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Let F be the Schur functor from the category of finite-dimensional 7€, (r)c-
modules to that of finite-dimensional ¥,(n, r)c-modules, where 7, (r)c is
the extended affine Hecke algebra of type A over C and S,(n, r)c is the
affine quantum Schur algebras over C. The Drinfeld polynomials associ-
ated with F(V), where V is an irreducible 7, (r)c-module, have been previ-
ously determined when n > r. Here we generalize these results to the case
n < r. As an application, we recover the classification of finite-dimensional
irreducible ¥,(n, r)c-modules proved by Deng, Du and Fu using a different
method. As another application, we generalize a result of Green to the affine
case.

1. Introduction

Finite-dimensional irreducible modules for quantum affine algebras were classified
by Chari and Pressley [1991; 1994; 1995; 1997] in terms of Drinfeld polynomials.
Finite-dimensional irreducible modules for #,(r)c were classified in [Zelevinsky
1980; Rogawski 1985], where 7, (r)c is the extended affine Hecke algebra of type A
over the complex field C with a non-root of unity. The category of finite-dimensional
A (r)c-modules and the category of finite-dimensional Ug (5/[\,,)—modules which are
of level r are related by a functor & defined in [Chari and Pressley 1996, §4.2].
Here Uc (5’[\,,) is quantum affine sl,, over C. Chari and Pressley [loc. cit.] proved that
% is an equivalence of categories if n > r. Furthermore the Drinfeld polynomials
associated with & (V') were determined in [loc. cit., §7.6] in the case of n > r, where
V is an irreducible #,(r)c-module.

Let Uc (g/[\n) be quantum affine gl, over C. In [Frenkel and Mukhin 2002], finite-
dimensional irreducible polynomial representations of Ug (g’[\n) were classified. It
was proved in [Deng, Du and Fu 2012, Theorem 3.8.1] that the natural algebra
homomorphism ¢, from Ug (g/[\n) to the affine quantum Schur algebra Fa(n, r)c is
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surjective. Every $(n, r)c-module can be regarded as a Ug (g/[;,)—module via ¢;.
Let F be the Schur functor from the category of finite-dimensional #,(r)c-modules
to the category of finite-dimensional $,(n, r)c-modules. It was proved in [Deng,
Du and Fu 2012, Theorem 4.1.3 and Proposition 4.2.1] that F is an equivalence of
categories in the case of n > r and that F(V)|u.(1,) is isomorphic to % (V) for any
A (r)c-module V. Furthermore, using [Chari and Pressley 1996, §7.6], the Drinfeld
polynomials associated with F(V) were determined in [Deng, Du and Fu 2012,
Theorem 4.4.2] in the case of n > r, where V is an irreducible #,(r)c-module. We
will generalize these results to the case of n < r in Theorem 4.9. Using this result,
we will prove in Corollary 4.10 the classification theorem of finite-dimensional
irreducible $A(n, r)c-modules, which was established in [Deng, Du and Fu 2012,
Theorem 4.6.8]. Finally, we will relate the parametrization of irreducible FA(N, r)c-
modules, via the functor G defined in (4.10.1), to the parametrization of irreducible
Sn(n, r)c-modules in Theorem 4.11. This result is the affine version of [Green
2007, (6.51)].

2. Quantum affine gl,,

Let v € C* be a complex number which is not a root of unity, where C* = C\ {0}.
Let (c;,j) be the Cartan matrix of affine type A, _;. We recall the Drinfeld’s new
realization of quantum affine gl,, as follows.

Definition 2.1. The quantum loop algebra U (gT ) (or quantum affine gl,)) is the
C-algebra generated by xl (U <i<n,se?), kil, andg; , (1<i<n,1e€Z\{0})
with the following relations:

-1 -1
(QLAD kk; =1=k k;, [k, k;]1=0,
(QLA2) kx; = véu—ux™ k.. [k g; 1=0,

0 ifi#j, j+1,
(QLA3) [g; ,, xj,1 =1 +v7/%( [s]/s)x] oy ifi=],

Fv fs([s]/s)xj’Ht ifi=j+1,
(QLA4) [ gis 8j, [] =0,
(QLAS) [ 1,5’ Jt _81 J(¢l s+t ¢;A+l)/(v - 71 ’

(QLAG) x,s X =% X, for|i—j|>1, and [x ,Hl,x,,] sy ==X 1 Ky ke
+ + + +
(QLA7) [x e X x L =% (%, x ] ], for i —j|=1,

where [x, y], =xy —ayx, [s] = (v° — v_s)/(v — v 1), and the ¢i’s are defined via
generating functions in the indeterminate u by

OFu) =k exp(i(v —v ) hi,ﬂ:m”im> =D diu*

m=>1 s=>0
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with k; = k;/ki11 (ky+1 = ki) and h; 4, = vEC"Dmg, 2 Dmg, |\
(1<i<n).

