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INVARIANT DIFFERENTIAL OPERATORS
ON A CLASS OF MULTIPLICITY-FREE SPACES

HUBERT RUBENTHALER

If (G, V ) is a multiplicity-free space with a one-dimensional quotient, we
give generators and relations for the noncommutative algebra D(V )G′ of in-
variant differential operators under the semisimple part G′ of the reductive
group G. More precisely we show that D(V )G′ is the quotient of a Smith
algebra by a completely described two-sided ideal.

1. Introduction

Let H be a reductive algebraic group over C and let X be a smooth irreducible
H -variety. Let C[X ] be the algebra of regular functions on X and let D(X) be the
algebra of differential operators on X . Then the H -action on X extends naturally
to C[X ] and D(X). Let C[X ]H (resp. D(X)H ) be the subalgebras of H -invariants
in C[X ] (resp. D(X)). The ring C[X ]H is the ring of regular functions on the
categorical quotient X//H . The problem of determining the structure of D(X)H

was investigated by several authors [Levasseur and Stafford 1989; Van den Bergh
1996; Schwarz 2002]. On the other hand under the above mentioned hypothesis
there exists an H -equivariant restriction map

δ : D(X)H
→ D(X//H),

obtained by applying elements in D(X)H to functions in C[X ]H. It is expected that
D(X)H, as well as its image under δ (the so-called algebra of radial components),
should share many properties of enveloping algebras [Schwarz 2002; Levasseur
2009]. In this paper we obtain the precise structure of D(V )G

′

in the case where
(G, V ) is a so-called multiplicity-free space with a one-dimensional quotient (here
G is reductive and G ′=[G,G] is the derived group). These spaces are defined to be
the multiplicity-free spaces (G, V ) for which the quotient V//G ′ is one-dimensional.
To be more precise we show that the (noncommutative) algebra D(V )G

′

is a quotient
of a generalized Smith algebra. Over C this kind of algebra was introduced by
S. P. Smith [1990] as a natural generalization of the enveloping algebra of sl2. As a
corollary we describe by generators and relations the algebras of radial components
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attached to the G ′-isotypic components in the polynomial algebra C[V ] (the image
under δ above corresponds to the trivial representation of G ′).

According to the classification obtained in [Rubenthaler 2013], the class of
multiplicity-free spaces with a one-dimensional quotient is a rather large class
inside the multiplicity-free spaces. It contains both irreducible and nonirreducible
representations.

The representations (Str(V ), V ), where V is a simple Jordan algebra over C and
where Str(V ) is the structure group of V, are examples of irreducible multiplicity-
free spaces with a one-dimensional quotient (see Remark 2.2.7 and Example 2.3.3
below). Among these there is the natural representation of GL(n,C) on the space
Symn(C) of n × n symmetric matrices and also the irreducible 27-dimensional
representation of E6×C∗.

The spin representation of Spin(7)×C∗ and the irreducible 7-dimensional repre-
sentation of G2×C∗ are other irreducible examples.

The representation (SL(n,C)× (C∗)2,31⊕3
2(31)) (n odd and n ≥ 5), where

31 is the natural representation of SL(n,C) and 32(31) is its second exterior
power, provides a nonirreducible example.

Let us now give a more precise description of our paper.
In Section 2 we give basic definitions and properties of, and notation for,

multiplicity-free spaces, including multiplicity-free spaces with a one-dimensional
quotient. If (G, V ) is a multiplicity-free space then G has an open orbit on V (i.e.,
(G, V ) is a prehomogeneous vector space). We also prove that in the so-called
regular case the G-invariant differential operators on the open orbit of a multiplicity-
free space always have polynomial coefficients (in fact a slightly more general
result is proved; see Theorem 2.2.6).

In Section 3 we introduce the various algebras of differential operators we are
interested in. We define their natural gradings and we define the so-called Bernstein–
Sato polynomial of a homogeneous operator of any degree, not only for degree-zero
operators as usual. We obtain there the first results concerning these algebras.
Using the Harish-Chandra isomorphism for multiplicity-free spaces [Knop 1998],
we prove a key lemma on invariant polynomials under the so-called little Weyl
group which enables us to prove that D(V )G is a polynomial algebra over the
center Z(T) of D(V )G

′

, with the Euler operator as generator (Theorem 3.2.6). We
also give generators of the center Z(T) (Theorem 3.2.10) and obtain some specific
results in the case of prehomogeneous vector spaces of commutative parabolic type
(Theorem 3.3.1).

Section 4, which is the main section, is devoted to the structure of D(V )G
′

. We
first briefly define and study Smith algebras over a commutative ring A with unit
and no zero divisors (the original definition by Smith was over C). These algebras
are defined by generators and relations (involving a polynomial in A[t]), and their
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center is a polynomial algebra A[�1], where �1 is a generalized Casimir element.
Our main result asserts that D(V )G

′

is isomorphic to the quotient of a Smith algebra
over its center Z(T) by the two-sided ideal generated by the element�1. Concretely,
we give generators and relations for D(V )G

′

(see Theorem 4.2.2).
Section 5 is devoted to the study of the algebras of radial components. By

radial component of a differential operator in D(V )G
′

we mean the restriction of
D to a G ′-isotypic component of C[V ]. As a corollary of the preceding results
we prove that these algebras are quotients of “classical” Smith algebras, that is,
Smith algebras over C (see Theorem 5.2.3). Of course the defining relations depend
on the G ′-isotypic component. We also give generators of the kernel of the radial
component map. In the case of the trivial representation of G ′, the structure of
the algebra of radial components was first obtained by Levasseur [2009], by other
methods.

2. Multiplicity-free spaces with a one-dimensional quotient

2.1. Prehomogeneous vector spaces, basic definitions and properties. Let G be
a connected algebraic group over C, and let (G, ρ, V ) be a rational representation
of G on the (finite-dimensional) vector space V . Then the triplet (G, ρ, V ) is called
a prehomogeneous vector space (abbreviated to PV) if the action of G on V has a
Zariski open orbit � ⊂ V . For the general theory of PVs, we refer the reader to
the book of Kimura [2003] or to [Sato and Kimura 1977]. The elements in � are
called generic. The PV is said to be irreducible if the corresponding representation
is irreducible. The singular set S of (G, ρ, V ) is defined by S = V \�. Elements
in S are called singular. If no confusion can arise we often simply denote the PV
by (G, V ). We will also write g.x instead of ρ(g)x , for g ∈ G and x ∈ V . It is
easy to see that the condition for a rational representation (G, ρ, V ) to be a PV is
in fact an infinitesimal condition. More precisely let g be the Lie algebra of G and
let dρ be the derived representation of ρ. Then (G, ρ, V ) is a PV if and only if
there exists v ∈ V such that the map

g → V,
X 7→ dρ(X)v,

is surjective (we will often write X.v instead of dρ(X)v). Therefore we will call
(g, V ) a PV if the preceding condition is satisfied.

Let (G, V ) be a PV. A rational function f on V is called a relative invariant
of (G, V ) if there exists a rational character χ of G such that f (g.x)= χ(g)P(x)
for g ∈ G and x ∈ V . From the existence of an open orbit it is easy to see that a
character χ which is trivial on the isotropy subgroup of an element x ∈� determines
a unique relative invariant P . Let S1, S2, . . . , Sk denote the irreducible components
of codimension one of the singular set S. Then there exist irreducible polynomials
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P1, P2, . . . , Pk such that Si = {x ∈ V | Pi (x)= 0}. The polynomials Pi are unique
up to nonzero constants; they are relative invariants of (G, V ) and any nonzero
relative invariant f can be written in a unique way as f = cPn1

1 Pn2
2 · · · P

nk
k , where

ni ∈ Z and c ∈ C∗. The polynomials P1, P2, . . . , Pk are called the fundamental
relative invariants of (G, V ). Moreover if the representation (G, V ) is irreducible
then there exists at most one irreducible polynomial which is relatively invariant.

The prehomogeneous vector space (G, V ) is called regular if there exists a
relative invariant polynomial P whose Hessian HP(x) is nonzero on �. If G is
reductive, then (G, V ) is regular if and only if the singular set S is a hypersurface, or
if and only if the isotropy subgroup of a generic point is reductive. If the PV (G, V )
is regular, or if G is reductive, then the contragredient representation (G, V ∗) is
again a PV.

2.2. Multiplicity-free spaces. For the results concerning multiplicity-free spaces
we refer the reader to the survey by Benson and Ratcliff [2004] or to [Knop 1998].
Let (G, V ) be a finite-dimensional rational representation of a connected reductive
algebraic group G. Let C[V ] be the algebra of polynomials on V . Then G acts on
C[V ] by

g.ϕ(x)= ϕ(g−1x) (g ∈ G, ϕ ∈ C[V ]).

As the space C[V ]n of homogeneous polynomials of degree n is stable under this
action, the representation (G,C[V ]) is completely reducible. Let D(V ) be the
algebra of differential operators on V with polynomial coefficients. The group G
acts also on D(V ) by

(g.D)(ϕ)= g.(D(g−1.ϕ)) (g ∈ G, D ∈ D(V ), ϕ ∈ C[V ]).

Recall the G-equivariant identifications between C[V ] and the symmetric algebra
S(V ∗) of the dual space V ∗ and between C[V ∗] and the symmetric algebra S(V )
of V . The embedding

V → D(V ),
v 7→ Dv,

where DvP(x)= limt→0(P(x + tv)− P(x))/t , extends uniquely to an embedding
S(V )→ D(V ) whose image is the ring of differential operators with constant
coefficients. If f ∈ S(V )'C[V ∗] we denote by f (∂) the corresponding differential
operator. Another way to construct f (∂) for f ∈ C[V ∗] is to say that f (∂) is the
unique differential operator on V satisfying

f (∂x)e〈x,y〉 = f (y)e〈x,y〉 (x ∈ V, y ∈ V ∗). (2-2-1)
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Recall also that the C[V ]-module D(V ) can be identified with C[V ] ⊗ S(V )
through the multiplication map

m : C[V ]⊗ S(V )
'
−→ D(V ),

ϕ⊗ f 7−→ ϕ f (∂).

The preceding map is in fact G-equivariant and therefore the G-module D(V )
is isomorphic to the G-module C[V ] ⊗ S(V ). The duality pairing V ⊗ V ∗→ C

extends uniquely to the nondegenerate G-equivariant pairing

S(V )⊗ S(V ∗)' C[V ∗]⊗C[V ] → C,

f ⊗ϕ 7→ 〈 f, ϕ〉 = f (∂)ϕ(0),
(2-2-2)

which gives rise to an embedding C[V ∗] ↪→ C[V ]∗. It is easy to see that if i 6= j ,
〈Ci
[V ∗],C j

[V ]〉 = {0}.

Definition 2.2.1. Let G be a connected reductive algebraic group, and let V be
the space of a finite-dimensional (complex) rational representation of G. The
representation (G, V ) is said to be multiplicity-free (abbreviated to MF ) if each
irreducible representation of G occurs at most once in the representation (G,C[V ]).

Remark 2.2.2. Historically the classification of MF spaces goes as follows. Kac
[1980] determined all the MF spaces where the representation (G, V ) is irreducible.
Brion [1985] did the case where G ′ = [G,G] is (almost) simple. Finally, Benson
and Ratcliff [1996; 2004] and independently Leahy [1998] (see also [Knop 1998])
classified all indecomposable saturated MF spaces up to geometric equivalence.

The following theorem summarizes some basic results concerning MF spaces
(see [Howe and Umeda 1991; Knop 1998; Benson and Ratcliff 2004]):

Theorem 2.2.3. 1) A finite-dimensional representation (G, V ) is MF if and only if
(B, V ) is a prehomogeneous vector space for any Borel subgroup B of G (and
hence each MF space (G, V ) is a PV ).

