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DISJOINTIFICATION INEQUALITIES IN SYMMETRIC
QUASI-BANACH SPACES AND THEIR APPLICATIONS

SERGEY ASTASHKIN, FEDOR A. SUKOCHEV AND DMITRIY ZANIN

We demonstrate the relevance of the Prokhorov inequality to the study of
Khintchine-type inequalities in symmetric function spaces. Our main result
shows that the latter inequalities hold for a pair of quasi-Banach symmetric
function spaces X and Y if and only if the Kruglov operator K acts from X

to Y . We also obtain an extension of von Bahr–Esseen and Esseen–Janson
Lp-estimates for sums of independent mean zero random variables to the
class of quasi-Banach symmetric spaces. In particular, in contrast to the
well-known Esseen–Janson theorem, we do not assume that the summands
are equidistributed.

1. Introduction

The classical Khintchine inequality [1923] describes the span of independent
centered f˙1g-valued Bernoulli random variables in quasi-Banach Lp-spaces.
A particular case of the latter sequence is given by the Rademacher functions
rn.t/ WD sgn sin.2n� t/, t 2 Œ0; 1/, n � 1. In this case, for all p 2 .0;1/ the
sequence frng

1
nD1

in the Lp-spaces on the interval .0; 1/ (equipped with Lebesgue
measure m) is equivalent to the unit vector basis feng

1
nD1

of l2. A famous extension
of this inequality to a more general case of random variables was given later by
Marcinkiewicz and Zygmund (see [1937, Theorem 13, p. 87] and [1938, Theorem 5,
p. 109]): for every 1 � p <1 there are constants Ap > 0 and Bp > 0 such that
for any n 2 N and for an arbitrary sequence of independent mean zero random
variables .fk/k2N from Lp.0; 1/ we have

(1) Ap





� nX
kD1

f 2
k

�1=2




p

�





 nX
kD1

fk






p

� Bp





� nX
kD1

f 2
k

�1=2




p

:

In the special setting of Banach symmetric function spaces Johnson and Schecht-
man [1988] proved a far reaching generalization of the Marcinkiewicz–Zygmund
inequality (1). More precisely, they established that if such a space X is either
separable or has the Fatou property (for the relevant definitions see the following
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section) and the lower Boyd index of X is strictly positive, then (1) holds (even
for a more general case of martingale differences). Later on, Astashkin [2008]
showed that inequality (1) holds in a Banach symmetric space X if and only if
X satisfies the so-called Kruglov property. The latter property, introduced by
Braverman [1994], has its origin in a remarkable result due to Rosenthal [1970] that
for sequences ffng

1
nD1

of independent mean zero random variables in Lp.0; 1/,
p�2, the mapping fn!fn.t�nC1/�Œn�1;n/.t/, t 2R, extends to an isomorphism
between the closed linear span Œfn�

1
nD1

(taken in Lp.0; 1/) and the closed linear
span Œfn.t �nC 1/�Œn�1;n/�

1
nD1

(taken in Lp.0;1/\L2.0;1//. The main focus
of the present paper is to establish optimal conditions on a quasinormed symmetric
function space in which inequalities of the type (1) hold. Our techniques are
centered around the so-called Kruglov operator, a natural generalization of the
Kruglov property, which was introduced in [Astashkin and Sukochev 2005] (see
also [Astashkin and Sukochev 2010]). The usage of this operator allows us to
make a straightforward connection between sums of independent random variables
and their disjoint translates. Another major ingredient of our approach consists in
utilizing Prokhorov’s famous inequality [1959] (see also Theorem 17 below) which
allows us to treat the problem in the full generality.

Using our present method, we also provide a far-reaching extension of the well-
known von Bahr–Esseen and Esseen–Janson Lp-estimates for sums of independent
mean zero random variables (see [von Bahr and Esseen 1965] and [Esseen and
Janson 1985]). We extend inequalities of such type to the class of quasi-Banach
symmetric spaces, and, at the same time, we do not assume that the summands are
equally distributed (which is in strong contrast with Esseen and Janson’s approach
[1985, Theorem 4]). Note that earlier, Braverman [1994, § II.2] generalized the von
Bahr–Esseen inequality to (Banach) symmetric spaces with the Kruglov property.

2. Preliminaries

2.1. Quasi-Banach spaces. Let X be a linear space over the field of real numbers R.
A function k � kX WX ! R is called a quasinorm if the following conditions hold:

(a) kxCykX � C.kxkX CkykX / for every x;y 2X and some constant C > 0.

(b) kcxkX D jcj � kxkX for every x 2X and c 2 R.

(c) kxkX � 0. Moreover, kxkX D 0 if and only if x D 0.

