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ON SCHWARZ–CHRISTOFFEL MAPPINGS

MARTIN CHUAQUI AND CHRISTIAN POMMERENKE

We extend previous work on Schwarz–Christoffel mappings, including the
special cases when the image is a convex polygon or its complement. We
center our analysis on the relationship between the pre-Schwarzian of such
mappings and Blaschke products. For arbitrary Schwarz–Christoffel map-
pings, we resolve an open question from earlier work of Chuaqui, Duren
and Osgood that relates the degrees of the associated Blaschke products
with the number of convex and concave vertices of the polygon. In addi-
tion, we obtain a sharp sufficient condition in terms of the exterior angles
for the injectivity of a mapping given by the Schwarz–Christoffel formula,
and study the geometric interplay between the location of the zeros of the
Blaschke products and the separation of the prevertices.

1. Introduction

The purpose of this paper is to provide further information about Schwarz–Christoffel
mappings that adds to the results obtained in [Chuaqui et al. 2011; 2012]. We refer
the reader to [Bhowmik et al. 2009] for related interesting work on concave func-
tions.

Let f be a Schwarz–Christoffel mapping of the unit disk D onto the interior of
an (n+1)-gon. In other words, f is a conformal map onto a domain in the extended
complex plane whose boundary consists of finitely many line segments, rays or
lines. In [Chuaqui et al. 2012], it is shown that the pre-Schwarzian of f has the form

(1-1)
f ′′

f ′
=

2B1/B2

1− zB1/B2

for some finite Blaschke products B1, B2 without common zeros, with respective
degrees d1, d2 satisfying d1+ d2 = n. The polygon is convex if and only if d2 = 0
(see also [Chuaqui et al. 2011]). The representation for f ′′/ f ′ is obtained from a
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well-known formula:

(1-2)
f ′′

f ′
=−2

n+1∑
k=1

βk

z− zk
,

where each zk is a prevertex and 2πβk is the exterior angle at zk (that is, π minus
the interior angle); we have

∑n+1
k=1 βk = 1. The formula (1-2) remains valid for

polygons with one vertex at infinity. (The angle at infinity between two sides is,
by definition, −1 times the angle determined, at their crossing in the plane, by the
lines containing the sides.)

As a consequence of (1-1) and (1-2), the prevertices are shown to be the roots of
the equation

(1-3)
zB1(z)
B2(z)

= 1.

It is interesting that (1-3) corresponds to a polynomial equation of degree n + 1
for which all roots are simple and lie on |z| = 1. This is a particular feature of the
pair of Blaschke products B1, B2 arising from Schwarz–Christoffel mappings. Note
that the topological degree of zB1/B2 on ∂D is 1+ d1− d2, so that zB1/B2 must
be traversing in the negative sense at many of the prevertices. In fact, as the proof
of Theorem 2 shows, at a prevertex zk , zB1/B2 is traversing ∂D in the positive or
negative sense according to whether f (zk) is a convex or a concave vertex. It is
also interesting to observe that when d2 = 0, any solution of (1-1) will result in a
univalent mapping because 1+Re{z f ′′/ f ′} ≥ 0. In this paper we answer the natural
question of finding a geometric interpretation for the degree d2, and show that this
integer coincides with the number of concave vertices of the polygon.

In Section 2, we also address the case of Schwarz–Christoffel mappings f onto
the exterior of an (n+2)-gon, with the normalization f (0)=∞. In [Chuaqui et al.
2012], we showed that the pre-Schwarzian of such a mapping is given by

(1-4) z
f ′′

f ′
=

2
z2(B1/B2)− 1

,

for finite Blaschke products B1, B2 without common zeros, with degrees d1, d2,
respectively, for which d1+ d2 = n. The polygon is convex if and only if d2 = 0
and, as before, we show in this paper that d2 is equal to the number of concave
vertices of the polygon.

