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RAQUEL PERALES AND CHRISTINA SORMANI

We consider sequences of open Riemannian manifolds with boundary that
have no regularity conditions on the boundary. To define a reasonable
notion of a limit of such a sequence, we examine ı-inner regions, that avoid
the boundary by a distance ı. We prove Gromov–Hausdorff compactness
theorems for sequences of these ı-inner regions. We then build “glued limit
spaces” out of the Gromov–Hausdorff limits of ı-inner regions and study
the properties of these glued limit spaces. Our main applications assume the
sequence is noncollapsing and has nonnegative Ricci curvature. We include
open questions.

1. Introduction

Recall that Gromov’s Ricci compactness theorem states that a sequence of compact
Riemannian manifolds with nonnegative Ricci curvature and a uniform upper bound
on diameter has a subsequence that converges in the Gromov–Hausdorff sense to
a metric space [8]. When the sequence of manifolds is noncollapsing, Gromov–
Hausdorff limit spaces have a variety of properties, particularly restrictions on their
metrics, their Hausdorff measures, and their topologies. These properties were
proven by Cheeger, Colding, Naber, Wei and the second author [3; 4; 13; 5].

Here we consider an open Riemannian manifold .Mm; g/ endowed with the
length metric dM , as in (3). We define the boundary to be

(1) @M DM nM;

where M is the metric completion of M . For example, .Mm; g/ may be a smooth
manifold with boundary. However, we do not require any smoothness conditions
on this boundary.

First observe that Gromov’s Ricci compactness theorem does not hold for precom-
pact open manifolds with boundary that have a uniform upper bound on diameter,
even if they are flat and two-dimensional:
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Figure 1. Models of Example 1.1: M2, M3, M4; : : : .

Example 1.1. The j -fold covering spaces Mj of the annuli Ann0.1=j; 1/ � E2,
depicted in Figure 1, are flat surfaces such that

(2) Diam.Mj /� 2C� and Vol.Mj /D j.� ��.1=j /2/:

See Remark 5.5 for the proof that there is no subsequence of these spaces with a
Gromov–Hausdorff limit.

Assuming both a uniform upper bound on volume and diameter, we still do not
have Gromov–Hausdorff compactness:

Example 1.2. The smooth regionsMj � E2 with many spikes, depicted in Figure 2,
have no subsequence with a Gromov–Hausdorff limit. See Example 2.13 for details.

Compactness theorems for sequences of Riemannian manifolds with boundary,
assuming curvature controls on the boundary, have been proven by Kodani [11],
Anderson, Katsuda, Kurylev, Lassas, and Taylor [1], Wong [14] and Knox [10].
A survey of these results has been written by the first author [12]. Since we do
not wish to assume the boundary is smooth, we prove compactness theorems for
regions which avoid the boundary (Theorem 1.4). We then glue together the limits
of these regions (Theorem 6.3) and prove that these glued limit spaces have nice
properties (Theorem 8.8).

Figure 2. Models of Example 1.2: M4, M6, M8, M12; : : : .
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Definition 1.3. Given an open Riemannian manifold .M; gM / and ı > 0, we define
the ı-inner region as

M ı
D fx 2M W dM .x; @M/ > ıg;

where @M is defined as in (1),

(3) dM .x; y/ WD inffLg.C / W C W Œ0; 1�!M; C.0/D x; C.1/D yg;

and

Lg.C /D

Z 1

0

g.C 0.t/; C 0.t// dt:

There are two metrics on the ı-inner region M ı : the restricted metric dM and
the induced length metric

(4) dM ı .x; y/ WD inffLg.C / W C W Œ0; 1�!M ı ; C.0/D x; C.1/D yg:

Note that dM ı is only defined between points in the same connected component of
M ı . The intrinsic diameter

Diam.M ı ; dM ı /D supfdM ı .x; y/ W x; y 2M ı
g

will be infinite if M ı is not connected by rectifiable paths.

Theorem 1.4. Given m 2 N, ı > 0, D > 0, V > 0, and � > 0, let Mm;ı;D;V
�

be
the class of open m-dimensional Riemannian manifolds M with boundary with
nonnegative Ricci curvature, Vol.M/� V , and

(5) Diam.M ı ; dM ı /�D

that are noncollapsing at a point, in the sense that

(6) Vol.Bq.ı//� �ım for some q 2M ı :

If .Mj ; gj / �Mm;ı;D;V
�

, there is a subsequence .M ı
jk
; dMjk

/ such that the metric
completions with the restricted metric dMj converge in the Gromov–Hausdorff
sense to a metric space .Y ı ; d /.

Example 1.2 satisfies the conditions of this theorem, demonstrating why we
can only obtain Gromov–Hausdorff convergence of the M ı

j instead of the Mj
themselves. The M ı

j of Example 1.1 do not have Gromov–Hausdorff convergent
subsequences (see Remark 5.5), demonstrating the necessity of the hypothesis
requiring an upper bound on the volume. In Theorem 5.2, we remove the intrinsic
diameter condition (5) and the noncollapsing condition (6), and assume conditions
on closed geodesics and constant sectional curvature instead.
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Theorem 1.4 and Theorem 5.2 are proved in Section 5. We start by reviewing
Gromov–Hausdorff convergence in Section 2. In Sections 3 and 4 we study the
limits of inner regions in sequences of manifolds that have Gromov–Hausdorff
limits. See in particular Theorem 4.1. These sections contain many examples.

In Section 6 we define glued limit spaces for any sequence of open Riemannian
manifolds .Mj ; gj /, assuming that for all ı > 0, the .M ı

j ; dj / converge in the
Gromov–Hausdorff sense to a metric space .Y ı ; dı/. We build a “glued limit space”
.Y; dY / from these Y ı in Theorem 6.1 and Theorem 6.3. The metric completion of
a glued limit space is called a “completed glued limit space.”

Note that this glued limit space may exist even when .Mj ; dj / has no Gromov–
Hausdorff limit, as in Example 2.13 (see Remark 6.10). The glued limit may not
be precompact even when one has a sequence of flat Riemannian manifolds with
boundary (Examples 6.11 and 6.12).

In general the completed glued limit space of a sequence of Mj need not be
unique (Example 6.16). However, if the .Mj ; dMj / have a Gromov–Hausdorff
limit .X; dX /, then the completed glued limit space is unique and is embedded
isometrically into X (Theorem 6.6). The completed glued limit space need not be
isometric to the Gromov–Hausdorff limit (Example 4.10) even when the .Mj ; gj /
are regions in the Euclidean plane satisfying all the hypothesis of Theorem 1.4
(Remark 6.7). Intuitively, regions which collapse relative to the boundary disappear,
while regions which collapse that lie far from the boundary need not disappear.

In Section 7 we apply Theorems 5.2 and 1.4 to construct glued limit spaces
for sequences of manifolds with curvature bounds (Theorems 7.1 and 7.4). In
Section 8 we explore the properties of these glued limit spaces. First we present
an example where the curvature bounds in the sequence of manifolds is lost in
the Gromov–Hausdorff limit (Example 8.1). Then we prove Proposition 8.4 con-
cerning glued limits of manifolds with constant sectional curvature. We close
with Theorem 8.8, proving that glued limits constructed under the conditions of
Theorem 1.4 have Hausdorff dimension m, Hausdorff measure at most V , and
positive density everywhere. This final theorem is proved using Theorem 8.3,
which proves certain balls in glued limit spaces are the Gromov–Hausdorff limits
of nice balls in the open manifolds, combined with the Bishop–Gromov vol-
ume comparison theorem [8] and Colding’s volume convergence theorem [4].

Throughout the paper we state open questions at 6.14, 8.6, 8.7, 8.10, and 8.9. The
first author is in the process of proving Open question 8.10 as part of her doctoral
dissertation. Please contact us if you would like to work on one of the other open
questions or if you are interested in extending our theorems to the setting where
the sequence has a negative uniform lower Ricci curvature bound or is allowed to
collapse.
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2. Background

Here we review Gromov–Hausdorff convergence and Gromov’s compactness theo-
rem [8]. A good resource for this material is [2].

2A. Hausdorff convergence. In [8], Gromov defined the Gromov–Hausdorff dis-
tance between pairs of compact metric spaces. We review this definition here.

Definition 2.1 (Hausdorff). The Hausdorff distance between two compact subsets
A1; A2 of a metric space Z with metric dZ is defined as

dZH .A1; A2/D inffr W A1 � Tr.A2/; A2 � Tr.A1/g;

where the tubular neighborhood Tr.A/ is the set Tr.A/D fx 2Z W dZ.x; A/ < rg.

Observe that if one has a sequence of compact subsets Aj � Z such that
dH .Aj ; A1/!0, then for all a2A1 there exists aj 2Aj such that limj!1 aj Da.

Lemma 2.2. Suppose Aj � Z are compact, dZH .Aj ; A1/ D hj ! 0, aj 2 Aj
and a1 2 A1 such that dZ.aj ; a1/ D ıj ! 0. Then for all r > 0 there exist
rj D r C ıj C hj ! r such that the closed balls converge:

dZH
�
Baj .rj /\Aj ; Ba1.r/\A1

�
! 0:

Here we are not assuming that A1 or Aj are length spaces. For completeness
of exposition we include the proof of this well-known lemma:

Proof. Suppose x 2 Ba1.r/\A1; then dZ.x; a1/� r and x 2 A1 � Thj .Aj /.
So there exists yj 2 Aj such that dZ.x; yj / < hj . By the triangle inequality,

d.yj ; aj /� d.yj ; x/C d.x; a1/C d.a1; aj /� hj C r C ıj D rj :

Thus
Ba1.r/\A1 � Thj .Baj .rj /\Aj /:

Now we need only show that for all " > 0 the following inclusion holds for all
sufficiently large j :

Baj .rj /\Aj � T".Ba1.r/\A1/:

Suppose not. Then there exist "0 > 0, a subsequence j !1 and elements

(7) xj 2 .Baj .rj /\Aj / nT"0.Ba1.r/\A1/:

Since Z is compact and T"0.Ba1.r/ \ A1/ is open, a subsequence of the xj
converges to some

x1 … T"0.Ba1.r/\A1/:

Since d.xj ; aj /� rj , we have d.x1; a1/� r . Since xj 2Aj , there exists yj 2A1
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such that d.xj ; yj / < hj . By the triangle inequality,

yj 2 Ba1.r C hj /\A1:

Observe that, for our subsequence, yj ! x1; thus

x1 2 Ba1.r/\A1 � T"0.Ba1.r/\A1/;

which is a contradiction. �

2B. Gromov–Hausdorff convergence.

Definition 2.3. An isometric embedding ' W .X; dX /! .Z; dZ/ between metric
spaces is a mapping which preserves distances:

dZ.'.x1/; '.x2//D dX .x1; x2/:

Definition 2.4 (Gromov). The Gromov–Hausdorff distance between a pair of com-
pact metric spaces, .X1; dX1/ and .X2; dX2/, is defined as

(8) dGH
�
.X1; dX1/; .X2; dX2/

�
D inffdZ.'1.X1/; '2.X2// W 'i WXi !Zg

where the infimum is taken over all isometric embeddings 'i W Xi ! Z and all
metric spaces Z.

Gromov proved that the Gromov–Hausdorff distance is a distance on the space of
compact metric spaces. When studying metric spacesXi which are only precompact,
one takes the metric completions X i before comparing such spaces using the
Gromov–Hausdorff distance:

Definition 2.5. Given a precompact metric space .X; dX /, the metric completion
.X; dX / consists of equivalence classes of Cauchy sequences fx1; x2; x3; : : : g in
X , where

dX .fxj g; fyj g/D lim
j!1

dX .xj ; yj /;

and two Cauchy sequences are equivalent if the distance between them is 0. There
is an isometric embedding

' WX !X given by '.x/D fx; x; x; : : : g:

In this paper we define the boundary of an open metric space to be

@X DX nX:

When M is a smooth Riemannian manifold with boundary, then this notion of
boundary agrees with the standard notion of boundary. However, if M is a smooth
Riemannian manifold with a singular point removed, then the boundary in our
setting is just the missing singular point.
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2C. Lattices and Gromov–Hausdorff convergence. One technique that can be
applied to produce amazingly complicated Gromov–Hausdorff limits from surfaces
is the construction of lattices. The basic, well-known lemma is as follows:

Lemma 2.6. Let X D Œa1; b1�� � � � � Œak; bk� with the taxi product metric

dX
�
.x1; : : : ; xk/; .y1; : : : ; yk/

�
D

kX
iD1

jxi �yi j:

Then for any " > 0 there exists a 2-dimensional manifold M" such that

dGH.M"; X/ < ":

The classic application of this lemma is to construct a Gromov–Hausdorff limit
of Riemannian surfaces which is infinite-dimensional:

Example 2.7. Let Xj D Œ0; 1��
�
0; 1
2

�
�� � � �

�
0;
�
1
2

�j � with the taxi metric, and let

X D Œ0; 1��
�
0; 1
2

�
� � � � �

�
0;
�
1
2

�j �
� � � �

be the infinite-dimensional space also with the taxi metric

dX
�
.x1; x2; : : : /; .y1; y2; : : : /

�
D

1X
iD1

jxi �yi j:

Then

(9) dGH.Xk; X/�

1X
jDkC1

�
1
2

�j
D
�
1
2

�k
! 0:

Thus, by Lemma 2.6, we have a sequence of surfaces Mk converging to X as well.