The algebra Ug (g/[\n) has another presentation which we now describe. Let
D c(n) be the double Ringel-Hall algebra of the cyclic quiver A(n). By [Deng,
Du and Fu 2012, Theorem 2.3.1], the algebra ©, ¢ (n) has the following presentation.

Lemma 2.2. The double Ringel-Hall algebra @A@(n) of the cyclic quiver A(n) is
the C-algebra generated by E;, F;, K;, K., +, L for1 <i<n,se 7%, and
relations:

(QGL1) K;K; =K;K;, K;K; ' =1,

(QGL2) K,E; = v~ E;K;, K;Fj=v ot F;K;,

(QGL3) E;F; — F;E; =8 ;(K; — K; 1)/ (v —v™Y), where K; = KiK.},

(QGL4) Y (—1)“[_ac’*f]E;*EjEfZOfori;éj,

a+b=17c,-.]-

(QGLS) > (=) [ C”]E“F;E”=0fori#j,
a+b=1—c; ;
(QGL6) z/7 =7z, z;z; =z, 7, 7}z, =7, z,

(QGL7) Kv,'Z;L = ZjK,‘, Ki2; = Z;Ki,
(QGLY) E;z} =z'E;, Eiz; =z E;, Fiz; =z, F;, and z} F; = F;z,

where 1 <i,j<n, s,t€Z", and
a c—s+1 —c+s—1
c v —v
= orce /.
[a} 1_[ vS i v—S f

s=1

It is a Hopf algebra with comultiplication A, counit ¢, and antipode o defined by

AE)=E®K +1®E, AF)=F®1+K '®F,
AKTY =K' @K, A =z0l+1®,
e(E)=e(F)=0=¢e(z), eK)=1,
o(E)=—EK™", oF)=-KF, oKk")=K, o@E)=-zF,

N

where |l <i<nandseZ" .

Let qu(ﬁ/[;) be the subalgebra of D, c(n) generated by E;, F,, Ei, Ei’l for
i € [1 n]. Beck [1994] proved that U@(s/r,,) is isomorphic to the subalgebra of
Uec (g[ ) generated by all xl o , and h; . The following result extends Beck’s
isomorphism.

i
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Lemma 2.3 [Deng, Du and Fu 2012, Proposition 4.4.1]. There is a Hopf algebra
isomorphism

f:Dpcn) — Ue(gl,)
such that

+1 +1 + - . .
K™ =k, Ej|—>xj,0, Fj|—>xj,0 1<ign, 1 <j<n),

E, > v¥k,, F, vk 'Y, 5 75005 (5> 1),

S
where

1
Ots = :Fm(gl,j:s + - +gn,j:s)’

x* = [X;—l,o’ [X;fz,Ov e, [xio, XII]U—I AR ey
Y=I[-- [[XT,—I’ XZO]U’ X;O]vv cees X:—I,O]v‘
We now review the classification theorem of finite-dimensional irreducible poly-
nomial Ug (g/[\,l)—modules. We first need to introduce the elements 2; ; € Uc (g/[\,l),

which will be used to define pseudo-highest weight modules. For 1 <i < n and
s € Z, define the elements 2; ; € U@(g/[\n) through the generating functions

1 —
9 (u) 1= exp (— > —g,-,i,wu)i’) =9 ™ € Ue(al)lu, u™"1],

t>1 [t] s=0

For a representation V of Uc(gl,), a nonzero vector w € V is called a pseudo-highest
weight vector if there exists some Q; ; € C such that

(2.3.1) xFw=0, 2 w=0iw, kw=v"w

forall1<i<nand1<j<n—1andseZ. Themodule V is called a pseudo-highest
weight module if V. =Ug (g’[\n)w for some pseudo-highest weight vector w. We also
write the short form Sll.i (Ww = Ql.i(u)w for the relations 2; ;w = Q; sw (s € Z),
where

OF ()= Qixu™.

520

Let V be a finite-dimensional polynomial representation of Ug(gl,) of type 1.
Then V = @jene Vi, where

V)\={XGV|ij=U}ij,1<j<n},

and, since all 2; ; commute with the k;, each V; is a direct sum of generalized
eigenspaces of the form

(232) Vi, ={xeVi|lQis—vis)’x=0 forsome p(l <i<n,seZ)},

where y = (y; ;) with y; € C. Let Fii(u) = Zyi’isuis.