Another issue we address in this paper is the question of when a solution of (1-2),
or equivalently, of

f ′(z)=
n+1∏
k=1

(z− zk)
−2βk ,

n+1∑
k=1

βk = 1,
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does indeed correspond to a univalent mapping. In Theorem 4 below we obtain the
sharp sufficient condition

∑n+1
k=1 |βk | ≤ 2 for univalence. The result is optimal in

the sense that there are nonunivalent solutions of (1-2) for which
∑n+1

k=1 |βk | differs
from 2 by an arbitrarily small amount.

In Section 3 we obtain results on the separation of the prevertices of convex or
concave Schwarz–Christoffel mappings, expressed in terms of the location of the
zeros a1, . . . , an of the Blaschke product B1 that appears in (1-1) or (1-4) (recall
that, in this case, d2 = 0). The results are sharp, and show, for example, that the
prevertices tend to be uniformly separated on ∂D when all |ak | are very small. Finally,
in Section 4 we derive some necessary conditions for the location of the zeros of
the Blaschke products B1, B2 in (1-1) and (1-4) for arbitrary polygonal mappings.

2. Blaschke products and univalence

In [Chuaqui et al. 2011] we revisit the classical theme of convex mappings. The
starting point is the observation that such mappings correspond exactly to the
solutions of

f ′′

f ′
=

2h
1− zh

,

for some function h analytic in D and bounded by 1. The image f (D) is the interior
of a polygon if and only if h is a finite Blaschke product. We can express h in terms
of p = f ′′/ f ′ as

h =
p

2+ zp
,

and draw the following result.

Theorem 1. Let h be analytic in D with |h(z)| ≤ 1 everywhere. Then there exists
a sequence {Bn}n∈N of finite Blaschke products converging to h locally uniformly
in D.

Proof. Let f be the convex mapping corresponding to h as above, and let �n be
a sequence of convex polygons converging to f (D) in the sense of Carathéodory.
Properly normalized Schwarz–Christoffel mappings fn of D onto �n will converge
locally uniformly to f . Each mapping fn satisfies (1-1) for a certain finite Blaschke
product B1 = B1,n and B2 = 1. The theorem now follows by expressing B1,n in
terms of the pre-Schwarzian of fn . �

Next, we give an answer to an important issue left unresolved in [Chuaqui et al.
2012], namely the connection between the degrees d1, d2 and the number of convex
and concave vertices of the polygon.

Theorem 2. Let f map D onto the interior of an (n+1)-gon, and let B1, B2 be the
corresponding Blaschke products in the representation (1-1). Then d2 is equal to the
number of concave vertices, while d1+ 1 is equal to the number of convex vertices.
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Proof. Let

(2-1) ϕ(t)= arg
{

ei t B1
B2
(ei t)

}
,

with a well-defined branch of the argument once its value has been assigned at one
given vertex. In any case,

(2-2) ϕ′(t)= 1+ ei t
(

B ′1
B1
(ei t)−

B ′2
B2
(ei t)

)
= 1+ |B ′1(e

i t)| − |B ′2(e
i t)|.

On the other hand, we see from (1-1) and (1-2) that

B1/B2

zB1/B2− 1
=

n+1∑
k=1

βk

z− zk
;

hence

(2-3) βk = lim
z→zk

(z− zk)
B1/B2

zB1/B2− 1
=

B1/B2

(zB1/B2)′
(zk)=

1
ϕ′(tk)

,

where we have written zk = ei tk . We say that zk is convex or concave according
to whether the polygon is convex or concave at f (zk). We conclude that ϕ′(tk) is
positive at convex prevertices and negative at concave prevertices. Furthermore, the
points zk are the solutions of (1-3). Hence we see from (2-1) that, for all k,

ϕ(tk)= 2π jk, jk ∈ Z, and ϕ(t) 6= 2π j, t 6= tk .

It follows now that

(2-4)
∫ tk+1

tk
ϕ′(t)=


2π when zk, zk+1 are both convex,
0 when zk, zk+1 are one convex and one concave,
−2π when zk, zk+1 are both concave.

Let a be the number of consecutive convex prevertices, b the number of instances
a vertex of one type is followed by one of the other type, and c the number of
consecutive concave prevertices. Then a+ b+ c = n+ 1, and we see by (2-4) that∫ 2π

0
ϕ′(t) dt = 2π(1+ d1− d2)= 2π(a− c).

