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JOSÉ M. MANZANO

A Killing submersion is a Riemannian submersion from an orientable 3-
manifold to an orientable surface whose fibers are the integral curves of a
unit Killing vector field in the 3-manifold. We classify all Killing submer-
sions over simply connected Riemannian surfaces and give explicit models
for many Killing submersions, including those over simply connected con-
stant Gaussian curvature surfaces. We also fully describe the isometries
of the total space preserving the vertical direction. As a consequence, we
prove that the only simply connected homogeneous 3-manifolds which ad-
mit a structure of Killing submersion are the E.�; �/-spaces, whose isometry
group has dimension at least 4.

1. Introduction

Simply connected homogeneous Riemannian 3-manifolds with an isometry group
of dimension 4 or 6 different from H3 can be represented by a 2-parameter family
E.�; �/, where �; � 2 R. They include R3, S3, H2 � R, S2 � R, the Heisenberg
group, the Berger spheres and the universal cover of the special linear group SL2.R/

endowed with a left-invariant metric (see [Daniel 2007; Daniel et al. 2009; Meeks
and Pérez 2012]). The E.�; �/-spaces are 3-manifolds admitting a global unit
Killing vector field whose integral curves are the fibers of a certain Riemannian
submersion over the simply connected constant Gaussian curvature surface M2.�/.
In the Riemannian product 3-manifolds M �R, the projection over the first factor
is a Riemannian submersion whose fibers are also the trajectories of a unit Killing
vector field. In general, Riemannian submersions sharing this property will be
called Killing submersions (see [Espinar and de Oliveira 2013; Rosenberg et al.
2010] and Definition 1.1 below).

Constant mean curvature surfaces in E.�; �/ and M �R have been extensively
studied during the last decade and many results have been recently extended to the
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Killing submersion setting (e.g., see [Dajczer and de Lira 2009, 2012; Espinar and
de Oliveira 2013; Leandro and Rosenberg 2009; Rosenberg et al. 2010; Meroño
and Ortiz 2014]). Nevertheless, apart from the aforementioned spaces, the theory
of Killing submersions suffers from a lack of examples. It is necessary to mention
that these 3-manifolds are well-understood at the level of differential topology
(see [Besse 2008; Greub et al. 1976; Steenrod 1951]) since the projection defines
principal bundles with totally geodesic fibers. Nevertheless, the objective of this
paper is to classify them in the Riemannian category provided that the base is simply
connected, and give explicit models depending on the base surface and a special
geometric function, the so-called bundle curvature.

The bundle curvature has proved to be a very natural function in the surface
theory of Killing submersions. For instance, a Calabi-type correspondence for
surfaces which are graphs in the direction of the unit Killing field has been obtained
recently [Lee and Manzano 2013], swapping the bundle curvature and the mean
curvature of the graph. Note that Killing submersions also have dual Lorentzian
counterparts when the Killing vector field is assumed to be timelike: they lead
to interesting stationary spacetimes and are also related to Finsler metrics (see
[Javaloyes et al. 2013]).

Let � W E!M be a differentiable submersion from a Riemannian 3-manifold E

onto a surface M . A vector v 2 T E will be called vertical when v 2 ker.d�/ and
horizontal when v 2 ker.d�/?. The submersion � is Riemannian when it preserves
the length of horizontal vectors.

Definition 1.1. The Riemannian submersion � W E ! M , where E and M are
connected and orientable, is called a Killing submersion if it admits a complete
vertical unit Killing vector field.

As a matter of fact, any 3-manifold M admitting a unit Killing vector field � is
locally isometric to the total space of a certain Killing submersion, so the definition
is not as restrictive as it may seem.

The bundle curvature of a Killing submersion � W E ! M is defined (see
Lemma 2.1) as the unique function � 2 C1.E/ satisfying

rX � D �X ^ � for all X 2 X.E/;

where ^ is the cross product in E, � is a vertical unit Killing vector field, and r
denotes the Levi-Civita connection in E. The bundle curvature is constant along
the fibers of � so it can be seen as a function � 2 C1.M / (see Propositions 3.3
and 4.6 for other geometric interpretations of �). This gives rise to some natural
questions: Given a Riemannian surface M and � 2 C1.M /, does there exist a
Killing submersion over M with bundle curvature �? Is it unique? The main aim
of Sections 2 and 4 will be to give affirmative answers to these questions when M
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is simply connected. More specifically, we will classify Killing submersions up to
isomorphism, in the following sense:

Definition 1.2. Let � W E!M and � 0 W E0!M 0 be two Killing submersions. A
(local) isomorphism of Killing submersions from � to � 0 is a pair .f; h/, where
h W M ! M 0 is an isometry and f W E ! E0 is a (local) isometry, such that
� 0 ıf D h ı� .

Note that if .f; h/ is an isomorphism of Killing submersions, then f maps fibers
of � into fibers of � 0, and, if we consider a unit vertical Killing vector field � in E,
then f�� is also a unit vertical Killing vector field in E0.

Given a simply connected Riemannian surface M and � 2 C1.M /, we will
show that there exists a Killing submersion over M with bundle curvature � , and it
is unique (up to isomorphism) if the total space E is also simply connected. In the
process, it will turn out that the bundle curvature determines locally the geometry
of the submersion, but the topology of E is also conditioned by the bundle curvature.
More explicitly:

� If M is a topological disk, then the submersion is isomorphic to the projection
�1 WM �R!M , �1.p; t/D p, for some Riemannian metric on M �R such
that @t is a unit vertical Killing vector field. In particular, the fibers of the
submersion have infinite length.

� If, on the contrary, M D .S2;g/ for some Riemannian metric g, then we shall
distinguish cases depending on whether the total bundle curvature T D

R
M �

vanishes or not:

– If T D 0, then � is isomorphic to �1 W S
2 �R! .S2;g/, �1.p; t/D p,

for some metric on S2 �R such that @t is a unit vertical Killing vector
field, so the fibers have infinite length.

– If T ¤ 0, then � is isomorphic to �Hopf W S
3! .S2;g/, �Hopf.z; w/ D

.2zw; jzj2 � jwj2/, where S3 � C2 is endowed with a metric such that

.�=T /.iz; iw/ is a unit vertical Killing vector field. In this case, the fibers
have length j2T j.

When the total space is not simply connected, Killing submersions over M are also
classified as the quotients of those listed above under a vertical translation (i.e., an
element of the 1-parameter group of isometries associated to the unit Killing vector
field).

Though this theoretical description is exhaustive, we will give explicit models for
a wide class of Killing submersions. Firstly, for those over a disk with a conformal
metric in terms of the conformal factor, the obtained examples will generalize the
metrics for the E.�; �/-spaces in [Daniel 2007]. Secondly, we will obtain a general
method to produce trivial Killing submersions (i.e., admitting a global smooth
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section) over any surface by isometrically embedding it in Rn for some n � 3.
Finally, explicit models will also be obtained for Killing submersions over the
round sphere S2.�/ via the Hopf fibration (generalizing the metrics of the Berger
spheres in [Torralbo 2012]).

