ′, α] = h2. This reduces the analysis to

the case h1= α
pa1−1d1
11 for some d1 : 0≤ d1 ≤ p−1. We now have three possibilities

for h2.

Subcase III.2.1. Let h2 /∈ H p and h2 /∈ [H, α]. We can put h1h2, instead of h2, as
a generator of H2. In this way we obtain a group that is G-isomorphic to H2. Thus
we get that [β, α] is in this new copy of H2.

Subcase III.2.2. Let h2 /∈ H p and h2 ∈ [H, α], that is, there exists γ /∈ H p such that
[γ, α] = h2. Put β ′ = βγ−1. Then [β ′, α] = h1 = α

pa1−1d1
11 . Hence the commutator

chain of α11 is contained in the commutator chain 〈〈β ′〉〉 which is a normal subgroup
of G of type 3.

Subcase III.2.3. Let h2 ∈ H p; that is, h2=
∏

i∈B α
pai−1di
i1 , where B={i :αi1 ∈ H2},
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0≤ di ≤ p− 1. We can replace α11 with α′11 = α
d1
11
∏

i∈B α
pai−a1 di
i1 . Now we have

[β, α] = α′p
a1−1

11 , so the commutator chain of α′11 is contained in the commutator
chain 〈〈β〉〉, which is a normal subgroup of G of type 3.

Case III.3. α12 ∈ H p. We have that either 〈〈α11〉〉 ' C pa1 ×C pa2 × · · · ×C par is a
normal subgroup of type 4, or 〈〈α11〉〉 ' C pa1 ×C pa1 × · · · ×C par × (C p)

`−1 is a
normal subgroup of type 3.

Similarly to Case III.2, if h1 is a product of elements of order p that are not in
〈α pa1−1

11 〉, by a suitable change of the generator β we will obtain [β, α]=h2. Thus we
again reduce the considerations to the case h1=α

pa1−1d1
11 for some d1 : 0≤d1≤ p−1.

We have three possibilities for h2, which are identical to the three subcases in
Case III.2. The only slight difference is that the new commutator chain here can be
of type 3 or type 4.

In this way, we have investigated all possibilities for the proper construction of
the normal factors of H . The construction is algorithmic in nature. When we define
a new commutator chain 〈〈β ′〉〉 or 〈〈β〉〉 (as in Subcases III.2.2 and III.2.3), we have
to start the same process all over again until we can not get a new commutator chain
that contains the previous one. Denote by H1 the last commutator chain obtained by
the described algorithm from H1. We have that H1 is a normal subgroup of G of one
of the types 1–4. Denote by H2 the subgroup obtained from H2 by the replacements
described above. Then H is a direct product of H1 and H2, where H2 is normal in G.
Proceeding by induction we will obtain the decomposition given in the statement.

4. Proof of Theorem 1.8

If char K = p > 0, we can apply Theorem 2.3. Therefore, we will assume that
char K 6= p.

According to Lemma 1.7, H ' H1 × · · · ×Ht , where H1, . . . ,Ht are normal
subgroups of G that are isomorphic to any of the four types described in Lemma 1.7.

Let V be a K -vector space whose dual space V ∗ is defined as V ∗=
⊕

g∈G K ·x(g),
where G acts on V ∗ by h · x(g) = x(hg) for any h, g ∈ G. Therefore K (V )G =
K (x(g) : g ∈ G)G = K (G).

Now, for any subgroup Hi (1 ≤ i ≤ t) we can define a faithful representation
subspace Vi =

⊕
1≤ j≤ki

K · Y j , where ki is the number of the generators of Hi as
an abelian group. (For details see Cases I–IV.) Therefore,

⊕
1≤i≤t Vi is a faithful

representation space of the subgroup H .
Next, for any subgroup Hi (1 ≤ i ≤ t) we define x jk = α

k
· Y j for 1 ≤ j ≤ ki ,

0 ≤ k ≤ p − 1. Define Wi =
⊕

j,k K · x jk ⊂ V ∗. Then W =
⊕

1≤i≤t Wi is
a faithful G-subspace of V ∗. Thus, by Theorem 2.1 it suffices to show that
W G is rational over K . Note that W G

= (W H )〈α〉 = ((· · · (W H1)H2 · · · )Ht )〈α〉 =

((· · · (W H1
1

⊕
2≤ j≤t

W j )
H2 · · · )Ht )〈α〉 = · · · =

⊕
1≤ j≤t

(W H j
j )〈α〉. Therefore, we need
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to calculate W H j
j when H j is isomorphic to any of the four types described in

Lemma 1.7. Finally, we will show that the action of α on W H can be linearized.

Case I. Assume that H1 is of type 3; that is, for some k ≥ 1, ai ≥ 2, s ≥ 1,
H1 ' C pa1 ×C pa2 × · · · ×C pak × (C p)

s . Denote by α1, . . . , αk the generators of
C pa1 × · · · ×C pak , and by αk+1, . . . , αk+s the generators of (C p)

s . According to
Lemma 1.7, we have the relations [αi , α] = α

pai+1−1

i+1 ∈ Z(G) for 1 ≤ i ≤ k − 1;
[αk+ j , α] = αk+ j+1 for 0≤ j ≤ s− 1; and αk+s ∈ Z(G). Because of the frequent
use of k+ s in this case, we put r = k+ s.

We divide the proof into several steps.

Step 1. Define X1, X2, . . . , Xr ∈ V ∗ by

X j =
∑
`1,...,`r

x
(∏

i 6= j

α
`i
i

)
for 1≤ j ≤ r.

Note that αi · X j = X j for j 6= i . Let ζpai ∈ K be a primitive pai -th root of unity
for 1≤ i ≤ k, and let ζ be a primitive p-th root of unity. Define Y1, Y2, . . . , Yr ∈ V ∗

by

Yi =

pai−1∑
m=0

ζ−m
pai α

m
i · X i , Y j =

p−1∑
m=0

ζ−mαm
j · X j ,

for 1≤ i ≤ k and k+ 1≤ j ≤ r .
It follows that

αi : Yi 7→ ζpai Yi , Y j 7→ Y j for j 6= i and 1≤ i ≤ k,

α j : Y j 7→ ζY j , Yi 7→ Yi for i 6= j and k+ 1≤ j ≤ r.

Thus V1 =
⊕

1≤ j≤r K · Y j is a faithful representation space of the subgroup H1.
Define x j i = α

i
· Y j for 1 ≤ j ≤ r and 0 ≤ i ≤ p − 1. Recall that [αi , α] =

α pai+1−1

i+1 ∈ Z(G) for 1 ≤ i ≤ k − 1; [αk+ j , α] = αk+ j+1 for 0 ≤ j ≤ s − 1; and
αr ∈ Z(G). Hence

α−iα jα
i
= α jα

i pai+1−1

j+1 for 1≤ j ≤ k− 1, 1≤ i ≤ p− 1

and

α−iα jα
i
= α jα

(i
1)

j+1α
(i

2)
j+2 · · ·α

( i
r− j)

r for k ≤ j ≤ r − 1, 1≤ i ≤ p− 1.

It follows that

α` : x`i 7→ ζpa` x`i , x`+1i 7→ ζ i x`+1i , x j i 7→ x j i for 1≤ `≤ k− 1, j 6= `, `+ 1,

αk : xki 7→ ζpak xki , xwi 7→ ζ (
i

w−k)xwi , xvi 7→ xvi for 1≤ v ≤ k− 1,
k+ 1≤ w ≤ r,
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αm : xui 7→ ζ (
i

u−m)xui , xvi 7→ xvi for k+ 1≤ m ≤ r,
1≤ v ≤ m− 1,m ≤ u ≤ r,

α : x j0 7→ x j1 7→ · · · 7→ x j p−1 7→ ζ
b j

pc j x j0 for 1≤ j ≤ r,

where 0≤ i ≤ p− 1, and c j , b j are some integers such that 0≤ b j < pc j ≤ pa j .
Let W1 =

⊕
j,i

K · x j i ⊂ V ∗. As noted at the start of the proof, we must find W H1
1 .

Step 2. For 1 ≤ j ≤ r and for 1 ≤ i ≤ p − 1 define y j i = x j i/x j i−1. Thus
W1 = K (x j0, y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) and for every g ∈ G,

g · x j0 ∈ K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) · x j0 for 1≤ j ≤ r,

while the subfield K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) is invariant by the action of G,
that is,

α` : y`+1i 7→ ζ y`+1i , y j i 7→ y j i for 1≤ `≤ k− 1,
j 6= `+ 1,

αm : yui 7→ ζ (
i−1

u−m−1)yui , yvi 7→ yvi for k ≤ m ≤ r − 1,
1≤ v ≤ m,
m+ 1≤ u ≤ r,

αr : yvi 7→ yvi for 1≤ v ≤ r,

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ ζ
b j

pc j (y j1 · · · y j p−1)
−1 for 1≤ j ≤ r.

From Theorem 2.2 it follows that if K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)G is rational
over K , so is K (x j0, y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)G over K .

Since K contains a primitive pe-th root of unity ζpe , where pe is the exponent
of G, K contains as well a primitive pc j+1-th root of unity, and we may replace the
variables y j i by y j i/ζ

b j

pc j+1 so that we obtain a more convenient action of α without
changing the actions of the α j . Namely we may assume that

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ (y j1 y j2 · · · y j p−1)
−1 for 1≤ j ≤ r.

Define ur1 = y p
r1, uri = yri/yri−1 for 2≤ i ≤ p− 1. Then

K (y j i , uri : 1≤ j ≤ r−1, 1≤ i ≤ p−1)= K (y j i : 1≤ j ≤ r, 1≤ i ≤ p−1)〈αr−1〉.

From Theorem 2.2 it follows that if K (y j i , uri : 1≤ j ≤ r − 1, 2≤ i ≤ p− 1)G is
rational over K , so is K (y j i , uri : 1≤ j ≤ r − 1, 1≤ i ≤ p− 1)G over K . We have
the actions

α` : uri 7→ uri for 1≤ `≤ k− 1,

αm : uri 7→ ζ (
i−2

r−m−2)uri for 2≤ i ≤ p− 1, k ≤ m ≤ r − 2,
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α : ur2 7→ ur3 7→ · · · 7→ ur p−1 7→

(ur1u p−1
r2 u p−2

r3 · · · u
2
r p−1)

−1
7→ ur1u p−2

r2 u p−3
r3 · · · u

2
r p−2ur p−1.

For 2≤ i ≤ p− 1 define

vri = uri y−1
r−1i yr−2i y−1

r−3i · · · y
(−1)r−k

k+2i y(−1)r−k+1

k+1i ,

and put vr1 = ur1.
With the aid of the well known property

(n
m

)
−
(n−1

m

)
=
(n−1

m−1

)
, it is not hard to

verify the identity(
i − 2

r −m− 2

)
−

(
i − 1

r −m− 2

)
+

(
i − 1

r −m− 3

)
−

(
i − 1

r −m− 4

)
+ · · ·

· · · + (−1)r−m−1
(

i − 1
2

)
+ (−1)r−m

(
i − 1

1

)
+ (−1)r−m+1

(
i − 1

0

)
= 0.

It follows that

αm : vri 7→ vri for 1≤ i ≤ p− 1 and 1≤ m ≤ r − 2,

α : vr2 7→ vr3 7→ · · · 7→ vr p−1 7→ Ar · (vr1v
p−1
r2 v

p−2
r3 · · · v

2
r p−1)

−1.

where Ar is some monomial in y j i for 2≤ j ≤ r − 1, 1≤ i ≤ p− 1.
Define ur−11 = y p

r−11, ur−1i = yr−1i/yr−1i−1 for 2≤ i ≤ p− 1. Then

K (y j i , ur−1i :1≤ j≤r−2, 1≤ i≤ p−1)=K (y j i :1≤ j≤r−1, 1≤ i≤ p−1)〈αr−2〉.

From Theorem 2.2 it follows that if K (y j i , ur−1i : 1≤ j ≤ r − 2, 2≤ i ≤ p− 1)G

is rational over K , so is K (y j i , ur−1i : 1 ≤ j ≤ r − 2, 1 ≤ i ≤ p − 1)G over K .
Similarly to the definition of vri , we can define vr−1i so that αm(vr−1i )= vr−1i for
2 ≤ i ≤ p− 1 and 1 ≤ m ≤ r − 3. It is obvious that we can proceed in the same
way, defining elements vr−2i , vr−3i , . . . , vk+1i such that αm acts trivially on all the
v j i for k ≤ m ≤ r − 3.

Recall that the actions of α` on the y j i for 1≤ `≤ k− 1 are

α` : y`+1i 7→ ζ y`+1i , y j i 7→ y j i , for 1≤ i ≤ p− 1, 1≤ `≤ k− 1, j 6= `+ 1.

For any 1 ≤ ` ≤ k − 1 define v`+11 = y p
`+11, v`+1i = y`+1i/y`+1i−1, where

2≤ i ≤ p− 1. Put also v1i = y1i for 1≤ i ≤ p− 1. Then

K (v j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)= K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)H1 .

The action of α is given by

α : v11 7→ v12 7→ · · · 7→v1p−1 7→ (v11v12 · · · v1p−1)
−1, vm1 7→ vm1v

p
m2,

vm2 7→vm3 7→ · · · 7→vmp−1 7→ Am · (vm1v
p−1
m2 v

p−2
m3 · · · v

2
mp−1)

−1,
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for 2≤m ≤ r , where Am is some monomial in vk+1i , . . . , vm−1i for k+ 2≤m ≤ r
and A2= A3= · · · = Ak+1= 1. From Lemmas 2.4 and 2.5 it follows that the action
of α on K (v j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) can be linearized.

Case II. Assume that H1 is of type 1; that is, H1' (C p)
s+1 for some s ≥ 0. Denote

by β1, . . . , βs+1 the generators of (C p)
s+1. According to Lemma 1.7, we have the

relations [β j , α] = β j+1 for 1≤ j ≤ s and βs+1 ∈ Z(G).
Define X1, X2, . . . , Xs+1 ∈ V ∗ by

X j =
∑

`1,...,`s+1

x
(∏

m 6= j

β`m
m
)

for 1≤ j ≤ s+ 1. Note that β j · X i = X i for j 6= i . Let ζ be a primitive p-th root
of unity. Define Y1, Y2, . . . , Ys+1 ∈ V ∗ by

Y j =

p−1∑
r=0

ζ−rβr
j · X j

for 1≤ j ≤ s+ 1.
It follows that

β j : Y j 7→ ζY j , Yi 7→ Yi for i 6= j and 1≤ j ≤ s+ 1.

Thus V1 =
⊕

1≤ j≤s+1 K · Y j is a representation space of the subgroup H1.
Define x j i = α

i
·Y j for 1≤ j ≤ s+1, 0≤ i ≤ p−1. Recall that [β j , α] = β j−1.

Hence

α−iβ jα
i
= β jβ

(i
1)

j+1β
(i

2)
j+2 · · ·β

( i
s+1− j)

s+1 .

It follows that

β1 : x1i 7→ ζ x1i , x j i 7→ ζ (
i

j−1)x j i for 2≤ j ≤ s+ 1, 0≤ i ≤ p− 1,

β j : x`i 7→ x`i , xmi 7→ ζ (
i

m− j)xmi for 1≤ `≤ j − 1,
j ≤ m ≤ s+ 1, 0≤ i ≤ p− 1,

α : x j0 7→ x j1 7→ · · · 7→ x j p−1 7→ ζ b j x j0 for 1≤ j ≤ s+ 1, 0≤ b j ≤ p− 1.

Compare the actions of α, β1, . . . , βs+1 with the actions of α, αk, . . . , αk+s from
Case I, Step 1. They are almost the same. Apply the proof of Case I.

Case III. Assume that H1 is of type 2; that is, H1 ' C pa for some a ≥ 1. Denote
by β the generator of C pa . Then [β, α] = βbpa−1

for some b : 0 ≤ b ≤ p− 1. Let
ζpa ∈ K be a primitive pa-th root of unity, and let ζ be a primitive p-th root of
unity. Define X =

∑
i ζ
−i
pa x(β i ). Then β(X) = ζpa X , and define xi = α

i
· X for
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0≤ i ≤ p− 1. It follows that

β : xi 7→ ζpaζ ibxi for 0≤ i ≤ p− 1,

α : x0 7→ x1 7→ · · · 7→ x p−1 7→ ζ c
pa x0 for 0≤ c ≤ pa

− 1.

Define W1 =
⊕

i K · xi ⊂ V ∗. For 1 ≤ i ≤ p − 1 define yi = xi/xi−1. Thus
W1 = K (x0, yi : 1≤ i ≤ p− 1) and for every g ∈ G

g · x0 ∈ K (yi : 1≤ i ≤ p− 1) · x0,

while the subfield K (yi : 1≤ i ≤ p− 1) is invariant by the action of G, that is,

β : yi 7→ ζ b yi for 1≤ i ≤ p− 1,

α : y1 7→ y2 7→ · · · 7→ ζ c
pa (y1 · · · yp−1)

−1 for 0≤ c ≤ pa
− 1.

From Theorem 2.2 it follows that if K (yi : 1≤ i ≤ p− 1)G is rational over K , so
is K (x0, yi : 1≤ i ≤ p− 1)G over K .

Since K contains a primitive pe-th root of unity ζpe , where pe is the exponent
of G, K contains ζ c

pa+1 as well. We may replace the variables yi by yi/ζ
c
pa+1 so that

we obtain

α : y1 7→ y2 7→ · · · 7→ yp−1 7→ (y1 y2 · · · yp−1)
−1.

Define u1 = y p
1 , ui = yi/yi−1 for 2≤ i ≤ p− 1. Then K (ui : 1≤ i ≤ p− 1)=

K (yi : 1≤ i ≤ p− 1)〈β〉. The action of α is given by

α : u1 7→ u1u p
2 , u2 7→ u3 7→ · · · 7→ u p−1 7→ (u1u p−1

2 u p−2
3 · · · u2

p−1)
−1.

From Lemma 2.4 (or 2.5) it follows that the action of α can be linearized.

Case IV. Assume that H1 is of type 4, that is, H1 ' C pa1 ×C pa2 × · · · ×C pak for
some k ≥ 2. Denote by α1, . . . , αk the generators of H1. According to Lemma 1.7,
we have the relations [αi , α] = α

pai+1−1

i+1 ∈ Z(G) for 1 ≤ i ≤ k − 1 and [αk, α] =∏k
j=1 α

pa j−1c j
j ∈ Z(G) for some 0≤ c j ≤ p− 1.

Similarly to the previous cases, define Y1, Y2, . . . , Yk ∈ V ∗ so that

αi : Yi 7→ ζpai Yi , Y j 7→ Y j for j 6= i and 1≤ i ≤ k.

Thus V1 =
⊕

1≤ j≤k K · Y j is a faithful representation space of the subgroup H1.
Next, define x j i = α

i
· Y j for 1≤ j ≤ k, 0≤ i ≤ p− 1. Note that

α−iα jα
i
= α jα

i pa j+1−1

j+1 for 1≤ j ≤ k− 1, 1≤ i ≤ p− 1

and

α−iαkα
i
= αk

k∏
j=1

α
i pa j−1c j
j for 1≤ i ≤ p− 1.
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It follows that

α` : x`i 7→ ζpa` x`i , x`+1i 7→ ζ i x`+1i , x j i 7→ x j i for 1≤ `≤ k− 1, j 6= `, `+ 1,

αk : xki 7→ ζpak ζ
ick xki , x j i 7→ ζ ic j x j i for 1≤ j ≤ k− 1,

α : x j0 7→ x j1 7→ · · · 7→ x j p−1 7→ ζ
b j

pa j x j0 for 1≤ j ≤ k,

where 0≤ i ≤ p− 1, 0≤ c j ≤ p− 1 and 0≤ b j ≤ pa j − 1.
Define W1 =

⊕
j,i K · x j i ⊂ V ∗, and for 1≤ i ≤ p−1 define yi = xi/xi−1. Thus

W1 = K (x j0, y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1) and for every g ∈ G,

g · x j0 ∈ K (y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1) · x j0 for 1≤ j ≤ k,

while the subfield K (y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1) is invariant by the action of G,
that is,

α` : y`+1i 7→ ζ y`+1i , y j i 7→ y j i for 1≤ i ≤ p− 1,
1≤ `≤ k− 1, j 6= `+ 1,

αk : y j i 7→ ζ c j y j i for 1≤ i ≤ p− 1, 1≤ j ≤ k,

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ ζ
b j

pa j (y j1 · · · y j p−1)
−1.

From Theorem 2.2 it follows that if K (y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)G is rational
over K , so is K (x j0, y j i : 1 ≤ j ≤ k, 1 ≤ i ≤ p− 1)G over K . As before, we can
again assume that α acts in this way:

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ (y j1 y j2 · · · y j p−1)
−1.

Now, assume that 0< c1 ≤ p−1. For 2≤ j ≤ k choose e j such that c1e j +c j ≡

0 (mod p), and define u1i = y1i , u j i = ye j
1i y j i . It follows that

α` : u`+1i 7→ ζu`+1i , u j i 7→ u j i for 1≤ i ≤ p− 1,
1≤ `≤ k− 1, j 6= `+ 1,

αk : u1i 7→ ζ c1u1i , u j i 7→ u j i for 1≤ i ≤ p− 1, 2≤ j ≤ k.

Define v j1 = u p
j1, v j i = u j i/u j i−1 for 2≤ i ≤ p− 1, 1≤ j ≤ k. Then

K (v j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)= K (u j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)H1 .

The action of α is given by

α : v j1 7→ v j1v
p
j2, v j2 7→ v j3 7→ · · · 7→ v j p−1 7→ (v j1v

p−1
j2 v

p−2
j3 · · · v

2
j p−1)

−1

for 2≤ j ≤ k. Lemma 2.5 implies the action of α on K (v j i : 1≤ j ≤ k, 1≤ i ≤ p−1)
can be linearized.
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Finally, let c1= 0. Define v j1= u p
j1, v j i = u j i/u j i−1 for 2≤ i ≤ p−1, 2≤ j ≤ k.