Hence we have

1+ d1+ d2 = n+ 1= a+ b+ c, 1+ d1− d2 = a− c.

We conclude that
1+ d1 = a+ b

2
, d2 = c+ b

2
.

To obtain the theorem, we claim that c+ (b/2) is equal to the number of concave
vertices (or prevertices). To see this, let zk, . . . , zl be any maximal chain of con-
secutive concave prevertices. Hence zk−1 and zl+1 are convex prevertices. The
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collection zk, . . . , zl of concave prevertices contributes l − k to the count of c and
contributes 2 to the count of b. Thus its contribution in the count of c+ (b/2) is
exactly the number of points in the chain. This proves the claim, and completes the
proof of the theorem. �

Similar results hold for mappings f onto the exterior of an (n+2)-gon, having
the important normalization f (0)=∞. For such mappings we have that

f ′′

f ′
= 2

( n+2∑
k=1

βk

z− zk
−

1
z

)
,

where, as before, zk are the prevertices and 2πβk are the exterior angles, which
satisfy −1< βk < 1 and

∑n+2
k=1 βk = 1. In [Chuaqui et al. 2012], this was shown to

lead to

z
f ′′

f ′
=

2
z2(B1/B2)− 1

,

for Blaschke products B1, B2 of degree d1, d2 satisfying d1+ d2 = n. Again, the
case d2 = 0 corresponds exactly to when the polygon is convex. The prevertices
appear as the solutions of the equation z2 B1 = B2, yet no further information was
provided in connection with the degrees of the Blaschke products. With a similar
argument as in the proof of Theorem 2, one can show:

Theorem 3. Let f map D onto the exterior of an (n+2)-gon, and let B1, B2 be the
corresponding Blaschke products in the representation (1-4). Then d2 is equal to the
number of concave vertices, while d1+ 2 is equal to the number of convex vertices.

Next, we address the question of the univalence of solutions of (1-2).

Theorem 4. Let 0≤ t1< · · ·< tn+1< 2π , zk = ei tk , βk ∈R, k= 1, . . . ,n+1, and let

(2-5)
n+1∑
k=1

βk = 1,
n+1∑
k=1

|βk | ≤ 2 .

Then the function f defined by

(2-6) f ′(z)= a
n+1∏
k=1

(z− zk)
−2βk , a ∈ C, a 6= 0,

is univalent in D.

Observe that there exist polygons with
∑
|βk | arbitrarily large for which f

remains univalent. For example, one can consider a polygon inscribed between
two disjoint logarithmic spirals. On the other hand, once

∑n+1
k=1 |βk | is allowed to

exceed 2, then the sum of exterior angles at concave vertices will be larger than π
in absolute value, thus making it possible for the image f (D) to intersect itself.
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Proof of Theorem 4. Let f be given as in (2-6) and suppose that (2-5) holds. Then f
is locally injective in D, and we will show that f is univalent there, and, in fact, that
it is close-to-convex. Among the various equivalent formulations of this geometric
property (see, e.g., [Duren 1983, p. 48]), we will show for 0≤ θ1 < θ2 < 2π that

I = I (θ1, θ2)=

∫ θ2

θ1

Re
{

1+ z
f ′′

f ′
(z)
}

dθ >−π, z = reiθ .

To prove this, observe that

Re
{

1+ z
f ′′

f ′
(z)
}
=

∑
k

βk Re
{ zk + z

zk − z

}
=

∑
k

βk
1− r2

|zk − z|2
.

In trying to obtain a lower bound for I we can discard the terms with βk > 0. For
the other terms, we have that∫ θ2

θ1

1− r2

|zk − reiθ |2
dθ < 2π

because of the properties of the Poisson kernel. Hence

I > 2π
∑
βk<0

βk ≥−π,

as desired. �

Example. Avkhadiev and Wirths [2002; 2005; 2007] initiated the study of the
so-called concave mappings, that is, univalent mappings of the disk D onto the
complement of a convex set. As an example of Theorem 4 we can consider a convex
polygon P with∞∈ P and the conformal mapping of D onto the complement of P .
Let πλ be the angle of f (D) at∞, with 1≤ λ≤ 2. It follows from [Avkhadiev and
Wirths 2005] that

f ′(z)= a(z− zn+1)
−λ−1

n∏
k=1

(z− zk)
γk ,

n∑
k=1

γk = λ− 1,

that is, βk =
1
2γk for k = 1, . . . , n, and βn+1 =

1
2(1+ λ). Therefore

n+1∑
k=1

|βk | =
1
2(λ+ 1)+ 1

2(λ− 1)= λ ∈ [1, 2].

