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VANISHING VISCOSITY IN THE PLANE
FOR NONDECAYING VELOCITY AND VORTICITY, II

ELAINE COZZI

We consider solutions to the two-dimensional incompressible Navier–Stokes
and Euler equations for which velocity and vorticity are bounded in the
plane. We show that for every T > 0, the Navier–Stokes velocity converges
in L∞([0, T ]; L∞(R2)) as viscosity approaches 0 to the Euler velocity gen-
erated from the same initial data. This improves our earlier results to the
effect that the vanishing viscosity limit holds on a sufficiently short time
interval, or for all time under the assumption of decay of the velocity vector
field at infinity.

1. Introduction

In this paper, we study the vanishing viscosity limit of solutions to the two-
dimensional incompressible Navier–Stokes equations. Recall that the Navier–Stokes
equations modeling incompressible viscous fluid flow on Rn are given by

(NS)


∂t uν + uν · ∇uν − ν1uν =−∇ pν,
div uν = 0,
uν |t=0 = u0

ν .

When ν = 0, the Navier–Stokes equations reduce to the Euler equations modeling
incompressible inviscid fluid flow on Rn:

(E)


∂t u+ u · ∇u =−∇ p,
div u = 0,
u|t=0 = u0.

There are a number of results addressing the vanishing viscosity limit of solutions
of (NS) on Rn under various assumptions on the initial data (see, for example,
[Constantin 1986; Masmoudi 2007; Kelliher 2004; Chemin 1996; Kato 1972;
Swann 1971]). Here we focus our attention on solutions to (NS) and (E) in the plane
with bounded velocity and vorticity which do not necessarily decay at infinity. We
show that such solutions to (NS) converge to solutions of (E) with the same initial
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data in the L∞-norm, where convergence is uniform over any finite time interval.
This result builds upon and is a continuation of work in [Cozzi 2009; 2010]. For
this reason, we will often refer to these articles for background information and
useful estimates.

The existence and uniqueness of solutions to (NS) without any decay assumptions
on the initial velocity is considered by Giga, Inui, and Matsui in [Giga et al. 1999].
The authors establish the short-time existence and uniqueness of mild solutions vν
to (NS) in the space C([0, T0];BUC(Rn)) when initial velocity is in BUC(Rn)

and n ≥ 2. Here BUC(Rn) denotes the space of bounded uniformly continuous
functions on Rn . In [Giga et al. 2001], Giga, Matsui, and Sawada prove that
when n = 2, the unique solution can be extended globally in time. Existence and
uniqueness of solutions to (E) with bounded velocity and vorticity with n = 2 is
due to Serfati [1995]. We briefly discuss these results in Section 2.

In this paper we prove that solutions uν to (NS) of [Giga et al. 2001] converge
uniformly on R2 to Serfati solutions to (E) as viscosity approaches 0, where con-
vergence is uniform over any finite time interval (see Theorem 3). To establish
the result, we apply Littlewood–Paley theory and Bony’s paradifferential calculus
[1981] and follow the general strategy of [Cozzi 2009; 2010]. Specifically, we
consider low and high frequencies of the difference between the solutions to (NS)
and (E) separately. We first show that for fixed t and for any positive integer n,

(1.3) ‖uν(t)− u(t)‖L∞ ≤ n‖uν(t)− u(t)‖B0
∞,∞
+ 2−n

‖ων(t)−ω(t)‖L∞,

where ων = curl uν and ω = curl u. (See [Cozzi 2009] for a definition of the
Besov space B0

∞,∞.) Letting n be a function of ν such that n approaches ∞
as ν approaches 0, we show that the right-hand side of (1.3) approaches 0 as n
approaches∞. Since the second term on the right in (1.3) can be bounded above by
2−n(‖ων(t)‖L∞ +‖ω(t)‖L∞), we have essentially reduced the problem to proving
that the vanishing viscosity limit holds in the B0

∞,∞-norm. Since L∞ embeds
continuously into B0

∞,∞, we expect this problem to be easier than proving that the
vanishing viscosity limit holds in the L∞-norm; however, we must establish a rate
of convergence sufficiently fast to combat the growth of the factor of n in front of
the Besov norm.

Working in the Besov space B0
∞,∞ has several advantages over working in L∞.