Since we are interested in manifolds with boundary, we will prove a stronger
version of Lemma 2.6 that can be applied to produce examples later in the paper.

Proposition 2.8. Suppose that X D Œa1; b1�� � � � � Œak; bk� with the taxi product
metric, and let A� @X (possibly empty). Then for any " > 0, there exists an open
Riemannian surface M with boundary @M (possibly empty) such that

dGH.M;X/ < " and dGH.@M;A/ < ":

Suppose we have a collection of Xk and Ak � @Xk as above, with subsets Bk �Xk
and isometric embeddings  k W BkC1! Bk , and we glue X DX1 tX2 t � � � tXk
via these isometric embeddings, and set A D

S
Ak � X . Then for any " > 0 we

have an open Riemannian surface M with boundary @M (possible empty) such that

dGH.M;X/ < " and dGH.@M;A/ < ":

In fact, for any ı > 0, using the restricted distances, we have

dGH
�
.M nTı.@M/; dM /; .X nTı.A/; dX /

�
< ":
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Proof. For the first part, we take a lattice Y 0" � Y" � X such that X � T"=2.Y"/.
Here we use Y 0" to denote the points and Y" to include 1-dimensional edges between
the points in the lattice. Observe that dY".y1; y2/ D dX .y1; y2/ because we are
using the taxi norm. Let A" � Y 0" be chosen such that A" � T"=2.A/, so

(10) dGH.Y"; X/ <
"

2
and dGH.A"; A/ <

"

2
:

Note that we may now view Y" as a graph. For example, if X D Œ0; 5� � Œ0; 6�,
AD Œ0; 5�� f6g, and "D 1, then the left side of Figure 3 is the graph Y" , with A"
depicted in red.

Next we construct a smooth surface M by replacing the lattice points in A" � Y 0"
by small hemispheres of diameter� " and lattice points in Y 0" nA" by small spheres
of diameter� ". We replace the line segments in Y" by arbitrarily thin cylinders of
the same length, small enough that we can glue them to their corresponding spheres,
smoothly replacing disjoint balls in those spheres or hemispheres. This creates a
smooth manifold M such that @M is a union of the boundaries of the hemispheres,
and such that

dGH.Y";M/ <
"

2
and dGH.A"; @M/ <

"

2
:

See the right side of Figure 3, where M 2 is depicted in gray and @M 2 is in red.
This completes the first claim in the proposition.

To complete the rest, we take Mk consisting of tubes joined at spheres and
hemispheres close to Xk , as above, such that

dGH.Xk;Mk/ <
"

k
and dGH.Ak; @Mk/ <

"

k
:

Note that in the construction above we could have created B 0
k
� Y 0

k
corresponding

to Bk . We have "=.2k/ almost distance-preserving maps  0
k
WB 0

kC1
!B 0

k
. So now

we glue together the Mk to form M as follows. If b 2 B 0
k

maps to  0
k
.b/ 2 B 0

k
,

Figure 3. A"� Y" and @M �M as in the proof of Proposition 2.8.
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we connect the sphere or hemisphere corresponding to b in Mk to a sphere or
hemisphere corresponding to  k.b/ in MkC1 by a very short, very thin tube. �

2D. Review of Gromov’s compactness theorem. In [8], Gromov proved a com-
pactness theorem for sequences of compact metric spaces. We review this theorem
and related propositions here.

Theorem 2.9 (Gromov). Given D > 0 and a function N W .0;D�! N, we define
the collection MD;N of compact metric spaces .X; dX / with diameter �D that can
be covered by N.�/ balls of radius � > 0:

(11) X �

N.�/[
iD1

Bxi .�/:

This collection MD;N is compact with respect to the Gromov–Hausdorff distance.

It is standard to determine whether a metric space lies in such a compact collection
by examining maximal collections of disjoint balls:

Proposition 2.10. Given a metric space .X; dX /, let N be the maximum number of
pairwise disjoint balls of radius �=2 that can lie in X . Then the minimum number
of balls of radius � required to cover X is at most N .

Proof. Let fBxi .�=2/ W i D 1; : : : ; N g be a maximal collection of pairwise disjoint
balls of radius �=2. Let x 2 X . Then Bxi .�=2/\Bx.�=2/ is nonempty for some
i 2 f1; : : : ; N g. Thus dX .x; xi / < �, and

X �

N[
iD1

Bxi .�/: �

In a Riemannian manifold or metric measure space, the volumes of balls may
thus be applied to determine the function N .

Proposition 2.11. If there exists ‚> 0 such that

Vol.Bp.�//=Vol.M/�‚;

then the maximum number of disjoint balls of radius � is at most 1=‚.

Proof. We have

Vol.M/�

NX
iD1

Vol.Bxi .�//�
NX
iD1

‚Vol.M/DN‚Vol.M/: �
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Gromov applies his compactness theorem in conjunction with these propositions
to study the compactness of sequences of compact Riemannian manifolds for which
one is able to control the volumes of balls. We will apply the same idea to study
sequences of metric completions of open manifolds.

One of the beauties of Gromov’s compactness theorem is that the converse holds
as well:

Theorem 2.12 (Gromov). Suppose .Xj ; dj / are compact metric spaces. Suppose
that there exists �0 > 0 such that Xj contains at least j disjoint balls of radius �0.
Then no subsequence of the Xj has a Gromov–Hausdorff limit.

In particular, if .Xj ; dXj /
GH
�! .X; dX /, then they have a uniform upper bound

on diameter. Nor can they have many spikes, as in the following example:

Example 2.13. Let

Mj D f.�; r/ W � 2 S
1; r 2 .1; 3C cos.j�//g

with metric gj D dr2C r2d�2. Then Vol.Mj / � �42, Diam.Mj / � 3C � C 3,
and Mj has 0 sectional curvature.

Observe that in Mj the balls of radius 1 about .2�k=j; 3/ are disjoint because
paths between these points in Mj must reach within r � 2 between the spikes
and so have length at least 2.3� 2/. Thus, there are j disjoint balls of radius 1
in Mj , and no subsequence of the metric completions of the Mj converges in the
Gromov–Hausdorff sense.

Example 2.14. Let

(12) Xj D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
be a disjoint union of spaces with taxicab metrics glued via the map .0; y/D .0; y/.
Then Xj has no Gromov–Hausdorff convergent subsequence, because it has j
disjoint balls of radius 1 about the points .1; 0/. If we take the surfaces Mj as
constructed in Proposition 2.8, such that

dGH.Mj ; Xj /! 0;

they also have no Gromov–Hausdorff convergent subsequence.

In a later paper, Gromov proved the following useful theorem [7, page 65] by
defining an appropriate compact metric space and applying Theorem 2.16.

Theorem 2.15 (Gromov). If one has a sequence of compact metric spaces .Xj ; dXj /
such that .Xj ; dXj /

GH
�! .X1; dX1/, then there exists a common compact met-

ric space Z and isometric embeddings 'j W .Xj ; dXj / ! .Z; dZ/ such that
dH .'j .Xj /; '1.X1//! 0.
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Theorem 2.16 (Blaschke). If Z is a compact metric space then every sequence of
closed subsets of Z has a subsequence that converges in the Hausdorff sense to a
closed subset.

Theorem 2.15 implies the Gromov–Hausdorff Arzelà–Ascoli theorem:

Theorem 2.17 (Gromov). Assume Xj GH
�!X , Yj GH

�! Y , and let fj W Xj ! Yj be
an equicontinuous sequence; i.e., for all � > 0 there exists ı� > 0 such that

dXj .p; q/ < ı� D) dYj .fj .p/; fj .q// < �:

Then there is a subsequence with a continuous limit function f WX ! Y . If the fj
are isometric embeddings, then so is f .

In particular, if the Xj are geodesic spaces, then so is the limit space [8].

2E. Gromov’s Ricci compactness theorem. In this section we review Gromov’s
Ricci compactness theorem, which is based on the Bishop–Gromov volume com-
parison theorem [8]:

Theorem 2.18 (Bishop–Gromov). If M is an m-dimensional Riemannian manifold
with boundary having nonnegative Ricci curvature, and Bp.R/ �Mm does not
reach the boundary, then for all r 2 .0; R/ we have

(13)
Vol.Bp.r//
Vol.Bp.R//

�

�
r

R

�m
:

Gromov’s Ricci compactness theorem was originally stated for compact mani-
folds without boundary:

Theorem 2.19 (Gromov). Let m 2 N, D > 0 and let Mm;D be the class of com-
pact m-dimensional Riemannian manifolds M with nonnegative Ricci curvature
and Diam.M/ � D. Here the manifolds do not have boundary. Then Mm;D is
precompact with respect to the Gromov–Hausdorff distance.

In fact, Gromov’s compactness theorem has a commonly used version applied to
balls, which we state as follows:

Theorem 2.20 (Gromov). Let m 2 N, D > 0 and let Mm be the class of compact
m-dimensional Riemannian manifolds M with nonnegative Ricci curvature. If
Mj 2Mm and pj 2Mj such that d.pj ; @Mj / >D, there exists a subsequence such
that .Bpj .D=3/; dMj / converges in the Gromov–Hausdorff distance.

For completeness of exposition we show how Gromov’s original proof implies
Theorem 2.20.
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Proof. Let q 2Bpj .D=3/. Then Bpj .D=3/�Bq.2D=3/�Bpj .D/ does not reach
the boundary of Mj , so we may apply the Bishop–Gromov volume comparison
theorem to see that

Vol.Bq.r//
Vol.Bpj .D=3//

�
rm

.2D=3/m
Vol.Bq.2D=3//
Vol.Bpj .D=3//

�
rm

.2D=3/m

Vol.Bpj .D=3//
Vol.Bpj .D=3//

D
.3r/m

.2D/m
:

So now we may apply Proposition 2.11 to complete the proof. �

2F. Volume convergence theorems. In [4], Colding proved the following volume
convergence theorem:

Theorem 2.21 (Colding). Let Mm
j be complete Riemannian manifolds with non-

negative Ricci curvature and pj 2Mj such that

Bpj .1/
GH
�!B0.1/� Em;

where Em is Euclidean space of dimension m. Then

lim
j!1

Vol.Bpj .1//D Vol.B0.1//:

Remark 2.22. The proof of this theorem does not require global nonnegative Ricci
curvature on a complete manifold. In fact, Mm

j could be an open manifold as long
as Bpj .2/�M

m
j does not hit the boundary. One may not even need a radius of 2.

Colding applied this theorem to prove a number of theorems, including one in
which the Gromov–Hausdorff limit is an arbitrary compact Riemannian manifold
of the same dimension (also [4]):

Theorem 2.23 (Colding). Let Mm
j and Mm

1 be compact Riemannian manifolds
with nonnegative Ricci curvature for j D 1; 2; 3; : : : such that

Mm
j

GH
�!Mm

1:

Then for all r > 0 and for all pj 2Mj such that pj ! p1, we have

(14) lim
j!1

Vol.Bpj .r//D Vol.Bp1.r//:

Remark 2.24. Again, Colding’s proof does not really require Mj to be complete.
These Mj could be open Riemannian manifolds as long as Bpj .r/�Mj does not
hit the boundary. Here we do not need to worry about twice the radius because the
proof involves estimating countable collections of small balls Bqj;i .�j;i / in Bpj .r/
and applying Theorem 2.21 to those small balls, and one can always ensure the
Bqj;i .2�j;i / avoid the boundary as in Remark 2.22.
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Cheeger and Colding then conducted a study of the properties of Gromov–
Hausdorff limits of manifolds of nonnegative Ricci curvature in [3]. They improve
upon Theorem 2.23, allowing M1 to be an arbitrary limit space as long as the
sequence is noncollapsing:

Theorem 2.25 (Cheeger and Colding). Let V0 > 0 and let Mm
j be compact Rie-

mannian manifolds with nonnegative Ricci curvature for j D 1; 2; 3; : : : , such that

Mm
j

GH
�!Mm

1 and Vol.Mm
j /� V0:

Then for all r > 0 and for all pj 2Mj such that pj ! p1 2M1, we have

(15) lim
j!1

Vol.Bpj .r//DHm.Bp1.r//;

where Hm is the Hausdorff measure of dimension m.

Remark 2.26. Again this theorem is proved locally, so as in Remark 2.24 this
theorem holds when Mm

j are open Riemannian manifolds as long as Bpj .r/�M
m
j

do not touch the boundary.

Of course, Cheeger and Colding studied more than just manifolds with nonnega-
tive Ricci curvature and more than just noncollapsing sequences in their work, but
these theorems are the only ones needed in this paper. See also work of the second
author with Wei for an adaption of their volume convergence theorem which deals
with Hausdorff measures defined using restricted versus intrinsic distances [13].

3. Properties of inner regions

We defined in Definition 1.3 the inner regions M ı of an open Riemannian manifold
M . These spaces are open Riemannian manifolds; however, we will study them
using the restricted distance dM rather than the intrinsic length metric dM ı defined in
(4). There are natural isometric embeddings of .M ı ; dM / and its metric completion
.M ı ; dM / into .M; dM /. Thus the metric completion is, in fact, compact when M
is precompact. This occurs, for example, when M has finite diameter.

Example 3.1. In Figure 4, we depict a single flat manifold M 2, which is a flat disk
with a spike attached. For a sequence ı1 < ı2 < ı3 < ı4, the gray inner regions
depict M ıi. For ı sufficiently large, M ı is an empty set.