Then K (u1i , v j i : 2≤ j ≤ k, 1≤ i ≤ p− 1)= K (u j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)H1 .
The action of α again can be linearized as before. We are done.

5. Proof of Theorem 1.9

By studying the classification of all groups of order p5 made by James [1980], we
see that the nonabelian groups with an abelian subgroup of index p and that are not
direct products of smaller groups are precisely the groups from the isoclinic families
with numbers 2, 3, 4 and 9. Notice that all these groups satisfy the conditions of
Theorem 1.8. The isoclinic family 8 contains only the group 88(32) which is
metacyclic, so we can apply Theorem 1.2. It is not hard to see that there are no
other groups of order p5 containing a normal abelian subgroup H such that G/H
is cyclic.

The groups of order p6 with an abelian subgroup of index p and that are not direct
products of smaller groups are precisely the groups from the isoclinic families with
numbers 2, 3, 4 and 9. Again, all these groups satisfy the conditions of Theorem 1.8.
The groups of order p6, containing a normal abelian subgroup H such that G/H
is cyclic of order > p are precisely the groups from the isoclinic families with
numbers 8 and 14. Note that the groups 88(42),88(33),814(42) are metacyclic,
and the group 88(321)a is a direct product of the metacyclic group 88(32) and
the cyclic group C p. Therefore, we need to consider the remaining groups, whose
presentations we write down for convenience of the reader.

88(321)b=〈α1, α2, β, γ : [α1, α2]=β=α
p
1, [β,α2]=β

p
=γ p, α p2

2 =β
p2
=1〉,

88(321)cr=〈α1, α2, β : [α1, α2]=β, [β,α2]
r+1
=β p(r+1)

=α p2

1 , α
p2

2 =β
p2
=1〉,

88(321)cp−1=〈α1, α2, β : [α1, α2]=β, [β,α2]=β
p
=α p2

2 , α
p2

1 =β
p2
=1〉,

88(222)=〈α1, α2, β : [α1, α2]=β, [β,α2]=β
p, α p2

1 =α
p2

2 =β
p2
=1〉,

814(321)=〈α1, α2, β : [α1, α2]=β, α
p2

1 =β
p, α p2

2 =β
p2
=1〉,

814(222)=〈α1, α2, β : [α1, α2]=β, α
p2

1 =α
p2

2 =β
p2
=1〉.

Case I. G =88(321)b. Denote by H the abelian normal subgroup of G generated
by α1 and γ . Then H = 〈α1, γβ

−1
〉 ' C p3 ×C p and G/H = 〈α2〉 ' C p2 .

Let V be a K -vector space whose dual space V ∗ is defined as V ∗=
⊕

g∈G K ·x(g),
where G acts on V ∗ by h · x(g)= x(hg) for any h, g ∈G. Thus we have K (V )G =
K (x(g) : g ∈ G)G = K (G).

Define X1, X2 ∈ V ∗ by

X1 =

p−1∑
i=0

x((γβ−1)i ), X2 =

p3
−1∑

i=0

x(αi
1).
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Note that γβ−1
· X1 = X1 and α1 · X2 = X2.

Let ζp3 ∈ K be a primitive p3-th root of unity and put ζ = ζ p2

p3 , a primitive p-th
root of unity. Define Y1, Y2 ∈ V ∗ by

Y1 =

p3
−1∑

i=0

ζ−i
p3 α

i
1 · X1, Y2 =

p−1∑
i=0

ζ−i (γβ−1)i · X2.

It follows that

α1 : Y1 7→ ζp3Y1, Y2 7→ Y2,

γβ−1
: Y1 7→ Y1, Y2 7→ ζY2,

γ : Y1 7→ ζp2Y1, Y2 7→ ζY2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
2 · Y1, yi = α

i
2 · Y2 for 0≤ i ≤ p2

− 1. From the relations α1α
i
2 =

αi
2α1β

iβ(
i
2)p it follows that

α1 : xi 7→ ζp3ζ i
p2ζ
(i

2)xi , yi 7→ yi ,

γ : xi 7→ ζp2 xi , yi 7→ ζ yi ,

α2 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ y0,

for 0≤ i ≤ p2
− 1.

We find that Y =
(⊕

0≤i≤p2−1 K · xi
)
⊕
(⊕

0≤i≤p2−1 K · yi
)

is a faithful G-sub-
space of V ∗. Thus, by Theorem 2.1, it suffices to show that K (xi , yi :0≤ i≤ p2

−1)G

is rational over K .
For 1≤ i ≤ p2

− 1, define ui = xi/xi−1 and vi = yi/yi−1. Thus

K (xi , yi : 0≤ i ≤ p2
− 1)= K (x0, y0, ui , vi : 1≤ i ≤ p2

− 1)

and for every g ∈ G

g · x0 ∈ K (ui , vi : 1≤ i ≤ p2
− 1) · x0, g · y0 ∈ K (ui , vi : 1≤ i ≤ p2

− 1) · y0,

while the subfield K (ui , vi : 1≤ i ≤ p2
− 1) is invariant by the action of G. Thus

K (xi , yi : 0≤ i ≤ p2
−1)G = K (ui , vi : 1≤ i ≤ p2

−1)G(u, v) for some u, v such
that α1(v)= γ (v)= α2(v)= v and α1(u)= γ (u)= α2(u)= u. We now have

(5-1)

α1 : ui 7→ ζp2ζ i−1ui , vi 7→ vi ,

γ : ui 7→ ui , vi 7→ vi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ (v1v2 · · · vp2−1)
−1,
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for 1≤ i ≤ p2
−1. If K (ui , vi : 1≤ i ≤ p2

−1)G(u, v) is rational over K , it follows
from Theorem 2.2 that K (xi , yi : 0≤ i ≤ p2

− 1)G is rational over K .
Since γ acts trivially on K (ui , vi : 1≤ i ≤ p2

− 1), we find that

K (ui , vi : 1≤ i ≤ p2
− 1)G = K (ui , vi : 1≤ i ≤ p2

− 1)〈α1,α2〉.

Now, consider the metacyclic p-group

G̃ = 〈σ, τ : σ p3
= τ p2

= 1, τ−1στ = σ k, k = 1+ p〉.

Define X =
∑

0≤ j≤p3−1
ζ
− j
p3 x(σ j ), Vi = τ

i X for 0≤ i ≤ p2
− 1. It follows that

σ : Vi 7→ ζ ki

p3 Vi ,

τ : V0 7→ V1 7→ · · · 7→ Vp2−1 7→ V0.

Note that K (V0, V1, . . . , Vp2−1)
G̃ is rational by Theorem 2.6.

Define Ui = Vi/Vi−1 for 1 ≤ i ≤ p2
− 1. Then K (V0, V1, . . . , Vp2−1)

G̃
=

K (U1,U2, . . . , Up2−1)
G̃(U ), where

σ :U 7→U, Ui 7→ ζ ki
−ki−1

p3 Ui ,

τ :U 7→U, U1 7→U2 7→ · · · 7→Up2−1 7→ (U1U2 · · ·Up2−1)
−1.

Notice that ki
− ki−1

= (1+ p)i−1 p ≡ (1+ (i − 1)p)p (mod p3), so ζ ki
−ki−1

p3 =

ζ
1+(i−1)p
p2 . Compare the first and third entries of (5-1) (i.e., the actions of α1, α2 on

K (ui : 1≤ i ≤ p2
− 1)) with the actions of G̃ on K (Ui : 1≤ i ≤ p2

− 1). They are
the same. Hence, according to Theorem 2.6, we get that K (u1, . . . , u p2−1)

G(u)∼=
K (U1, . . . ,Up2−1)

G̃(U ) = K (V0, V1, . . . , Vp2−1)
G̃ is rational over K . Since by

Lemma 2.4 we can linearize the action of α2 on K (vi : 1≤ i ≤ p2
− 1), we finally

obtain that K (ui , vi : 1≤ i ≤ p2
− 1)〈α1,α2〉 is rational over K .

Case II. G=88(321)cr . Denote by H the abelian normal subgroup of G generated
by α1 and β. Then H = 〈α1, α

−p
1 βr+1

〉 ' C p3 ×C p and G/H = 〈α2〉 ' C p2 . Let
a = (r+1)−1

∈ Zp2 , hence β = αap
1 (α

−p
1 βr+1)a . Similarly to Case I, we can define

Y1, Y2 ∈ V ∗ such that

α1 : Y1 7→ ζp3Y1, Y2 7→ Y2,

α
−p
1 βr+1

: Y1 7→ Y1, Y2 7→ ζY2,

β : Y1 7→ ζ a
p2Y1, Y2 7→ ζ aY2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
2 · Y1, yi = α

i
2 · Y2 for 0≤ i ≤ p2

− 1. From the relations α1α
i
2 =

αi
2α1β

iβ(
i
2)p and βαi

2 = α
i
2β

1+i p it follows that, for 0≤ i ≤ p2
− 1,
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α1 : xi 7→ ζp3ζ ai
p2ζ

a(i
2)xi , yi 7→ ζ ai yi ,

β : xi 7→ ζ a
p2ζ

ai xi , yi 7→ ζ a yi ,

α2 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ y0.

We find that Y =
(⊕

0≤i≤p2−1 K · xi
)
⊕
(⊕

0≤i≤p2−1 K · yi
)

is a faithful G-sub-
space of V ∗. Thus, by Theorem 2.1, it suffices to show that K (xi , yi :0≤ i≤ p2

−1)G

is rational over K .
For 1≤ i ≤ p2

− 1, define ui = xi/xi−1 and vi = yi/yi−1. We now have

α1 : ui 7→ ζ a
p2ζ

a(i−1)ui , vi 7→ ζ avi ,

β : ui 7→ ζ aui , vi 7→ vi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ (v1v2 · · · vp2−1)
−1,

for 1≤ i ≤ p2
−1. Theorem 2.2 implies that if K (ui , vi : 1≤ i ≤ p2

−1)G(u, v) is
rational over K , so is K (xi , yi : 0≤ i ≤ p2

− 1)G over K .
Since β acts in the same way as α p

1 on K (ui , vi : 1≤ i ≤ p2
− 1), we find that

K (ui , vi : 1≤ i ≤ p2
− 1)G = K (ui , vi : 1≤ i ≤ p2

− 1)〈α1,α2〉.
For 1≤ i ≤ p2

− 1 define Vi = vi/u
p
i . It follows that, for 1≤ i ≤ p2

− 1,

(5-2)

α1 : ui 7→ ζ a
p2ζ

a(i−1)ui , Vi 7→ Vi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

V1 7→ V2 7→ · · · 7→ Vp2−1 7→ (V1V2 · · · Vp2−1)
−1.

Compare (5-2) with (5-1). They look almost the same. Apply the proof of Case I.

Case III. G = 88(321)cp−1. Denote by H the abelian normal subgroup of G
generated by α1 and β. Then H ' C p2×C p2 and G/H ' C p2 . Similarly to Case I,
we can define Y1, Y2 ∈ V ∗ such that

α1 : Y1 7→ ζp2Y1, Y2 7→ Y2,

β : Y1 7→ Y1, Y2 7→ ζp2Y2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
2 · Y1, yi = α

i
2 · Y2 for 0≤ i ≤ p2

− 1. From the relations α1α
i
2 =

αi
2α1β

iβ(
i
2)p and βαi

2 = α
i
2β

1+i p it follows that, for 0≤ i ≤ p2
− 1,

α1 : xi 7→ ζp2 xi , yi 7→ ζ i
p2ζ
(i

2)yi ,

β : xi 7→ xi , yi 7→ ζp2ζ i yi ,
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α2 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ ζ y0.

For 1≤ i ≤ p2
− 1, define ui = xi/xi−1 and vi = yi/yi−1. We now have

α1 : ui 7→ ui , vi 7→ ζp2ζ i−1vi ,

β : ui 7→ ui , vi 7→ ζvi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ ζ(v1v2 · · · vp2−1)
−1,

for 1≤ i ≤ p2
−1. Since β acts in the same way as α p

1 on K (ui , vi : 1≤ i ≤ p2
−1),

we find that K (ui , vi : 1≤ i ≤ p2
− 1)G = K (ui , vi : 1≤ i ≤ p2

− 1)〈α1,α2〉.
Let ζp3 ∈ K be a primitive p3-th root of unity such that ζ p2

p3 = ζ . For 1≤ i ≤ p2
−1

define wi = vi/ζp3 . It follows that

(5-3)

α1 : ui 7→ ui , wi 7→ ζp2ζ i−1wi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

w1 7→ w2 7→ · · · 7→ wp2−1 7→ (w1w2 · · ·wp2−1)
−1,

for 1≤ i ≤ p2
− 1. Compare (5-3) with (5-1) or (5-2). They look almost the same.

Apply the proof of Case I.

Case IV. G =88(222). Denote by H the abelian normal subgroup of G generated
by α1 and β. Then H 'C p2×C p2 and G/H 'C p2 . The proof henceforth is almost
the same as Case III.

Case V. G =814(321). Denote by H the abelian normal subgroup of G generated
by α2 and β. Then H ' C p2 ×C p2 and G/H ' C p2 .

As before, we can define Y1, Y2 ∈ V ∗ such that

α2 : Y1 7→ ζp2Y1, Y2 7→ Y2,

β : Y1 7→ Y1, Y2 7→ ζp2Y2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
1 · Y1, yi = α

i
1 · Y2 for 0≤ i ≤ p2

− 1. From the relations α2α
i
1 =

αi
1α2β

−i it follows that, for 0≤ i ≤ p2
− 1,

α2 : xi 7→ ζp2 xi , yi 7→ ζ−i
p2 yi ,

β : xi 7→ xi , yi 7→ ζp2 yi ,

α1 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ ζ y0.
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For 1≤ i ≤ p2
− 1, define ui = xi/xi−1 and vi = yi/yi−1. We now have

α2 : ui 7→ ui , vi 7→ ζ−1
p2 vi ,

β : ui 7→ ui , vi 7→ vi ,

α1 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ ζ(v1v2 · · · vp2−1)
−1,

for 1≤ i ≤ p2
−1. Since β acts trivially on K (ui , vi : 1≤ i ≤ p2

−1), we find that
K (ui , vi : 1≤ i ≤ p2

− 1)G = K (ui , vi : 1≤ i ≤ p2
− 1)〈α1,α2〉.

Define w1 = v
p2

1 ζ
−1, wi = vi/vi−1 for 2≤ i ≤ p2

− 1. We now have

K (v1, . . . , vp2−1)
〈α2〉 = K (w1, . . . , wp2−1)

and

α1 : w1 7→ w p2

2 w1,

w2 7→ w3 7→ · · · 7→ wp2−1 7→ 1/(w1w
p2
−1

2 w p2
−2

3 · · ·w2
p2−1).

Define z1=w2, zi = α
i−1
1 ·w2 for 2≤ i ≤ p2

−1. Then K (wi : 1≤ i ≤ p2
−1)=

K (zi : 1≤ i ≤ p2
− 1) and

α1 : z1 7→ z2 7→ · · · 7→ z pt−1 7→ (z1z2 · · · z p2−1)
−1.

The action of α1 can be linearized by Lemma 2.4. Thus K (ui , zi : 1≤ i ≤ p2
−1)〈α1〉

is rational over K by Theorem 2.1. We are done.

Case VI. G =814(222). Denote by H the abelian normal subgroup of G generated
by α2 and β. Then H 'C p2×C p2 and G/H 'C p2 . The proof henceforth is almost
the same as Case V.
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LEGENDRIAN θ -GRAPHS

DANIELLE O’DONNOL AND ELENA PAVELESCU

We give necessary and sufficient conditions for two triples of integers to be
realized as the Thurston–Bennequin number and the rotation number of a
Legendrian θ -graph with all cycles unknotted. We show that these invari-
ants are not enough to determine the Legendrian class of a topologically
planar θ -graph. We define the transverse push-off of a Legendrian graph,
and we determine its self linking number for Legendrian θ -graphs. In the
case of topologically planar θ -graphs, we prove that the topological type of
the transverse push-off is that of a pretzel link.

1. Introduction

In this paper, we continue the systematic study of Legendrian graphs in (R3, ξstd)

initiated in [O’Donnol and Pavelescu 2012]. Legendrian graphs have appeared
naturally in several important contexts in the study of contact manifolds. They are
used in Giroux’s proof [2002] of existence of open book decompositions compatible
with a given contact structure. Legendrian graphs also appeared in Eliashberg and
Fraser’s proof [2009] of the Legendrian simplicity of the unknot.

In this article we focus on Legendrian θ-graphs. We predominantly work with
topologically planar embeddings and embeddings where all the cycles are unknots.
In the first part, we investigate questions about realizability of the classical invariants
and whether the Legendrian type can be determined by these invariants. In the
second part, we introduce the transverse push-off a Legendrian graph and investigate
its properties in the case of θ -graphs.

O’Donnol and Pavelescu [2012] extended the classical invariants Thurston–
Bennequin number, tb, and rotation number, rot, from Legendrian knots to Leg-
endrian graphs. Here we prove that all possible pairs of (tb, rot) for a θ-graph
with unknotted cycles are realized. It is easily shown that all pairs of integers
(tb, rot) of different parities and such that tb+ |rot| ≤ −1 can be realized as the
Thurston–Bennequin number and the rotation number of a Legendrian unknot. We
call a pair of integers acceptable if they satisfy the two restrictions above. For

O’Donnol was supported in part by an AMS-Simons Travel Grant.
MSC2010: primary 57M25, 57M50; secondary 05C10.
Keywords: Legendrian graph, Thurston–Bennequin number, rotation number, θ -graph.
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G G ′

e1
e2

e3

f1

f2

f3

Figure 1. Non-Legendrian isotopic graphs with the same invariants.

θ -graphs, we show the following:

Theorem 1. Any two triples of integers (tb1, tb2, tb3) and (rot1, rot2, rot3) for which
(tbi , roti ) are acceptable and R = rot1− rot2+ rot3 ∈ {0,−1} can be realized as
the Thurston–Bennequin number and the rotation number of a Legendrian θ -graph
with all cycles unknotted.

It is known that certain Legendrian knots and links are determined by the invari-
ants tb and rot: the unknot [Eliashberg and Fraser 2009], torus knots and the figure
eight knot [Etnyre and Honda 2001], and links consisting of an unknot and a cable
of that unknot [Ding and Geiges 2007]. To ask the same question in the context
of Legendrian graphs, we restrict to topologically planar Legendrian θ-graphs. A
topologically planar graph is one which is ambient isotopic to a planar embedding.
The answer is no, the Thurston–Bennequin number and the rotation number do
not determine the Legendrian type of a topologically planar θ-graph. The pair of
graphs in Figure 1 provides a counterexample.

The second part of this article is concerned with Legendrian ribbons of Legendrian
θ-graphs and their boundary. Roughly, a ribbon of a Legendrian graph g is a
compact oriented surface Rg containing g in its interior, such that there is a natural
contraction of Rg to g and ∂Rg is a transverse knot or link. We define the transverse
push-off of g to be the boundary of Rg. This introduces two new invariants of
Legendrian graphs, the transverse push-off and its self linking number. In the case
of a Legendrian knot, this definition gives a two component link consisting of
both the positive and the negative transverse push-offs. However, with graphs the
transverse push-off can have various numbers of components, depending on the
structure of the abstract graph and Legendrian type.

We show the push-off of a Legendrian θ -graph is either a transverse knot K with
sl= 1 or a three component transverse link whose three components are the positive
transverse push-offs of the three Legendrian cycles given the correct orientation.
For topologically planar graphs, the topological type of ∂Rg is determined solely
by the Thurston–Bennequin number of g, thus:

Theorem 2. Let G represent a topologically planar Legendrian θ-graph with
tb= (tb1, tb2, tb3). Then the transverse push-off of G is an (a1, a2, a3)-pretzel link,
where a1 = tb1+ tb2− tb3, a2 = tb1+ tb3− tb2, a3 = tb2+ tb3− tb1.
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This elegant relation is specific to θ -graphs and does not generalize to θn-graphs
for n > 3. We give examples to sustain this claim in the last part of the article. This
phenomenon is due to the relationship between flat vertex graphs and pliable vertex
graphs in the special case of all vertices of degree at most three.

2. Background

We give a short overview of contact structures, Legendrian and transverse knots and
their invariants. We recall how the invariants of Legendrian knots can be extended
to Legendrian graphs. Let M be an oriented 3-manifold and let ξ be a 2-plane
field on M . If ξ = kerα for some 1-form α on M satisfying α ∧ dα > 0, then ξ
is a contact structure on M . On R3, the 1-form α = dz− y dx defines a contact
structure called the standard contact structure, ξstd. Throughout this article we work
in (R3, ξstd).

A knot K ⊂ (M, ξ) is called Legendrian if, for all p ∈ K , the tangent Tp K is
contained in the contact plane ξp at p. A spatial graph G is called Legendrian if all
its edges are Legendrian curves that are nontangent to each other at the vertices.
If all edges around a vertex are oriented outward, then no two tangent vectors at
the vertex coincide in the contact plane. However, two tangent vectors may have
the same direction but different orientations resulting in a smooth arc through the
vertex. It is a result of this structure that the order of the edges around a vertex in a
contact plane is not changed up to cyclic permutation under Legendrian isotopy.
We study Legendrian knots and graphs via their front projection, the projection on
the xz-plane. Two generic front projections of a Legendrian graph are related by
Reidemeister moves I, II and III, together with three moves IV, V and VI, given by
the mutual position of vertices and edges [Baader and Ishikawa 2009]; see Figure 2.
Here forward we will refer to these moves as RI, RII, RIII, RIV, RV and RVI.

Apart from the topological knot class, there are two classical invariants of
Legendrian knots: the Thurston–Bennequin number, tb, and the rotation number,
rot. The Thurston–Bennequin number is independent of the orientation on K and
measures the twisting of the contact framing on K with respect to the Seifert framing.
To compute tb of a Legendrian knot K , consider a nonzero vector field v transverse
to ξ , take the push-off K ′ of K in the direction of v, and define tb(K ) := lk(K , K ′).
For a Legendrian knot K , tb(K ) can be computed in terms of the writhe and the
number of cusps in its front projection K̃ as

tb(K )= writhe(K̃ )− 1
2 cusps(K̃ ).