Recall that for two-dimensional fluids we can express the Euler velocity gradient in
terms of its vorticity by the relation∇u=∇∇⊥1−1ω. We can also express the Euler
pressure in terms of velocity by the equality p(t)=

∑2
i, j=1 Ri R j ui u j (t), where Ri

denotes the Riesz operator (similar relations hold for the Navier–Stokes velocity,
vorticity, and pressure). The main mathematical obstacle when studying solutions
to fluid equations in L∞ is the lack of boundedness of the Calderon–Zygmund
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operators ∇∇⊥1−1 and R j Ri on L∞. However, if we let1 j denote the Littlewood–
Paley operator which projects in frequency space onto an annulus with inner and
outer radius of order 2 j , then for any j ≥ 0, f ∈ S ′, and Calderon–Zygmund
operator A, we have

(1.4) ‖1 j A f ‖L∞ ≤ ‖1 j f ‖L∞ .

Therefore, when proving estimates in the B0
∞,∞-norm, we can localize the frequen-

cies of (NS) and (E) by applying the Littlewood–Paley operator 1 j to the equations.
We can then estimate the difference 1 j (uν − u) in the L∞-norm using (1.4). The
presence of the Littlewood–Paley operator thus facilitates estimates for velocity
gradients and pressure terms.

In [Cozzi 2009] we proved that when u, uν , ω andων belong to L∞loc(R
+
; L∞(R2)),

there exists T > 0 such that

(1.5) ‖uν − u‖L∞([0,T ];L∞(R2))→ 0 as ν→ 0.

To show (1.5), we reduced the problem to showing that the vanishing viscosity limit
holds in the homogeneous Ḃ0

∞,∞-norm, but we were only able to show convergence
in this norm for short time. In this paper, we show that (1.5) holds for every T > 0 by
showing that the vanishing viscosity limit holds in the inhomogeneous B0

∞,∞-norm
on any finite time interval [0, T ].

We remark that this improvement of our previous result is not a consequence
of using the inhomogeneous norm in place of the homogeneous norm. In fact, we
are able to prove the same convergence result regardless of which Besov norm we
use (the proof using the inhomogeneous norm is cleaner). Rather, in this paper
we are able to improve upon the results in [Cozzi 2009] because we change our
approach when estimating the commutator resulting from an application of the
Littlewood–Paley operator to the nonlinear terms in (NS) and (E). Our approach
here is similar to those in [Vishik 1999; Bahouri and Chemin 1994; Taniuchi et al.
2010]. As a result of our methods, we are able to prove the estimate

(1.6) ‖(uν − u)(t)‖B0
∞,∞
≤ C(T )2−nα

+

∫ t

0
C(2−p

+ p‖(uν − u)(s)‖B0
∞,∞
)

for any p ∈ [2,∞). By choosing p as a logarithmic function of ‖uν − u‖B0
∞,∞

, we
are able to apply Osgood’s lemma, yielding a rate of convergence. In [Cozzi 2009],
our methods only allow us to prove an estimate similar to (1.6) with n in place of p.
Since n is a function of viscosity, we must apply Gronwall’s lemma and introduce a
factor of ent on the right hand side, which prevents us from proving that the inviscid
limit holds on any finite time interval.

The paper is organized as follows. In Section 2, we review properties of nonde-
caying solutions to the fluid equations. In Section 3 and Section 4, we state and
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prove the main result; we devote Section 4 entirely to showing that the vanishing
viscosity limit holds in the B0

∞,∞-norm.
For background information on Littlewood–Paley theory, Bony’s paraproduct

decomposition, Besov spaces, and technical lemmas used throughout the paper, we
refer the reader to Section 2 of [Cozzi 2009].

2. Existence and uniqueness of nondecaying solutions to the fluid equations

In this section, we briefly summarize what is known about nondecaying solutions
to (NS) and (E). We begin with the mild solutions to (NS) established in [Giga et al.
1999]. By a mild solution to (NS), we mean a solution uν of the integral equation

(2.1) uν(t, x)= etν1u0
ν −

∫ t

0
e(t−s)ν1P(uν · ∇uν)(s) ds.