2) A finite-dimensional representation (G, V ) is MF if and only if the algebra
D(V )G of invariant differential operators with polynomial coefficients is com-
mutative.

3) If (G, V ) is a MF space, then the dual space (G, V ∗) is also MF.

Proof. The first assertion is due to [Vinberg and Kimelfeld 1978]; another proof
can be found in [Knop 1998]. The second assertion is due to [Howe and Umeda
1991, Theorem 7.1]. For the third assertion note that as 〈Ci

[V ∗],C j
[V ]〉 = {0} for

i 6= j , we obtain that f 7→ 〈 f, 〉 is a G-equivariant isomorphism between Ci
[V ∗]

and Ci
[V ]∗, and hence (G, V ∗) is multiplicity-free. �
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Let us be more precise about the decomposition of the polynomials under the
action of the group G or a Borel subgroup. Therefore we need more notation.
We can write G = G ′C , where G ′ = [G,G] is the subgroup of commutators and
C = Z(G)◦ ' (C∗)p is the connected component of the center of G. Let T ′ be a
maximal torus in G ′, and let B ′ = T ′U be a Borel subgroup of G ′, where U is the
nilradical of B ′. The group T = T ′C is a maximal torus in G and B = T U is a
Borel subgroup of G. We will denote by g, g′, t, t′, c, b, b′, u the corresponding Lie
algebras. Let R be the set of roots of (g′, t′), let 1= {α1, . . . , α`} be the basis of
simple roots corresponding to b′ and let R+ be the corresponding set of positive
roots.

Denote by3′ the lattice of weights of (g′, t′). Then3′=Zω1⊕Zω2⊕· · ·⊕Zω`,
where the ωi are the fundamental weights. Let 3′+ = Nω1⊕Nω2⊕ · · ·⊕Nω` be
the set of dominant weights. Denote by X (C) the group of algebraic characters
of C , which we will sometimes consider as linear forms on c. Set

3=3′⊕ X (C), 3+ =3′+⊕ X (C).

For λ∈3+ (resp. λ′∈3′+) let us denote by V−λ (resp. V−λ′) an irreducible g-module
(resp. g′-module) with the highest weight λ (resp. λ′). We use this unusual notation
because we want to index the modules occurring in C[V ] by the character of their
highest weight polynomial, rather than by the highest weight.

For a multiplicity-free space (G, V ) we have the decomposition

C[V ] =
⊕
λ∈3+

V m(λ)
−λ ,

where m(λ) = 0 or 1. If m(λ) = 1, then there exists a uniquely defined positive
integer d(λ) such that V−λ ∈ C[V ]d(λ). The integer d(λ) is called the degree of λ.
Let us denote by 10,11, . . . ,1k, . . . ,1r the fundamental relative invariants of
the PV (B, V ), indexed in such a way that 10,11, . . . ,1k are the fundamental
relative invariants of the PV (G, V ) and such that the other invariants are ordered
by decreasing degree. We denote by di the degree of 1i (i = 0, . . . , r). It is
worthwhile noticing that at least1r is of degree one as the highest weight vectors of
the irreducible components of V ∗ must occur. Then any relative invariant of (B, V )
is of the form c1a, where a = (a0, a1, . . . , ar ) ∈ Zr+1 and 1a

= 1
a0
0 · · ·1

ar
r .

The nonnegative integer r + 1 is called the rank of the MF space (G, V ). The
algebra of U -invariants is the subalgebra generated by the 1i ; i.e., C[V ]U is given
by C[10, . . . ,1r ]. As the polynomials 1i are algebraically independent, this
latter algebra is a polynomial algebra. Let λi be the character of 1i (we use the
same notation λi for the character of the group and for its derivative, which is an
element of3+). Hence the (infinitesimal) character of1a is λa = a0λ0+· · ·+arλr .
Of course by definition the elements1a (ai ≥0, i=0, . . . , r ) are the highest weights
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vectors in C[V ]. Due to the fact that the group action on 1a is given by g.1a(x)=
1a(g−1x), the infinitesimal highest weight of 1a is −λa =−a0λ0− · · ·− arλr .

If we set Va = V−λa , we therefore can write

C[V ] =
⊕

a0≥0,...,ar≥0

Va. (2-2-3)

Sometimes, if λ = a0λ0 + · · · + arλr , we simply write Vλ instead of Va. If we
denote by di the degree of 1i , one can notice that all elements in Va are of degree
d(a)= a0d0+ a1d1+ · · ·+ ar dr . It is also worthwhile noticing that we have

Va =1
a0
0 1

a1
1 · · ·1

ak
k V0,...,0,ak+1,...,ar . (2-2-4)

The proof of the following lemma is straightforward.

Lemma 2.2.4. Define O = {x ∈ V | 1i (x) 6= 0, i = 0, . . . , k}. Let C[O] be the
ring of regular functions on O (elements of C[O] are just rational functions whose
denominators are of the form 1

a0
0 · · ·1

ak
k , with a0, . . . , ak ≥ 0). As the polynomials

10, . . . ,1k are relative invariants under G, the open set O is G-stable, and there-
fore G acts on C[O]. Then C[O] decomposes without multiplicities under the action
of G. More precisely the decomposition into irreducibles is given by

C[O] =
⊕

(a0,...,ak)∈Zk+1

(ak+1,...,ar )∈Nr−k

Va,

where Va =1
a0
0 1

a1
1 · · ·1

ak
k V0,...,0,ak+1,...,ar is the irreducible subspace of C[O] gen-

erated by the highest weight vector 1a
=1

a0
0 1

a1
1 · · ·1

ar
r .

Remark 2.2.5. We want to draw the attention of the reader to the fact that if (G, V )
is not a regular PV, then the open set O may be distinct from the open G-orbit �.

The preceding lemma has the following consequence.

Theorem 2.2.6. Let (G, V ) be a multiplicity-free space. As before set

O= {x ∈ V |1i (x) 6= 0, i = 0, . . . , k}.

Then D(V )G = D(O)G . In other words any G-invariant differential operator with
coefficients in C[O] has in fact polynomial coefficients.

Proof. Let D ∈ D(O)G . As we know from the preceding lemma that C[O] decom-
poses without multiplicities under G, we obtain that D defines a G-equivariant endo-
morphism on each Va, a∈Zk+1

×Nr−k . Thus D stabilizes C[V ]=
⊕

a0≥0,...,ar≥0 Va.
It is easy to see that a differential operator with rational coefficients and which
stabilizes the polynomials must have polynomial coefficients. �
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Remark 2.2.7. Let V be a simple Jordan algebra over C or R. Let � be the set of
invertible elements in V and let G be the structure group of V . It is known that
(G, V ) is a multiplicity-free space with � as open G-orbit. Then the preceding
theorem implies that D(V )G = D(�)G . This result was already known in this
context and is usually obtained by computing an explicit set of generators of
D(�)G (see [Nomura 1989; Faraut and Korányi 1994; Yan 2000]). Through the
so-called Kantor–Koecher–Tits construction there is a one-to-one correspondence
between these spaces and the PVs of commutative parabolic type (see Example 2.3.3
below).

Proposition 2.2.8. Let (G, V ) be a MF space. For ã = (ak+1, . . . , ar ) ∈ Nr−k we
define Vã = V(0,...,0,ak+1,...,ar ). Then for a = (a0, . . . , ak, ak+1, . . . , ar ) the spaces
Va =1

a0
0 · · ·1

ak
k Vã are G ′-equivalent if ã is fixed and if (a0, . . . , ak) ∈ Zk+1. If we

define

Uã =
⊕

(a0,...,ak)∈Nk+1

1
a0
0 · · ·1

ak
k Vã, Wã =

⊕
(a0,...,ak)∈Zk+1

1
a0
0 · · ·1

ak
k Vã,

the decompositions of C[V ] and C[O] into G ′-isotypic components are given by

C[V ] =
⊕

ã

Uã, C[O] =
⊕

ã

Wã.

Proof. The map P 7→1
a0
0 · · ·1

ak
k P is a G ′-equivariant isomorphism between Vã

and 1a0
0 · · ·1

ak
k Vã; hence all these spaces are G ′-equivalent. To prove the second

assertion it is enough to prove that if ã 6= b̃, then the spaces Vã and V b̃ are not
G ′-equivalent. Suppose that this would be the case and let 1ã and 1b̃ be the
corresponding highest weight vectors with characters λã and λb̃ respectively. From
the G ′-equivalence we know that λã t′ = λb̃ t′ and hence P =1ã/1b̃ is a relative
invariant under B whose character is trivial on t′. Therefore it generates a one-
dimensional representation; hence P is a relative invariant under G. Finally we
obtain that 1ã

=1
a0
0 · · ·1

ak
k 1

b̃, and this is not possible if ã 6= b̃. �

As (G, V ∗) is multiplicity-free (Theorem 2.2.3) and Ci
[V ∗] ' Ci

[V ]∗, we have

C[V ∗] =
⊕

a0≥0,...,ar≥0

V ∗a , (2-2-5)

where V ∗a is the irreducible G-submodule of C[V ∗] generated by a lowest weight
vector 1∗a

∈ C[V ∗], defined up to a multiplicative constant, whose character with
respect to the opposite Borel subgroup B− is equal to −λa =−a0λ0− · · ·− arλr .
Let us fix a lowest weight vector 1∗i (i = 0, . . . , r ) with character −λi (with respect
to B−). Then we can choose 1∗a

=1∗0
a01∗1

a1 · · ·1∗r
ar. Of course the module V ∗a

is the dual module of Va through f 7→ 〈 f, 〉 (see (2-2-2)).
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As Va is a G-irreducible module, it is well known that the tensor G-module
Va⊗V ∗a contains, up to a constant, a unique G-invariant vector Ra and that Va⊗V ∗b
does not contain any nontrivial G-invariant vector if a 6= b (see for example
[Howe and Umeda 1991]). To be more precise we define Ra to be the operator
corresponding to the “unit matrix” in Va ⊗ V ∗a ' Hom(Va, Va). Moreover as
C[V ] ⊗ C[V ∗] is G-isomorphic to D(V ), the element Ra can be viewed as a
G-invariant differential operator with polynomial coefficients. The operators Ra are
sometimes called Capelli operators. They are also called unnormalized canonical
invariants in [Benson and Ratcliff 2004]. Moreover the family of elements Ra
(a ∈ Nr+1) is a vector basis of the vector space D(V )G = D(O)G .

The Capelli operators Ri corresponding to the space Vλi (i = 0, . . . , r) will be
of particular importance because of the result below.

Theorem 2.2.9 (Howe and Umeda). Let (G, V ) be a MF space. The Capelli opera-
tors Ri (i = 0, . . . , r) are algebraically independent and D(V )G = C[R0, . . . , Rr ].