The geometries of M and E of a Killing submersion � W E!M are well-related,
and geodesics or isometries are good samples of that. On the one hand, geodesics
of E can be divided into three different types: vertical ones, horizontal ones (which
are horizontal lifts of geodesics of M ) and those which are neither vertical nor
horizontal, each of which makes a constant angle with the vertical direction and
whose projection is well-understood (see Proposition 3.6). In particular, M is
complete if and only if E is complete. On the other hand, a beautiful classification
result is obtained when we look for Killing isometries (i.e., isometries of E preserving
the vertical direction). More explicitly, if E and M are simply connected, and
� 2 C1.M / denotes the bundle curvature, then:

(a) Given a Killing isometry f W E! E, there exists a unique isometry h WM !M

such that � ı f D h ı� . Moreover, � ı hD � if f is orientation-preserving
and � ı hD�� if it is orientation-reversing.

(b) Conversely, given an isometry h WM !M and p0; q0 2 E with h.�.p0//D

�.q0/, the following properties hold:
� If � ıhD � , then there is a unique orientation-preserving Killing isometry
f W E! E with � ıf D h ı� and f .p0/D q0.

� If � ıhD�� , then there is a unique orientation-reversing Killing isometry
f W E! E with � ıf D h ı� and f .p0/D q0.

This construction provides a surjective group morphism from the group of Killing
isometries of E to the group of isometries of M which either preserve � or map
it to �� . Its kernel consists of isometries of E that leave the fibers invariant (i.e.,
vertical translations, and also symmetries with respect to a horizontal slice when
� D 0). In particular, 1-parameter groups of isometries of M preserving � give
rise to 1-parameter groups of isometries in E. Such groups have proven to be
essential in surface theory, leading to many geometric features, e.g., they are related
to holomorphic quadratic differentials (see [Abresch and Rosenberg 2005]) and
conjugate constructions (see [Manzano and Torralbo 2012]).

Finally, note that simply connected homogeneous 3-manifolds are classified:
they are all isometric to Lie groups endowed with left-invariant metrics except for
S2.�/�R, where �>0 (see [Meeks and Pérez 2012, Theorem 2.4]). In Section 5, we
will characterize the homogeneous spaces E.�; �/ as the only simply connected ho-
mogeneous 3-manifolds admitting a Killing submersion structure (see Theorem 5.2).
Hence, the only Killing submersions whose total space is isometric to a Lie group
endowed with a left invariant metric are the E.�; �/-spaces, except for S2.�/�R.
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2. Uniqueness results

The bundle curvature. The next result can be found in [Espinar and de Oliveira
2013; Souam and Van der Veken 2012], but we will include the proof here for
completeness.

Lemma 2.1. Let � W E!M be a Killing submersion. Then there exists a function
� 2 C1.E/ such that rX � D �X ^ � for all X 2 X.E/.

The function � will be called the bundle curvature of the submersion.

Proof. First of all, note that r�� D 0. Indeed, given X 2 X.E/, we have

hr��;X i D �hrX �; �i D �
1
2
X h�; �i D 0;

since � is Killing and unitary.
Let us now take X 2X.E/ linearly independent of � . On the one hand, it is clear

that hrX �; �i D 0 and, on the other hand, hrX �;X i D 0 since � is Killing. Then
there exists a unique function �

X
2C1.E/ such that rX � D �X X ^� , so it suffices

to prove that �
X

does not depend on X . It is clear that �
X

only depends on the
horizontal part of X so it will be enough to prove that �

X
D �

Y
for all X;Y 2X.E/

horizontal. By using again that � is a Killing vector field, we get

�Y hY^ �;X i D hrY �;X i D �hrX �;Y i D ��X hX ^ �;Y i D �X hY^ �;X i;

so �
X
D �

Y
, where X and Y are linearly independent. Elsewhere, the identity

�
X
D �

Y
follows from the linearity of the connection. �

Observe that the function � in the conditions of Lemma 2.1 is unique and its sign
depends on the choice of orientation in E. We will give now some consequences of
this result in order to fix some notation.

Remark 2.2. (1) The condition r�� D 0 implies that the fibers of the submersion
are geodesics of E, which will be called vertical geodesics.

(2) The elements of the 1-parameter group of isometries f�tgt2R associated to the
Killing vector field � will be called vertical translations.

Note that �t preserves the Killing field � and the orientation in E. Thus, if
we apply d�t to the identity in Lemma 2.1, we easily get � D � ı �t for all
t 2 R. This means that the bundle curvature is constant along the fibers and,
hence, it may be considered as a function either in E or in the base M .

(3) More generally, let .f; h/ be an isomorphism between two Killing submersions
� W E!M and � 0 W E0!M 0 (see Definition 1.2) and define � 2 C1.E/ and
� 0 2 C1.E0/ as their bundle curvatures with respect to some orientations in E

and E0, respectively. Then � ı f D � when f preserves the orientation, and
� ıf D�� 0 when f reverses the orientation.
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In the product spaces M � R the projection over the first factor is a Killing
submersion, so its bundle curvature is � � 0 (from Lemma 2.1 it is easy to deduce
that � � 0 in a Killing submersion if and only if the horizontal distribution in
the total space is integrable). Given �; � 2 R, there exists a Killing submersion
� W E.�; �/! M2.�/ with constant bundle curvature � . If � > 0 and � ¤ 0, the
projection is the Hopf fibration and we obtain the Berger spheres; in the remaining
cases the fibers have infinite length. We refer the reader to [Daniel 2007] for a
description of these examples, although Berger spheres from a global point of view
can be found in [Torralbo 2012].

Other examples derived from the aforementioned ones are their Riemannian
quotients by a convenient vertical translation. Thus the length of the fibers will
play an important role in the theory. Since fibers are geodesics, the following result
follows from [Besse 2008, Theorem 9.56].

Lemma 2.3. Let � W E!M be a Killing submersion. Then all the fibers of � share
the same (finite or infinite) length.

Local representation of a Killing submersion. Given a surface M and � 2C1.M /,
we are interested in finding all Killing submersions over M with bundle curvature � .
Let us begin by giving a useful technical tool that will simplify some arguments
throughout the paper.

Proposition 2.4. Let � W E!M be a Killing submersion, and suppose that M is
noncompact. Then � admits a global smooth section F WM ! E. Hence,

‰ WM �R! E; ‰.p; t/D �t .F.p//;

is a local diffeomorphism, where f�tg denotes the 1-parameter group of vertical
translations. Moreover, ‰ is a global diffeomorphism if and only if the fibers of �
have infinite length.

Proof. We can suppose that the fibers of � have finite length (otherwise, we
take a quotient of � under a vertical translation �t for some t > 0). Then � is a
codimension-one circle bundle over a noncompact surface and [Greub et al. 1976,
Section VIII.5] yields the existence of a global smooth section. Moreover, ‰ is a
local diffeomorphism since its differential is injective at every point.

Finally, note that ‰ is a global diffeomorphism if and only if it is injective, but
‰.p0; t 0/D‰.p; t/ implies pD p0 since ‰.p0; t 0/ and ‰.p; t/ belong to the same
fiber of � , so the last assertion in the statement holds. �

This result will be mostly used to ensure that there exists a smooth section
F WU ! E for any coordinate chart .U; '/ in M , but it also implies that exceptional
topologies for the total space may only arise when the base is compact. Note that,
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if the base is compact, then Proposition 2.4 no longer holds, as the Hopf fibration
from S3 to S2 shows.

The following result will be the cornerstone of the subsequent development
yielding a standard way of describing � in terms of M and � .