5s=>0
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A finite-dimensional Ug (g/[\n)—module V is called a polynomial representation
if the restriction of V to Uc(gl,,) is a polynomial representation of type 1 and, for
every weight A = (A, ..., A,) € N” of V, the formal power series Fl.i (u) associated
to the eigenvalues (y; ;)sez defining the generalized eigenspaces V; , as given
in (2.3.2), are polynomials in u™ of degree A; so that the zeroes of the functions
I (u) and ' (u) are the same.

Following [Frenkel and Mukhin 2002], an n-tuple of polynomials

0=(Qi1W),..., Ou(u)

with constant terms 1 is called dominant if, for each 1 < i < n — 1, the ratio
Qi(v"_]u)/QiH(vi“u) is a polynomial. Let 9.(n) be the set of dominant n-tuples

of polynomials.
For g(u) = [] (1 —a;u) € Clu] with constant term 1 and a; € C*, define
1<i<m
(2.3.3) gy = [] a—gu®.

1<is<m
For Q =(Q1(u), ..., Q,(u)) € 2(n), define Q; ; € C,for 1 <i <nands eZ, by
the formula
O ()= Qi xu™,
s=0

where Qii(u) is defined using (2.3.3). Let 1(Q) be the left ideal of U@(g/[\n)
generated by XL, Sliys — Qs and k; — v*, for 1 <j<g<n—1,1<i<n,ands €Z,
where A; = deg Q;(u), and define

M(Q) =Uc(gl,)/1(Q).

Then M (Q) has a unique irreducible quotient, denoted by L( Q). The polynomi-
als Q;(u) are called Drinfeld polynomials associated with L( Q).

Theorem 2.4 [Frenkel and Mukhin 2002]. The Ug¢ (g/[\n)-modules L(Q) with Q €
9(n) are all nonisomorphic finite-dimensional irreducible polynomial representa-
tions of Ug (g/[\n).

If @, Q' €9(n) satisfies Q ;(v/"'u)/Q; W/ Tu) = Q" (/1 u)/ Q' (/T u)
and deg Q; (1) —deg Q)= deg Q’j(u) —deg Q}+1(u) for 1 < j<n-—1,then
L(D)|ucest) = L(Q"|uest,)» by [Deng, Du and Fu 2012, Lemma 4.7.1, Corollary
4.7.2]. Thus we can denote L(Q)|uc(sl,) by L(P), where P = (P, (u), ..., P,_1(u))
with Pj(u) = Q;(v/~"u)/ Q1 (v w).

Let ®(n) be the set of (n — 1)-tuples of polynomials with constant term 1. The
following result is due to Chari and Pressley [1991; 1994; 1995].

Theorem 2.5. The modules L(P) with P € ®(n) are all nonisomorphic finite-
dimensional irreducible Ug(s\,,)-modules of type 1.
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3. Affine quantum Schur algebras

In this section we collect some facts about extended affine Hecke algebras and
affine quantum Schur algebras, which will be used in Section 4. The extended
affine Hecke algebra #,(r)c is defined to be the algebra generated by

T, Xi' (<i<r—1,1<j<n),
and relations
(T; + 1)(T; —v?) =0,
LLTinT,=TinT:Tiv, T,T;=T,T; (li—j| > 1),
XX '=1=X7"X;, X;X;=X;X,
TiXiTi =v' X1, X;Ti=TX;(j#i.i+]D).

Let G, be the symmetric group with generators s; := (i,i + 1) for 1 <i <r —1.
Let I(n,r) ={(i1,...,i;) € Z" | 1 <i} < n, Yk}. The symmetric group &, acts
on the set / (n, r) by place permutation:

iwz(iw(l),...,iw(r)), for i el(n,r) andweG,.

Let Q¢ be a vector space over C with basis {w; | i € Z}. Fori = (iy,...,i,) €Z",
write

Wi =, Qu;, Q-+ Qu;, =w;wj, W, EQC :

The tensor space Qgr admits a right #,(r)c-module structure defined by

—1 .

wi - X; = W, O i, W], foralli e 7",
viw; if iy = igy1,

w; - Ty = { vwig, if iy <igyy, foralliel(m,r),

voig + (V2 — Dy if igy1 <ig,

where l <k<r—land 1<t <r.
The algebra

Fa(n, r)c :=Endy, ). (Ta(n, r))

is called an affine g-Schur algebra, where Tx(n, r) = Q%r. Let €2, c be the subspace
of Q¢ spanned by w; with 1 <i <n and #(r)¢ be the subalgebra of #,(r)¢ generated
by Tj for 1 < k <r — 1. Then the algebra ¥(n, r)c := Endy(r). (T (n, r)) is called
a g-Schur algebra, where J (n, r) = Qfl%.