The least of all constants C satisfying condition (a) above is called the modulus of
concavity of the quasinorm k � kX and is denoted by C.X /.

If X is a linear space over R and if k � kX W X ! R is a quasinorm, then
X D .X; k � kX / is called a quasinormed space. If every Cauchy sequence in a
quasinormed space X converges, then X is called a quasi-Banach space.
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For example, Lp.0; 1/ and Lp.0;1/, 0< p < 1, are quasi-Banach spaces with
modulus of concavity C.p/D C.Lp/D 21=p�1.

Recall that a quasinorm k � kX in X is said to be a p-norm, 0< p < 1, if for any
x1;x2 2X we have

kx1Cx2k
p
X
� kx1k

p
X
Ckx2k

p
X
:

By the Aoki–Rolewicz theorem [Kalton et al. 1984], for any quasinorm k � kX there
exists 0< p < 1 such that k � kX is a p-norm.

2.2. Symmetric function spaces. We are interested in those quasi-Banach spaces
which consist of Lebesgue-measurable functions either on .0; 1/ or on .0;1/.

For a Lebesgue-measurable, a.e. finite function x on .0; 1/ (or .0;1/) we define
its distribution function by

dx.s/ WDm.ft W x.t/ > sg/; s 2 R;

where m stands for Lebesgue measure. Let S.0; 1/ (respectively, S.0;1/) denote
the space of all Lebesgue-measurable functions x on .0; 1/ (respectively, on .0;1/
with djxj.s/ <1 for sufficiently large s).

Two measurable functions x and y are called equimeasurable (written x � y) if
their distribution functions dx and dy coincide. In particular, for every measurable
function x, the function jxj is equimeasurable with its decreasing rearrangement
x�, defined by the formula

x�.t/ WD inff� � 0 W djxj.�/ < tg; t > 0:

If x;y � 0, then x�D y� if and only if x and y are equimeasurable. We recall that
a function x is said to be symmetrically distributed if x and �x are equimeasurable.

As it is traditional in probability theory, we denote by �x the characteristic
function of an element x 2 S.0; 1/; that is, �x.t/ D

R 1
0 eitx.s/ ds. Recall that

functions x;y 2 S.0; 1/ are equimeasurable if and only if their characteristic
functions �x and �y coincide.

Definition 1. Let X � S.0; 1/ (or X � S.0;1/) be a quasi-Banach space.

(a) X is said to be a quasi-Banach function space if, from x 2X , y 2 S.0; 1/ (or
y 2 S.0;1/) and jyj � jxj, it follows that y 2X and kykX � kxkX .

(b) A quasi-Banach function space X is said to be symmetric if, for every x 2X

and any measurable function y, the assumption y� D x� implies that y 2X

and kykX D kxkX .

Without loss of generality, in what follows we assume that k�.0;1/kX D 1, where
�E denotes the indicator function of a Lebesgue measurable set E.
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The following assertion is well known in the Banach-space setting (see, for
instance, [Lindenstrauss and Tzafriri 1979, Proposition 1.d.2]). For the reader’s
convenience, we provide a short proof.

Lemma 2. Let X be a quasi-Banach function space. If 0 � x and y 2 X , then
k.xy/1=2kX � C.X /kxk

1=2
X
kyk

1=2
X

.

Proof. It is easy to see that

.xy/1=2 � 1
2
.�xC ��1y/; � > 0;

and, therefore,

k.xy/1=2kX �
C.X /

2
.�kxkX C �

�1
kykX /:

Taking the infimum over all � > 0, we infer

k.xy/1=2kX � C.X /kxk
1=2
X
kyk

1=2
X
: �

Let X be a quasi-Banach symmetric function space and let xn 2X , n 2 N, be
such that supn2N kxnkX <1 and xn! x almost everywhere. If, for every such
sequence, we have x 2X and kxkX � lim infn!1 kxnkX , then X is said to satisfy
the Fatou property.

Suppose that X is a separable quasi-Banach symmetric space on .0; 1/. Denote by
X the set of all x2S.0; 1/ such that lima!C1 k Œjxj �akX <1, where Œjxj �a WD jxj
if jxj< a and Œjxj �a WD 0 if jxj � a. The set X , equipped with the norm kxkX WD
lima!C1 k Œjxj �akX , becomes a quasi-Banach symmetric space with the Fatou
property. Moreover, X embeds isometrically into X . It can be easily checked that
for every quasi-Banach symmetric space X on .0; 1/ the continuous embedding
X � L1.0; 1/ holds. Then, the closure of L1.0; 1/ in X , denoted by X0, is
a separable quasi-Banach symmetric space with the norm k � kX whenever X ¤