To define the rotation number, rot(K ), consider the positively oriented trivial-
ization {d1 = ∂/∂y, d2 =−y ∂/∂z− ∂/∂x} for ξstd. Let v be a nonzero vector field
tangent to K pointing in the direction of the orientation on K . The winding number
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I

II

III

IV IV

V

VI

Figure 2. Legendrian isotopy moves for graphs: RI, RII and RIII,
a vertex passing through a cusp (RIV), an edge passing under or
over a vertex (RV), an edge adjacent to a vertex rotates to the
other side of the vertex (RVI). Reflections of these moves that are
Legendrian front projections are also allowed.

of v about the origin with respect to this trivialization is the rotation number of K ,
denoted rot(K ). One can check that for K̃ the front projection for K ,

rot(K )= 1
2(↓cusps(K̃ )− ↑cusps(K̃ )),

where ↓cusps (↑cusps) denotes the number of down (up) cusps in the diagram.
Given a Legendrian knot K , Legendrian knots in the same topological class as

K can be obtained by stabilizations. A stabilization means replacing a strand of K
in the front projection of K by one of the zig-zags in Figure 3. The stabilization
is said to be positive if down cusps are introduced and negative if up cusps are
introduced. The Legendrian isotopy type of K changes through stabilization and so
do the Thurston–Bennequin number and rotation number: tb(S±(K ))= tb(K )− 1
and rot(S±(K ))= rot(K )± 1.

Both the Thurston–Bennequin number and the rotation number can be extended
to piecewise smooth Legendrian knots and to Legendrian graphs [O’Donnol and
Pavelescu 2012]. For a Legendrian graph G, fix an order on the cycles of G and

K
S+(K )

S−(K )

Figure 3. Positive and negative stabilizations in the front projection.
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define tb(G) as the ordered list of Thurston–Bennequin numbers of the cycles of G.
Once we fix an order on the cycles of G with orientation, we define rot(G) to be
the ordered list of rotation numbers of the cycles of G. If G has no cycles, define
both tb(G) and rot(G) to be the empty list.

An oriented knot t ⊂ (R3, ξstd) is called transverse if, for all p ∈ t , the tangent
Tpt is positively transverse to the contact plane ξp at p. If t is transverse, we let
6 be an oriented surface with t = ∂6. Then, ξ |6 is trivial, so there is a nonzero
vector field v over 6 in ξ . If t ′ is obtained by pushing t slightly in the direction
of v, then the self linking number of t is sl(t)= lk(t, t ′). It is easily seen that if t̃ is
the front projection of t , then sl(t)= writhe( t̃ ).

For an embedded surface 6 ⊂ (R3, ξstd), the intersection lx = Tx6 ∩ ξx is a line
for most x ∈6, except where the contact plane and the plane tangent to 6 coincide.
We denote by l :=

⋃
lx ⊂ T6 this singular line field, where the union includes lines

of intersection only. Then, there is a singular foliation F, called the characteristic
foliation on 6, whose leaves are tangent to l. The characteristic foliation is used in
the precise definition of Legendrian ribbon, given in Section 4.

3. Realization theorem

In this section we find which triples of integers can be realized as tb and rot of
Legendrian θ-graphs with all cycles unknotted. Both the structure of the θ-graph
and the required unknotted cycles impose restrictions on these integers. We also
investigate whether tb and rot uniquely determine the Legendrian type.

Eliashberg and Fraser [2009] showed that a Legendrian unknot K is Legendrian
isotopic to a unique unknot in standard form. The standard forms are shown in
Figure 4. The number of cusps and the number of crossings of the unknot in
standard form are uniquely determined by tb(K ) and rot(K ) as follows:

(1) If rot(K ) 6= 0 (Figure 4, left), then tb(K )=−(2t + 1+ s) and

rot(K )=
{

s if the leftmost cusp is a down cusp,
−s if the leftmost cusp is an up cusp.

(2) If rot(K )= 0 (Figure 4, right), then

tb(K )=−(2t + 1).

The following lemma identifies restrictions on the invariants of Legendrian
unknots.

Lemma 3. A pair of integers (tb, rot) can be realized as the Thurston–Bennequin
number and the rotation number of a Legendrian unknot if and only if they are of
different parities and

tb+ |rot| ≤ −1.
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2t + 1

s

2t

Figure 4. Legendrian unknot in standard form. Left: rot(K ) > 0
(the reverse orientation gives rot(K ) < 0). Right: rot(K )= 0.

Proof. We know from [Eliashberg 1992] that for a Legendrian unknot K in (R3, ξstd),
we have tb(K )+ |rot(K )| ≤ −1. From [Eliashberg and Fraser 2009], explained
above, we see that tb and rot have different parities.

For a pair (tb, rot):

• If rot > 0, the pair (tb, rot) is realized via the Legendrian unknot with front
projection as in Figure 4, left, for (t, s)=

(
−

1
2(tb+ rot+ 1), rot

)
.

• If rot < 0, the pair (tb, rot) is realized via the Legendrian unknot with front
projection as in Figure 4, left, for (t, s)=

(
−

1
2(tb− rot+ 1),−rot

)
.

• If rot = 0, the pair (tb, rot) is realized via the Legendrian unknot with front
projection as in Figure 4, right, for t =− 1

2(tb+ 1). �

We have described the pairs (tb, rot) that can occur for the unknot.
Towards the proof of Theorem 1, we show in the next lemma that Legendrian

θ -graphs can be standardized near their two vertices.

Lemma 4. Any Legendrian θ-graph G can be Legendrian isotoped to a graph G̃
whose front projection looks as in Figure 5 in the neighborhood of its two vertices.

Proof. Label the vertices of G by a and b. In the front projection of G, use RVI,
if necessary, to move the three strands on the right of vertex a while near a and
on the left of vertex b while near b. Then, small enough neighborhoods of the two
vertices look as in Figure 5. �

For the remainder of this section, we assume that near its two vertices, a and b,
the front projection of the graph looks as in Figure 5. We fix notation: e1, e2, e3 are

a b

Figure 5. A Legendrian θ -graph near its two vertices.
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IV VI

e1 e1 e1

Figure 6. Moving edge e1 at the right vertex.

respectively the top, middle, and lower strands at a in the front projection; C1 is
the oriented cycle going out of vertex a along e1 and into a along e2; C2 exits a
along e1 and enters a along e3; and C3 exits a along e2 and enters a along e3. We
note that there is no consistent way of orienting the three edges which gives three
oriented cycles. It should also be noted that the above edge labeling is given after
the graph is embedded. If a labeled graph is embedded, relabeling of the graph and
reorienting of the cycles may be necessary in order to have Lemma 6 apply.

Remark 5. Once the edges at the left vertex a are labeled e1, e2, e3 from top to
bottom, the edges can be moved around the right vertex (using a combination of RVI
and RIV) so that edge e1 is also in top position at vertex b in the front projection.
An example of moving e1 from bottom position to top position next to b is shown in
Figure 6. There are two possibilities for the order of edges at the right vertex b. The
first case, where the edges are e1, e2, e3 from top to bottom, we will call parallel
vertices. The second case, where the edges are e1, e3, e2 from top to bottom, we
will call antiparallel vertices.

In the next lemma we show what additional restrictions occur as a result of the
structure of the θ -graph.

Lemma 6. Let rot1, rot2 and rot3 be integers representing rotation numbers for
cycles C1, C2 and C3, in the above notation. Then rot1− rot2+ rot3 ∈ {0,−1}.

Proof. Consider an arbitrary Legendrian θ-graph in front projection that has been
labeled and isotoped as described above. For i = 1, 2, 3, let ki (k ′i ) represent the
number of down (up) cusps along the edge ei when oriented from vertex a to vertex
b. Let si :=

1
2(ki − k ′i ) for i = 1, 2, 3. Then, since C1 has a down cusp at b, we

know rot1 = s1− s2; since C2 has a down cusp at b, we know rot2 = s1− s3; and

rot3 =
{

s2− s3 if C3 has a down cusp at b (parallel vertices),
s2− s3− 1 if C3 has an up cusp at b (antiparallel vertices).

This gives two possible values for R = rot1− rot2+ rot3 ∈ {0,−1}. �

Remark 7. The proof of Lemma 6 implies for Legendrian θ -graphs that the cyclic
order of the edges at one vertex is determined by the cyclic order of edges at the
other vertex and the parity of the sum of the rotation numbers.
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rot1 rot2 rot3 R = 0 R =−1

(i) + + + r1− r2+ r3 = 0 r1+ r3+ 1= r2

(ii) + + − r1− r2− r3 = 0 r1+ 1= r2+ r3

(iii) + − + r1+ r2+ r3 = 0 r1+ r2+ r3+ 1= 0
(iv) + − − r1+ r2− r3 = 0 r1+ r2+ 1= r3

(v) − + + −r1− r2+ r3 = 0 r1+ r2 = r3+ 1
(vi) − + − −r1− r2− r3 = 0 r1+ r2+ r3 = 1
(vii) − − + −r1+ r2+ r3 = 0 r1 = r2+ r3+ 1
(viii) − − − −r1+ r2− r3 = 0 r1+ r3 = r2+ 1

Table 1. The + stands for roti ≥ 0, and the − stands for roti < 0.

Theorem 8. Any two triples of integers (tb1, tb2, tb3) and (rot1, rot2, rot3) for which
tbi + |roti | ≤ −1, tbi and roti are of different parities for i = 1, 2, 3 and R =
rot1− rot2+ rot3 ∈ {0,−1} can be realized as the Thurston–Bennequin number and
the rotation number of a Legendrian θ -graph with all cycles unknotted.

Proof. Let tb= (tb1, tb2, tb3) and rot= (rot1, rot2, rot3) be triples of integers as in
the hypothesis. We give front projections of Legendrian θ-graphs realizing these
triples. In these projections the edges at vertex a are labeled e1, e2, e3 from top
to bottom and are in varying order at vertex b. Let ri := |roti | for i = 1, 2, 3. We
differentiate our examples according to the values of rot1, rot2 and rot3 and the
relationship between r1, r2 and r3.

When R = 0, for the sign combinations (i)–(viii) shown in Table 1 there is a
choice of indices i, j, k with {i, j, k} = {1, 2, 3} such that ri ≥ r j + rk (in fact,
ri = r j + rk).

When R =−1, for the sign combinations (i), (iv), (vi) and (vii) there is a choice
of indices i, j, k with {i, j, k} = {1, 2, 3} such that ri ≥ r j + rk ; combination (iii)
is not realized; and for each combination (ii), (v) and (viii), there is a choice of
indices i, j, k with {i, j, k} = {1, 2, 3} such that ri + 1= r j + rk .

Thus any realizable (rot1, rot2, rot3) falls into at least one of the following six
cases: (1) r1 ≥ r2 + r3, (2) r2 ≥ r1 + r3, (3) r3 ≥ r1 + r2, (4) r1 + 1 = r2 + r3,
(5) r2 + 1 = r1 + r3 and (6) r3 + 1 = r1 + r2. We describe ways of realizing the
invariants for these six cases.

The cycles C1,C2 and C3 are as described earlier. The choice of orientations for
the three cycles implies that e1 is oriented from a to b in both C1 and C2, while e3

is oriented from b to a in both C2 and C3. A box along a single strand designates
the number of stabilizations along the strand. We take

• ri positive stabilizations if roti ≥ 0,

• ri negative stabilizations if roti < 0,
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when edges e1, e2 and e3 are oriented as in cycle Ci . A box along a pair of strands
designates the number of crossings between the two strands. All the crossings are
as those in Figure 4.

Case 1 (r1 ≥ r2+ r3). The figure represents the front projection of a Legendrian
θ -graph with the prescribed tb and rot.

r2

r3

e1

e2

e3

e1

e3−tb2−r2−1
−tb3−r3−1

−tb1−r2−r3−1

Since tbi+|roti | ≤−1, the integers −tb2−r2−1 and −tb3−r3−1 are nonnegative.
Since r1 ≥ r2+ r3, we have −tb1− r2− r3− 1≥−tb1− r1− 1≥ 0. So all of the
indicated number of half twists are nonnegative integers as needed. The number
−tb1− r2− r3− 1 changes parity according to whether rot1− rot2+ rot3 equals
−1 or 0.

We check that the Thurston–Bennequin number and the rotation number for this
embedding have the correct values. For a cycle C we use

tb(C)= w(C)− 1
2 cusps(C), rot(C)= 1

2(↓cusps(C)− ↑cusps(C)),

where w=writhe, cusps= total number of cusps, ↓cusps= number of down cusps,
↑cusps= number of up cusps.

• tb(C1)= w(C1)−
1
2 cusps(C1)= (tb1+ r2+ r3+ 3)− (r2+ r3+ 3)= tb1.

• tb(C2)= w(C2)−
1
2 cusps(C2)= (tb2+ r2+ 3)− (r2+ 3)= tb2.

• tb(C3)= w(C3)−
1
2 cusps(C3)= (tb3+ r3+ 1)− (r3+ 1)= tb3.

If rot1− rot2+ rot3= 0, then −tb1−r2−r3−1 has the same parity as −tb1−r1−1.
They are both even, since tb1 and rot1 have different parities. This implies that at
vertex b the upper strand is e1 and the middle strand is e2.

• rot(C1)=
1
2(↓cusps(C1)− ↑cusps(C1))

=
1
2(2 · sgn(rot2) · r2+ 3− 2 · sgn(rot3) · r3− 3)= rot2− rot3 = rot1.

• rot(C2)=
1
2(↓cusps(C2)− ↑cusps(C2))=

1
2(2 · sgn(rot2) · r2+ 3− 3)= rot2.

• rot(C3)=
1
2(↓cusps(C3)− ↑cusps(C3))=

1
2(2 · sgn(rot3) · r3+ 1− 1)= rot3.

If rot1−rot2+rot3=−1, then−tb1−r2−r3−1 has different parity than−tb1−r1−1.
Since tb1 and rot1 have different parities, −tb1−r1−1 is even and−tb1−r2−r3−1
is odd. This implies that at vertex b the upper strand is e2 and the middle strand
is e1. Computations for rot(C2) and rot(C3) are the same as above.

• rot(C1)=
1
2(↓cusps(C1)− ↑cusps(C1))

=
1
2(2 · sgn(rot2) ·r2+2−2 · sgn(rot3) ·r3−4)= rot2− rot3−1= rot1.
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In the remaining cases, a similar check may be done to verify that they have the
correct tb and rot.

Case 2 (r2 ≥ r1 + r3). The figure below represents the front projection of a
Legendrian θ-graph with the prescribed tb and rot. Since r2 ≥ r1 + r3, we have
−tb2− r1− r3− 1≥−tb2− r2− 1≥ 0.

e1
e2

e3

r1

r3

−tb1−r1−1
−tb3−r3−1

−tb2−r1−r3−1

Case 3 (r3 ≥ r1 + r2). Again, the figure represents the front projection of a
Legendrian θ-graph with the prescribed tb and rot. Since r3 ≥ r1 + r2, we have
−tb3− r1− r2− 1≥−tb3− r3− 1≥ 0.

e1

e2

e3

r1

r3

−tb1−r1−1

−tb2−r2−1

−tb3−r1−r2−1

Case 4 (r1 + 1 = r2 + r3). In this case the graph below realizes (tb, rot). Since
r2+ r3 = r1+ 1, we have −tb1− r2− r3 =−tb1− r1− 1≥ 0.

e1

e2

e3

r2

r3−1
−tb1−r2−r3

−tb3−r3

−tb2−r2−1

Case 5 (r2+ 1 = r1+ r3). For this case the graph below realizes (tb, rot). Given
r1+ r3 = r2+ 1, we have −tb2− r1− r3+ 1=−tb2− r2 > 0.

e1

e2
e3

r1−1

r3−1

−tb1−r1

−tb2−r1−r3+1
−tb3−r3

Case 6 (r3 + 1 = r1 + r2). In this case the graph below realizes (tb, rot). Since
r1+ r2 = r3+ 1, we have −tb3− r1− r2 =−tb3− r3− 1≥ 0.

e1

e2

e3

r1−1

r2
−tb3−r2−r1

−tb1−r1

−tb2−r2−1

This completes the proof. �
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3.1. Topologically planar θ -graphs are not Legendrian simple. We ask whether
the invariants tb and rot determine the Legendrian type of a planar θ-graph. If we
do not require that the cyclic order of the edges around the vertex a (or b) is the
same in both embeddings, the answer is negative. We give a counterexample:

Example 9. The two graphs in Figure 1 have the same invariants but they are not
Legendrian isotopic. Let C1, C2 and C3 be the three cycles of G determined by the
pairs of edges {e1, e2}, {e1, e3} and {e2, e3}, respectively. Let C′1, C′2 and C′3 be the
three cycles of G ′ determined by { f2, f1}, { f2, f3} and { f1, f3}, respectively. The
cycles have tb(C1)= tb(C′1)=−1, tb(C2)= tb(C′2)=−5, tb(C3)= tb(C′3)=−3
and rot(Ci )= rot(C′i )= 0 for i = 1, 2, 3.

Assume the two graphs are Legendrian isotopic. Since the cycles with same
invariants should correspond to each other via the Legendrian isotopy (which we
denote by ι), the edges correspond as e1 ↔ ι(e1) = f2, e2 ↔ ι(e2) = f1 and
e3↔ ι(e3)= f3. But at both vertices of G the (counterclockwise) order of edges in
the contact plane is e1−e2−e3 and at both vertices of G ′ the (counterclockwise) order
of edges in the contact plane is ι(e1)− ι(e3)− ι(e2). This leads to a contradiction,
since a Legendrian isotopy preserves the cyclic order of edges at each vertex.

Corollary 10. The invariants tb and rot are not enough to distinguish the Legen-
drian class of an θn-graph for n ≥ 3.

Proof. For n≥4, a pair of graphs with the same invariants but of different Legendrian
type can be obtained from (G,G ′) in Example 9 by adding n− 3 unknotted edges
at the top of the three existing ones. �

4. Legendrian ribbons and transverse push-offs

In this section we work with Legendrian ribbons of θ-graphs. We examine the
relationship between the Legendrian graph and the boundary of its ribbon, the
transverse push-off. The transverse push-off is another invariant of Legendrian
graphs. We explore whether it contains more information than the classical invariants
rotation number and Thurston–Bennequin number. We determine the number of
components and the self linking number for the push-off of a Legendrian θ -graph.
In the special case of topologically planar graphs, we prove that the topological
type of the transverse push-off of a θ-graph is that of a pretzel-type curve whose
coefficients are determined by the Thurston–Bennequin invariant of the graph.

Let g be a Legendrian graph. A ribbon for g is a compact oriented surface Rg

such that:

(1) g in contained in the interior of Rg;

(2) there exists a choice of orientations for Rg such that ξ has no negative tangency
with Rg;
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(a) (b) (c) (d) (e)

Figure 6. Attaching a ribbon surface to a Legendrian graph. The
two sides of the surface are marked by different colors.

(3) there exists a vector field X on Rg tangent to the characteristic foliation whose
time flow φt satisfies

⋂
t≥0 φt(Rg)= g; and

(4) the boundary of Rg is transverse to the contact structure.

The following is a construction which takes a graph in the front projection and
produces its ribbon viewed in the front projection. Portions of this construction
were previously examined by Avdek [2013, Algorithm 2, Steps 4–6]. Starting with
a front projection of the graph, we construct a ribbon surface containing the graph
as described in Figure 6:

(a) To each arc between consecutive cusps of an edge we attach a band with a
single negative half twist.

(b) To each left and right cusp along a strand we attach disks containing a positive
half twist.

(c,d) To each vertex we attach twisted disks as in Figure 6(c,d).

(e) Crossings in the diagram of the graph are preserved.

Legendrian ribbons were first introduced by Giroux [2002] to have a well-
defined way to contract a contact handlebody onto the Legendrian graph at the core
of the handlebody. We are interested in some particular features of Legendrian
ribbons. The boundary of a Legendrian ribbon is an oriented transverse link with
the orientation inherited from the ribbon surface. The ribbon associated with a
given Legendrian graph is unique up to isotopy and therefore gives a natural way
to associate a transverse link to the graph.

Definition 11. The transverse push-off of a Legendrian graph is the boundary of
its ribbon.

In the case of Legendrian knots the above definition gives a two component link
of both the positive and negative transverse push-offs. However, with graphs the
transverse push-off can have various numbers of components, depending on the
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(a) (b) (c)

+

+

+

- -

e3

e2

e1

e3

e2

e1

e3

e2

e1

e2

e3

e1

Figure 7. Transverse push-off: (a) at cusps and crossings (b) of
a Legendrian θ-graph with one component (c) of a Legendrian
θ -graph with three components.

abstract graph and Legendrian type. The transverse push-off is a new invariant of
Legendrian graphs.

4.1. Self linking of transverse push-offs. Here we determine possible self linking
numbers and the number of components of the transverse push-off of a Legendrian
θ -graph.

Theorem 12. The transverse push-off of a Legendrian θ -graph is either a transverse
knot K with sl= 1 or a three component transverse link whose three components are
the transverse push-offs of the three Legendrian cycles given the correct orientation.

Proof. Given an arbitrary Legendrian θ -graph, by Lemma 4, it can be isotoped to an
embedding where near the vertices it has a projection like that shown in Figure 5,
where the edges at the left vertex are labeled e1, e2, e3 from top to bottom. Then
using Remark 5, move the edges around the right vertex so that edge e1 is also in
the top position in the front projection. There are two possibilities for the order of
edges at the right vertex: parallel vertices, shown in Figure 7(b), and antiparallel
vertices, shown in Figure 7(c).