Proposition 2.5. Let � W E!M be a Killing submersion. Let U �M be an open
set such that there is a conformal diffeomorphism ' W U !�� R2. Then:

(a) Given a smooth section F0 W U ! ��1.U /, the transformation

(2-1) f W��R! ��1.U /; .x;y; t/ 7! �t .F0.'
�1.x;y//;

is a local diffeomorphism and satisfies � ı f D ' ı �1 in � � R, where
�1 W��R!� is the projection over the first factor.

(b) Let us write the induced metric in� as ds2
�
D �2.dx2Cdy2/ for some positive

� 2 C1.�/. Then there exist a; b 2 C1.�/ such that the metric in � � R

which makes f a local isometry can be expressed as

(2-2) ds2
D �2.dx2

C dy2/C .dt ��.a dxC b dy//2:

(c) �1 W .��R; ds2/! .�; ds2
�
/ is a Killing submersion with unit Killing vector

field @t , and .f; '�1/ is a local isomorphism from �1 to � .

Moreover, if the fibers of � have infinite length, then f is a global diffeomorphism.

Proof. We deduce from Proposition 2.4 that ‰ W U � R ! ��1.U / given by
‰.p; t/D �t .F0.p// is a local diffeomorphism, so f D‰ ı .'�1 � idR/ is also a
local diffeomorphism, and it obviously satisfies the condition ' ı�1D � ıf , so (a)
is proved. Note that Proposition 2.4 also ensures that f is a global diffeomorphism
if the fibers of � have infinite length.

To prove (b), consider the unique Riemannian metric ds2 in '.U /�R making
f a local isometry. The condition ' ı �1 D � ı f implies that �1 is a Killing
submersion. Vertical translations for � correspond (through f ) to isometries of the
form .x;y; t/ 7! .x;y; tC�/, � 2R, in .'.U /�R; ds2/. In particular, @t is a unit
vertical Killing vector field in .'.U /�R; ds2/.

Let fe1; e2g be the orthonormal frame in .'.U /; ds2
�
/, where e1 D .1=�/ @x and

e2 D .1=�/ @y , and let fE1;E2g be the horizontal lift of fe1; e2g with respect to
�1 and E3 D @t . Since �1 is the projection over the first two variables, there exist
a; b 2 C1.'.U // such that

(2-3)

8̂̂̂̂
<̂
ˆ̂̂:
.E1/.x;y;t/ D

1

�.x;y/
@xC a.x;y/ @t ;

.E2/.x;y;t/ D
1

�.x;y/
@y C b.x;y/ @t ;

.E3/.x;y;t/ D @t :
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Note that fE1;E2;E3g is an orthonormal frame in .'.U / � R; ds2/ which can
be supposed positively oriented after possibly swapping e1 and e2. Now it is
straightforward to show that the global frame (2-3) is orthonormal for ds2 if and
only if ds2 is the metric given by (2-2). �

Regardless of the values of the functions a; b 2 C1.�/, the Riemannian metric
given by (2-2) has the property that the projection over the first two variables is a
Killing submersion over .�; ds2

�
/.

Definition 2.6 (canonical example). Given an open set��R2 and �; a; b2C1.�/

with � > 0, the Killing submersion

�1 W .��R; ds2
�;a;b/ 7! .�; ds2

�/; �1.x;y; z/D .x;y/;

ds2
�;a;b D �

2.dx2
C dy2/C .dz��.a dxC b dy//2;

will be called the canonical example associated to .�; a; b/.

Equation (2-3) defines a global orthonormal frame fE1;E2;E3g for ds2
�;a;b

,
where E1 and E2 are horizontal, and E3 is a unit vertical Killing field. It is easy
to check that ŒE1;E3�D ŒE2;E3�D 0 and

ŒE1;E2�D
�y

�2
E1�

�x

�2
E2C

�
1

�2
.b�x � a�y/C

1

�
.bx � ay/

�
E3:

Taking into account Lemma 2.1, we can compute the bundle curvature � associated
to this canonical example as

(2-4) 2� D hrE1
E2;E3i � hrE2

E1;E3i D hŒE1;E2�;E3i

D
1

�2
.b�x � a�y/C

1

�
.bx � ay/D

1

�2
..�b/x � .�a/y/:

This divergence formula will come in handy in the sequel.

Lemma 2.7 (classification of canonical examples). Let � � R2 be a simply con-
nected open set and �; a0; a1; b0; b1 2 C1.�/ such that � > 0. The following
assertions are equivalent:

(i) There exists d 2 C1.�/ such that the pair .fd ; id�/, where

(2-5)
fd W .��R; ds2

�;a0;b0
/! .��R; ds2

�;a1;b1
/;

.x;y; z/ 7! .x;y; z� d.x;y//;

is an isomorphism of Killing submersions.

(ii) There exists d 2 C1.�/ such that dx D �.a1� a0/ and dy D �.b1� b0/.

(iii) The bundle curvatures �0; �1 2 C1.�/ of the two submersions coincide.



THE CLASSIFICATION OF KILLING SUBMERSIONS AND THEIR ISOMETRIES 375

Proof. It is easy to check that fd is an isometry if and only if d satisfies (ii), so
the equivalence between (i) and (ii) is proved. Since fd preserves the orientation
in ��R, we get that (i) implies (iii) from Remark 2.2. Finally, to prove that (iii)
implies (ii), observe that �0 D �1 means .�b0/x � .�a0/y D .�b1/x � .�a1/y in
view of (2-4). Equivalently, we have .�.a1�a0//y D .�.b1�b0//x , so (ii) follows
from Poincaré’s lemma and the fact that � is simply connected. �

We remark that condition (i) in the statement is equivalent to the fact that
the canonical examples for .�; a0; b0/ and .�; a1; b1/ represent the same Killing
submersion for different initial sections. The function d is, up to an additive
constant, the vertical distance between such sections.

Lemma 2.7 is actually a local classification result for Killing submersions, since
we have proved that all Killing submersions are locally equivalent to canonical
examples. We will now give the general version.

Theorem 2.8 (uniqueness). For i 2 f0; 1g, let �i W Ei!Mi be a Killing submersion,
Mi being simply connected, with bundle curvature �i 2 C1.Mi/ for a given
orientation in Ei . Suppose that the fibers of �0 and the fibers of �1 have the same
length and there exists an isometry h WM0!M1. Let p0 2 E0 and p1 2 E1 be such
that h.�0.p0//D �1.p1/.

(a) If �1 ı h D �0, then there exists a unique orientation-preserving isometry
f W E0! E1 such that �1 ıf D h ı�0 and f .p0/D p1.

(b) If �1 ı h D ��0, then there exists a unique orientation-reversing isometry
f W E0! E1 such that �1 ıf D h ı�0 and f .p0/D p1.

Proof. Let us first consider the case of Mi being a topological disk, so there exist
conformal diffeomorphisms 'i WMi ! � such that h ı '0 D '1, where � � R2

is an open set. For i 2 f0; 1g, Proposition 2.4 guarantees the existence of a global
smooth section Fi WMi! Ei and a local diffeomorphism fi W��R! Ei , given
by fi.x;y; t/ D �i

t .Fi.'
�1
i .x;y/// as in Proposition 2.5, where f�i

tg is the 1-
parameter group of vertical translations associated to �i . In other words, we obtain
a commutative diagram as in Figure 1, where � W��R!� is the projection over
the first factor.