L1.0; 1/.
If � > 0, the dilation operator �� is defined by setting ��x.s/D x.s=�/, s > 0,

in the case of the semiaxis. In the case of the interval .0; 1/, the operator �� is
defined by

��x.s/ WD

�
x.s=�/ if s �minf1; �g;
0 if � < s � 1:

Below we shall often consider the probability product space

.�;P/ WD

1Y
kD0

..0; 1/;mk/;

(mk is the Lebesgue measure on .0; 1/, k � 0/. Observe that in an arbitrary
symmetric space the norms of any two elements with identical distribution coincide.
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Hence, using a one-to-one measure-preserving transformation between measure
spaces .�;P/ and ..0; 1/;m/, we will identify an arbitrary measurable function
x.!/ D x.!0; !1; : : : ; !n; : : : / on .�;P/ with the corresponding element from
S.0; 1/. Since a particular form of the measure-preserving transformation used in
such identification is not important, we completely suppress it from the notations.
Thus, we will view the set � as .0; 1/ and any measurable function on .�;P/ as a
function from S.0; 1/ and vice versa. A reader interested in more details of such
identification is referred to [Astashkin and Sukochev 2010].

Let xk , k � 0, be elements from S.0; 1/ and let yk 2 S.0;1/, k � 0, be their
disjoint copies; that is, xk � yk for all k � 0, and ylym D 0 if l ¤ m. For the
function

P
k�0 yk , which is frequently called the disjoint sum of xk , k � 0, we

shall use the suggestive notation
L

k�0 xk . It is important to observe that the
distribution function of a disjoint sum

L
k�0 xk does not depend on the particular

choice of elements yk , k � 0. In the special case when
Pn

kD1 m.supp.xk// � 1,
n2N, it is convenient to view the sum

L
k�0 xk as a measurable function on .0; 1/.

The following useful construction was introduced in [Johnson et al. 1979] (see
also [Lindenstrauss and Tzafriri 1979, 2.f]). If X is a quasi-Banach symmetric
function space on .0; 1/ and 0<p�1, then the set Z

p
X

consists of all f 2S.0;1/

such that

kf kZp

X
WD kf ��.0;1/kX Ckminff �; f �.1/gkp <1:

It can be easily checked that the functional k � kZp

X
is a quasinorm on Z

p
X

.

2.3. Kruglov operator and Kruglov property. The Kruglov property was intro-
duced by Braverman [1994] when he compared sums of independent functions with
sums of their disjoint copies in (Banach) symmetric spaces. Such terminology stems
from related probabilistic constructions, due to Kruglov [1970], used in the study of
infinitely divisible distributions (e.g., in analysis of the classical Levy–Khintchine
formula).

Let x 2 S.0; 1/. By �.x/ we denote the random variable
PN

iD1 xi , where xi ,
i D 1; : : : ;N , are independent copies of x and N is a random variable having Pois-
son distribution with parameter 1 and independent with respect to the sequence fxig.

Definition 3. A quasi-Banach symmetric space X on .0; 1/ is said to have the
Kruglov property .X 2 K/ if from x 2X it follows that �.x/ 2X .

Simplifying the situation, the Kruglov property holds for spaces sufficiently
“remote” from the space L1.0; 1/. For example, if a symmetric Banach function
space X contains Lp.0; 1/ for some p<1, then X possesses the Kruglov property
(see, e.g., [Braverman 1994, Theorem 1.2] or [Astashkin and Sukochev 2010]). For
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a more precise characterization of various classes of (Banach) symmetric function
spaces possessing the Kruglov property, we refer the reader to [Astashkin and
Sukochev 2005; 2007; 2010; Braverman 1994].

Now, we recall the definition of the Kruglov operator, which can be viewed
as a natural generalization of the notion of the Kruglov property. Let fBng

1
nD0

be a fixed sequence of mutually disjoint measurable subsets of .0; 1/ such that
m.Bn/D 1=.en!/. Define the operator K W S.0; 1/! S.0; 1/ by setting

Kx.!/ WD

1X
nD1

nX
kD1

x.!k/�Bn
.!0/:

It is not difficult to see that

(2) �Kx.t/D ��.x/.t/D exp.�x.t/� 1/; t 2 R:

Therefore, by the definition of the Kruglov property, a quasi-Banach symmetric
function space X has the Kruglov property if and only if the operator K acts
boundedly in X . Though the following crucial theorem originated in [Astashkin and
Sukochev 2005], the first explicit statement (with a proof) appeared in [Astashkin
et al. 2011].

Theorem 4. If a sequence fxkg
n
kD1
� S.0; 1/, n 2 N, consists of disjointly sup-

ported functions, then the sequence fKxkg
n
kD1

consists of independent functions.