Figure 4. Example 3.1: Single M , varying ı.
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Lemma 3.2. For any sequence ıi ! 0, we have

(16) M D

1[
iD1

M ıi; and in fact M D
[
ı>0

M ı:

Proof. Let x 2M . Since M is open, "D dM .x; @M/ > 0. Then x 2M "=2. �

Lemma 3.3. Let ı > ı0 > 0. If y 2M ı , then for any " < ı� ı0 we have

B.y; "/D fx 2M W dM .x; y/ < "g �M
ı 0:

Proof. Let x 2 B.y; "/, so dM .x; y/ < ı � ı0. Since y 2M ı , for all z 2 @M we
have dM .y; z/ > ı. By the triangle inequality,

dM .x; z/� dM .y; z/� dM .x; y/ > ı� .ı� ı
0/D ı0: �

Inner regions M ı with restricted metrics dM are not necessarily length spaces:

Example 3.4. In the flat open manifold

M D f.x; y/ W x2Cy2 2 .1; 25/g � E2;

the distance between .3; 1/ and .�3; 1/ is

dM
�
.3; 1/; .�3; 1/

�
D 6

because they are joined by curves of length arbitrarily close to 6. However, for
ı D 1 we have

M ı
D f.x; y/ W x2Cy2 2 .4; 16/g � E2:

The length of any curve in M ı between .3; 1/ and .�3; 1/ must go around .0; 2/
and thus has length at least 2

p
9C 1 > 6.

In fact, inner regions of path connected manifolds need not be connected:

Example 3.5. Let M be the connected union of balls in the Euclidean plane:

M D B.4;0/.5/[B.�4;0/.5/� E2:

Then
@M D AC[A�;

where
AC D @B.4;0/.5/\f.x; y/ W x � 0g;

A� D @B.�4;0/.5/\f.x; y/ W �x � 0g:

Note that
.0; 3/; .0;�3/ 2 @M:

Thus, for ı > 3,
M ı
\f.0; y/ W y 2 Rg D∅:
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However, for ı < 5, we have

.4; 0/; .�4; 0/ 2M ı:

Thus M ı is not connected for ı 2 .3; 5/.

4. Manifolds with Gromov–Hausdorff limits have converging inner regions

In this section we will prove:

Theorem 4.1. Let Mj be precompact open metric spaces, .X; dX / a compact
metric space, and assume .Mj ; dMj /

GH
�! .X; dX /. For each ı > 0, there exists a

sequence of indices fjkg !1 and a compact metric space Y ıfjkg � X such that
the subsequence of ı-inner regions M ı

jk
converges to Y ıfjkg:

(17)
�
M ı
jk
; dMjk

� GH
�!

�
Y ıfjkg; dı

�
:

If (17) holds for ı D ı1 and ı D ı2, with 0 < ı2 < ı1, then

Y ı1fjkg � Y
ı2
fjkg

:

Given a sequence of decreasing positive numbers ıi ! 0, one can choose the
sequence fjkg !1 so that (17) holds for all ı D ıi ; moreover, the union

Ufıi g;fjkg D
[
i

Y ıifjkg:

is an open subset of X .
Given two sequences fıig; fˇig such that (17) holds for all ı 2 fıig[ fˇig, then

(18) Ufıi g;fjkg D Ufˇi g;fjkg:

Note that M ı
j can be an empty space; see Example 4.8. Consider the Gromov–

Hausdorff limit of an empty metric space to be an empty metric space.

Remark 4.2. In Example 4.9 we will see that a subsequence jk may be necessary
to obtain GH convergence of the ı-inner regions, and that Ufıi g;fjkg depends on
the choice of the subsequence. Even the closure of Ufıi g;fjkg may depend on the
choice of subsequence jk; see Example 4.11. The Ufıi g;fjkg may be disjoint and
not isometric; see Example 4.12.

4A. Hausdorff convergence of ı-inner regions. We begin with a basic theorem:

Theorem 4.3. Let .Z; dZ/ be a compact metric space. Suppose Mj �Z are open
metric spaces with the induced metric and X �Z is closed and such thatMj H

�!X .
Then, for each ı > 0, there exist a sequence of indices fjkg !1 and a compact
set W ı

fjkg
�X such that

(19) M ı
jk

H
�!W ı

fjkg
:
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If (19) holds for ı D ı1; ı2, with 0 < ı2 < ı1, then

W ı1
fjkg
�W ı2

fjkg
:

Given a sequence of positive numbers ıi ! 0, there exists a sequence of indices
fjkg !1 such that (19) holds for all ı D ıi ; moreover the union

U 0
fıi g;fjkg

D

[
i

W ıi
fjkg

is an open subset of X .
Given two sequences fıig; fˇig such that (19) holds for all ı 2 fıig [ fˇig, we

have

(20) U 0
fıi g;fjkg

D U 0
fˇi g;fjkg

:

Again here, M ı
j can be an empty space. We consider the Hausdorff limit of an

empty metric space to be an empty metric space.
Before we prove this theorem, we provide an example demonstrating that even if

M
ı1
jk

H
�!W ı1

fjkg
and M

ı2
jk

H
�!W ı2

fjkg

for some ı1 > ı2 > 0, there may be ı 2 .ı2; ı1/ for which M ı
jk

does not converge:

Example 4.4. Fix " < 1
3

. In 2-dimensional Euclidean space E2, consider the
sequence Mj , where M2j is a ball of radius 1 with a spike of width 4" attached
to it, as depicted in Figure 4, and M2jC1 is a ball of radius 1 with a spike whose
width decreases from 6" to 4" as j !1. Then M "

j converges to ball of radius
1� " with a spike of width 2", and M 3"

j converges to a ball of radius 1� 3" with
no spike attached. But M 2"

2j converges to a ball of radius 1� 2", while M 2"
2jC1

converges to a ball of radius 1� 2" with a line segment attached to it. Thus M 2"
j

does not converge in the Hausdorff sense.

In the proof of Theorem 4.3 we will apply the following fact:

Remark 4.5. Recall that if fAj g is a sequence of closed subsets of a metric space A
such that Aj H

�!A1, then

A1 D
˚
a 2 A W for all j 2 N; there exist aj 2 Aj such that lim

j!1
aj D a

	
:

Any subsequence fAjkg of fAj g also converges in the Hausdorff sense to A1. Then

A1 D
˚
a 2 A W for all k 2 N; there exist ajk 2 Ajk such that lim

k!1
ajk D a

	
:

Proof of Theorem 4.3. Apply Theorem 2.16 to the sequence fM ı
j g
1
jD1 to get a

subsequence fM ı
jk
g1
kD1

and a compact set W ı
fjkg

such that (19) is satisfied. Since
M ı
jk
�Mjk , we have W ı

fjkg
� X . Similarly, W ı1

fjkg
� W ı2

fjkg
when (19) holds for

0 < ı2 < ı1.
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Given ıi ! 0, start with ı1. By Theorem 2.16 there exists a sequence of integers
f�k.ı1/g !1 and a compact set W ı1

f�k.ı1/g
such that

M ı1
�k.ı1/

H
�!W ı1

f�k.ı1/g
:

For n > 1, there exists a subsequence f�k.ın/gk of f�k.ın�1/gk and a compact set
W ın
f�k.ın/g

such that
M
ın
�k.ın/

H
�!W ın

f�k.ın/g
:

Define jk D �k.ık/. Then fjkg1kDn is a subsequence of f�k.ın/g1kD1, and thus (19)
holds for all n.

Let y be an element of U 0
fıi g;fjkg

. There exists N 2 N such that y 2 W ıi
fjkg

for i � N . Suppose that x 2 X and dZ.x; y/ < ıN =6. Since y 2 W ıi
fjkg

, choose
yjk 2M

ıN
jk

such that y D limj!1 yjk and dZ.y; yjk / < ıN =6. Analogously, take
xj 2Mj such that x D limj!1 xj and dZ.x; xj / < ıN =6. Then

dZ.xjk ; yjk / < dZ.xjk ; x/C dZ.x; y/C dZ.y; yjk / <
ıN

2
:

This implies that dZ.xjk ; @.Mjk // > ıN =2. Then x 2W ıi
fjkg
� U 0

fıi g;fjkg
for some

i > N .
Given another sequence ˇi ! 0 such that (19) holds for all ı D ˇi , select for

each i some l.i/ such that ıl.i/ < ˇi . Then

W ˇi
fjkg
�W ıl.i/

fjkg
;

and so U 0
fˇi g;fjkg

�U 0
fıl.i/g;fjkg

�U 0
fıi g;fjkg

. Conversely, U 0
fıi g;fjkg

�U 0
fˇi g;fjkg

. �

Definition 4.6. With the hypotheses of Theorem 4.3, define

(21) U 0
fjkg
D

[
W ı
fjkg

;

where the union is taken over all ı for which M ı
jk

is a sequence that converges in
the Hausdorff sense to a metric space W ı

fjkg
, and define

(22) U 0 D
[
ı>0

W ı ;

where W ı is the Hausdorff limit space of some convergent subsequence of M ı
j .

4B. Finding limits of inner regions in the Gromov–Hausdorff limits.

Proof of Theorem 4.1. By Theorem 2.15 there exists a common metric space Z and
isometric embeddings 'j W .Mj ; dMj /! .Z; dZ/, ' W .X; dX /! .Z; dZ/ such that

dZH .'j .Mj /; '.X//! 0:
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Now we can apply Theorem 4.3. For each ı >0, there exist a subsequence 'jk .M
ı
jk
/

and a compact set W ı
fjkg
� '.X/ such that

'jk .M
ı
jk
/ H
�!W ı

fjkg
:

Let Y ıfjkg D '
�1.W ı

fjkg
/. Clearly, (17) holds and Y ı1fjkg � Y

ı2
fjkg

when (17) holds
for 0 < ı2 < ı1. Given a sequence of positive numbers ıi ! 0, there exists a
subsequence fjkg � N such that

'jk .M
ıi
jk
/ H
�!W ıi

fjkg

for all i . Then (17) holds for all i , and Ufıi g;fjkg D '
�1.U 0

fıi g;fjkg
/ is an open

subset of X that does not depend on the sequence ıi . �

4C. Unions of limits of inner regions in Gromov–Hausdorff limits. The follow-
ing notion of an “inner union” has some interesting properties.

Definition 4.7. In the situation of Theorem 4.1, let Dfjkg denote the set of ı > 0
such that (17) holds for a given sequence fjkg. We put

(23) Ufjkg D
[

ı2Dfjkg

Y ıfjkg

and call this set an inner union of limits for the sequence fMj g. Observe that,
by (18), we have

(24) Ufjkg D Ufıi g;fjkg

for any sequence fıig ! 0 of elements of Dfjkg.

In Theorem 6.6 we will prove that Ufjkg is a special case of the glued limits we
will construct in Theorem 6.3. Since it is easy to understand the properties of these
Ufjkg, we present a few examples of them here so that we may refer to them later
as examples of glued limit spaces.

Example 4.8. LetMj be a Euclidean disk of radius 1=j . ThenMj GH
�!X , where X

is a single point. For any ı > 0, taking j > 1=ı, we have M ı
j D∅. Thus the inner

union of limits is empty for any choice of subsequence.

In the following example we see that Ufjkg depends on the subsequence fjkg,
and in the next we see that X is not necessarily contained in the closure of Ufjkg,
even if the closure is nonempty.

Example 4.9. Let M2j be the Euclidean disk of radius 1 and M2jC1 the Euclidean
disk with the center point removed. Then Mj is a closed Euclidean disk as is the
limit space X . Given ı 2 .0; 1/, M ı

2j is the Euclidean disk of radius 1� ı. Their
metric completions converge to the closed disk of radius 1� ı. Uf2j g is the open
Euclidean disk of radius 1. However, M ı

2jC1 is a Euclidean annulus Ann0.ı; 1�ı/,
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and the metric completions converge to the closure of this annulus. Uf2jC1g is the
open Euclidean disk of radius 1 with the center point removed. In this example
U D Uf2j g.

Example 4.10. In 2-dimensional Euclidean space, consider the sequence of balls
with attached spikes depicted in Figure 4. The Gromov–Hausdorff limit of the
sequence is a ball with an interval attached, while the closure of U is just the
closed ball.

In Example 4.9, we saw that Uf2j g ¤ Uf2jC1g, yet their closures are the same.
This is not always the case; Ufjkg could even be an empty set.

Example 4.11. For j 2 N, let M2j be a flat torus (so it has no boundary), and
let the M2jC1 be flat tori with increasingly dense small holes cut out, the holes
getting smaller and smaller so the M2jC1 still converge to the flat torus X . Then
Uf2j g D X , but for any ı > 0, M ı

2jC1 becomes an empty set. So Uf2jC1g is the
empty set.

Example 4.12. For j 2N, let M2j be a flat torus S1�S1, with increasingly many
dense small holes in W �S1, where W D .0; �=4/� S1, and let M2jC1 be a flat
torus S1 �S1, with increasingly many dense small holes in .S1 nW /�S1. Then

(25) Uf2j g D .S
1
nW /�S1 and Uf2jC1g DW �S

1

with the restricted distance from S1 �S1, which are disjoint and not isometric to
each other.