Observe that '0 and '1 induce the same metric �2.dx2C dy2/ on �, and f0

and f1 induce canonical metrics ds2
�;a0;b0

and ds2
�;a1;b1

on � � R, respectively.
Moreover, the condition �1 ı h D �0 ensures that both canonical examples for
.�; b0; a0/ and .�; b1; a1/ have the same bundle curvature, so Lemma 2.7 yields
the existence of a isometry

Of W .��R; ds2
�;a0;b0

/! .��R; ds2
�;a1;b1

/
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E0
�0 //

f

��

M0

h

��

'0

~~
��R

f0

bb

� //

yf
��

�

��R

f1||

� // �

E1 �1

// M1

'1

``

Figure 1. Horizontal and vertical arrows represent Killing submer-
sions and isometries, respectively. Diagonal ones relate the original
diagram with the canonical examples.

of the form Of .x;y; z/D f .x;y; zCd.x;y// for some d 2C1.�/, so � ı Of D � .
If �1ıhD��0, the canonical examples for .�; b0; a0/ and .�; b1; a1/ have opposite
bundle curvatures, so it is easy to see that there exists an isometry of the form
Of .x;y; z/D f .x;y;�z� d.x;y// for some d 2 C1.�/.

In both cases, the isometry Of induces an isometry from the quotient of

.��R; ds2
�;a0;b0

/

by a vertical translation to the quotient of .��R; ds2
�;a1;b1

/ by the same vertical
translation. Adjusting the translation so that the length of the fibers of the quotient
is the same as in E0 or E1, the isometry in the quotient provides an isometry
f W E0! E1 such that �1 ıf D h ı�0. We get f .p0/D p1 by just composing f
with a vertical translation.

Finally, suppose that M0 and M1 are topological 2-spheres. Let U0DM0 nfq0g

for some q0 ¤ �0.p0/ and U1 D h.U0/DM1 n fh.q0/g. Note that h W U0! U1 is
an isometry in the conditions of the disk case so it lifts to an isometry f W V0! V1,
where ViD�

�1
i .Ui/ for i 2f0; 1g, satisfying �1ıf Dhı�0 in V0 and f .p0/Dp1.

Now, let zp02V0 be such that�0. zp0/¤�0.p0/, and zp1Df . zp0/. Now take zq02M0

such that zq0 62 f�0. zp0/; q0g, and zU0 DM0 n fzq0g, zU1 D h. zU0/ DM1 n fh.zq0/g.
The same reasoning above gives an isometry zf W zV0!

zV1, where zVi D�
�1
i . zUi/ for

i 2 f1; 2g, satisfying the condition �1 ı
zf D hı�0 in zV0 and zf . zp0/D zp1D f . zp0/.

Since V DV0\
zV0 is connected, we have f . zp0/D zf . zp0/, and .df / zp0

D .d zf / zp0

(because both f and zf preserve the vertical direction and �1 ı
zf D hı�0D �1 ıf

in V ), and we conclude that f D zf in V . As V0 [
zV0 D E0, we deduce that f

can be extended (by zf ) to an isometry from E0 to E1, and it trivially satisfies the
conditions in the statement. �
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Killing isometries. We will now specialize some of the results in the previous
section to study isometries of the total space of a Killing submersion � W E!M

preserving the Killing submersion structure, i.e., those preserving the direction of a
unit vertical Killing vector field �.

Definition 2.9. In the previous notation, the isometries of E satisfying f�� D � or
f�� D�� will be called Killing isometries.

The definition does not depend on the choice of � . If f�� D � (resp. f�� D��),
then f is said to preserve (resp. reverse) the orientation of the fibers. Note that
preserving the orientation of the fibers is not related to preserving or reversing the
orientation of the total space E.

Lemma 2.10. Let � W E ! M be a Killing submersion with bundle curvature
� 2 C1.M /, and let f W E! E be a Killing isometry. Then:

(a) There exists a unique isometry h WM !M such that � ıf D h ı� .

(b) If f preserves the orientation in E, then � ı hD � .

(c) If f reverses the orientation in E, then � ı hD�� .

Proof. Item (a) follows from the fact that f maps fibers to fibers and from the fact
that d� is an isometry when restricted to the horizontal distribution. Now, it is easy
to see that .f; h/ is an isomorphism of Killing submersions (see Definition 1.2), so
(b) and (c) follow from Remark 2.2. �

In fact, the map f 7! h defined by (a) of Lemma 2.10 can be easily proved to be
a group morphism from the group of Killing isometries to the group of isometries
of M with � ı hD˙� . Moreover, the normal subgroup of orientation-preserving
isometries is mapped to those isometries of M which preserve � . As an application
of Theorem 2.8, we can prove that this morphism is surjective and its kernel consists
of the vertical translations and, for � � 0, also the symmetries with respect to a slice.

Corollary 2.11. Let � W E!M be a Killing submersion with bundle curvature
� 2 C1.M / and suppose that M is simply connected. Let h W M ! M be an
isometry and take p0; q0 2 E such that h.�.p0//D �.q0/.

(a) If � ı h D � in M , then there exists a unique orientation-preserving Killing
isometry f W E! E such that � ıf D h ı� and f .p0/D q0.

(b) If � ı hD �� in M , then there exists a unique orientation-reversing Killing
isometry f W E! E such that � ıf D h ı� and f .p0/D q0.

As an immediate consequence, in the following two situations there do not exist
Killing isometries reversing the orientation of the total space:

� If the bundle curvature is a nonzero constant.

� If M is a Riemannian 2-sphere and
R

M � ¤ 0.
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3. Curves in Killing submersions

The horizontal lift of a curve.

Definition 3.1. Let � W E! M be a Killing submersion and ˛ W Œc; d �! M a
C1-curve. A horizontal (or Legendrian) lift of ˛ is a C1-curve z̨ W Œc; d �! E such
that z̨0 is always horizontal and � ı z̨ D ˛ in Œc; d �.

This concept extends to piecewise C1-curves ˛ W Œc; d �!M , i.e., ˛ such that
there is a partition c D t0 < t1 < : : : < tn D d so that ˛jŒti�1;ti � is C1 for all
i 2 f1; : : : ; ng. A horizontal lift of ˛ is a continuous curve z̨ W Œc; d �! E such that
z̨jŒti�1;ti � is a horizontal lift of ˛jŒti�1;ti � for all i 2 f1; : : : ; ng.

Lemma 3.2. Let ˛ W Œc; d �!M be a piecewise C1-curve. Given p0 2 E such that
�.p0/D ˛.c/, there exists a unique horizontal lift z̨ of ˛ such that z̨.c/D p0.

Proof. Let cD t0< t1< : : : < tnD d be a partition such that ˛jŒti�1;ti � is a C1-curve.
We can refine the partition so that ˛. Œti�1; ti � / � Ui for some conformal chart
.Ui ; 'i/ of M for all i . Thus, we can assume that ˛ is contained in such a chart
.U; '/, so z̨ will be contained in ��1.U /.

This allows us to work in the canonical example given in Definition 2.6 for
� D '.U / and some �; a; b 2 C1.'.U // with � > 0. Writing in coordinates
˛.t/D .x.t/;y.t// 2 '.U /, a horizontal lift of ˛ must be of the form z̨.t/ D
.x.t/;y.t/; z.t// for some z W Œc; d �! R, and must satisfy hz̨0; @zi D 0. This last
condition can be developed as

(3-1) z0 D �.x;y/ � .a.x;y/x0C b.x;y/y0/:

Since �.p0/D ˛.c/, we have p0 D .x.c/;y.c/; z0/ for some z0 2 R. We deduce
that there exists a unique C1-function z.t/ satisfying (3-1) with initial condition
z.c/D z0, so the horizontal lift exists and is unique. �

We can now give a geometric meaning of the bundle curvature in terms of the
difference of heights of the endpoints of the horizontal lift of closed curves (see
also [Daniel et al. 2009, Proposition 1.6.2]). Supposing that the fibers have infinite
length will be necessary for the difference of heights to make sense.