Proof. See [Howe and Umeda 1991, Theorem 9.1; Benson and Ratcliff 2004,
Corollary 7.4.4]. �

Remark 2.2.10. a) Recall that for i = 0, 1, . . . , k the polynomials 10,11, . . . ,1k

are the fundamental relative invariants under the action of the full group G. Once
these polynomials are fixed, let us define the polynomial 1∗i ∈ C[V ∗] as the
unique fundamental relative invariant of (G, V ∗) with character λ−1

i , such that
1∗i (∂)1i (0)= 1, for i = 0, . . . , k. Then the Capelli operators Ri (i = 0, . . . , k) are
given by Ri =1i (x)1∗i (∂), and the Capelli operator corresponding to the irreducible
component Va0λ0+···+akλk is a scalar multiple of1a0

0 (x)· · ·1
ak
k (x)1

∗

0(∂)
a0 · · ·1∗k(∂)

ak .
More generally the Capelli operator Ra corresponding to Va, where

a = a0λ0+ · · ·+ akλk + ak+1λk+1+ · · ·+ arλr ,

is a scalar multiple of 1a0
0 (x) · · ·1

ak
k (x)Rak+1λk+1+···+arλr1

∗

0(∂)
a0 · · ·1∗k(∂)

ak .

b) Moreover, in the case where (G, V ) is irreducible, as 1r is the highest weight
vector in V ∗, the operator Rr is nothing but the Euler operator E .

c) More generally, if V = V1 ⊕ · · · ⊕ V`, where the representations (G, Vi ) are
irreducible, the various Euler operators Ei on Vi are the Capelli operators associated
to the irreducible subspaces V ∗i ∈C[V ]. Of course the global Euler operator E on V
is given by E = E1+· · ·+ E`. As the highest weight vectors of the spaces (G, V ∗i )
occur as the last ` elements of 10, . . . ,1r , we have Rr−`+1 = E1, . . . , Rr = E`.

d) According to b) and c), one can always take {R0, R1, . . . , Rr−1, E} as a set of
algebraically independent generators of D(V )G .
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2.3. Multiplicity-free spaces with a one-dimensional quotient. Let us now define
the main objects this paper deals with, namely the MF spaces with a one-dimensional
quotient, which were introduced by T. Levasseur.

Definition 2.3.1 [Levasseur 2009, Sections 3.2 and 4.2]. 1) A prehomogeneous
vector space (G, V ) is said to be of rank one∗ if there exists a homogeneous
polynomial 10 on V such that 10 /∈ C[V ]G and C[V ]G

′

= C[10].

2) A multiplicity-free space (G, V ) is said to have a one-dimensional quotient if it
is a PV of rank one.

Remark 2.3.2. a) The classification of multiplicity-free spaces with a one-dimen-
sional quotient has been obtained in [Rubenthaler 2013].

b) It can be shown that if (G, V ) is a PV of rank one, then the polynomial 10 is
the unique fundamental relative invariant of (G, V ). More precisely a PV (G, V )
is of rank one if and only if it has a unique fundamental relative invariant [ibid.].
Hence in the notation of Section 2.2 we have k = 0, in other words 10 is the unique
fundamental G relative invariant among the B relative invariants 10,11, . . . ,1r .

We give now some examples of MF spaces with a one-dimensional quotient.

Example 2.3.3. PVs of commutative parabolic type (for details we refer to [Muller
et al. 1986]; [Rubenthaler and Schiffmann 1987] is also relevant).

Let g̃ be a simple complex Lie algebra. Assume we are given a 3-grading of g̃:

g̃= V−⊕ g⊕ V+.

Then g is a reductive Lie subalgebra and it is well known that the representation
(g, V+) is prehomogeneous (here g acts on V+ via the bracket). Let G̃ be the
adjoint group of g̃ and let G be the connected subgroup of G̃ whose Lie algebra
is g. Then the space (G, V+) is multiplicity-free. Moreover such a space has a
one-dimensional quotient if and only if it is a regular PV. Up to local isomorphism
one obtains the following list:

1) (SL(n,C)× SL(n,C)×C∗,Mn(C)) acting via (g1, g2, t).x = tg1xg−1
2 , where

g1, g2 ∈ SL(n,C), t ∈ C∗, x ∈ Mn(C); here 10(x)= det(x).

2) (O(n,C)×C∗,Cn) with the natural action. Here 10(x)= Q(x)=
∑i=n

i=1 x2
i .

3) (GL(n,C),Symn(C)), where Symn(C) denotes the n× n symmetric matrices,
with the action g.x = gx tg. Then 10(x)= det(x).

4) (GL(n,C),Skewn(C)), n even, with the action g.x = gx tg, where Skewn(C)

denotes the n×n skew-symmetric matrices. Then10(x)= P f (x), where P f (x)
denotes the pfaffian of the even skew-symmetric matrix x .

∗If (G, V ) is also multiplicity-free, its rank as a PV is not the same as its rank as an MF space.
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5) (E6 × C∗,C27) (the irreducible 27-dimensional representation of E6). The
fundamental relative invariant is of degree 3; it is known as the Freudenthal
cubic.

Example 2.3.4. We consider (GL(2)× Sp(n),C2
⊗ C2n) (tensor product of the

natural representations). Here the action is given by

(g1, g2).X = g2 X ( tg1), g1 ∈ SL(2), g2 ∈ Sp(n), X ∈ M2n,2

The relative invariant 10 is given by P f ( tX J X), where

J =
(

0 Idn

−Idn 0

)
,

and where P f ( · ) is the pfaffian of a 2× 2 skew symmetric matrix. The rank is
equal to 3 and it is a regular PV. For details see [Howe and Umeda 1991, case 11.6;
Rubenthaler 2013, case 4.1.7].

Example 2.3.5. (GL(n)×GL(n− 1),Mn,1⊕Mn,n−1). The action is given by

(g1, g2)(v, x)= (g1v, g1xg−1
2 ), g1 ∈GL(n), g2 ∈GL(n−1), v ∈Mn,1, x ∈Mn,n−1.

The relative invariant 10 is given by 10(x)= det(v; x), where (v; x) is the n× n
matrix obtained by putting the column vector v left to the n× (n−1) matrix x . The
rank is equal to 2n− 1 and it is a regular PV. For details see [Benson and Ratcliff
2000, case 4.2.4; Rubenthaler 2013, case 4.2.5].

3. Algebras of differential operators

From now on we suppose that (G, V ) is an MF space with a one-dimensional
quotient.

3.1. Gradings and Bernstein–Sato polynomials. Recall that 10, . . . ,1r denote
the fundamental relative invariants under a fixed Borel subgroup B of G. As the
space has a one-dimensional quotient, 10 is the unique polynomial among them
which is relatively invariant under G (this means that k = 0 in the notation of
Section 2.2). We also set O= {x ∈ V |10(x) 6= 0}.

Of course the Euler operator E on V , defined for P ∈ C[V ] by

EP(x)= ∂

∂t
P(t x)t=1 = P ′(x)x,

is invariant by any element in GL(E).
Once and for all we also define the following two elements in D(V ):

X =10 (multiplication by 10), Y =1∗0(∂).
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The operator
X−1 (multiplication by 1−1

0 ),

which belongs to D(O), will also play an important role. From the definition of the
G action on C[V ] and on D(V ) we have

g.X = λ0(g−1)X, g.X−1
= λ0(g)X−1, g.Y = λ0(g)Y, (3-1-1)

and hence X, Y ∈ D(V )G
′

and X−1
∈ D(O)G

′

.
We now introduce some notation used in the rest of the paper:

T= D(O)G
′

, T0 = D(V )G = D(O)G

(the last equality comes from Theorem 2.2.6). Remember that T0 is a polynomial
algebra in r + 1 variables (Theorem 2.2.9). We have the inclusions

T0 = D(V )G = D(O)G ⊂ D(V )G
′

⊂ T= D(O)G
′

.

An element D in T is said to be of degree m if [E, D] = m D. As differential
operators in T have coefficients which are fractions whose denominators are
homogeneous (powers of 10), it is clear that T is graded by its homogeneous
components. But on the other hand any homogeneous element D in T preserves
the G ′-isotypic components Wã =

⊕
n∈N1

n
0Vã (see Proposition 2.2.8). Therefore

a homogeneous element D maps 1n
0Vã on 1n+ j

0 Vã for some j and hence only
multiples of d0 (the degree of10) occur as homogeneous degrees in T. If we define,
for p ∈ Z, Tp = {D ∈ T | [E, D] = pd0 D}, then

T=
⊕
p∈Z

Tp (3-1-2)

(At this point it is not completely evident that the two definitions of T0 coincide,
that is, D(V )G = {D ∈T | [E, D] = 0}. This will be a consequence of the proof of
Proposition 3.1.6 below.)

Similarly if we define

D(V )G
′

p =
{

D ∈ D(V )G
′ ∣∣ [E, D] = pd0 D

}
,

we have D(V )G
′

=
⊕
p∈Z

D(V )G
′

p .

Definition 3.1.1. For a = (a0, a1, . . . , ar ) and p ∈ N, we define

a+ p = (a0+ p, a1, . . . , ar ).

Then if D∈Tp, the Schur Lemma ensures that if P ∈Va we have D P=bD(a)X p P ,
where bD(a) ∈ C. It is easy to see that bD is a polynomial in the variables
(a0, a1, . . . , ar ) (see for example [Knop 1998, proof of Corollary 4.4]). This
polynomial is called the Bernstein–Sato polynomial of D.
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Example 3.1.2. Relations (3-1-1) imply that X ∈T1, X−1
∈T−1 and Y ∈T−1. And

of course E ∈ T0. Obviously, from the definition, we have bX (a)= bX−1(a)= 1,
bE(a)= d0a0+ d1a1+ · · · + dr ar = the degree of Va (recall that di is the degree
of 1i ). The computation of bY is more difficult. However it is known in the
case of PVs of commutative parabolic type (see Example 2.3.3). In this case, for
X = (X0, X1, . . . , Xr ) it is given by

bY (X)= c
r∏

j=0

(
X0+ · · ·+ X j + j

d
2

)
, (3-1-3)

where the constant c can be made explicit (see [Bopp and Rubenthaler 1993,
Théorème 3.19]) and where d/2 = (dim(V ) − d0)/((d0 − 1)d0). This explicit
computation of the polynomial bY in the particular case of PVs of commutative
parabolic type has been obtained by several authors, using distinct methods (see
[Kostant and Sahi 1991; Wallach 1992; Bopp and Rubenthaler 1993; Faraut and
Korányi 1994]). The constant d is the same as the constant d which is familiar to
specialists of Jordan algebras.

The following lemma is obvious, but useful.

Lemma 3.1.3. Let D1, D2 ∈ Tp. Then D1 = D2 if and only if bD1 = bD2 .

Definition 3.1.4. The automorphism τ of T= D(O)G
′

is defined by

τ(D)= X DX−1 for all D ∈ T.

Proposition 3.1.5. The algebra T0 is stable under τ and for any D ∈ T0 we have

X D = τ(D)X, (3-1-4)

DY = Y τ(D). (3-1-5)

Proof. By definition, T0 = D(V )G . From relations (3-1-1) we see that if D is
G-invariant so is τ(D). Obviously τ(D) ∈ D(O)G . But D(O)G = D(V )G by
Theorem 2.2.6; hence T0 is τ -stable. Relation (3-1-4) is just the definition of τ . We
will now prove that (3-1-5) holds on each subspace Va. Let bD be the Bernstein–
Sato polynomial of D. Then an easy calculation shows that the left and right sides
of (3-1-5) act on Va by bD(a−1)bY (a)X−1. Then Lemma 3.1.3 implies (3-1-5). �

Let us denote by T0[X, Y ] the subalgebra of T generated by T0, X and Y . From
the preceding proposition and from the fact that XY and Y X belong to T0 we know
that any element D∈T0[X, Y ] can be written as a finite sum D=

∑
p,q∈N ap,q X pY q

with ap,q ∈T0. Similarly, let T0[X, X−1
] denote the subalgebra of T generated by

T0, X and X−1. Also any element D in T0[X, X−1
] can we written as a finite sum

D =
∑

p∈Z ap X p. The following proposition shows that D(V )G
′

= T0[X, Y ] and
that T= D(O)G

′

= T0[X, X−1
] and makes the gradings more precise.
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Proposition 3.1.6. 1) We have

D(V )G
′

= T0[X, Y ] =
( ⊕

p∈N∗
T0Y p

)
⊕T0⊕

( ⊕
p∈N∗

T0 X p
)

(in particular D(V )G
′

p = T0 X p if p ≥ 0, and D(V )G
′

p = T0Y−p if p < 0).
Equivalently,

D(V )G
′

= T0[X, Y ] =
( ⊕

p∈N∗
Y pT0

)
⊕T0⊕

(⊕
p∈N

X pT0

)
.