Example 4.13. It is possible for a sequence of open Riemannian manifolds Mj
to have ı-inner regions M ı

j which converge in the Gromov–Hausdorff sense to
some Y ı for all ı > 0, and yet the limit has two distinct inner unions Uf2j g ¤
Uf2jC1g. This can be seen, for example, with the following F-shaped regions:

Mj D .0; 1=j /�.�1; 0� [ .0; 1/�.0; 3/ [ Œ1; 3/�.0; 1/ [ Œ1; 3/�.2; 3/nAj

in the Euclidean plane, where A2j is an increasingly dense collection of increas-
ingly tiny balls in .1; 3/� .0; 1/, and A2jC1 is an increasingly dense collection of
increasingly tiny balls in .1; 3/� .2; 3/. Then

Mj
GH
�!X D .0; 1/� .0; 3/ [ Œ1; 3/� .0; 1/ [ Œ1; 3/� .2; 3/:

For ı > 0 fixed, taking j large enough that 1=j < 2ı, we see that

M ı
2j

GH
�!Y ı D .ı; 1�ı/� .ı; 3�ı/ [ Œ1�ı; 3�ı/� .2Cı; 3�ı/;

which is isometric to

M ı
2jC1

GH
�!Y ı D .ı; 1�ı/� .ı; 3�ı/ [ Œ1�ı; 3�ı/� .ı; 1�ı/:



442 RAQUEL PERALES AND CHRISTINA SORMANI

Thus, the M ı
j have a GH limit without taking a subsequence. On the other hand,

the inner unions of limits are not equal, only isometric:

Uf2j g D .0; 1/� .0; 3/ [ Œ1; 3/� .2; 3/�X;

Uf2jC1g D .0; 1/� .0; 3/ [ Œ1; 3/� .0; 1/�X:

We will prove in Theorem 6.6 that when M ı
j have GH limits for all ı, all closures

of inner unions of limits are isometric.

5. Converging inner regions of sequences with curvature bounds

In this section, we prove that ı-inner regions converge under certain geometric
hypotheses on the manifolds even when the manifolds themselves have no Gromov–
Hausdorff limits.

5A. Constant sectional curvature. Here we prove that the inner regions of a se-
quence of manifolds in the following class have a subsequence which converges in
the Gromov–Hausdorff sense.

Definition 5.1. Given m 2 N, H 2 R, V > 0, and l > 0, we define Mm;V;l
H to be

the class of connected open Riemannian manifolds M of dimension at most m with
constant sectional curvature SectM DH , Vol.M/� V , and

Lmin.M/D inffLg.C / W C is a closed geodesic in M g> l;

where a closed geodesic is any geodesic which starts and ends at the same point.

Recall that complete simply connected manifolds with constant sectional curva-
ture H � 0 have no closed geodesics, by Hadamard’s theorem, while those with
H > 0 have L.M/ D 2�=

p
H . (See [6].) Here we are requiring that the closed

geodesic lies in an open manifold M , and we do not have completeness.

Theorem 5.2. Given any ı > 0, if .Mj ; gj /�Mm;V;l
H , then there is a subsequence

.M ı
jk
; dMjk

/ such that the metric completion with the restricted metric converges in
the Gromov–Hausdorff sense to a metric space .Y ı ; d /. In particular, the extrinsic
diameters measured using the restricted metric are bounded uniformly:

Diam.M ı
jk
; dMjk

/� �0
V

V mH .�0/
; Diam.Y ı ; d /� �0

V

V mH .�0/
;

where

(26) �0 D

(
1
2

min
˚
ı; l
2
; �p

H

	
if H > 0;

1
2

min
˚
ı; l
2

	
otherwise;

and V mH .�0/ is the volume of a ball of radius �0 in the complete simply connected
space with constant sectional curvature H .
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Remark 5.3. There are no closed geodesics in the Mj of Examples 1.1 and 1.2,
so L.Mj / D 1. These examples have H D 0 and m D 2. Since Example 1.2
also has a uniform upper bound on volume, it demonstrates why we can only
obtain Gromov–Hausdorff convergence of the M ı

j instead of the Mj themselves.
TheM ı

j of Example 1.1 do not have GH-convergent subsequences (see Remark 5.5),
demonstrating the necessity of an upper bound on volume.

Proof of Theorem 5.2. Let M 2Mm;V;l
H and p 2M ı . In view of (26), we see that

if 0 < � < �0, then Bp.�/ does not reach the boundary of M and does not contain
any conjugate point to p, since one does not reach a conjugate point before one
would in the comparison space.

We claim that there are also no cut points to p in Bp.�/. If there was a cut
point q, then proceeding in a similar way to Klingenberg [9], we see that there exists
a closed geodesic starting at p of length at most 2d.p; q/ < 2�0. By hypothesis,
the length of this closed geodesic is greater than l , which is a contradiction.

Thus there is a Riemannian isometric diffeomorphism

(27)  W Bp.�0/! Bx.�0/�M
m
H ;

where Mm
H is the simply connected space of constant sectional curvature H . In

particular, Vol.Bp.�// is greater than or equal to the volume of a ball of the same
radius in a simply connected space form of constant curvature H . By combining
Proposition 2.11 with Proposition 2.10 and then Gromov’s compactness theorem,
there is a subsequence .M ı

jk
; dMjk

/ such that the metric completion with the re-
stricted metric converges in the Gromov–Hausdorff sense to a metric space .Y ı ; d /.
Notice that by Proposition 2.11, the maximum number of disjoint balls of radius �0=2
that lie in M is at most .V=V mH /.�0=2/. Thus, by Proposition 2.10, the minimum
number of balls of radius �0 needed to cover M is at most .V=V mH /.�0=2/. From
this it follows that

Diam.M ı
jk
; dMjk

/� �0
V

V mH .�0=2/
:

Since

Diam.M ı
jk
; dMjk

/! Diam.Y ı ; d /;

we conclude that

Diam.Y ı ; d /� �0
V

V mH .�0=2/
: �

Remark 5.4. If the injectivity radius for each p 2 M ı
j is bounded above by a

positive constant, then the condition on the length of closed geodesics in Theorem 5.2
is satisfied.
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5B. Examples with constant sectional curvature. The volume condition in Theo-
rem 5.2 may not be replaced by a condition on diameter:

Remark 5.5. Let .Mj ; gj / be the j -th covering space of Ann.0;0/.1=j; 1/� E2.
Since every point in Mj has distance less than 1 from the inner boundary, and

the inner boundary has length j 2�.1=j /D 2� , we know

(28) Diam.Mj ; dMj /� 2� C 2:

Yet the number of disjoint balls of radius ı < 1
4

centered on the cover of @B.0;0/
�
1
2

�
is greater than 2j . So there is no subsequence of M ı

j which converges in the
Gromov–Hausdorff sense.

This sequence fails to satisfy the volume condition of Theorem 5.2:

Vol.Mj /D j.�12��=j 2/D �
j 2�1

j
:

It is worth observing that the intrinsic diameters

Diam.M ı
j ;M

ı
j /� j 2�

�
ıC

1

j

�
also diverge to infinity.

Remark 5.6. The flat manifolds of Example 1.2, described more explicitly in
Example 2.13, satisfy the hypothesis of Theorem 5.2. See Figure 5. In fact, for
fixed ı > 0, once .2�=j /4 < ı, every point with r � 2 lies within a distance ı from
the boundary because the spike is less than ı wide. So all the M ı

j eventually lie
within r < 2, where the metric is just the standard Euclidean metric, and there is a
uniform bound on the number of disjoint balls. So the Gromov–Hausdorff limit
also lies within the Euclidean ball of radius 2. On the other hand, every point within
the ball of radius 1C ı < r < 2� ı lies in M ı

j , so the Gromov–Hausdorff limit Y ı

contains Ann.0;0/.1C ı; 2� ı/. In fact, Y ı is the metric completion of this annulus
with the flat Euclidean metric.

Figure 5. Models of Example 1.2: M ı
4 , M ı

6 , M ı
8 , M ı

12, M ı
16; : : :



SEQUENCES OF OPEN RIEMANNIAN MANIFOLDS WITH BOUNDARY 445

5C. Manifolds with nonnegative Ricci curvature. Here we prove Theorem 1.4
by applying Gromov’s compactness theorem (Theorem 2.9) combined with the
following proposition:

Proposition 5.7. If .M; gM / is a compact Riemannian manifold with boundary
having nonnegative Ricci curvature, then for any ı > 0 and any � 2 .0; ı=2/, the
ı-inner region M ı contains a finite collection of points fp1; p2; : : : ; pN g such that

M ı
�

N[
iD1

Bpi .�/;

where

N �N.ı; �;Dı ; V; �/D
V

�

�
22Dı=�

�

�m
;

mD dim.M/, Vol.M/� V , Diam.M ı ; dM ı /�Dı , and

(29) supfVol.Bq.ı// W q 2M ı
g � �ım:

Remark 5.8. In this proposition we can use the volume of any ball centered in M ı

to estimate � in (29). This allows us to study sequences like those in Example 3.1.
One does not need a Ricci curvature condition if one has a uniform lower bound on
the volumes of all balls centered in M ı , as can be seen in Proposition 2.11 in the
review of Gromov–Hausdorff convergence.

Proof of Proposition 5.7. By Propositions 2.10 and 2.11 in the review of Gromov–
Hausdorff convergence, we need only to find a uniform lower bound on the volume
of an arbitrary ball Bp.�/ centered at p 2M ı .

Fix q as in (6). Then by the fact that Bq.ı/ does not hit @M and M has
nonnegative Ricci curvature, we may apply the Bishop–Gromov volume comparison
theorem to see that

(30) � �
Vol.Bq.ı//

ım
�

Vol.Bq.�//
�m

because ı > ı=2 > �.
Let C W Œ0; 1�!M ı be the shortest curve from p to q. Then

LD L.C/� Diam.M ı ; dM ı /�Dı :

Let n > L=� and xj D C.tj /, where tj D jL=n, so that

xj 2M
ı and dM .xj�1; xj /D L=n < �:

In particular, Bxj .2�/ lies within the interior of M and has nonnegative Ricci
curvature. Thus, by the Bishop–Gromov volume comparison theorem,

Vol.Bxj .�//�
1

2m
Vol.Bxj .2�//�

1

2m
Vol.BxjC1.�//:
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Applying this repeatedly for j D 1; : : : ; n, and finally applying (30), we have

Vol.Bp.�//�
1

2mn
Vol.Bq.�//�

1

2mDı=�
Vol.Bq.�//�

1

2mDı=�
��m:

The estimate on N.ı; �;Dı ; V; �/ then follows immediately from Propositions 2.10
and 2.11. �

6. Glued limit spaces

In this section we define glued limit spaces and completed glued limit spaces and
study their properties without making any curvature assumptions. We begin by
constructing isometric embeddings

'ıiC1;ıi W Y
ıiC1 ! Y ıi

between the Gromov-Hausdorff limits Y ıi of inner regions M ıi
j (Theorem 6.1).

We then apply these isometric embeddings to glue together the Y ıi and construct a
glued limit space Y D Y.fıig; f'ıiC1;ıi g/ (Theorem 6.3).

We next study sequences of Mj which converge in the Gromov–Hausdorff
sense. We prove that if the sequence has a completed glued limit space, then it
is unique (Theorem 6.6). However, the glued limit is not the Gromov–Hausdorff
limit (Remark 6.7), it might even be empty (Remark 6.8), and it need not exist
(Remark 6.9).

Finally, we construct some important examples of glued limit spaces for se-
quences which do not have Gromov–Hausdorff limits. In Remark 6.10 we describe
how the sequence from Example 2.13 has a bounded and precompact glued limit
space. We provide another example with a bounded glued limit space which is not
precompact (Example 6.12). We provide an example where the glued limit space
is not a length space (Example 6.13). We close this section with Example 6.16
demonstrating that these glued limit spaces and their completions depend on the
isometric embeddings used to define them and need not be unique.

6A. Gluing inner regions together. Here we prove the existence of isometric
embeddings which we will later apply as glue to connect inner regions together.

Theorem 6.1. Let ıi ! 0 be a decreasing sequence and Mj a sequence of open
manifolds such that

(31) .M
ıi
j ; dMj /

GH
�! .Y ıi ; dY ıi /

for all i , where possibly some of these sequences and their limits are eventually
empty sets. Then there exist subsequential limit isometric embeddings

(32) 'ıiC1;ıi W Y
ıi ! Y ıiC1 ;
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which are just the identity when ıi D ıiC1. If ı 2 .0; ı0�, there exists a compact
metric space Y ıi � Y ı � Y ıiC1 with the restricted metric dY ı D dY ıiC1 and a
convergent subsequence

(33) .M ı
jk
; dMjk

/ GH
�! .Y ı ; dY ı /;

and when ı 2 .ıiC1; ıi /, for any such Y ı , the restriction map 'ı;ıi W Y
ıi ! Y ı and

the inclusion map 'ıiC1;ı W Y
ı ! Y ıiC1 are isometric embeddings.

