
Pacific
Journal of
Mathematics

DISJOINTIFICATION INEQUALITIES IN SYMMETRIC
QUASI-BANACH SPACES AND THEIR APPLICATIONS

SERGEY ASTASHKIN, FEDOR A. SUKOCHEV AND DMITRIY ZANIN

Volume 270 No. 2 August 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 270, No. 2, 2014

dx.doi.org/10.2140/pjm.2014.270.257

DISJOINTIFICATION INEQUALITIES IN SYMMETRIC
QUASI-BANACH SPACES AND THEIR APPLICATIONS

SERGEY ASTASHKIN, FEDOR A. SUKOCHEV AND DMITRIY ZANIN

We demonstrate the relevance of the Prokhorov inequality to the study of
Khintchine-type inequalities in symmetric function spaces. Our main result
shows that the latter inequalities hold for a pair of quasi-Banach symmetric
function spaces X and Y if and only if the Kruglov operator K acts from X

to Y . We also obtain an extension of von Bahr–Esseen and Esseen–Janson
Lp-estimates for sums of independent mean zero random variables to the
class of quasi-Banach symmetric spaces. In particular, in contrast to the
well-known Esseen–Janson theorem, we do not assume that the summands
are equidistributed.

1. Introduction

The classical Khintchine inequality [1923] describes the span of independent
centered f˙1g-valued Bernoulli random variables in quasi-Banach Lp-spaces.
A particular case of the latter sequence is given by the Rademacher functions
rn.t/ WD sgn sin.2n� t/, t 2 Œ0; 1/, n � 1. In this case, for all p 2 .0;1/ the
sequence frng

1
nD1

in the Lp-spaces on the interval .0; 1/ (equipped with Lebesgue
measure m) is equivalent to the unit vector basis feng

1
nD1

of l2. A famous extension
of this inequality to a more general case of random variables was given later by
Marcinkiewicz and Zygmund (see [1937, Theorem 13, p. 87] and [1938, Theorem 5,
p. 109]): for every 1 � p <1 there are constants Ap > 0 and Bp > 0 such that
for any n 2 N and for an arbitrary sequence of independent mean zero random
variables .fk/k2N from Lp.0; 1/ we have

(1) Ap

� nX
kD1

f 2
k

�1=2
p

�

 nX
kD1

fk


p

� Bp

� nX
kD1

f 2
k

�1=2
p

:

In the special setting of Banach symmetric function spaces Johnson and Schecht-
man [1988] proved a far reaching generalization of the Marcinkiewicz–Zygmund
inequality (1). More precisely, they established that if such a space X is either
separable or has the Fatou property (for the relevant definitions see the following
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section) and the lower Boyd index of X is strictly positive, then (1) holds (even
for a more general case of martingale differences). Later on, Astashkin [2008]
showed that inequality (1) holds in a Banach symmetric space X if and only if
X satisfies the so-called Kruglov property. The latter property, introduced by
Braverman [1994], has its origin in a remarkable result due to Rosenthal [1970] that
for sequences ffng

1
nD1

of independent mean zero random variables in Lp.0; 1/,
p�2, the mapping fn!fn.t�nC1/�Œn�1;n/.t/, t 2R, extends to an isomorphism
between the closed linear span Œfn�

1
nD1

(taken in Lp.0; 1/) and the closed linear
span Œfn.t �nC 1/�Œn�1;n/�

1
nD1

(taken in Lp.0;1/\L2.0;1//. The main focus
of the present paper is to establish optimal conditions on a quasinormed symmetric
function space in which inequalities of the type (1) hold. Our techniques are
centered around the so-called Kruglov operator, a natural generalization of the
Kruglov property, which was introduced in [Astashkin and Sukochev 2005] (see
also [Astashkin and Sukochev 2010]). The usage of this operator allows us to
make a straightforward connection between sums of independent random variables
and their disjoint translates. Another major ingredient of our approach consists in
utilizing Prokhorov’s famous inequality [1959] (see also Theorem 17 below) which
allows us to treat the problem in the full generality.

Using our present method, we also provide a far-reaching extension of the well-
known von Bahr–Esseen and Esseen–Janson Lp-estimates for sums of independent
mean zero random variables (see [von Bahr and Esseen 1965] and [Esseen and
Janson 1985]). We extend inequalities of such type to the class of quasi-Banach
symmetric spaces, and, at the same time, we do not assume that the summands are
equally distributed (which is in strong contrast with Esseen and Janson’s approach
[1985, Theorem 4]). Note that earlier, Braverman [1994, § II.2] generalized the von
Bahr–Esseen inequality to (Banach) symmetric spaces with the Kruglov property.

2. Preliminaries

2.1. Quasi-Banach spaces. Let X be a linear space over the field of real numbers R.
A function k � kX WX ! R is called a quasinorm if the following conditions hold:

(a) kxCykX � C.kxkX CkykX / for every x;y 2X and some constant C > 0.

(b) kcxkX D jcj � kxkX for every x 2X and c 2 R.

(c) kxkX � 0. Moreover, kxkX D 0 if and only if x D 0.

The least of all constants C satisfying condition (a) above is called the modulus of
concavity of the quasinorm k � kX and is denoted by C.X /.

If X is a linear space over R and if k � kX W X ! R is a quasinorm, then
X D .X; k � kX / is called a quasinormed space. If every Cauchy sequence in a
quasinormed space X converges, then X is called a quasi-Banach space.
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For example, Lp.0; 1/ and Lp.0;1/, 0< p < 1, are quasi-Banach spaces with
modulus of concavity C.p/D C.Lp/D 21=p�1.

Recall that a quasinorm k � kX in X is said to be a p-norm, 0< p < 1, if for any
x1;x2 2X we have

kx1Cx2k
p
X
� kx1k

p
X
Ckx2k

p
X
:

By the Aoki–Rolewicz theorem [Kalton et al. 1984], for any quasinorm k � kX there
exists 0< p < 1 such that k � kX is a p-norm.

2.2. Symmetric function spaces. We are interested in those quasi-Banach spaces
which consist of Lebesgue-measurable functions either on .0; 1/ or on .0;1/.

For a Lebesgue-measurable, a.e. finite function x on .0; 1/ (or .0;1/) we define
its distribution function by

dx.s/ WDm.ft W x.t/ > sg/; s 2 R;

where m stands for Lebesgue measure. Let S.0; 1/ (respectively, S.0;1/) denote
the space of all Lebesgue-measurable functions x on .0; 1/ (respectively, on .0;1/
with djxj.s/ <1 for sufficiently large s).

Two measurable functions x and y are called equimeasurable (written x � y) if
their distribution functions dx and dy coincide. In particular, for every measurable
function x, the function jxj is equimeasurable with its decreasing rearrangement
x�, defined by the formula

x�.t/ WD inff� � 0 W djxj.�/ < tg; t > 0:

If x;y � 0, then x�D y� if and only if x and y are equimeasurable. We recall that
a function x is said to be symmetrically distributed if x and �x are equimeasurable.

As it is traditional in probability theory, we denote by �x the characteristic
function of an element x 2 S.0; 1/; that is, �x.t/ D

R 1
0 eitx.s/ ds. Recall that

functions x;y 2 S.0; 1/ are equimeasurable if and only if their characteristic
functions �x and �y coincide.

Definition 1. Let X � S.0; 1/ (or X � S.0;1/) be a quasi-Banach space.