Next, we establish the following variant of Theorem 4:

Theorem 5. Let f be defined by (2-6) with
n+1∑
k=1
βk = 1, and suppose that

(2-7)
Im{ f (z)}

Im{z}
> 0 for |z| ≤ 1, Im{z} 6= 0.
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Let θ± be the interior angles of the polygon f (∂D) at f (±1). If

(2-8)
n+1∑
k=1

|βk | ≤ 3+ 1
π

max(θ+−π, 0)+ 1
π

max(θ−−π, 0),

then f is univalent.

The expression on the right-hand side of (2-8) lies in [3, 5], and it is easy to see
that any value in this range can be achieved. Therefore, Theorem 5 gives a better
result than Theorem 4 under the stronger assumption (2-7). The condition (2-7)
implies, in particular, that f (D) is symmetric with respect to R.

Proof of Theorem 5. By (2-7), the polygon P = f (∂D) is symmetric with respect
to R. Hence m := (n+1)/2∈N. We may assume that z1= 1, z2=−1 in (2-6). Then

β1 =
1
2
−
θ+
2π
, β2 =

1
2
−
θ−
2π
,

which satisfy |β1|, |β2| ≤
1
2 . It follows that

1
π

max(θ+−π, 0)=max(−2β1, 0)= |β1| −β1,

1
π

max(θ−−π, 0)=max(−2β2, 0)= |β2| −β2.

Let ϕ± be the conformal mappings of D onto the semidiscs {z ∈ D : Im z ≷ 0}
such that ϕ±(1)= 1, ϕ±(−1)=−1 and ϕ±(±i)=±i . Then

(2-9) P± = f (ϕ±(∂D))= f (∂D∩ {Im z ≷ 0})∪ [ f (−1), f (+1)]

are the upper and lower parts of P union [ f (−1), f (1)]. We may also assume
that βk , k = 3, . . . ,m+ 1, belong to the vertices of P that lie in P+.

Consider the upper polygon P+. The values γk of P+ corresponding to the βk are

γk =

{1
4 +

1
2βk ≥ 0 k = 1, 2,

βk k = 3, . . . ,m+ 1,

(for which
m+1∑
k=1

γk = 1). In light of the symmetry with respect to R, we get

2
m+1∑
k=1

|γk | = 1+β1+β2+

n+1∑
k=3

|βk | = 1+
n+1∑
k=1

|βk | − (|β1| −β1)− (|β2| −β2).

Using (2-8), we conclude that

2
m+1∑
k=1

|γk | ≤ 4,

and it follows from Theorem 4 that f ◦ ϕ+ is univalent in D. The same holds
for f ◦ϕ−.
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By (2-9) we have

f (D)= ( f ◦ϕ+)(D)∪ f ((−1, 1))∪ ( f ◦ϕ−)(D),

which are disjoint unions by (2-7). Hence f is univalent in D. �

3. Separation of prevertices

Let f be a Schwarz–Christoffel mapping taking D onto a convex (n+1)-gon.
Recall that

f ′′

f ′
(z)=

2B(z)
1− zB(z)

,

where B(z) is a Blaschke product of degree n. We write

B(z)= c
n∏

k=1

z− ak

1− ākz
,

where |c| = 1 and all |ak |< 1. The prevertices z1, . . . , zn+1 correspond to the roots
of the equation zB(z)= 1, and after rotating f , we may assume that c = 1. Recall
also that, in this case, any choice of Blaschke product B = B(z) will result in a
univalent mapping f . The separation of consecutive prevertices zk, zk+1 is to be
understood as arg{z̄kzk+1} ∈ (0, 2π).