We will need also the following assertion, which is an immediate consequence
of [Astashkin and Sukochev 2010, Theorem 15].

Theorem 5. If X is a separable quasi-Banach symmetric space on .0; 1/ such that
K W X !X , then K W X !X and kKkX!X D kKkX!X .

3. Disjointification inequalities for positive functions

We will use the following approximation to the function Kx, where x is an arbitrary
measurable function on the interval .0; 1/. For every n 2 N define the operator
Hn W S.0; 1/! S.0; 1/ by the formula

(3) Hnx.!/ WD

nX
kD1

.�1=nx/.!k/:

The following result is well known (see the proof of Lemma 1.6 in [Braverman
1994] or of Theorem 22 in [Astashkin and Sukochev 2010]). However, we present
its proof for the reader’s convenience.

Lemma 6. The sequence of functions fHnxg1
nD1

converges to the function Kx in
distribution.
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Proof. It is not difficult to see that �Hnx D �
n
�1=nx . On the other hand,

��1=nx.t/D

Z 1

0

eit�1=nx.s/ ds D

�
1�

1

n

�
C

1

n
�x.t/:

Therefore, by (2), we obtain

�Hnx D

�
1C

�x � 1

n

�n

! exp.�x � 1/D �Kx :

Since the convergence of distributions follows from the convergence of characteristic
functions [Borovkov 1998, Theorem 6.2.1], the result follows. �

Theorem 7. Let X and Y be quasi-Banach symmetric spaces on .0; 1/ and let Y

have the Fatou property. Suppose that there exists a positive constant C > 0 such
that for every sequence of nonnegative independent functions fxkg

n
kD1
�X , n 2 N,

with
Pn

kD1 m.supp.xk//� 1, we have

(4)




 nX

kD1

xk






Y

� C �





 nM
kD1

xk






X

:

Then the operator K maps X into Y and kKkX!Y � C .
The assertion remains valid under the assumption that the inequality (4) holds

for X D Y , where X is a separable quasi-Banach symmetric space.

Proof. For every x 2 X , let us define xk.!/ D .�1=nx/.!k/, ! 2 �. It follows
from the definition of disjoint sum that

nM
kD1

xk � x for every n 2 N:

Therefore, applying (3) and (4), we obtain kHnxkF � CkxkE . Furthermore, by
Lemma 6, the sequence fHnxgn�1 converges to the function Kx in distribution
when n!1 and hence .Hnx/�! .Kx/� almost everywhere on .0; 1/. Since Y

has the Fatou property, it follows that Kx 2 Y and kKxkY � CkxkX .
Suppose now that X is a separable quasi-Banach symmetric space such that

(4) holds for every sequence of nonnegative independent functions fxkg
n
kD1
�X

such that
Pn

kD1 m.supp.xk// � 1, n 2 N. From the definition of the space X

(see Section 2), it follows that a similar inequality with the same constant C holds
also for every sequence of nonnegative independent functions fxkg

n
kD1
�X withPn

kD1 m.supp.xk// � 1, n 2 N. Therefore, since X has the Fatou property, by
the first part of theorem, we conclude that K W X ! X and kKkX!X � C . An
application of Theorem 5 completes the proof. �
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Our next purpose is to establish the main result of this section (Theorem 16),
which is in a sense converse to the assertion of the preceding theorem. The first
step in its proof is Proposition 9 below. We also need some preparatory results.

Lemma 8. For every positive x 2 S.0; 1/, we have �1=2x� � .Kx/�.

Proof. Let Bn, n � 1, be the sets from the definition of the Kruglov operator K.
Since the Bn are pairwise disjoint and

1X
nD1

m.Bn/D
e�1

e
>

1

2
;

we may select a measurable set B �
S

n�1 Bn such that m.B/D 1=2. It is clear
that .Kx/.!/� x.!1/�B.!0/ for every ! 2�. Since the function x.!1/�B.!0/

is equimeasurable with the function �1=2x�, the assertion follows immediately. �

Proposition 9. Suppose that the operator K maps boundedly X into Y , where
X and Y are quasi-Banach symmetric spaces on .0; 1/. If fxkg

n
kD1

, n 2 N, is a
sequence of independent functions from X and if

Pn
kD1 m.supp.xk//� 1, then



 nX

kD1

xk






Y

� 2C.Y /kKkX!Y





 nM
kD1

xk






X

:

Proof. Without loss of generality, it may be assumed that xk � 0, 1� k � n. Let
yk 2 S.0; 1/ be pairwise disjoint copies of xk , 1� k � n. By Theorem 4, the se-
quence fKykg

n
kD1

consists of independent functions. Observing that K.
Ln

kD1 xk/

is equimeasurable with
Pn

kD1 Kyk , and the latter is equimeasurable with the
function

Pn
kD1.Kxk/

�.!k/, we arrive at



 nX
kD1

.Kxk/
�.!k/






Y

D





 nX
kD1

Kyk






Y

� kKkX!Y





 nM
kD1

xk






X

:

By Lemma 8, we have
nX

kD1

.�1=2x�k /.!k/�

nX
kD1

.Kxk/
�.!k/;

and, therefore,

(5)




 nX

kD1

.�1=2x�k /.!k/






Y

� kKkX!Y





 nM
kD1

xk






X

:

For an arbitrary k 2 N, let x
.1/

k
and x

.2/

k
be disjointly supported elements of

S.0; 1/ equimeasurable with the function �1=2x�
k

. A moment’s reflection shows
that the sum x

.1/

k
Cx

.2/

k
is equimeasurable with the function x�

k
, k 2N. Hence, the
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function
nP

kD1

xk is equimeasurable with the sum y0Cy1, where

yi.!/ WD

nX
kD1

x
.i/

k
.!k/; i D 0; 1;

which immediately implies



 nX
kD1

xk






Y

Dky0Cy1kY �C.Y /.ky0kYCky1kY /�2C.Y /





 nX
kD1

�1=2x�k .!k/






Y

:

The assertion follows now from inequality (5). �
Our next objective is to omit the assumption

Pn
kD1 m.supp.xk// � 1. The

main step is a disjointification inequality for bounded functions obtained below in
Proposition 14. Let us start with some technical lemmas.

Lemma 10. Let

sk WD

1X
nDk

1

e � n!
; k 2 N:

Then 4kskC1 � sk for every k 2 N.

Proof. Clearly,

4kskC1 �
.kC 1/2

k
skC1 �

.kC 1/2

k
�

1

e � .kC 1/!
D

kC 1

k
�

1

e � k!
:

On the other hand, since k! � .kC 1/n � .kC n/!, we have that

kC 1

k
�

1

e � k!
D

1

e � k!
�

1

1� 1=.kC 1/

D
1

e � k!

�
1C

1

kC 1
C

1

.kC 1/2
C � � �

�
�

1X
nDk

1

e � n!
: �

By the definition of the Kruglov operator, the function K�Œ0;1� has the Poisson
distribution with parameter 1. Let

 0.t/ WD

Z t

0

.K�Œ0;1�/
�.s/ ds:

It is clear that K W L1.0; 1/! M 0
and kKkL1!M 0

D 1. Here M 0
is the

Marcinkiewicz space consisting of all elements x 2 S.0; 1/ such that

kxkM 0
WD sup

0<t�1

R t
0 x�.s/ ds

 0.t/
<1:

Lemma 11. The following inequality holds:

inf
0<t<1�1=e

t 0
0
.t/

 0.t/
�

1

4
:
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Proof. Let sk be as in Lemma 10. Since  0
0
D .K�Œ0;1�/

� is a Poisson random
variable with parameter 1, it follows that

 00.t/D k for all t 2 .skC1; sk/; k 2 N:

Therefore,

 0.skC1/D

Z skC1

0

 00.t/ dt D

1X
nDkC1

n

e � n!
D

1X
nDk

1

e � n!
D sk ; k 2 N:

Now, let 0 < t < 1� 1=e. Then t 2 ŒskC1; sk/ for some k � 1, and so  0
0
.t/D k.

Since  0 is concave, the function t= 0.t/ increases. Therefore, by Lemma 10,

t 0
0
.t/

 0.t/
D

kt

 0.t/
�

kskC1

 0.skC1/
D

kskC1

sk

�
1

4
: �

Lemma 12. If Y is a quasi-Banach symmetric space on .0; 1/ such that the operator
K maps L1.0; 1/ into Y , then Y �M 0

and

kxkY � 8 C.Y / kxkM 0
� kKkL1!Y ; x 2M 0

:

Proof. It follows from Lemma 11 that

kxkM 0
D sup

0<t�1

�
1

 0.t/

Z t

0

x�.s/ ds

�
� sup

0<t<1=2

�
tx�.t/

 0.t/

�
� inf

0<t<1=2

�
t 0

0
.t/

 0.t/

�
� sup
0<t<1=2

�
x�.t/

 0
0
.t/

�
�

1

4
sup

0<t<1=2

�
x�.t/

 0
0
.t/

�
:

Therefore,

x�.t/� 4kxkM 0
 00.t/; 0< t � 1

2
;

whence

x�.t/� �2x�.t/� 4kxkM 0
�2 

0
0.t/; 0< t � 1:

Combining the last inequality with the obvious equalities

kKkL1!Y D kK�Œ0;1�kY D k 
0
0kY ;

we obtain

kxkY � k�2x�kY � 4kxkM 0
k�2 

0
0kY � 8 C.Y /kxkM 0

kKkL1!Y : �
In the following lemma, we use the classical notion of majorization. Let 0 �

x;y 2L1.0; 1/. We write y � x if
R t

0 y�.s/ ds �
R t

0 x�.s/ ds for all t 2 .0; 1/ andR 1
0 y�.s/ ds D

R 1
0 x�.s/ ds.
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Lemma 13. Let fxkg
n
kD1

and fykg
n
kD1

, n 2 N, be sequences of positive and inde-
pendent functions from L1.0; 1/. If yk � xk for each k, then

nX
kD1

yk �

nX
kD1

xk :

Proof. Define the functions x;y 2L1.0; 1/ by setting

x.!/ WD

nX
kD1

xk.!k/; y.!/ WD

nX
kD1

yk.!k/:

It follows from the assumption that for every 1� k � n there exists a bistochastic
operator Ak (on L1.0; 1/) such that Akxk D yk [Bennett and Sharpley 1988,
Proposition 3.2.9]. A moment’s reflection shows that the operator A WD

Nn
kD1 Ak

is a bistochastic operator on L1.�;P/ (which we identify with L1.0; 1/) and that
Ax D

Pn
kD1 Akxk.!k/. Applying Proposition 3.2.4 of the same reference, we

arrive at

y D

nX
kD1

Akxk.!k/DAx � x:

Since
Pn

kD1xk (respectively,
Pn

kD1yk) is equimeasurable with x (respectively, y),
the assertion follows. �

Proposition 14. If fxkg
n
kD1

, n2N, is a sequence of bounded independent functions,
then 



 nX

kD1

xk






M 0

� 2





 nM
kD1

xk






L1\L1.0;1/

:

Proof. Without loss of generality, we can assume that xk � 0 for 1�k�n. Suppose
that 



 nM

kD1

xk






1

D 1 and kxkk1 D ˛k :

If ˛D
Pn

kD1 ˛k > 1, then xk �˛�Œ0;˛�1˛k �
for 1� k � n. Applying Lemma 13,

we obtain
nX

kD1

xk � ˛

nX
kD1

�Œ0;˛�1˛k �
.!k/:

From the definition of the norm of a Marcinkiewicz space, Proposition 9 and the
equalities kKkL1!M 0

D 1 and C.M 0
/D 1, we obtain
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(6)





 nX
kD1

xk






M 0

� ˛





 nX
kD1

�Œ0;˛�1˛k �
.!k/






M 0

� 2˛





 nM
kD1

�Œ0;˛�1˛k �






1

D 2





 nM
kD1

xk






L1.0;1/

:

If ˛ D
Pn

kD1 ˛k < 1, then xk � �Œ0;˛k � for 1� k � n. It follows from Lemma 13
that

nX
kD1

xk �

nX
kD1

�Œ0;˛k �.!k/:

Therefore, by Proposition 9, we have



 nX
kD1

xk






M 0

�





 nX
kD1

�Œ0;˛k �.!k/






M 0

� 2





 nM
kD1

�Œ0;˛k �






1

D 2:

Combining this estimate with inequality (6), we are done. �

The following statement is an immediate consequence of Proposition 14 and
Lemma 12.

Corollary 15. Let Y be a quasi-Banach symmetric space on .0; 1/ such that the
operator K maps L1.0; 1/ into Y . If fxkg

n
kD1

, n 2 N, is a sequence of bounded
and independent functions, then



 nX

kD1

xk






Y

� 16 C.Y / kKkL1!Y





 nM
kD1

xk






L1\L1.0;1/

:

Now, we are ready to prove the main result of this section related to the compar-
ison of sums of independent functions and their disjoint copies in quasi-Banach
symmetric function spaces.

Theorem 16. Let X and Y be quasi-Banach symmetric spaces on .0; 1/ such that
the operator K acts boundedly from X into Y . If fxkg

n
kD1
�X , n2N is a sequence

of independent functions, then

(7)




 nX

kD1

xk






Y

� 16 C 2.Y / kKkX!Y





 nM
kD1

xk






Z1

X

:

Proof. Let us write x for
nL

kD1

xk . Define the functions

xk;1 WD xk�fjxk j>x�.1/g; xk;2 WD xk �xk;1; 1� k � n:

The functions xk;1, 1� k � n, are independent, as are the functions xk;2, 1� k � n.
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Moreover, it is easy to see that

nM
kD1

jxk;1j � x��.0;1/ and
nM

kD1

jxk;2j � x��.1;1/:

Since L1.0; 1/ � X and kxkX � kxk1, x 2 L1.0; 1/, it follows from the as-
sumption of the theorem that K W L1.0; 1/! Y and kKkL1!Y � kKkX!Y .
Therefore, applying Proposition 9 and Corollary 15, we obtain



 nX
kD1

xk






Y

� C.Y /

�



 nX
kD1

xk;1






Y

C





 nX
kD1

xk;2






Y

�

� 16 C 2.Y /kKkX!Y

�



 nM
kD1

xk;1






X

C





 nM
kD1

xk;2






L1\L1.0;1/

�
� 16 C 2.Y /kKkX!Y .kx

��.0;1/kXCkminfx�;x�.1/gkL1\L1.0;1//:

�

4. Disjointification inequalities for symmetrically distributed
(mean zero) functions

If we assume that the independent functions xk , 1 � k � n, in the statement of
Theorem 16 are symmetrically distributed, then the disjointification inequality (7)
can be significantly improved. In particular, we are able to extend estimates from
[Astashkin and Sukochev 2007] for symmetric Banach function spaces to the
quasi-Banach setting. Our main tool is the following remarkable inequality due to
Prokhorov [1959], which we restate here using the direct sum notation.

Theorem 17. If fxkg
n
kD1

.n 2 N/ is a sequence of bounded independent symmetri-
cally distributed random variables on .0; 1/, then for all t > 0

(8) m

�� nX
kD1

xk > t

��
� exp

�
�

t

2


Ln

kD1 xk




1

arcsinh
t


Ln

kD1 xk




1

2


Ln

kD1 xk



2

2

�
:

Let the function  0 be as in the previous section.

Proposition 18. If fxkg
n
kD1

, n 2 N, is a sequence of bounded independent symmet-
rically distributed functions on .0; 1/, then



 nX

kD1

xk






M 0

� Cabs





 nM
kD1

xk






L2\L1.0;1/

;

for some absolute constant Cabs.
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Proof. For every m� 1, we define a linear operator Am WL2\L1.0;1/!M 0

by setting for x 2L2\L1.0;1/

Amx.!/ WD

mX
kD1

x.k � 1C!2k�1/r.!2k/;

where r.t/D 1 if 0� t � 1
2

and r.t/D�1 if 1
2
< t � 1. It is clear that

kAmkL2\L1!M 0
�m; m 2 N:

Our objective is to show that for every fixed x2L2\L1.0;1/ the orbit fAmxg1
mD1

is uniformly bounded in M 0
. Provided we have done so, the uniform bounded-

ness principle guarantees that the sequence fkAmkL2\L1!M 
g1
mD1

is uniformly
bounded, and the assertion of the theorem would follow from this fact since the sumPn

kD1 xk for a given sequence fxkg
n
kD1

of bounded independent symmetrically
distributed functions on .0; 1/ is equidistributed with the function Anz, where

z WD

nM
kD1

xk :

Fix x 2L2\L1.0;1/, and set

˛.x/ WD kxk1C sup
n

kx�Œ0;n�k
2
2

kx�Œ0;n�k1

(here, 0=0 is set to be 0/. Clearly, ˛.x/ <1 and our objective would be achieved
if we show that

(9) kAmxkM 0
� 4e �˛.x/ for all m 2 N:

Fix m 2 N. Since� mM
kD1

x.k � 1C!2k�1/r.!2k/

��
D .x�Œ0;m�/

�;

it follows from (8) that for every t > 0, we have

m.fjAmxj> t˛.x/g/� exp
�
�

t˛.x/

2kx�Œ0;m�k1
arcsinh

t˛.x/kx�Œ0;m�k1

2kx�Œ0;m�k
2
2

�
:

Combining this estimate with the obvious inequalities

t˛.x/

2kx�Œ0;m�k1
�

t

2
; arcsinh

t˛.x/kx�Œ0;m�k1

2kx�Œ0;m�k
2
2

� arcsinh
t

2
;

we arrive at

(10) m.fjAmxj> t˛.x/g/� exp
�
�

t

2
arcsinh t

2

�
:
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The right-hand side of the preceding inequality is in fact directly related to the
distribution function of the function  0

0
. Indeed, in the proof of Lemma 11 we

have already pointed out that  0
0
WD .K�Œ0;1�/

� is a Poisson random variable with
parameter 1. A direct calculation yields the estimate

m.f 00 > tg/� exp.�1� 2t � arcsinh.2t//; t > 0;

which, in turn, implies

m.f4 00 > tg/� exp
�
�1�

t

2
arcsinh t

2

�
; t > 0:

Combining this with (10), we infer

m.fjAmxj> t˛.x/g/� e �m.f4 00 > tg/:

Since k 0
0
kM. 0/ D 1, from the preceding estimate and [Braverman 1994, Proposi-

tion 1.2], inequality (9) follows. �

The corollary below follows from Proposition 18 and Lemma 12.