The algebras U (gl,,) and Fx(n, r)¢ are related by an algebra homomorphism ¢,
which we now describe. For i € Z, let 1 denotes the corresponding integer modulo 7.
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The complex vector space Q¢ is a natural D, ¢ (n)-module with the action

+1 +6
Ei-wg=96 sWs—1, Fi oy = SZ,EQ)S-H» K[ Wy =V

RS
(3.0.1) N o

Z, Wy = Ws—tn, Z; *Wsg = Wstpn-

7,5
wSa

The Hopf algebra structure induces a ©, ¢ (n)-module Q%r . By [Deng, Du and Fu
2012, Proposition 3.5.5], the actions of ©, ¢(n) and HA(r)c on Q%r are commute.
We will identify ©, c(n) and Uec(gl,) via the algebra isomorphism f defined in
Lemma 2.3. Consequently, there is an algebra homomorphism

¢ Ue(gl,) = Doc(n) — $aln, rc.

It is proved in [Deng, Du and Fu 2012, Theorem 3.8.1] that ¢, is surjective. Let
Uc(gl,) be the subalgebra of ®, ¢ (n) generated by E,, F;, Kj, Kj_1 for1<i<n—1
and 1 < j < n. The restriction of ¢ to Uc(gl,) induces a surjective algebra
homomorphism ¢, : Ug(gl,) — F(n, r)c (see [Jimbo 1986]). Every Si(n, r)c-
module (resp., ¥(n, r)c-module) will be inflated into a U@(g/[;)—module (resp.,
Uc(gl,,)-module) via &,.

The following easy lemma relates Q" with SfofD.

Lemma 3.1 [Deng, Du and Fu 2012, Lemma 4.1.1]. There is a Uc(gl,,)-#A(r)c-
bimodule isomorphism

Q;?fc ®3(r)c #ar)c = Q% x®h+ xh.

The irreducible #,(r)c-modules were classified in [Zelevinsky 1980; Rogawski
1985], which we now describe. For a = (ay, ..., a,) € (C*)", let My = H\(r)c/ Ja,
where J, is the left ideal of #,(r)c generated by X; —a; for 1 < j <r.

A segment s with center a € C* is by definition an ordered sequence

s=(av ! qvF3 @ e (CHR.
Here k is called the length of the segment, denoted by |s|. If s = {sy,...,s,} is an
unordered collection of segments, define g (s) to be the partition associated with the
sequence (|sil, ..., [spl). Thatis, p(s) = (Is; |, ..., Is;, ) with [s;| = --- = s; |,
where [s;, |, ..., [s;,| is a permutation of [si], ..., [s,|. We also call |s| := | (s)]

the length of s.

Let &, be the set of unordered collections of segments s with |s| = r. Then
S = UMGM(,) Fru, where &, ={s € ¥, | p(s) = u} and AT (r) is the set of
partitions of r.

If w=sjsi,---si,isreduced let T, = T;,T;, - - - T;,,. For p > 1 let

G.1.1) A(p,r)z{ueN”‘ > Mi:I"}

1<i<p
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For uw € A(p,r) let G, be the corresponding standard Young subgroup of the
symmetric group &,, and let 9, = {d € &, | {(wd) = £(w) + £(d) for w € G, }.
For u e A(p,r) let

(3.1.2) S =#HT)cyu,

where
= ()T, e Hir)e.

wed,

Fors={s1,...,sp} €%, leta(s)=(si,...,s,) € (C*)" be the r-tuple obtained by
juxtaposing the segments in 5. Let ¢ : %(r)c — M) be the natural F(r)c-module
isomorphism defined by sending 4 to 4. Let

I =1Iy) = H(r)cTu = Ha(r)e -

Then,
(313) %(r)(@yu ;Eu@ <® ml),pLEU>v
oA

where E, is the left cell module defined by the Kazhdan—Lusztig’s C-basis [1979]
associated with the left cell containing wy ,,.

Let Vi be the unique composition factor of the ¥, (r)c-module #x(r)cy, such
that the multiplicity of E, in Vj as an #(r)c-module is nonzero.

The following classification theorem is due to [Zelevinsky 1980; Rogawski
1985].

Theorem 3.2. The modules Vs with s € ¥, are all nonisomorphic finite-dimensional
irreducible #,(r)c-modules.

