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We show that the moduli space of twisted polygons in G=P , where G is
semisimple and P parabolic, and where g has two coordinated gradations
has a natural Poisson bracket that is directly linked to G -invariant evo-
lutions of polygons. This structure is obtained by reducing the quotient
twisted bracket on G N (as defined by M. Semenov-Tian-Shansky) to the
moduli space G N=P N . We prove that any Hamiltonian evolution with re-
spect to this bracket is induced on G N=P N by an invariant evolution of
polygons. We describe in detail the Lagrangian Grassmannian case (G D

Sp.2n/) and we describe a submanifold of Lagrangian subspaces where the
reduced bracket becomes a decoupled system of Volterra Hamiltonian struc-
tures. We also describe a very simple evolution of polygons whose invariants
evolve following a decoupled system of Volterra equations.

1. Introduction

The difference geometry of lattices, although a relatively young subject, has been
known to be related to completely integrable systems almost from its conception.
Indeed, parallel to the well-known fact that the sine-Gordon equation describes
surfaces with constant negative Gauss curvature, the work of Bobenko and others
on difference geometry of lattices (see for instance [Bobenko and Suris 2008])
consistently relates certain types of 2-lattices to completely integrable lattice systems.
While in the continuous case the sine-Gordon equation appears as the Codazzi–
Mainardi equation of the surface in appropriately chosen coordinates, in the lattice
case they are described as the compatibility condition of special types of lattices, with
the different properties of lattices playing the role of specially chosen coordinates.

More recently, a flurry of work on the pentagram map, its generalizations and
related subjects (see, for example, [Ovsienko et al. 2010; Marí Beffa 2013; Khesin
and Soloviev 2013], although the bibliography on this subject is quite vast) has
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clearly pointed at a relation between dynamics of polygons, rather than 2-lattices,
and completely integrable systems. Indeed the pentagram map, a map defined on
projective planar polygons (both twisted and closed), was proven to be completely
integrable and a discretization of the Boussinesq equation when written in terms
of the discrete projective invariants of the polygons [Ovsienko et al. 2010; 2013;
Soloviev 2013].

A plethora of work in the continuous case takes us in this same direction when
one works with curves rather than surfaces. Most, if not all, well-known completely
integrable PDEs have been realized as systems induced on differential invariants
by a flow of curves in some homogeneous manifold. For example, the KdV
equation is induced on the Schwarzian derivative of a flow in RP1 solution of the
so-called Schwarzian-KdV equation (this is a classical result that one can check by
hand). Similarly Adler–Gel’fand–Dikii flows are induced on projective differential
invariants of flows in RPn by some known evolutions (see [Marí Beffa 1999]).
Likewise the literature shows realizations of mKdV [Terng and Thorbergsson 2001],
NLS [Terng and Uhlenbeck 2006] Sawada–Kotera [Chou and Qu 2002], modified
Sawada–Kotera [Chou and Qu 2003], vector sine-Gordon [Wang 2002] and most
other well-known systems as flows of curves in several different manifolds. This
list is by no means exhaustive and many equations are realized as a curve flow in
more than one geometry; see, for example, [Calini et al. 2009; Chou and Qu 2002;
2003].

Inspired by the recent developments in discrete maps, we studied in [Mansfield
et al. 2013] the relation between evolutions of twisted polygons in homogeneous
manifolds and completely integrable lattice systems on the geometric invariants
of the flow. In particular we found an evolution of projective planar polygons
that when written in terms of projective curvatures becomes a modified Volterra
lattice. We also found realizations of the Toda lattice as evolution of polygons
in the centro-affine plane; an integrable discretization of the Toda lattice induced
by a centro-affine map; and a realization of a Volterra-type equation as evolution
of polygons on the homogeneous 2-sphere. In [Marí Beffa and Wang 2013] we
proved that one can obtain a Hamiltonian structure on the moduli space of twisted
polygons in RPn through the reduction of a twisted Poisson bracket on lattices
defined by Semenov-Tian-Shansky [1985], and that any Hamiltonian with respect
to the reduced bracket was induced on invariants by an evolution of polygons in
RPn, with the gradient of the Hamiltonian defining the evolution in a direct and
simple fashion. The reduced bracket was a Hamiltonian structure for an integrable
discretization of Wn-algebras, and this discretization was induced on projective
invariants by a rather simple polygon evolution. We also found a second structure
for the system via reduction of the right bracket, a structure that was not originally
Poisson.
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This paper can be viewed as a second part to [Marí Beffa and Wang 2013]. Here
we consider the case of polygons in G=P , with G semisimple, P parabolic, and g

a j1j-graded algebra (and Lie algebra with parabolic gradation gD g1˚ g0˚ g�1,
pD g1˚g0). These include many of the well-known nonaffine geometries (confor-
mal n-sphere, RPn, Grassmannians, Lagrangian Grassmannians, pure spinors and
other flag manifolds). We assume that the parabolic gradation is coordinated with
a second gradation of the form gC˚ h˚ g�, with h commutative. We prove that
the twisted Poisson bracket of Semenov-Tian-Shansky defined and associated to
this second gradation can also be reduced to the moduli space of polygons in G=P

resulting on a natural Poisson structure on the space of polygon invariants. We
also prove that there are simple ways to connect the reduced Hamiltonian structure
to evolutions of polygons with evolutions inducing Hamiltonian systems on the
invariants of the flow. In particular, we prove that any Hamiltonian evolution is
induced on invariants by an evolution of polygons in G=P . This result is valid also
in more general settings, and we discuss this fact in our last section.

We study in detail the example of the Lagrangian Grassmannian, that is, polygons
of Lagrangian subspaces in R2n, M D Sp.2n/=P , with P a parabolic subgroup.
We find an appropriate discrete moving frame along twisted polygons, and we
define the Schwarzian difference of Lagrangian planes (a discrete analogue of the
Schwarzian derivative defined in [Ovsienko 1993].) The frame provides us with a
complete description of the invariants and produces a generating set that includes the
eigenvalues of the Schwarzian difference. We then apply our general theorem to find
a Hamiltonian structure on the space of invariants associated to our moving frame.
We show that the reduced Poisson bracket can be reduced once more to the space of
polygons for which the nonschwarzian invariants are equal to the identity, and we
show that this reduction decouples into a system of n second Hamiltonian structures
for the Volterra chain [Khanizadeh et al. 2013]. Using this information we define
evolutions of Lagrangian planes inducing the Volterra chain on the eigenvalues of
the Schwarzian difference of the flow. The continuous analogue of this study can
be found in [Marí Beffa 2007].

Section 2 includes background definitions and results that will be used in the
paper, both in the subject of discrete moving frames and on Poisson Lie groups and
Semenov-Tian-Shansky’s bracket. Section 3 proves the existence of the Poisson
bracket on the moduli space (as represented by the discrete invariants) and its
relation to the Sklyanin bracket (Theorem 3.4). In Section 4 we describe in detail the
direct relation between polygon evolutions and reduced Hamiltonians; in particular
we prove that any Hamiltonian is induced on invariants by a polygon evolution
and we give the direct connection between both (Theorem 4.2). We study the
Lagrangian Grassmannian in Section 5 while Section 6 summarizes the paper
and discusses generalizations to other homogeneous manifolds and some open
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problems. Recall that in the projective case [Marí Beffa and Wang 2013] the
Poisson structures obtained in the planar case were not preserved by the pentagram
map (the bihamiltonian nature of the map is still an open problem, as far as we
know). This was also pointed out by Marshall [2010].

2. Background and definitions

As a starting point we will give a brief description of discrete moving frames and
their associated invariants. The description is taken from [Mansfield et al. 2013]
and can also be found in [Marí Beffa and Wang 2013], but we include it here for
completeness.

Discrete moving frames. Let G be a Lie group and let g be its Lie algebra (it can
be real or complex). Let M be a manifold and let G �M !M be the action of
the group G on M .

Definition 2.1 (twisted N -gon). A twisted N -gon in M is a map � W Z!M such
that �.pCN /D g ��.p/ for some fixed g 2G and for all p 2Z. (The dot notation
represents the action of G on M .) The element g 2 G is called the monodromy
of the polygon. We will denote a twisted N -gon by its image x D .xs/, where
xs D �.s/.