Proposition 3.3. Let � W E!M be a Killing submersion whose fibers have infinite
length. Given a simple piecewise C1-curve ˛ W Œc; d �!M bounding an orientable
relatively compact open set G �M and a horizontal lift z̨ of ˛, we haveˇ̌̌Z

G
�
ˇ̌̌
D

h

2
;

where h is the length of the vertical segment joining z̨.c/ and z̨.d/.
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Proof. Let us consider an atlas of M consisting of conformal charts. We will first
suppose that G is contained in one of the charts .U; '/, so we can suppose that we are
working in the canonical example given by Definition 2.6 for �; a; b 2 C1.'.U //

with � > 0. Moreover, (2-4) allows us to write � as a divergence in '.G/. The
divergence theorem yieldsZ

'.G/

2� D

Z
'.G/

div
�

b

�
@x �

a

�
@y

�
D

Z
@'.G/

�
b

�
@x �

a

�
@y ; �

�
;

where � is the outer unit conormal to '.G/ along its boundary. We write in
coordinates ˛ D .x;y/ and z̨ D .x;y; z/, and suppose ˛ is parametrized by arc-
length (i.e., .x0/2C .y0/2 D 1=�2). Hence �D�y0 @xCx0 @y , up to a sign, so we
deduce from (3-1) thatˇ̌̌̌Z

G

2�

ˇ̌̌̌
D

ˇ̌̌̌Z d

c

� � .ax0C by0/

ˇ̌̌̌
D

ˇ̌̌̌Z d

c

z0
ˇ̌̌̌
D jz.d/� z.c/j:

As hD jz.d/� z.c/j in this model, we are done.
If G does not lie in a single chart, we can triangulate G by a finite number of

triangles with piecewise C1 boundaries so each triangle is contained in a coordinate
chart of the atlas (see, for instance, the proof of [Jost 2002, Theorem 2.3.A.1]) and
˛ can be expressed as a finite sum of the boundaries of these triangles. As G is
orientable, such boundaries can be oriented so that the interior ones cancel out in
pairs. The argument above applied to each triangle together with the divergence
theorem gives the desired result. �

Geodesics. Let � W E ! M be a Killing submersion. Given two vector fields
X;Y 2 X.M /, we can consider their horizontal lifts X ;Y 2 X.E/. Then the
following equality holds (see [do Carmo 1992, pp. 185–187]):

(3-2) rX Y DrX Y C ŒX ;Y �v;

where r and r are the Levi-Civita connections in M and E, respectively, rX Y is
the horizontal lift of rX Y and ŒX ;Y �v is the vertical part of ŒX ;Y �.

From (3-2) we deduce that the horizontal lift of a geodesic in M is a geodesic in E.
Since not all geodesics are horizontal or vertical, we will need a slight improvement
of this argument to classify them all.

Lemma 3.4. Geodesics in E make a constant angle with a vertical Killing vector
field �.

Proof. Given a geodesic 
 in E, we can compute

d

dt
h
 0; �i D hr
 0


0; �iC h
 0;r
 0�i:
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The first term on the right-hand side vanishes since 
 is a geodesic, and the second
one also vanishes because r
 0� D �
 0 ^ � (see Lemma 2.1). �

Given a real number � 2 R and a smooth curve ˛ W Œa; b�!M , we can consider
the smooth curve

(3-3) 
 W Œa; b�! E; 
 .t/D ��t .z̨.t//;

where f�tg is the group of vertical translations associated to a unit vertical vector
field � . The chain rule allows us to compute


 0.t/D ��
.t/C .d��t /z̨.t/.z̨
0.t//;

so 
 makes a constant angle with � and will be our candidate to geodesic. Taking
into account that Œz̨0; ��D 0 and (3-2), we get

(3-4) r
 0

0
D 2�� z̨0 ^ �Cr˛0˛0:

Let us suppose that ˛ has unit speed and consider J the ˙.�=2/-rotation in TM

(the sign will be chosen below). Then there exists a function �g W Œa; b�! R, the
geodesic curvature, such that r˛0˛0 D �g � J˛

0. The horizontal lift of J˛0 is a
horizontal and unitary vector field along z̨, orthogonal to z̨0. Hence, we can choose
the sign of J so the horizontal lift of J˛0 is equal to �z̨0 ^ �. Now (3-4) implies
that 
 is a geodesic if and only if

(3-5) �g.t/D 2��.˛.t//:

Lemma 3.5. Given � 2 R, p 2M and v 2 TpM , there exist " > 0 and a unique
unit-speed smooth curve ˛ W ��"; "Œ ! M such that ˛.0/ D p, ˛0.0/ D v and
satisfying (3-5).

Moreover, if M is complete then ˛ extends to the whole real line.

Proof. We will work in a conformal parametrization ' W U � R2!M compatible
with the orientation fixed above, where U is a neighborhood of p. Then we identify
˛ with the coordinates .x;y/D '�1 ı˛. Since ˛ has unit speed, there must exist a
smooth function � such that x0D��1 cos � and y0D��1 sin � , where � denotes the
conformal factor. The geodesic curvature of ˛ with respect to J˛0D�y0 @xCx0 @y

is given by

�g D �
0
C
�x

�2
sin � �

�y

�2
cos �:

Now, (3-5) becomes the first-order ODE system
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(3-6)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

x0 D
1

�.x;y/
cos �;

y0 D
1

�.x;y/
sin �;

� 0 D 2��.x;y/�
�x.x;y/

�.x;y/2
sin � C

�y.x;y/

�2.x;y/
cos �:

The general theory of ODEs guarantees the existence of a unique smooth solution
in a neighborhood of the origin when prescribing ˛.0/, ˛0.0/ (note that these initial
data are equivalent to x.0/, y.0/ and �.0/). Observe that the solution can be
extended as long as ˛ is contained in U , so if M is complete and we take an atlas
consisting of conformal parametrizations compatible with the orientation, then ˛
extends to the whole real line. �

It is important to notice that the curve 
 given by Lemma 3.5 satisfies k
 0k2 D
1C�2, so after a reparametrization by arc-length, we obtain h
 0; �i D�=

p
1C�2.

This last expression varies in �� 1; 1Œ when � 2 R, so this construction covers all
geodesics in E, except for the vertical ones.

Proposition 3.6. Given p 2 E, all geodesics in E passing through p are of one (and
only one) of the following types:

(1) vertical geodesics (fibers of the submersion),

(2) horizontal lifts of geodesics in M passing through �.p/,

(3) of the form 
 .t/D ��t .z̨.t//, where z̨ is a horizontal lift of ˛ in M such that
˛.0/D �.p/ and satisfying (3-5) for some �¤ 0.

In particular, if M is complete, then so is E.

Remark 3.7. When the bundle curvature is constant, nonvertical geodesics project
into curves with constant geodesic curvature. Moreover, the geodesic is horizontal
if and only if its projection is also a geodesic. This gives an easy way to compute
geodesics in the E.�; �/-spaces.