Let $x(n, r)c-mod (resp., #(r)c-mod) be the category of finite-dimensional
Fa(n, r)c-modules (resp., #,(r)c-modules). The categories Sa(n, r)c-mod and
A (r)c-mod are related by the Schur functor F, which we now define. Using the
SPa(n, r)c-F,(r)c-bimodule Q?r, we define a functor

(3.2.1)  F=F,, : #u(r)c-mod — Fa(n, r)c-mod, V> Q& @, V.
Let
SN =(s={s1,...,sp} €S, p=1, |s;| <n, Vi}.

The following classification theorem is given in [Deng, Du and Fu 2012, Theo-
rems 4.3.4 and 4.5.3].

Lemma 3.3. Fors € ¥, we have F(Vy) # 0 if and only if s € 9™ Furthermore,
the set
(F(Vo) | s € 97
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is a complete set of nonisomorphic finite-dimensional irreducible $(n, r)c-modules.

The following result, which will be used in Theorem 4.9, is taken from [Chari
and Pressley 1996, §7.6; Deng, Du and Fu 2012, Theorem 4.4.2 and Lemma 4.6.5].

Let s = (av™"t av™"3, ... av"™") be a single

Lemma 3.4. Assume n > r.
= (r). Then Vg = ju and F(Vy) = L(Q), where Q =

segment and | =  (s)
(Ql(u)’ sy Qn(u)) with

0n () = (1 —av™" y)onr,

Qi(uv'™h)

—.:(l—au)‘s"*’ for1<i<n—1.
Qiy1(uvith)

4. Identification of irreducible ¥,(n, r)c-modules

In this section we will prove that F(Szp(s)) is isomorphic to the tensor product
of irreducible ¥5(n, r)c-modules for s € ™ and F($p(s)) =0 for s ¢ g™ in
Proposition 4.6. Using this result, we will relate the parametrization of irreducible
¥ (r)c-modules, via the functor F defined in (3.2.1), to the parametrization of finite-
dimensional irreducible polynomial representations of Ug (g@) in Theorem 4.9. As
applications, we will classify finite-dimensional irreducible $(n, r)c-modules in
Corollary 4.10, and generalize [Green 2007, (6.5f)] to the affine case.

To compute F(@ms)), we need Proposition 4.3 of [Rogawski 1985], which we
now describe. For 1 < j < p, let %, ; be the subalgebra of 3(r)c generated by T;
with s; € &), where

M(j) = (1=, g, 17,

and pp1,j) = p1 +pa + -+ 1. Since %, ; = %) for 1 < j < p and Q¢
is a right 9€(u j)c-module, Q?fg can be also regarded as a right ¥, ;-module.
Recall the notation $,, defined in (3.1.2). For u € A(p,r) and 1 < j < p let

Fu= | | H(r)eCi, Fuj= | | Hy,jCi, and I ;=9 jyuom.
5i€6 5 €60
1<i<r—1 1<i<r—1

where C; = v™'T; — v and V) = > (—v®)~tw, By Proposition 4.3 of
[Rogawski 1985] we have: wes, ()

Lemma 4.1. We have $,, = $,., $,.,j = $u.j fornw e A(p,r)and 1 < j < p.

Lemma 4.2. Assume [ is a left ideal of #(r)c. Then Qf??: Q%) I = Q%:I.
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Proof. Since #(r)c is semisimple, there exist a left ideal J of #(r)¢ such that
¥(r)c=1@®J. Then Q7 = S2®§3 ®(rye H(r)e = Q®E; e I © L Dure J-
Thus the natural linear map f : Qn,C Qe I — Qn, defined by sendlng w®hto
wh is injective. Consequently, Q¥ ®uye I =Im(f) = QT O

By Lemmas 3.1, 4.1, and 4.2 we conclude that F($,,) = sz®r @ Fn QI
where u = g (s) for some s € ¥.. We now compute Q;?FC} “-

Lemma 4.3. For u € A(p, r), we have
. ®p
Q®®}M:Q®M}M1® Q0 M,}Ml’

Proof. Since $,, = N<jc, Futr We have Q205 € Mg, (AP u0). Fur-
thermore by Lemma 4.1 we have $,5) = $,50 = X ;jFu; = Xy j$u.j wWhere
Xy, j=span{T, |w e QD_(lj)}. This implies that

QS%}W) = c:c% i= QM c® - ® Q ®MI<%J ® Q?Em ®:® Q®MP

for 1 < j < p. Thus,
Q%D;pu C m (QZ,IC R ® QM@ Q Q®M]}M; Q Q®M/+l Q@ Q@;Lp)
1<j<p
= Q%G1 ® @ I p
On the other hand, we assume wih; ®--- Q@ w,h, € Q®“1§M Q8 Q®MP§# .
where w; € Q®M] and hj € }u j- Since hkhz = hihy for any k, [l and hj € §,, ;,

we have hihy - - p = (h1 hj_1hjy1---hphj € H(r)cu,; S %(I’)@Ci for
I1<i<r—1,1<j<pwiths; €& This implies that h1hy---h), € $,,.