The main reason to work with twisted polygons is our desire to work with
periodic invariants (in order to have a finite number of them). One could restrict
further to closed polygons, but since the solution of a periodic discrete equation
is, in general, twisted, restricting to closed polygons creates additional technical
problems we would like to avoid here. We will denote by PN the space of twisted
N -gons in M . Clearly PN ŠM N , and since G acts on M , it also acts on PN

with the diagonal action g � .xs/D .g �xs/.

Definition 2.2 (discrete moving frame). Let GN denote the Cartesian product of N

copies of the group G. Elements of GN will be denoted by .gs/. Allow G to act on
the right of GN using the inverse diagonal action g � .gs/D .gsg�1/ (respectively
left, using the diagonal action g � .gs/D .ggs/). We say a map

� W PN !GN

is a right (respectively left) discrete moving frame if � is equivariant with respect to
the diagonal action of G on PN and the right inverse (respectively left) diagonal
action of G on GN . Whenever �.x/2GN , we will denote by �s its s-th component;
that is �D .�s/, where �s.x/ 2G for all s, x D .xs/. Clearly, if �D .�s/ is a right
moving frame, then ��1 D .��1

s / is a left moving frame, and vice versa. Thus, a
moving frame associates an element of the group to each vertex of the polygon in
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an equivariant fashion. In our examples the moving frame will be invariant under
the shift �xs D xsC1, but this need not be the case in general.

Proposition 2.3 [Mansfield et al. 2013]. Let C be a collection C1; : : : ;CN of local
cross-sections to the orbit of G through x1; : : : ;xN . Let �D .�s/ 2G be uniquely
determined by the condition

(1) �s � .xr / 2 Cs

for any s. Then �D .�s..xr ///2GN is a right moving frame along the N -gon .xr /.

Discrete moving frames carry the invariant information of the polygon, as we
see next.

Definition 2.4 (discrete invariant). Let I WPN!R be a function defined on N -gons.
We say that I is a scalar discrete invariant if

(2) I..g �xs//D I..xs//

for any g 2G and any x D .xs/ 2 PN .

We will naturally refer to vector invariants when considering vectors whose
components are scalar invariants. Although not necessary, for simplicity of notation
we will assume from now on that G �GL.n;R/. Nevertheless, results are also true
for some exceptional Lie algebras, as we will see later.

Definition 2.5 (Maurer–Cartan matrix). Let � be a right (respectively left) discrete
moving frame evaluated along a twisted N -gon. The element of the group

Ks D �sC1�
�1
s .respectively ��1

s �sC1/

is called the right (respectively left) s-Maurer–Cartan matrix for �. We will
call the equation �sC1 D Ks�s the right s-Serret–Frenet equation (respectively
�sC1 D �sKs is the left one). The element K D .Ks/ 2 GN is called the right
(respectively left) Maurer–Cartan matrix for �.

One can directly check that if K D .Ks/ is a Maurer–Cartan matrix for the right
frame �, then .K�1

s / is a left one for the left frame ��1D .��1
s /, and vice versa. The

entries of a Maurer–Cartan matrix are functional generators of all discrete invariants
of polygons, as it was shown in [Mansfield et al. 2013]. This fact is an immediate
consequence of the following recursion formulas: Let’s denote by �r �xs D I r

s the
so-called basic invariants. One can check directly from the definitions that if K is
a right Maurer–Cartan matrix, then

(3) Kr � I
r
s D I rC1

s
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for any r; s. The basic invariants with r fixed generate other invariants since from (2),
if I is an invariant,

I..�r �xs//D I..xs//D I.I s
r /:

From this and (3), one concludes that the entries of Ks are generators also (see
[Mansfield et al. 2013]).

Assume next that M D G=H , with G acting on M via left multiplication on
representatives of the class. Let us denote by o 2M the class of H .

The following theorem, which can be found in [Mansfield et al. 2013], describes
how to write a general invariant polygon evolution in terms of moving frames.
Denote by ˆg W G=H ! G=H the map defined by the action of g 2 G on G=H ,
that is, ˆg.x/D g �x.

Theorem 2.6. Let � be a right moving frame, and for simplicity assume that
�s �xs D o for all s. Any G-invariant evolution can be written as

(4) .xs/t D dˆ��1
s
.o/.vs/;

where vs.x/ 2 Txs
M is an invariant vector.

Notice that if, in general, �s �xs D ys ¤ o, one can easily change �s to O�s D gs�s ,
where gs �ys D o (the action is transitive). The frame O�s will also be a right moving
frame and thus one can always find a frame with the condition given by the theorem.
This fact will greatly simplify both notations and calculations.

If a family of polygons x.t/ is evolving according to (4), there is a simple process
to describe the evolution induced on the Maurer–Cartan matrices and hence on a
generating set of invariants. It is described in the following theorem, which can
also be found in [Mansfield et al. 2013], slightly modified.

Before our next theorem, let us settle some notation and choices. Assume

(5) gDm˚ h;

where m is a linear complement to h. Consider & W G=H ! G to be a section
of G=H such that &.o/ D e 2 G and m is the tangent to the image of & . Let �
be a right moving frame coordinated with & . That is, assume �s � xs D o so that
�s D �

H
s &.xs/

�1, for some �H
s 2H .

Let Ks be a right Maurer–Cartan matrix and define NsD .�s/t�
�1
s 2g to describe

the time evolution of the frame.

Theorem 2.7. Assume x.t/ is a flow of polygons solution of (4). Then

(6) .Ks/t DNsC1Ks �KsNs

and, if Ns DN
h
s CN m

s splits according to (5), then

(7) N m
s D�d&.o/vs:
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In most examples Equation (6) and condition (7) completely determine N and
the evolution of K, even if we do not know the moving frame explicitly. This will
be clear later in our Lagrangian example.

Finally, in [Marí Beffa and Wang 2013], we proved the following theorem, which
is true for any homogeneous manifold. Assume we have a nondegenerate twisted
polygon x D .xs/ in a manifold M DG=H with associated right moving frame �
such that �s �xs D o for all s. By nondegenerate we mean a polygon for which a
moving frame can be constructed, but we can also think of generic cases. (It was
shown in [Boutin 2002] that generically a moving frame always exists for N large
enough.) Let us assume that the subgroup H N acts naturally on GN via the gauge
transformation

.gs/! .hsC1gsh�1
s /

(assuming hsCN D hs for all s).

Theorem 2.8. In a neighborhood of a nondegenerate polygon, the right Maurer–
Cartan matrices K associated to right moving frames � describe a section of the
quotient GN=H N . That is, let x 2 GN=H N be a nondegenerate twisted polygon,
U with x 2U an open set of GN=H N containing nondegenerate twisted polygons,
and let K be the set of all the Maurer–Cartan matrices in GN associated to right
moving frames for elements in U and determined by a fixed transverse section as in
Proposition 2.3. Then the map

(8) K!GN=H N ; .Ks/! Œ.Ks/�

is a section of the quotient, a local isomorphism.

For more details, see [Mansfield et al. 2013].

Semenov-Tian-Shansky’s twisted Poisson brackets. In this section we will assume
that g is semisimple and that h � ; � i is a nondegenerate inner product in g that allows
us to identify g and g� (a multiple of the one generated by the Killing form). Denote
by Ei;j the matrix with 0s everywhere except for the .i; j / entry, where it has a 1.
Since we are assuming that G � GL.n;R/, we can assume that, for example, the
inner product is the trace of the product of matrices, so that E�i;j D Ej ;i . The
following definitions and descriptions are due to Drinfeld [1983].

Definition 2.9 (Poisson–Lie group). A Poisson–Lie group is a Lie group equipped
with a Poisson bracket such that the multiplication map G �G!G is a Poisson
map, where we consider the manifold G �G with the product Poisson bracket.

Definition 2.10 (Lie bialgebra). Let g be a Lie algebra such that g� also has a Lie
algebra structure given by a bracket Œ � ; � ��. Let ı W g!ƒ2g be the dual map to the
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dual Lie bracket, that is,

hı.v/; .� ^ �/i D hŒ�; ���; vi

for all �; � 2 g�, v 2 g. Assume that ı is a one-cocycle, that is

ı.Œv; w�/D Œv˝ 1C 1˝ v; ı.w/�� Œw˝ 1C 1˝w; ı.v/�

for all v;w 2 g. Then .g; g�/ is called a Lie bialgebra.