Theorem 6. Suppose that |ak | ≤ r < 1 for all k. Then:

(i) The minimum separation in argument of consecutive prevertices is given by 2θ ,
where θ is the unique root in (0, π/2) of the equation

(3-1) π = θ + 2n arctan
{1+r

1−r
tan θ

2

}
.

The result is sharp. The optimal configuration occurs when a1 = · · · = an = rc
for some root of the equation cn+1

=−1, and the lower bound is attained for
the prevertices eiθc, e−iθc. The distance between any other pair of consecutive
prevertices will be larger.

(ii) The maximum separation in argument of consecutive prevertices is given by 2ψ ,
where ψ is the unique root in (0, π) of the equation

(3-2) π = ψ + 2n arctan
{1−r

1+r
tan ψ

2

}
.

The result is sharp. The optimal configuration occurs when a1 = · · · = an = rd
for some root of the equation dn+1

= (−1)n , and the upper bound is attained
for the prevertices −eiψd,−e−iψd. The distance between any other pair of
consecutive prevertices will be larger.
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Proof. We must estimate the distance between two consecutive roots a= eiα, b= eiβ

of the equation zB(z)= 1. Because zB(z) traces the boundary ∂D for z ∈ ∂D in a
monotonic way, we must have from (2-2) and (2-4) that

(3-3)
∫ β

α

(1+ |B ′(ei t)|) dt = 2π,

with

|B ′(ei t)| =

n∑
k=1

1− |ak |
2

|ei t − ak |
2 .

(Equation (3-3) shows that 0 < β − α < 2π .) We claim that for α, β fixed, the
contribution of any single summand

(3-4)
∫ β

α

1− |ak |
2

|ei t − ak |
2 dt

will be maximal if |ak | = r and ak/|ak | is the midpoint c of the shorter arc joining
a and b. Let rk = |ak | and write ak = rkei tk . Then∫ β

α

1− |ak |
2

|ei t − ak |
2 dt =

∫ β−tk

α−tk

1− r2
k

|1− rkei t |2
dt.

For rk ≤ r given, this integral is maximal when 1∈ ∂D is the midpoint of the shorter
arc between ei(α−tk) and ei(β−tk). The integral is then equal to∫ θ

−θ

1− r2
k

|1− rkei t |2
dt = 4 arctan

{1+rk
1−rk

tan θ
2

}
,

where 2θ = β −α, and becomes maximal if rk = r . In other words,

(3-5)
∫ β

α

1− |ak |
2

|ei t − ak |
2 dt ≤ 4 arctan

{1+r
1−r

tan θ
2

}
,

which proves our claim for the contribution of any single term, and therefore the
minimum separation between consecutive roots will occur if this holds for all
k = 1, . . . , n. Equation (3-1) follows. The analysis shows that for the extremal
configuration, all ak=rc are equal and that e±iθc are roots of the equation zB(z)=1.
Because B(c)= c, then cB(c)= cn+1, and since zB(z) traces the arc between the
two roots in symmetric fashion with respect to the midpoint, we conclude that
cn+1
=−1. This proves part (i).

For part (ii), we observe that, for rk = |ak | fixed, (3-4) will be minimal provided
−1∈ ∂D is the midpoint of the shorter arc between ei(α−tk) and ei(β−tk). The integral
is then equal to ∫ π+ψ

π−ψ

1− r2
k

|1− rkei t |2
dt = 4 arctan

{1−rk
1+rk

tan ψ
2

}
,
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where 2ψ = β −α, and becomes minimal when rk = r . Thus,

(3-6)
∫ β

α

1− |ak |
2

|ei t − ak |
2 dt ≥ 4 arctan

{1−r
1+r

tan θ
2

}
.

Therefore, the maximum separation between consecutive roots will occur if, for
all k = 1, . . . , n, we have that |ak | = r and ak/r is equal to the midpoint of the
longer arc between a and b. From this, (3-2) follows. As before, the analysis of
the extremal configuration gives ak = rd for all k. The points −e±iψd are roots of
zB(z)= 1, which by symmetry as before implies that dn+1

= (−1)n . �

Corollary 7. Suppose that |ak | ≤ ε for all k. Then the maximum separation 2ψ
and minimum separation 2θ between consecutive prevertices satisfy

(3-7)
π

1+ (1+ 2ε)n
+ O(ε2)≤ θ ≤ ψ ≤

π

1+ (1− 2ε)n
+ O(ε2), ε→ 0.