2) We have T= D(O)G
′

= T0[X, X−1
] =

⊕
p∈Z

T0 X p
=
⊕
p∈Z

X pT0.

3) Any element D in T0[X, Y ] can be written uniquely in the form

D =
∑
i>0

ui Y i
+

∑
i≥0

vi X i or D =
∑
i>0

Y i ui +
∑
i≥0

X ivi (finite sums)

with ui , vi ∈ T0.
Any element D ∈ T can be written uniquely in the form

D =
∑
i∈Z

ui X i or D =
∑
i∈Z

X i ui (finite sums)

with ui ∈ T0.

Proof. 1) For the moment we define T0 by T0 = D(V )G . From Proposition 2.2.8
we know that the decomposition of C[V ] into G ′-isotypic components is given by

C[V ] =
⊕
ã∈Nr

Uã, where Uã =
⊕
a0∈N

1
a0
0 Vã and ã = (0, a1, . . . , ar ).

We will now use the technique of [Howe and Umeda 1991] which we have al-
ready mentioned before Theorem 2.2.9. As C[V ] ⊗ C[V ∗] is G ′-isomorphic to
D(V ), each subspace 1a0 Vã ⊗ (1

b0 Vã)
∗ will give rise to a unique G ′-invariant

differential operator Ra0,b0,ã. Then by the same arguments as in Remark 2.2.10,
it is easy to see that Ra0,b0,ã = 10(x)a0 R0,0,ã1

∗

0(∂)
b0 = Xa0 R0,0,ãY b0 . The el-

ements Xa0 R0,0,ãY b0 (a0, b0 ∈ N, ã ∈ Nr ) form a vector basis of D(V )G
′

. Re-
mark now that R0,0,ã is in D(V )G = T0. Then from Proposition 3.1.5, we get
Xa0 R0,0,ãY b0 = τ a0(R0,0,ã)Xa0Y b0 and τ a0(R0,0,ã) ∈ T0. If now a0 ≤ b0, then
Xa0 R0,0,ãY b0 = RY b0−a0 , where R = τ a0(R0,0,ã)Xa0Y a0 ∈ T0. If a0 > b0, then
Xa0 R0,0,ãY b0 = R Xa0−b0 , where R = τ a0(R0,0,ã)τ

a0−b0(Xb0Y b0) ∈ T0. The first
decomposition in assertion 1) is proved. The second decomposition is a consequence
of relations (3-1-4) and (3-1-5).

2) A slight extension of (2-2-2) shows that C[O]⊗C[V ∗] is G-isomorphic to D(O)
through the map ϕ⊗ f 7→ ϕ f (∂). Then the same proof as in 1) above shows that the
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elements Xa0 R0,0,ãY b0 (a0 ∈ Z, b0 ∈N, ã ∈Nr ) form a vector basis of D(O)G
′

=T.
Consider now an element D ∈ T such that [E, D] = 0. Then necessarily D is
a linear combination of elements of the form Xa0 R0,0,ãY a0 with a0 ∈ N. Then,
as announced previously, the two definitions of T0 coincide (T0 = D(V )G and
T0= {D ∈T | [E, D] = 0}). Now if D ∈Tp, then D= DX−p X p and DX−p

∈T0.
Hence Tp = T0 X p

= X pT0.

Assertion 3) is then obvious. �

Remark 3.1.7. The inclusion D(V )G
′

⊂ D(O)G
′

is obviously strict (note that
X−1
∈ D(O)G

′

\ D(V )G
′

), but the preceding results show that these two graded
algebras have the same “positive part”

(⊕
p∈NT0 X p

)
.

The following proposition, whose proof is straightforward, shows that all the
Bernstein–Sato polynomials are known if one knows the Bernstein–Sato polynomi-
als of Y and of the elements of T0.

Proposition 3.1.8. Let D = D0 Xn (n ∈ Z) and D′ = D0Y n (n ∈N∗), D0 ∈T0, be
generic homogeneous elements in T= T0[X, X−1

] and T0[X, Y ]. Then bD(a)=
bD0(a+ n) and bD′(a)= bD0(a− n)bY (a)bY (a− 1) · · · bY (a− n+ 1).

3.2. The Harish-Chandra isomorphism and the center of T. The aim of this
subsection is to describe T0 = D(V )G as a module over the center of T. For this
we will use the Harish-Chandra isomorphism for MF spaces due to F. Knop.

Let (G, V ) be an MF space with a one-dimensional quotient. Let B be a fixed
Borel subgroup of G. Remember that (B, V ) is a PV. Recall also that we denote
by 10,11, . . . ,1r the set of fundamental relative invariants of (B, V ) and that 10

is the unique fundamental relative invariant under G. We denote by di (resp. λi )
the degree (resp. the infinitesimal character) of 1i . Let b be the Lie algebra of B,
let t⊂ b be a Cartan subalgebra of g and let 6 be the set of roots of the pair (g, t).
Denote by W the Weyl group of 6. Denote by 6+ the set of positive roots such
that b= t+

∑
α∈6+ g

α. Let ρ = 1
2

∑
α∈6+ α. We define

a∗ =

r⊕
i=0

Cλi ⊂ t∗ and A = a∗+ ρ ⊂ t∗.

Let Z(g) be the center of the enveloping algebra of g. Denote by C[t∗]W the
W -invariant polynomials on t∗. One knows that the classical Harish-Chandra
isomorphism is an isomorphism H : Z(g)→ C[t∗]W which can be computed the
following way. For any λ ∈ t∗, let Vλ be the irreducible highest weight module with
highest weight λ. It is well known that Z(g) acts by scalar multiplication on Vλ.
The scalar by which an element z ∈ Z(g) acts on Vλ is precisely H(z)(λ+ ρ).

The natural representation of G on C[V ] extends to a representation of the
enveloping algebra U(g) on the same space C[V ]. Hence z ∈Z(g) acts on Va by the
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scalar H(z)(−λa+ ρ),† where λa =
∑r

i=0 aiλi (remember that a = (a0, . . . , ar )).
Conversely if λ=a0λ0+· · ·+arλr we define aλ= (a0, . . . , ar )∈Cr+1. By abuse of
notation if bD is the Bernstein–Sato polynomial of D ∈T0, we set bD(λ)= bD(aλ).

On the other hand any D ∈ D(V )G = T0 acts on each Va by the scalar bD(a),
where bD(a) is the Bernstein–Sato polynomial of D. This allows us to define the
map

h : D(V )G → C[A],
D 7→ h(D) : −λ+ ρ 7→ h(D)(−λ+ ρ)= bD(λ),

where C[A] denotes the algebra of polynomials on the affine space A= a∗+ρ ⊂ t∗.
Let π(z) be the operator in D(V )G which represents the action of z on C[V ]

and let r : C[t∗]W → C[A] be the restriction homomorphism. It is clear from the
definitions that the following diagram commutes:

Z(g)

π

��

H // C[t∗]W

r
��

D(V )G h // C[A]

Theorem 3.2.1 [Knop 1998, Theorem 4.8 and Corollary 4.9; Benson and Ratcliff
2004, Theorem 9.2.1]. The homomorphism h is injective and there exists a finite
group W0 (sometimes called the little Weyl group) which is a subgroup of the
stabilizer of A in W , such that the image of h is C[A]W0 . Hence h is an isomorphism
between D(V )G and C[A]W0 . The isomorphism h is called the Harish-Chandra
isomorphism for the MF space (G, V ). Moreover W0 acts as a reflection group
on a∗.

Let us see what is the automorphism of C[A]W0 which corresponds to the action
of τ on D(V )G through the Harish-Chandra isomorphism h. Let D ∈ D(V )G.
Then h(τ (D))(−λ+ ρ)= h(X DX−1)(−λ+ ρ)= bX DX−1(λ)= bD(λ− λ0). This
calculation proves of course that C[A]W0 is stable under P(λ+ρ) 7→ P((λ−λ0)+ρ).
Therefore we make the following definition.

Definition 3.2.2. By abuse of notation τ will also denote the automorphism of
C[A]W0 which is defined by τ(P)(λ+ ρ) = P((λ− λ0)+ ρ) (P ∈ C[A]W0). Let
C[A]W0,τ denote the set of elements in C[A]W0 that are invariant under τ .

Proposition 3.2.3. Let Z(T) be the center of T = D(O)G
′

. Then Z(T) is also the
center of T0[X, Y ] = D(V )G

′

. Moreover the following assertions are equivalent:
i) D ∈ Z(T).

ii) D ∈ T0 and τ(D)= D (i.e., D commutes with X ).

†The change of sign is due to the fact that we consider here characters of relative invariants instead
of highest weights.
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iii) D ∈T0 and the Bernstein–Sato polynomial bD(a0, a1, . . . , ar ) does not depend
on a0.

iv) D ∈ T0 and D commutes with Y .

v) D ∈ T0 and h(D) ∈ C[A]W0,τ .

Proof. i)⇒ ii): Let D ∈ Z(T). Then [E, D] = 0, hence D ∈ T0, and [D, X ] = 0.

ii)⇒ iii): Let D ∈ T0. If X D = DX then, from the definitions we have

bX D(a0, a1, . . . , ar )= bD(a0, a1, . . . , ar )= bDX (a0, a1, . . . , ar )

= bD(a0+ 1, a1, . . . , ar );

hence bD(a0, a1, . . . , ar ) does not depend on a0.

iii) ⇒ i): Suppose that for D ∈ T0, the Bernstein–Sato polynomial does not
depend on a0. Then the elements X D and DX in T1 have the same Bernstein–Sato
polynomial. Hence XD = DX (Lemma 3.1.3). Then from Proposition 3.1.6(2) we
see that D ∈ Z(T).

iii)⇒ iv): Let D ∈ T0 such that bD does not depend on a0. Then

bDY (a0, a1, . . . , ar )= bD(a0− 1, a1, . . . , ar )bY (a0, a1, . . . , ar )

= bD(a0, a1, . . . , ar )bY (a0, a1, . . . , ar )

= bYD(a0, a1, . . . , ar ).

Hence DY = YD.

iv)⇒ iii): If DY = YD, then

bDY (a0, a1, . . . , ar )= bD(a0− 1, a1, . . . , ar )bY (a0, a1, . . . , ar )

= bYD(a0, a1, . . . , ar )

= bY (a0, a1, . . . , ar )bD(a0, a1, . . . , ar ).

Hence bD does not depend on a0.

The equivalence of iii) and v) is obvious since h(D)(−λ+ ρ)= bD(λ).
From ii) we obtain that Z(T) is also the center of T0[X, Y ]. �

Remark 3.2.4. As a consequence of the preceding proposition it is worthwhile
noticing that if D ∈ D(V )G

′

(or D ∈ T) commutes with two operators among
(X, E, Y ), then D commutes with the third one. This is a well known property
if (X, E, Y ) is an sl2-triple. But we know from [Igusa 1981] that except if 10 is
quadratic or linear the Lie algebra generated by (X, E, Y ) is infinite-dimensional.
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We will see in Theorem 4.2.2 that the associative algebra generated by (X, E, Y )
over Z(T) is “similar” to U(sl2(Z(T)).

Define a linear form µ on a∗ by

µ(a0λ0+ · · ·+ arλr )=

r∑
i=0

ai di = bE(a) (a = (a0, . . . , ar ) ∈ Cr+1)

(µ is the degree form, as its value on a= (a0, . . . , ar ) ∈Nr+1 is equal to the degree
of the polynomials in Va). Define also

M= {λ ∈ a∗ | µ(λ)= 0} and M =M+ ρ ⊂ A.