Proof. By Theorem 2.15, for each i there exists a compact metric space Zi and
isometric embeddings

'j WM
ıiC1
j !Zi and '1 W Y

ıiC1 !Zi

such that

'j .M
ıiC1
j / H

�!'1.Y
ıiC1/:

By Theorem 2.16, we can choose a subsequence fjkg1kD1 such that the 'jk .M
ıi
jk
/

converge in the Hausdorff sense to a compact subspace Xıi � '1.Y ıiC1/. By (31),

M
ıi
jk

GH
�!Y ıi :

Then, by uniqueness, up to an isometry of the Gromov–Hausdorff limit space there
exists an isometric embedding

'ıiC1;ıi W Y
ıi ! Y ıiC1 such that 'ıiC1;ıi .Y

ıi /D '�11 .Xıi /:

By Theorem 2.12 there is a uniform upper bound Di > 0 of the diameters of
.M

ıi
j ; dMj / and a function Ni W .0;Di �!N such that Ni .�/ is an upper bound for

the number of �-balls needed to cover M ıi
j for all � 2 .0;Di � and for all j 2 N. If

ı 2 .ıiC1; ıi /, define N W .0;DiC1=2�! N by N.�/DNiC1.2�/. Then

Diam.M ı
j ; dMj /� Diam.M ıiC1

j ; dMj /�DiC1:

Apply Theorem 2.9 to get a subsequence flkg1kD1 of fjkg1kD1 such that the 'lk .M
ıi
lk
/

converge in the Hausdorff sense to a closed subset Xı � '1.Y ıiC1/.
We define

Y ı D '�11 .Xı/� Y
ıiC1 :

The choice of the subsequence flkg implies that Xıi � Y ı , so Y ıi � Y ı . The rest
of the theorem immediately follows. �

Remark 6.2. The choice of isometric embeddings 'ıiC1;ıi is not unique. In
Example 6.16 we provide two distinct isometric embeddings 'ıiC1;ıi ¤ '

0
ıiC1;ıi

.
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6B. Glued limit spaces are defined. We now define a glued limit space for a
sequence of Riemannian manifolds satisfying the hypothesis of Theorem 6.1. We
prove that this glued limit space is a metric space unless it is the empty set. We prove
that it contains isometric images of all Gromov–Hausdorff limits of convergent
subsequences of inner regions (which may be empty). An example of a sequence
of open Riemannian manifolds which has an empty glued limit space will be given
in Remark 6.8. Our definitions of a glued limit space and a completed glued limit
space are stated along with their construction in the following theorem:

Theorem 6.3. Given a sequence of open Riemannian manifoldsMj with a sequence
ıi ! 0 satisfying the hypothesis of Theorem 6.1, one can define a glued limit space
Y using the subsequential limit isometric embeddings of (32) as follows:

(34) Y D Y.fıig; f'ıiC1;ıi g/D Y
ı0 t

1F
iD1

�
Y ıiC1 n'ıiC1;ıi .Y

ıi /
�

with the metric

dY .x; y/D8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

dY ı0 .x; y/ if x; y 2 Y ı0 ;

d
Y ıiC1

.x; y/ if x; y 2 Y ıiC1 n'ıiC1;ıi .Y
ıi /;

d
Y ıiC1

.x; 'ıiC1;ı0.y// if x 2 Y ıiC1 n'ıiC1;ıi .Y
ıi / for some i 2 N

and y 2 Y ı0 ,

d
Y
ıiCjC1 .x; 'ıiCjC1;ıiC1.y// if x 2 Y ıiCjC1 n'ıiCjC1;ıiCj .Y

ıiCj / and
y 2 Y ıiC1 n'ıiC1;ıi .Y

ıi / for some i; j 2 N,

where we have set

'ıiCj ;ıi D 'ıiCj ;ıiCj�1 ı � � � ı'ıiC1;ıi :

This glued limit is not defined using an arbitrary collection of isometric embeddings,
but rather only those achieved as in Theorem 6.1.

Furthermore, for all ı 2 .0; ı0� there exists a subsequence M ı
jk

which converges
in the Gromov–Hausdorff sense to a compact metric space Y ı , and for any such Y ı

there exists an isometric embedding

Fı D Fı;fıi g W Y
ı
! Y

such that for the ıi in our sequence we have

Fıi .Y
ıi /� FıiC1.Y

ıiC1/:

If ǰ is any sequence decreasing to 0, then

Y D

1[
jD1

F
ǰ
.Y ǰ /:
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We say that a sequence of open Riemannian manifolds Mj has a glued limit
space Y if there exists a sequence ıi ! 0 satisfying the hypothesis of this theorem.
A completed glued limit is defined to be the metric completion Y of a glued limit
space Y , and the boundary of a glued limit space is defined to be the set Y nY .

Remark 6.4. In Example 4.10, for sufficiently large ı0, each limit Y ı is a ball in
Euclidean 2-dimensional space. According to Theorem 6.3, the glued limit space
of this sequence is constructed by taking the disjoint union of the ball Y ı0 with the
concentric annulus Y ı0=iC1 nY ı0=i .

Remark 6.5. The definition of the glued limit space depends on the choice of ıi
and the isometric embeddings in Theorem 6.1. Even if one fixes the sequence
ıi ! 0, the glued limit need not be unique; see Example 6.16.

Proof of Theorem 6.3. We first prove that dY is positive definite. For the first and
second cases of the definition of dY , we immediately see that dY .x; y/D 0 if and
only if x D y. For the third and fourth cases, notice that

'ıiCjC1;ıiC1.y/D .'ıiCjC1;ıiCj ı'ıiCj ;ıiC1/.y/;

so

(35) 'ıiCjC1;ıiC1.y/ 2 'ıiCjC1;ıiCj .Y
ıiCj /:

Thus x ¤ 'ıiCjC1;ıiC1.y/ and

dY .x; y/D dY ıiCjC1 .x; 'ıiCjC1;ıiC1.y//¤ 0:

Define Fıi W Y
ıi ! Y by

Fıi .y/D

8̂̂̂̂
<̂
ˆ̂̂:
y if iD1;

y if i >1 and y2Y ıi n'ıi ;ıi�1.Y
ıi�1/

'�1
ıi ;ı0

.y/ if i >1 and '�1
ıi ;ı0

.y/2Y ı0 ;

'�1
ıi ;ıj

.y/ if i >1 and '�1
ıi ;ıj

.y/2Y ıj n'ıj ;ıj�1.Y
ıj�1/ for some j >1.

What we are doing in the third and fourth part of the definition of Fıi is the
following. Suppose that y 2 Y ı0=i . Then either

y 2 Y ıi n'ıi ;ıi�1.Y
ıi�1/

or y 2 'ıi ;ıi�1.Y
ıi�1/. In the latter case, there exists yi�1 2 Y ıi�1 such that

y D 'ıi ;ıi�1.yi�1/. If i � 1 > 1, either

yi�1 2 Y
ıi�1 n'ıi�1;ıi�2.Y

ıi�2/ or yi�1 2 'ıi�1;ıi�2.Y
ıi�2/:
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Proceeding in the same way, if necessary, we find j such that there exists yj 2 Y ıj

satisfying the condition yj … 'ıj ;ıj�1.Y
ıj�1/ if j > 1, and also y D 'ıi ;ıj .yj /.

It is easy to see that

(36) Fıi .Y
ıi /D Y ı0 [

i�1F
jD1

�
Y ıjC1 n'ıjC1;ıj .Y

ıj /
�
;

and for j < i ,

Fıj D Fıi ı'ıi ;ıj :

For arbitrary ı, by Theorem 6.1 there exists a subsequence M ı
jk

which converges
in the Gromov–Hausdorff sense to a limit Y ı . Define Fı W Y ı ! Y by

Fı D Ffı;fıi gg D

�
Fı0 ı'ı0;ı if ı0 < ı;
FıiC1 ı'ıiC1;ı if ıiC1 � ı < ıi ;

where 'ı0;ı ; 'ıiC1;ı are given in Theorem 6.1.
Observe that in the latter case of the definition of Fı , Fıi D Fı ı 'ı;ıi . This,

together with the definition of Fı , gives

(37) Fıi .Y
ıi /� Fı.Y

ı/� FıiC1.Y
ıiC1/:

Now that we have ǰ decreasing to 0, there exists N sufficiently large that
ǰ � ı0, and for all j �N , there exists i such that ǰ 2 ŒıiC1; ıi /. From (36) and

(37), taking ı D ˇi , we conclude that

Y D

1[
jDN

F
ǰ
.Y ǰ /D

1[
jD1

F
ǰ
.Y ǰ /

because Fˇ0.Y
ˇ0/� FˇN .Y

ˇN /.
To prove that Fı is an isometric embedding, it is enough to prove that each Fıi

is an isometric embedding. Fı0 is an isometric embedding by definition of Y .
For FıiC1 we must check three cases. Let x; y 2 Y ıiC1 .

Case (i): If x; y 2 Y ıiC1 n'ıiC1;ıi .Y
ıi /, then FıiC1.x/D x, and FıiC1.y/D y.

Case (ii): If x 2 Y ıiC1 n'ıiC1;ıi .Y
ıi / and y 2 'ıiC1;ıi .Y

ıi /, then

FıiC1.y/D '
�1
ıiC1;ıiC1�j

.y/ 2 Y ıiC1�j n'ıiC1�j ;ıi�j .Y
ıi�j /

for some j , so

dY
�
FıiC1.x/; FıiC1.y/

�
D d

Y
ıiC1�j

�
FıiC1.x/; 'ıiC1;ıiC1�j .FıiC1.y//

�
D d

Y ıiC1
.x; y/:



SEQUENCES OF OPEN RIEMANNIAN MANIFOLDS WITH BOUNDARY 451

Case (iii): If FıiC1.x/ D '
�1
ıiC1;ıiC1�k

.x/ and FıiC1.y/ D '
�1
ıiC1;ıiC1�j

.y/, then
take k � j . Recall that 'ıiC1;ıiC1�k ı'ıiC1�k ;ıiC1�j D 'ıiC1;ıiC1�j , so we have

dY .FıiC1.x/; FıiC1.y//

D d
Y ıiC1�k

.FıiC1.x/; 'ıiC1�k ;ıiC1�j .FıiC1.y///

D d
Y ıiC1

.'ıiC1;ıiC1�k .FıiC1.x//; 'ıiC1;ıiC1�j .FıiC1.y///

D d
Y ıiC1

.x; y/:

The triangle inequality follows from the above paragraphs. For x; y; z 2 Y ,
find ı such that x; y; z 2 Fı.Y ı/. The triangle inequality holds for the preimages
of x; y; z, and since Fı is an isometric embedding, it also holds for x; y; z. �

6C. Glued limits within Gromov–Hausdorff limits. Recall that in Theorem 4.3
we proved that if a sequence of open Riemannian manifolds Mj has a Gromov–
Hausdorff limit X , then subsequences of the inner regions M ı

j have Gromov–
Hausdorff limits. Here we assume that the Mj also have a (possibly empty) com-
pleted glued limit space as in Theorem 6.3. We prove that this completed glued limit
space is unique and provide a precise description as to how to find this completed
glued limit space as a subset of the Gromov–Hausdorff limit (Theorem 6.6).

Note that the completed glued limit need not agree with the Gromov–Hausdorff
limit (Remark 6.7). In fact, we provide an example where the completed glued
limit space is empty (Remark 6.8).

It should be emphasized that we must assume theMj have a completed glued limit
to obtain uniqueness. It is possible that a sequence Mj has a Gromov–Hausdorff
limit and that one needs a subsequence to obtain a glued limit, and that different
subsequences provide different completed glued limits (see Remark 6.9).

Theorem 6.6. Let fMj g be a sequence of open manifolds that converges in the
Gromov–Hausdorff sense to a compact metric space .X; dX /. Suppose Y is a glued
limit space of the fMj g defined as in Theorem 6.3. Then the completed glued limit Y
is isometric to the closure U fjkg �X of any limit’s inner union Ufjkg �X defined
as in Definition 4.7 for any subsequence jk . In particular, any completed glued
limit and the closure of any of the limit’s inner regions are isometric.

We do not claim all the limit’s inner regions are the same subset of X , and in
fact this is not true, even after taking a closure. They are only isometric to one
another. See Example 4.13.

Proof. Let Y be a glued limit space defined using Theorems 6.3 and 6.1 via a
sequence of isometric embeddings 'j of M ıi

j �M
ıiC1
j into a sequence of compact

metric spaces Zi rather than a single compact metric space Z.
Since we have assumed the original sequence of Riemannian manifolds has a

glued limit space Y without requiring a subsequence, the following spaces are
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isometric:
Yfıi g;fjkg Š Yfıi g Š Yfıi g;fj 0kg

for any pair of subsequences fjkg and fj 0
k
g.