w)-
It follows that wyh ® c@wph, = (W1 @+ @wp)hy---h, € QTLF,. The
assertion follows. O
For u e A(p,r)and 1 < j < p, let %M j be the subalgebra of #x(r)c generated

by 7; and Xy, ;1415 - - - XM1 ;) with s; € Gu(“ Smce %M j= = ¥p(1j)c and ¢ BHJ
is a right 3,(u j)c-module, one can regard Q / as aright %M j-module.

Fors ={si,...,sp} €%, leta=(s,...,s,) € (C*)" be the r-tuple obtained
by juxtaposing the segments in s. For 1 < j < p let J, ; be the left ideal of %76% j
generated by Xy —ay for ppy j—1)+1 <k <y ). Letej 09, ; — %u,j/ju,j be
the natural ¥, ;-module isomorphism defined by sending / to h. Let

I =) =W jFu0 = Hopu ;500
By Lemma 4.3 we have the following corollary.

Corollary 4.4. Maintain the notation above. There is a Uc(gl,,)-module isomor-
phism
- ® _ -
¢ Q" O, ) ®- - ® Q" O, ,Fu.p) = F(Iu)
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such that ¢ (w QR - - Qw), ®hp) =W ® - -Qw, Qhi---h, pforw; e Q®M’
andh; € 9, ; with1 < j < p.

Proof. Combining Lemmas 3.1, 4.1 with 4.2 yields F($,) = Qf?j: Qurye Fu =

Wi .
Q¥ g, and Q5" @5 5 = Q0 ®u,, Fuj = QL Fpuj for 1 <j < p. This,
together with Lemma 4 3, implies the assertion. ([

We now prove that ¢ is in fact a Uc (g/[\n)—module isomorphism.

Lemma 4.5. The map ¢ is a Uc (g’[\n)-module homomorphism.

Proof. Letu € Uc(gh,) and w = w1 @11 ® - @, ®h, € (" @5, F,.1) ®
‘® (Q@w” ®%, ju »), Where w; € infé" and h; € $,,; for 1 <i < p. Assume

A(” ”(u)—Z(L,)ul@ (@, uiw; =3, Wik ik and gighi =35 gikiji X
WherewlkleQ s 8ik; E%W,andg,k‘je%w,X e%,“ Then

8ik: (6 (hi)) = gixhi = Z aj,8ik;.ji-
Ji
Hence,

ww=Y ww @ @ @uyw,®h,
(u)

=Z Z wl,kl®g1,k1f_l1®---®wp,k,,®gp,k,,f_lp

=Z Z aij, - wlk1®gl ki ji @ Q@ Wpk, D Epk,y, i, -

Since

8k~ &pkyh - hpy=gukhi - gpi,hp = Z Ajy A, 81k ji " Epkpojps

.....

we conclude that

QW)=Y " > @, Wik @ ®@Wpk, ® &y 1 Epkyi,

(u) kikp
Jseensdp

=Y Wik ® ®Wpk, ® &Lk Gpkyh1

W) kir...kp
=Zu1w1 @ - Qupyw,@hy---hp
(w)

=u(w @ - -Qw,hy---hp)
= up(w). O
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We can now describe F($ o(s)) as follows.

Proposition 4.6. Let s = {sy,...,s,} € &, , withs; = (@v™H 1 qo=Hit3
aivh =Y. Then F(3,) =0 fors ¢ S and F(3,) = L(Q) ® -+ L(Qp)for

s € 9, where Qi = (Qi (W), ..., Qin(w) with Ql,n(m = (1 —av "“u)“m

and Q;. J(uv )/Q, J+1(uvf+1) = (1 a;ju)’ini for1<i<pandl <j<n—1.

Proof. Since § w = Vs, for 1 <i < p, by Corollary 4.4 and Lemma 4.5 we conclude
that F(3,,) = Fur (3,0) S Fpy (Ve) @ - ®@Fp i, (Vi) If s & F1”, then there exists
1 < k < p such that |s;| = puy > n. By Lemma 3.3 we have F,, ,, (V) = 0 and
hence F($,,) =0. If s € $, then by Lemma 3.4 we have F, . (V) = L(Q;) for
1 <i < p. Consequently, F($,) =EL(Q1)®---QL(Q)). [l

We now turn to studying F(Vy) for s € Ef’ﬁ"). To compute F(Vy), we need to
generalize [Chari and Pressley 1996, §7.2] to the case of n < r. Recall the notation
A(n,r) definedin (3.1.1). Let AT (n,r) = A(n,r)NAT(r). For A e N" let L()) be
the irreducible Ug (gl,,)-module with highest weight 1. For 1 <i <n, let¥; =¢,.(K;)

and
e[,o He,v—v“ ey !
— v N :

s=1

For e N" let £, = [ MO] . [Eu. ]- The following result is the generalization of
[Chari and Pressley 1996, §7.2].