If G is a Lie–Poisson group, the linearization of the Poisson bracket at the identity
defines a Lie bracket in g�. The map ı is called the cobracket. The inverse result
(any Lie bialgebra corresponds to a Lie–Poisson group) is also true for connected
and simply connected Lie groups, as shown in [Drinfeld 1983].

Definition 2.11 (admissible subgroup). Let M be a Poisson manifold, G a Poisson–
Lie group and G �M ! M a Poisson action. A subgroup H � G is called
admissible if the space C1.M /H of H -invariant functions on M is a Poisson
subalgebra of C1.M /.

The following proposition describes admissible subgroups.

Proposition 2.12 [Semenov-Tian-Shansky 1985]. Let .g; g�/ be the tangent Lie
bialgebra of a Poisson Lie group G. A Lie subgroup H �G with Lie algebra h� g

is admissible if h0 � g� is a Lie subalgebra, where h0 is the annihilator of h.

We will now describe the Poisson brackets that will be at the center of our study.

Definition 2.13 (factorizable Lie bialgebras and R-matrices). A Lie bialgebra
.g; g�/ is called factorizable if the following two conditions hold:

(a) g is equipped with an invariant bilinear form h � ; � i so that g� can be identified
with g via � 2 g�! v� 2 g with �.�/D hv� ; �i

(b) the Lie bracket on g� Š g is given by

(9) Œ�; ��� D
1

2
.ŒR.�/; ��C Œ�;R.�/�/;

where R 2 End.g/ is a skew-symmetric operator satisfying the modified clas-
sical Yang–Baxter equation

ŒR.�/;R.�/�DR.ŒR.�/; ��C Œ�;R.�/�/� Œ�; ��:

R is called a classical R-matrix. Let r be the 2-tensor image of R under the
identification g˝ gŠ g˝ g� Š End.g/. That is,

(10) r.� ^ �/D h�;R.�/i:

The tensor r is often referred to as the R-matrix also.
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The simplest example of an R-matrix is as follows: assume that g has a splitting
of the form gD gC˚h0˚g�, where gC and g� are subalgebras dual of each other
and where h0 is commutative (for example, h0 could be the Cartan subalgebra).
Then it is well-known that the map R W g! g given by

(11) R.�CC �0C ��/D
1
2
.�C� ��/

defines a classical R-matrix.
Given a Poisson Lie group G and its associated factorizable Lie bialgebra .g; g�/,

we can define an induced Poisson structure on GN , as explained in [Semenov-Tian-
Shansky 1985]. Indeed, we equip gN D

L
N g with a nondegenerate inner product

given by

hX;Y i D

NX
kD1

hXk ;Yki

and we extend R 2 End.g/ to R 2 End.gN / using R..Xs//D .R.Xs//. Then GN

is a Poisson Lie-group (with the product Poisson structure) and .gN ; gN
R
/ is its

factorizable Lie bialgebra, where gR denotes g with Lie bracket (9). Note that we
are abusing notation, using h � ; � i and R to denote both the inner product and the
R-matrix in g and gN . We will point out the difference only when it is not clear
from the context and notation.

Definition 2.14 (left and right gradients). Let F W GN ! R be a differentiable
function. We define the left gradient of F at LD .Ls/ 2GN as the element of gN

denoted by rF.L/D .rsF.L//, with rsF.L/ satisfying

d

d�

ˇ̌̌
�D0

F..exp.��s/Ls//D hrsF.L/; �si

for all s and any � D .�s/ 2 gN .
Analogously, we define the right gradient of F at L as the element of gN denoted

by r 0F.L/D .r 0sF.L//, with r 0sF.L/ satisfying

d

d�

ˇ̌̌
�D0

F..Lsexp.��s///D hr 0sF.L/; �si

for all s and any � D .�s/ 2 gN . Clearly

(12) r
0
sF.L/DL�1

s rsF.L/Ls:

If r is given as in (10) for some R-matrix R, the Poisson structure in GN given
by the formula

(13) fF;GgS .L/D

NX
sD1

Or.rsF^rsG/�

NX
sD1

Or.r 0sF^r 0sG/
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is called the Sklyanin bracket. Now, given a factorizable Lie bialgebra, Semenov-
Tian-Shansky [1985] defined what is called a twisted Poisson structure on GN .
Here we will give the definition of this structure, and we refer the reader to the
same reference for explanations on how to obtain it and to [Frenkel et al. 1998,
Theorem 1] for the explicit formula.

Let F;G WGN ! R be two functions. Let � be the shift operator �.Xs/DXsC1.
We define the � -twisted Poisson bracket as

(14) fF;Gg.L/D
NX

sD1

r.rsF^rsG/C

NX
sD1

r.r 0sF^r 0sG/

�

NX
sD1

.� ˝ id/.r/.r 0sF˝rsG/C

NX
sD1

.� ˝ id/.r/.r 0sG˝rsF/:

In [Frenkel et al. 1998; Semenov-Tian-Shansky 1985] it was proved that not only
is this a Poisson bracket but the gauge action of GN on itself, that is, the action
GN �GN !GN given by

(15) .Ls/! .gsC1Lsg�1
s /;

is a Poisson map and the gauge orbits are Poisson submanifolds. This is the relevant
bracket to our study of polygon evolutions.

3. A Hamiltonian bracket on the moduli space
of twisted polygons in parabolic manifolds

Let G be a semisimple group and g its Lie algebra. Assume g has a gradation of
the form

(16) gD g1˚ g0˚ g�1;

where g1 and g�1 are dual to each other with respect to an adjoint-invariant inner
product. Let Gi be the subgroup of G with Lie algebra gi , and P �G the parabolic
subgroup of G with Lie algebra pD g1˚ g0.

Consider the space of polygons in the homogeneous manifold M D G=P . In
this section we will show that under some assumptions, (14), defined in GN , can
be reduced to the quotient GN=PN to define a Poisson structure on the space of
Maurer–Cartan matrices associated to polygons in M , and hence on the space of
invariants as shown in Theorem 2.8.

Before we go into our main theorem, we will recall some known facts about
the action of G on G=P when g is a j1j-graded algebra as in (16). The following
descriptions can be found, for example, in [Ochiai 1970]. Let G1 and G�1 be the
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connected Lie subgroups of G corresponding to g1 and g�1, respectively. We define
G0 to be the normalizer of g0 in P , that is, G0 D fa 2 P jAd.a/.g0/D g0g.

Proposition 3.1. The exponential mappings exp W g1!G1 and exp W g�1!G�1

are bijective. Furthermore, G0 is also the normalizer of g�1 in P and P is the
semidirect product of G0 and G1.

The subgroup G0 is called the linear isotropy subgroup of the semisimple homo-
geneous space G=P and it is clearly locally bijective, via the exponential map, to g0.
Perhaps a more important description for this paper is the following well-known
result. It can be obtained from [Ochiai 1970], although here it is simplified for a
clearer exposition.

Proposition 3.2. Let G �M ! M be the action of G on M D G=P given by
left multiplication on class representatives. Let Gi and gi be given as above,
i D 1; 0;�1. Then the infinitesimal action of g�1 is constant in x, the one of g0 is
linear in x and the one of g1 is quadratic in x.

Next, assume that g can be endowed with two different splittings: the original
parabolic gradation (16), and a splitting of the form

(17) gD g�˚ h˚ gC;

where h0 is commutative and g� and gC are dual to each other. Assume also that
this splitting can be chosen so that g1 � gC, g�1 � g� and h� g0, while g0 will
have, in general, intersection with all gC; h and g�.