Now we will focus on the number of components of the transverse push-off.
For simplicity of bookkeeping we will place the negative half twists that occur on
each arc between consecutive cusps to the left on that portion of the edge. For
the projections shown in Figure 7(b,c) the portion of the graph not pictured could
have any number of crossings and cusps. Along each edge, the top and bottom
positions of the strands are preserved through cusps and crossings. See Figure 7(a).
So we see that the arc of the transverse push-off which lies above (resp. below) the
Legendrian arc in the projection on one side of the diagram still lies above (resp.
below) on the other side. Thus the number of components in the transverse push-off
can be determined by a careful tracing of the diagrams in Figure 7(b,c). Graphs
with parallel vertices have a transverse push-off with one component, and graphs
with antiparallel vertices have a transverse push-off with three components.



204 DANIELLE O’DONNOL AND ELENA PAVELESCU

If the boundary of the Legendrian ribbon is a knot T , then sl(T ) equals the
signed count of crossings in a front diagram for T . Crossings in the diagram of the
graph and cusps along the three edges do not contribute to this count. A crossing in
the diagram of the graph contributes two negative and two positive crossings. A
cusp contributes a canceling pair of positive and negative crossings; see Figure 7(a).
Apart from these, there is one positive crossing along each edge and one negative
crossing for every disk at each vertex, giving sl(T )= 1; see Figure 7(b).

If the boundary has three components T1, T2 and T3, then they have the same self
linking as the transverse push-offs of the cycles of the Legendrian graph with the
correct orientation. Let Ci be the cycle Ci with the opposite orientation. Then T1,
T2 and T3, are the positive transverse push-offs of C1, C2 and C3, respectively. �

4.2. Topologically planar Legendrian θ -graphs. To be able to better understand
the topological type of a Legendrian ribbon and the transverse push-off (its boundary)
we will model the ribbon with a flat vertex graph. A flat vertex graph (or rigid
vertex graph) is an embedded graph where the vertices are rigid disks with the edges
being flexible tubes or strings between the vertices. This is in contrast with pliable
vertex graphs (or just spatial graphs) where the edges have freedom of motion at
the vertices. Both flat vertex and pliable vertex graphs are studied up to ambient
isotopy and have sets of five Reidemeister moves. For both of them, the first three
Reidemeister moves are the same as those for knots and links and RIV consists of
moving an edge over or under a vertex; see Figure 8. For flat vertex graphs, RV is
the move where the flat vertex is flipped over. For pliable vertex graphs, RV is the
move where two of the edges are moved near the vertex in such a way that their
order around the vertex is changed in the projection.

For a Legendrian ribbon, the associated flat vertex graph is given by the following
construction: a vertex is placed on each twisted disk where the original vertices
were, and an edge replaces each band in the ribbon. The information that is lost
with this model is the amount of twisting that occurs on each edge. The flat vertex
graph model is particularly useful when working with the θ-graph because it is a
trivalent graph. We see with the following lemma the relationship between trivalent
flat vertex and trivalent pliable vertex graphs.

Lemma 13. For graphs with all vertices of degree 3 or less, the set of equivalent
diagrams is the same for both pliable and flat vertex spatial graphs.

Proof. We follow notation in [Kauffman 1989, pages 699, 704]. The lemma can
be reformulated to say, given the diagrams of two ambient isotopic pliable vertex
graphs with maximal degree 3, these are also ambient isotopic as flat vertex graphs,
and vice versa. The Reidemeister moves for pliable vertex graphs and flat vertex
graphs differ only in RV; see Figure 8. For pliable vertex graphs, RV is the move
where two of the edges are moved near the vertex in such a way that this changes
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 V

pliable 
vertex

flat and pliable 
vertex

vertex

Figure 8. RIV and RV for pliable and flat vertex graphs.

their order around the vertex in the projection. For flat vertex graphs, RV is the move
where the flat vertex is flipped over. For vertices of valence at most 3, these two
moves give the same diagrammatic results. Thus the same sequence of Reidemeister
moves can be used in the special case of graphs with maximal degree 3. �

Here we set up the notation that will be used in the following theorem. For a
Legendrian θ -graph G, we consider a front projection in which the neighborhoods
of the two vertices are as those in Figure 5 and we denote its three cycles by
C1, C2 and C3, following the notation of Section 2. Let cr[ei , e j ] be the signed
intersection count of edges ei and e j in the cycle C1, C2 or C3 which they determine.
Let cr[ei ] be the signed self-intersection count of ei . Let tb1, tb2 and tb3 be the
Thurston–Bennequin numbers of C1, C2 and C3.

Theorem 14. Let G represent a topologically planar Legendrian θ-graph with
tb= (tb1, tb2, tb3). Then the transverse push-off of G is an (a1, a2, a3)-pretzel link,
where a1 = tb1+ tb2− tb3, a2 = tb1+ tb3− tb2 and a3 = tb2+ tb3− tb1.

Proof. The proof will be done in two parts. First, the transverse push-off will be
shown to be a pretzel knot or link. Second, it will be shown to be of a particular
type of pretzel link, an (a1, a2, a3)-pretzel knot or link.

We first look at the ribbon as a topological object. If the ribbon can be moved
through ambient isotopy to a projection where the three bands do not cross over each
other and come together along a flat disk, then the boundary of the ribbon would be
a pretzel link with crossings only occurring as twists on each band. If we model the
ribbon with a flat vertex graph this simplifies our question to whether the resulting
flat vertex graph can be moved so that it is embedded in the plane. The resulting
graph is topologically planar because it is coming from a topologically planar
Legendrian graph. Thus by Lemma 13, it can be moved to a planar embedding.
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In order to show the pretzel knot (or link) is an (a1, a2, a3)-pretzel link, we will
look at what happens to the ribbon as the associated flat vertex graph is moved to a
planar embedding. We will work with the Legendrian θ -graph in the form shown in
Figure 5 near its vertices. We need to count the number of twists in the bands of the
Legendrian ribbon once it has been moved to the embedding where the associated
flat vertex graph is planar. We will prove a1 = tb1+ tb2− tb3 by writing each of
these numbers in terms of the number of cusps and the number of signed crossings
between the edges of the Legendrian graph. The proofs for a2 and a3 are similar.

We will use the following observations to be able to write a1, the number of half
twists in the band associated with edge e1, in terms of the number of cusps, cr[ei ]

and cr[ei , e j ].

(1) Based on the construction of the ribbon surface, c cusps on one of the edges
contribute with c+ 1 negative half twists to the corresponding band.

(2) We look at each of the Reidemeister moves for flat vertex graphs and see how
they change the number of twists on the associated band of the ribbon surface.

(a) A positive (negative) RI adds a full positive (negative) twist to the band;
see Figure 9(a,b).

(b) RII, RIII and RIV do not change the number of twists in any of the bands.
(c) RV adds a half twist on each of the three bands; see Figure 9(c,d). The sign

of the half twists depends on the crossing and which bands are crossed. If
two bands have a positive (resp. negative) crossing, then they each have
the addition of a positive (resp. negative) half twist, and the third band has
the addition of a negative (resp. positive) half twist.

(a) (b)

(c) (d)

I I

V V

Figure 9. (a) A positive RI adds a full positive twist to the band.
(b) A negative RI adds a full negative twist to the band. (c,d) RV
adds a half twist on each of the three bands.
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Since we proved earlier that the flat vertex graph can be moved to a planar
embedding, we know that all of the crossings between edges will be eventually
removed through Reidemeister moves. Thus this gives

a1 =−[cusps on e1] − 1+ 2 cr[e1] + cr[e1, e2] + cr[e1, e3] − cr[e2, e3].

This count is easily seen to be invariant under RII and RIII, since these do not
change the signed crossing of the diagram. We show it is invariant under RIV at
the end of the proof.

Next, we describe tb1+tb2−tb3 in terms of the number of cusps and the crossings
between the edges. Recall that, for a cycle C,

tb(C)= w(C)− 1
2 cusps(C).

Thus,

tb1+tb2−tb3 = w(C1)−
1
2 cusps(C1)+w(C2)−

1
2 cusps(C2)−w(C3)+

1
2 cusps(C3)

= cr[e1, e2]+cr[e1]+cr[e2]−
1
2

(
[cusps on e1]+[cusps on e2]+2

)
+cr[e1, e3]+cr[e1]+cr[e3]−

1
2

(
[cusps on e1]+[cusps on e3]+2

)
−
(
cr[e2, e3]+cr[e2]+cr[e3]

)
+

1
2

(
[cusps on e2]+[cusps on e3]+2

)
=−[cusps on e1]−1+2 cr[e1]+cr[e1, e2]+cr[e1, e3]−cr[e2, e3].

Thus, a1 = tb1+ tb2− tb3.

Claim. The sum 2cr[e1] + cr[e1, e2] + cr[e1, e3] − cr[e2, e3] is unchanged under
RIV.

Proof of claim. Let b1= 2cr[e1]+cr[e1, e2]+cr[e1, e3]−cr[e2, e3]. Let d represent
the strand that is moved past the vertex. We distinguish two cases, (a) and (b),
according to the number of crossings on each side of the vertex; see Figure 10. We
check that the contributions to b1 of the crossing before the move (left) is the same
as the contribution to b1 of the crossings after the move (right). The strand d can
be part of e1, e2 or e3. For both cases (a) and (b), the equality is shown step by step
for d = e1 and d = e3. In a similar way b1 is unchanged if d = e2.

Case (a1): If d is part of e1, then b1,left = 2cr[e1]+cr[e1, e2] = cr[e1], since the two
crossings have opposite sign when seen in the cycle determined by e1 and e2; and
b1,right = cr[e1, e3] = cr[e1].

IV IV

(a) (b)

e1

e2

d

e3

e1

e2

d

e3

e1
e2
e3

e1
e2
e3

d d

Figure 10. RIV changes crossings between different pairs of edges.
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Case (a2): If d is part of e3, then b1,left= cr[e1, e3]−cr[e2, e3]= cr[e2, e3]−cr[e3]=

0, and b1,right = 0.

Case (b1): If d is part of e1, then b1,left = 2cr[e1] + cr[e1, e2] + cr[e1, e3] = 0, and
b1,right = 0.

Case (b2): If d is part of e3, then b1,left= cr[e1, e3]−cr[e2, e3] = 0, since both these
crossings have sign opposite to cr[e3]; and b1,right = 0.

This completes the proof of the claim and the theorem. �

The combination of Theorem 12 and Theorem 14 gives a complete picture of
the possible transverse push-offs of topologically planar Legendrian θ-graphs. In
this case, the transverse push-off is completely described by the tb of the graph. So
while this does not add to our ability to distinguish topologically planar Legendrian
θ -graphs, it does add to our understanding of the interaction between a Legendrian
graph and its transverse push-off.

It is worth noting that Theorem 14 also implies that the transverse push-off
will either have one or three components. The possible transverse push-offs of
a topologically planar Legendrian θ-graph are more restricted than it may first
appear. Not all pretzel links will occur in this way. In Theorem 14, we found the
pretzel coefficients as linear combinations with coefficients +1 or −1 of tb1, tb2

and tb3. We note that the three pretzel coefficients have the same parity, restricting
the number of components the transverse push-off can have. If exactly one of or all
three of tb1, tb2 and tb3 are odd, then all pretzel coefficients are odd and the pretzel
curve is a knot. If none or exactly two of tb1, tb2 and tb3 are odd, then all pretzel
coefficients are even and the pretzel curve is a three component link. The pairwise
linking between its components is equal to the number of full twists between the
corresponding pair of strands in the pretzel presentation, i.e., a1/2, a2/2 and a3/2.

4.3. The transverse push-off of θn-graphs. We give examples showing the bound-
ary of the Legendrian ribbon associated to an θn-graph, n > 3, is not necessarily a
pretzel-type link. Independent of n, each component of an n-pretzel type link is
linked with at most two other components. The transverse push-offs of the graphs
in Figure 11 have at least one component linking more than two other components
of the link. The characterization as a pretzel curve of the topological type of the
push-off is therefore exclusive to the case n = 3, that of θ -graphs.

For n = 2k, k ≥ 2, let L2k be the Legendrian θ2k-graph whose front projection
is the one in Figure 11, top left. The transverse push-off has the topological type of
the link L∪Lk in Figure 11, top right. If k is odd, L has one component and it links
all k ≥ 3 components of Lk . If k is even, L has two components where each of the
two components links all k ≥ 2 components of Lk and the other component of L .

For n = 2k + 1, k ≥ 3, let L2k+1 be the Legendrian θ2k+1-graph whose front
projection is the one in Figure 11, middle left. The transverse push-off has the
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k pairs

k pairs

k

k

k

L

L

L

Lk

n = 2k

Lk

k−1

n = 2k+ 1

n = 5

Figure 11. The θn-graphs on the left have the transverse push-offs
shown on the right, which do not have the topological type of a
pretzel-type curve.

topological type of the link L ∪ Lk in Figure 11, middle right. If k is even, L has
one component and it links all k ≥ 3 components of Lk . If k is odd, L has two
components where each of the two components links all k ≥ 3 components of Lk

and the other component of L .
For n= 5, the link just discussed is a pretzel link and we give a different example

in this case; see the bottom row of Figure 11. The highlighted component of the
transverse push-off links three other components.
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A CLASS OF NEUMANN PROBLEMS ARISING
IN CONFORMAL GEOMETRY

WEIMIN SHENG AND LI-XIA YUAN

In this paper, we solve a class of Neumann problems on a manifold with
totally geodesic smooth boundary. As a consequence, we also solve the
prescribing k-curvature problem of the modified Schouten tensor on such
manifolds; that is, if the initial k-curvature of the modified Schouten tensor
is positive for τ > n − 1 or negative for τ < 1, then there exists a conformal
metric such that its k-curvature defined by the modified Schouten tensor
equals some prescribed function and the boundary remains totally geodesic.

1. Introduction

Let (Mn, g), n ≥ 3, be a compact, smooth Riemannian manifold. The modified
Schouten tensor

Aτg :=
1

n− 2

(
Ricg −

τ Rg

2(n− 1)
· g
)

was introduced by Gursky and Viaclovsky [2003] and A. Li and Y.-Y. Li [2003]
independently, where τ ∈R and Ricg, Rg are the Ricci tensor and the scalar curvature
of g, respectively. Clearly, A0

g is the Ricci tensor, An−1
g is the Einstein tensor and

A1
g is just the Schouten tensor.
Denote by λ(g−1 Aτg) the eigenvalues of Aτg. The k-curvature (or σk curvature) of

Aτg is defined as σk(λ(g−1 Aτg)), where σk is the k-th elementary symmetric function
defined by

σk(λ)=
∑

1≤i1<···<ik≤n

λi1 · · · λik for all λ ∈ Rn,

for any 1≤ k ≤ n. We will use σk(Aτg) := σk(λ(g−1 Aτg)) for convenience.
The prescribing k-curvature problem of the modified Schouten tensor Aτg in

conformal geometry is to find a metric g̃ in the conformal class [g] of g satisfying
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the equation

(1-1) σ
1/k
k (Aτg̃)= ϕ(x),

where ϕ is a given smooth function on M . If τ = 1= k and ϕ is constant, (1-1) is
just the Yamabe problem, which has been solved by Yamabe, Trudinger, Aubin and
Schoen (see [Lee and Parker 1987]). When τ = 1, k≥ 2 and ϕ is constant, then (1-1)
is called k-Yamabe problem, which has attracted enormous interest [Chang et al.
2002; Ge and Wang 2006; Guan and Wang 2003a; 2003b; Gursky and Viaclovsky
2007; Li and Li 2003; 2005; Sheng et al. 2007; Trudinger and Wang 2009; 2010;
Viaclovsky 2000], etc. There are many interesting works on the Yamabe problem
and k-Yamabe problem on a manifold with boundary [Chen 2007; 2009; Escobar
1992b; 1992a; Han and Li 1999; 2000; He and Sheng 2011a; 2011b; 2013; Jin et al.
2007; Jin 2007], etc.

Note that (1-1) is a fully nonlinear partial differential equation for k ≥ 2. In order
to study this problem, we need the following conceptions. Let

0+k = {λ= (λ1, λ2, . . . , λn) ∈ Rn
| σ j (λ) > 0, 1≤ j ≤ k}.

Therefore, we have 0+n ⊂ 0
+

n−1 ⊂ · · · ⊂ 0
+

1 . For a 2-symmetric form B defined
on (Mn, g), B ∈ 0+k means that the eigenvalues of B, say λ(g−1 B), lie in 0+k . Set
0−k =−0

+

k .
According to [Caffarelli et al. 1985], (1-1) is an elliptic equation for Aτg ∈ 0

+

k
or Aτg ∈ 0

−

k . When τ < 1, Aτg ∈ 0
−

k and ϕ < 0, Gursky and Viaclovsky [2003]
proved that there exists a unique conformal metric g̃ ∈ [g] satisfying (1-1) on a
closed manifold. Li and Sheng [2005] studied the same problem by a parabolic
argument. Using a similar argument, Sheng and Zhang [2007] studied the case of
τ > n − 1, Aτg ∈ 0

+

k and ϕ > 0. For the manifold with boundary, Li and Sheng
[2011] considered a Dirichlet problem of (1-1) for τ > n− 1 and Aτg ∈ 0

+

k ; He and
Sheng [2013] discussed more general equations and obtained many useful local
estimates for both τ < 1 and τ > n−1. In [Sheng and Yuan 2013], we investigated
a Neumann problem of (1-1) by a conformal flow and proved:

Theorem 1.1 [Sheng and Yuan 2013]. Let (Mn, g), n ≥ 3, be a compact manifold
with smooth totally geodesic boundary ∂M. If Aτg ∈ 0

+

k and τ > n− 1, or Aτg ∈ 0
−

k
and τ < 1, then there exists a smooth metric g̃ ∈ [g] satisfying (1-1) for ϕ constant
and such that ∂M is still totally geodesic.

In this paper, we are interested in solving a class of Neumann problems on the
manifold with totally geodesic boundary.

Let (M, g) be a compact manifold with smooth boundary ∂M . Denote the second
fundamental form and the mean curvature of ∂M by L and µ. Under the conformal
change of metric g̃ = e2ug, the second fundamental form L with respect to its unit
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inward normal ν satisfies

L̃e−u
=−

∂u
∂ν

g+ L .

The boundary is called umbilic if L = µg, and then totally geodesic if µ≡ 0. Note
that the umbilicity is conformally invariant. Then the mean curvature changes as

(1-2) µ̃=

(
−
∂u
∂ν
+µ

)
e−u .

Under the same conformal change, the modified Schouten tensor changes according
to the formula

(1-3) Aτg̃ =
τ − 1
n− 2

4ug−∇2u+ du⊗ du+
τ − 2

2
|∇u|2g+ Aτg,

where the covariant derivatives and norms are taken with respect to the background
metric g. Let the boundary ∂M be totally geodesic with respect to the metric g. In
order to preserve the boundary being totally geodesic under the conformal change,
µ̃≡ 0. Hence, the two partial differential equations corresponding to Theorem 1.1
are

(1-4)


σ

1/k
k

(
τ−1
n−2
4ug−∇2u+ du⊗ du+ τ−2

2
|∇u|2g+ Aτg

)
= e2u const. in M,

∂u
∂ν
= 0 on ∂M,

for τ > n− 1, and

(1-5)


σ

1/k
k

(
∇

2u+ 1−τ
n−2
4ug− du⊗ du+ 2−τ

2
|∇u|2g− Aτg

)
= e2u const. in M,

∂u
∂ν
= 0 on ∂M,

for τ < 1, respectively.
Now, we consider more general equations than (1-4) and (1-5). Let 0 ⊂ Rn

be an open convex cone with vertex at the origin satisfying 0n ⊂ 0 ⊂ 01, and
F : Rn

→ R be a general smooth, symmetric, homogeneous function of degree one
in 0 normalized by F(e)= F(1, . . . , 1)= 1. Moreover, F = 0 on ∂0 and satisfies
the following structure conditions in 0:

(C1) F is positive.

(C2) F is concave (i.e., ∂2 F/(∂λi∂λ j ) is negative semidefinite).

(C3) F is monotone (i.e., ∂F/∂λi is positive).
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According to [Lin and Trudinger 1994; Trudinger 1990], for any 0≤ l < k ≤ n,
the elementary symmetric functions and their quotients (σk/σl)

1/(k−l) with σ0 = 1
satisfy all the properties and structure conditions above on 0+k .

For some positive function 8(x, z) ∈ C∞(M)×R, we study the equation

(1-6)

{
F(g−1V [u])=8(x, u) in M,
∂u
∂ν
= 0 on ∂M,

where for constant θ̄ := (τ − 1)/(n − 2) > 1, a, b ∈ C∞(M), and the smooth
symmetric 2-tensor S ∈ 0, the matrix (V [u]) is defined by

(1-7) V [u] = θ̄4ug−∇2u+ a(x)du⊗ du+ b(x)|∇u|2g+ S.

We call a function v ∈ C2(M) admissible if λ(g−1V [v]) ∈ 0.
Assume S is the symmetric 2-tensor on M satisfying one of the following

conditions:

(S1) S(ν, X)= 0, for any X ∈ T (∂M).

(S2) S = Aτg.

Theorem 1.2 (main result). Let (Mn, g), n≥ 3, be a compact manifold with smooth
totally geodesic boundary ∂M. Suppose θ̄ > 1 and the positive function 8(x, z) ∈
C∞(M)×R satisfies

(1-8) ∂z8> 0, lim
z→+∞

8(x, z)=+∞, lim
z→−∞

8(x, z)= 0.

Then for any functions a, b ∈C∞(M) and S ∈0 satisfying (S1) or (S2), there exists
a function u ∈ C∞(M) solving the equation (1-6).

For the other elliptic branch (1-5), we consider the equation

(1-9)

{
F(g−1W [u])=8(x, u) in M,
∂u
∂ν
= 0 on ∂M,

where for constant θ := (1 − τ)/(n − 2) > 0, a, b ∈ C∞(M), and the smooth
symmetric 2-tensor T ∈ 0, the matrix (W [u]) is defined by

(1-10) W [u] = ∇2u+ θ4ug+ a(x)du⊗ du+ b(x)|∇u|2g+ T .