(a) X is said to be a quasi-Banach function space if, from x 2X , y 2 S.0; 1/ (or
y 2 S.0;1/) and jyj � jxj, it follows that y 2X and kykX � kxkX .

(b) A quasi-Banach function space X is said to be symmetric if, for every x 2X

and any measurable function y, the assumption y� D x� implies that y 2X

and kykX D kxkX .

Without loss of generality, in what follows we assume that k�.0;1/kX D 1, where
�E denotes the indicator function of a Lebesgue measurable set E.
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The following assertion is well known in the Banach-space setting (see, for
instance, [Lindenstrauss and Tzafriri 1979, Proposition 1.d.2]). For the reader’s
convenience, we provide a short proof.

Lemma 2. Let X be a quasi-Banach function space. If 0 � x and y 2 X , then
k.xy/1=2kX � C.X /kxk

1=2
X
kyk

1=2
X

.

Proof. It is easy to see that

.xy/1=2 � 1
2
.�xC ��1y/; � > 0;

and, therefore,

k.xy/1=2kX �
C.X /

2
.�kxkX C �

�1
kykX /:

Taking the infimum over all � > 0, we infer

k.xy/1=2kX � C.X /kxk
1=2
X
kyk

1=2
X
: �

Let X be a quasi-Banach symmetric function space and let xn 2X , n 2 N, be
such that supn2N kxnkX <1 and xn! x almost everywhere. If, for every such
sequence, we have x 2X and kxkX � lim infn!1 kxnkX , then X is said to satisfy
the Fatou property.

Suppose that X is a separable quasi-Banach symmetric space on .0; 1/. Denote by
X the set of all x2S.0; 1/ such that lima!C1 k Œjxj �akX <1, where Œjxj �a WD jxj
if jxj< a and Œjxj �a WD 0 if jxj � a. The set X , equipped with the norm kxkX WD
lima!C1 k Œjxj �akX , becomes a quasi-Banach symmetric space with the Fatou
property. Moreover, X embeds isometrically into X . It can be easily checked that
for every quasi-Banach symmetric space X on .0; 1/ the continuous embedding
X � L1.0; 1/ holds. Then, the closure of L1.0; 1/ in X , denoted by X0, is
a separable quasi-Banach symmetric space with the norm k � kX whenever X ¤

L1.0; 1/.
If � > 0, the dilation operator �� is defined by setting ��x.s/D x.s=�/, s > 0,

in the case of the semiaxis. In the case of the interval .0; 1/, the operator �� is
defined by

��x.s/ WD

�
x.s=�/ if s �minf1; �g;
0 if � < s � 1:

Below we shall often consider the probability product space

.�;P/ WD

1Y
kD0

..0; 1/;mk/;

(mk is the Lebesgue measure on .0; 1/, k � 0/. Observe that in an arbitrary
symmetric space the norms of any two elements with identical distribution coincide.
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Hence, using a one-to-one measure-preserving transformation between measure
spaces .�;P/ and ..0; 1/;m/, we will identify an arbitrary measurable function
x.!/ D x.!0; !1; : : : ; !n; : : : / on .�;P/ with the corresponding element from
S.0; 1/. Since a particular form of the measure-preserving transformation used in
such identification is not important, we completely suppress it from the notations.
Thus, we will view the set � as .0; 1/ and any measurable function on .�;P/ as a
function from S.0; 1/ and vice versa. A reader interested in more details of such
identification is referred to [Astashkin and Sukochev 2010].

Let xk , k � 0, be elements from S.0; 1/ and let yk 2 S.0;1/, k � 0, be their
disjoint copies; that is, xk � yk for all k � 0, and ylym D 0 if l ¤ m. For the
function

P
k�0 yk , which is frequently called the disjoint sum of xk , k � 0, we

shall use the suggestive notation
L

k�0 xk . It is important to observe that the
distribution function of a disjoint sum

L
k�0 xk does not depend on the particular

choice of elements yk , k � 0. In the special case when
Pn

kD1 m.supp.xk// � 1,
n2N, it is convenient to view the sum

L
k�0 xk as a measurable function on .0; 1/.

The following useful construction was introduced in [Johnson et al. 1979] (see
also [Lindenstrauss and Tzafriri 1979, 2.f]). If X is a quasi-Banach symmetric
function space on .0; 1/ and 0<p�1, then the set Z

p
X

consists of all f 2S.0;1/

such that

kf kZp

X
WD kf ��.0;1/kX Ckminff �; f �.1/gkp <1:

It can be easily checked that the functional k � kZp

X
is a quasinorm on Z

p
X

.

2.3. Kruglov operator and Kruglov property. The Kruglov property was intro-
duced by Braverman [1994] when he compared sums of independent functions with
sums of their disjoint copies in (Banach) symmetric spaces. Such terminology stems
from related probabilistic constructions, due to Kruglov [1970], used in the study of
infinitely divisible distributions (e.g., in analysis of the classical Levy–Khintchine
formula).

Let x 2 S.0; 1/. By �.x/ we denote the random variable
PN

iD1 xi , where xi ,
i D 1; : : : ;N , are independent copies of x and N is a random variable having Pois-
son distribution with parameter 1 and independent with respect to the sequence fxig.

Definition 3. A quasi-Banach symmetric space X on .0; 1/ is said to have the
Kruglov property .X 2 K/ if from x 2X it follows that �.x/ 2X .

Simplifying the situation, the Kruglov property holds for spaces sufficiently
“remote” from the space L1.0; 1/. For example, if a symmetric Banach function
space X contains Lp.0; 1/ for some p<1, then X possesses the Kruglov property
(see, e.g., [Braverman 1994, Theorem 1.2] or [Astashkin and Sukochev 2010]). For
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a more precise characterization of various classes of (Banach) symmetric function
spaces possessing the Kruglov property, we refer the reader to [Astashkin and
Sukochev 2005; 2007; 2010; Braverman 1994].

Now, we recall the definition of the Kruglov operator, which can be viewed
as a natural generalization of the notion of the Kruglov property. Let fBng

1
nD0

be a fixed sequence of mutually disjoint measurable subsets of .0; 1/ such that
m.Bn/D 1=.en!/. Define the operator K W S.0; 1/! S.0; 1/ by setting

Kx.!/ WD

1X
nD1

nX
kD1

x.!k/�Bn
.!0/:

It is not difficult to see that

(2) �Kx.t/D ��.x/.t/D exp.�x.t/� 1/; t 2 R:

Therefore, by the definition of the Kruglov property, a quasi-Banach symmetric
function space X has the Kruglov property if and only if the operator K acts
boundedly in X . Though the following crucial theorem originated in [Astashkin and
Sukochev 2005], the first explicit statement (with a proof) appeared in [Astashkin
et al. 2011].

Theorem 4. If a sequence fxkg
n
kD1
� S.0; 1/, n 2 N, consists of disjointly sup-

ported functions, then the sequence fKxkg
n
kD1

consists of independent functions.

We will need also the following assertion, which is an immediate consequence
of [Astashkin and Sukochev 2010, Theorem 15].

Theorem 5. If X is a separable quasi-Banach symmetric space on .0; 1/ such that
K W X !X , then K W X !X and kKkX!X D kKkX!X .