Remark 3.3. This assumption is not too restrictive. For example, in the complex
case, given a simple Lie algebra (a semisimple one will be the sum of its simple
terms) one can always find two gradations related as above, a pair per root with
weight equal to 1. One way to find the gradations is as follows:1 Let h be a
choice of Cartan subalgebra and � D f˛r g

`
rD1

a simple root system associated
to h. Let ˆC be the set of positive roots and ˆ� the set of negative roots. Let
�2� have weight 1 and letˆ1Df˛ 2ˆ

Cwith � in its linear expansiong andˆ�1

the negative analogue. Define g1 D
L
˛2ˆ1

g˛ and g�1 D
L
˛2ˆ�1

g˛. Let g0

be the sum of the root spaces associated to the remaining roots (the ones that do
not contain �). We see that g1 is commutative since � cannot appear in any linear
expansion with a coefficient higher than one, and if ˛; ˇ 2ˆ1, then the coefficient
of ˛Cˇ would be 2. Likewise with ˆ�1. The second gradation is simply given by
gC D

L
˛2ˆC g˛, g� D

L
˛2ˆ� g˛ and h, ensuring that g1 � gC and g�1 � g�.

Not all algebras have such roots. The ones that do are: Ar (with r different
choices of roots), Br (one choice), Cr (one choice), Dr (3 choices), E6 (two

1The author is very grateful to Professor Georgia Benkart for the description and discussions on
this matter.
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choices), E7 (one choice). In the case of a simple real Lie algebra, Kobayashi and
Nagano [1964; 1965] described all semisimple real Lie algebras with gradations
(16) as direct sums of simple ones belonging to the following list:

(1) gD sl.pC q;R/ with g0 D sl.p;R/˚ sl.q;R/˚R;

(2) gD so.n; n/ with g0 D gl.n;R/;

(3) gD so.pC 1; qC 1/ with g0 D so.pC q/˚R;

(4) gD sp.2n;R/ with g0 D gl.n;R/;

(5) gDE1
6

with g0 D so.5; 5/˚R;

(6) gDE1
7

with g0 DE1
6
˚R.

Using their representations, one can see that the standard finest gradation inherited
from gl.n;R/ with nD pC q will work as gradation (17) for (1); case (2) is very
similar to (4), which we will describe in detail in our last section, while cases (3),
(5) and (6) are not clear to us. As the reader can see, some of the exceptional cases
satisfy our assumptions.

We are now ready for our main theorem.

Theorem 3.4. Assume G and g are as above. The twisted Poisson structure (14)
defined on GN , with r associated to (17) as in (11), is locally reducible to the
quotient GN=PN , and the reduced bracket coincides with the reduction of the
Sklyanin bracket (13) with tensor

Or.�; �/D h��1; �1i;

where ��1 and �1 correspond to the parabolic gradation (16) defining M .

Notice that Or is not an R-matrix and hence the Sklyanin bracket is not Poisson
before reduction.

Proof. The proof is similar to the one for RPn that appeared in [Marí Beffa and
Wang 2013], with some differences. From Theorem 2.8, the quotient is locally
a manifold, and as explained in [Semenov-Tian-Shansky 1985] the gauge action
is a Poisson action for the twisted bracket, whose symplectic leaves are gauge
orbits. Therefore, using the same reasoning as the one used in [Marí Beffa and
Wang 2013, Theorem 5.5] we conclude that the bracket can be reduced whenever
P is admissible (see Definition 2.11). According to Proposition 2.12, this is true
whenever p0 D g1 is a Lie subalgebra of g�, and this is the only condition we need
to check to prove the first part of the theorem.

The Lie bracket in g� is defined by the linearization of the twisted Poisson
bracket at the identity e 2G. That is,

Œde�; de'�� D def�; 'g 2 g
�:
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Since p0 D g1, we will look for functions 'i
s such that de'

i
s generate g1.

First of all, we can locally identify M with the section represented by G�1

through a map x 7! `.x/2G�1. Let ' WU �M!Rn be local coordinates around o

defined as follows: choose coordinates for G�1 given by the exponential map
composed with linear coordinates in g�1, and define '.`.x//D'.x/. Assume 'i are
the components of '; that is, if wi are generators of g�1, then `.x/D…iexp.˛iwi/

and 'i.x/D˛i , i D 1; : : : ; n (recall that G�1 is commutative). Now, let L2GN be
close enough to e 2GN so that LD .Ls/ can be factored as Ls DLs

�1
Ls

0
Ls

1
with

Ls
i 2Gi , according to the gradation (16). We choose xs 2U �M such that Ls

�1
D

`.xs/, and define 'i.L/D .'i.Ls//D .'
i.Ls
�1
//D .'i.`.xs///D .'

i.xs//. Since
de'

i is in the dual of the tangent to M at the identity (which we can identify with
g�1, with dual equal to g1) and ' are coordinates, the elements de'

i , i D 1; : : : ; n,
must generate g1 D p0. Now we only need to check that if f � ; � g is the quotient
bracket in (14), then

Œde'
i ; de'

j �� D def'
i ; 'j
g 2 p0

D g1:

This will imply that P is admissible.
Identify M N with the section represented by GN

�1
via the map

.xs/! .`.xs// 2GN
�1:

Then the action of GN on M N is uniquely determined by the relation

(18) gs`.xs/D `.gs �xs/ps

for some ps 2P . Let �s 2 g and VsD exp.��s/. As before, assume LsDLs
�1

Ls
0
Ls

1

with Ls
�1
D `.xs/ for some xs 2M . Let Vs D exp.��s/. Using (18), we obtain

'.VsLs/D '.VsLs
�1/D '.Vs`.xs//D '.`.Vs �xs//D '.Vs �xs/:

(1) If �s 2 g�1 and given that the infinitesimal action of g�1 on M is constant,
we have that

(19)
d

d�

ˇ̌̌
�D0

'.VsLs/D hrs'.Ls/; �si

is constant in Ls . That is to say, if rs'.Ls/ splits according to the parabolic
gradation (16), then its g1 component is constant for any Ls and for all s.

(2) If � 2 g0, then '.VsLs/ is again '.Vs �xs/ as above. The infinitesimal action
is now linear, and hence rs'.Ls/ has a g0-component that is linear in Ls

�1
D

`.xs/, for all s. This will vanish at xs D 0, or what is the same, at Ls D e.

(3) If � 2 g1, the infinitesimal action will be quadratic, and hence rs'.Ls/ will
have a g�1 component that is quadratic in Ls

�1
D `.xs/, for all s. Thus, it

vanishes at xs D 0 or Ls D e.
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We now calculate def'
i ; 'j g where f � ; � g is the twisted bracket (14) with the

r -matrix given by (11). We want to show that def'
i ; 'j g 2 p0 and so we need to

show that d
d�

ˇ̌
�D0
f'i

s; '
j
s g.e

��/D 0 whenever � 2 pD g1˚ g0.
Given that .de'

i
s/�1 D 0 and .r'i

s.L//�1 is quadratic in `.xs/ (with `.o/D e)
we can conclude that d

d�

ˇ̌
�D0

.r'i
s.e

��//�1 D 0.
Also, r 0'i

s.e
��/D e���r'i

s.e
��/e�� , and therefore

d

d�

ˇ̌̌
�D0
r
0'i

s.e
��/D Œde'

i
s; �s �C

d

d�

ˇ̌̌
�D0
r'i

s.e
��/:

Since de'
i
s 2 g1, whenever � 2 p we have that Œde'

i
s; �s � 2 p and hence

d

d�

ˇ̌̌
�D0

�
r
0'i

s.e
��/
�
�1
D 0:

Furthermore, .de'
i
s/0 D 0 also. Finally, we split

hrC'
i
s;r�'

i
si D hr1'

i
s;r�1'

i
siC hr

0
C'

i
s;r

0
�'

i
si;

where r0
C'

i
s and r0

�'
i
s are the components of rC'i

s and rC'i
s in g0. Substituting

this splitting in the definition of the twisted bracket and going over each one of
its terms, we get that they all vanish, d

d�

ˇ̌
�D0
f'i

s; '
j
s g.e

��/D 0, and hence p0 is a
subalgebra of g�.