Theorem 1.3. Let (Mn, g), n ≥ 3, be a compact manifold with smooth totally geo-
desic boundary ∂M. Suppose θ > 0 and the positive function8(x, z)∈C∞(M)×R

satisfies (1-8). Then for any functions a, b ∈ C∞(M) and T ∈ 0 with (S1) or
T =−Aτg, there exists a function u ∈ C∞(M) solving the equation (1-9).

Applying Theorems 1.2 and 1.3 to the quotient of the elementary symmetric
functions, i.e., F = (σk/σl)

1/(k−l) on 0+k , we have the following corollaries.
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Corollary 1.4. Let (Mn, g), n ≥ 3, be a compact manifold with smooth totally
geodesic boundary ∂M. If τ > n− 1 and Aτg ∈ 0

+

k , then for any smooth function
ϕ > 0, there exists a smooth metric g̃ ∈ [g] preserving ∂M totally geodesic and
satisfying

(1-11)
(
σk

σl

) 1
k−l
(Aτg̃)= ϕ(x) in M.

Corollary 1.5. Let (Mn, g), n ≥ 3, be a compact manifold with smooth totally
geodesic boundary ∂M. If τ < 1 and Aτg ∈ 0

−

k , then for any smooth function ϕ < 0,
there exists a smooth metric g̃ ∈ [g] preserving ∂M totally geodesic and satisfying
(1-11).

Remark 1.6. By choosing l = 0 and ϕ constant in Corollaries 1.4 and 1.5, we can
get Theorem 1.1 directly. Different from the results in [Li and Sheng 2011; Sheng
et al. 2007], we need not subjoin any restriction on a(x) and b(x) in Theorems 1.2
and 1.3. Contrary to this fact, [Sheng et al. 2007] gives a counterexample to show
that there is no regularity if a(x)= 0 and b(x) > 0 when τ = 1 and Aτg ∈ 0

−

k .

This paper is organized as follows. We introduce some lemmas in Section 2.
By use of these lemmas, we can get the a priori global C0 estimate for (1-6) in
Section 3. Then we obtain the a priori global gradient and Hessian derivatives
estimates in Section 4 and Section 5 respectively. By the a priori estimates and the
standard continuity method, we show Theorem 1.2 in Section 6. In the last section,
we consider (1-9) by the similar arguments in Sections 3–6, and prove Theorem 1.3.

2. Preliminaries

In this section, we first recall some facts of the function F satisfying the structure
conditions (C1)–(C3) in 0.

Lemma 2.1 (see [Chen 2005; 2009]). Let 0 be an open convex cone with vertex at
the origin satisfying 0+n ⊂ 0, and let e = (1, . . . , 1) be the identity. Suppose that F
is a homogeneous symmetric function of degree one normalized with F(e)= 1, and
that F is concave in 0. Then:

(a)
∑

i λi∂F(λ)/∂λi = F(λ), for λ ∈ 0.

(b)
∑

i ∂F(λ)/∂λi ≥ F(e)= 1, for λ ∈ 0.

To get the boundary estimates, we need some facts. For any point x0 ∈ ∂M ,
we consider Fermi coordinates {xi }1≤i≤n around x0, where ∂/∂xn is the unit inner
normal with respect to the background metric g. A half-ball centered at x0 of
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radius r is defined by

B+r =
{

xn ≥ 0,
( n∑

i=1

x2
i

)
≤ r2

}
.

Denote the boundary of B+r on ∂M by 6r =
{

xn = 0,
∑

i x2
i ≤ r2

}
.

Throughout this paper, the Greek letters α, β, γ, . . . = 1, . . . , n − 1 stand for
the tangential direction indices, while the Latin letters i, j, k, . . .= 1, . . . , n stand
for the full indices. In Fermi coordinates {xi }1≤i≤n , the metric is expressed as
g = gαβ dxα dxβ + (dxn)

2. Then the Christoffel symbols on the boundary satisfy

(2-1) 0n
αβ = Lαβ, 0βαn=−Lαγ gγβ, 0n

αn=0, 0n
nn=0, 0γnn=0, 0

γ

αβ = 0̃
γ

αβ

on the boundary, where we denote the tensors and covariant differentiation with
respect to the induced metric gαβ on the boundary by a tilde (e.g., 0̃γαβ, µα̃β̃). When
the boundary is totally geodesic, we have

(2-2) 0n
αβ = 0, 0βαn = 0, 0n

αn = 0.

Lemma 2.2 [Chen 2007; He and Sheng 2013]. Suppose ∂M is totally geodesic and
un = 0 on ∂M. Then we have on the boundary that

(2-3) unα = 0 and uαβn = 0.

Lemma 2.3 [He and Sheng 2013]. Let (M, g) be a compact Riemannian manifold
with boundary and dimension n ≥ 3. Assume the boundary ∂M is totally geodesic.
Then at any boundary point P ∈ ∂M , there exists a conformal metric ḡ= e2ūg0 such
that (i) ūn = 0 on ∂M and the boundary ∂M is still totally geodesic, (ii) Ri j (P)= 0
for 1 ≤ i , j ≤ n, (iii) Rnn,n(P) = 0, Rαn,β(P) = 0, 1 ≤ α, β ≤ n − 1, and
(iv) Rαβ,n(P)= 0, 1≤ α, β ≤ n− 1.

3. Ellipticity and the global C0 estimates

We first sketch the ellipticity properties of operator F ; see [Li and Sheng 2011] for
details.

For any function h on M , we define

P[h] := F(V [h])−8(x, h).

Then any solution u of (1-6) satisfies P[u] = 0. Denote us = u+ sv, s ∈ R. The
linearized operator of (1-6) is

(3-1) Lv :=
d
ds

P[us]
∣∣
s=0

= P i jvi j + 2aF i jvi u j + 2bvlulT− ∂z8(x, u)v,
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where F i j
:= (∂F/∂Vi j )(V [u]), T= tr(F i j )= F i j gi j and

P i j
:= θ̄Tgi j

− F i j
≥ (θ̄ − 1)Tgi j .

Since u is admissible, (F i j ) is positive definite [Caffarelli et al. 1985]. Denote
ε0 := θ̄ − 1> 0. Hence, (P i j ) is positive definite, too.

Note that the coefficient of the zero order term in (3-1) is negative when ∂z8 is
positive on M ×R.

Lemma 3.1. Equation (1-6) is elliptic at any admissible solution. If ∂z8 is positive
on M × R, then the linearized operator L : C2,α(M)→ Cα(M)(0 < α < 1) is
invertible.

Now, we use the compactness of the manifold to get the global C0 estimates of
(1-6).

Proposition 3.2. Suppose S ∈ 0 and the positive function 8(x, z) ∈ C∞(M)×R

satisfies (1-8). Then for any admissible solution u ∈ C2(M) of (1-6), we have

sup
M
|u| ≤ C0,

where the constant C0 depends only on S and 8.

Proof. Suppose x0 be the maximum point of u on M . Denote umax = u(x0).
If x0 ∈ ∂M , at this point we have un(x0)< 0, which contradicts with the boundary

condition un|∂M ≡ 0. Hence, x0 must be an interior point of M . Then at this point
we have

(3-2) ∇u = 0 and ∇
2u ≥ 0.

Substituting (3-2) into (1-6), we have

8(x0, umax)≤ F(S)(x0)≤max
x∈M

F(S)≤ C.

Now, by the condition ∂z8> 0 and limz→+∞8(x, z)=+∞, we know that

max
x∈M

u = umax ≤ C.

By a similar argument, we can get the lower bound of u by considering its
minimum point on M and using the other condition of 8. �

4. Gradient estimates

In this section we first consider the boundary gradient estimates of (1-6), then derive
the global estimates.
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For any point y0 ∈ ∂M , let B+r and B+r/2 be any two half-balls centered at y0 in
the Fermi coordinates {xi }1≤i≤n . Choosing a cutoff function η depending only on r
such that 0≤ η ≤ 1, η = 1 in B+r/2, η = 0 outside B+r . Moreover,

(4-1) |∇η| ≤ b0
η1/2

r
and |∇

2η| ≤
b0

r2 ,

for a universal constant b0, where the covariant derivatives and the norms | · | are
taken with respect to g. Since η only depends on r , we have

(4-2)
∂η

∂n
= 0 on ∂M.

We also need the function ψ : R→ R defined in [Gursky and Viaclovsky 2003]
by

(4-3) ψ(s)= α1(α2+ s)p, −δ1 < s < δ2,

where the positive constants δ1 and δ2 are given, and the constants α1, α2 and p
will be fixed as follows. We have

ψ ′ = pα1(α2+ s)p−1 and ψ ′′ = p(p− 1)α1(α2+ s)p−2
=

p− 1
α2+ s

ψ ′.

Let α2 and p be positive constants satisfying α2 > δ1 and p > 3. Take

α1 =
1

p2 max{(α2+ s)p}
;

then

(4-4) ψ ≤
1
p2 , ψ ′ > 0 and ψ ′′−ψ ′2 =

ψ ′

α2+s
(p−1− pψ)≥

ψ ′ p
2(α2+s)

.

Proposition 4.1. Suppose u is a C3 solution of (1-6) on B+r . Then there is a positive
constant C depending only on n, k, θ̄ , g, r , |S|C1(B+r ), |8|C1(B+r )×[−C0,C0]

, |a|C1(B+r ),
|b|C1(B+r ) and C0 such that

sup
B+r/2

|∇u|g ≤ C.

Proof. Consider the auxiliary function

G := 1
2ηeβ |∇u|2, β := xn +ψ(u),

where the function ψ defined by (4-3). Let x0 be the maximum point of G on B+r .
Without loss of generality, we may assume r = 1 and |∇u| (x0)� 1.
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Suppose x0 ∈6r . Then Gn(x0)≤ 0. However, by (4-2), the boundary condition
un = 0 and Lemma 2.2, we have

Gn(x0)=
1
2 eψ

(
(1+ψ ′un)|∇u|2+ 2ununn + 2

n−1∑
α=1

uαuαn

)
(x0)

=
1
2 eψ |∇u|2(x0) > 0.

It is a contradiction. Hence x0 must be an interior point of B+r . Then at x0, for
1≤ i ≤ n, we have

0= (log G)i , 0≥ (log G)i j ,

that is,

(4-5)
2ususi

|∇u|2
=−

(
ηi

η
+βi

)
,

and

(4-6) 0≥
(
ηi j

η
−
ηiη j

η2

)
+βi j +

2us j usi + 2ususi j

|∇u|2
−

4ususi ulul j

|∇u|4
.

Substituting (4-5) into (4-6), we have

0≥
(
ηi j

η
− 2

ηiη j

η2

)
+ (βi j −βiβ j )+

2us j usi + 2ususi j

|∇u|2
−

1
η
(ηiβ j + η jβi ).(4-7)

By (4-7), we have

(4-8) 0≥ P i j
(
ηi j

η
− 2

ηiη j

η2

)
+ P i j (βi j −βiβ j )

+
2
|∇u|2

P i j usi us j +
2
|∇u|2

us P i j usi j −
2
η

P i jηiβ j ,

where P i j
= θ̄Tgi j

− F i j is positive definite. It follows from (4-1) and (4-8) that

(4-9) 0≥
2
|∇u|2

us P i j usi j + P i j (βi j −βiβ j )−
2
η

P i jηiβ j −
C
η

T,

where the constant C depends only on n and b0.
Differentiating (1-6), we have

(4-10) ∇s8= P i j ui js+ F i j (asui u j +2auisu j + Si j ,s )+ (bs |∇u|2+2bulsul)T.

Then by (4-10) and Ricci identities usi j = ui js + Ris j pu p, we obtain

2
|∇u|2

us P i j usi j ≥
2
|∇u|2

us∇s8−
2
|∇u|2

us F i j (asui u j + 2auisu j )

−
2
|∇u|2

us(bs |∇u|2+ 2bulsus)T−C(1+
1
|∇u|

)T.
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where the constant C depends only on n, g and |∇S|.
Since ∇s8= 8x +8zus , by (4-5) and the inequality above, we have

(4-11)
2
|∇u|2

us P i j usi j ≥28z+
2
|∇u|2

us8x−
2asus

|∇u|2
F i j ui u j+2aF i j u j

(
ηi

η
+βi

)
− 2bsusT+2b

(
ηs

η
+βs

)
usT−C

(
1+

1
|∇u|

)
T

≥ C∗+ 2aF i j u jβi + 2busβsT−
C
√
η
(1+ |∇u|)T,

where the constant C∗ depends only on |8x |, |8z|, C0, and C depends on n, b0,
|a|C1 , |b|C1 and |∇S|.

Then by (4-9) and (4-11), we obtain

(4-12) 0≥ C∗+ 2aF i j u jβi + 2busβsT

+ P i j (βi j −βiβ j )−
2ηi

η
P i jβ j −C

1
√
η
(|∇u| + 1)T.

Since β := xn +ψ(u), we have

βi = δin +ψ
′ui , βi j = ψ

′′ui u j +ψ
′ui j

and

βi j −βiβ j = ψ
′ui j + (ψ

′′
−ψ ′2)ui u j −ψ

′(δinu j + δ jnui )− δinδ jn.

Therefore, we have the inequalities

2aF i j u jβi = 2aF i j u j (δin +ψ
′ui )≥ 2aψ ′F i j ui u j −C |∇u|T,(4-13)

2busβsT= 2bus(δsn +ψ
′us)T≥ 2bψ ′|∇u|2T−C |∇u|T,(4-14)

−
2ηi

η
P i jβ j =−

2
η

P i jηi (δ jn +ψ
′u j )≥−

C
√
η
(|∇u| + 1)T,(4-15)

P i j (βi j −βiβ j )≥ ψ
′P i j ui j + (ψ

′′
−ψ ′2)P i j ui u j −C(|∇u| + 1)T.(4-16)

Plugging (4-13)–(4-16) into (4-12), we have

(4-17) 0≥ C∗+ψ ′P i j ui j + (ψ
′′
−ψ ′2)P i j ui u j + 2aψ ′F i j ui u j

+ 2bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T.

By Lemma 2.1, we know that F i j Vi j = F(V )=8. Then

(4-18) ψ ′P i j ui j = ψ
′F i j Vi j −ψ

′F i j (aui u j + b|∇u|2gi j + Si j )

≥ ψ ′8− aψ ′F i j ui u j − bψ ′|∇u|2T−CT.
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Substituting (4-18) into (4-17), we get

(4-19) 0≥ C∗+ψ ′8+ (ψ ′′−ψ ′2)P i j ui u j + aψ ′F i j ui u j

+ bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T

= C∗+ψ ′8+ (ψ ′′−ψ ′2− aψ ′)P i j ui u j

+ (aθ̄ + b)ψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T.

Claim 4.2. If −δ1 < u < δ2, then there exist positive constants α1, α2 and p
depending only on θ̄ , δ1, δ2, |a|L∞(M) and |b|L∞(M), such that ψ ′ > 0, and

(4-20) (ψ ′′−ψ ′2− |a|L∞ψ ′)ε0− (θ̄ |a|L∞ + |b|L∞)ψ ′ ≥ ε1 > 0,

for some constant ε1 depending only on θ̄ , δ1 and δ2.

Note that 8> 0. Then by Claim 4.2, we have

0≥ C∗+ ε1|∇u|2T−
C
√
η
(|∇u| + 1)T.

Multiplying η2 both sides of the inequality above, we have

(4-21) ε1η
2
|∇u|2T≤ 2C |∇u|T+C∗.

By Lemma 2.1, T≥ 1. Then (4-21) implies the gradient estimates.

Proof of Claim 4.2. Since −δ1 ≤ u ≤ δ2. By (4-4), for

δ1+ δ2

2
≤ α2 ≤ δ2, p >max{3, 8|a|L∞δ2},

we have α1 = 1/(p2(2δ2)
p), ψ ′ > 0, and

ψ ′′−ψ ′2− aψ ′ ≥ ψ ′
(

p
4δ2
− |a|L∞

)
≥
ψ ′ p
8δ2

.

Furthermore, we can choose

p >max
{

3, 8|a|L∞δ2,
16
ε0
(θ̄ |a|L∞ + |b|L∞)δ2

}
,

such that

(ψ ′′−ψ ′2− |a|L∞ψ ′)ε0− (θ̄ |a|L∞ + |b|L∞)ψ ′

≥ ψ ′
(

pε0

8δ2
− (θ̄ |a|L∞ + |b|L∞)

)
≥
ψ ′ pε0

16δ2
≥
ε0(δ2− δ1)

p−1

2p+3δ2
≥ ε1 > 0. �
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Remark 4.3. If B+r and B+r/2 are replaced by two local geodesic open balls in the
interior of M and β = ψ(u) in the auxiliary function G, we can get the interior
gradient estimates for (1-6) by the proof of Proposition 4.1.

Since M is a compact manifold, by Proposition 4.1 and Remark 4.3, we can
derive the global gradient estimate of (1-6).

Proposition 4.4. Let u be a C3 solution of (1-6) on M. Then there is a positive
constant C1 depending only on n, k, θ̄ , g, a, b,8, S and C0 such that

(4-22) sup
M
|∇u|g ≤ C1.

5. Estimates for the second derivatives

Lemma 5.1. Let u be a C4 solution of (1-6). Then there is a positive constant C ′

depending only on n, k, θ̄ , g, |S|C1(B+r ), |a|C1(B+r ), |b|C1(B+r ), |8|C1(B+r )×[−C0,C0]
and

C1, such that

(5-1) unnn ≥−C ′ on ∂M.

Proof. We consider this lemma for S satisfying condition (S1) or (S2), respectively.

(i) Suppose S satisfy (S1). Then Sαn = S(∂/∂xα, ∂/∂xn)= 0 on the boundary ∂M .
By the boundary condition un = 0 and the Lemma 2.2, we have V [u]αn = Sαn = 0.
Applying an argument of Lemma 13 in [Chen 2009], we know that

(5-2) Fαn(V [u])= 0.

Also by Lemma 2.2, we calculate that

(5-3) V [u]αβ,n = θ̄unnngαβ + θ̄uγ γ ngαβ − uαβn + 2auαnuβ + anuαuβ
+ 2buαnuαgαβ + 2bunnungαβ + bn|∇u|2gαβ + Sαβ,n

= θ̄unnngαβ + anuαuβ + bn|∇u|2gαβ + Sαβ,n
≤ θ̄unnngαβ +C,

where the constant C depends only on |∇a|, |∇b|,C1, g and |∇S|.
Similarly, we have

(5-4) V [u]nnn = θ̄uγ γ n + θ̄unnn − unnn + anu2
n + 2aununn + 2buαnuα
+ 2bununn + bn|∇u|2+ Snn,n

≤ θ̄unnn − unnn +C.
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By differentiating (1-6) along the normal direction the on boundary, using (5-2)–
(5-4), we have

∇n8= FnnV [u]nnn + FαβV [u]αβn

≤ Fnn(θ̄unnn − unnn)+ θ̄unnn Fαβgαβ +CT

=−Fnnunnn + θ̄unnnT+CT,

where we have used gαn = 0 and gnn = 1. Since T> 1, we have

0≤−Fnnunnn + (θ̄unnn +C)T,(5-5)

where C also depends on |∇8|.
If θ̄unnn +C > 0, we get unnn >−C/θ̄ , which implies (5-1). If θ̄unnn +C < 0,

by Fnn < T we have

0≤−Fnnunnn + (θ̄unnn +C)Fnn
= ((θ̄ − 1)unnn +C)Fnn.

Since Fnn > 0, we have

(5-6) (θ̄ − 1)unnn +C ≥ 0.

Note that θ̄ − 1= ε0 > 0; then (5-6) implies (5-1).

(ii) Suppose S = Aτg. For any x0 ∈ ∂M , using the metric ḡ in Lemma 2.3, we
consider a metric ĝ = e2v ḡ such that u = ū+ v is a solution of (1-6). Now,

(5-7) V [u]i j = θ̄4ūgi j + θ̄4vgi j − ūi j − vi j + a(ūi ū j + ūiv j + vi ū j + viv j )

+ b(|∇ū|2+ 2〈∇ū,∇v〉+ |∇v|2)gi j + (Aτg)i j .

By (1-3), we have

(5-8) (Aτḡ)i j = θ̄4ūgi j − ūi j + ūi ū j +
(n− 2)θ̄ − 1

2
|∇ū|2gi j + (Aτg)i j .

Substituting (5-8) into (5-7), we obtain

V [u]i j = θ̄4vgi j − vi j + a(ūiv j + vi ū j + viv j )+ (a− 1)ūi ū j

+ b(2〈∇ū,∇v〉+ |∇v|2)gi j +

(
b−

(n− 2)θ̄ − 1
2

)
|∇ū|2gi j + (Aτḡ)i j .
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Since ḡ = e2ūg, we have

(5-9) V [u]i j = θ̄4̄vḡi j −∇
2
i jv+ θ̄ ḡsl(0k

sl(ḡ)−0
k
sl(g))vk ḡi j

− (0k
i j (ḡ)−0

k
i j (g))vk + a(ūiv j + vi ū j + viv j )

+ (a− 1)ūi ū j + b(2〈∇ū,∇v〉ḡ + |∇v|2ḡ)ḡi j

+

(
b−

(n− 2)θ̄ − 1
2

)
|∇ū|2ḡ ḡi j + (Aτḡ)i j .

Denote V [v]i j := V [u]i j . Then (1-6) becomes

(5-10)

{
F(V [v])=8(x, ū+ v) in M,
∂v

∂n
= 0 on ∂M.

By the boundary condition un = 0, ūn = 0 and Lemma 2.2, we have

(5-11) unα = 0, uαβn = 0, ūnα = 0, ūαβn = 0.

Therefore vn = 0, vnα = 0 and vαβn = 0 on ∂M . Since ḡαn = e2ūgαn = 0, we have

V [v]αn =−∇
2
αnv− (0

δ
αn(ḡ)−0

δ
αn(g0))vδ + (A

τ
ḡ)αn.

It follows from (2-2) and the boundary condition un = 0 that

(5-12) 0δαn(ḡ)= 0
δ
αn(g)= 0, 0n

αβ = 0
n
αβ = 0, 0n

nn = 0
n
nn = 0.