In (2.1), eτν1 denotes convolution with the Gauss kernel; that is, for f ∈ S′,
eτν1 f = Gτν ∗ f , where Gτν(x)= 1/(4πτν) exp(−|x |2/(4τν)). Also, P denotes
the Helmholtz projection operator with i, j component given by δi j + Ri R j , where
Rl = (−1)

−1/2∂l is the Riesz operator. Giga, Inui, and Matsui proved the following
result regarding mild solutions in Rn , n ≥ 2:

Theorem 1 [Giga et al. 1999]. Let BUC denote the space of bounded uniformly
continuous functions, and assume u0

ν belongs to BUC(Rn) for fixed n ≥ 2. There
exists T0 > 0 and a unique solution to (2.1) in the space C([0, T0];BUC(Rn))

with initial data u0
ν . Moreover, if we assume div u0

ν = 0, and if we define pν(t)=∑2
i, j=1 Ri R j uνi uν j (t) for each t ∈ [0, T0], then uν belongs to C∞([0, T0] × Rn)

and solves (NS).

Remark 2.2. For the main theorem of this paper, we assume that u0 and ω0 are
bounded on R2 and that div u0

= 0. These assumptions imply that u0 belongs to
Cα(R2) for every α < 1 and is therefore in BUC(R2) (see, for example, Lemma 4
of [Cozzi 2009]).

Giga, Matsui, and Sawada [2001] showed that when n = 2, the solution to (NS)
established in Theorem 1 can be extended to a global-in-time smooth solution.
Sawada and Taniuchi [2007] showed that if u0

ν and ω0
ν belong to L∞(R2), then the

following exponential estimate holds:

(2.3) ‖uν(t)‖L∞ ≤ C‖u0
ν‖L∞eCt‖ω0

ν‖L∞ .

For ideal incompressible fluids, we have the following result:

Theorem 2 [Serfati 1995]. Let u0 and ω0 belong to L∞(R2), and let c ∈ R. For
every T > 0, there exists a unique solution (u, p) to (E) in the space

L∞([0, T ]; L∞(R2))× L∞([0, T ];C(R2))
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with ω ∈ L∞([0, T ]; L∞(R2)), p(0)= c, and with p(t, x)/|x | → 0 as |x | →∞.

Serfati also proved an estimate analogous to (2.3) for his solutions:

(2.4) ‖u(t)‖L∞ ≤ C‖u0
‖L∞eC1‖ω

0
‖L∞ t .

Finally, we recall that we have a uniform bound in time on the L∞-norms of the
vorticities corresponding to the solutions of (NS) and (E). For fixed ν ≥ 0, we have
that

(2.5) ‖ων(t)‖L∞ ≤ ‖ω
0
ν‖L∞

for all t ≥ 0. One can prove this bound by applying the maximum principle to
the vorticity formulations of (NS) and (E). We refer the reader to Lemma 3.1 of
[Sawada and Taniuchi 2007] for a detailed proof.

3. Statement and proof of the main result

We are now prepared to state the main theorem:

Theorem 3. Let uν be the unique solution to (NS) and u the unique solution to (E),
both with initial data u0 and ω0 belonging to L∞(R2), and with pν and p satisfying
the conditions of Theorems 1 and 2, respectively. Let M be defined by (3.2) below
and let T > 0 be fixed. Then there exists a constant CM,T , increasing with both M
and T , such that the following estimate holds for any fixed α ∈ (0, 1):

(3.1) ‖uν − u‖L∞([0,T ];L∞(R2)) ≤ CM,T
(
2− log(

√
ν)αe−CM,T )

(
√
ν)αe−CM,T

.

Proof. Throughout the proof of Theorem 3, we let M denote a constant, dependent
on T , which satisfies

(3.2) M ≥ 1+ sup
t∈[0,T ]

(‖uν(t)‖L∞ +‖u(t)‖L∞ +‖ων(t)‖L∞ +‖ω(t)‖L∞).

We note that the value of M will change throughout the proof but will always
satisfy (3.2). The existence results in Section 2 imply that M will be finite for any
T > 0.

Let u be the unique Serfati solution to (E), and let uν be the unique solution
to (NS) given by [Giga et al. 2001]. We fix n to be a positive integer and we fix
T > 0. We will eventually choose n = −1

2 log2 ν so that as ν approaches 0, n
approaches∞.
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We begin with the following inequality:

(3.3) ‖uν − u‖L∞([0,T ];L∞) ≤

n∑
j=−1

‖1 j (uν − u)‖L∞([0,T ];L∞)

+

∞∑
j=n+1

‖1 j (uν − u)‖L∞([0,T ];L∞).