Lemma 4.7. Let 1 € AY(r). Then QP Qi) Eu # 0 if and only if ' €
A(n, r), where u' is the dual partition of ju. Furthermore if ' € At (n, r), then
Q?% ®%(r)¢; E,u = L(/L/)~

Proof. We choose N such that N > max{n, r}. Let e = ZueA(N) E, e PN, r)c.
It is well known that for u € A*T(N, r), eL(11) # 0 if and only if u € A(n, r) (see
[Green 2007, (6.5f)]). Furthermore by [Chari and Pressley 1996, §7.2; Deng, Du and
Fu 2012, Lemma 4.3.3] we have Q®€: Qe En Ze(QF Ve e En) Ze(L(i))).
Thus Q®C ®%¢y)e Ex # 0 if and only if ' € A(n,r). If pu' € AT (n,r), then

Q2L @ En Ze(L (W) = L(i). 0

In the case of n > r, the Drinfeld polynomials associated with F(Vy) were
calculated for s € Ei’ﬁ") in [Chari and Pressley 1996, §7.6; Deng, Du and Fu 2012,
Theorem 4.4.2]. We are now prepared to use Proposition 4.6 and Lemma 4.7 to
generalize these results to the case of n < r in Theorem 4.9.

Let 9(n), = {Q € 2(n) | Y <;, deg Qi) = r}. Fors = {si,...,sp} € #\"
with

si = (qu Mt gt gty e (CHM,
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define Qs = (Q1(u), ..., Q,(u)) by setting Q,(u) = ]_[ (1 —aq;uv™"*") and

Qi) = Piwv ™M P v ) o Pyl uv" %) 0, (uv? D)
for 1 <i<n-—1, where

Py = []A—aju.

1<j<p
wj=i

Then

> deg Qi(u) =ndeg Qu(u)+ Y idegPi(u)= Y ui=r.

1<isn 1<i<n—1 I<i<p

So Qs € 2(n),. Consequently, we obtain a map 9, , : 8’5") — 9(n), defined by
sending s to Q.

Lemma 4.8. The map 9, : ng") — 9(n), is bijective.

Proof. It is clear that 9, , is injective. Let O = (Q((u), ..., O, (u)) € 2(n), and
let . € A(n,r), with A; =deg Q;(u). For 1 < j<n—1let

Q;(uv/™h

Q1 (uv/th

and v; =deg Pj(u) =A; — Ajq1. We write, for 1 <i <n—1,

Pj(u) =

Pi (l/t) = (1 - aU1+'--+vi71+lu)(1 - aU1+'-'+Vi71+2u) e (1 - av1+---+v,-,1+v,~”),

and Q,(u) =1 —bju)--- (1 —b;,u). Let p' = Zlgign—l viand p=p'+,. Let
s ={si,...,sp}, where

{(aiv_"f+1,aiv_“i+3, coavthy for 1 <i < p,
S; =
Vi b b v D) for pr+ 1< < p,
and (u1, ..., pupy) =1", ..., (n—1)""). Since
Yolsil= D mjtnk= Y ivitni= Y ki=r
1<i<p 1<j<p! 1<i<n—1 1<i<n
we have s € 51’5"). It is easy to see that 9, ,.(s) = Q. Thus 9, , is surjective. O
Theorem 4.9. For s = {s1,...,s,} € 9’91) with s; = (gt go=H+3

a;vhi 1), we have F(Vy) = L(Qy), where Qg = 8,,.,(s). In particular, we have
F(Vs)|U@(5/[;,) = L(P), where

Pwy= [] A —aju) for1<i<n-—1.