Then

(5-13) ∇
2
αnv = vαn = 0 and ∇n∇

2
αβv = vαβn = 0.

By Lemma 2.3, we get

(Aτḡ)αn(x0)=−
1

n− 2

(
Rαn −

τ R
2(n− 1)

ḡαn

)
= 0.

Hence, V [v]αn(x0)= 0. Then

Fαn(V [v])= 0.

Now differentiating (5-10) along the normal direction and taking its value at x0,
we have

(5-14) ∇n8(x, ū+ v)= FnnV nnn + FαβV αβn.

Since ḡi j,n = ḡi j
,n = 0, by (5-11)–(5-13), we have

V [v]αβn

= θ̄vnnn ḡαβ − (0δαβ(ḡ)−0
δ
αβ(g)),nvδ + θ̄ ḡsl(0δsl(ḡ)−0

δ
sl(g)),nvδ ḡαβ + (A

τ
ḡ)αβ,n.
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Since ∂M is totally geodesic, using Fermi coordinates, we have on ∂M

0δαβ(g),n = 0
δ
αβ(g),n = 0

(see [He and Sheng 2013]). By Lemma 2.3 again,

Rn(x0)= ḡαβRαβ,n(x0)+ ḡαn Rαn,n(x0)+ ḡnn Rnn,n(x0)= 0.

Therefore

(Aτḡ)αβ,n(x0)=−
1

n− 2

(
Rαβ,n −

τ Rn

2(n− 1)
ḡαβ

)
(x0)= 0.

Hence, we obtain

(5-15) V [v]αβn(x0)= θ̄vnnn ḡαβ .

Similarly, we have

(5-16) V [v]nnn(x0)= θ̄vnnn ḡnn(x0)− vnnn(x0).

Denote T= F i j (V [v])ḡi j ≥ 1. Plugging (5-15) and (5-16) into (5-14), we obtain

(5-17) 0≤ C + θ̄vnnn(x0)T− Fnnvnnn(x0)≤ (C + θ̄vnnn(x0))T− Fnnvnnn(x0).

If C + θ̄vnnn(x0)≥ 0, then we have vnnn(x0)≥−C/θ̄ , which implies that

unnn(x0)≥ ūnnn(x0)−
C
θ̄
>−C ′.

If C + θ̄vnnn(x0) < 0, then by (5-17) we have

0≤ (C + (θ̄ − 1)vnnn(x0))Fnn.

Since Fnn > 0 and θ̄ > 1, we have vnnn(x0)≥−C/(θ̄ − 1), which also implies the
lower bound of unnn(x0). �

Proposition 5.2. Let u be a C4 solution of (1-6) on B+r . Then there is a positive
constant C2 depending only on n, k, θ̄ , r, g, |S|C2(B+r ), |8|C2(B+r )×[−C0,C0]

, |a|C2(B+r ),
|b|C2(B+r ), and C1, such that

(5-18) sup
B+r/2

|∇
2u|g ≤ C2.

Proof. We control the bound of 4u at first. Since V [u] ∈ 0 ⊂ 01, we have

0≤ tr(V [u])= (nθ̄ − 1)4u+ (a+ nb)|∇u|2+ tr S,

which implies that 4u has a lower bound by Proposition 4.4. We may assume
4u > 0.
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Consider the auxiliary function

G := ηexn (4u+m|∇u|2),

where η satisfies (4-1) and (4-2), and m is a larger constant to be fixed. We may
assume r = 1, and

K := 4u+m|∇u|2� 1.

Step 1. We may assume G attains its maximum at an interior point x0 ∈ B+r . If
x0 ∈6r , by Lemmas 2.2 and 5.1 we have

Gn(x0)= K + unnn + uγ γ n + 2muαnuα + 2munnun > K −C ′.

If K −C ′ ≤ 0, we then get the bound of 4u. If K −C ′ > 0, it contradicts with the
maximum of G at the boundary point x0.

Step 2. We must get an upper bound for 4u. By step 1, the maximum point x0 of
G is an interior point in B+r . Then at x0 we have

Gi = 0 and Gi j ≤ 0,

that is,

(5-19) ulli + 2mululi = Ki =−

(
ηi

η
+ δin

)
K ,

and

0≥ Gi j = ηexn

{(
ηi j

η
−
ηiη j

η2

)
K +

(
ηi

η
+ δin

)
K j + Ki j

}
.

Substituting (5-19) into the inequality above, by the definition of η in (4-1), we
have

0≥ Gi j = ηexn (Ki j +3i j K ),

where

3i j =
ηi j

η
− 2

ηiη j

η2 −
1
η
(ηiδ jn + η jδin)− δinδ jn ≥−

C
η
δi j ,

and C depends only on b0. Then we have

(5-20) 0≥ e−xn P i j Gi j ≥ ηP i j Ki j −C K T.

Note that

(5-21) Ki j = ulli j + 2muli ul j + 2mululi j .

By Ricci identities, we have

|ui jl − uli j | ≤ C and |ui jll − ulli j | ≤ C(|∇2u| + 1).
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Then we have

(5-22) P i j Ki j ≥ P i j ui jll + 2m P i j uli ul j + 2mul P i j ui jl −C(|∇2u| + 1)T.

By (4-10), we have

(5-23) 2mul P i j ui jl

= 2mul∇l8− F i j (alui u j + 2auilu j + Si j ,l )− (bl |∇u|2+ 2bulsus)T

≥−C(|∇2u| + 1)T,

since∇ll8=8xx+28xzul+8zull≥−C+8z4u≥−C(|∇2u|+1). Differentiating
the equation (1-6) twice, using the concavity of F , we have

(5-24) P i j ui jll ≥ ∇ll8− F i j (allui u j + 4aluilu j + 2auillu j + 2auilu jl + Si j ,ll )

− (bll |∇u|2+ 4blulsus + 2busllus + 2b|∇2u|2)T

≥−2aF i j uillu j − 2aF i j uilu jl − 2busllulT

− 2b|∇2u|2T−C(|∇2u| + 1)T.

By Ricci identities again, and (5-19) and (5-24), we get

(5-25) P i j ui jll ≥−2aF i j uilu jl − 2b|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T.

Now, plugging (5-23) and (5-25) into (5-22), and choosing

m >max
{

2|a|L∞,
4
ε0
(θ̄ |a|L∞ + |b|L∞)

}
,

we obtain

(5-26) P i j Ki j

≥−2aF i j uilu jl − 2b|∇2u|2T+ 2m P i j uli ul j −
C
η1/2 (|∇

2u| + 1)T

= 2(m+ a)P i j uli ul j − 2(aθ̄ + b)|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2
(
(m− |a|L∞)ε0− (θ̄ |a|L∞ + |b|L∞)

)
|∇

2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2
(

mε0

2
− (θ̄ |a|L∞ + |b|L∞)

)
|∇

2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥
mε0

2
|∇

2u|2T−
C
η1/2 (|∇

2u| + 1)T.

It follows from (5-20) and (5-26) that

η2 mε0

2
|∇

2u|2T≤ C(|∇2u| + 1)T,
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which implies that η|∇2u| ≤ C .

Step 3. We get the Hessian bound of u. As in [Chen 2009], we consider the
maximum of

G = η(x)exn (∇2u+mdu⊗ du)

over the set (x, ξ) ∈ (B+r ,Sn). Let G attain its maximum at some point x0 and the
direction ξ ∈ Tx0 M ∩Sn . Denote Kξ = uξξ +mu2

ξ . We may assume Kξ � C ′ > 0,
where C ′ is the one in Lemma 5.1.

Now, we can also show that x0 does not belong to the boundary. Suppose x0 ∈6r .
If ξ is a tangential vector, without loss of generality we may assume ξ = ∂/∂x1.
By Lemma 2.2, we have on the boundary that

(ηexn (u11+mu2
1))n = ηexn ((u11+mu2

1)+ u11n + 2mu1u1n)

≥ u11+mu2
1 = K1 > 0

Therefore, we get a contradiction. If ξ is in the normal direction, by Lemma 2.2
and Lemma 5.1, we also have

(ηexn (unn +mu2
n))n = ηexn ((unn +mu2

n)+ unnn + 2mununn)

≥ unn −C ′ = Kn −C ′ > 0.

Thus x0 must be an interior point. By similar calculations as before, we can get the
Hessian bounds. We omit the details here. �

Remark 5.3. Let Br and Br/2 be two local geodesic balls in the interior of M , and
G = η(4u +m|∇u|2). The same calculations in steps 2 and 3 yield the interior
Hessian estimates for (1-6).

Therefore we have the following global estimates.

Proposition 5.4. Let u be a C4 solution of (1-6) on M. Then there is a positive
constant C2 depending only on n, k, θ̄ , g, a, b, 8, S and C1, such that

sup
M
|∇

2u|g ≤ C2.

6. Proof of Theorem 1.2

We use the continuity method to prove the existence of (1-6). Since the argument is
standard (see [Li and Sheng 2011]), we only sketch it here.

For t ∈ [0, 1], consider the equation

(6-1t ) F
(
g−1(θ̄4ug−∇2u+ a(x)du⊗ du+ b(x)|∇u|2g+ St)

)
=8t(x, u),

where
St = t S+

1− t
F(e)

g and 8t(x, u)= (1− t)e2u
+ t8(x, u).
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Clearly, St and 8t satisfy the following conditions:

• St ∈ 0 and |St |C4(M) ≤ C , where the constant C is independent of t .

• St satisfies (S1) or St = t Aτg when t 6= 0 and S0 =
1

F(e)
g as long as S satisfies

(S1) or (S2).

• 8t(x, u) > 0, ∂z8t > 0, lim
z→+∞

8t(x, z)→+∞, and lim
z→−∞

8t(x, z)→ 0.

• |8t |C2(M×[−C,C]) ≤ C , where C is independent of t .

It follows from Sections 3, 4 and 5 that for each t , the admissible solution of
(6-1t ) has uniform a priori C2 estimates (independent of t). Then we obtain the
uniform C2,α estimates by Evans–Krylov theory [Krylov 1985]. Define

I = {t ∈ [0, 1] | (6-1t ) has admissible solution}.

Clearly, u ≡ 0 is the unique admissible solution of (6.10). Hence, I 6= ∅. By
Lemma 3.1, I ⊂ [0, 1] is open. By the uniform a priori C2,α estimates and the
standard degree theory, we conclude that I is also closed. Then for t = 1, (1-6) is
solvable. �

7. Proof of Theorem 1.3

Before proving Theorem 1.3, we first calculate a priori estimates for (1-9).

Proposition 7.1. Suppose T ∈ 0 and the positive function 8(x, z) ∈ C∞(M)×R

satisfy (1-8). Then there exists a constant C0 only depending on T and 8, such that
any solution u ∈ C2(M) of (1-9) satisfies

sup
M
|u| ≤ C0.

The proof is similar to that of Proposition 3.2. We omit it here.

Proposition 7.2. Suppose u is a C3 solution of (1-9) on B+r . Then there is a positive
constant C depending only on n, k, θ, g, r , |T |C1(B+r ), |8|C1(B+r )×[−C0,C0]

, |a|C1(B+r ),
|b|C1(B+r ) and C0, such that

sup
B+r/2

|∇u|g ≤ C.

Proof. Consider the auxiliary functions

G := 1
2ηeβ |∇u|2, β := xn +ψ(u).
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Then G can not attain its maximum at a boundary point x0 ∈ 6r by the same
arguments in the proof of Proposition 4.1. Since the maximum point x0 is an
interior point, we can also get (4-5)–(4-7). Now, the difference from the proof of
Proposition 4.1 is that we replace the operator P i j in (4-8) by the operator

(7-1) Qi j
:= F i j

+ θTgi j .

Then by similar calculations as in (4-9)–(4-16), we obtain

(7-2) 0≥ C∗+ψ ′Qi j ui j + (ψ
′′
−ψ ′2)Qi j ui u j + 2aψ ′Qi j ui u j

+ 2bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T.

Since

ψ ′Qi j ui j = ψ
′F i j Wi j −ψ

′F i j (aui u j + b|∇u|2gi j + Ti j )(7-3)

≥ ψ ′8− aψ ′F i j ui u j − bψ ′|∇u|2−CT.

Substituting (7-3) into (7-2), we get

(7-4) 0≥ C∗+ψ ′8+ (ψ ′′−ψ ′2)Qi j ui u j + aψ ′F i j ui u j

+ bψ ′|∇u|2T−
C
√
η
(|∇u| + 1)T

= C∗+ψ ′8+ (ψ ′′−ψ ′2+ aψ ′)F i j ui u j

+ (θ(ψ ′′−ψ ′2)+ bψ ′)|∇u|2T−
C
√
η
(|∇u| + 1)T.

By the similar argument as in Claim 4.2, we know that there exist positive constants
α1, α2 and p depending only on θ , C0, |a|L∞(M) and |b|L∞(M), such that

ψ ′ > 0, ψ ′′−ψ ′2− |a|L∞ψ ′ > 0, θ(ψ ′′−ψ ′2)− |b|ψ ′ ≥ ε2 > 0,

where the constant ε2 only depends on α1, α2 and p. Then we have

(7-5) 0≥ C∗+ ε2|∇u|2T−
C
√
η
(|∇u| + 1)T.

Then multiplying by η2 both sides of the inequality above and T>1, we have

ε2η
2
|∇u|2T≤ C |∇u|T+C∗,

which implies the gradient estimates. �

To get the boundary Hessian estimates, we first prove the following:
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Lemma 7.3. Let u be a C4 solution of (1-9). Then there is a positive constant C ′

depending only on n, k, θ, g, |T |C1(B+r ), |a|C1(B+r ), |b|C1(B+r ), |8|C1(B+r )×[−C0,C0]
and

C1 such that on ∂M , we have
unnn ≥−C ′.

Proof. (i) Let T satisfy the condition (S1). Then Tαn = 0 on the boundary. Hence
W [u]αn = Tαn = 0. Therefore Fαn(W [u]) = 0. By the similar calculations in
Lemma 5.1, we have

(7-6) W [u]αβ,n ≤ θunnngαβ +C

and

(7-7) W [u]nnn ≤ unnn + θunnn +C,

where the constants C depend on n, k, g, |T |C1(B+r ), |a|C1(B+r ), |b|C1(B+r ) and C1.
Now, differentiating (1-9) along the normal direction and taking the value on the

boundary, we have

∇n8= FnnW [u]nnn + FαβW [u]αβn(7-8)

≤ Fnn(unnn + θunnn)+ θunnn Fαβgαβ +CT

= Fnnunnn + θunnnT+CT,

that is,

(7-9) 0≤ Fnnunnn + θunnnT+CT= Fnnunnn + (θunnn +C)T,

where the constant C also depends on |8|C1(B+r )×[−C0,C0].

If θunnn+C ≥ 0, then we get unnn ≥−C/θ . If θunnn+C < 0, by Fnn <T and
(7-9), we have

0≤ Fnnunnn + (θunnn +C)Fnn
= ((θ + 1)unnn +C)Fnn.

Since Fnn > 0, we get
(θ + 1)unnn +C ≥ 0.

Note θ > 0. Then we obtain unnn ≥−C ′ again.

(ii) Suppose T =−Aτg . Using the metric ḡ in Lemma 2.3, we consider a new metric
ǧ = e2w ḡ such that u = ū+w is a solution of (1-9). Then similar to the calculation
in the proof of Lemma 5.1, we have

W [u]i j = θ4̄wḡi j +∇
2
i jw+ θ̄ ḡsl(0k

sl(ḡ)−0
k
sl(g))wk ḡi j + (0

k
i j (ḡ)−0

k
i j (g))wk

+ (a− 1)ūi ū j + a(ūiw j +wi ū j +wiw j )+ b
(
2〈∇ū,∇w〉ḡ + |∇w|2ḡ

)
ḡi j

+

(
b−

1+ (n− 2)θ
2

)
|∇u|2ḡ ḡi j − (Aτḡ)i j .
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Denote W [w]i j :=W [u]i j . Now, (1-9) becomes

(7-10)

{
F(W [w])=8(x, ū+w) in M,
∂w

∂n
= 0 on ∂M.

By Lemma 2.3, we find (Aτḡ)αn(x0) = 0. Then we have W [w]αn(x0) = 0 by
Lemma 2.2 and (5-11)–(5-13), which implies Fαn(W [w]) = 0. By Lemma 2.2
again, we obtain

W [w]αβn(x0)= θwnnn ḡαβ(x0),

and
W [w]nnn(x0)= θwnnn ḡnn(x0)+wnnn(x0).

Then by differentiating (7-10) along the normal direction and taking its value at x0,
we have

0≤ FnnW nnn + FαβW αβn +C

≤ Fnnwnnn(x0)+ (θwnnn(x0)+C)T.

If θwnnn(x0) + C ≥ 0, we have unnn(x0) ≥ −C ′ immediately. Now consider
θwnnn(x0)+C < 0. Since T> Fnn > 0, we have

0< Fnnwnnn(x0)+ (θwnnn(x0)+C)Fnn
≤ ((θ + 1)wnnn(x0)+C)Fnn.

Hence, we must have wnnn(x0)≥−C/(θ + 1). Therefore, unnn(x0)≥−C ′. �

Proposition 7.4. Let u be a C4 solution of (1-9) on B+r . Then there is a positive con-
stant C2 depending only on n, k, θ, g, r , |T |C2(B+r ), |8|C2(B+r )×[−C0,C0]

, |a|C2(B+r ),
|b|C2(B+r ) and C1 such that

sup
B+r/2

|∇
2u|g ≤ C2.

Proof. We first estimate the bound of 4u. By W [u] ∈ 0+k ⊂ 01, we have

0≤ tr(W [u])= (nθ + 1)4u+ (a+ nb)|∇u|2+ tr T,

which implies that 4u has lower bound. Hence, we may assume 4u > 0.
Consider the same auxiliary function in Proposition 5.2

G := ηeqxn (4u+m|∇u|2),

where η satisfies (4-1) and (4-2), m is a larger constant to be fixed. We may assume
r = 1 and K := 4u+m|∇u|2� 1.

Step 1. We show the maximum of G must be attained at an interior point of B+r . If
the maximum point x0 of G belong to 6r , then by Lemma 2.2, Lemma 7.3 and the
same calculations in Proposition 5.2, we know that Gn(x0) > 0. It is a contradiction.
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Step 2. We must get an upper bound for 4u. Since the maximum point of G is an
interior point of B+r by step 1. Then at the maximum point x0, we can get similar
inequalities as in (5-19)–(5-24) by replacing P i j by Qi j . Corresponding to (5-26),
for m >max{|a|L∞(M), (|b|L∞(M)+ ε3)/θ}, ε3 > 0, we obtain

(7-11) Qi j Ki j

≥−2aF i j uilu jl − 2b|∇2u|2T+ 2m Qi j uli ul j −
C
η1/2 (|∇

2u| + 1)T

= 2(m− a)F i j uli ul j + 2(mθ − b)|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2(m− |a|L∞)F i j uli ul j + 2(mθ − |b|L∞)|∇2u|2T−
C
η1/2 (|∇

2u| + 1)T

≥ 2ε3|∇
2u|2T−

C
η1/2 (|∇

2u| + 1)T.

It follows from (5-20) for Qi j and (7-11) that 2η2ε3|∇
2u|2T ≤ C(|∇2u| + 1)T,

which implies that η|∇2u| ≤ C . �

Step 3. By Lemma 7.3 and the same argument in the step 3 of the proof of
Proposition 5.2, we can get the Hessian estimates of u.

Remark 7.5. We can also get the interior gradient and Hessian estimates for the
solutions of (1-9) by the same arguments in Remarks 4.3 and 5.3.

Proof of Theorem 1.3. Since the operator Qi j in (7-1) is positive, by the argument
in Section 3, we know that (1-9) is elliptic at any admissible solutions and its
linearized operator is invertible as ∂z8> 0. Combining Propositions 7.1, 7.2, 7.4
and Remark 7.5, we can obtain

(7-12) |u|C2(M) ≤ C,

where the constant C depends only on n, k, θ, g, S, 8, a and b. By the global
a priori C2 estimates (7-12), we can prove Theorem 1.3 by a same argument in
Section 6. �
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Let G be a connected reductive algebraic group defined over a number
field k. In this paper, we introduce the Ryshkov domain R for the arith-
metical minimum function mQ defined from a height function associated to
a maximal k-parabolic subgroup Q of G . The domain R is a Q.k/-invariant
subset of the adele group G.A/. We show that a fundamental domain � for
Q.k/nR yields a fundamental domain for G.k/nG.A/. We also see that any
local maximum of mQ is attained on the boundary of �.

Introduction

Let Pn be the cone of positive definite n by n real symmetric matrices, and let
m.A/ be the arithmetical minimum min0¤x2Zn

txAx of A 2 Pn. The function
f WA 7!m.A/=.detA/1=n on Pn is called the Hermite invariant. Since the maximum
of f gives the Hermite constant 
n for dimension n, the determination of local
maxima of f is a fundamental problem of lattice sphere packings in Euclidean
spaces and the arithmetic theory of quadratic forms. Voronoi’s theorem [1908,
Théorème 17] states that f attains a local maximum at a point A if and only
if A is perfect and eutactic. Moreover, perfect forms play an essential role in
Voronoi’s reduction theory of Pn with respect to the action of GLn.Z/ (see, e.g.,
[Martinet 2003] and [Schürmann 2009]). Ryshkov [1970] introduced a locally finite
polyhedron R.m/ in Pn defined by the condition m.A/ � 1. It is not difficult to
show that A is perfect with m.A/D 1 if and only if A is a vertex of the boundary
of R.m/. In particular, any local maximum of the Hermite invariant f is attained
on the boundary of R.m/. In this sense, we can say that the Ryshkov polyhedron
R.m/ is well matched with f .