We now look at the second assertion of the theorem. The reduced bracket is
calculated as follows: let f; h WK! R be two functions on the quotient space KD

U N=PN , where PN is acting on the open set U N �M N by gauge transformations.
Consider two extensions of f; h to U N , call them F and H, constant on the gauge
leaves of P . That means

F.psC1Ksp�1
s /D F.Ks/D f .ks/

for any ps 2 P , where ks are coordinates for Ks (i.e., a generating system of
invariants defined by Ks). Choosing ps D exp.��s/, �s 2 p and differentiating, we
get that

NX
sD1

h�r
0
sFC ��1

rsF; �si D 0:

That is,

(20) �r
0FC ��1

rF 2 .p0/N D gN
1 :

Likewise for H. The reduced bracket is then defined as

(21) ff; hginv.k/D fF;Hg.K/:
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We now use this description to finish the proof. Since �r 0F�rF2 .p0/N D gN
1

and g� � g�1˚ g0, we have that �.r 0F/� D .rF/�, and from this the reduced
Poisson bracket can be expressed as

ff; hg.k/D 1
2

�
h.rF/�; .rH/Ci � h.rF/C; .rH/�i

C h.r 0F/�; .r
0H/Ci � h.r

0F/C; .r
0H/�i

�
� h�.r 0F/�; .rH/CiC h�.r

0H/�; .rF/Ci

D
1
2

�
�h.rF/�; .rH/CiC h.rF/C; .rH/�i

C h.r 0F/�; .r
0H/Ci � h.r

0F/C; .r
0H/�i

�
�

1
2

�
�h.rF/�; .rH/CiC h.rF/C; .rH/�i

C h.r 0F/�; .r
0H/Ci � h.r

0F/C; .r
0H/�i

�
D

1
2
h.rH/�; .rF/C� �.r

0F/Ci �
1
2
h.rF/�; .rH/C� �.r

0H/Ci:

Since g1 � gC, this is equal to

1
2
h.rH/�1; .rF/1� �.r

0F/1i �
1
2
h.rF/�1; .rH/1� �.r

0H/1i;

and from this we can go back to

�
1
2

�
�h.rF/�1; .rH/1iC h.rF/1; .rH/�1i

C h.r 0F/�1; .r
0H/1i � h.r

0F/1; .r
0H/�1i

�
;

which coincides with the evaluation of (13) defined by the parabolic gradation (16)
on the extensions F and H. �

4. Polygon evolutions inducing a Hamiltonian evolution on invariants

In this section we will study which invariant evolutions of polygons induce an evo-
lution on k which is Hamiltonian with respect to the reduced bracket we described
in our previous section. In particular, we will link the invariant vector vs describing
the evolution (4), to the gradient of the Hamiltonian f determining the evolution of
the invariants. The relation is simple and straightforward and we will show that any
Hamiltonian flow on the invariants is induced by a polygon evolution.

First of all, recall that if .xs/ evolves under (4), then the evolution of the Maurer–
Cartan invariants is given by (6), where N D �t�

�1 2 gN satisfies the condition

.Ns/�1 D�d&.o/vs:

Lemma 4.1. Let h be a function of the invariants k, and let H be an extension of h

constant on the gauge orbits of P . Assume that, for a fixed function f ,
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NX
sD1

hrsH; .Ks/tK
�1
s i D ff; hginv.k/ for any function h:

Then KtK
�1 defines a f � ; � ginv-Hamiltonian evolution on the coordinates k, with

Hamiltonian f .

Proof. Let kD .ks/ and ks D .k
i
s/ be coordinates for K (we write Ks DKs.k/),

and assume x evolves according to (4). The evolution induced on Ks (through k)
is given by the relation

.Ks/tK
�1
s D

NX
rD1

nX
iD1

.ki
r /t
@Ks

@ki
r

K�1
s :

On the other hand, let h be a function of k and H an extension constant on the
leaves of P . If ZsDKs.k

i
r .�//K

�1
s .ki

r /, with ki
r .0/Dki

r and d
d�

ˇ̌
�D0

ki
r .0/D v

i
r ,

we have

(22)
d

d�

ˇ̌̌
�D0

H.ZsKs/D
X

s

D
rsH.K/;

d

d�

ˇ̌̌
�D0

Zs

E
on the one side, while on the other side

d

d�

ˇ̌̌
�D0

H.ZsKs/D
d

d�

ˇ̌̌
�D0

H.Ks.k
i
r .�///D

d

d�

ˇ̌̌
�D0

h.ki
r .�//D

NX
rD1

nX
iD1

vi
r

@h

@ki
r

:

We further see that

d

d�

ˇ̌̌
�D0

Zs D

NX
rD1

nX
iD1

vi
r

@K

@ki
r

K�1:

Comparing the two sides of (22), which must be equal for any values of vi
r , we

arrive at
@h

@ki
r

D

X
s

D
rsH.K/;

@Ks

@ki
r

K�1
s

E
:

Finally, assume that

NX
sD1

hrsH; .Ks/tK
�1
s i D ff; hginv.k/

for any h. Then

NX
sD1

NX
rD1

nX
iD1

D
.ki

r /t
@Ks

@ki
r

K�1
s ;rsH

E
D

X
s

X
r;i

.ki
r /t

@h

@ki
r

D ff; hginv.k/

for any h, and hence, by definition, k evolves via a Hamiltonian evolution, with
Hamiltonian function f . �
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Theorem 4.2. Let .xs/ evolve using an evolution of the form (4), for some invariant
vector vs , and let & be a section such that �s D �

P
s &.xs/

�1, �P
s 2 P , for any s.

Assume that there exits a function f .k/, with extension F constant on the gauge
orbits of P, and such that

(23) d&.o/vs D �
�1.rsF/�1:

The evolution induced on k by (4) is Hamiltonian with respect to f � ; � ginv, with
Hamiltonian f .

Proof. Using (6) and (21), we have that, on the one hand

(24)
NX

sD1

h.Ks/tK
�1
s ;rsHi D

NX
sD1

hNsC1�KsNsK�1
s ;rsHi;

and on the other hand

ff; hginv.k/D
1

2

NX
sD1

h.rsH/�1; .rsF� �r 0sF/1i � h.rsF/�1; .rsH� �r 0sH/1i:

Now, since rsF� �r 0sF 2 g1, and g�1 is the dual of g1, we have

h.rsH/�1; .rsF� �r 0sF/1i D hrsH;rsF� �r 0sFi

D hrsH;rsFi � hrsH; �r 0sFi:

Also, since h � ; � i is invariant under the adjoint action and under the shift operator,P
shrsH;rsFi D

P
sh�r

0
sH; �r 0sFi. Substituting this in our calculations we getX

s

h.rsH/�1; .rsF� �r 0sF/1i D
X

s

h�r 0sH; �r 0sFi � hrsH; �r 0sFi

D

X
s

h�r 0sH�rsH; �r 0sFi

D

X
s

h.�r 0sH�rsH/1; .�r
0
sF/�1i

D

X
s

h.�r 0sH�rsH/1; .rsF/�1i;

where we have used that .rsF/�1D .�r
0
sF/�1 since rsF��r 0sF2 g1. Therefore

ff; hginv.k/D�

NX
sD1

h.rsF/�1; .rsH� �r 0sH/1:

Back to (24). SinceX
s

hKsNsK�1
s ;rsHi D

X
s

hNs;K
�1
s rsHKsi D

X
s

h�Ns; �.K
�1
s rsHKs/i;
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we have

NX
sD1

hNsC1�KsNsK�1
s ;rsHi D

NX
sD1

h�Ns;rsH� �.K�1
s rsHKs/i

D

NX
sD1

h�Ns;rsH� �r 0sHi

D

NX
sD1

.h�Ns/�1; .rsH� �r 0sH/1i:

But, if �&.o/vsDr�1F (and since .Ns/�1D�d&.o/vs by (7)), we get .�Ns/�1D

�.rF/�1, and hence

NX
sD1

h.Ks/tK
�1
s ;rsHi D �

NX
sD1

h.rsF/�1; .rsH� �r 0sH/1i D ff; hginv.k/:

Using our previous lemma, we conclude the proof. �

Remark 4.3. In all examples we can think of the values of .Ns/�1 D�d&.o/vs

and condition (4) as determining Ns uniquely. This means that if xs induces an
evolution on k which is Hamiltonian with respect to f � ; � ginv with Hamiltonian f ,
then necessarily �.Ns/�1D�.rsF/�1, since this choice induces the same evolution
and Ns is unique given those determining values. Hence, assuming that N is
uniquely determined by .Ns/�1, sD 1; : : : ;N , and (4), the converse of the theorem
is also true.