Note that M = {λ+ρ ∈ A | h(E)(−λ+ρ)= 0}. As h(E) is W0-invariant, so is the
set M . Set

I (M)=
{

P ∈ C[A]W0 | P M = 0
}
.

The key lemma is the following.

Lemma 3.2.5. We have I (M)= C[A]W0h(E) and

C[A]W0 = C[A]W0,τ ⊕ I (M).

Proof. Let P ∈ I (M). Then P is a polynomial on the affine subspace A ⊂ t∗

vanishing on M , the set of zeros of the irreducible polynomial h(E). Therefore
P = h(E)Q. As P and h(E) are W0-invariant, so is also the polynomial Q. Hence
I (M)⊂ C[A]W0h(E). The reverse inclusion is obvious.

Let F = Cλ0 ⊂ a∗. As obviously a∗ =M⊕ F , we have A= M⊕ F . Remember
that t= c⊕t′, where c is the center of g. The infinitesimal character λ0 is a character
of g, and is therefore trivial on t′ ⊂ g′. As any w0 ∈W0 fixes pointwise the center c
of g, we see that F is pointwise fixed by W0.

Let Q ∈ C[M]W0 . Define

Q̃(m+ f )= Q(m), for all m ∈ M, f ∈ F.

From the preceding discussion we obtain that Q̃ is W0-invariant; in other words
Q̃ ∈ C[A]W0 . But in fact Q̃ is also τ -invariant:

τ(Q̃)(m+ f )= Q̃(m+ f − λ0)= Q(m)= Q̃(m+ f ).

Hence Q̃ ∈ C[A]W0,τ ; in other words any W0-invariant polynomial on M can be
extended to a (W0, τ )-invariant polynomial on A. This extension is in fact unique:
for any τ -invariant extension ˜̃Q of Q we have ˜̃Q(m + xλ0) =

˜̃Q(m + (x + 1)λ0)
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and hence ˜̃Q = Q̃. Hence we have proved that the restriction map

C[A]W0,τ → C[M]W0,

P 7→ P M ,

is bijective (and therefore C[A]W0,τ ∩ I (M)= {0}) and the inverse map is Q 7→ Q̃.
Now for P ∈ C[A]W0 we can write

P = P̃ M +
(
P − P̃ M

)
.

From the discussion above we have P̃ M ∈ C[A]W0,τ , and
(
P − P̃ M

)
∈ I (M). �

Theorem 3.2.6. 1) T0 = D(V )G = Z(T)⊕ ET0.

2) Any element H ∈ D(V )G can be uniquely written in the form

H = H0+ E H1+ E2 H2+ · · ·+ Ek Hk,

where Hi ∈ Z(T), i = 1, 2, . . . , k ∈ N.

Proof. Through the Harish-Chandra isomorphism h, the algebra D(V )G = T0

corresponds to C[A]W0 , the algebra Z(T) corresponds to C[A]W0,τ and the ideal
ET0 corresponds to I (M). Therefore the first assertion is just the pullback by h of
the decomposition obtained in Lemma 3.2.5.

An element H ∈ D(V )G can therefore be uniquely written H = H0+E H 1, with
H0 ∈ Z(T), and H 1

∈ T0. By induction we obtain a decomposition

H = H0+ E H1+ E2 H2+ · · ·+ Ek−1 Hk−1+ Ek H k,

where H0, . . . , Hk−1 ∈Z(T), and H k
∈T0. The process stops because if k is greater

than the degree in a0 of bH , then necessarily H k
= 0 (see Proposition 3.2.3). �

From this theorem and Proposition 3.1.6 we obtain immediately this consequence:

Corollary 3.2.7. 1) Let D ∈ T. Then D can be written uniquely in the form

D =
∑
k∈Z
`∈N

Hk,`E`X k or D =
∑
k∈Z
`∈N

Hk,`X k E` (finite sums),

where Hk,` ∈ Z(T).

2) Let D ∈ T0[X, Y ]. Then D can be written uniquely in the form

D =
∑
k∈N∗

`∈N

Hk,`E`Y k
+

∑
r∈N
s∈N

H ′r,s E s X r (finite sums) or

D =
∑
k∈N∗

`∈N

Hk,`Y k E`+
∑
r∈N
s∈N

H ′r,s X r E s (finite sums),

where Hk,`, H ′r,s ∈ Z(T).
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Corollary 3.2.8. Let P ∈ C[A]W0 . Then P can be uniquely written in the form

P(−λ+ ρ)=
p∑

i=0

αi (−λ+ ρ)(a0d0+ a1d1+ · · ·+ ar dr )
i ,

where αi ∈ C[A]W0,τ and λ= a0λ0+ a1λ1+ · · ·+ arλr ∈ a
∗.

Proof. As h(E)(−λ+ρ)= a0d0+ a1d1+· · ·+ ar dr , the preceding decomposition
is just the image through the Harish-Chandra isomorphism of the decomposition in
Theorem 3.2.6(2). �

Remark 3.2.9. It is easy to see that as W0 stabilizes the affine space A = a∗+ρ it
also stabilizes a∗ (this is implicit in Theorem 3.2.1). Moreover if we denote by 0ρ
the barycenter of the W0-orbit of ρ, then 0ρ is a fixed point of the W0-action on
A which is in M . As C[A]W0 = C[a∗ + ρ]W0 = C[a∗ + 0ρ]W0 ' C[a∗]W0 , and as
T0= D(V )G 'C[A]W0 is a polynomial algebra in r+1 variables by Theorem 2.2.9,
the group W0 acts as a reflection group on a∗ by the Shephard–Todd–Chevalley
theorem (this is a part of Knop’s argument for Theorem 3.2.1). Hence by the
theorem of Chevalley, the r + 1 algebraically independent generators of the algebra
C[A]W0 ' C[a∗]W0 can be chosen to be homogeneous, either as functions on the
vector space a∗, or as functions on A, for the vector space structure on A defined
by taking 0ρ as origin.

We will now describe more precisely the algebra Z(T).

Theorem 3.2.10. 1) Z(T) is a polynomial algebra in r variables. For D ∈T0, let
us denote by D the projection of D on Z(T) according to the decomposition
T0=Z(T)⊕ET0. Remember from Theorem 2.2.9 that the set R0, . . . , Rr−1, Rr

of Capelli operators associated to the invariants 10,11, . . . ,1r ordered by
decreasing degree is a set algebraically independent generators of T0. Then
{R0, . . . , Rr−1} is a set of algebraically independent generators of Z(T).

2) Let D be an element of T0 and let bD be its Bernstein–Sato polynomial. Then
the Bernstein–Sato polynomial of D is given by

bD(a0, a1, . . . , ar )= bD

(
−

a1d1+ · · ·+ ar dr

d0
, a1, . . . , ar

)
.

Proof. 1) Let us remark first that Z(T) is already known to be a polynomial algebra
from a result of Knop [1994]. He has proved that for a regular action of a reductive
group on a smooth affine variety the center of the ring of invariant differential oper-
ators is always a polynomial algebra. We give here a direct proof and obtain some
extra information. We know from Proposition 3.2.3 that Z(T) is isomorphic, through
the Harish-Chandra isomorphism h, to C[A]W0,τ . From the proof of Lemma 3.2.5
we know that W0 stabilizes M and that C[A]W0,τ ' C[M]W0 = (C[A]W0) M . As
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W0 is a reflection group on A (this means that it is generated by the reflec-
tions it contains), so is W0 M . Therefore C[M]W0 (and hence Z(T)) is a poly-
nomial algebra in r = dim M variables by Chevalley’s Theorem. We know from
Remark 2.2.10(d) that {R0, . . . , Rr−1, E} is also a set algebraically independent gen-
erators of T0; hence {h(R0), . . . , h(Rr−1), h(E)} is a set of algebraically indepen-
dent generators of C[A]W0 . We obtain that C[M]W0 = C[h(R0) M , . . . , h(Rr−1) M ]

as h(E) M = 0. As the transcendence degree of Frac(C[M]W0) over C is r , the
generators h(R0) M , . . . , h(Rr−1) M are algebraically independent. Taking their
inverse image under h gives the first assertion of the theorem.

2) As we have seen the decomposition T0 = Z(T)⊕ ET0 is nothing else but the
inverse image under h of the decomposition C[A]W0=C[A]W0,τ⊕I (M). Let D∈T0.
From the proof of Lemma 3.2.5 we have h(D) = ˜h(D) M , where ˜h(D) M is the
unique (W0, τ )-invariant extension to A of h(D) M . For λ= a0λ0+· · ·+arλr ∈ a

∗,
we have h(E)(λ+ρ)= bE(−λ)=−(a0d0+· · ·+ar dr )=−µ(λ) (the degree form).
Remember also that a∗ =M⊕ F , where M = ker(µ) and F = Cλ0. Let us write
λ = mλ + αλ0, according to this decomposition. Then bE(λ) = αbE(λ0) = αd0.
Hence α = µ(λ)/d0 and mλ = λ− (µ(λ)/d0)λ0. Then we obtain

bD(λ)= h(D)(−λ+ ρ)= ˜h(D) M(−λ+ ρ)

= ˜h(D) M

(
−λ+

µ(λ)

d0
λ0−

µ(λ)

d0
λ0+ ρ

)
= ˜h(D) M

(
−λ+

µ(λ)

d0
λ0+ ρ

)
= h(D) M

(
−λ+

µ(λ)

d0
λ0+ ρ

)
= h(D)

(
−λ+

µ(λ)

d0
λ0+ ρ

)
= bD

(
λ−

µ(λ)

d0
λ0

)
.

If we translate this into the (a0, . . . , ar )-variables we obtain the second assertion. �

Corollary 3.2.11. Let bY be the Bernstein–Sato operator of Y . For any ` ∈ N

the element of End(C[V ]) that acts on each space Va as scalar multiplication by
bY (−(a1d1+ · · ·+ ar dr )/d0+ `, a1, . . . , ar ) is the differential operator

X1−`Y X` ∈ Z(T).

Moreover, if (G, V+) is a PV of commutative parabolic type, the differential opera-
tors X1−`Y X` (`= 0, 1, . . . , r ) are generators of Z(T).

Proof. As bX1−`Y X`(a0, . . . , ar )= bY (a0+`, a1, . . . , ar ), the first assertion follows
immediately from Theorem 3.2.10. If (G, V+) is a PV of commutative parabolic
type, we know from Theorem 3.3.1 below that the operators X1−`Y X` (`=0, . . . , r )
are (algebraically independent) generators of T0. �
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3.3. The case of regular PV’s of commutative parabolic type. In the case where
(G, V+) is a regular PV of commutative parabolic type (see Example 2.3.3), we
obtain some specific results.

Theorem 3.3.1. Let (G, V+) be a regular PV of commutative parabolic type.

1) The degree of 10 is equal to r + 1 which is the rank of (G, V+) as a MF space.
More generally the degree of 1i is equal to r + 1− i .

2) For ` ∈ Z set D` = X1−`Y X`. Then D0, D1, . . . , Dr are algebraically indepen-
dent generators of T0 = D(V+)G ( i.e., T0 = C[D0, D1, . . . , Dr ]).

3) We have T= D(�+)G
′

= C[X, X−1, Y ], where C[X, X−1, Y ] is the associative
subalgebra of D(�+) generated by X, X−1, Y .

4) We have T0[X, Y ] = D(V )G
′

= C[X, Y, R1, . . . , Rr ], where the Ri are the
Capelli operators introduced before Theorem 2.2.9 and C[X, Y, R1, . . . , Rr ] is
the associative subalgebra of D(V+) generated by X , Y , R1, . . . , Rr .