We can estimate the second term on the right-hand side of (3.3) using Bernstein’s
lemma and the estimate

(3.4) ‖1 j∇u‖L∞ ≤ ‖1 jω‖L∞ for j ≥ 0.

(Both (3.4) and Bernstein’s lemma can be found in Section 2 of [Cozzi 2009].) We
obtain the inequality

(3.5)
∞∑

j=n+1

‖1 j (uν − u)‖L∞([0,T ];L∞) ≤

∞∑
j=n+1

2− j
‖1 j (∇uν −∇u)‖L∞([0,T ];L∞)

≤ M2−n.

To estimate the first term on the right-hand side of (3.3), we use the definition of
B0
∞,∞ to observe that

(3.6)
n∑

j=−1

‖1 j (uν − u)‖L∞([0,T ];L∞) ≤ Cn‖uν − u‖L∞([0,T ];B0
∞,∞)

.

After substituting (3.6) and (3.5) into (3.3), we conclude that

(3.7) ‖uν − u‖L∞([0,T ];L∞) ≤ Cn‖uν − u‖L∞([0,T ];B0
∞,∞)
+M2−n.

We must estimate the difference of uν and u in the B0
∞,∞-norm. We temporarily

assume that the following estimate holds for all α ∈ (0, 1):

(3.8) ‖uν − u‖L∞([0,T ];B0
∞,∞)
≤ CM,T

(
2− log 2−nαe−CM,T )2−nαe−CM,T

.

Assuming that (3.8) holds, we see from (3.7) and (3.8) that

‖uν − u‖L∞([0,T ];L∞) ≤ CM,T
(
2− log 2−nαe−CM,T )2−nαe−CM,T

.

The estimate (3.1) follows after setting ν = 2−2n . Therefore, to complete the proof
of Theorem 3, it remains to prove (3.8).
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4. Proof of (3.8)

Let un = Snu, ωn = Snω(u), ūn = uν − un , and ω̄n = ων −ωn . Throughout most
of the proof of (3.8), the time t is fixed and suppressed in the calculations.

Fix p ∈ (1,∞) (to be chosen later). We apply Bernstein’s lemma and (3.4) to
establish the estimate

(4.1) ‖uν − u‖B0
∞,∞
≤ sup
−1≤l≤2

‖1l(uν − u)‖L∞ + sup
3≤l≤p

2−l
‖1l(ων −ω)‖L∞

+ sup
l>p

2−l
‖1l(ων −ω)‖L∞ .

The separation of frequencies at l = 2 will simplify estimates in what follows.
We will first consider the difference sup3≤l≤p 2−l

‖1l(ων − ω)‖L∞ . We will
eventually need to estimate the viscosity term ν‖1ω‖L∞ . To facilitate this estimate,
we smooth out the Euler vorticity and write

(4.2) sup
3≤l≤p

2−l
‖1l(ων−ω)‖L∞ ≤ sup

3≤l≤p
2−l
‖1lω̄n‖L∞+ sup

3≤l≤p
2−l
‖1l(ωn−ω)‖L∞

≤ sup
3≤l≤p

2−l
‖1lω̄n‖L∞+sup

l≥n
2−l
‖1l(ωn−ω)‖L∞

≤ sup
3≤l≤p

2−l
‖1lω̄n‖L∞+M2−n,

where we used properties of the Fourier support of ωn to get the second inequality.
We now estimate sup3≤l≤p 2−l

‖1lω̄n‖L∞ . We note that ων and ωn satisfy

(4.3) ∂tων + uν · ∇ων − ν1ων = 0

and

(4.4) ∂tωn + un · ∇ωn =∇ · τn(u, ω),

where τn(u, ω)= (u− un)(ω−ωn)− rn(u, ω) and

rn(u, ω)=
∫
ψ̌0(y)(u(x − 2−n y)− u(x))(ω(x − 2−n y)−ω(x)) dy.

Hereψ0 denotes the Fourier multiplier associated with the Littlewood-Paley operator
1−1. Equation (4.4) was utilized by Constantin and Wu [1996] and by Constantin,
E, and Titi in a proof of Onsager’s conjecture in [Constantin et al. 1994]. We
subtract (4.4) from (4.3) and, for fixed l, we apply the Littlewood–Paley operator
1l to the difference of the two equations. After adding (Sl−2uν) · ∇1lω̄n to both
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sides of the resulting equation, we obtain

(4.5) ∂t1lω̄n + (Sl−2uν) · ∇1lω̄n − ν11lω̄n

= (Sl−2uν) · ∇1lω̄n −1l(uν · ∇ω̄n)

−1l(ūn · ∇ωn)+ ν11lωn −1l∇ · τn(u, ω).