3. Disjointification inequalities for positive functions

We will use the following approximation to the function Kx, where x is an arbitrary
measurable function on the interval .0; 1/. For every n 2 N define the operator
Hn W S.0; 1/! S.0; 1/ by the formula

(3) Hnx.!/ WD

nX
kD1

.�1=nx/.!k/:

The following result is well known (see the proof of Lemma 1.6 in [Braverman
1994] or of Theorem 22 in [Astashkin and Sukochev 2010]). However, we present
its proof for the reader’s convenience.

Lemma 6. The sequence of functions fHnxg1
nD1

converges to the function Kx in
distribution.
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Proof. It is not difficult to see that �Hnx D �
n
�1=nx . On the other hand,

��1=nx.t/D

Z 1

0

eit�1=nx.s/ ds D

�
1�

1

n

�
C

1

n
�x.t/:

Therefore, by (2), we obtain

�Hnx D

�
1C

�x � 1

n

�n

! exp.�x � 1/D �Kx :

Since the convergence of distributions follows from the convergence of characteristic
functions [Borovkov 1998, Theorem 6.2.1], the result follows. �

Theorem 7. Let X and Y be quasi-Banach symmetric spaces on .0; 1/ and let Y

have the Fatou property. Suppose that there exists a positive constant C > 0 such
that for every sequence of nonnegative independent functions fxkg

n
kD1
�X , n 2 N,

with
Pn

kD1 m.supp.xk//� 1, we have

(4)
 nX

kD1

xk


Y

� C �

 nM
kD1

xk


X

:

Then the operator K maps X into Y and kKkX!Y � C .
The assertion remains valid under the assumption that the inequality (4) holds

for X D Y , where X is a separable quasi-Banach symmetric space.

Proof. For every x 2 X , let us define xk.!/ D .�1=nx/.!k/, ! 2 �. It follows
from the definition of disjoint sum that

nM
kD1

xk � x for every n 2 N:

Therefore, applying (3) and (4), we obtain kHnxkF � CkxkE . Furthermore, by
Lemma 6, the sequence fHnxgn�1 converges to the function Kx in distribution
when n!1 and hence .Hnx/�! .Kx/� almost everywhere on .0; 1/. Since Y

has the Fatou property, it follows that Kx 2 Y and kKxkY � CkxkX .
Suppose now that X is a separable quasi-Banach symmetric space such that

(4) holds for every sequence of nonnegative independent functions fxkg
n
kD1
�X

such that
Pn

kD1 m.supp.xk// � 1, n 2 N. From the definition of the space X

(see Section 2), it follows that a similar inequality with the same constant C holds
also for every sequence of nonnegative independent functions fxkg

n
kD1
�X withPn

kD1 m.supp.xk// � 1, n 2 N. Therefore, since X has the Fatou property, by
the first part of theorem, we conclude that K W X ! X and kKkX!X � C . An
application of Theorem 5 completes the proof. �
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Our next purpose is to establish the main result of this section (Theorem 16),
which is in a sense converse to the assertion of the preceding theorem. The first
step in its proof is Proposition 9 below. We also need some preparatory results.

Lemma 8. For every positive x 2 S.0; 1/, we have �1=2x� � .Kx/�.

Proof. Let Bn, n � 1, be the sets from the definition of the Kruglov operator K.
Since the Bn are pairwise disjoint and

1X
nD1

m.Bn/D
e�1

e
>

1

2
;

we may select a measurable set B �
S

n�1 Bn such that m.B/D 1=2. It is clear
that .Kx/.!/� x.!1/�B.!0/ for every ! 2�. Since the function x.!1/�B.!0/

is equimeasurable with the function �1=2x�, the assertion follows immediately. �

Proposition 9. Suppose that the operator K maps boundedly X into Y , where
X and Y are quasi-Banach symmetric spaces on .0; 1/. If fxkg

n
kD1

, n 2 N, is a
sequence of independent functions from X and if

Pn
kD1 m.supp.xk//� 1, then nX

kD1

xk


Y

� 2C.Y /kKkX!Y

 nM
kD1

xk


X

:

Proof. Without loss of generality, it may be assumed that xk � 0, 1� k � n. Let
yk 2 S.0; 1/ be pairwise disjoint copies of xk , 1� k � n. By Theorem 4, the se-
quence fKykg

n
kD1

consists of independent functions. Observing that K.
Ln

kD1 xk/

is equimeasurable with
Pn

kD1 Kyk , and the latter is equimeasurable with the
function

Pn
kD1.Kxk/

�.!k/, we arrive at nX
kD1

.Kxk/
�.!k/


Y

D

 nX
kD1

Kyk


Y

� kKkX!Y

 nM
kD1

xk


X

:

By Lemma 8, we have
nX

kD1

.�1=2x�k /.!k/�

nX
kD1

.Kxk/
�.!k/;

and, therefore,

(5)
 nX

kD1

.�1=2x�k /.!k/


Y

� kKkX!Y

 nM
kD1

xk


X

:

For an arbitrary k 2 N, let x
.1/

k
and x

.2/

k
be disjointly supported elements of

S.0; 1/ equimeasurable with the function �1=2x�
k

. A moment’s reflection shows
that the sum x

.1/

k
Cx

.2/

k
is equimeasurable with the function x�

k
, k 2N. Hence, the
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function
nP

kD1

xk is equimeasurable with the sum y0Cy1, where

yi.!/ WD

nX
kD1

x
.i/

k
.!k/; i D 0; 1;

which immediately implies nX
kD1

xk


Y

Dky0Cy1kY �C.Y /.ky0kYCky1kY /�2C.Y /

 nX
kD1

�1=2x�k .!k/


Y

:

The assertion follows now from inequality (5). �
Our next objective is to omit the assumption

Pn
kD1 m.supp.xk// � 1. The

main step is a disjointification inequality for bounded functions obtained below in
Proposition 14. Let us start with some technical lemmas.

Lemma 10. Let

sk WD

1X
nDk

1

e � n!
; k 2 N:

Then 4kskC1 � sk for every k 2 N.

Proof. Clearly,

4kskC1 �
.kC 1/2

k
skC1 �

.kC 1/2

k
�

1

e � .kC 1/!
D

kC 1

k
�

1

e � k!
:

On the other hand, since k! � .kC 1/n � .kC n/!, we have that

kC 1

k
�

1

e � k!
D

1

e � k!
�

1

1� 1=.kC 1/

D
1

e � k!

�
1C

1

kC 1
C

1

.kC 1/2
C � � �

�
�

1X
nDk

1

e � n!
: �

By the definition of the Kruglov operator, the function K�Œ0;1� has the Poisson
distribution with parameter 1. Let

 0.t/ WD

Z t

0

.K�Œ0;1�/
�.s/ ds:

It is clear that K W L1.0; 1/! M 0
and kKkL1!M 0

D 1. Here M 0
is the

Marcinkiewicz space consisting of all elements x 2 S.0; 1/ such that

kxkM 0
WD sup

0<t�1

R t
0 x�.s/ ds

 0.t/
<1:

Lemma 11. The following inequality holds:

inf
0<t<1�1=e

t 0
0
.t/

 0.t/
�

1

4
:
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Proof. Let sk be as in Lemma 10. Since  0
0
D .K�Œ0;1�/

� is a Poisson random
variable with parameter 1, it follows that

 00.t/D k for all t 2 .skC1; sk/; k 2 N:

Therefore,

 0.skC1/D

Z skC1

0

 00.t/ dt D

1X
nDkC1

n

e � n!
D

1X
nDk

1

e � n!
D sk ; k 2 N:

Now, let 0 < t < 1� 1=e. Then t 2 ŒskC1; sk/ for some k � 1, and so  0
0
.t/D k.