Let G be a connected isotropic reductive algebraic group defined over a number
field k, and let Q be a maximal k-parabolic subgroup of G. In previous papers
[Watanabe 2000; 2003], we investigated a constant 
 .G;Q; k/ as a generalization
of Hermite’s constant 
n. Precisely, the constant 
 .G;Q; k/ is defined to be

MSC2010: primary 11H55; secondary 11F06, 22E40.
Keywords: reduction theory, fundamental domain, Hermite constant.
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the maximum of the function mQ.g/Dminx2Q.k/nG.k/HQ.xg/ on G.k/nG.A/1,
where HQ denotes the height function associated to Q. To prove the existence of
the maximum of mQ, we used Borel and Harish-Chandra’s reduction theory for the
adele group G.A/ with respect to G.k/. However, a Siegel set in G.A/ is not well
matched with mQ in a sense that one cannot obtain any information on locations of
extreme points of mQ in a Siegel set.

The purpose of this paper is to construct a fundamental domain of G.A/1 with
respect to G.k/ which is well matched with mQ. We first consider an analog of
the Ryshkov polyhedron. We set XQ.g/D fx 2Q.k/nG.k/ WmQ.g/DHQ.xg/g
for a given g 2G.A/1. This is a finite subset of Q.k/nG.k/ and is regarded as an
analog of the set of minimal vectors of a positive definite real quadratic form. We
define the domain R.mQ/ as follows:

R.mQ/D fg 2G.A/
1
W Ne 2XQ.g/g;

where Ne denotes the trivial class Q.k/ in Q.k/nG.k/. The set R.mQ/ is a left Q.k/-
invariant closed set with nonempty interior. The interior of R.mQ/ is just a subset
R1 consisting of g 2 R.mQ/ such that XQ.g/ is the one-point set f Neg. We denote
by R�1 the closure of R1 in G.A/1. Both R1 and R�1 are also left Q.k/-invariant. By
Baer and Levi’s theorem [1931, Satz 7], there exists an open fundamental domain
�Q of R�1 with respect to Q.k/, that is, �Q is a relatively open subset of R�1
satisfying

� Q.k/��Q D R�1 , where ��Q denotes the closure of �Q in R�1 , and

� 
�Q \�
�
Q D∅ for any 
 2Q.k/ n feg.

Let �ıQ denote the interior of �Q in G.A/1. Then our main theorem is stated as
follows:

Theorem. The set �ıQ is an open fundamental domain of G.A/1 with respect to
G.k/. Any local maximum of mQ is attained on the intersection of the boundary of
�ıQ and the boundary of R�1 .

If we denote by rG the k-rank of the commutator subgroup of G, then G has
rG standard maximal k-parabolic subgroups. Since �Q depends on Q, we obtain
rG different kinds of fundamental domains of G.A/1 with respect to G.k/. The
method to construct �Q may be viewed as a generalization of the highest point
method (see [Grenier 1988] and [Terras 1988, §4,4]). For example, let k D Q,
G D GLn and Q be a standard maximal Q-parabolic subgroup such that QnG
is a projective space. Then our construction gives a fundamental domain �Q
whose Archimedean part is isomorphic with Grenier’s fundamental domain. If we
choose another standard maximal Q-parabolic subgroup of GLn as Q, then the
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Archimedean part of �Q yields a new kind of fundamental domain of Pn with
respect to GLn.Z/ (see Example 3 in Section 7).

Notation. For a given ring A, the set of all n by k matrices with entries in A is
denoted by Mn;k.A/. We write Mn.A/ for Mn;n.A/. The transpose of a given
matrix a 2Mn;k.A/ is denoted by ta. In this paper, k denotes an algebraic number
field of finite degree over Q and o the ring of integers of k. The sets of all infinite
and finite places of k are denoted by p1 and pf , respectively. For � 2 p1 [ pf ,
k� denotes the completion of k at � . For � 2 pf , o� denotes the closure of o in
k� . The étale R-algebra k1 D k˝Q R is identified with

Q
�2p1

k� . Let A and A�

denote the adele ring and the idèle group of k, respectively. The idèle norm of A�

is denoted by j � jA.

1. Height functions

Let G be a connected affine algebraic group defined over k. For any k-algebra
A, G.A/ stands for the set of A-rational points of G. Let X�.G/k be the free
Z-module consisting of all k-rational characters of G. For each g 2 G.A/, we
define the homomorphism #G.g/ W X

�.G/k! R>0 by #G.g/.�/ D j�.g/jA for
� 2X�.G/k. Then #G is a homomorphism from G.A/ into HomZ.X

�.G/k;R>0/.
We write G.A/1 for the kernel of #G .

In the following, let G be a connected isotropic reductive group defined over k.
We fix a maximal k-split torus S of G and a minimal k-parabolic subgroup P0 of G
containing S . Denote by ˆk and �k the relative root system of G with respect to S
and the set of simple roots of ˆk corresponding to P0, respectively. Let M0 be the
centralizer of S in G. Then P0 has a Levi decomposition P0 DM0U0, where U0
is the unipotent radical of P0. A k-parabolic subgroup of G containing P0 is called
a standard k-parabolic subgroup of G. Every standard k-parabolic subgroup R of
G has a unique Levi subgroup MR containing M0. We denote by UR the unipotent
radical of R and by ZR the greatest central k-split torus in MR. Throughout this
paper, we fix a maximal compact subgroup K D

Q
�2p1

K� �
Q
�2pf

K� of G.A/
satisfying the following property: for every standard k-parabolic subgroup R of G,
K \MR.A/ is a maximal compact subgroup of MR.A/, and MR.A/ possesses an
Iwasawa decomposition .MR.A/\U0.A//M0.A/.K \MR.A//.

Let Q be a standard proper maximal k-parabolic subgroup of G. There is only
one simple root ˛0 2�k such that the restriction of ˛0 to ZQ is nontrivial. Let nQ
be the positive integer such that n�1Q ˛0jZQ

is a Z-basis of X�.ZQ=ZG/k. We write
˛Q for n�1Q ˛0jZQ

and y̨Q for ydQn�1Q ˛0jZQ
, where

ydQ D ŒX
�.ZQ=ZG/k WX

�.MQ=ZG/k�:

Then y̨Q is a Z-basis of the submodule X�.MQ=ZG/k of X�.ZQ=ZG/k. Define



240 TAKAO WATANABE

the map zQ WG.A/!ZG.A/MQ.A/
1nMQ.A/ by zQ.g/DZG.A/MQ.A/

1m if
g D umh with u 2 UQ.A/, m 2MQ.A/ and h 2K. This is well defined and left
ZG.A/Q.A/

1-invariant. Since ZG.A/1 DZG.A/\G.A/1 �MQ.A/
1, zQ gives

rise to a map from YQ DQ.A/
1nG.A/1 to MQ.A/

1n.MQ.A/\G.A/
1/. Namely,

we have the following commutative diagram, whose vertical arrows are natural
maps:

YQ
zQ

����! MQ.A/
1n.MQ.A/\G.A/

1/??y ??y
ZG.A/Q.A/

1nG.A/
zQ

����! ZG.A/MQ.A/
1nMQ.A/:

We define the height function HQ WG.A/!R>0 by HQ.g/D jy̨Q.zQ.g//j�1A for
g 2 G.A/. We notice that the restriction of HQ to MQ.A/ is a homomorphism
from MQ.A/ onto R>0.

Example 1. Let G be a general linear group GLn defined over the rational number
field Q, P0 the group of upper triangular matrices in G and S the group of diagonal
matrices in G. We fix an integer k 2 f1; : : : ; n� 1g, and let

Q.Q/D

��
a b

0 d

�
W a 2 GLk.Q/; b 2Mk;n�k.Q/; d 2 GLn�k.Q/

�
:

Then Q is a standard maximal Q-parabolic subgroup of G. The rational character
y̨Q and the height HQ are given by

y̨Q

��
a 0

0 d

��
D .det a/.n�k/=r.det d/�k=r

and

HQ

��
a 0

0 d

��
D jdet aj�.n�k/=rA jdet d jk=rA ;

where r denotes the greatest common divisor of k and n� k. The height HQ has
another expression. To explain this, let Qn be an n-dimensional column vector
space over Q with standard basis e1; : : : ; en. The maximal parabolic subgroup
Q.Q/ stabilizes the subspace spanned by e1; : : : ; ek . Let Vn;k.Q/ D

Vk
Qn be

the k-th exterior product of Qn. We set Vn;k.A/D Vn;k.Q/˝Q A and Vn;k.Q� /D

Vn;k.Q/˝Q Q� for � 2 p1[pf . A Q-basis of Vn;k.Q/ is formed by the elements
eI D ei1 ^ � � � ^ eik

with I D fi1 < i2 < � � � < ikg � f1; : : : ; ng. For a unique
infinite place12 p1, we define the local height H1 W Vn;k.Q1/! R>0 by

H1

�X
I

aIeI

�
D

�X
I

jaI j
2
1

�1=2
;
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where j � j1 denotes the usual absolute value of Q1 D R. For each finite prime
p 2 pf , we define the local height Hp W Vn;k.Qp/! R>0 by

Hp

�X
I

aIeI

�
D sup

I

jaI jp;

where j � jp denotes the p-adic absolute value of Qp normalized so that jpjp Dp�1.
Then the global height Hn;k W Vn;k.Q/! R>0 is defined to be a product of all
local heights, that is, Hn;k.x/D

Q
�2p1[pf

H� .x/ for x 2 Vn;k.Q/. This Hn;k
is immediately extended to the subset GL.Vn;k.A//Vn;k.Q/ of the adele space
Vn;k.A/ by

Hn;k.Ax/D
Y

�2p1[pf

H� .A�x/

for A D .A� / 2 GL.Vn;k.A// and x 2 Vn;k.Q/. In particular, for g 2 G.A/ D
GLn.A/, we can take the valueHn;k.ge1^ge2^ � � � ^ge

k
/. We choose a maximal

compact subgroup K1 of G.Q1/ as
˚
g 2G.Q1/ W

tg�1 D g
	
. Let

Kf D
Y
p2pf

GLn.Zp/ and K DK1 �Kf :

Then, by elementary computations, we have

Hn;k.ge1 ^ge2 ^ � � � ^gek/D jdet ajA if g D h
�
a b

0 d

�
with h 2 K, a 2 GLk.A/, b 2 Mk;n�k.A/ and d 2 GLn�k.A/. Therefore, if
g 2G.A/1, that is, jdetgjA D 1, then

HQ.g/DHn;k
�
g�1e1 ^g

�1e2 ^ � � � ^g
�1ek

�n=r
:

2. Twisted height functions restricted to one parameter subgroups

Let NG.S/ be the normalizer of S in G and WG D NG.S/.k/=M0.k/ the Weyl
group of G with respect to S . For a simple root ˛ 2 �k, s˛ 2 WG denotes the
simple reflection corresponding to ˛. Then fs˛g˛2�k

generates WG . We denote
by W Q

G the subgroup of WG generated by fs˛g˛2�knf˛0g
. For each w 2WG , we

use the same notation w for a representative of w in NG.S/.k/. The following
cell decomposition of G.k/ holds via Bruhat decomposition [Borel and Tits 1965,
Proposition 4.10, Corollaire 5.20]:

G.k/D
G

Œw�2W
Q

G nWG=W
Q

G

Q.k/wQ.k/;

where Œw� stands for the class W Q
G wW

Q
G in W Q

G nWG=W
Q
G .
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The Weyl group WG acts on X�.S/k by w �� W t 7! �
�
w�1tw

�
for w 2WG and

� 2X�.S/k. We consider the restriction y̨QjS of the rational character y̨Q of MQ

to S .

Lemma 1. The subgroup of WG fixing y̨QjS is equal to W Q
G .

Proof. Put W 0D fw 2WG W w � y̨QjS D y̨QjSg. Since a representative of w 2W Q
G

is contained in MQ.k/, we have y̨Q.w�1tw/D y̨Q.w/�1 y̨Q.t/y̨Q.w/D y̨Q.t/
for all t 2 S . Hence W Q

G is contained in W 0. By [Humphreys 1990, §1.12 Theorem
(a) and (c)] , W 0 is generated by a subset W 0 \ fs˛g˛2�k

of simple reflections.
From W

Q
G � W

0, it follows fs˛g˛2�knf˛0g
� W 0 \ fs˛g˛2�k

� fs˛g˛2�k
. Since

y̨Q is nontrivial on S=ZG , W 0 \ fs˛g˛2�k
must equal fs˛g˛2�knf˛0g

. Therefore
W 0 coincides with W Q

G . �

Let X�.S/k be the free Z-module consisting of all k-rational cocharacters of S .
A natural pairing

h � ; � i WX�.S/k �X�.S/k! Z

defined as in [Borel 1991, §8.6] is a regular pairing over Z.

Lemma 2. Letw1 andw2 be elements ofWG such thatw�11 W
Q
G ¤w

�1
2 W

Q
G . Then

there exist a cocharacter � D �w1;w2
2X�.S/k such that

HQ
�
w1�.�/w

�1
1

�
>HQ

�
w2�.�/w

�1
2

�
holds for all � 2 A�>1, where A�>1 denotes the set of � 2 A� satisfying j�jA > 1.

Proof. Since w�11 � y̨QjS �w
�1
2 � y̨QjS ¤ 0 by Lemma 1, there is a � 2X�.S/k such

that hw�11 � y̨QjS �w
�1
2 � y̨QjS ; �i<0. The value `Dhw�11 � y̨QjS �w

�1
2 � y̨QjS ; �i

is a negative integer. We have

y̨Q.w1�.�/w
�1
1 / � y̨Q.w2�.�/w

�1
2 /�1 D �`

for all � 2Gm. Therefore,

HQ.w1�.�/w
�1
1 /HQ.w2�.�/w

�1
2 /�1 D j�j�`A > 1

holds for all � 2 A�>1. �

3. The Hermite function associated to Q and minimal points

We set XQ DQ.k/nG.k/, which is regarded as a subset of YQ DQ.A/1nG.A/1.
Let �X W G.k/! XQ be the natural quotient map. The symbol Ne D �X .e/ 2 XQ
denotes the class of the unit element e 2G.k/. The Hermite function

mQ WG.A/
1
! R>0
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is defined to be
mQ.g/D min

x2XQ

HQ.xg/:

By definition, mQ is a positive valued continuous function on G.k/nG.A/1=K.
For each g 2G.A/1, we put

XQ.g/D fx 2XQ WmQ.g/DHQ.xg/g;

which is a finite subset of XQ. Thus we can define the counting function nQ.g/D

#XQ.g/.

Lemma 3. For any g 2 G.A/1, 
 2 G.k/ and h 2 K, one has XQ.
gh/ D
XQ.g/


�1. Especially, the counting function nQ is left G.k/-invariant and right
K-invariant.

The following lemma is proved by the same method as in [Watanabe 2012, Proof
of Proposition 4.1].

Lemma 4. For g 2 G.A/1, there is a neighborhood U of g in G.A/1 such that
XQ.g

0/�XQ.g/ for all g0 2U.

Example 2. LetG be a general linear group GLn defined over Q. We keep notations
used in Example 1. In this case, we can express mQ in terms of some minimum
of positive definite symmetric matrices. Since GLn =Q is of class number one,
G.A/1 D fg 2 GLn.A/ W jdetgjA D 1g has the following decomposition:

G.A/1 DG.Q/.G.Q1/
1
�Kf /;

where G.Q1/1 D fg 2 GLn.Q1/ W detg D˙1g and Kf D
Q
p2pf

GLn.Zp/. We
fix g D ı.g1 �gf / 2G.A/1 with ı 2G.Q/, g1 2G.Q1/1 and gf 2Kf . From
the left G.Q/-invariance and the right K-invariance of mQ, it follows that

mQ.g/DmQ.g1/D min
x2XQ

HQ.xg1/D min

2G.Q/

HQ.
g1/:

Furthermore, since G.Q/DQ.Q/GLn.Z/ andHQ is leftQ.Q/-invariant, we have

mQ.g/D min

2GLn.Z/

HQ.
g1/:

An elementary proof of the decomposition G.Q/ D Q.Q/GLn.Z/ is found in
[Shimura 1994, Theorem 3]. By Example 1,

HQ.
g1/DHn;k
�
g�11 
�1e1^ � � � ^g

�1
1 
�1ek

�n=r
DH1

�
g�11 
�1e1^ � � � ^g

�1
1 
�1ek

�n=r Q
p2pf

Hp
�

�1e1^ � � � ^


�1ek
�n=r

DH1
�
g�11 
�1e1^ � � � ^g

�1
1 
�1ek

�n=r
:
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Here we notice that Hp.
�1e1^ � � � ^

�1e

k
/D 1 for all p 2 pf and 
 2GLn.Z/.

For a given 
 2 GLn.Z/, X
 stands for the n by k matrix consisting of the first k
columns of 
 . Binet’s formula (see [Bombieri and Gubler 2006, Proposition 2.8.8])
yields

H1
�
g�11 
�1e1 ^ � � � ^g

�1
1 
�1ek

�
D det

�
tX
�1

tg�11 g�11 X
�1

�1=2
:

As a consequence, we obtain

mQ.g/D min
X2Mn;k.Z/�

det
�
tX tg�11 g�11 X

�n=2r
;

where Mn;k.Z/
� denotes the set of X
 for all 
 2 GLn.Z/. In the case of k D 1,

Mn;1.Z/
� is just the set of primitive vectors of the lattice Zn, and hence mQ.g/

coincides with the n=2 power of the arithmetical minimum of the positive definite
symmetric matrix tg�11 g�11 .

4. The Ryshkov domain of G associated to Q

We define the Ryshkov domain RD R.mQ/ of mQ by

RD R.mQ/D
˚
g 2G.A/1 WmQ.g/=HQ.g/� 1

	
:

Since mQ.g/�HQ.g/ holds for all g 2G.A/1, we have

RD
˚
g 2G.A/1 WmQ.g/DHQ.g/

	
D
˚
g 2G.A/1 W Ne 2XQ.g/

	
:

Since both HQ and mQ are continuous, R is a closed subset in G.A/1.

Lemma 5. One has Q.k/RK D R and G.A/1 DG.k/R.

Proof. The first assertion is obvious by the definition of HQ. To prove the second
assertion, we choose a minimal point x 2XQ.g/ for a given g 2G.A/1. There is
a 
 2G.k/ such that x D �X .
 /. Then HQ.xg/DHQ.
g/DmQ.g/DmQ.
g/

since mQ is left G.k/-invariant. Therefore, 
g 2 R. �

Lemma 6. Let C be an arbitrary subset of G.A/1, and let g2G.A/1 and 
 2G.k/.

(1) 
g 2 R if and only if �X .
 / 2XQ.g/.

(2) XQ.g/D �X .f
 2G.k/ W 
g 2 Rg/.

(3) 
C � R if and only if �X .
 / 2
T
g2C XQ.g/.

(4)
T
g2RXQ.g/D fNeg.

(5) 
R� R if and only if 
 2Q.k/.
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Proof. By definition, 
g2R if and only if mQ.
g/DHQ.
g/. This is equivalent to
�X .
 / 2XQ.g/ because mQ.
g/DmQ.g/. Both (2) and (3) follow from (1). For
a point xD�X .
 /2

T
g2RXQ.g/, we have 
Q.k/R�R; in other words, xQ.k/�T

g2RXQ.g/. Since xQ.k/ is an infinite set for x ¤ Ne by Bruhat decomposition,
we must have x D Ne. This shows (4). Item (5) follows from (3) and (4). �

Lemma 7. Let g0 2 R be an element such that nQ.g0/ > 1 and x0 an arbitrary
element in XQ.g0/. Then, any neighborhood U of g0 in G.A/1 contains a point g
such that XQ.g/�XQ.g0/ and x0 62XQ.g/.

Proof. We may assume U satisfies XQ.g/� XQ.g0/ for all g 2U by Lemma 4.
Since nQ.g0/ > 1, there is an x 2XQ.g0/ such that x ¤ Ne. This x is of the form
�X .w
 / with w 2WG nW

Q
G and 
 2Q.k/. By Lemma 2, there is a cocharacter

� D �w;e 2X�.S/k such that HQ
�
w�.�/w�1

�
>HQ.�.�// holds for all � 2 A�>1.

Let � 2 A� be an element sufficiently close to 1 so that g� D 
�1�.�/
g0 is
contained in U. We have

HQ.g�/DHQ.�.�/
g0/DHQ.�.�//HQ.
g0/

DHQ.�.�//HQ.g0/DHQ.�.�//mQ.g0/

and

HQ.xg�/DHQ.w�.�/
g0/DHQ.w�.�/w
�1/HQ.w
g0/

DHQ.w�.�/w
�1/mQ.g0/:

If x0 D Ne, then we choose � sufficiently close to 1 satisfying ��1 2 A�>1. Since
XQ.g�/�XQ.g0/ and mQ.g�/�HQ.xg�/<HQ.g�/, XQ.g�/ does not contain
Ne. If x0 ¤ Ne, then we choose x as x0 and � 2 A�>1 sufficiently close to 1. Since
mQ.g�/�HQ.g�/ < HQ.x0g�/, XQ.g�/ does not contain x0. �

Lemma 8. ming2G.A/1 nQ.g/Dming2R nQ.g/D 1.

Proof. From Lemma 5 and the G.k/-invariance of nQ, it follows that

min
g2G.A/1

nQ.g/Dmin
g2R

nQ.g/:

If g0 2 R satisfies ming2R nQ.g/D nQ.g0/ > 1, then by Lemmas 5 and 7, there
exist a point g1 2G.A/1 and 
1 2G.k/ such that nQ.
1g1/D nQ.g1/ < nQ.g0/

and 
1g1 2 R. This is a contradiction. �

We define the subset R1 of R by

R1 D fg 2 R W nQ.g/D 1g D
˚
g 2G.A/1 WXQ.g/D fNeg

	
:

Lemma 9. R1 coincides with the interior Rı of R in G.A/1.
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Proof. For g 2 R1, we choose a neighborhood U of g in G.A/1 as in Lemma 4.
Then U � R1. Therefore, R1 is open and is contained in Rı. If there exists an
element g0 2 Rı such that nQ.g0/ > 1, then, by Lemma 7, Rı contains an element
g satisfying Ne 62XQ.g/. This contradicts g 2 R. �

It is obvious that G.k/R1 D
˚
g 2G.A/1 W nQ.g/D 1

	
.