Recall that Theorem 6.3 provides, for each ı > 0, an isometric embedding
Fı W Y

ı ! Y , with

(38) Y D

1[
iD1

Fıi .Y
ıi / and Fıi .Y

ıi /� FıiC1.Y
ıiC1/:

Since Y ı is the Gromov–Hausdorff limit of the inner regions M ı
j , it is isometric

to the limit of the inner regions Y ıfjkg � Ufjkg �X of Theorem 4.1. Note that we
need a subsequence for each ı to produce the limit of the inner regions. We can
produce a diagonal subsequence (also denoted fjkg) such that

Y ıfjkg � Ufjkg �X is defined for all ı 2 fıig;

so we have isometric embeddings

 ıi W Fıi .Y
ıi /� Y ! Y ıfjkg �X:

SinceFıi .Y
ıi /�FıiC1.Y

ıiC1/, for each i and any hwe may study the restriction

 ıiCh W Fıi .Y
ıi /� Y ! Y ıiChfjkg

� Ufjkg �X:

Since Fıi .Y
ıi / and X are compact, we can find a subsequence hk depending on i

which converges to a limit isometric embedding:

 i;1 W Fıi .Y
ıi /� Y ! U fjkg �X:

We may do this for each i and diagonalize the subsequences if we wish. Since  ıiCh
is a restriction of  ıiC1Ch , we see that  i;1 is a restriction of  iC1;1. Thus we
may define an isometric embedding

 1 W Y ! U fjkg �X:

Extending this, we have an isometric embedding

 1 W Y ! U fjkg:

Since X is compact, U fjkg is compact and thus so is Y .
We need only construct an isometric embedding from U fjkg to Y to prove that

these spaces are isometric, because they are compact metric spaces. We repeat the
same trick as above but now use the fact that we have isometries

F 0ıi W Y
ıi
fjkg
! Fıi .Y

ıi /� Y
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and

Y D

1[
iD1

F 0ıi .Y
ıi
fjkg

/;

with
F 0ıi .Y

ıi
fjkg

/� F 0ıiC1.Y
ıiC1
fjkg

/:

Since Y ıifjkg � Y
ıiC1.jk/, we may study for each i and any h the restriction

F 0iCh W Y
ıi
fjkg
! Y � Y :

Since we have shown Y is compact, a subsequence converges for each i (and we
can diagonalize these subsequences), so that we obtain isometric embeddings

F 0i;1 W Y
ıi
fjkg
! Y :

Since F 0i;1 is a restriction of F 0iC1;1, we can define an isometric embedding

(39) F 01 W Ufjkg! Y :

This extends to an isometric embedding from U fjkg to Y . Since we have a pair
of isometric embeddings between a pair of compact metric spaces, these metric
spaces are isometric. �

Remark 6.7. It is possible that the completed glued limit is not the same as the
Gromov–Hausdorff limit. Example 4.10 has a glued limit which is an open disk in
Euclidean space; its completed glued limit is the closed disk, while its Gromov–
Hausdorff limit is a disk with a line segment attached.

Remark 6.8. The glued limit of a sequence of open Riemannian manifolds may
exist but be the empty set. See, for example, the sequence M2jC1 in Example 4.11.
This sequence converges in the Gromov–Hausdorff sense but U is an empty set. It
only satisfies the conditions of Theorem 6.1 in a trivial way: for each ı > 0 there
exists Nı 2 N such that M ı

j D∅ for all j �Nı .

Remark 6.9. A sequence of Mj which converges in the Gromov–Hausdorff sense
may not have a glued limit space. In fact, one may need to take a subsequence to
obtain a glued limit, and different subsequences might produce different glued limit
spaces. In Examples 4.9–4.12, the subsequence M2j has a completed glued limit
space which is isometric to U f2j g and the subsequence M2jC1 has a completed
glued limit space which is isometric to U f2jC1g, but the sequence Mj itself does
not have a glued limit space. We thus see that the different glued limits obtained
using different subsequences are quite different. In particular, in Example 4.11
the completed glued limit of the M2j agrees with the Gromov–Hausdorff limit of
the Mj , while the completed glued limit of the M2jC1 is empty.
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6D. Glued limit spaces when there are no Gromov–Hausdorff limits. In the set-
ting of Theorem 6.1, the subsequence of manifolds Mj such that M ı

j
GH
�!Y ı need

not have any Gromov–Hausdorff limit. Here we discuss an old example and present
two new examples.

Remark 6.10. The manifolds Mj described in Example 2.13 have increasingly
many spikes, and the sequence does not have a Gromov–Hausdorff limit. However,
the sequenceM ı

j converges to the metric completion of the annulus Ann.0;0/.1Cı;
2� ı/ with the flat metric; see Remark 5.6. Start with ı0 < 1

2
; then

Y ı0 D Ann.0;0/.1C ı0; 2� ı0/

and
Y ı0=.iC1/ n'ı0=.iC1/;ı0=i .Y

ı0=i /D A1[A2;

where

A1 D Ann.0;0/
�
1C

ı0
iC1

; 1C
ı0
i

�
and A2 D Ann.0;0/

�
2�

ı0
i
; 2�

ı0
iC1

�
:

Thus Y D Ann.0;0/.1; 2/ with the flat length metric. This glued limit space Y
is precompact.

A similar example, also constructed using flat manifolds Mj � E2 with no
Gromov–Hausdorff limit, has convergent M ı

j and a glued limit space which is a
flat open manifold that is bounded but not precompact:

Example 6.11. We define a flat open manifold with j spikes of decreasing width:

Mj D Uj [Vj ;

where

Uj D
n
.r cos �; r sin �/ W r < 4C sin 4�

2

�
; � 2 .2�=j; 2��

o
;(40)

Vj D
˚
.r cos �; r sin �/ W r < 4; � 2 .0; 2�=j �

	
:(41)

As in Example 2.13, the .Mj ; dMj / have no Gromov–Hausdorff limit because they
have increasingly many spikes. Unlike Example 2.13, for any number N , there
exists ıN sufficiently small such that M ıN

j has N spikes. In fact,

.M ı
j ; dMj /

GH
�! .Y ı ; dY /;

where Y ı is the ı-inner region of the flat open manifold

Y D
n
.r cos �; r sin �/ W r < 4C sin 4�

2

�
; � 2 .0; 2��

o
:

Taking the identity maps for the isometric embeddings, we see that Y is also a
glued limit space for the Mj , even though it is bounded but not precompact.
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Recall Example 2.14 of a sequence of surfaces having no Gromov–Hausdorff
limit. We modify it to obtain a sequence of manifolds with boundary that has
no Gromov–Hausdorff limit, but whose ı-inner regions have Gromov–Hausdorff
limits, and we construct the glued limit space and see that it is also bounded and
not precompact. This glued limit space is not a manifold.

Example 6.12. Let

Xj D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
be a disjoint union of spaces with taxicab metrics, glued via the map .0; y/D .0; y/.
One may think of Xj as a book with j pages of decreasing height glued along a
spike on the left. Within Xj , choose Aj to be the union of the top edges of each of
the pages. If we take surfaces Mj as constructed in Proposition 2.8, they now have
boundary, and

dGH.Mj ; Xj /! 0 and dGH.M
ı
j ; Xj nTı.Aj //! 0:

As in Example 2.14, the Mj have no GH-convergent subsequence because the Xj
have no GH-convergent subsequence.

Observe that there exists kı such that, for all j > kı ,

Xj nTı.Aj /D
�
Œ0; 1��Œ0; ı/

�
t
�
Œ0; 1��Œ0; 1

2
�ı�

�
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�kı
�ı
��
:

Since this sequence does not depend on j , it clearly converges in the Gromov–
Hausdorff sense. Thus, the M ı

j converge to the same Gromov–Hausdorff limit
space. In fact, they converge to X1 nTı.A1/, where

X1 D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
t � � � ;

and A1 is the union of the tops of all of these pages. In fact, X1 is the glued
limit space.

6E. A glued limit space which is not geodesic. Here we present an example whose
glued limit space is not geodesic or even a length space (and neither is its metric
completion):

Example 6.13. In Euclidean space E2, define

(42) Mj D
�
.�1; 1/� .�1; 1/

�
n
��
�
1
2
; 1
2

�
�
�
0; 1� 1

j

��
:

Then, for ı < 1
4

, there is J D J.ı/ such that

M ı
j D

�
.�1C ı; 1� ı/� .�1C ı;�ı/

�
t
��
�1C ı;�1

2
� ı
�
� .�ı; 1� ı/

�
t
��
1
2
� ı; 1� ı

�
� .�ı; 1� ı/

�
for j � J .
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Thus M ı
j is a constant sequence for j � J , and M ı

j
GH
�!Y ı , where

Y ı D Œ�1C ı; 1� ı�� Œ�1C ı; 0� [
�
�1C ı;�1

2
C ı

�
� Œ0; 1� ı�

[
�
1
2
� ı; 1� ı

�
� Œ0; 1� ı�:

The completed glued limit is not a length space:

Y D Œ�1; 1�� Œ�1; 0� [
�
�1;�1

2

�
� Œ0; 1� [

�
1
2
; 1
�
� Œ0; 1�� E2:

Note that Mj GH
�!X D Y [

�
f1g �

�
�
1
2
; 1
2

��
.

Open question 6.14. Is a glued limit space locally geodesic: for all y 2 Y , does
there exist �y >0 such that B.y; �y/ is geodesic? If there is a counterexample, what
conditions can be imposed on the space to guarantee that it is locally geodesic?

6F. Balls in glued limit spaces. Recall from Lemma 3.3 that for any p 2M ıi , if
x 2 Bp.ıi � ıiC1/�M , then x 2M ıiC1 . This is not true for glued limit spaces.
That is, it is possible for p 2 Fıi .Y

ıi / to have an x 2 Bp.ıi � ıiC1/� Y such that
x … FıiC1.Y

ıiC1/. In fact, we can take the ball of arbitrarily small radius and still
have x … FıiC1.Y

ıiC1/:

Example 6.15. In Example 6.12 we constructed a sequenceMj having no Gromov–
Hausdorff limit, but such that the M ı

j converge in the Gromov–Hausdorff sense to
Y ı DX1 nTı.A1/, where

X1 D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
t � � � ;

where each piece is connected along .0; y/ � .0; y/ and A1 is the union of the
tops of all of these pages. This X1 is a glued limit space for this example.

Then Fı.Y ı/ D X1 n Tı.A1/. Take any ball about the common point .0; 0/
in X1. For any radius r > 0, B.0;0/.r/ contains infinitely many points

(43) yj D
�
r

2
; 0
�
2 Œ0; 1��

�
0;
�
1
2

�j �
:

However, yj … Fı.Y ı/ for j sufficiently large that
�
1
2

�j
< ı.

6G. Nonuniqueness of the glued limit space. We now see that glued limit spaces
and completed glued limit spaces are not necessarily unique. Recall that in
Theorem 6.6 we explained that if the Mj have a Gromov–Hausdorff limit, then
the completed glued limit space is unique. So we need to construct a sequence
of manifolds Mj having no Gromov–Hausdorff limit. In fact, we will imitate
Example 6.12, applying Proposition 2.8 to construct the following example:

Example 6.16. There are a sequence fMj g of Riemannian surfaces with boundary,
a sequence ıi ! 0, and metric spaces Y ıi such that

dGH.M
ıi
j ; Y

ıi /! 0;
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with two different glued limit spaces

Y1 D Y.ı2i ; 'ı2i ;ı2iC2/ and Y2 D Y.ı2i ; '
0
ı2i ;ı2iC2

/;

constructed as in Theorem 6.3 and Theorem 6.1, whose metric completions are
not isometric.

Proof. Let

(44) Pj D Œ0; 1��
h
�
1

2j
;
1

2j

i
for j D 1; 2; : : : ;

and let

Xj D P1 t .P2 tP2/t � � � t .Pj t � � � tPj / (2i�1 copies of Pi , 1� i � j )

be a disjoint union of Nj D 1C 2C 4C � � �C 2j�1 spaces endowed with taxicab
metrics, glued via with the map  .0; y/D .0; y/. One may think of Xj as a book
with Nj pages of different heights glued along a spike on the left.

Let Hj � Pj be defined by

Hj D Œ0; 1��
n
�
1

2j

o
[ f1g �

h
�
1

2j
;
1

2j

i
[ Œ0; 1��

n
1

2j

o
� Pj ;

and let Aj �Xj be defined by

Aj DH1 t .H2 tH2/t � � � t .Hj t � � � tHj / (2i�1 copies of Hi , 1� i � j ).

If we take surfaces Mj as constructed in Proposition 2.8, they now have a
boundary, and we have

dGH.Mj ; Xj /! 0 and dGH.M
ı
j ; Xj nTı.Aj //! 0:

As in Example 2.14, the Mj have no GH-convergent subsequence because the Xj
have no GH-convergent subsequence.

Now

Xj nTı.Aj /D
�
P1 nTı.H1/

�
t
�
P2 nTı.H2/

�
t
�
P2 nTı.H2/

�
t
�
P3 nTı.H3/

�
t � � � t

�
P3 nTı.H3/

�
:::

t
�
Pj nTı.Hj /

�
t � � � t

�
Pj nTı.Hj /

�
:

Observe that

Pj nTı.Hj /D Œ0; 1� ı��
h
�
1

2j
C ı;

1

2j
� ı
i
:

Taking ı D ı2i D 1=.2i/ and j > i , we have

Pi nTı.Hi /D
h
0; 1�

1

2i

i
� f0g
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and
Pj nTı.Hj /D∅:

Thus

Xj nTı.Aj /D
�
P1 nTı.H1/

�
t
�
P2 nTı.H2/

�
t
�
P2 nTı.H2/

�
t
�
P3 nTı.H3/

�
t � � � t

�
P3 nTı.H3/

�
:::

t
�
Pi�1 nTı.Hi�1/

�
t � � � t

�
Pi�1 nTı.Hi�1/

�
t

h
0; 1�

1

2i

i
� f0g t � � � t

h
0; 1�

1

2i

i
� f0g;

endowed with taxicab metrics and glued together with the map  .0; y/D .0; y/.
There are 1C2C4C� � �C2.i�1/�1 rectangular pages and 2i�1 pages that are just
intervals of length 1� 1=.2i/. Taking j !1, we get

(45) dGH.Xj nTı.Aj /; Y
ı/! 0;

where
Y ı2i D Y 1=.2i/ DXj nTı2i .Aj / for all j > i:

So

Y ı2i D
�
P1 nT1=.2i/.H1/

�
t
�
P2 nT1=.2i/.H2/

�
t
�
P2 nT1=.2i/.H2/

�
t
�
P3 nT1=.2i/.H3/

�
t � � � t

�
P3 nT1=.2i/.H3/

�
:::

t
�
P2i�1 nT1=.2i/.H2i�1/

�
t � � � t

�
P2i�1 nT1=.2i/.H2i�1/

�
t

h
0; 1�

1

2i

i
� f0g t � � � t

h
0; 1�

1

4i

i
� f0g;

endowed with taxicab metrics and glued together with the map  .0; y/D .0; y/;
there are 1C 2C 4C � � �C 2.i�1/�1 rectangular pages and 2i�1 pages that are just
intervals of length 1� 1=.2i/.