Since  0 is concave, the function t= 0.t/ increases. Therefore, by Lemma 10,

t 0
0
.t/

 0.t/
D

kt

 0.t/
�

kskC1

 0.skC1/
D

kskC1

sk

�
1

4
: �

Lemma 12. If Y is a quasi-Banach symmetric space on .0; 1/ such that the operator
K maps L1.0; 1/ into Y , then Y �M 0

and

kxkY � 8 C.Y / kxkM 0
� kKkL1!Y ; x 2M 0

:

Proof. It follows from Lemma 11 that

kxkM 0
D sup

0<t�1

�
1

 0.t/

Z t

0

x�.s/ ds

�
� sup

0<t<1=2

�
tx�.t/

 0.t/

�
� inf

0<t<1=2

�
t 0

0
.t/

 0.t/

�
� sup
0<t<1=2

�
x�.t/

 0
0
.t/

�
�

1

4
sup

0<t<1=2

�
x�.t/

 0
0
.t/

�
:

Therefore,

x�.t/� 4kxkM 0
 00.t/; 0< t � 1

2
;

whence

x�.t/� �2x�.t/� 4kxkM 0
�2 

0
0.t/; 0< t � 1:

Combining the last inequality with the obvious equalities

kKkL1!Y D kK�Œ0;1�kY D k 
0
0kY ;

we obtain

kxkY � k�2x�kY � 4kxkM 0
k�2 

0
0kY � 8 C.Y /kxkM 0

kKkL1!Y : �
In the following lemma, we use the classical notion of majorization. Let 0 �

x;y 2L1.0; 1/. We write y � x if
R t

0 y�.s/ ds �
R t

0 x�.s/ ds for all t 2 .0; 1/ andR 1
0 y�.s/ ds D

R 1
0 x�.s/ ds.
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Lemma 13. Let fxkg
n
kD1

and fykg
n
kD1

, n 2 N, be sequences of positive and inde-
pendent functions from L1.0; 1/. If yk � xk for each k, then

nX
kD1

yk �

nX
kD1

xk :

Proof. Define the functions x;y 2L1.0; 1/ by setting

x.!/ WD

nX
kD1

xk.!k/; y.!/ WD

nX
kD1

yk.!k/:

It follows from the assumption that for every 1� k � n there exists a bistochastic
operator Ak (on L1.0; 1/) such that Akxk D yk [Bennett and Sharpley 1988,
Proposition 3.2.9]. A moment’s reflection shows that the operator A WD

Nn
kD1 Ak

is a bistochastic operator on L1.�;P/ (which we identify with L1.0; 1/) and that
Ax D

Pn
kD1 Akxk.!k/. Applying Proposition 3.2.4 of the same reference, we

arrive at

y D

nX
kD1

Akxk.!k/DAx � x:

Since
Pn

kD1xk (respectively,
Pn

kD1yk) is equimeasurable with x (respectively, y),
the assertion follows. �

Proposition 14. If fxkg
n
kD1

, n2N, is a sequence of bounded independent functions,
then  nX

kD1

xk


M 0

� 2

 nM
kD1

xk


L1\L1.0;1/

:

Proof. Without loss of generality, we can assume that xk � 0 for 1�k�n. Suppose
that  nM

kD1

xk


1

D 1 and kxkk1 D ˛k :

If ˛D
Pn

kD1 ˛k > 1, then xk �˛�Œ0;˛�1˛k �
for 1� k � n. Applying Lemma 13,

we obtain
nX

kD1

xk � ˛

nX
kD1

�Œ0;˛�1˛k �
.!k/:

From the definition of the norm of a Marcinkiewicz space, Proposition 9 and the
equalities kKkL1!M 0

D 1 and C.M 0
/D 1, we obtain
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(6)

 nX
kD1

xk


M 0

� ˛

 nX
kD1

�Œ0;˛�1˛k �
.!k/


M 0

� 2˛

 nM
kD1

�Œ0;˛�1˛k �


1

D 2

 nM
kD1

xk


L1.0;1/

:

If ˛ D
Pn

kD1 ˛k < 1, then xk � �Œ0;˛k � for 1� k � n. It follows from Lemma 13
that

nX
kD1

xk �

nX
kD1

�Œ0;˛k �.!k/:

Therefore, by Proposition 9, we have nX
kD1

xk


M 0

�

 nX
kD1

�Œ0;˛k �.!k/


M 0

� 2

 nM
kD1

�Œ0;˛k �


1

D 2:

Combining this estimate with inequality (6), we are done. �

The following statement is an immediate consequence of Proposition 14 and
Lemma 12.

Corollary 15. Let Y be a quasi-Banach symmetric space on .0; 1/ such that the
operator K maps L1.0; 1/ into Y . If fxkg

n
kD1

, n 2 N, is a sequence of bounded
and independent functions, then nX

kD1

xk


Y

� 16 C.Y / kKkL1!Y

 nM
kD1

xk


L1\L1.0;1/

:

Now, we are ready to prove the main result of this section related to the compar-
ison of sums of independent functions and their disjoint copies in quasi-Banach
symmetric function spaces.

Theorem 16. Let X and Y be quasi-Banach symmetric spaces on .0; 1/ such that
the operator K acts boundedly from X into Y . If fxkg

n
kD1
�X , n2N is a sequence

of independent functions, then

(7)
 nX

kD1

xk


Y

� 16 C 2.Y / kKkX!Y

 nM
kD1

xk


Z1

X

:

Proof. Let us write x for
nL

kD1

xk . Define the functions

xk;1 WD xk�fjxk j>x�.1/g; xk;2 WD xk �xk;1; 1� k � n:

The functions xk;1, 1� k � n, are independent, as are the functions xk;2, 1� k � n.
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Moreover, it is easy to see that

nM
kD1

jxk;1j � x��.0;1/ and
nM

kD1

jxk;2j � x��.1;1/:

Since L1.0; 1/ � X and kxkX � kxk1, x 2 L1.0; 1/, it follows from the as-
sumption of the theorem that K W L1.0; 1/! Y and kKkL1!Y � kKkX!Y .
Therefore, applying Proposition 9 and Corollary 15, we obtain nX
kD1

xk


Y

� C.Y /

� nX
kD1

xk;1


Y

C

 nX
kD1

xk;2


Y

�

� 16 C 2.Y /kKkX!Y

� nM
kD1

xk;1


X

C

 nM
kD1

xk;2


L1\L1.0;1/

�
� 16 C 2.Y /kKkX!Y .kx

��.0;1/kXCkminfx�;x�.1/gkL1\L1.0;1//:

�

4. Disjointification inequalities for symmetrically distributed
(mean zero) functions

If we assume that the independent functions xk , 1 � k � n, in the statement of
Theorem 16 are symmetrically distributed, then the disjointification inequality (7)
can be significantly improved. In particular, we are able to extend estimates from
[Astashkin and Sukochev 2007] for symmetric Banach function spaces to the
quasi-Banach setting. Our main tool is the following remarkable inequality due to
Prokhorov [1959], which we restate here using the direct sum notation.