Borrowing notation from [Taniuchi et al. 2010], we define

(4.6) I l,k
= (Sl−2uk

ν)∂k1lω̄n − ∂k1l(uk
νω̄n) and J l,k

=−∂k1l(ūk
nωn).

From (4.5), we see that

(4.7) ∂t1lω̄n + (Sl−2uν) · ∇1lω̄n − ν11lω̄n

=

2∑
k=1

(I l,k
+ J l,k)+ ν11lωn −1l∇ · τn(u, ω).

Since Sl−2uν belongs to L1
loc(R

+
;Lip(R2)) and is divergence-free, we can apply

the following lemma for the transport diffusion equation from [Hmidi 2005].

Lemma 4. Let p ∈ [1,∞], and let u be a divergence-free vector field belonging to
L1

loc(R
+
;Lip(Rd)). Moreover, assume the function f belongs to L1

loc(R
+
; L p(Rd))

and the function a0 belongs to L p(Rd). Then any solution a to the problem{
∂t a+ u · ∇a− ν1a = f,
a|t=0 = a0,

satisfies the estimate

‖a(t)‖L p ≤ ‖a0
‖L p +

∫ t

0
‖ f (s)‖L p ds.

An application of Lemma 4 to (4.7) yields

(4.8) ‖1lω̄n(t)‖L∞ ≤ ‖1lω̄n(0)‖L∞+

∫ t

0

( 2∑
k=1

(
‖I l,k(s)‖L∞+‖J l,k(s)‖L∞

))
ds

+

∫ t

0
(ν‖11lωn(s)‖L∞ +‖1l∇ · τn(u, ω)(s)‖L∞) ds.

Our goal is to establish an upper bound for sup3≤l≤p 2−l
‖1lω̄n(t)‖L∞ . In what

follows, we will estimate each term on the right-hand side of (4.8), multiply by
2−l , and take the supremum over l satisfying 3≤ l ≤ p. Estimates for the last two
terms on the right-hand side of (4.8) follow from work in [Cozzi 2009]. Indeed, in
that paper we used boundedness of the Euler vorticity and membership of the Euler



VANISHING VISCOSITY IN THE PLANE, II 343

velocity in Cα(R2) for any α ∈ (0, 1) to show that for such α,

(4.9) sup
l≥0

2−l
‖1l∇ · τn(u, ω)‖L∞ ≤ ‖∇ · τn(u, ω)‖L∞ ≤ M2−nα.

We also showed there, using Bernstein’s lemma and properties of the Fourier support
of ωn , that

(4.10) sup
l≥0

2−lν‖1l1ωn‖L∞ ≤ 2nν‖ωn‖L∞ ≤ M2−n,

where we set ν = 2−2n . To estimate the initial data, we used the Fourier support of
ω0

n = Snω
0 to write

(4.11) sup
3≤l≤p

2−l
‖1lω̄n(0)‖L∞ ≤ sup

l≥n
2−l
‖1lω̄n(0)‖L∞ ≤ M2−n.

Multiplying (4.8) by 2−l , taking the supremum of (4.8) over l satisfying 3≤ l ≤ p,
and applying the estimates (4.9), (4.10), and (4.11) gives

(4.12) sup
3≤l≤p

2−l
‖1lω̄n(t)‖L∞

≤ M(t + 1)2−nα
+ sup

3≤l≤p
2−l

∫ t

0

( 2∑
k=1

(
‖I l,k(s)‖L∞ +‖J l,k(s)‖L∞

))
ds.

It remains to estimate I l,k and J l,k . We begin with J l,k . We again borrow notation
from [Taniuchi et al. 2010] and use Bony’s paraproduct decomposition to write

(4.13) J l,k
=−∂k1l

∑
| j−l|≤3

j≥1

S j−2ūk
n1 jωn

− ∂k1l

∑
| j−l|≤3

j≥1

1 j ūk
n S j−2ωn

− ∂k1l

∑
| j− j ′|≤1

max{ j, j ′}≥l−3

1 j ūk
n1 j ′ωn

= J l,k
1 + J l,k

2 + J l,k
3 .