I<jsp
//,j:[
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Proof. Let W = F(@M). By Proposition 4.6 we have W = L(Q1)®---Q L(Q)),
where Qi = (Qi.1(), ..., Qin(W)) with Qi () = (1 —av™"+u)’i and

Q; j(uv/~1)
Qi j+1(uv/+h)
forl<i<pand1l<j<n—1 Wewillidentify W with L(Q1)®---Q L(Q)).
Letw=w®:--Qw, € W, where w; is the pseudo-highest weight vector in L(Q;).
Then by [Chari and Pressley 1996, §6.3; Frenkel and Mukhin 2002, Lemma 4.1]

we conclude that w is the pseudo-highest weight vector in W such that k;w = v*
and Slfc(u)w = ch(u)w for 1 <i < n, where A, =deg Q;r(u),

0Fu) = 1_[ an(u): l_[ (1 — (au)= v +D)un

1<i<p 1<i<p

— 1_[ (1 _ (aiu)i]vi(—n-i‘]))

I<i<p
ni=n

P (u):= = (1 —a;u)’ini

A7)

and o
Q7 (v u)
Piw =iy = 11 25w
Qj+1(v' I/l) lgigp
= ] 0= @’ = [T 0 - @w*
1<i<p I<i<p

Hi=J]

for 1 < j < n— 1. By definition we have Qg = (Qf(u), e, Q,J{(u)). Since

rj=deg QT ) =r,+ Y degPra)=|{1<i<pluw>j}
j<s<n—1
for1<j<n,wehave A= (Ay,...,A,) =u'.
Let L =F(Vy). Since Vs is a semisimple #(r)c-module, by Lemmas 3.1 and 4.7
we have [L : LOW] = [L : Q¢ Qe End = [QFE Qe Vs 1 Q' @sirye Eul =
[Vs: E ] =1. Thus

4.9.1) dimL; = 1.

Since Vj is the irreducible subquotient of .$ - there is a surjective Ug (g/[\n)—module
homomorphism f : M — L, where M is a certain submodule of W. Since 1 =
dim L; < dim M, < dim W, =1, we conclude that dim M; = dim W, = 1. Hence
M, = W, =span{w} and L, = span{ f(w)}. By (4.9.1) we have f(w) # 0. Since
fisa U@(g/[\n)-module homomorphism, f(w) is the pseudo-highest weight vector
in L such that k; f(w) = f(w) = v* f(w) and 9" () f(w) = fOQF (w)w) =
Q?E(u) f(w) for 1 <i < n. This implies that L is the irreducible quotient module
of M(Qy) and hence L = L(Qy). O
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Combining Lemmas 3.3, 4.8 with 4.9 yields the following classification theorem
of irreducible $(n, r)c-modules, which was proved as Theorem 4.6.8 in [Deng,
Du and Fu 2012] using a different approach.

Corollary 4.10. The set {L(Q) | Q € 9(n),} is a complete set of nonisomorphic
finite-dimensional irreducible $x(n, r)c-modules.

Finally we will use Theorem 4.9 to generalize [Green 2007, (6.5f)] to the affine
case in Theorem 4.11. Assume N >n. Lete =}, ,(, ) &1 € Sa(N, r)c. Then
eSA(N,r)ce = Fa(n, r)c. Consequently, the categories eFA(N, r)ce-mod and
Fa(n, r)c-mod may be identified. With this identification, we define a functor

(4.10.1) G=Gnn, : IA(N,r)c-mod — Fp(n, r)c-mod, V> eV.

Then by definition we have Gy , , o Fy , =F, . For O =(Q1(u), ..., 0,(u)) €

9(n), let Q=(Q1(), ..., Qu), 1,...,1)€QN),. Letd(n),={ Q| Q € An),)}
C 9(N),. Clearly, by definition, we have

(4.10.2) ., (s) = Bpr(s) forse ™,

Theorem 4.11. Assume N~> n. Then G(L(é)) = L(Q) for Q € 2(n),. In
particular we have dim L(Q), = dim L(Q), for o € A(n,r). Furthermore, for
Q' € 2(N),, G(L(Q")) #0ifand only if Q" € 2.(n),.

Proof. If Q € 9(n), then by Lemma 4.8 we conclude that there exist s € ™ such
that Q =9, ,(s). By Theorem 4.9 and (4.10.2) we have L(Q) =T x(N, 1) Q. (r)c Vs-
So by [Deng, Du and Fu 2012, Lemma 4.3.3] and Theorem 4.9 we have

G(L(Q)) = (eTA(N, 1)) Q1) Vs = Taln, 1) Qy,ne Vs = L(Q).

By [Green 2007, (6.2g)], the set {G(L(Q")) #0| Q' € 9(N), } forms a complete set
of non-isomorphic irreducible F5(n, r)c-modules. This together with Corollary 4.10
implies that {G(L(Q")) #0| Q' € 2(N),} ={G(L( Q)) | Q@ €9(n),}. Consequently,
G(L(Q")) #0if and only if Q' € ﬁ(n),. O
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