Theorem 17. If fxkg
n
kD1

.n 2 N/ is a sequence of bounded independent symmetri-
cally distributed random variables on .0; 1/, then for all t > 0

(8) m

�� nX
kD1

xk > t

��
� exp

�
�

t

2
Ln

kD1 xk


1

arcsinh
t
Ln

kD1 xk


1

2
Ln

kD1 xk

2

2

�
:

Let the function  0 be as in the previous section.

Proposition 18. If fxkg
n
kD1

, n 2 N, is a sequence of bounded independent symmet-
rically distributed functions on .0; 1/, then nX

kD1

xk


M 0

� Cabs

 nM
kD1

xk


L2\L1.0;1/

;

for some absolute constant Cabs.
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Proof. For every m� 1, we define a linear operator Am WL2\L1.0;1/!M 0

by setting for x 2L2\L1.0;1/

Amx.!/ WD

mX
kD1

x.k � 1C!2k�1/r.!2k/;

where r.t/D 1 if 0� t � 1
2

and r.t/D�1 if 1
2
< t � 1. It is clear that

kAmkL2\L1!M 0
�m; m 2 N:

Our objective is to show that for every fixed x2L2\L1.0;1/ the orbit fAmxg1
mD1

is uniformly bounded in M 0
. Provided we have done so, the uniform bounded-

ness principle guarantees that the sequence fkAmkL2\L1!M 
g1
mD1

is uniformly
bounded, and the assertion of the theorem would follow from this fact since the sumPn

kD1 xk for a given sequence fxkg
n
kD1

of bounded independent symmetrically
distributed functions on .0; 1/ is equidistributed with the function Anz, where

z WD

nM
kD1

xk :

Fix x 2L2\L1.0;1/, and set

˛.x/ WD kxk1C sup
n

kx�Œ0;n�k
2
2

kx�Œ0;n�k1

(here, 0=0 is set to be 0/. Clearly, ˛.x/ <1 and our objective would be achieved
if we show that

(9) kAmxkM 0
� 4e �˛.x/ for all m 2 N:

Fix m 2 N. Since� mM
kD1

x.k � 1C!2k�1/r.!2k/

��
D .x�Œ0;m�/

�;

it follows from (8) that for every t > 0, we have

m.fjAmxj> t˛.x/g/� exp
�
�

t˛.x/

2kx�Œ0;m�k1
arcsinh

t˛.x/kx�Œ0;m�k1

2kx�Œ0;m�k
2
2

�
:

Combining this estimate with the obvious inequalities

t˛.x/

2kx�Œ0;m�k1
�

t

2
; arcsinh

t˛.x/kx�Œ0;m�k1

2kx�Œ0;m�k
2
2

� arcsinh
t

2
;

we arrive at

(10) m.fjAmxj> t˛.x/g/� exp
�
�

t

2
arcsinh t

2

�
:
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The right-hand side of the preceding inequality is in fact directly related to the
distribution function of the function  0

0
. Indeed, in the proof of Lemma 11 we

have already pointed out that  0
0
WD .K�Œ0;1�/

� is a Poisson random variable with
parameter 1. A direct calculation yields the estimate

m.f 00 > tg/� exp.�1� 2t � arcsinh.2t//; t > 0;

which, in turn, implies

m.f4 00 > tg/� exp
�
�1�

t

2
arcsinh t

2

�
; t > 0:

Combining this with (10), we infer

m.fjAmxj> t˛.x/g/� e �m.f4 00 > tg/:

Since k 0
0
kM. 0/ D 1, from the preceding estimate and [Braverman 1994, Proposi-

tion 1.2], inequality (9) follows. �

The corollary below follows from Proposition 18 and Lemma 12.

Corollary 19. Let Y be a quasi-Banach symmetric space on .0; 1/ such that the
operator K maps L1.0; 1/ into Y . If fxkg

n
kD1

, n 2 N, is a sequence of bounded
independent symmetrically distributed functions, then nX

kD1

xk


Y

� 8 Cabs C.Y /kKkL1!Y

 nM
kD1

xk


L2\L1.0;1/

:

We need the following assertion proved by Braverman [1994, Proposition 1.11]
in the Banach setting. The proof in the quasi-Banach setting is identical.

Lemma 20. If a quasi-Banach symmetric space X on .0; 1/ embeds into L1.0; 1/,
then there exists a constant C0.X / such that

kxkX � C0.X /kx.!1/�x.!2/kX

for every mean zero function x 2X .

We are now ready to present the main result of this section.

Theorem 21. Let X and Y be quasi-Banach symmetric spaces on .0; 1/ such that
K WX ! Y .

(a) If fxkg
n
kD1
�X , n2N, is a sequence of independent symmetrically distributed

functions, then

(11)
 nX

kD1

xk


Y

� 8 Cabs C 2.Y /kKkX!Y

 nM
kD1

xk


Z2

X

:
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(b) If X �L1.0; 1/, then the inequality

(12)
 nX

kD1

xk


Y

� 16 Cabs C0.Y /C 2.Y /C.X /kKkX!Y

 nM
kD1

xk


Z2

X

holds for every sequence fxkg
n
kD1

, n 2 N, of independent mean zero functions
from X .

Proof. The proof of the first assertion is similar to the proof of Theorem 16, with
the only difference being that the reference to Corollary 15 should be replaced with
a reference to Corollary 19.

In the proof of the second assertion we use the standard symmetrization trick.
Define the functions yk 2X , 1� k � n, by setting

yk.!/ WD xk.!2k�1/�xk.!2k/:

By Lemma 20, nX
kD1

xk


Y

� C0.Y /

 nX
kD1

xk.!2k�1/�

nX
kD1

xk.!2k/


Y

D C0.Y /

 nX
kD1

yk


Y

:

Evidently, yk , 1� k � n, are independent and symmetrically distributed. Therefore,
by (a), we obtain nX

kD1

yk


Y

� 8 Cabs C 2.Y /kKkX!Y

 nM
kD1

yk


Z2

X

:

Observing that for every t > 0, we have

m

��ˇ̌̌̌ nM
kD1

yk

ˇ̌̌̌
> t

��
� 2m

��
s > 0 W

ˇ̌̌̌ nM
kD1

xk

ˇ̌̌̌
> t

��
;

and appealing to the fact that Z2
X

is a quasi-Banach symmetric space with modulus
of concavity C.X /, we infer nM

kD1

yk


Z2

X

� 2 C.X /

 nM
kD1

xk


Z2

X

:

Combining these inequalities, we conclude the proof. �

5. Khintchine inequality in quasi-Banach spaces

In this section, we provide an extension of the classical Khintchine inequality to
general quasi-Banach symmetric function spaces. We begin with the formulation
of the main results of this section.
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Theorem 22. Let X and Y be quasi-Banach symmetric spaces on the interval
.0; 1/ such that the operator K is bounded from X into Y . If fxkg

n
kD1

, n 2 N, is a
sequence of independent symmetrically distributed random variables from X , then

(13)
 nX

kD1

xk


Y

� 512 Cabs C 6.X /C 2.Y /kKkX!Y

� nX
kD1

x2
k

�1=2
X

:

The next theorem shows that in the case when X D Y the boundedness of the
Kruglov operator is a necessary and sufficient condition for the inequalities of
the type (13). In the Banach setting, an analogous result was earlier proved in
[Astashkin 2008].