Proof. 1) This first assertion is proved in [Muller et al. 1986, Proposition 2.16 and
Lemme 3.7].

2) We need now to use some technical results from the structure theory of commu-
tative PVs of parabolic type. For details see [Muller et al. 1986; Rubenthaler and
Schiffmann 1987]. We need also results concerning the symmetric space structure
of the open G orbit �+ in V+; they can be found in [Bopp and Rubenthaler 1993].
Let t be a Cartan subalgebra of g; then t is also a Cartan subalgebra of g̃ (see the
notation in Example 2.3.3). Let 6̃ and 6 be the root systems of (g̃, t) and (g, t),
respectively. We choose an order on 6̃ such that the roots occurring in V+ are
positive. We know from Proposition 2.9. in [Bopp and Rubenthaler 1993] that the
open G-orbit�+={x ∈V+ |10(x) 6=0} is a symmetric space G/H , where H is the
isotropy subgroup of a point I+ ∈�+. The choice of I+ can be made the following
way. It is known that any maximal set of strongly orthogonal long roots occurring
in V+ has r + 1 = rank(G, V+) elements. There is a canonical way to construct
such a maximal set, called the “descent”; see [Muller et al. 1986, Theorem 2.7,
p. 101]. If {α0, α1, . . . , αr } is such a maximal set of strongly orthogonal long roots,
then the element I+ = Xα0 + Xα1 + · · ·+ Xαr is generic (here as usual the Xαi are
nonzero root vectors). Let h = Zg(I+) be the Lie algebra of H , and let q be the
orthogonal complement of h in g with respect to the Killing form of g̃. Let Hαi ∈ t

be the coroot of αi . Set a =
∑r

i=0 CHαi . Then a is a maximal abelian subspace
of q [Bopp and Rubenthaler 1993, Proposition 5.4] and the dual space a∗ can be
identified with the space of restrictions of the fundamental characters λ0, λ1, . . . , λr

[ibid., Lemme 2.5]. Hence this definition of a∗ is coherent with the direct definition
of a∗ given in Section 3.2 in the general case

(
a∗ =

∑r
i=0 Cλi

)
.
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For λ ∈ t∗, we will denote by λ the restriction of λ to a. Through the “classical”
Harish-Chandra isomorphism γ for symmetric spaces [Heckman and Schlichtkrull
1994, Part II, Theorem 4.3] the algebra T0 is isomorphic to S(a)WR = C[a∗]WR ,
where WR is the Weyl group of the root system R of (g, a). This root system
is known to be of type Ar (the proof is the same as for Theorem 3.11 in [Bopp
and Rubenthaler 2005]). Hence WR is the symmetric group of r + 1 variables
and it acts by permutations on the αi . We will choose an order on R such that
6+ ⊂ R+. As in [Muller et al. 1986; Rubenthaler and Schiffmann 1987] we
consider here relative invariants 10,11, . . . ,1r with respect to the Borel subgroup
defined by 6−. Define ρ = 1

2

∑
β∈R− β. It is well known that for D ∈ T0 and

λ =
∑r

i=0 aiλi ∈ a∗, γ (D)(−λ + ρ) is equal to the eigenvalue of D acting on
1

a0
0 · · ·1

ar
r . In other words we have

γ (D)(−λ+ ρ)= bD(λ).

From [Rubenthaler and Schiffmann 1990, Lemme 3.9, p. 155], we know that

ρ =
d
4

∑
i< j

(αi −α j )=
d
4

r∑
i=0

(r − 2i)αi

and from [ibid., Lemme 3.8, p. 155], we also have

λ= a0α0+ (a0+ a1)α1+ · · ·+ (a0+ · · ·+ ar )αr .
‡

Let us now make the following change of variables:

si = a0+ · · ·+ ai , for i = 0, . . . , r.

As bD`
(λ) = bY (s0+ `, . . . , sr + `) = c

∏r
i=0(si + `+ id/2) (see Example 3.1.2)

we obtain

γ (D`)(λ)= bD`
(−λ+ ρ)= bD`

( r∑
i=0

−siαi +
d
4

r∑
i=0

(r − 2i)αi

)

= c
r∏

i=0

(
−si +

d
4

r + `
)
.

As expected the polynomials γ (D`) are symmetric in the si variables (i.e.,
invariant under WR). Moreover it is easy to prove that these polynomials, for
`= 0, . . . , r , are algebraically independent generators of the algebra of symmetric
polynomials. This proves 2).

‡The change of sign with respect to Lemme 3.8 in [Rubenthaler and Schiffmann 1990] is again
due to the fact that we consider here characters of relative invariants instead of the highest weights.
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3) As T = T0[X, X−1
] (see Proposition 3.1.6), and as, from 2), the elements of

T0 are polynomials in X, X−1, Y we obtain that T⊂ C[X, X−1, Y ]. The inverse
inclusion is obvious.

4) The inclusion C[X, Y, R1, . . . , Rr ] ⊂ D(V+)G
′

= T0[X, Y ] is obvious. Con-
versely, from Theorem 2.2.9 we have T0[X, Y ] = C[R0, R1, . . . , Rr ][X, Y ]. As
R0 = XY (see Remark 2.2.10), we have T0[X, Y ] ⊂ C[X, Y, R1, . . . , Rr ]. �

Remark 3.3.2. According to [Terras 1988, p. 208], the operators D` were first
considered by Selberg on positive definite symmetric matrices. They appear also in
[Maaß 1971], in the same context of positive definite symmetric matrices. In the
setting of symmetric cones, the analogue of assertion 2) of the preceding theorem
can be found in [Faraut and Korányi 1994, Corollary XIV.1.6].

Remark 3.3.3. Note that for PVs of commutative parabolic type we have Rr = E .
In the special case where G ' SO(k)×C∗ and V+ ' Ck , we have always r = 1,
and assertion 4) of the preceding theorem yields

D(Ck)SO(k)
= C[Q(x), Q(∂), E],

where Q(x)= X =
∑k

i=1 x2
i , Q(∂)= Y =

∑k
i=1 ∂

2/∂x2
i .

This was proved by S. Rallis and G. Schiffmann [1980, Lemma 5.2, p. 112].

4. The structure of D(V )G′

4.1. Smith algebras over rings. As usual if a, b are elements of an associative
algebra we define [a, b] = ab− ba.

Definition 4.1.1. Let A be a commutative associative algebra over C, with unit
element 1 and without zero divisors. Let f, u ∈ A[t] be two polynomials in one
variable with coefficients in A. Let n ∈ N∗.

1) The Smith algebra S(A, f, n) is the associative algebra over A with generators
(x, y, e) subject to the relations [e, x] = nx , [e, y] = −ny, [y, x] = f (e).

2) The algebra U (A, u, n) is the associative algebra over A with generators (x̃, ỹ, ẽ)
subject to the relations [ẽ, x̃] = nx̃ , [ẽ, ỹ] = −n ỹ, x̃ ỹ = u(ẽ), ỹ x̃ = u(ẽ+ n).

Remark 4.1.2. 1) The algebras S(C, f, n) were introduced and intensively studied
by Smith [1990], who called them “algebras similar to U(sl2)”, where U(sl2)

is the enveloping algebra of sl2. In fact they share many interesting properties
with U(sl2), in particular they have a very rich representation theory.

2) One can prove, as in [Smith 1990], that if the degree of f is one and n 6= 0, and
if the leading coefficient is invertible in A, then S(A, f, n) is isomorphic to the
enveloping algebra U(sl2(A)).
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Let R be a ring and let σ ∈ Aut(R). Let us recall that a σ -derivation of R

is an additive map δ : R → R such that δ(su) = sδ(u) + δ(s)σ (u). Given a
σ -derivation δ, the skew polynomial ring over R determined by σ and δ is the ring
R[t, σ, δ] := 〈R, t〉/{st − tσ(s)− δ(s) | s ∈ R}, where 〈R, t〉 stands for the ring
freely generated by R and an element t with the relations given by the ring structure
on R (for details see [McConnell and Robson 1987, Section 1.2, p. 15; Goodearl
and Warfield 2004, p. 34]).

Proposition 4.1.3. Let b the 2-dimensional Lie algebra over A, with basis {ε, α}
and relation [ε, α] = nα. Let U(b) be the enveloping algebra of b. Define an auto-
morphism σ of U(b) by σ(α)=α and σ(ε)= ε−n and define also a σ -derivation δ
of U(b) by δ(α)= f (ε) and δ(ε)= 0. Then S(A, f, n)'U(b)[t, σ, δ].

Proof. The proof is almost the same as the one given by Smith [1990, Proposi-
tion 1.2]. The isomorphism S(A, f, n)'U(b)[t, σ, δ] is given by e 7→ ε, x 7→ α

and y 7→ t . �

Corollary 4.1.4. S(A, f, n) is a noetherian domain with A-basis

{yi x j ek
| i, j, k ∈ N}

(or any similar family of ordered monomials obtained by permutation of the elements
(y, x, e)).

Proof. (compare with [Smith 1990, proof of Corollary 1.3, p. 288]). We know
from [McConnell and Robson 1987, Theorem 1.2.9], that as U(b) is a noetherian
domain, so is S(A, f, n)'U(b)[t, σ, δ]. Since

U(b)[t, σ, δ] =U(b)⊕U(b)t ⊕U(b)t2
⊕U(b)t3

⊕ · · ·⊕U(b)t`⊕ · · ·

=U(b)⊕ tU(b)⊕ t2U(b)⊕ t3U(b)⊕ · · ·⊕ t`U(b)⊕ · · ·

(direct sums of A-modules) and since the Poincaré–Birkhoff–Witt theorem is still
true for enveloping algebras of Lie algebras which are free over rings (see [Bourbaki
1971]), the ordered monomials in (y, x, e) beginning or ending with y form a basis
of the algebra S(A, f, n). To obtain the basis {ei y j xk

} or {xk y j ei
} it suffices to

replace the algebra b by the algebra b− which is generated by e and y. �

Remark 4.1.5. The adjoint action of e (u 7→ [e, u]) on S(A, f, n) is semisimple
and gives a decomposition of S(A, f, n) into weight spaces:

S(A, f, n)=
⊕
ν∈Z

S(A, f, n)ν,

where S(A, f, n)ν={u∈ S(A, f, n) | [e, u]=νnu}. As [e, x j yi ek
]=n( j−i)yi x j ek ,

we obtain, using Corollary 4.1.4, that the ordered monomials of the form x i yi ek

form an A-basis for S(A, f, n)0. Moreover as yx = xy + f (e), it is easy to see
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that S(A, f, n)0 = A[xy, e] = A[yx, e], where A[xy, e] (resp. A[yx, e]) denotes
the A-subalgebra generated by xy (resp. yx) and e.

The proof of the following lemma is straightforward.

Lemma 4.1.6. Let n ∈N∗ and let f ∈ A[t]. There exists an element u ∈ A[t], which
is unique up to addition of an element of A, such that

f (t)= u(t + n)− u(t) (4-1-1)

Proposition 4.1.7 (compare with [Smith 1990, Proposition 1.5]). Let u be as in the
preceding lemma. Define

�1 = xy− u(e).

Then the center of S(A, f, n) is A[�1] which is isomorphic to the polynomial
algebra A[t].