Proof. For fixed x ∈ [0, π/2], let F(δ) = arctan((1+ δ) tan x). Then F(0) = x ,
F ′(0)= sin x cos x = 1

2 sin 2x and F ′′(0)=−2 sin3 x cos x , hence

F(δ)= x + 1
2 sin 2xδ+ O(δ2), δ→ 0.

Using that (1+ r)/(1− r)= 1+ 2r + O(r2), r→ 0, and that sin 2x ≤ 2x , we see
from (3-1) that the minimum separation θ satisfies

π ≤ θ + 2n
(
θ

2
+ ε sin(θ)+ O(ε2)

)
≤ (1+ (1+ 2ε)n)θ + O(ε2).

This implies the lower bound in (3-7). A similar analysis applies to the maximum
separation ψ , and the upper bound in (3-7) obtains. �

Suppose now that f is a Schwarz–Christoffel mapping taking D onto the com-
plement of a bounded convex (n+2)-gon, with the normalization f (0) =∞. In
this situation, we know that

z
f ′′

f ′
(z)=

2
z2 B(z)− 1

,

where B(z) again is a Blaschke product of degree n. We write

B(z)= c
n∏

k=1

z− ak

1− ākz
,

where |c| = 1 and all |ak |< 1. The prevertices z1, . . . , zn+2 are now given by the
roots of the equation z2 B(z) = 1, and after a rotation of f , we may assume that
c = 1. The following result is obtained in a way similar to Theorem 6, and the
proof will be omitted.

Theorem 8. Suppose that |ak | ≤ r < 1 for all k. Then:
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(i) The minimum separation in argument of consecutive prevertices is given by 2θ ,
where θ is the unique root in (0, π/2) of the equation

π = 2θ + 2n arctan
{1+r

1−r
tan θ

2

}
.

The result is sharp. The optimal configuration occurs when α1 = · · · = αn = rc
for some root of the equation cn+2

=−1, and the lower bound is attained for
the prevertices eiθc, e−iθc. The distance between any other pair of consecutive
prevertices will be larger.

(ii) The maximum separation in argument of consecutive prevertices is given by
2ψ , where ψ is the unique root in (0, π/2) of the equation

π = 2ψ + 2n arctan
{1−r

1+r
tan ψ

2

}
.

The result is sharp. The optimal configuration occurs when α1= · · · = αn = rd
for some root of the equation dn+2

= (−1)n+1, and the upper bound is attained
for the prevertices −eiψd,−e−iψd. The distance between any other pair of
consecutive prevertices will be larger.

A statement similar to Corollary 7 can be made in this case. If |ak | ≤ ε then the
maximum and minimum separation between prevertices satisfy

(3-8)
π

2+ (1+ 2ε)n
+ O(ε2)≤ θ ≤ ψ ≤

π

2+ (1− 2ε)n
+ O(ε2), ε→ 0.

We finish this section with some remarks on the separation of prevertices for
arbitrary polygonal mappings. Suppose f is a mapping of the form given by (1-1),
where after rotation, we may assume expressions for B1, B2 given by

B1(z)=
d1∏

k=1

z− ak

1− ākz
, B2(z)=

d2∏
k=1

z− bk

1− b̄kz
.

Then

ϕ′(t)= 1+ |B ′1(e
i t)| − |B ′2(e

i t)| = 1+
d1∑

k=1

1− |ak |
2

|ei t − ak |
2 −

d2∑
k=1

1− |bk |
2

|ei t − bk |
2 .