If we define 'ı2i ;ı2iC2 WY
ı2i!Y ı2iC2 to be the inclusion map and then construct

the glued limit space as in Theorem 6.1, we obtain

Y1 D Y.ı2i ; 'ı2i ;ı2iC2/D Y

D .P1 nH1/ t .P2 nH2/ t .P2 nH2/

t .P3 nH3/ t � � � t .P3 nH3/

:::

t .Pj nHj / t � � � t .Pj nHj / � � �
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endowed with taxicab metrics glued with a gluing map  .0; y/D .0; y/. This has
infinitely many pages, all shaped like rectangles.

Now we define '0
ı2i ;ı2iC2

W Y ı2i ! Y ı2iC2 to be an isometric embedding which
maps a point

.x; y/ 2 Pk nTı2i .Hk/� Y
ı2i

for k < i to
.x; y/ 2 Pk nTı2iC2.Hk/� Y

ı2iC2

via the inclusion map, and which maps

.x; y/ 2 Pi nTı2i .Hi /D
h
0; 1�

1

2i

i
� f0g � Y ı2i

to

.x; y � ı2i C ı2iC2/ 2 PiC1 nTı2iC2.HiC1/D
h
0; 1�

1

2iC2

i
� f0g � Y ı2iC2 :

This is possible because we have enough copies of PiC1 nTı2iC2.HiC1/ in Y ı2iC2 .
In particular, '0

ı2i ;ı2iC2
maps the interval pages into interval pages. If we then

construct the glued limit space as in Theorem 6.1, we obtain

Y2 D Y.ı2i ; '
0
ı2i ;ı2iC2

/D Y t Œ0; 1�� f0g t Œ0; 1�� f0g t Œ0; 1�� f0g t � � � ;

which has infinitely many pages that are intervals in addition to all the pages
shaped like rectangles. So we have two distinct glued limit spaces for the sequence
ı2i D 1=.2i/, and their metric completions are not isometric. �

7. Glued limits under curvature bounds

In this section we prove the existence of glued limits of sequences of manifolds with
certain natural geometric conditions (Theorems 7.1 and 7.4). We do not require the
sequences of manifolds themselves to have Gromov–Hausdorff limits.

7A. Constructing glued limits of manifolds with constant sectional curvature.
In this section we prove that if Mj 2Mm;V;l

H for all j (see Definition 5.1) then the
sequence has a glued limit space (Theorem 7.1). The sequence need not have a
Gromov–Hausdorff limit (see Remark 7.2).

Theorem 7.1. Given any ı0 > 0, if .Mj ; gj / � Mm;V;l
H , then there is a Gromov–

Hausdorff convergent subsequence fM ı0
jk
g and a glued limit space Y such that

for all ı 2 .0; ı0� there exists a further subsequence fj 0
k
g of fjkg for which M ı

j 0
k

converges in the Gromov–Hausdorff sense to a compact metric space Y ı , and for
any such Y ı there exists an isometric embedding

(46) Fı W Y
ı
! Y:
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Remark 7.2. The sequences of flat surfaces Mj � E2 defined in Example 2.13 and
Example 6.11 have a common finite upper volume bound, but there is no common
finite upper bound for the number of disjoint balls in Mj of radius less than 1. Thus,
these two sequences do not have a Gromov–Hausdorff limit. Nonetheless, since

Lmin.Mj /D inffLg.C / W C is a closed geodesic in Mj g> l;

Theorem 7.1 demonstrates that we can construct glued limits for these spaces.

Remark 7.3. The choice of a further subsequence fj 0
k
g of fjkg in Theorem 7.1 is

necessary. Let .Mj ; gj / �M2;V;l
0 be the sequence defined in Example 4.4. Take

ı0 D 3". Then fM ı0
j g is a Gromov–Hausdorff convergent sequence. Choosing

2" 2 .0; ı0�, we see that M 2"
2j converges in the Gromov–Hausdorff sense but M 2"

j

does not.

Proof. Consider the sequence ı0, ıi D ı0=i , i 2 N. Start with ı0. By Theorem 5.2,
there exist a sequence f�k.ı0/g of integers and a compact metric space Y ı0 such
that

(47) .M�k.ı0/; dM�k.ı0/
/ GH
�! .Y ı0 ; dY ı0 /:

Proceeding as before, for each n2N there is a subsequence f�k.ın/gk of f�k.ın�1/gk
and a compact metric space Y ınf�k.ın/g such that

.M
ın
�k.ın/

; dM�k.ın/
/ GH
�!Y ın :

Define jk D �k.ık/. We have

.M
ın
jk
; dMjk

/ GH
�!Y ın

for nD 0; 1; 2; : : : since fjkg1kDn is a subsequence of f�k.ın/g1kD1. We may now
apply Theorem 6.3 to complete the proof. �

7B. Constructing glued limits with Ricci curvature bounds. Here we prove that
glued limits exist for noncollapsing sequences of manifolds with nonnegative Ricci
curvature and bounded volume which have control on the intrinsic diameters of
their inner regions (defined in (4)):

Theorem 7.4. Given m 2 N, a decreasing sequence ıi ! 0, (i � 0), V > 0,
� > 0, and Di > 0, let .Mj ; gj / be a sequence of m-dimensional open Riemannian
manifolds with nonnegative Ricci curvature such that Vol.Mj /� V ,

supfDiam.M ıi
j ; dM

ıi
j

/ W j 2 Ng<Di for all i 2 N;

and such that

for all j 2 N; there exists qj 2M
ı0
j such that Vol.Bqj .ı0//� �ı

m
0 :
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Then there exists a sequence fjkg !1 such that for all ıi the sequence fM ıi
jk
g

converges in the Gromov–Hausdorff sense to a compact metric space Y ıi . Thus,
the Mjk have a glued limit space Y such that for all ı 2 .0; ı0� there is a further
subsequence fj 0

k
g of fjkg for which M ı

j 0
k

converges in the Gromov–Hausdorff sense
to a compact metric space Y ı isometrically embedded in Y :

(48) Fı W Y
ı
! Y:

Remark 7.5. If there is D > 0 such that

sup
ı2.0;ı0�

fDiam.M ı
j ; dM ı

j
/g �D;

then we could take Di DD for all i . But this requirement is unnecessarily strong.

Remark 7.6. The choice of a further subsequence fj 0
k
g of fjkg in Theorem 7.1 is

necessary. For the sequence .Mj ; gj / defined in Example 4.4, consider a decreasing
sequence ıi ! 0 such that ı0D 3" and ı1D ". Then the hypotheses of the theorem
are satisfied. For all ıi , fM

ıi
j g converges in the Gromov–Hausdorff sense. However,

for 2" 2 .0; ı0�, fM 2"
j g does not have a Gromov–Hausdorff limit.

Proof of Theorem 7.4. Take ı 2 .0; ı0�; by hypothesis and the Bishop–Gromov
volume comparison (Theorem 2.19),

Vol.Bqj .ı//� Vol.Bqj .ı0//
�
ı

ı0

�m
� �ım:

This and the hypotheses of the theorem imply that, for each i ,

f.Mj ; gj /g �Mm;ıi ;Di ;V

�
:

Start with ı0. By Theorem 1.4 there exists a sequence f�k.ı0/g of integers such that�
M
ı0
�k.ı0/

; dM�k.ı0/
� GH
�!

�
Y ı0 ; dY ı0

�
:

Proceeding as before, for each n 2 N there exists a subsequence f�k.ın/gk of
f�k.ın�1/gk and a compact metric space Y ınf�k.ın/g such that�

M
ın
�k.ın/

; dM�k.ın/
� GH
�!

�
Y ın ; dY ın

�
:

Define jk D �k.ık/. We have�
M
ın
jk
; dMjk

� GH
�!

�
Y ın ; dY ın

�
since fjkg1kDn is a subsequence of f�k.ın/g1kD1. Finally, apply Theorem 6.3. �
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8. Properties of glued limit spaces under curvature bounds

In this final section of the paper we consider the local properties of the glued limits
of sequences of manifolds with constant sectional curvature as in Theorem 7.1 and
manifolds with nonnegative Ricci curvature as in Theorem 7.4. We begin with an
example indicating how even when the sequences of manifolds have a Gromov–
Hausdorff limit, one need not retain curvature conditions on the Gromov–Hausdorff
limit space (Example 8.1). This is in sharp contrast with the setting where the
Riemannian manifolds are compact without boundary. In this example, the glued
limit space is empty. Then we have a subsection about balls in glued limit spaces
without any assumption on curvature (Theorem 8.3). We apply this control on
the balls to prove that local curvature properties do persist on glued limit spaces.
In particular, we prove (Proposition 8.4) that the glued limits of manifolds with
constant sectional curvature bounds (and other conditions) are unions of manifolds
with constant sectional curvature. We close with Theorem 8.8, concerning the
metric measure properties of glued limits of manifolds with nonnegative Ricci
curvature.

8A. An example with no curvature control. We now construct a sequence of flat
open manifolds whose Gromov–Hausdorff limit is not flat:

Example 8.1. Let Bp.1/� H2 be a unit ball in hyperbolic space and B0.1/� E2

be the unit ball in Euclidean space. Then expp W B0.1/! Bp.1/. Let

(49) Sj D

��
i

j
;
k

j

�
W i; k 2 Z

�
\B0.1/� E2

and S 0j D expp.Sj /. Form a graph Aj whose vertices are in Sj and whose edges
form a triangulation, by connecting .i=j; k=j / to ..iC1/=j; k=j /, .i=j; .kC1/=j /
and ..iC1/=j; .kC1/=j /. We let A0j D expp.Aj /, and set the lengths of the edges
in A0j to be the distances between the vertices viewed as points in H2. Then A0j
converges to Bp.1/� H2 in the Gromov–Hausdorff sense.

Now define A00j to be the simplicial complex formed by filling in the triangles
in A0j with flat Euclidean triangles. Observe that fA00j g converges to Bp.1/ � H2

in the Gromov–Hausdorff sense as well. Finally, for each j we remove tiny balls
of radius � 1=j around the vertices in A00j , to create a flat open manifold Mj .
These Mj converge in the Gromov–Hausdorff sense to Bp.1/� H2.

Remark 8.2. Example 8.1 has an empty glued limit space. In the next subsections
we will see that the glued limit spaces do retain some of the curvature properties
of the initial sequence of manifolds. Thus the glued limit space is a more natural
object of study than the Gromov–Hausdorff limit, even when the Gromov–Hausdorff
limit exists.
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8B. Balls to glued limit spaces. Generally when one wishes to study the properties
of a complete noncompact limit space, one studies balls in the limit space as
Gromov–Hausdorff limits of balls in the sequence. Here we cannot control balls in
the limit space, but we can control balls of radius � < ıi�ıiC1 centered in Fıi .Y

ıi /

intersected with FıiC1.Y
ıiC1/. This will suffice to study the geometric properties

of the glued limit spaces.

Theorem 8.3. Let Y be a glued limit of a sequence fMj g of Riemannian manifolds,
as in Theorem 6.3. If y2Y ıi and �<ıi�ıiC1, then there exist a subsequence fM ıi

jk
g

containing points yjk and a sequence �jk ! � such that

(50) B.yjk ; �jk /D fx 2Mjk W dM .x; yjk / < �jkg �M
ıiC1
jk

and

(51) dGH

��
B.yjk ; �jk /; dMjk

�
;
�
B.Fıi .y/; �/\FıiC1.Y

ıiC1/; dY
��
! 0:

Note that in Example 6.15 we saw that B.Fıi .y/; �/\FıiC1.Y
ıiC1/ need not

be isometric to B.Fıi .y/; �/� Y , even when � is taken arbitrarily small.