5. The Lagrangian Grassmannian example:
the Lagrangian Schwarzian difference and Volterra evolutions

In this section we apply the previous construction to the case of the Lagrangian
Grassmannian. In this example G D Sp.2n/ and the parabolic gradation of the
algebra is given by

(25)
�

0 0

Z 0

�
2 g1;

�
A 0

0 �AT

�
2 g0;

�
0 Y

0 0

�
2 g�1;

where 0 is the zero n�n block, Z and Y are symmetric matrices, and A is a general
n� n matrix. Here pD g0˚ g1. The associated local factorization of the group is
given by

(26) g D

�
I 0
yS I

��
‚ 0

0 ‚�T

��
I S

0 I

�
2G1G0G�1;
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with ‚ 2 GL.n;R/, yS and S symmetric. Also, P D G1G0 and G=P is the
Lagrangian Grassmannian. For a more geometric definition, consider n vectors
defining a given n-dimensional subspace x of R2n. We can find n such vectors so
that when placed as columns in a matrix, the matrix will look like�

u

I

�
:

If the subspace is Lagrangian, u will be symmetric. We identify this subspace with
the matrix

(27) &.x/D

�
I u

0 I

�
2G�1;

which defines a section of the quotient G=P .
The second gradation (17) is given by

(28)
�

AL 0

C �AT
L

�
2 gC;

�
d 0

0 �d

�
2 h;

�
AU B

0 �AT
U

�
2 g�;

where AL is strictly lower triangular, AU is strictly upper triangular, and d is
diagonal. One can readily see that gC, g� and h are all subalgebras of g. Also clearly
h is commutative, g1� gC, g�1� g� and h� g0, so that we can apply Theorem 3.4
to obtain a Poisson bracket on the moduli space of Lagrangian Grassmannian
polygons. This structure is, in general, very complicated. What we want to do in
this section is to show that some of the invariants of Lagrangian polygons behave
in familiar and interesting ways under selected evolutions. For this we will go into
details, constructing explicitly the invariants and their evolutions. We will then
restrict the reduced bracket further to a submanifold generated by these special
invariants.

A moving frame along Lagrangian Grassmannian polygons. Let g be factored
as in (26). If we identify M with symmetric matrices u, using the section (27),
and given that the action of Sp.2n/ on M is determined by (18), we can write the
action explicitly as

(29) g �uD‚.uCS/.‚�T
C yS‚.uCS//�1:

Assume we factor our right moving frame �D .�s/2 Sp.2n/N according to (26) as

�s D

�
I 0
ySs I

��
‚s 0

0 ‚�T
s

��
I Ss

0 I

�
:

If we define transverse sections as in (1) through the normalizations

�s �us D 0; �s �us�1 D�I; �s �usC1 D I;
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we obtain the equations

usCSs D 0;

‚s.usC1CSs/D‚
�T
s C ySs‚s.usC1CSs/;

‚s.us�1CSs/D�.‚
�T
s C ySs‚s.us�1CSs//:

These can be solved for

Ss D�us; ySs D I �‚�T
s .usC1�us/

�1‚�1
s

and

(30) ‚T
s ‚s D

1
2

�
.usC1�us/

�1
C .us �us�1/

�1
�
D U�1

s :

Equation (30) determines ‚ completely up to an orthogonal factor, assuming that
U�1

s D
1
2

�
.usC1 � us/

�1C .us � us�1/
�1
�

is positive definite. In fact, we have
‚s D �sU�1=2

s , where �s 2O.n/ and U�1=2
s is a square root of a symmetric matrix

as defined in [Ovsienko 1993], unique up to the action of the orthogonal group.
That is, U

�T=2
s U

�1=2
s D U�1

s .
To determine the last factor �s , and with it the rest of the moving frame, we need

to choose one more normalization, thus completing the definition of the transverse
section. Let’s choose �s �usC2 to be diagonal. After substituting all the values we
have already found we get

�s �usC2 D
�
I C‚�T ..usC2�us/

�1
� .usC1�us/

�1/‚�1
��1

:

Definition 5.1 (Lagrangian Schwarzian difference). Given a generic polygon of
Lagrangian planes us , we define S.u/D .Ss.u// to be

Ss.u/D U�1=2
s

�
U�1

s C .usC2�us/
�1
� .usC1�us/

�1
��1

U�T=2
s

D U�1=2
s

�
.usC2�us/

�1
�

1
2
.usC1�us/

�1
C

1
2
.us �us�1/

�1
��1

U�T=2
s

and we call it the Lagrangian Schwarzian difference of u, where Us is as in (30).

This definition is the discrete analogue to the Lagrangian Schwarzian derivative
defined in [Ovsienko 1993] for curves of Lagrangian planes. In fact, if we denote
u.sC k/D 
 .xC k�/, a long but standard calculation shows that the continuous
limit of Ss.u/ is indeed a multiple of the Lagrangian Schwarzian derivative defined
in the same reference. Now, in order to diagonalize �s �usC2 we need to choose �s

to be an element of the orthogonal group that diagonalizes the symmetric matrix
Ss.u/. If we call

(31) zDs D �sSs.u/�
T
s ;
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then �s �usC2D
zD will be diagonal. These normalization choices describe transverse

sections as in (1), and they determine the moving frame � uniquely. From now on
we will denote Ds D I � zD�1

s , and hence I s
sC2
D .I CDs/

�1.

Maurer–Cartan invariants and their evolutions. Once we have determined a mov-
ing frame, we would like to describe the right Maurer–Cartan matrix associated to
it. To do this we will use the recursion equations (3)

Ks � I
s
k D I sC1

k
:

Using the choices I s
s D 0, I s

sC1
D I , I s

s�1
D�I and I s

sC2
D .ICDs/

�1, we select
the equations

(32) Ks � 0D�I; Ks � I D 0; Ks � I
s
sC2 D I;

as those determining K. Assume that Ks factorizes as

Ks D

�
I 0

Ks;1 I

��
Ks;0 0

0 .Ks;0/
�T

��
I Ks;�1

0 I

�
:

Straightforward calculations using formula (29) show that the three recursion
equations (32) determine the values

Ks;�1 D�I; KT
s;0Ks;0 D�

1
2
D�1

s ; Ks;1 DK�T
s;0 K�1

s;0 � I:

Assuming that Ds is negative definite, we obtain the solutions

(33) Ks;�1 D�I; Ks;0 D
yKs;0
yDs; Ks;1 D�.I C 2 yKs;0Ds

yKT
s;0/;

where

(34) yDs D
1
p

2
.�Ds/

�1=2; yKs;0 2 O.n/:

Remark 5.2. the negative definite condition imposed on Ds can be removed by
merely choosing different normalizations. Indeed, if we choose arbitrary values
for I s

r , the relations between the different invariants determined by equations (32)
become

KT
s;0..I

s
sC1/

�1
� .I s

s�1/
�1/Ks;0 D�.I

s
sC1/

�2D�1
s :

Thus, if Ds is positive definite, we could choose I s
sC1
D�I and I s

s�1
D I instead.

We can also change the sign of the different entries in I , depending on the sign of
the different eigenvalues of S.u/. For simplicity we will keep the choices above.

The following theorem summarizes our findings.



308 GLORIA MARÍ BEFFA

Theorem 5.3. There exists a right moving frame along polygons of Lagrangian
subspaces such that its associated Maurer–Cartan matrix is of the form

(35) Ks D

 
I 0

�.I C 2 yKs;0Ds
yKT

s;0
/ I

! 
yKs;0
yDs 0

0 yKT
s;0
yD�1

s

!�
I �I

0 I

�
where yDs is given as in (34). The entries of Ds and yKs;0 functionally generate all
invariants of Lagrangian polygons.