Let a = eiα, b= eiβ be consecutive convex prevertices, with separation β−α = 2δ,
and let r be the radius of the smallest centered subdisk that contains the zeros
of B1, B2. We deduce from (2-4) and the estimates (3-5), (3-6), that

(3-9) δ+ 2d1 arctan
x
λ
− 2d2 arctan(λx)≤ π

≤ δ+ 2d1 arctan(λx)− 2d2 arctan
x
λ
,

where λ= 1+r
1−r

and x = tan δ
2

. Thus, for example, with given d1, d2, a relatively
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small separation 2δ can only occur if r is rather close to 1. Because the univalence
of f is no longer guaranteed when B1, B2 are chosen arbitrarily, it seems of interest
to determine under which circumstances the inequalities (3-9) remain sharp. We
provide here a simple example where one can show sharpness in the right-hand
side of (3-9) when d1 = d2 = 1.

Example. Consider the Blaschke products B1, B2 given by

B1(z)=
z+r

1+r z
, B2(z)=

z−r
1−r z

, r ∈ (0, 1),

and let f be defined, up to an affine change, by

f ′′

f ′
=

2B1/B2

1− zB1/B2
=

2(z+ r)(1− r z)
(z− r)(1+ r z)− z(z+ r)(1− r z)

.

In analyzing the roots of zB1= B2, we observe that z3= 1 is one immediate solution.
The other solutions are the roots of

r z2
+ (r2

+ 2r − 1)z+ r = 0,

which are given by

z1,2 =
(1− 2r − r2)±

√
−(1− r2)(r2+ 4r − 1)

2r
.

For r > r0 =
√

5− 2= 0.236 . . . , the discriminant is negative and |z1,2| = 1, with
z1 = z2(=−1) only for r = 1. In the partial fraction decomposition

f ′′

f ′
=−2

(
β1

z− z1
+

β2

z− z2
+

β3

z− z3

)
,

we must have β1 = β2 because of symmetry, while β1+β2+β3 = 1 by equating
coefficients with the above representation for f ′′/ f ′. Recall (2-3), which relates
the exterior angles 2πβk with the boundary function ϕ(t). Here

ϕ′(t)= 1+
1− r2

|1+ rei t |2
−

1− r2

|1− rei t |2
;

hence

ϕ′(0)= 1+
1− r
1+ r

−
1+ r
1− r

.

One readily verifies that ϕ′(0)≤−2 precisely when r ≥ r1= (1+
√

13)/(5+
√

13)=
0.535 . . . , in which case β3 ∈

(
−

1
2 , 0

)
and β1 = β2 ∈

( 1
2 ,

3
4

)
. Thus, for r ≥ r1,

we deduce from Theorem 4 that f is univalent, and z1,2 are convex prevertices,
while z3 is a concave prevertex. The convex vertices f (z1,2) are at infinity, and
the image f (D) corresponds to a half-plane minus a symmetric slit ending at the
concave vertex when r = r1, or a wedge when r > r1.
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Finally, to show sharpness in the right-hand side of (3-9), observe that for r ≥ r1

the conjugate points z1 = z̄2 have negative real part, and thus their separation 2θ
will correspond to the root θ ∈ (0, π/2) of the equation

θ + 2 arctan(λx)− 2 arctan
x
λ
= π.

For consecutive concave prevertices, we deduce in similar fashion that

(3-10) δ+ 2d1 arctan x
λ
− 2d2 arctan(λx)≤−π

≤ δ+ 2d1 arctan(λx)− 2d2 arctan x
λ
,

once again forcing r to be very close to 1 if a small separation is to happen.
A similar analysis can be carried through to obtain information about the sepa-

ration between consecutive convex or concave prevertices in the case of exterior
mappings. The resulting inequalities are analogous to (3-9) and (3-10), with the
single term δ replaced by 2δ. The proof will be omitted.

4. Location of zeros

In this section we study the location of the zeros of the Blaschke products appearing
in the representation formulas (1-1) and (1-4) of Schwarz–Christoffel mappings.
Convex or concave mappings impose no restriction on the location of the zeros,
since in the absence of the Blaschke product B2, (1-1) and (1-4) will always render
univalent mappings. It is probably an ambitious task to determine conditions on B1

and B2 that are both necessary and sufficient for all mappings of the form (1-1) and
(1-4) to be univalent. Nevertheless, some necessary conditions can be established.
We deal first with the case of mappings arising from (1-1). Because 1+Re{z f ′′/ f ′}
will be positive or negative according to whether |zB1|< |B2| or |zB1|> |B2|, it
follows readily from the radius of convexity for the class S that we must have

|zB1(z)|< |B2(z)|, |z| ≤ 2−
√

3.