Proof. Recall that in Theorem 6.1 we found 'ıiC1;ıi defined in the following way.
We picked isometric embeddings

'j WM
ıiC1
j !Z and '1 W Y

ıiC1 !Z

such that
dZH
�
'j .M

ıiC1
j /; '1.Y

ıiC1
j /

�
! 0:

Then we found a subsequence such that

dZH
�
'jk .M

ıi
jk
/; Xıi

�
! 0

and chose 'ıiC1;ıi to be an isometry such that

'ıiC1;ıi .Y
ıi /D '�11 .Xıi /:

Then there exist
yjk 2M

ıi
jk
�M

ıiC1
jk

�Mjk

such that
dZ
�
'jk .yjk /; '1.'ıiC1;ıi .y/

�
! 0:

Let �0 2 .0; ıi � ıiC1/. Then by Lemma 3.3 we have

B.yjk ; �
0/D fx 2Mjk W dM .x; yjk / < �

0
g �M

ıiC1
jk

:

From this, and since 'jk WM
ıiC1
jk

!Z is an isometry into its image, we see that�
B.yjk ; �

0/; dM
ıiC1
jk

�
is isometric to

�
B.'jk .yjk /; �

0/\'jk .M
ıiC1
jk

/; dZ
�
:
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By Lemma 2.2, for any � 2 .0; ıi � ıiC1/, there exists �jk ! � eventually in
.0; ıi � ıiC1/, such that

B
�
'jk .yjk /; �jk

�
\'jk

�
M
ıiC1
jk

� H
�! B

�
'1'ıiC1;ıi .y/; �

�
\'1

�
Y ıiC1

�
:

Now, �
B.'1'ıiC1;ıi .y/; �/\'1.Y

ıiC1/; dZ
�

is isometric to �
B.'ıiC1;ıi .y/; �/; dY ıiC1

�
;

which is isometric to�
FıiC1B.'ıiC1;ıi .y/; �/; dFıiC1 .Y

ıiC1 /

�
;

which is isometric to�
B.FıiC1'ıiC1;ıi .y/; �/\FıiC1Y

ıiC1 ; dY
�
:

Hence

dGH

��
B.yjk ; �jk /;dMjk

�
;
�
B.FıiC1.'ıiC1;ıi .y//;�/\FıiC1Y

ıiC1 ;dY
��
!0: �

8C. Properties of glued limits of manifolds with constant sectional curvature.
Here we prove a proposition, present a key example and state two open questions
concerning the glued limits of manifolds with constant sectional curvature.

Proposition 8.4. Let Y be a glued limit space obtained as in Theorem 7.1 from a
sequence Mj 2Mm;V;l

H . Then there exists a countable collection of sets Wi � Y ,
each of which is isometric to an m-dimensional smooth open manifold of constant
sectional curvature H , such that

(52) Y �

1[
iD1

Wi :

In fact,
Fıi .Y

ıi /�Wi � FıiC1.Y
ıiC1/� Y:

See Example 8.5, in which the glued limit space is a countable collection of flat
tori which are not connected to one another but have a metric restricted from a
larger compact metric space of finite volume.

Proof. Recall that any glued limit space Y defined as in Theorem 6.3 depends on
a sequence ıi ! 0 and gluings 'ıiC1;ıi W Y

ıiC1 ! Y ıi via the subsequential limit
isometric embeddings of (32). There are isometric embeddings Fıi W Y

ıi ! Y

such that

(53) Y �

1[
iD1

Fıi .Y
ıi /
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and

(54) Fıi .Y
ıi /� FıiC1.Y

ıiC1/:

Let
�i D

1
2

min
n
ıi � ıiC1;

l

2
;
�
p
h

2

o
;

where hDH when H > 0 and hD .l=�/2 otherwise.
Let

Wi D T�i
�
Fıi .Y

ıi /
�
\FıiC1.Y

ıiC1/� Y:

First observe that by (54) we have

Fıi .Y
ıi /�Wi :

So combined with (53), we have (52). So we need only show Wi is a smooth
m-dimensional open manifold of constant sectional curvature H .

For all w 2Wi , there exists y1 2 Fıi .Y
ıi / such that w 2 By1.�i /� Y . Since

By1.�i /� T�i
�
Fıi .Y

ıi /
�

we have

(55) U D By1.�i /\FıiC1.Y
ıiC1/D By1.�i /\Wi :

We need only show that U is isometric to a ball of radius �i in Mm
H , the m-

dimensional simply connected manifold with constant sectional curvature H .
There exists y 2 Y ıi such that y1 D Fıi .y/. By Theorem 8.3, and the fact that

�i < ıi � ıiC1, there exists a subsequence M ıi
jk

containing points yjk and �jk ! �i
such that (50) and (51) are satisfied.

Since �i < l=2, we have �jk < l=2 for k sufficiently large, and so by (50)
the Mj satisfy the conditions of Theorem 5.2, and by (27) we know there is a
Riemannian isometric diffeomorphism from B.yjk ; �jk / to a ball in Mm

H , the m-
dimensional simply connected manifold with constant sectional curvature H . Since
�i <
p
H�=2 when H > 0, we have a convex ball, so that, as metric spaces,�

B.yjk ; �jk /; dM
�

is isometric to
�
B.p; �jk /; dMm

H

�
:

Taking k ! 1, the closures of these latter balls converge in the Gromov–
Hausdorff sense to .B.p; �i /; dMm

H
/. Thus, by (51) and the uniqueness of GH limits,�

B.y1; �i /\FıiC1.Y
ıiC1/; dY

�
is isometric to

�
B.p; �i /; dMm

H

�
:

Thus we have (55), and we are done. �

Example 8.5. In this example we construct a glued limit space Y for a sequence
of manifolds Mm

j satisfying the conditions of Theorem 5.2. In addition, the Mm
j

converge in the Gromov–Hausdorff sense to a metric space X , so that the glued
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limit space is unique. The glued limit Y is a countable union of connected flat
manifolds with the restricted metric from X .

Proof. Let M1 be two flat square annuli connected by a slanted strip of width 1 and
length

p
2:

M1 D C0;1[C1;1[S0;1 � R3;

where

C0;1 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

���
� f0g;

C1;1 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

���
� f1g;

S0;1 D
˚
.x; y; z/ W .x; y/ 2

�
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

�
; z D xC 1

2

	
:

Endowed with the length metric, this is isometric to an open manifold with constant
sectional curvature 0. Note that, for ı > 1

4
,

M ı
1 � C0;1[C1;1:

Let M2 be three flat square annuli of total area at most 4C 4C 4
�
1
4

�
connected

by two slanted strips of width 1
2

:

M2 D C0;2[C1;2[C2;2[S1;2[S2;2 � R3;

where

C0;2 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

���
� f0g;

C1;2 D
���
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

��
n
��
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

���
� f

1
2
g;

C2;2 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

���
� f

2
2
g;

S0;2 D
˚
.x; y; z/ W .x; y/ 2

�
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

�
; z D xC 1

4

	
;

S1;2 D
˚
.x; y; z/ W .x; y/ 2

�
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

�
; z D xC 3

4

	
:

Endowed with the length metric, this is isometric to an open manifold with constant
sectional curvature 0. Note that, for ı > 1

8
,

M ı
1 � C0;2[C1;2[C2;2 n

�
B..0; 0/; ı/� Œ0; 1�

�
:

Let Mj be .j C 1/ flat square annuli of total area at most 4C 4
Pj
iD0

�
1
2

�j ,
connected by j slanted strips of width

�
1
2

�j :

(56) Mj D

j[
iD0

Ci;j [

j�1[
iD0

Si;j � R3;

where, with the notation
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Ik D
�
�
�
1
2

�k
;
�
1
2

�k�
; I k D

�
�
�
1
2

�k
;
�
1
2

�k�
; and mj D

2iC1�j � 2i�j�
1
2

�jC1
�
�
�
1
2

�jC1 ;
we define

C0;j D
�
.I0 � I0/ n .IjC1 � IjC1/

�
� f0g;

Ci;j D
�
.Ij�i � Ij�i / n .IjC1 � IjC1/

�
� f2i�j g;

Cj;j D
�
.I0 � I0/ n .IjC1 � IjC1/

�
� f2j�j g;

S0;j D
˚
.x; y; z/ W .x; y/ 2 IjC1 � IjC1; z D xC

�
1
2

�jC1	
;

Si;j D
˚
.x; y; z/ W .x; y/ 2 IjC1 � IjC1; z Dmj

�
xC

�
1
2

�jC1�
C 2i�j

	
:

Endowed with the length metric, this is isometric to an open manifold with constant
sectional curvature 0. Note that, for ı >

�
1
2

�jC2,

M ı
j � C0;j [ � � � [Cj;j n

�
B..0; 0/; ı/� Œ0; 1�

�
:

The Gromov–Hausdorff limit of the Mj exists and can be see to be

(57) X D

1[
jD0

Cj [S0 � R3;

where
C0 D I0 � I0 � f0g;

Ci D Ij�i � Ij�i � f2
i�j
g;

S0 D f0g � f0g � Œ0; 1�;

endowed with the length metric. The Gromov–Hausdorff limit Y ı of the M ı
j

exists, and
Y ı �X n

�
B..0; 0/; ı/� Œ0; 1�

�
:

In fact, Y DX nS0. �

Open question 8.6. Are the glued limits of sequences of manifolds with constant
sectional curvature open manifolds with constant sectional curvature? We know
they need not be connected by Example 8.5.

Open question 8.7. Are the glued limits of sequences of manifolds with constant
sectional curvature unique? Perhaps an adaptation of Example 8.5 could be applied
to show that they are not.

8D. Properties of glued limits of manifolds with nonnegative Ricci curvature.
We now prove the final theorem of our paper and state the last two open questions:

Theorem 8.8. Suppose that we have a sequence ofm-dimensional open Riemannian
manifolds Mj with nonnegative Ricci curvature and Vol.Mj / � V0, and there
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exists a sequence ıi ! 0 such that the inner regions M ıi
j converge in the Gromov–

Hausdorff sense as j!1 to Y ıi without collapsing. Suppose that Y is a glued limit
constructed as in Theorem 6.3. Then Y has Hausdorff dimension m, Hm.Y /� V0,
and its Hausdorff measure has positive lower density everywhere.

Note that this theorem may be applied to study the glued limits of sequences of
manifolds satisfying the conditions of Theorem 7.4.

To prove this theorem we will apply Cheeger and Colding’s volume conver-
gence theorem [3; 4], which was reviewed in Section 2F. See Theorem 2.25 and
Remark 2.26 for the precise statement we will use here.

Proof. First we prove that

Wi D T.ıi�ıiC1/=2
�
Fıi
�
Y ıi

��
\FıiC1

�
Y ıiC1

�
� Y

have Hausdorff dimension m and have doubling Hausdorff measures. For any
w 2Wi , let

Uw D B
�
w;
ıi�ıiC1

2

�
\Wi :

We can find y 2 Y ıi such that dY .y; w/ < .ıi � ıiC1/=2. Then we have

(58) Uw D B
�
w;
ıi�ıiC1

2

�
\B.Fıi .y/; ıi � ıiC1/\FıiC1.Y

ıiC1/:

By Theorem 8.3, we have a sequence fjkg, points yjk 2 M
ıi
jk

, and a sequence
f�jkg ! � D .ıi � ıiC1/=2 satisfying (50) and (51):

dGH

��
B.yjk ; �jk /; dMjk

�
;
�
B.Fıi .y/; �/\FıiC1.Y

ıiC1/; dY
��
! 0:

Combining this with the fact that

w 2 B
�
y;
ıi�ıiC1

2

�
� B.Fıi .y/; �/\FıiC1.Y

ıiC1/� Y;

there exist

zj;k 2 B
�
yjk ;

ıi�ıiC1
2

�
� B.yjk ; �jk /�Mjk

such that
dGH

��
B
�
zjk ;

ıi�ıiC1
2

�
; dMjk

�
; .Uw ; dY /

�
! 0:

Since we assumed this is noncollapsing, then by the Cheeger–Colding volume
convergence theorem mentioned above we have

Hm.Bw.r/\Uw/D lim
k!1

Hm.Bzjk
.r//

for all r � ri D .ıi � ıiC1/=2: By (58) and Bishop’s volume comparison theorem,
we see that

Hm.Bw.r/\Wi /DHm.Bw.r/\Uw/� !mr
m for all r � ri
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is positive and finite for any w 2 Wi . By the Bishop–Gromov volume compari-
son theorem,

(59)
Hm.Bw.r1/\Wi /

Hm.Bw.r2/\Wi /
�
rm1
rm2

for all w 2Wi ; r1 < r2 � ri :

Since Wi is a subset of the compact FıiC1.Y
ıiC1/, it is precompact. Choose a

maximal collection fw1; : : : ; wN g�Wi such that theB.wi ; ri=2/ are disjoint. Then

Wi �

N[
nD1

B.wn; ri /

and

Hm.Wi /�

NX
nD1

Hm.B.wn; ri /�
�
1
4

�m NX
nD1

Hm.B.wn; ri=4//:

But it is not hard to see, examining (50), that B.wn; ri=2/ are the limits of disjoint
balls in Mj , so

NX
nD1

Hm.B.wn; ri=4//� lim sup
j!1

Hm.M
ıi
j /� V0:

So Wi has Hausdorff dimension m and

Hm.Wi /� V0:

Now

Y D

1[
iD1

Wi ;

so it has Hausdorff dimension m and

Hm.Y /� V0:

Now to see that Y has positive density everywhere, we must show

‚�.y;H
m/D lim inf

r!0

Hm.B.y; r//

rm
> 0:

For fixed i � Iy , we have

Hm.B.y; r//�Hm.B.y; r/\Wi /:
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Combining this with (59), we have

‚�.y;H
m/D lim inf

r!0

Hm.B.y; r/\Wi /

rm

� lim inf
r!0

Hm.B.y; ri /\Wi /

rmi

�
Hm.B.y; ri /\Wi /

rmi
> 0: �

Open question 8.9. Are glued limit spaces of sequences as in Theorem 8.8 unique?

Open question 8.10. Are glued limit spaces of sequences as in Theorem 8.8
countably Hm-rectifiable?
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