We estimate J l,k
1 . Several applications of Bernstein’s lemma give

(4.14) ‖J l,k
1 ‖L∞ ≤ 2l

∑
| j−l|≤3

j≥1

‖S j−2ūn‖L∞‖1 jωn‖L∞

≤ 2l
∑
| j−l|≤3

j≥1

‖1 jω‖L∞
∑

k≤ j−2

‖1k ūn‖L∞ .
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Multiplying by 2−l and taking the supremum over l satisfying 3 ≤ l ≤ p, we
conclude that

(4.15) sup
3≤l≤p

2−l
‖J l,k

1 ‖L∞ ≤ Mp‖ūn‖B0
∞,∞
.

We now estimate J l,k
2 . We write

(4.16) ‖J l,k
2 ‖L∞ ≤ 2l

∑
| j−l|≤3

j≥1

‖1l(1 j ūn S j−2ωn)‖L∞

≤ 2l
∑
| j−l|≤3

j≥1

‖1 j ūn‖L∞‖S j−2ωn‖L∞

so that

(4.17) sup
3≤l≤p

2−l
‖J l,k

2 ‖L∞ ≤ M‖ūn‖B0
∞,∞
.

To estimate J l,k
3 , we use properties of Littlewood–Paley operators to observe that

(4.18) ‖J l,k
3 ‖L∞ ≤ 2l

∑
| j− j ′|≤1

max{ j, j ′}≥l−3

‖1 j ūn‖L∞‖1 j ′ωn‖L∞

≤ C2l
∑

j≥l−3

‖1 j ūn‖L∞‖1 jωn‖L∞ ≤ C2l
‖ω‖L∞‖ūn‖B0

∞,1
.

We estimate the B0
∞,1-norm of ūn as follows: We bound the low frequencies using

the definition of B0
∞,∞, and we estimate the high frequencies using Bernstein’s

lemma, (3.4), and boundedness of vorticity. We have the series of estimates

(4.19) ‖ūn‖B0
∞,1
≤

p∑
j=−1

‖1 j ūn‖L∞+
∑
j>p

2− j
‖1 j ω̄n‖L∞ ≤Cp‖ūn‖B0

∞,∞
+M2−p.

Substituting this estimate into (4.18), multiplying by 2−l and taking the supremum
over l between 3 and p yields the estimate

(4.20) sup
3≤l≤p

2−l
‖J l,k

3 ‖L∞ ≤ M(2−p
+ p‖ūn‖B0

∞,∞
).

Combining the estimates for (4.15), (4.17), and (4.20), we conclude that

(4.21) sup
3≤l≤p

2−l
2∑

k=1

‖J l,k
‖L∞ ≤ M(2−p

+ p‖ūn‖B0
∞,∞
).
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We now estimate I l,k for l satisfying 3≤ l ≤ p. We apply Theorem 6.1 of [Vishik
1999] to write

2∑
k=1

‖I l,k
‖L∞ ≤ C

∑
| j−l|≤3

‖S j−2∇ω̄n‖L∞‖1 j uν‖L∞

+

∑
| j−l|≤3

‖S j−2∇uν‖L∞‖1 j ω̄n‖L∞

+C2l
∑

j≥l−3
| j− j ′|≤1

2− j
‖1 j∇uν‖L∞‖1 j ′ω̄n‖L∞

= X l
1+ X l

2+ X l
3.

To estimate X l
1, keeping in mind that l ≥ 3, we use Bernstein’s lemma and (3.4) to

write ∑
| j−l|≤3

‖S j−2∇ω̄n‖L∞‖1 j uν‖L∞ ≤ C2l
∑
| j−l|≤3

‖S j−2ūn‖L∞‖1 jων‖L∞ .

The remainder of the estimate for X l
1 is identical to that for J l,k

1 . Multiplying by 2−l

and taking the supremum over l between 3 and p, we conclude that

(4.22) sup
3≤l≤p

2−l X l
1 ≤ Mp‖ūn‖B0

∞,∞
.