Lemma 10. G.k/R1 is open and dense in G.A/1.

Proof. Since R1 is open inG.A/1, so isG.k/R1. We assumeG.A/1nG.k/R1 has an
interior point g0. Let U be a neighborhood of g0 in G.A/1 so that U\G.k/R1D∅.
By Lemma 5, we can take 
0 2 G.k/ such that 
0g0 2 R. Since nQ.
0g0/ D

nQ.g0/ > 1, by Lemmas 5 and 7, there exist g1 2 
0U and 
1 2 G.k/ such that
nQ.g1/ < nQ.g0/ and 
1g1 2 R. If nQ.g1/ > 1, then there exist g2 2 
1
0U and

2 2G.k/ such that nQ.g2/ < nQ.g1/ and 
2g2 2R. This process terminates after
finitely many iterations. At the last step, we obtain an element g` 2 
`�1 � � � 
0U

such that nQ.g`/D 1. Then .

`�1
� � � 
0/

�1g` is contained in U\G.k/R1. This
contradicts U \G.k/R1 D ∅. Therefore, G.A/1 nG.k/R1 is nowhere dense in
G.A/1. �

Lemma 11. For 
 2G.k/, R1\ 
R¤∅ if and only if 
 2Q.k/.

Proof. If R1\
R has an element g, then �X .
�1/2XQ.g/DfNeg by Lemma 6. �

Lemma 12. Let R�1 be the closure of R1. Then we have the following subdivision
of G.A/1:

G.A/1 D
[


Q.k/2G.k/=Q.k/


R�1 :

Proof. We fix an arbitrary g 2 G.A/1. By Lemma 10, there exists a sequence
fgng �G.k/R1 such that limn!1 gn D g. We take a neighborhood U of g as in
Lemma 4 and may assume that fgng � U. Since gn 2 G.k/R1, XQ.gn/ consists
of a single element �X .
n/, where 
n 2 G.k/. From gn 2 U, it follows that
�X .
n/ 2XQ.g/ for all n. Since XQ.g/ is a finite set, we can take a subsequence
fgnj
g such that �X .
nj

/D �X .
 / 2XQ.g/ for all nj . Then fgnj
g � 
�1R1, and

g is contained in the closure of 
�1R1. �

For g 2G.A/1, we put

SQ.g/D �X .f
 2G.k/ W 
g 2 R
�
1 g/:

By Lemmas 6 and 12, SQ.g/ is a nonempty subset of XQ.g/.

Lemma 13. For g0 2G.A/1, there is a neighborhood U of g0 in G.A/1 such that
SQ.g/� SQ.g0/ for all g 2U.
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Proof. Let U be a neighborhood of g0 such that XQ.g/� XQ.g0/ for all g 2U.
Since g0 62 
�1R�1 for any �X .
 / 2XQ.g0/ nSQ.g0/, we can take a sufficiently
small U so that U\ 
�1R�1 D∅ for all �X .
 / 2XQ.g0/ nSQ.g0/. Then, for any
g 2U, SQ.g/\XQ.g0/ nSQ.g0/ is empty; that is, SQ.g/� SQ.g0/. �

Remark. We do not know whether R�1 D R holds or not in general. If it does, then
SQ.g/DXQ.g/ holds for all g.

5. A fundamental domain of G.A/1 with respect to G.k/

Definition. Let T be a locally compact Hausdorff space and � be a discrete group
acting on T from the left. Assume that the action of� on T is properly discontinuous.
An open subset � of T is called an open fundamental domain of T with respect to
� if � satisfies the following conditions:

(1) T D ���, where �� stands for the closure of � in T , and

(2) �\ 
�� D∅ if 
 2 � n feg.

A subset F of T is called a fundamental domain of T with respect to � if there is
an open fundamental domain � as above such that �� F���.

By Baer and Levi’s theorem [1931] (see also [van der Waerden 1935, §10]),
an open fundamental domain of T with respect to � exists if the set of points
stabilized by some nontrivial element of � is discrete in T . Thus there exists an
open fundamental domain �Q of R�1 with respect to Q.k/. For a given subset A
of R�1 , Aı and A� denote the interior and the closure of A in G.A/1, respectively.
Since R�1 is closed in G.A/1, the closure of A in R�1 coincides with A�.

Lemma 14. Let �Q be an open fundamental domain of R�1 with respect to Q.k/.
Then one has �ıQ D�Q \R1 and ��Q D .�Q \R1/

�.

Proof. Since�Q is an open set in R�1 with respect to the relative topology, there is an
open set U inG.A/1 such that�QDR�1 \U. Therefore,�Q\R1DU\R1 is open
in G.A/1, and hence �ıQD�Q\R1. Since R1 is dense in R�1 and �Q is relatively
open in R�1 , the closure of �Q\R1 in R�1 contains �Q, that is, �Q � .�Q\R1/�.
Hence ��Q D .�Q \R1/

�. �

Theorem 15. Let �Q be an open fundamental domain of R�1 with respect to Q.k/.
Then �ıQ is an open fundamental domain of G.A/1 with respect to G.k/.

Proof. From R�1 D Q.k/�
�
Q and Lemma 12, it follows G.A/1 D G.k/��Q. For


 2 G.k/, we assume �ıQ \ 
�
�
Q ¤ ∅. By Lemma 11, 
 is contained in Q.k/.

Since �Q is an open fundamental domain of R�1 with respect to Q.k/, 
 must be
equal to e. �

For a given subset A of G.A/1, we denote by @A the boundary of A.
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Lemma 16. If g0 2 R�1 attains a local maximum of mQ, then g0 is in @R�1 .

Proof. Suppose g0 2 R1. Since R1 is open, zg0 is contained in R1 if z 2ZQ.A/ is
sufficiently close to e. Then

mQ.zg0/DHQ.zg0/DHQ.z/HQ.g0/DHQ.z/mQ.g0/:

Since HQ.z/ can vary on the interval .1� �; 1C �/ for a sufficiently small � > 0,
mQ.g0/ is not a local maximum of mQ. �

Since .��Q/
ı D �ıQ � R1, the following theorem immediately follows from

Lemma 16.

Theorem 17. Let �Q be the same as in Theorem 15. If g0 2��Q attains a local
maximum of mQ, then g0 is in @��Q \ @R

�
1 .

Remark. A point g0 2G.A/1 is said to be extreme if g0 attains a local maximum
of mQ. By Theorem 17, any extreme point is contained in G.k/.@��Q \ @R

�
1 /. A

candidate of the notion analogous to perfect quadratic forms is the following: a
point g 2G.A/1 is said to be Q-perfect if there is a neighborhood U of g such that

U\
\

�X .ı/2SQ.g/

ı�1R�1 D fgg:

6. The case when G is of class number one

We put Kf D
Q
�2pf

K� , GA;1 D G.k1/ �Kf , G1A;1 D GA;1 \G.A/
1 and

Go DG.k/\GA;1. By identifying G.k1/ with the subgroup

f.g� / 2G.A/ W g� D e for all � 2 pf g

of G.A/, we put G.k1/1 DG.k1/\G.A/1. The number nk.G/ of double cosets
in G.A/ modulo G.k/ and GA;1 is called the class number of G. For example,
nk.GLn/ is equal to the class number of k. If G is almost k-simple, k-isotropic
and simply connected, then nk.G/D 1 by the strong approximation theorem. In
this section, we assume that nk.G/ D 1. Then G.A/1 D G.k/G1A;1. Let hQ
be the number of double cosets of G.k/ modulo Q.k/ and Go. By [Borel 1963,
Proposition 7.5], hQ is equal to the class number ofMQ. Let f�1D e; �2; : : : ; �hQ

g

be a complete system of representatives of Q.k/nG.k/=Go. For each �i , we define

R�i ;1 D
˚
g1 2G.k1/

1
WmQ.g1/DHQ.�ig1/

	
:

Since G.k/ is a disjoint union of Q.k/�iGo for i D 1; : : : ; hQ, mQ.g1/ equals

min
1�i�hQ

min
ı2Go

HQ.�iıg1/:
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Lemma 18. RD

hQG
iD1

Q.k/�i .R�i ;1 �Kf /:

Proof. For each i , Q.k/�i .R�i ;1 �Kf /� R is trivial. Since

G.A/1 D

hQG
iD1

Q.k/�iG
1
A;1

by [Borel 1963, §7], a given g 2 R is represented as g D 
 �i .g1 �gf / for some
i , 
 2 Q.k/ and g1 � gf 2 G1A;1. Then mQ.g/ D HQ.g/ implies mQ.g1/ D

HQ.�ig1/. Therefore, g1 2 R�i ;1. �

We write Qi for the conjugate ��1i Q�i of Q. This Qi is a maximal k-parabolic
subgroup of G. We put Qi;o DQi .k/\GA;1.

Lemma 19. If g.R�i ;1 �Kf /\ .R�i ;1 �Kf / is nonempty for g 2 Qi .k/, then
g 2Qi;o.

Proof. If there is an h 2 R�i ;1 �Kf such that gh 2 R�i ;1 �Kf , then

g 2 .R�i ;1 �Kf /h
�1
�GA;1: �

It is easy to prove that the groupQi;o stabilizes R�i ;1�Kf by left multiplication.
We fix a complete system f
ij gj of representatives of Qi .k/=Qi;o. It follows from
Lemma 19 that 
ij .R�i ;1 �Kf /\ 
ik.R�i ;1 �Kf /D∅ if j ¤ k. Therefore, we
obtain the following subdivision of R:

(1) RD

hQG
iD1

G
j

�i
ij .R�i ;1 �Kf /:

Let Rı
�i ;1

be the interior of R�i ;1 and R�
�i ;1

the closure of Rı
�i ;1

inG.k1/1. Since
the union of (1) is disjoint, it is obvious that

(2) R�1 D

hQG
iD1

G
j

�i
ij .R
�
�i ;1
�Kf /:

Proposition 20. Let �i;1 be an open fundamental domain of R�
�i ;1

with respect
to Qi;o for i D 1; : : : ; hQ. Then the set

�D

hQG
iD1

�i .�i;1 �Kf /

gives an open fundamental domain of R�1 with respect to Q.k/.
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Proof. Let ��i;1 denote the closure of �i;1 in G.k1/1. For g 2Q.k/, we assume
�\g�� ¤∅. Then, for some i; j ,

(3) �i .�i;1 �Kf /\g�j .�
�
j;1 �Kf /¤∅:

There exist 

jk

and ı 2Qj;o such that ��1j g�j D 
jkı. Then (3) is the same as

�i .�i;1 �Kf /\ �j 
jk.ı�
�
j;1 �Kf /¤∅:

By (1), we have i D j , 

jk
D e and �j;1 \ ı��j;1 ¤ ∅. Since �j;1 is an

open fundamental domain of R�
�j ;1

with respect to Qj;o, ı must be equal to e.
Therefore, �\g�� ¤∅ implies g D e. Finally, Q.k/�� D R�1 follows from (2)
and Qi;o��i;1 D R�

�i ;1
. �

By Theorem 17, we obtain the following.

Corollary 21. If g0 2�� attains a local maximum of mQ, then g0 is contained in
the set

hQG
iD1

�i
�
.@��i;1\ @R

�
�i ;1

/�Kf
�
:

We consider the infinite part �1 of � given in Proposition 20, that is,

�1 D

hQ[
iD1

�i�i;1:

Let�ı1 and��1 be the interior and the closure of�1 inG.k1/1, respectively. The
projection from G.A/1 DG.k/G1A;1 to the infinite component G.k1/1 gives an
isomorphism G.k/nG.A/1=Kf ŠGonG.k1/

1. Since � is a fundamental domain
of G.A/1 with respect to G.k/ by Theorem 15, we have Go�

�
1 DG.k1/

1.

Corollary 22. If hQ D 1, then �1 is a fundamental domain of G.k1/1 with
respect to Go.

Proof. Since �1 D �1;1 is a relatively open set in R�e;1, we have �ı1 D
�1\Rıe;1. Thus the closure of �ı1 coincides with ��1. If �ı1\g�

�
1 ¤∅ for

g 2Go, then .�ı1 �Kf /\ g.�
�
1 �Kf /¤∅ because gKf DKf . This implies

g D e since �ı1 �Kf is an open fundamental domain of G.A/1 with respect to
G.k/. �

7. Examples

Example 3. Let G be a general linear group GLn defined over Q. We continue an
illustration given in Examples 1 and 2. We fix an integer k 2 f1; : : : ; n� 1g, and
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let

Q.Q/D

��
a b

0 d

�
W a 2 GLk.Q/; b 2Mk;n�k.Q/; d 2 GLn�k.Q/

�
:

Since hQ D 1, we have �1 D e and Q1 DQ.
Let Pn be the cone of positive definite n by n real symmetric matrices, and

let P1n be the intersection of Pn and SLn.R/. The group G.Q1/D GLn.R/ acts
on Pn from the right by .A; g/ 7! AŒg� D tgAg for .A; g/ 2 Pn �G.Q1/. The
maximal compact subgroup K1 of G.Q1/, defined as in Example 2, stabilizes the
identity matrix In 2 Pn. The map � W g 7! tg�1g�1 from G.Q1/ onto Pn gives
an isomorphism between G.Q1/=K1 and Pn. Since

G.Q1/
1
D fg 2G.Q1/ W detg D˙1g;

we have G.Q1/1=K1 Š �.G.Q1/1/D P1n. An element A 2 Pn is written as

AD

�
Ik 0
tu In�k

��
v 0

0 w

��
Ik u

0 In�k

�
;

where v 2 Pk , w 2 Pn�k and u 2Mk;n�k.R/. We write uA, AŒk� and AŒn�k� for u,
v and w, respectively.

By definition, GZ DG.Q/\GA;1 and QZ DQ.Q/\GA;1 are just the groups
GLn.Z/ and Q.Q/\GLn.Z/ of unimodular integral matrices in G.Q/ and Q.Q/,
respectively. As in Example 2, X
 stands for the n by k matrix consisting of the
first k-columns of 
 2GZ, and Mn;k.Z/

� stands for the set of X
 for all 
 2GZ.
We define the closed subset Fn;k of Pn as follows:

Fn;k D
˚
A 2 Pn W detAŒk� � det. tXAX/ for allX 2Mn;k.Z/

�
	
:

In Example 2, we showed

HQ.
g/D det
�
tX
�1�.g/X
�1

�n=2r
for any 
 2GZ and g 2G.Q1/1. Since HQ.g/D

�
det�.g/Œk�

�n=2r , we obtain

Re;1=K1 Š �.Re;1/D Fn;k \SLn.R/:

Therefore, QZnRe;1=K1 is isomorphic to .Fn;k \SLn.R//=QZ. If 
 2QZ is of
the form


 D

�
a b

0 d

�
with a 2 GLk.Z/, d 2 GLn�k.Z/ and b 2Mk;n�k.Z/, then components of t
A

for A 2 Pn are given by

u t
A
 D a
�1.uAd C b/;

�
t
A


�Œk�
D

taAŒk�a;
�
t
A


�
Œn�k�

D
tdAŒn�k�d:
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Let D and E be arbitrary fundamental domains for the quotients Pk=GLk.Z/ and
Pn�k=GLn�k.Z/, respectively. We define the subset Fn;k.D;E/ of Fn;k as

Fn;k.D;E/D fA 2 Fn;k W A
Œk�
2D; AŒn�k� 2 E;

uA D .uij /; �
1
2
� uij �

1
2

for all i; j; and 0� u11g:

Since Fn;k.D;E/ is a fundamental domain of Fn;k with respect to QZ, the inverse
image ��1.Fn;k.D;E/\ SLn.R// of Fn;k.D;E/\ SLn.R/ gives a fundamental
domain of Re;1 with respect to QZ. As a consequence of Theorem 15 and
Proposition 20, the set

��1.Fn;k.D;E/\SLn.R//�Kf

gives a fundamental domain of G.A/1 with respect to G.Q/. Moreover, from
Corollary 22, it follows that Fn;k.D;E/ is a fundamental domain of Pn with respect
to GLn.Z/.

In the case of kD 1, this gives an inductive construction of a fundamental domain
�n of Pn with respect to GLn.Z/ as follows. First, put �2D F2;1.P1;P1/. By def-
inition, �2 is Minkowski’s fundamental domain of P2. Then we define inductively
�3 D F3;1.P1; �2/; : : : ; �n D Fn;1.P1; �n�1/. The domain �n coincides with
Grenier’s fundamental domain [1988].

Finally, we show that, in the case of k D 1, Re;1=K1 corresponds to a face of
the Ryshkov polyhedron R.m/D

˚
A 2 Pn W m.A/D min0¤x2Zn

txAx � 1
	
. For

A 2 Pn, let S.A/ denote the set of minimal integral vectors of A:

S.A/D fx 2 Zn Wm.A/D txAxg:

We take e1 D
t.1; 0; : : : ; 0/ 2 Zn. It is obvious that the subset fA 2 Pn W e1 2

S.A/g of Pn coincides with Fn;1. As was shown in [Watanabe 2012, Lemma 1.5],
Ffe1g

D Fn;1 \ @R.m/ D fA 2 Fn;1 W m.A/ D 1g is a face of R.m/. It is easy to
see that the map A 7!m.A/�1A gives a bijection from Fn;1\SLn.R/ onto Ffe1g

.
Therefore, Re;1=K1 Š �.Re;1/ corresponds to Ffe1g

.

Example 4. Let k be a totally real number field of degree r and nD 2m be an even
integer. We consider a symplectic group

G.k/D Spn.k/D
�
g 2 GL2m.k/ W tg

�
0 �Im
Im 0

�
g D

�
0 �Im
Im 0

��
:

For a fixed k 2 f1; 2; : : : ; mg, let Q denote the maximal parabolic subgroup of G
given by

Q.k/D U.k/M.k/;
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where

M.k/D

8̂̂<̂
:̂ı.a; b/D

0BB@
a 0 0 0

0 b11 0 b12
0 0 ta�1 0

0 b21 0 b22

1CCA W a 2 GLk.k/;
b D .bij / 2 Sp2.m�k/.k/

9>>=>>; ;

U.k/D

8̂̂<̂
:̂
0BB@
Ik � � �

0 Im�k � 0

0 0 Ik 0

0 0 � Im�k

1CCA 2G.k/
9>>=>>; :

The module of k-rational characters X�.M/k of M is a free Z-module of rank 1
generated by the character

y̨Q.ı.a; b//D det a:

The height HQ W G.A/! R>0 is given by HQ.g/ D jdet aj�1A if g D uı.a; b/h
with u 2 U.A/, ı.a; b/ 2M.A/ and h 2K.

We restrict ourselves to the case k Dm. An element of M.A/ is denoted by

ı.a/D

�
a 0

0 ta�1

�
; a 2 GLm.A/:

Let
Hm D

˚
Z 2Mm.C/ W

tZ DZ; ImZ 2 Pm
	

be the Siegel upper half space and Hrm the direct product of r copies of Hm. For
ZD .Z� /�2p1 2H

r
m, ReZ, ImZ and detZ stand for .ReZ� /�2p1 , .ImZ� /�2p1

and .detZ� /�2p1 , respectively. The group G.k1/ acts transitively on Hrm by

ghZi D
�
.a�Z� C b� /.c�Z� C d� /

�1
�
�2p1

for Z D .Z� / 2 Hrm and

g D .g� /D

�
a� b�
c� d�

�
�2p1

2G.k1/:

The stabilizer K1 of Z0 D .
p
�1Im; : : : ;

p
�1Im/ 2 H

r
m in G.k1/ is a maximal

compact subgroup of G.k1/. We choose K as K1 �
Q
�2pf

Spn.o� /. The map
� W g1 7! ghZ0i from G.k1/ onto Hrm gives an isomorphism G.k1/=K1 Š Hrm,
and hence G.k/nG.A/=K Š GonH

r
m. Since Im

˚
.uı.a/h/hZ0i

	
D a ta holds for

u 2 U.k1/, a 2 GLm.k1/ and h 2K1, we have

HQ.g1/D Nrk1=R.det Imfg1hZ0ig/�1=2 D
� Y
�2p1

det Im
˚
g�
˝p
�1Im

˛	��1=2
for any g1 D .g� / 2G.k1/, where Nrk1=R denotes the norm of k1 over R.
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The class number hQ of M Š GLm defined over k is equal to the class number
hk of k. We assume hk D 1 for simplicity. Then G.k/ D Q.k/Go and G.A/ D
Q.k/GA;1, and hence

mQ.g1/D min

2Go

HQ.
g1/:

Since

Nrk1=R.det Imf
 hZig/D
Y
�2p1

jdet.�.c/Z� C �.d//j�2Nrk1=R.det ImZ/

for Z D .Z� / 2 Hrm and


 D
�
� �

c d

�
2Go D Spn.o/;

the condition mQ.g1/DHQ.g1/ of g1 is equivalent with the following condition
of Z D g1hZ0i:Y

�2p1

jdet.�.c/Z� C �.d//j � 1 for all
�
� �

c d

�
2Go:

Therefore, the domain Re;1 modulo K1 is isomorphic to

FD

(
.Z� / 2 H

r
m W

Y
�2p1

jdet.�.c/Z� C �.d//j � 1 for all
�
� �

c d

�
2Go

)
:

Let C be an arbitrary fundamental domain of the additive group Mm.k1/ with
respect to Mm.o/, and let D be an arbitrary fundamental domain of Prm with respect
to GLm.o/. It is easy to see that

F.C;D/D fZ 2 F W ReZ 2 C; ImZ 2Dg

is a fundamental domain of F with respect to Qo. By Corollary 22, F.C;D/ is a
fundamental domain of Hrm with respect to Go.

If k D Q and D is Minkowski’s fundamental domain, then F.C;D/ coincides
with Siegel’s fundamental domain [1939].

Acknowledgments. The author would like to thank Professor Takahiro Hayata
for useful discussions.
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