Proof. Let us now prove that �1 is central. Obviously �1 commutes with e.
From the defining relations of S(A, f, n) we have ex = x(e+ n) and therefore,

for any k ∈ N, ek x = x(e+ n)k .
This implies of course that for any polynomial P ∈ A[t] we have

P(e)x = x P(e+ n) or P(e− n)x = x P(e). (4-1-2)

Similarly one proves that

P(e)y = y P(e− n) or P(e+ n)y = y P(e). (4-1-3)

Let us show that�1 commutes with x . Using Lemma 4.1.6 and (4-1-2) we obtain

x�1 = x(xy− u(e))= x2 y− xu(e)= x(yx − f (e))− xu(e)

= x(yx − u(e+ n)+ u(e))− xu(e)= xyx − xu(e+ n)= xyx − u(e)x

=�1x .

A similar calculation using (4-1-3) shows that �1 commutes also with y. Hence
�1 belongs to the center of S(A, f, n).

Let now z be a central element of S(A, f, n). Then z ∈ S(A, f, n)0. We have
S(A, f, n)0 = A[xy, e] = A[�1, e], and hence z can be written as follows:

z =
∑

ci (e)�i
1 (finite sum),

where ci (e) ∈ A[e].
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We have

0= [z, x] =
[∑

ci (e)�i
1, x

]
=
∑
[ci (e), x]�i

1

=
∑
(ci (e)x − xci (e))�i

1

=
∑

x(ci (e+ n)− ci (e))�i
1 (using (4-1-2))

= x
∑
(ci (e+ n)− ci (e))�i

1.

As the algebra S(A, f, n) has no zero divisors we get∑
(ci (e+ n)− ci (e))�i

1 = 0.

As �1 = xy− u(e), we have �i
1 = x i yi modulo monomials of the form ek x p y p

with p< i . Then from Corollary 4.1.4 above we obtain ci (e+n)−ci (e)= 0 for all
i . As the elements ek are free over A (Corollary 4.1.4) we obtain from Lemma 4.1.6
that ci ∈ A, for all i . �

Remark 4.1.8. Conversely, let us start with u ∈ A[t]. Define f ∈ A[t] by f (t)=
u(t + n)− u(t). From the definitions we have

U (A, u, n)= S(A, f, n)/(xy− u(e))= S(A, f, n)/(�1),

where (xy− u(e))= (�1) is the ideal generated by xy− u(e)=�1. Again, as for
S(A, f, n), the adjoint action of ẽ gives a decomposition of U (A, u, n) into weight
spaces:

U (A, u, n)=
⊕
ν∈Z

U (A, u, n)ν, (4-1-4)

where U (A, u, n)ν = {ṽ ∈U (A, u, n) | [ẽ, ṽ] = νnṽ}.

Proposition 4.1.9. Let u ∈ A[t] and s ∈ N. The A-linear mappings

ϕ,ψ : A[t] →U (A, u, n)

given by

ϕ(P)= x̃ s P(ẽ), ψ(P)= ỹs P(ẽ)

are injective (in particular the subalgebra A[ẽ] ⊂U (A, u, n) generated by ẽ is a
polynomial algebra).

Proof. Define f (t)= u(t + n)− u(t). Every element of S(A, f, n) can be written
uniquely in the form ∑

ak,`,mek x`ym (ak,`,m ∈ A)
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(Corollary 4.1.4). Therefore, from Remark 4.1.8, every element in U (A, u, n) can
be written in the form ∑

ak,`,m ẽk x̃` ỹm (ak,`,m ∈ A).

Let P(t)=
∑p

i=0 ai t i (ai ∈ A) be a polynomial such that x̃ s P(ẽ)=0 (i.e., P ∈kerϕ).
As U (A, u, n)= S(A, f, n)/(�1), we see that there exists α ∈ S(A, f, n) such that

x s
p∑

i=0

ai ei
= α�1 = α(xy− u(e)).

If α =
∑

ak,`,mek x`ym , using the fact that �1 = xy− u(e) is central and relation
(4-1-2) we get

x s
p∑

i=0

ai ei
=

(∑
k,`,m

ak,`,mek x`ym
)
(xy− u(e))=

∑
k,`,m

ak,`,mek x`(xy− u(e))ym

=

∑
k,`,m

ak,`,mek x`+1 ym+1
−

∑
k,`,m

ak,`,mek x`u(e)ym

=

∑
k,`,m

ak,`,mek x`+1 ym+1
−

∑
k,`,m

ak,`,meku(e− `n)x`ym . (4-1-5)

Suppose now that α 6= 0; then one can define

`0 =max{` ∈ N | ∃k,m, ak,`,m 6= 0}.

Let k0, m0 be such that ak0,`0,m0 6= 0. From (4-1-5) we get

x s
p∑

i=0

ai ei
+

∑
k,`,m

ak,`,meku(e− `n)x`ym
=

∑
k,`,m

ak,`,mek x`+1 ym+1.

Using again (4-1-2) we obtain

p∑
i=0

ai (e− ns)i x s
+

∑
k,`,m

ak,`,meku(e− `n)x`ym
=

∑
k,`,m

ak,`,mek x`+1 ym+1.

The left side of this equality does not contain the monomial ek0 x`0+1 ym0+1, but
the right side does. As the elements ek x`ym are a basis over A (Corollary 4.1.4), we
obtain a contradiction. Therefore α = 0, and hence x s ∑p

i=0 ai ei vanishes. Again
from Corollary 4.1.4, we obtain that ai = 0 for all i . This proves that kerϕ = {0}.
The proof for ψ is similar. �
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Corollary 4.1.10. Every element ũ in U (A, u, n) can be written uniquely in the
form

ũ =
∑

`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, r≥0

βm,r x̃m ẽr

with αk,`, βm,r ∈ A.

Proof. We have already noticed that any element in U (A, u, n) can be written (in a
non unique way) as a linear combination, with coefficients in A, of the elements
x̃ i ỹ j ẽk .

Suppose that i ≥ j . Then we have x̃ i ỹ j ẽk
= x̃ i− j x̃ j ỹ j ẽk . As x̃ ỹ = u(ẽ), we see

that x̃ j ỹ j
= Q j (ẽ), where Q j is a polynomial with coefficients in A. Therefore

x̃ i ỹ j ẽk
=
∑

` γ` x̃
i− j ẽ`, with γ` ∈ A. Similarly one can prove that if i < j , we have

x̃ i ỹ j ẽk
=
∑

` δ` ỹ j−i ẽ`, with δ` ∈ A. This shows that any element ũ in U (A, u, n)
can be written in the expected form.

Suppose now that ∑
`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, r≥0

βm,r x̃m ẽr
= 0.

Then, as ỹ`ẽk
∈ U (A, u, n)−` and x̃m ẽr

∈ U (A, u, n)m , we deduce from (4-1-4)
that ∑

k

αk,` ỹ`ẽk
= 0 for all ` > 0,

∑
r

βm,r x̃m ẽr
= 0 for all m ≥ 0.

Then from Proposition 4.1.9, we deduce that αk,` = 0 and βm,r = 0. �

4.2. Generators and relations for D(V )G′ . Let Z(T)[t] be the polynomials in one
variable with coefficients in Z(T). From the commutation rules [E, X ] = d0 X and
[E, Y ] = −d0Y , we easily deduce that for P ∈ Z(T)[t] we have

Y P(E)= P(E + d0)Y, X P(E)= P(E − d0)X. (4-2-1)

From Theorem 3.2.6 above, we know that any element in D(V )G can be written
uniquely as a polynomial in E with coefficients in Z(T). As XY and Y X belong to
D(V )G , there exist therefore two uniquely determined polynomials u XY and uY X

in Z(T)[t] such that XY = u XY (E) and Y X = uY X (E). From (4-2-1) we obtain
that

Y XY = uY X (E)Y = Y u XY (E)= u XY (E + d0)Y

and therefore
uY X (E)= u XY (E + d0). (4-2-2)

As the polynomial u XY will play an important role in Theorem 4.2.2 below, let
us emphasize the connection between u XY and the Bernstein–Sato polynomial bY .
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Remark first that bY = bXY . We know from Corollary 3.2.8 that

h(XY )(−λ+ ρ)= bXY (λ)= bY (λ)

=

p∑
i=0

αi (−λ+ ρ)(a0d0+ a1d1+ · · ·+ ar dr )
i

=

p∑
i=0

αi (−λ+ ρ)(h(E)(−λ+ ρ))i

with uniquely defined polynomials αi ∈ C[A]W0,τ. Therefore we obtain

Proposition 4.2.1. Keeping the notation above, we have

u XY (t)=
p∑

i=0

h−1(αi )t i .

Theorem 4.2.2. Let fXY (t)= u XY (t + d0)− u XY (t). The mapping

x̃ 7→ X, ỹ 7→ Y, ẽ 7→ E

extends uniquely to an isomorphism of Z(T)-algebras between U (Z(T), u XY , d0)

(which is isomorphic to S(Z(T), fXY , d0)/(�1)) and D(V )G
′

= T0[X, Y ].

Proof. As [E, X ] = d0 X , [E, Y ] = −d0Y , XY = u XY (E) and Y X = u XY (E + d0)

(see (4-2-2)), and as from Theorem 3.2.6 the algebra D(V )G
′

= T0[X, Y ] is gener-
ated over Z(T) by X, Y, E , we know (universal property) that the mapping

x̃ 7→ X, ỹ 7→ Y, ẽ 7→ E

extends uniquely to a surjective morphism of Z(T)-algebras:

ϕ :U (Z(T), u XY , d0)→ D(V )G
′

.

From Corollary 4.1.10 any element ũ in U (Z(T), u XY , d0) can be written uniquely
in the form

ũ =
∑

`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, r≥0

βm,r x̃m ẽr

with αk,`, βm,r ∈ Z(T). Suppose now that ũ ∈ ker(ϕ), then

ϕ(ũ)=
∑

`>0, k≥0

αk,`Y `Ek
+

∑
m≥0, r≥0

βm,r Xm Er
= 0,

with αk,`, βm,r ∈ Z(T). Then Corollary 3.2.7 implies that αk,` = βm,r = 0. Hence
ϕ is an isomorphism. �
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5. Radial components

5.1. Radial components and Bernstein–Sato polynomials. Remember that for
ã = (a1, a2, . . . , ar ) ∈ Nr we have defined Vã = V(0,a1,...,ar ). Remember also
that for a= (a0, a1, . . . , ar ) we have Va =1

a0 Vã. We know from Proposition 2.2.8
that the spaces Uã =

⊕
a0∈N1

a0
0 Vã are the G ′-isotypic components of C[V ] and

that the spaces Wã =
⊕

a0∈Z1
a0
0 Vã are the G ′-isotypic components of C[O]. There-

fore the algebra D(V )G
′

= T0[X, Y ] stabilizes each space Uã and the algebra
D(O)G

′

= T0[X, X−1
] = T stabilizes each space Wã.

Let us consider the restriction map

D(O)G
′

→ End(Wã),

D 7→ rã(D)= D Wã
.

Definition 5.1.1. Let D ∈ D(O)G
′

=T0[X, X−1
] =T. The operator rã(D)= D Wã

is called the radial component of D with respect to ã.

Example 5.1.2. Consider the case where ã = 0. Then Wã = C[10,1
−1
0 ], and

r0(D) is the endomorphism of C[t, t−1
] defined by D(ϕ ◦10) = r0(D)(ϕ) ◦10.

The operator r0(D) is the usual radial component of D (we will see below that it is
a differential operator).

Notice now that the space Wã =
⊕

a0∈Z1
a0
0 Vã can be viewed as the space of

Laurent polynomials in 10, with coefficients in Vã, in other words any P ∈Wã can
be written uniquely under the form

P =
∑

1
p
0 γp

with γp ∈ Vã. This can also be written as P = ϕ ◦ (10), with ϕ(t) =
∑

t pγp

in Vã[t, t−1
] (this being precisely the set of linear combinations

∑
t pγp, with

γp ∈ Vã).
There is a natural action of D(C∗) = C[t, t−1, t d/dt] on Vã[t, t−1

] given by
(d/dt)t pγp = pt p−1γp.