In particular, all zeros of B2 must lie in the region |z|> 2−
√

3.

Theorem 9. Let f be given by (1-1), with d1, d2 the degrees of the Blaschke prod-
ucts B1, B2, respectively, and suppose that d2 ≥ 1. Suppose that all the zeros
of B1, B2 are contained in the subdisk |z| ≤ r < 1. Then

(4-1) r ≥max
{√

4d1d2+ 9+ 3− 2d2
√

4d1d2+ 9+ 3+ 2d2
,

2d2− 1−
√

1+ 4d1d2

2d2+ 1+
√

1+ 4d1d2

}
.

In particular, if d2 = 1 then

(4-2) r ≥

√
4n+ 5+ 1
√

4n+ 5+ 5
≥

1
2
.
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The estimate (4-2) is sharp for the Koebe function.

Proof. Recall the boundary function ϕ(t) in (2-2). At a concave prevertex ei t0 , the
exterior angle 2πβ0 lies in [−π, 0), and hence β0 lies in

[
−

1
2 , 0

)
. It follows from

(2-3) that
ϕ′(t0)≤−2.

If we write

B1(z)= c1

d1∏
k=1

z− ak

1− ākz
, B2(z)= c2

d2∏
k=1

z− bk

1− b̄kz
,

then

ϕ′(t)= 1+
d1∑

k=1

1− |ak |
2

|ei t − ak |
2 −

d2∑
k=1

1− |bk |
2

|ei t − bk |
2 .

After evaluating at t = t0, a simple estimate gives

1+ d1
1−r
1+r
− d2

1+r
1−r
≤−2.

With s = (1+ r)/(1− r), we obtain

d2s2
− 3s− d1 ≥ 0,

which implies (4-1). If d2 = 1, then d1 = n − 1, which proves the first estimate
in (4-2).

In order to obtain the second estimate, we observe that at a convex prevertex ei t1 ,
the exterior angle 2πβ1 is positive, and therefore ϕ′(t1) > 0. This now gives

1+ d1
1+r
1−r
− d2

1−r
1+r

> 0,

and the second estimate follows.
To show sharpness, we consider the Koebe function k(z) = z/(1− z)2. Then

k ′(z)= (1+ z)/(1− z)3, and thus

k ′′

k ′
(z)= 1

z+1
−

3
z−1

,

which is consistent with a polygonal mapping onto a 2-gon with a concave vertex
with exterior angle −π at k(−1)=−1

4 , and a convex vertex with exterior angle 3π
at k(1)=∞. A calculation gives

k ′′

k ′
(z)=

1/B2(z)
1− z/B2(z)

,

with B2(z)=
(
z+ 1

2

)
/
(
1+ 1

2 z
)
. Then r = 1

2 , which coincides with the lower bound
in (4-2) with n = 1. �
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Remark. The first estimate in (4-1) is the better one when d1 � d2, while the
second will provide better information for d2� d1.

The final theorem describes the analogous situation for mappings of the form
(1-4) onto the complement of polygons. The corresponding boundary function is
now given by

ϕ(t)= arg
{

e2i t B1

B2
(ei t)

}
,

for which
ϕ′(t)= 2+ |B ′1(e

i t)| − |B ′2(e
i t)|.

Since the proof is based on an almost identical analysis, it will be omitted.

Theorem 10. Let f be given by (1-4), with d1, d2 the degrees of the Blaschke
products B1, B2, respectively, and suppose that d2 ≥ 1. Suppose that all the zeros
of B1, B2 are contained in the subdisk |z| ≤ r < 1. Then

(4-3) r ≥max
{√

d1d2+ 4+ 2− d2
√

d1d2+ 4+ 2+ d2
,

d2− 1−
√

1+ d1d2

d2+ 1+
√

1+ d1d2

}
.
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