To estimate X l
2 for 3 ≤ l ≤ p, we again apply Bernstein’s lemma and (3.4) to

write

(4.23) X l
2 =

∑
| j−l|≤3

‖S j−2∇uν‖L∞‖1 j ω̄n‖L∞

≤ C2l
∑
| j−l|≤3

(‖uν‖L∞ + ( j − 1)‖ων‖L∞)‖1 j ūn‖L∞

≤ Ml2l
∑
| j−l|≤3

‖1 j ūn‖L∞ .

To get the first inequality above, we bounded the term ‖S j−2∇uν‖L∞ above by the
sum resulting from the S j−2 operator. We then applied (3.4). After multiplying
(4.23) by 2−l and taking the supremum over l satisfying 3≤ l ≤ p, we find that

(4.24) sup
3≤l≤p

2−l X l
2 ≤ Mp‖ūn‖B0

∞,∞
.
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The estimate for X l
3 is similar to that for J l,k

3 . For l satisfying 3≤ l ≤ p, we write

(4.25) X l
3 = C2l

∑
j≥l−3
| j− j ′|≤1

2− j
‖1 j∇uν‖L∞‖1 j ′ω̄n‖L∞

≤ C2l
∑

j≥l−3

‖1 jων‖L∞‖1 j ūn‖L∞,

where we used Bernstein’s lemma and (3.4) to get the last inequality. We now use
the same argument as in (4.18) and (4.19) to conclude that

(4.26) sup
3≤l≤p

2−l X l
3 ≤ M(2−p

+ p‖ūn‖B0
∞,∞
).

Combining the above estimates for X l
1, X l

2, and X l
3, we have

(4.27) sup
3≤l≤p

2−l
2∑

k=1

‖I l,k
‖L∞ ≤ M(2−p

+ p‖ūn‖B0
∞,∞
).

Applying the estimates (4.21) and (4.27) to (4.12), we conclude that

(4.28) sup
3≤l≤p

2−l
‖1lω̄n(t)‖L∞ ≤C(t+1)2−nα

+M
∫ t

0
(2−p
+ p‖W (s)‖Ḃ0

∞,∞
) ds

for any α ∈ (0, 1). We substitute (4.28) into (4.2). This gives

(4.29) sup
3≤l≤p

2−l
‖1l(ων −ω)(t)‖L∞ ≤ C(t + 1)2−nα

+M
∫ t

0
(2−p
+ p‖ūn(s)‖Ḃ0

∞,∞
) ds.

Inspection of (4.1) reveals that we must still estimate sup−1≤l≤2 ‖1l(uν−u)(t)‖L∞

and supl>p 2−l
‖1l(ων −ω)(t)‖L∞ . These two terms are more straightforward. We

estimate the term supl>p 2−l
‖1l(ων −ω)(t)‖L∞ by observing that

(4.30) sup
l>p

2−l
‖1l(ων −ω)(t)‖L∞ ≤ M2−p.

To estimate sup−1≤l≤2 ‖1l(uν−u)(t)‖L∞ , we use the velocity formulation. Setting
p̄ = pν − p and ū = uν − u, we subtract (E) from (NS). This gives

(4.31) ∂t ū+ uν · ∇ū+ ū · ∇u− ν1ū =−∇ p̄+ ν1uν .

We apply 1l to (4.31) for −1≤ l ≤ 2. This gives

(4.32) ∂t1l ū+ (1luν) · ∇1l ū− ν1l1ū = (1luν) · ∇1l ū−1l(uν · ∇ū)

−1l(ū · ∇u)−1l∇ p̄+ ν1l1uν .
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Again by Lemma 4, we have

(4.33) ‖1l ū(t)‖L∞

≤

∫ t

0

(
‖(1luν · ∇1l ū)(s)‖L∞ +‖1l(uν · ∇ū)(s)‖L∞

+‖1l(ū · ∇u)(s)‖L∞ +‖1l∇ p̄(s)‖L∞ + ν‖1l1uν(s)‖L∞
)

ds.

We have the following straightforward estimates, all which follow from Bernstein’s
lemma and the divergence-free property of the velocity:

(4.34)

‖(1luν) · ∇1l ū‖L∞ ≤ C‖uν‖L∞2l
‖1l ū‖L∞ ≤ M2l

‖ū‖L∞,

‖1l(uν · ∇ū)‖L∞ ≤ C2l
‖uν‖L∞‖ū‖L∞ ≤ M2l

‖ū‖L∞,

‖1l(ū · ∇u)‖L∞ ≤ 2l
‖ū‖L∞‖u‖L∞ ≤ M2l

‖ū‖L∞,

ν‖1l1uν‖L∞ ≤ Cν22l
‖uν‖L∞ ≤ Mν22l .