Proposition 5.1.3. Let D ∈ Tn a homogeneous element of degree n. Let bD be its
Bernstein–Sato polynomial. Let ϕ ∈ Vã[t, t−1

]. Then

D(ϕ ◦10)=
(
tnbD(t d/dt, a1, . . . , ar )ϕ

)
◦10;

in other words, rã(D)= tnbD(t d/dt, a1, . . . , ar ).

Proof. It is enough to show that the two operators coincide on elements of the form
1

p
0 γp, with γp ∈ Vã. Then ϕ = t pγp. Let us write

bD(a)=
∑

k

ck(a1, . . . , ar )ak
0 .
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We have(
tnbD

(
t d
dt
, a1, . . . , ar

)
ϕ
)
◦10 = tn

(∑
k

ck(a1, . . . , ar )
(

t d
dt

)k
ϕ
)
◦10

= tn
(∑

k
ck(a1, . . . , ar )pk t pγp

)
◦10

= (tnbD(p, a1, . . . , ar )t pγp) ◦10

= bD(p, a1, . . . , ar )1
p+n
0 γp

= D(1p
0 γp). �

Corollary 5.1.4. If (G, V ) is a PV of commutative parabolic type of rank r + 1,
then the radial component of Y is given by

rã(Y )= ct−1
r∏

j=0

(
t d
dt
+ a1+ · · ·+ a j + j d

2

)
.

Proof. This is just a consequence of the formula for bY given in Example 3.1.2. �

Example 5.1.5. Consider case 1) in Example 2.3.3: then G= (SL(n)×SL(n))×C∗

acting on x ∈ V = Mn(C) by (g1, g2, t).x = tg1xg−1
2 . Then 10 = X = det x and

Y =1∗0(∂)= det
(
∂

∂xi j

)
,

where xi j are the coefficients of the matrix X . As in this case d/2= 1 (see [Muller
et al. 1986, Table 2, p. 122]), we have

bY (a0, a1, . . . , an−1)=

n−1∏
j=0

(a0+ a1+ · · ·+ a j + j).

Hence the radial component r0(Y ) defined by det
(
∂

∂xi j

)
(ϕ ◦ det)= (r0(Y )ϕ) ◦ det

is given by

r0(Y )= t−1
n−1∏
j=0

(
t d
dt
+ j

)
.

This radial component has already been calculated by Raïs [1972, p. 22], by other
methods. He obtained that r0(Y )=

[∏n
j=2(t d/dt+ j)

]
d/dt . A simple calculation

shows that the two operators are the same.

5.2. Algebras of radial components.

Definition 5.2.1. The radial component algebra Rã is the image of D(V )G
′

=

T0[X, Y ] under the map D 7→ rã(D).



INVARIANT DIFFERENTIAL OPERATORS ON MULTIPLICITY-FREE SPACES 505

Remember from Proposition 3.2.3 that the elements D in Z(T) are characterized
by the fact that the corresponding Bernstein–Sato polynomial bD does not depend
on the a0 variable. Therefore such a D acts by the scalar bD(0, ã) on Wã; that is,
rã(D)= bD(0, ã )IdWã

.
Let us consider the polynomial u XY ∈ Z(T)[t] introduced in Section 4.2. If

u XY =
∑

i
ci t i , with ci ∈ Z(T), we define

rã(u XY )=
∑

i

rã(ci )t i
∈ C[t].

Lemma 5.2.2. Let a= (a0, a1, . . . , ar )∈Nr+1. Suppose that a0 > 0. Then the map
P 7→ YP from Va to Va−1 is a G ′-equivariant isomorphism.

Sketch of proof. It is enough to prove that this map is not 0. As 1∗0
a0 · · ·1∗r

ar is the
lowest weight vector of V ∗a ⊂C[V ∗]we have1∗0(∂)

a0 · · ·1∗r (∂)
ar1

a0
0 · · ·1

ar
r (0) 6=0.

Hence 1∗0(∂)1
a0
0 · · ·1

ar
r 6= 0. �

Theorem 5.2.3. The radial component algebra Rã is isomorphic, as an associative
algebra over C, to the algebra U (C, rã(u XY ), d0) introduced in Definition 4.1.1.

Proof. The algebra Rã is generated over C by the elements rã(E), rã(X), rã(Y ).
The defining relations of U (C, rã(u XY ), d0) are satisfied:

[rã(E), rã(X)] = rã([E, X ])= d0rã(X),

[rã(E), rã(Y )] = rã([E, Y ])=−d0rã(Y ),

rã(X)rã(Y )= rã(XY )= rã(u XY )(rã(E)),

rã(Y )rã(X)= rã(Y X)= rã(u XY )(rã(E)+ d0).

Therefore the mapping

x̃ 7→ rã(X), ỹ 7→ rã(Y ), ẽ 7→ rã(E)

extends uniquely to a surjective morphism of C-algebras

ϕã :U (C, rã(u XY ), d0)→ Rã.

From Corollary 4.1.10 any element ũ in U (C, rã(u XY ), d0) can be written
uniquely in the form

ũ =
∑

`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, s≥0

βm,s x̃m ẽs

with αk,`, βm,s ∈ C. Suppose now that ũ ∈ ker(ϕã), then

ϕã(ũ)=
∑

`>0, k≥0

αk,`rã(Y )
`rã(E)

k
+

∑
m≥0, s≥0

βm,srã(X)
mrã(E)

s
= 0.
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Applying this operator to a function of the form 1a0 P , with P ∈ Vã, we obtain∑
`>0

Y `
(∑

k≥0

αk,`Ek1a0 P
)
+

∑
m≥0

Xm
(∑

s≥0

βm,s E s1a0 P
)
= 0.

As the operators X and Y have degree d0 and −d0, respectively, this implies that

Y `
(∑

k≥0

αk,`Ek1a0 P
)
= 0 for all `,

Xm
(∑

s≥0

βm,s E s1a0 P
)
= 0 for all m.

Therefore, by Lemma 5.2.2 we obtain
∑

k≥0 αk,`Ek1a0 P = 0 for all ` and all
a0>`, and

∑
s≥0 βm,s E s1a0 P = 0 for all m, a0. As E1a0 P = (a0d0+d(ã))1a0 P ,

where d(ã) = a1d1+ · · · + ar dr , we have
∑

k≥0 αk,`(a0d0+ d(ã))k1a0 P = 0 for
all ` and all a0 > `, and

∑
s≥0 βm,s(a0d0+ d(ã))s1a0 P = 0 for all m, a0. Hence∑

k≥0 αk,`(a0d0+d(ã))k = 0 for all ` and a0>`, and
∑

s≥0 βm,s(a0d0+d(ã))s = 0
for all m, a0. This implies that αk,` = 0 and βm,s = 0 for all `, k,m, s. Hence ũ = 0
and ϕã is injective. �

Remark 5.2.4. For ã = 0, the preceding result was first obtained by Levasseur
[2009], by other methods.

Now define Jã= ker(rã D(V )G′
). This is a two-sided ideal of D(V )G

′

=T0[X, Y ].
Remember from Proposition 3.1.6 that any D ∈ D(V )G

′

can be written uniquely in
the form

D =
∑
k∈N∗

ukY k
+

∑
n∈N

vn Xn (finite sums),

where uk, vn ∈ T0 = D(V )G.

Lemma 5.2.5. Jã =

{
D =

∑
k∈N∗

ukY k
+

∑
n∈N

vn Xn
∣∣∣ uk, vn ∈ Jã ∩T0

}
.

Proof. From Theorem 5.2.3 the algebra Rã is isomorphic to U (C, rã(u XY ), d0). If
rã(D)=

∑
k∈N∗ rã(uk)rã(Y )

k
+
∑

n∈N rã(vn)rã(X)
n
=0, then from Corollary 4.1.10

we obtain that rã(uk)= 0 and rã(vn)= 0 for all k and all n. �

Let us now give a set of generators for the ideal ker(rã) in D(V )G
′

= T0[X, Y ].
From Proposition 5.1.3 we obtain that rã(E) = d0(t d/dt) + d(ã). Therefore
rã((E − d(ã))/d0)= t d/dt . Define G ã

i = Ri − bRi ((E − d(ã))/d0, ã), where the
Ri are the Capelli operators introduced in Section 2.2. Obviously G ã

i ∈D(V )G=T0.
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Using Proposition 5.1.3 again we obtain

rã(G
ã
i )= rã

(
Ri − bRi

(
E − d(ã)

d0
, ã
))

= rã(Ri )− bRi

(
rã

(
E − d(ã)

d0

)
, ã
)

= bRi

(
t

d
dt
, ã
)
− bRi

(
t

d
dt
, ã
)
= 0.

Hence the elements G ã
i belong to Jã ∩T0.

Theorem 5.2.6. The elements G ã
i are generators of Jã:

Jã = ker
(
rã D(V )G′

)
=

r∑
i=0

D(V )G
′

G ã
i =

r∑
i=0

G ã
i D(V )G

′

.

Proof. From Lemma 5.2.5, it is now enough to prove that

Jã ∩T0 ⊂

r∑
i=0

D(V )G G ã
i =

r∑
i=0

T0G ã
i .

Let D ∈ Jã ∩ T0. As T0 = C[R0, . . . , Rr ] (Theorem 2.2.9), we have also
T0 = C[G ã

0, . . . ,G ã
r , E]. Therefore D =

∑
Qi E i , where Qi ∈ C[G ã

0, . . . ,G ã
r ].

Hence Qi ∈ Qi (0)+
∑r

i=0 D(V )G G ã
i . Then

0= rã(D)=
∑

i

Qi (0)rã(E
i )=

∑
i

Qi (0)
(

d0

(
t d
dt

)
+ d(ã)

)i
.

Therefore Qi (0) = 0 (i = 0, . . . , r). Hence Qi ∈
∑r

i=0 D(V )G G ã
i , which yields

D ∈
∑r

i=0 D(V )G G ã
i . �

Remark 5.2.7. For ã = 0, the result of the preceding theorem is due to [Levasseur
2009, Theorem 4.11(v)].

5.3. Rational radial component algebras.

Definition 5.3.1. The rational radial component algebra Rr
ã is the image of

D(O)G
′

= T0[X, X−1
] = T

under the map D 7→ rã(D).

In fact as shown in the following proposition the structure of the algebras Rr
ã

is simpler than the structure of Rã, and the ideal Iã = ker(rã) ⊂ T has the same
generators as Jã.

Proposition 5.3.2. 1) For all ã, the rational radial component algebra Rr
ã is iso-

morphic to C[t, t−1, t d/dt].
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2) Iã = ker(rã)=
r∑

i=0
TG ã

i =
r∑

i=0
G ã

i T.

Proof. 1) We have T = T0[X, X−1
]. And T0 = Z(T)[E], from Theorem 3.2.6.

Therefore T = Z(T)[X, X−1, E]. On the other hand we have rã(Z(T)) = C,
rã(X)= t , rã(X

−1)= t−1 and rã(E)= d0(t d/dt)+ d(ã). Hence

Rr
ã = rã(T)= C

[
t, t−1, d0

(
t d
dt

)
+ d(ã)

]
= C

[
t, t−1, t d

dt

]
.

2) Obviously
∑r

i=0 TG ã
i ⊂ Iã. As Iã is a two-sided ideal of T, it is easily seen

to be graded. If D ∈ Iã ∩Tp, then X−p D ∈ T0 ∩ Iã = T0 ∩ Jã =
∑r

i=0 T0G ã
i .

Therefore D ∈
∑r

i=0 TG ã
i . �
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