Theorem 23. Let X be a quasi-Banach symmetric function space on .0; 1/ which
is separable or has the Fatou property. The following conditions are equivalent:

(a) There is a constant C > 0 such that the inequality nX
kD1

xk


X

� C

� nX
kD1

x2
k

�1=2
X

holds for every sequence fxkg
n
kD1
�X , n 2 N, of independent symmetrically

distributed functions.

(b) K WX !X .

For the proof we will need a series of lemmas. The first two of them are well
known; however, we present their short proofs for the reader’s convenience.

Lemma 24. Let X be a quasi-Banach symmetric space on .0; 1/. If we set p WD
1
2

log�1
2 .2 C.X //, then X �Lp.0; 1/ and

kxkp � 8 C 3.X /kxkX ; x 2X:

Proof. Define an increasing function  on .0; 1/ by the formula  .u/ WD k�Œ0;u�kX ,
0< u< 1. It follows from the definition of a quasinorm that

 .2u/� 2 C.X / .u/; 0< u� 1;

whence
 .2�n/� .2 C.X //�n; n� 0:

If u 2 .0; 1� is arbitrary, then u 2 Œ2�n�1; 2�n� for some n� 0. Hence,

 .u/�  .2�n�1/� 2�.nC1/ log2.2C.X //
�

1

2 C.X /
ulog2.2C.X //:

If x 2X , then for every 0< t � 1 we have

kxkX � kx
�.t/�Œ0;t �kX � x�.t/

1

2 C.X /
t log2.2C.X //:
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Hence,
x�.t/� 2 kxkX C.X / t� log2.2C.X //; 0< t � 1:

The assertion follows immediately. �

Lemma 25. If 0 < p < 1 and x;y 2 L1.0; 1/ are positive, then from y � x it
follows that kykp � kxkp.

Proof. Fix " > 0. Passing to step-function approximation, we easily infer that there
exist n 2 N and a function

z WD

nX
kD1

�kxk with xk � 0; x�k D x� and
nX

kD1

�k D 1; �k � 0;

such that ky � zk1 � ". It follows now from the Minkowski inequality that

kzkp D

 nX
kD1

�kxk


p

�

nX
kD1

�kkxkkp D kxkp:

Since " > 0 is arbitrarily small and the quasinorm in Lp.0; 1/, 0 < p < 1, is
continuous with respect to L1-convergence, the proof is complete. �

Lemma 26. Let 0 < p < 1 and let fykg
n
kD1

, n 2 N, be a sequence of positive
bounded independent functions on .0; 1/. We have

(14)
 nM

kD1

yk


1

� 21=p max
�

sup
1�k�n

kykk1;

 nX
kD1

yk


p

�
:

Proof. Without loss of generality, we can assume that

sup
1�k�n

kykk1 D 1; kykk1 D ˛k ; 1� k � n:

Let ˛ D
nP

kD1

˛k . If ˛ � 1, then the assertion is evident. If ˛ � 1, then

yk � ˛�Œ0;˛�1˛k �
; 1� k � n:

From Lemma 13 it follows that
nX

kD1

yk � ˛

nX
kD1

�Œ0;˛�1˛k �
.!k/;

whence, according to Lemma 25, we have nX
kD1

yk


p

� ˛

 nX
kD1

�Œ0;˛�1˛k �
.!k/


p

:
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Combining this inequality with [Johnson and Schechtman 1989, Lemma 3], we
infer

2 C.p/

 nX
kD1

yk


p

� ˛

 nM
kD1

�Œ0;˛�1˛k �


p

D ˛:

Since C.p/D 21=p�1 for 0< p < 1, the assertion follows. �

Lemma 27. Let X be a quasi-Banach symmetric space on .0; 1/. If fxkg
n
kD1
�X ,

n 2 N, is a sequence of bounded independent functions, then nM
kD1

xk


2

� 32 C 5.X /max
�

sup
1�k�n

kxkk1;

� nX
kD1

x2
k

�1=2
X

�
:

Proof. If p D 1
2

log�1
2 .2 C.X //, then by Lemma 24 we have

8C 3.X /

� nX
kD1

x2
k

�1=2
X

�

� nX
kD1

x2
k

�1=2
p

D

 nX
kD1

x2
k

1=2

p=2

:

Clearly,  nM
kD1

xk


2

D

 nM
kD1

x2
k

1=2

1

and kxkk1 D kx
2
kk

1=2
1 :

Now, applying Lemma 26 to the functions yk D x2
k

, 1 � k � n, we obtain the
result. �

Lemma 28. Let X be a quasi-Banach symmetric space on .0; 1/. If fxkg
n
kD1
�X ,

n 2 N, is a sequence of independent functions and if x WD
Ln

kD1 xk , then

2C.X /

� nX
kD1

x2
k

�1=2
X

� x�.1/:

Proof. A simple argument shows that it is sufficient to consider the case when

(15)
nX

kD1

m.supp.xk//D 1:

Since jxk j � x�.1/�supp.xk/, 1� k � n, we have

nX
kD1

x2
k � .x

�.1//2
nX

kD1

�supp.xk/:
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Since the functions xk , 1� k � n, are independent, the support of the function at
the right-hand side of the inequality above has Lebesgue measure equal to

1�

nY
kD1

�
1�m.supp.xk//

�
;

which is bigger than 1
2

(thanks to the condition (15) and to the arithmetic-geometric
mean inequality). Therefore, since k�.0;1/kX D 1, we obtain� nX

kD1

x2
k

�1=2
X

� x�.1/k�Œ0;1=2�kX �
x�.1/

2 C.X /
;

and the proof is complete. �
Let 1� p <1 and let X be a quasi-Banach symmetric function space on .0; 1/

or .0;1/. The p-concavification of X , X 1=p, is defined by

X 1=p
WD fx 2 S.0; 1/ .or S.0;1// W jxj1=p 2X g; kxkX 1=p WD k jxj1=p k

p
X
:

Note that the space X 1=p, equipped with the quasinorm k � kX 1=p , is also a quasi-
Banach symmetric function space (see, for instance, [Lindenstrauss and Tzafriri
1979]).

We are now ready to prove the main result of this section.

Proof of Theorem 22. Setting x WD
Ln

kD1 xk , by Theorem 21, we have

(16)
 nX

kD1

xk


Y

� 8 Cabs C 2.Y /kKkX!Y .kx
��.0;1/kX Ckx

��.1;1/k2/:

Arguing in the same way as in the proof of Theorem 16, we can define two
sequences of independent functions fxk;1g and fxk;2g such that x1k Cx2k D xk ,
jxk;1j � jxk j, jxk;2j � jxk j, for 1 � k � n, and the disjoint sums

Ln
kD1 jxk;1j

and
Ln

kD1 jxk;2j are equimeasurable with the functions x��.0;1/ and x��.1;1/,
respectively. Applying Lemma 27 to the sequence fxk;2g

n
kD1

, we obtain

kx��.1;1/k2 D

 nM
kD1

xk;2


2

� 32 C 5.X /max
�

sup
1�k�n

kxk;2k1;

� nX
kD1

x2
k;2

�1=2
X

�
:

Note that kxk;2k1 � x�.1/ for 1� k � n. Using Lemma 28, we obtain

(17) kx��.1;1/k2 � 64 C 6.X /

� nX
kD1

x2
k

�1=2
X

:
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On the other hand,

kx��.0;1/kX D

 nM
kD1

xk;1


X

D

 nM
kD1

x2
k;1

1=2

X 1=2

;

and � nX
kD1

x2
k

�1=2
X

�

� nX
kD1

x2
k;1

�1=2
X

D

 nX
kD1

x2
k;1

1=2

X 1=2

:

Applying [Johnson and Schechtman 1989, Lemma 3] to the space X 1=2 and the
functions x2

k;1
, we obtain

kx��.0;1/kX � .2 C.X 1=2//1=2
� nX

kD1

x2
k

�1=2
X

:

Since C.X 1=2/� 4C 2.X /, the assertion follows now from the last inequality and
inequalities (16) and (17). �

Lemma 29. Let x 2 S.0; 1/, x � 0, and let n 2 N. If xk , k D 1; 2; : : : ; 2n, are
independent copies of the function �1=nx, then for all sufficiently large n 2 N we
have � nX

kD1

x2k

��
� �3

� 2nX
kD1

.�1/kxk

��
:

Proof. It is clear that the functions x2k�1 � x2k , 1 � k � n, are independent.
Therefore,

m

�� nX
kD1

x2k �x2k�1 > t

��
�m

�� nX
kD1

x2k > t;

nX
kD1

x2k�1 D 0

��

Dm

�� nX
kD1

x2k > t

��
�m

�� nX
kD1

x2k�1 D 0

��

D

�
1�

1

n

�n

m

�� nX
kD1

x2k > t

��
:

Hence, for all sufficiently large n 2 N,

m

��ˇ̌̌̌ nX
kD1

x2k�1�x2k

ˇ̌̌̌
> t

��
�

1

3
m

�� nX
kD1

x2k > t

��
: �
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Proof of Theorem 23. We have to prove only the implication (a) D) (b).
Let x 2 X , x � 0, and n 2 N. Taking for xk , k D 1; 2; : : : ; 2n, independent

copies of the function �1=nx, by Lemma 29 we have nX
kD1

x2k


X

�

�3

� 2nX
kD1

.�1/kxk

�
X

� 3 C.X /2
 2nX

kD1

.�1/kxk


X

:

On the other hand, the functions x2k�1 � x2k , 1 � k � n, are independent and
symmetrically distributed. Therefore, by the assumption, we have 2nX

kD1

.�1/kxk


X

� C

� nX
kD1

.x2k�1�x2k/
2

�1=2
X

� C

� nX
kD1

x2
2k�1

�1=2

C

� nX
kD1

x2
2k

�1=2
X

� 2 C �C.X /

� nX
kD1

x2
2k

�1=2
X

:

Combining these inequalities, we obtain nX
kD1

x2k

� 6 C �C.X /3
� nX

kD1

x2
2k

�1=2
X

� 6 C �C.X /3
� max

1�k�n
x2k �

nX
kD1

x2k

�1=2
X

:

It follows now from Lemma 2 that nX
kD1

x2k


X

� 6 C �C.X /4
 max

1�k�n
x2k

1=2

X
�

 nX
kD1

x2k

1=2

X

:

Hence, nX
kD1

x2k


X

� 36 C 2 C.X /8
 max

1�k�n
x2k


X
� 36 C 2 C.X /8

 nM
kD1

x2k


X

:

Appealing to the definition of xk , 1� k � 2n, we obtain� nM
kD1

x2k

��
D x� and

� nX
kD1

x2k

��
D .Hnx/�;

where the operator Hn is defined by (3).



DISJOINTIFICATION INEQUALITIES IN QUASI-BANACH SPACES 279

Recall that, by Lemma 6, .Hnx/�! .Kx/� almost everywhere on .0; 1/. There-
fore, if X has the Fatou property, it follows that kKxkX � 36C 2 C.X /8kxkX , and
the proof in this case is complete. If X is separable, we can repeat almost verbatim
the arguments used in the second part of the proof of Theorem 7. �

6. Von Bahr–Esseen type inequalities

We have the following remarkable theorem.

Theorem 30 [von Bahr and Esseen 1965, Theorem 2]. If 1�p� 2 and ffkg
n
kD1
�

Lp.0; 1/, n 2 N, is a sequence of independent mean zero functions, then

(18)
 nX

kD1

fk


p

�

�
2

nX
kD1

kfkk
p
p

�1=p

:

In [Braverman 1994, § II,2], Theorem 30 is extended to Banach symmetric
function spaces with the Kruglov property. Versions of disjointification inequalities
obtained in Sections 3 and 4 for quasi-Banach symmetric spaces allow us to extend
Braverman’s result to the quasi-Banach setting. Moreover, we shall consider differ-
ent quasinorms at the left- and right-hand sides of (18). Our proofs appear to be
more straightforward (and simpler) than the proofs for the special case considered
in [Braverman 1994].

Definition 31. Quasi-Banach symmetric function spaces X and Y (in this order)
satisfy the von Bahr–Esseen r -estimate (written .X;Y / 2 .BE/r ) if there exists a
constant B > 0 such that

(19)
 nX

kD1

fk


Y

� B

� nX
kD1

kfkk
r
X

�1=r

for every sequence of independent symmetrically distributed functions ffkg
n
kD1
�X ,

n 2 N. If, in addition, X D Y , then we say that X satisfies the von Bahr–Esseen
r -estimate (written X 2 .BE/r ).

In view of this definition, we may restate Theorem 30 as Lp.0; 1/ 2 .BE/p.

Remark 32. If Y �L1.0; 1/, then an application of Lemma 20 yields the estimate
(19) for all mean zero independent functions.

Clearly, .X;Y / 2 .BE/r implies that X � Y . Taking Rademacher functions
(see Section 1) as the fk , it is easy to see that we always have 0< r � 2. Finally, if
X is p-normed, then p � r � 2.
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Recall that a quasi-Banach lattice X satisfies an upper r -estimate, r > 0, if there
is a constant C > 0 such that nX

kD1

xk


X

� C

� nX
kD1

kxkk
r
X

�1=r

for every sequence of mutually disjoint elements fxkg
n
kD1
�X , n 2 N.

Recall also that a quasi-Banach symmetric space Lr;1, r > 0, consists of all
x 2 S.0; 1/ such that

kxkr;1 WD sup
0<t�1

x�.t/ t1=r <1:

Theorem 33. Let 0 < r < 2. For all quasi-Banach symmetric function spaces X

and Y the following statements hold:

(a) If K WX ! Y and X satisfies an upper r -estimate, then .X;Y / 2 .BE/r .

(b) If K W Y ! Y and, for some C > 0 and for every sequence of mutually disjoint
functions ffkg

n
kD1
�X .n 2 N/, we have

(20)
 nX

kD1

fk


Y

� C

� nX
kD1

kfkk
r
X

�1=r

;

then .X;Y / 2 .BE/r .

(c) If .X;Y / 2 .BE/r , then (20) holds for every sequence of mutually disjoint
functions ffkg

n
kD1
�X , n 2 N.

The main part of the proof of Theorem 33 is given below in Lemma 36.
Let 0< p < r < 2 and let r > 1. Recall that Lr;1 satisfies an upper r -estimate

(see, for example, [Braverman 1994, Theorem 1.12]) and that K WLr;1!Lr;1

by Theorem 1.3 of the same reference. Setting X DLr;1 and Y DLp.0; 1/ and
taking into account Remark 32, we obtain the well-known Esseen–Janson theorem
(see [Esseen and Janson 1985, Theorem 4]). It is worth noting that, in contrast to
the previous reference, we do not require that the functions fk are equidistributed.