Next we turn to the study of invariant evolutions of Lagrangian polygons (that is,
those for which Sp.2n/ takes solutions to solutions) and the equations they induce
on the invariants. Assume .us.t//, with us.t/ symmetric, represents a family of
polygons of Lagrangian planes, and assume it is a solution of an invariant evolution.
According to Theorem 2.6, the equation can be written in terms of our moving
frame. Since the linearization at o of the action (29) is given by

v 7!‚v‚T

and having in mind that the G0 factor of ��1
s is U

1=2
s �T

s , from (4) we conclude
that any invariant evolution can be written as

(36) .us/t D U 1=2
s �T

s vs�sU T=2
s

for symmetric matrices vs depending on the entries of .Dr / and . yKr;0/, and where
�s diagonalizes the Lagrangian Schwarzian difference of the flow. From now on
we will assume that Ds D diag.d s

i /, with d s
i ¤ d s

j for all i ¤ j .

Theorem 5.4. Let vs be diagonal, and assume the initial condition us.0/ satisfies
yKs;0 D I . Then yKs;0 D I is preserved by the flow (36) and whenever vs D

�
1
2
.1C ��1/Dsrsf for some Hamiltonian function f , Ds satisfies a Hamiltonian

equation with respect to the Poisson structure

(37) PD
X

s

Ds

�
Ds�

�1
�Ds�C2.��1

��/C��1Ds��DsC�
�1Ds�

�1
��Ds�

�
Ds:

with Hamiltonian f . Assume vs D�I (and hence rsf DD�1
s ). Then, as polygons

evolve following

.us/t D 2..us �usC1/
�1
� .us �us�1/

�1/�1;

the eigenvalues of the Lagrangian Schwarzian difference evolve following a decou-
pled system of Volterra equations.

Proof. From now on, and to avoid cluttering, we will drop the subindex s and will
only use it if needed to avoid confusion. Thus, NsC1 will become �N , Ns will
become N , yDs will become yD, and so on.
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We will use Theorem 2.7. Consider the section & WM !G�1 given by

&.u/D

�
I u

0 I

�
:

It satisfies �D �P&.u/�1 with �P 2P . Theorem 2.7 tells us that N D �t�
�1 must

be of the form

N D

�
N0 �v

N1 �N T
0

�
for some N0 2 gl.n/, N1 symmetric and for some symmetric matrix v depending
on the invariants. A straightforward calculation shows that if K is as in (35), and if
yK0 D I , then

KNK�1
D

�
I 0

K1 I

� 
yD.N0�N1/ yD

�1 yD.N0CN T
0
�N1� v/ yD

yD�1N1
yD�1 yD�1.N1�N T

0
/ yD

!�
I 0

�K1 I

�
;

where K1 D�.I C 2D/. To simplify formulas we will conjugate (4) by
�

I
�K1

0
I

�
.

Direct, although longer, calculations show that if yK0 D I�
I 0

�K1 I

�
KtK

�1

�
I 0

K1 I

�
D

 
. yK0/t�

1
2
D�1Dt 0

2.�DtCD. yK0/t�. yK0/tD/ . yK0/tC
1
2
D�1Dt

!
;

where we have used the relationship

yD�1. yD/t D�
1
2
D�1Dt :

Also�
I 0

�K1 I

��
�N0 ��v

�N1 ��N
T
0

��
I 0

K1 I

�
D 

�N0C�v.I C 2D/ ��v

�N1C�N0C�N
T
0
C 2D�N0C2TN T

0
DC.IC2D/2�v ��N T

0
�.IC2D/�v

!
:

Substituting these values in the conjugation of 2.7 by
�

I
�K1

0
I

�
, and equating the

different entries, we arrive at the equations

�v D yD.vCN1�N0�N T
0 /
yD;

D�1Dt D
yD.N0�N1/ yD

�1
C yD�1.N T

0 �N1/ yD� 2.I C 2D/�v� �N0� �N
T
0 ;

2. yK0/t D�N
T
0 � �N0C

yD.N0�N1/ yD
�1
C yD�1.N1�N T

0 /
yD;

2.D. yK0/t � . yK0/tD�Dt /D �N1C �N0C �N
T
0 C 2.D�N0C �N

T
0 D/

C .I C 2D/2�v� yD�1N1
yD�1:

The last three equations result in a compatibility condition that can be obtained as
follows: we use the second equation and we multiply once on the left and once
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on the right by D, thus obtaining two equations. We substitute the sum of these
two equations in place of 2Dt in the last equation, and use the third equation to
substitute . yK0/t . After some straightforward work we obtain

�N1C �N0C �N
T
0 D

yD�1.N0CN T
0 �N1/ yD

�1
� �v.I � 4D2/:

We now use the first equation, and we get

(38) �N1 D�.�.D�v/C �vCDv/:

From this, if v is diagonal, so is N1. The first equation implies that N0CN T
0

is
also diagonal. Back to the second equation, we see that yDN0

yD�1C yD�1N T
0
yD is

once more diagonal, which with our assumption di ¤ dj implies that N0 is diagonal.
If N0 and N1 are diagonal, the third equation tells us that . yK0/t D 0, proving the
first assertion of the theorem.

We can now find Dt . Using (38) and the first equation we have

2N0 D .D� � �
�1D/v;

and substituting everything into the second equation we get

(39) D�1Dt D .D� �D� C �
�1D�D� C 2� 2�/v:

Finally, if we substitute v D 1
2
.1C ��1/Drf , we have

(40) Dt D
1
2
D
�
D��1

�D�C2.��1
��/C��1D��DC��1D��1

��D�
�
Drf;

which is a Hamiltonian equation with respect to the Hamiltonian structure

PDD
�
D��1

�D� C 2.��1
� �/C ��1D� �DC ��1D��1

� �D�
�
D:

This is the second Hamiltonian structure for the Volterra equation

Dt DD.� � ��1/D

(see [Khanizadeh et al. 2013]), which we obtain whenever v D I and rf DD�1.
Adopting subindices again and using (36) and (30), if vs D I , the corresponding
evolution for us is given by

.us/t D U�1=2
s U�T=2

s D U�1
s D 2

�
.usC1�us/

�1
C .us �us�1/

�1
��1

concluding the proof of the theorem. �

Of course, we did not guess the relation

(41) v D 1
2
.1C ��1/Drf I



HAMILTONIAN EVOLUTIONS OF TWISTED POLYGONS 311

it was given to us by the general reduction process and the compatibility condition
(23). We will describe the reduction next for our particular example and see how
we arrived to relation (41).

The reduced bracket and the double reduction to D. Before we prove that the
reduced bracket found in the previous section is further reducible to D, we will
describe the reduced bracket itself in a little more detail. Once more we are dropping
the subindex to avoid cluttering. As explained in (21), to calculate the reduction one
considers two functions f and h defined on the invariants (coordinates) generating
D and yK0. Let us denote these invariants by d D .di/ and ki;j , i < j . Let us
also denote by ı1f the diagonal matrix ı1f D diag@f=@di , and by ı0f a skew
symmetric matrix generated by @f=@ki;j . (The precise form of ı0f will become
clear along the process, therefore we will postpone the description until relevant.)

Set

(42) rFD

�
F0 F�1

F1 �FT
0

�
and let us split F0 as

(43) F0 D F�0 CF�k
0 CFd

0 ;

where � indicates the symmetric diagonal free components, �k is the skew-
symmetric component, and d the diagonal. Likewise for F�1 and F1 (clearly
F�k
�1
D F�k

1
D 0). Let us denote by K.D; yK0/ the family of matrices (35), and

consider the element of Sp.2n/N

Z.�/DK.DC �V; yK0/K.D; yK0/
�1;

where V is an arbitrary diagonal matrix. Let us call v the diagonal of V , written as
a vector. On the one hand, direct calculations show that when yK0 D I ,

d

d�

ˇ̌̌
�D0

Z.�/D

�
�

1
2
D�1V 0

D�1V 1
2
D�1V

�
:

On the other hand Z.�/K DK.DC �V; yK0/ and since F is an extension of f

F.Z.�/K/D F.K.DC �V; yK0//D f .d C �v; ki;j /:

Differentiating with respect to �,�
rF;

�
�

1
2
D�1V 0

D�1V 1
2
D�1V

� �
D hD�1.Fd

�1�Fd
0 /;V i D hı1f;V i:

This is true for any value of V , and therefore

(44) Fd
�1�Fd

0 DDı1f:
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Likewise, we can choose Z.�/ such that

F.Z.�/K/D F.D; yK0.�//D f .d; ki;j .�//

with ki;j .0/D ki;j and d
d�

ˇ̌
�D0

ki;j .�/D wi;j . Indeed Z.�/DK.D; yK0.�//K
�1,

with yK0.�/ chosen so that yK0.0/ D yK0 and yK�1
0

d
d�

ˇ̌
�D0
yK0 D W , W D .wi;j /.