4. Existence results

When the base is simply connected, Theorem 2.8 gives a uniqueness result for
Killing submersions; in this section we will investigate the existence problem and
prove that we can fix beforehand any bundle curvature under the same assumption
of simple connectedness.

Killing submersions over a disk. Given an open set � � R2 and �; � 2 C1.�/

with � > 0, we wonder whether it is possible to solve for a and b in (2-4). An
explicit way of doing so when � is star-shaped is given in the following lemma by
just taking ı D 2�2� .
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Lemma 4.1. Let � � R be open and star-shaped with respect to the origin, and
ı 2 C1.�/. Then � 2 C1.�/, given by

�.x;y/D

Z 1

0

s ı.xs;ys/ ds;

satisfies the identity ı D .x�/xC .y�/y .

Proof. It is a direct computation. �

Theorem 4.2. Let��R2 be an open set star-shaped with respect to the origin and
�; � 2 C1.�/ with � > 0. If � W E! .�; �2.dx2C dy2// is a Killing submersion
with bundle curvature � and E is simply connected, then it is isomorphic to the
canonical example

�1 W .��R; ds2/! .�; �2.dx2
C dy2//; �1.x;y; z/D .x;y/;

ds2
D �.x;y/2.dx2

C dy2/C .dzC �.x;y/.y dx�x dy//2;

where the function � 2 C1.�/ is given by

(4-1) �.x;y/D 2

Z 1

0

s �.xs;ys/ �.xs;ys/2 ds:

Remark 4.3. Note that star-shapeness makes everything explicit but an existence
and uniqueness theorem also holds in the (more general) simply connected case. It
suffices to conformally parametrize such a simply connected domain by a disk and
apply Theorem 4.2.

Remark 4.4. If we drop the condition that E is simply connected, it can be easily
shown that any Killing submersion � WE!� is isomorphic to a Riemannian quotient
of the Killing submersion constructed in Theorem 4.2 by a vertical translation. In
particular, E is diffeomorphic to ��S1.

It is interesting to specialize Theorem 4.2 to the case M DM2.�/, the complete
simply connected surface with constant Gaussian curvature � 2 R, to get models
for all Killing submersions over R2, H2.�/ and S2.�/ minus a point. Given � 2 R,
we define �� 2 C1.��/ as

��.x;y/D

�
1C

�

4
.x2
Cy2/

��1

;

where

�k D

(
f.x;y/ 2 R2 W x2Cy2 < �4=�g if � < 0;

R2 if � � 0:

Then the metric �2
�.dx2 C dy2/ in �� has constant Gaussian curvature �. If

� is constant, then � D � �� in (4-1), and we obtain the metrics of the spaces
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E.�; �/��� �R given in [Daniel 2007, Section 2.3]:

�2
�.dx2

C dy2/C .dzC � �� .y dx�x dy//2:

Recall that we are not considering a whole fiber of a point in S2.�/ for � > 0. The
global case will be treated in the next section.

Killing submersions over a 2-sphere. We can define Killing submersions over S2

as different as the Riemannian products S2�R and S2�S1 (both with � D 0) or the
Berger spheres and the lens spaces L.n; 1/ via the Hopf projection (see Remark 4.8
below). Throughout this section, we will suppose that the surface playing the role
of base surface is .S2;g/ for some Riemannian metric g.

Unlike in the cases treated above, this surface is compact. Hence, given a Killing
submersion � W E! .S2;g/ and its bundle curvature � 2 C1.M /, the total bundle
curvature

T D

Z
M

�

is well-defined and finite. This quantity will make the difference between the
possible topologies of the total space.

The case T D 0.

Proposition 4.5. Let � W E! .S2;g/ be a Killing submersion with total bundle
curvature T D 0. Then the submersion admits a global smooth section.

(a) If the length of the fibers of � is infinite, then it is isomorphic to

�1 W .S
2
�R; ds2/! .S2;g/; �1.p; t/D p;

for some Riemannian metric ds2 defined in S2 �R and such that @t is a unit
vertical Killing vector field.

(b) Otherwise, the Killing submersion is isomorphic to the Riemannian quotient of
the example in (a) by some vertical translation.

Proof. The condition T D 0 guarantees the existence of an equator � � S2 such
that D1 and D2, the two open components of S2 n� , satisfyZ

D1

� D

Z
D2

� D 0:

Let z� � E be any horizontal lift of � . If the fibers of � have infinite length, then
Proposition 3.3 implies that z� is a closed curve in E. For i 2 f1; 2g, as z� lies in the
boundary of ��1.Di/ and projects one-to-one by � onto � , there exists a section
Fi W Di ! E with Fi.�/ D z� . Thus F W S2 ! E defined by F D Fi in Di is a
global continuous section, and there is no loss of generality in supposing that F

is smooth (just by perturbing it in a neighborhood of �). Then ‰ W S2 �R! E
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given by ‰.p; t/ D �t .F.p// is a global diffeomorphism, where �t denotes the
1-parameter group of vertical isometries. The induced metric ds2 in S2�R through
‰ satisfies the requirements of (a).

In the case that the length of the fibers of � is finite, we can work in the universal
cover of ��1.Di/, for i 2 f1; 2g, repeat the arguments above, and finally take a
convenient quotient by a vertical translation. �

The rest of this section is devoted to obtaining explicit models for the metrics in
S2 �R making the projection over the first factor a Killing submersion. This will
show that Proposition 4.5 is sharp, but we will also obtain a quite general method
for constructing Killing submersions.

Inspired by the canonical metrics in (2-2), let us consider arbitrary functions
a1; : : : ; an 2 C1.Rn/ and the projection over the first n coordinates

� W .RnC1; ds2/! Rn:

Here, we endow Rn with the usual metric and

(4-2) ds2
D

nX
kD1

dx2
i C

�
dt �

nX
kD1

ak dxk

�2

;

where we denote by .x1; : : : ;xn; t/ the usual coordinates of RnC1. Then � is a
Riemannian submersion whose fibers are the integral curves of the unit Killing
vector field @t in .RnC1; ds2/.

Given a smooth orientable surface †, we can isometrically embed it in Rn for
some n 2 N by the Nash embedding theorem [1956]. Then we shall consider the
metric induced by (4-2) in † � R � RnC1. Obviously, � restricts to a Killing
submersion †�R! †. We will now compute its bundle curvature in terms of
the functions ak , but we will first need a convention for the orientation in †�R:
if a local frame fe1; e2g in † is positively oriented, then fE1;E2; @tg will be said
positively oriented in †�R, where Ei is the horizontal lift of ei for i 2 f1; 2g.

Proposition 4.6. Let† be a smooth oriented surface isometrically embedded in Rn.
The Killing submersion †�R!† defined above has bundle curvature

� D 1
2

div†.JT /;

where T D .@t /
> 2 X.†/ is the component of @t tangent to †�†� f0g � RnC1

with respect to ds2, and J W X.†/! X.†/ is a .�=2/-rotation in T†.