Lemma 34. Let r > 0 and let X and Y be quasi-Banach symmetric function spaces.
Suppose that there is a constant C > 0 such that for every sequence of mutually
disjoint functions ffkg

n
kD1
�X , n 2 N, inequality (20) holds. Then X �Lr;1.

Proof. Fix t 2 .0; 1� and let n 2 N be such that 1=2 < nt � 1. Since �.0;tn/DPn
kD1 �.t.k�1/;tk/, the functions 'X .t/ WD k�.0;t/kX and 'Y .t/ WD k�.0;t/kY sat-

isfy the estimate

'Y .tn/� C

� nX
kD1

k�.t.k�1/;tk/k
r
X

�1=r

D C 'X .t/ n1=r ;
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by (20). Hence, we obtain that

'X .t/� C�1 'Y .tn/ n�1=r
� C�1 'Y .1=2/ t1=r

D C�1
1 t1=r ;

whence for every x 2X

kxkX � x�.t/ k�.0;t/kX D x�.t/'X .t/� C�1
1 x�.t/ t1=r ; 0< t � 1:

Therefore, kxkr;1 � C1kxkX for all x 2X and the proof is completed. �

Lemma 35. Let X be a quasi-Banach symmetric function space on .0; 1/ satisfying
an upper r -estimate, 0< r < 2. There exists CX > 0 such that for every sequence
fxkg

1
kD1
�X we have 1M

kD1

xk


Z2

Lr;1

� CX

� 1X
kD1

kxkk
r
X

�1=r

:

Proof. By Lemma 34, we have X � Lr;1. Therefore, x�
k
� kxkkr;1 �r , where

�r .t/D t�1=r , 0< t � 1, whence 1M
kD1

xk


Z2

Lr;1

� C

 1M
kD1

kxkkr;1 �r


Z2

Lr;1

:

Note that for any ak � 0 we have

1M
kD1

ak�r �

� 1X
kD1

ar
k

�1=r

�r :

Hence, 1M
kD1

xk


Z2

Lr;1

�C

� 1X
kD1

kxkk
r
r;1

�1=r

k�rkZ2
Lr;1

�C 0k�rkZ2
Lr;1

� 1X
kD1

kxkk
r
X

�1=r

;

and the result follows. �

Lemma 36. Let X be a quasi-Banach symmetric function space on .0; 1/ satisfying
an upper r -estimate, 0< r < 2. There exists a constant BX > 0 such that for every
sequence fxkg

1
kD1
�X we have 1M

kD1

xk


Z2

X

� BX

� 1X
kD1

kxkk
r
X

�1=r

:

Proof. By the definition of the quasinorm in Z2
X

, we have that

(21) kzkZ2
X
� kz��.0;1/kX CkzkZ2

Lr;1

; z 2Z2
X :
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Denote
L1

kD1 jxk j by x, for brevity. Without loss of generality, we can assume
that x� does not have any interval of constancy. Setting yk D xk�fjxk j>x�.1/g, we
have

1M
kD1

jyk j � x��.0;1/:

Therefore, since X satisfies an upper r -estimate, we obtain

kx��.0;1/kX D

 1M
kD1

yk


X

� C

� 1X
kD1

kykk
r
X

�1=r

� C

� 1X
kD1

kxkk
r
X

�1=r

:

The assertion follows now from inequality (21) and the preceding lemma. �
Proof of Theorem 33. The first assertion follows from Theorem 21 and Lemma 36.
The proof of the second assertion is identical.

Now, we prove the third assertion. Suppose that .X;Y / 2 .BE/r . Let the
functions fk 2 X , 1 � k � n, be pairwise disjoint and let gk , 1 � k � n, be
their independent copies. Without loss of generality, we can assume that the fk

(and therefore the gk as well) are symmetrically distributed. By [Johnson and
Schechtman 1989, Theorem 1], we have nX

kD1

fk


Y

D

 nX
kD1

fk


Z2

Y

� C 0
 nX

kD1

gk


Y

� C 0B

� nX
kD1

kfkk
r
X

�1=r

;

which is (20) with C D C 0B. �
If X D Y , then estimate (20) means that X satisfies an upper r -estimate and we

obtain the following corollary.

Corollary 37. Let 0 < r < 2 and let X be a quasi-Banach symmetric function
space such that K WX !X . Then X 2 .BE/r if and only if X satisfies an upper
r -estimate.

In the Banach-space setting this result may be found in [Braverman 1994, Theo-
rem 2.3].

For r D 2, we have the following result.

Theorem 38. Let X and Y be quasi-Banach symmetric function spaces.

(a) Suppose that X �L2.0; 1/. If K WX !Y and X satisfies an upper 2-estimate,
or if K W Y ! Y and for some C > 0 and for every sequence of mutually
disjoint functions ffkg

n
kD1
�X , n 2 N, we have

(22)
 nX

kD1

fk


Y

� C

� nX
kD1

kfkk
2
X

�1=2

;

then .X;Y / 2 .BE/2.



DISJOINTIFICATION INEQUALITIES IN QUASI-BANACH SPACES 283

(b) If .X;Y / 2 .BE/2, then X � L2.0; 1/ and inequality (22) holds for some
C > 0 and for every sequence of mutually disjoint functions ffkg

n
kD1
� X ,

n 2 N.

Proof. (a) The proof is identical to that of the preceding theorem, substituting the
reference to Lemma 36 with the reference to the following assertion.

Lemma 39. Let a quasi-Banach symmetric space X satisfy an upper 2-estimate
and let X �L2.0; 1/. There exists a constant BX > 0 such that for every sequence
fxkg

1
kD1
�X we have 1M

kD1

xk


Z2

X

� BX

� 1X
kD1

kxkk
2
X

�1=2

:

(b) Inequality (22) can be proved in exactly the same way as in Theorem 33.
Therefore, it remains to show that X �L2.0; 1/.

Let f 2 X be symmetrically distributed and let ffkg
1
kD1

be a sequence of its
independent copies. By assumption, .X;Y / 2 .BE/2 and, therefore, n�1=2

nX
kD1

fk


Y

� C

�
n�1

nX
kD1

kfkk
2
X

�1=2

D Ckf kX ; nD 1; 2; : : : :

By Lemma 24, there exists p > 0 such that Y �Lp.0; 1/. Hence, by the previous
inequality, we have

sup
n�1

Z 1

0

ˇ̌̌̌
n�1=2

nX
kD1

fk.t/

ˇ̌̌̌p
dt <1:

Applying [Esseen and Janson 1985, Theorem 2], we obtain that f 2L2.0; 1/. Since
both X and L2.0; 1/ are symmetric, the assertion follows. �
Corollary 40. Let X be a quasi-Banach symmetric space such that K W X ! X .
Then X 2 .BE/2 if and only if X satisfies an upper 2-estimate and X �L2.0; 1/.

This assertion was proved by Braverman [1994, Theorem 2.4] in the Banach
setting.

Remark 41. Though the condition K W X ! X is essential in both Theorem 33
and Theorem 38, it is not necessary. For example, Exp L2 2 .BE/2 [Braverman
1994, Theorem 2.9], but K W Exp L2 6! Exp L2.
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