(One can be more specific and create Z.�/ using the exponential function, but any
such family can be used and the precise form is not relevant.)

Differentiating with respect to �, we have�
rF;

�
W 0

0 W

� �
D h2F0;W i D hı0f;W i;

and hence F�
0
D

1
2
ı0f . We can now determine how the matrix ı0f is created: it

is defined as the skew-symmetric matrix such that

d

d�

ˇ̌̌
�D0

f .d; ki;j .�//D hı0f;W i

with W D .wi;j / (that is, .ı0f /i;j D @f=@kj ;i). With this in mind, we proceed to
our last theorem.

Theorem 5.5. The reduced Poisson bracket (21) can be further reduced to the
submanifold yK0 D I . When using the coordinates given by the invariants D, the
resulting bracket is a decoupled system of Hamiltonian structures for the Volterra
equation as in (37).

Proof. More precisely, what we will show is that if f is independent of ki;j and h

is independent of di , at yK0 D I their reduced bracket vanishes, while the reduced
bracket of two functions that only depend on D is given by the second Volterra
structure. Once again, and as explained in (21), if f and h are two functions
depending on D and yK0, their reduced bracket is defined as

ff; hginv D
1
2
h.rH/�1; .rF/1� �.r

0F/1i �
1
2
h.rF/�1; .rH/1� �.r

0H/1i;

where F and H are two extensions satisfying (20). Assume rF is given as in
(42) with the splitting (43). After conjugating r 0F back to rF and simplifying,
condition (20) results in two equations at yK0 D I , namely

��1F0 D
yD�1.F0�F�1K1/ yDC yD.F1CK1F0CFT

0 K1�K1F�1K1/ yD;(45)

��1F�1D
yD.F�1�FT

0 /
yD�1
���1F0:(46)

Case 1: Assume that f depends only on D. Then F�k
0
D

1
2
ı0f D 0. Using (45),

0D ��1.F0�FT
0 /D

yD�1.F0�F�1K1/ yD� yD.F
T
0 �K1F�1/ yD

�1:
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Using that K1 D I � yD�2, we get

0D yD�1.F0�F�1/ yD� yD.F
T
0 �F�1/ yD

�1;

which, under the condition di ¤ dj , implies

F�0 D F�
�1:

Substituting this in (45) we get

2�F�1 D
yD�1F�

�1
yD�1
� yD�1F�

�1
yD�1
D 0

and, therefore,
F�
�1 D F�0 D 0:

This implies that F1 and F0 are both diagonal. If we now look at (45) we clearly
see that F1 is also diagonal. These diagonals can easily be found from (45)-(46)
and the relation Fd

�1
DDı1f CFd

0
. They are

Fd
�1 D

1
2
.� C I/Dı1f(47)

Fd
0 D

1
2
.� � I/Dı1f(48)

Fd
1 D

�
D��1DCD2

�
1
2
�DC 3

2
D
�
ı1f:(49)

Case 2: Assume that f does not depend on D. Then Fd
�1
D Fd

0
CDı1f D Fd

0
,

and equating the diagonals in (46) we get Fd
�1
D Fd

0
D 0. Doing the same with

(45), we have that Fd
1
D 0 also.

Now, assume that f depends on D, while h doesn’t. Then, both .rF/�1 and
.rF� �r 0F/1, whose only nonconstant block is given by

F1� �. yD.F1CK1F0CFT
0 K1�K1F�1K1/ yD/;

are diagonal, while .rH/�1 and .rH� �r 0H/1 are diagonal free. Therefore as
one can readily see from the formula in (21),

ff; hginv D 0:

If both f and h depend on D only, we can substitute (47)-(48)-(49) in (21) to find
the double reduction. It is given by

ff; hginv.D/

D
1
2

˝
ı1h;D

�
.��1

��/DCD.��1
��/C2.��1

��/C��1D��1
��D�

�
Dı1f

˛
;

which is a decoupled system of second Hamiltonian structures for the Volterra
lattice, as stated. �
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We can now see where the relation vs D
1
2
.I C ��1/Dsısf came from: F�1 D

1
2
.� C 1/Dı1f and �vs D F�1, according to (23).

6. Conclusion and further study

In this paper we have shown that, if G is semisimple and g is a j1j-graded Lie algebra
with a parabolic gradation compatible with a second grading of the form (17), then
the moduli space of polygons in G=P is endowed with a natural Poisson bracket that
can be linked to invariantizations of polygon evolutions. As an example we described
in detail the case of polygons of Lagrangian subspaces in R2n. We show that
under some nondegeneracy conditions the Poisson bracket can be restricted further
to a certain submanifold of Lagrangian planes, and that on this submanifold the
eigenvalues of the Lagrangian Schwarzian difference evolve following a Hamiltonian
evolution, one that becomes a decoupled system of Volterra equations when a proper
Hamiltonian is chosen.

In the continuous case, the existence of a Poisson structure on the moduli space
of curves is guaranteed not only for the case of j1j-graded Lie algebras but also for
general homogeneous manifolds of the form G=H with G semisimple [Marí Beffa
2010] and for semidirect products [Marí Beffa 2006]. It is well possible that the
same is true for the discrete counterpart, but the discrete case is more difficult to
study. The main obstacle is the need to rely on R-matrices to define the Poisson
Lie group at the beginning of our construction. If we consider a general case
G=H , with Oh being the Lie algebra of H , then to be able to use these Poisson
structures we will need to coordinate Oh with a gradation of the form (17), with
Oh0 � gC: on the one hand (17) is used to define the R-matrix, and on the other
hand Oh is used for the reduction itself, so both need to be coordinated throughout
calculations. Not only that, if m is a linear complement for Oh, so g D Oh˚m, in
order for the proof of Theorem 3.4 to go through, one can check that we would
need the condition m�\mD 0. At first sight, this seems to not be always possible
since choosing OhD g1 (instead of OhD g1˚ g0) provides a simple counterexample.
Furthermore, in the general case, the action of G on G=H will also determine
whether or not the bracket reduces. Indeed, the fact that the infinitesimal action
was either constant, linear or quadratic, depending on which subgroup of G we
were using, was fundamental to the admissibility of p (we need the action to vanish
at zero, and the derivative of the infinitesimal action of Oh0 to also vanish at zero).
Hence, one will have to decide which actions qualify and which ones don’t. Thus,
although a more general theorem is true for those other cases that satisfy these
three conditions, it would not be as general as the theorem for curve evolutions.
Surprisingly, the case of the homogeneous 2-sphere SO.3/=SO.2/ does not satisfy
these three conditions (one can check that if m is a linear complement m�\m¤ 0),
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but nevertheless in [Mansfield et al. 2013], we described polygon evolutions on
the 2-sphere SO.3/=SO.2/ inducing an equation of Volterra type on the discrete
curvature of the polygon. Thus, perhaps a somehow different approach is needed to
increase the generality. Work in that direction is under way.

A different and very interesting question is how one can get a second Hamiltonian
structure, a companion for the reduction, to be used for integrability of difference
evolutions. This point is not at all clear: in the continuous case it is know that
it comes from a reduction of a second Hamiltonian structure (see [Marí Beffa
2010]), but it is also known that this second structure is not always reducible
(a counterexample can be found in [Marí Beffa 2007]). No such natural second
structure seems to exist in the discrete case and the situation becomes more murky.
In [Marí Beffa and Wang 2013] we showed that in the case of RPn, even though
the right bracket (the portion of the Sklyanin bracket involving right gradients
only) is not Poisson, when reduced to GN=PN the result is Poisson and a second
Hamiltonian structure for integrable discretizations of Wn-algebras. It seems to be
a similar situation as having the Sklyanin bracket reduce to a Poisson bracket, even
though it is not a Poisson bracket with our choice of parabolic gradation. Thus,
perhaps there is an underlying bracket that coordinates with the right bracket to
give the same result, but what bracket this might be is unknown to us.
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