Proof. Let X W � � R2 ! † be a local conformal parametrization of † with
conformal factor � 2 C1.�/, and such that f.1=�/Xu; .1=�/Xvg is a positively
oriented orthonormal frame of T†. Let fE1;E2g � X.X.�/�R/ be a horizontal
lift of the frame f.1=�/Xu; .1=�/Xvg which, together with E3 D @t , is a positively
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oriented orthonormal frame in X.�/� R. As in (2-4), we can compute � from
the identity 2� D hŒE1;E2�;E3i. Note that there exist f;g 2 C1.X.�// such that
E1 D .1=�/XuCf @t and E2 D .1=�/XvCg @t , so

ŒE1;E2�D

�
1

�
Xu;

1

�
Xv

�
C

�
1

�
Xu;g @t

�
C

�
f @t ;

1

�
Xu

�
C Œf @t ;g @t �

D
1

�3
.�vXu��uXv/C

1

�
.gu�fv/ @t :

Moreover, since 0D hE1;E3i D h.1=�/XuCf @t ; @t i, we deduce that hXu; @t i D

��f and, analogously, hXv; @t i D ��g. Hence,

2� D hŒE1;E2�;E3i D
1

�2
..�g/u� .�f /v/D div†.Y /;

where Y 2 X.†/ is the vector field .g=�/Xu� .f=�/Xv. From here, it is easy to
check that Y D JT and we are done. �
Remark 4.7. If† is compact, then

R
† � D .1=2/

R
† div.JT /D 0 as an application

of the divergence theorem. Conversely, every function on a compact orientable
surface † with zero integral is well-known to be the divergence of some vector
field on †.

As a particular case, we may consider the round sphere

S2.�/D

�
.x;y; z/ 2 R3

W x2
Cy2

C z2
D

1

�

�
� R3;

and endow S2 � R � R4 with the metric given by (4-2) for n D 3 and some
a1; a2; a32C1.R3/. The stereographic projection X WR2!S2.�/nf.0; 0; 1=

p
�/g

defined by

(4-3) X.u; v/D

�
2u

�.u2C v2/C 1
;

2v

�.u2C v2/C 1
;

1
p
�

�.u2C v2/� 1

�.u2C v2/C 1

�
allows us to work out the bundle curvature � of the induced Killing submersion
S2.�/�R! S2.�/ as in the proof of Proposition 4.6. We get

2� D
p
�..ya3� za2/xC .za1�xa3/y C .xa2�ya1/z/:

The case T ¤ 0. Let us consider the 3-sphere

S3
D f.z; w/ 2 C2

W jzj2Cjwj2 D 1g � C2;

and S2.�/D f.z; t/ W jzj2C t2 D 1=�g � C�R for � > 0. The submersion

(4-4) �Hopf W S
3
! S2.�/; .z; w/ 7!

1
p
�
.2zw; jzj2� jwj2/;

is known as the Hopf projection. The fiber passing through .z; w/ 2 S3 is given
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by f.eitz; eitw/ W t 2 Rg and the orbit of a point under the 1-parameter group of
diffeomorphisms

�t .z; w/D .e
itz; eitw/; t 2 R;

coincides with its fiber with respect to the submersion.

Remark 4.8. Given a natural number n 2 N, we can consider the quotient of S3

under the group of diffeomorphisms Gn D f�2�k=n W k 2 f1; : : : ; ngg, which is
cyclic and has order n. The quotient S3=Gn is known as the lens space L.n; 1/.
The condition �Hopf ı �t D �Hopf guarantees that �Hopf induces a submersion
�n WL.n; 1/! S2.�/. Observe that, for any n 2 N, the space L.n; 1/ is orientable
and its fundamental group is isomorphic to the cyclic group of order n, so two lens
spaces L.n; 1/ and L.m; 1/ are not homeomorphic for m¤ n (see [Saveliev 1999]
for a more detailed description).

If we endow S3 with a metric making �Hopf a Killing submersion, then the fibers
of �Hopf have finite length (they are compact) and it is easy to check that �n is a
Killing submersion when we consider the quotient metric, for all n. Moreover, the
length of the fibers of �Hopf in S3 is n times the length of the corresponding fibers
of �n in L.n; 1/.

Proposition 4.9. Let � W E! .S2;g/ be a Killing submersion with total bundle
curvature T ¤ 0. Then there exists n 2 N such that the length of the fibers is equal
to j2T j=n.

(a) If nD 1, then � W E! .S2;g/ is isomorphic to the Hopf fibration

�Hopf W .S
3; ds2/! .S2;g/; �Hopf.z; w/D .2zw; jzj2� jwj2/;

for some Riemannian metric ds2 in S3 such that �.z;w/ D .�=T /.iz; iw/ is a
unit Killing vector field.

(b) If n> 1, then � W E! .S2;g/ is isomorphic to the Riemannian quotient of a
submersion as in (a) by a vertical translation of length j2T j=n.

Proof. As in the proof of Proposition 4.5, let us take a geodesic � which divides
S2 in two hemispheres D1 and D2 such thatZ

D1

� D

Z
D2

� D
T

2
:

We parametrize � as 
 W Œa; b�!S2 and a horizontal lift z� of � as z
 W Œa; b�!E. The
universal Riemannian covering space of ��1.Di/, for i 2 f1; 2g, will be denoted by
Wi �Di �R, and is a closed solid cylinder. The curve z� can be lifted to both W1

and W2. Since the outer conormal vector fields to D1 and D2 along their boundary
have opposite directions, the difference of heights between z
 .a/ and z
 .b/ when
we consider them in W1 or W2 is equal to jT j, but they have opposite signs (see
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Figure 2. The curve z� is represented in the solid cylinders W1

and W2 covering ��1.D1/ and ��1.D2/, respectively, and its
endpoints lie on the vertical geodesic containing the vertical arrow
representing a global vertical Killing vector field. After gluing
along this geodesic, we conclude that the length of the fibers is an
integer divisor of j2T j.

the proof of Proposition 3.3). In other words, we will arrive at z
 .b/ after traveling
vertically from z
 .a/ a distance of jT j, and, if we continue from z
 .b/, we will arrive
again at z
 .a/ after the same distance (see Figure 2). Thus, the length of the fibers
is an integer divisor of j2T j. In particular, ��1.D1/ and ��1.D2/ are solid tori.

Now, observe that the curve z� determines how ��1.D1/ and ��1.D2/ must be
glued together, and z� turns n times in the vertical direction, so we can work in a
n-sheet vertical covering space of both tori where z� will look like Figure 2 after
identifying the top and bottom faces of the cylinders. This way of gluing the two
tori along � provides a manifold diffeomorphic to S3, and the induced fibration is
the Hopf fibration (see [Saveliev 1999]). By pulling the metric in E back via this
diffeomorphism, (a) in the statement follows. Item (b) is also proved since we only
need to undo the covering space procedure by taking a quotient with respect to a
vertical translation of length j2T j=n. �

We can now combine the local existence given by Theorem 4.2 with Proposi-
tions 4.5 and 4.9 to obtain a description of all Killing submersions over a Riemannian
2-sphere.

Theorem 4.10. Let g be a Riemannian metric on S2 and � 2 C1.S2/. Up to
isomorphism, there exists a unique Killing submersion over .S2;g/ with bundle
curvature � and whose total space is simply connected.