To estimate the pressure, we follow an argument in [Taniuchi et al. 2010]. For
0≤ l ≤ 2, if ϕl is the Fourier multiplier associated with 1l , then

(4.35) ‖1l∇ p̄‖L∞ =

∥∥∥∥ 2∑
i,i ′=1

Ri Ri ′∇1l
(
ūi ui ′
+ ui

ν ū
i ′)∥∥∥∥

L∞

≤ ‖Ri Ri ′∇ϕ̌l‖L1

∥∥ūi ui ′
+ ui

ν ū
i ′
∥∥

L∞ ≤ M2l
‖ū‖L∞,

where we applied the estimates ‖Ri Ri ′∇ϕ̌l‖L1 ≤ ‖Ri Ri ′∇ϕ̌l‖H1 ≤ ‖∇ϕ̌l‖H1 ≤ C2l

to get the last inequality. For the case l =−1, we apply the same series of estimates
as in (4.35) with ψ̌0 in place of ϕ̌l .

Substituting the estimates (4.34) and (4.35) into (4.33) and taking the supremum
over −1≤ l ≤ 2 yields

(4.36) sup
−1≤l≤2

‖1l ū(t)‖L∞ ≤ M
∫ t

0
(‖ū‖L∞ + 2−2n),

where we used the equality ν = 2−2n . We now apply the embedding B0
∞,1 ↪→ L∞,

along with (4.19), to conclude that

(4.37) sup
−1≤l≤2

‖1l ū(t)‖L∞ ≤ Mt2−2n
+M

∫ t

0
(p‖ū(s)‖B0

∞,∞
+ 2−p) ds.

We substitute the estimates (4.37), (4.29), and (4.30) into (4.1). We conclude that

(4.38) sup
l≥−1
‖1l ū(t)‖L∞ ≤ M(T + 1)2−nα

+M2−p

+

∫ t

0
M(2−p

+ p‖ū(s)‖B0
∞,∞
) ds.



348 ELAINE COZZI

To complete the proof of (3.8), we will apply Osgood’s lemma to (4.38). We first
note that by the embedding L∞ ↪→ B0

∞,∞,

‖ū(t)‖B0
∞,∞
≤ ‖ū(t)‖L∞ ≤ ‖uν(t)‖L∞ +‖u(t)‖L∞ ≤ M

for all t ∈ [0, T ]. For each t ∈ [0, T ], set

(4.39) δ(t)=

∫ t
0 ‖ū(s)‖B0

∞,∞
ds

MT
≤ 1,

and set p = 2− log δ(t). Then (4.38) reduces to

(4.40) ‖ū(t)‖B0
∞,∞
≤ M(T + 1)2−nα

+M(T + 1)δ(t)+M2T (2− log2 δ(t))δ(t).

Integrating both sides over [0, t] and dividing both sides by MT yields the inequality

(4.41) δ(t)≤ (T + 1)2−nα
+

(
T + 1

T
+M

)∫ t

0
(2− log2 δ(s))δ(s) ds.

We are now in a position to use Osgood’s lemma (see [Chemin and Lerner 1995]):

Lemma 5 (Osgood’s lemma). Let ρ be a measurable positive function, let γ be a
locally integrable positive function, and let µ be a continuous increasing function.
Assume that for some number β > 0, the function ρ satisfies

ρ(t)≤ β +
∫ t

t0
γ (s)µ(ρ(s)) ds.

Then −φ(ρ(t))+φ(β)≤
∫ t

t0
γ (s) ds, where φ(x)=

∫ 1

x

1
µ(r)

dr.

We set µ(r)= r(2− log r), ρ(t)= δ(t), β = (T + 1)2−nα, and

γ (t)= T+1
T
+M := C0(M, T ),

and we apply Osgood’s lemma to obtain, for any t ≤ T ,

− log(2− log δ(t))+ log(2− log((T + 1)2−nα))≤ C0(M, T )t.

Taking the exponential twice gives

(4.42) δ(t)≤ e2−2e−C0(M,T )t
((T + 1)2−nα)e

−C0(M,T )t
.

The inequality (3.8) follows after substituting (4.42) into (4.40) and letting ν= 2−2n .
�
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