Proof. The uniqueness is a consequence of Theorem 2.8 and the description of
the length of the fibers in Propositions 4.5 and 4.9. We will now assume that
T D

R
.S2;g/ � ¤ 0 (the case T D 0 is similar) and prove its existence.
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Consider an equator � � S2 splitting S2 in two hemispheres D1 and D2. By
applying Theorem 4.2 in a neighborhood of D1 and D2, we obtain Killing submer-
sions �1 and �2 over such neighborhoods with the desired bundle curvature and
noncompact fibers. The argument in Proposition 4.9 guarantees that, after taking
the quotient by vertical translations of length j2T j, the two submersions can be
glued together along ��1.�/ to produce a (continuous) submersion � W S3! S2.
In order to prove that � is smooth along ��1.�/, observe that both �1 and �2 are
defined in a neighborhood of � where they share the same bundle curvature. Thus
they locally coincide by Theorem 2.8 in a neighborhood of each p 2 ��1.�/. �

In the previous section, we showed a constructive method to obtain trivial Killing
submersions in a global way. Now, we will do the same for Killing submersions
with T ¤ 0 for round spheres S2.�/ as base surfaces, though the method can be
also adapted to the case T D 0.

Let us consider the Hopf fibration given by (4-4) and the global frame in S3�C2

defined by

.E1/.z;w/ D .�w; z/; .E2/.z;w/ D .�iw; iz/; .E3/.z;w/ D .iz; iw/:

This frame is orthonormal when we endow S3 with the round metric of curvature
one. Let � 2 C1.S2.�// be a function with integral T ¤ 0. Note that � induces a
function in z� 2C1.R2/ via the stereographic projection given by (4-3). Theorem 4.2
allows us to construct a Killing submersion over S2.�/nf.0; 0; 1=

p
�/g with bundle

curvature z� . To do this, we calculate the associated function z� 2 C1.R2/ given by

z�.x;y/D 2

Z 1

0

s � z�.sx; sy/

.1C .�=4/s2.x2Cy2//2
ds;

which extends smoothly to infinity since z� extends smoothly to infinity, and thus
induces � 2 C1.S2.�// by pulling back via the stereographic projection again.
Hence this construction induces a Riemannian metric in S3 minus the fiber of
.0; 0; 1=

p
�/ but can be extended to the whole S3. It can be shown that this metric

in S3 is the determined by the fact that

Y1 D

p
�

2
E1�

Im.zw/
�
�T jwj2� 4��.�Hopf.z; w//

�
2�
p
�jwj4

E3;

Y2 D

p
�

2
E2C

Im.zw/
�
�T jwj2� 4��.�Hopf.z; w//

�
2�
p
�jwj4

E3;

Y3 D
�

T
E3;

defines a global orthonormal frame. If � is constant, then �T D 4�� and

�.�Hopf.z; w//D jwj
2�;
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so the coefficients of E3 in Y1 and Y2 vanish, and we get the metrics of the Berger
spheres given by Torralbo [2012].

5. Characterization of homogeneous Killing submersions

Recall that a Riemannian manifold is said to be homogeneous when its isometry
group acts transitively on the manifold. In this section, we will characterize the
E.�; �/-spaces as the only simply connected homogeneous 3-manifolds admitting
the structure of a Killing submersion.

In order to obtain this result, we will compute the Riemannian curvature of the
total space E of a Killing submersion � W E!M in terms of M and the bundle
curvature � . Since the computation is purely local, we will work in a canonical
example (see Definition 2.6) associated to some functions �; a; b 2 C1.�/ with
� > 0 and �� R2 (a different approach can be found in [Espinar and de Oliveira
2013]). The Koszul formula yields the Levi-Civita connection in the canonical
orthonormal frame fE1;E2;E3g given by (2-3):

rE1
E1 D�

�y

�2
E2; rE1

E2 D
�y

�2
E1C �E3; rE1

E3 D��E2;

rE2
E1 D

�x

�2
E2� �E3; rE2

E2 D�
�x

�2
E1; rE2

E3 D �E1;(5-1)

rE3
E1 D��E2; rE3

E2 D �E1; rE3
E3 D 0:

Since the Gaussian curvature KM of M can be written in terms of the conformal
factor as

KM D�
�0.log�/

�2
D
�2

xC�
2
y

�4
�
�xxC�yy

�3
;

it is easy to work out any sectional curvature in E.

Lemma 5.1. Let � W E!M be a Killing submersion and p 2 E. Given a linear
plane …� TpE with normal vector N 2 TpE, its sectional curvature is

K.…/D �2.KM � 3�2/C .1� �2/�2
� 2�hN ^ �p; .r�/pi;

where � D hN; �pi, � denotes the unit Killing vector field, KM is the Gaussian
curvature of M at �.p/, and � is the bundle curvature at p.

The sectional curvature is KM � 3�2 for horizontal planes (i.e., planes which
are orthogonal to �) and �2 for vertical planes (i.e., planes containing the direction
�). In particular, we deduce that hyperbolic 3-space, H3, does not admit a Killing
submersion structure since H3 has constant sectional curvature of �1 and vertical
planes in a Killing submersion always have nonnegative sectional curvature.
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On the other hand, given v 2 TpE with kvk D 1, the Ricci curvature of v can be
easily deduced from Lemma 5.1 as

(5-2) Ric.v/D .KM � 2�2/� hv; �pi
2.KM � 4�2/C 2hv; �pihv^ �p;r�i:

The scalar curvature is �D 2.KM � �
2/.

Theorem 5.2. Let � W E ! M be a Killing submersion. If E is homogeneous,
then both the Gaussian curvature of M and the bundle curvature are constant. In
particular, E is a E.�; �/-space or its quotient by a vertical translation.

Proof. Given p 2 E and v 2 TpE with kvk D 1, we can decompose v D uC ��p,
where u is horizontal and � 2 R. From (5-2), we get

Ric.v/D .KM � 2�2/C � �
�
hu^ �p; .r�/pi � .KM � 4�2/�

�
:

Let Up D fv 2 TpE W kvk D 1g and Ap D fv 2 Up W Ric.v/DKM � 2�2g. Observe
that the vectors v 2 Up satisfying � D 0 form a great circle and the same happens
for hu^ �p; .r�/pi � .KM � 4�2/� D 0 if .r�/p ¤ 0 or KM ¤ 4�2. We deduce

(5-3) Ap D

8<:
Up if KM D 4�2 and .r�/p D 0;

a great circle if KM ¤ 4�2 and .r�/p D 0;

two great circles if .r�/p ¤ 0:

Let f WE!E be an isometry. Since any two great circles in a sphere intersect and
dfp maps great circles in Up to great circles in Uf .p/, we deduce that dfp.Ap/ and
Af .p/ intersect. As a consequence, KM � 2�2 attains the same value at the points
p and f .p/. If E is homogeneous, then this implies that KM �2�2 is constant, but
on the other hand, the scalar curvature 2.KM � �

2/ is also constant; hence both
KM and � are constant. �

Remark 5.3. Given a 3-dimensional metric Lie group G (i.e., it is endowed with
a left-invariant metric) with isometry group of dimension 3, it is homogeneous.
We deduce that the set of points where a Killing vector field (i.e., a right-invariant
vector field) is unitary has empty interior. Otherwise, this open subset would be
locally isometric to a E.�; �/-space, and this is impossible (see [Meeks and Pérez
2012] for a detailed description of metric Lie groups).

Finally, let us mention that the condition KM D 4�2 does not imply that E has
constant sectional curvature (unless � is constant), but it says that horizontal and
vertical planes have the same sectional curvature. Note that, if .r�/p ¤ 0 and
KM D 4�2 at some p 2M , then the set Ap in (5-3) consists of two orthogonal
great circles in the unit sphere Up.
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