Corollary 19. Let Y be a quasi-Banach symmetric space on .0; 1/ such that the
operator K maps L1.0; 1/ into Y . If fxkg

n
kD1

, n 2 N, is a sequence of bounded
independent symmetrically distributed functions, then



 nX

kD1

xk






Y

� 8 Cabs C.Y /kKkL1!Y





 nM
kD1

xk






L2\L1.0;1/

:

We need the following assertion proved by Braverman [1994, Proposition 1.11]
in the Banach setting. The proof in the quasi-Banach setting is identical.

Lemma 20. If a quasi-Banach symmetric space X on .0; 1/ embeds into L1.0; 1/,
then there exists a constant C0.X / such that

kxkX � C0.X /kx.!1/�x.!2/kX

for every mean zero function x 2X .

We are now ready to present the main result of this section.

Theorem 21. Let X and Y be quasi-Banach symmetric spaces on .0; 1/ such that
K WX ! Y .

(a) If fxkg
n
kD1
�X , n2N, is a sequence of independent symmetrically distributed

functions, then

(11)




 nX

kD1

xk






Y

� 8 Cabs C 2.Y /kKkX!Y





 nM
kD1

xk






Z2

X

:



272 SERGEY ASTASHKIN, FEDOR A. SUKOCHEV AND DMITRIY ZANIN

(b) If X �L1.0; 1/, then the inequality

(12)




 nX

kD1

xk






Y

� 16 Cabs C0.Y /C 2.Y /C.X /kKkX!Y





 nM
kD1

xk






Z2

X

holds for every sequence fxkg
n
kD1

, n 2 N, of independent mean zero functions
from X .

Proof. The proof of the first assertion is similar to the proof of Theorem 16, with
the only difference being that the reference to Corollary 15 should be replaced with
a reference to Corollary 19.

In the proof of the second assertion we use the standard symmetrization trick.
Define the functions yk 2X , 1� k � n, by setting

yk.!/ WD xk.!2k�1/�xk.!2k/:

By Lemma 20,



 nX
kD1

xk






Y

� C0.Y /





 nX
kD1

xk.!2k�1/�

nX
kD1

xk.!2k/






Y

D C0.Y /





 nX
kD1

yk






Y

:

Evidently, yk , 1� k � n, are independent and symmetrically distributed. Therefore,
by (a), we obtain



 nX

kD1

yk






Y

� 8 Cabs C 2.Y /kKkX!Y





 nM
kD1

yk






Z2

X

:

Observing that for every t > 0, we have

m

��ˇ̌̌̌ nM
kD1

yk

ˇ̌̌̌
> t

��
� 2m

��
s > 0 W

ˇ̌̌̌ nM
kD1

xk

ˇ̌̌̌
> t

��
;

and appealing to the fact that Z2
X

is a quasi-Banach symmetric space with modulus
of concavity C.X /, we infer



 nM

kD1

yk






Z2

X

� 2 C.X /





 nM
kD1

xk






Z2

X

:

Combining these inequalities, we conclude the proof. �

5. Khintchine inequality in quasi-Banach spaces

In this section, we provide an extension of the classical Khintchine inequality to
general quasi-Banach symmetric function spaces. We begin with the formulation
of the main results of this section.
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Theorem 22. Let X and Y be quasi-Banach symmetric spaces on the interval
.0; 1/ such that the operator K is bounded from X into Y . If fxkg

n
kD1

, n 2 N, is a
sequence of independent symmetrically distributed random variables from X , then

(13)




 nX

kD1

xk






Y

� 512 Cabs C 6.X /C 2.Y /kKkX!Y





� nX
kD1

x2
k

�1=2




X

:

The next theorem shows that in the case when X D Y the boundedness of the
Kruglov operator is a necessary and sufficient condition for the inequalities of
the type (13). In the Banach setting, an analogous result was earlier proved in
[Astashkin 2008].

Theorem 23. Let X be a quasi-Banach symmetric function space on .0; 1/ which
is separable or has the Fatou property. The following conditions are equivalent:

(a) There is a constant C > 0 such that the inequality



 nX
kD1

xk






X

� C





� nX
kD1

x2
k

�1=2




X

holds for every sequence fxkg
n
kD1
�X , n 2 N, of independent symmetrically

distributed functions.

(b) K WX !X .

For the proof we will need a series of lemmas. The first two of them are well
known; however, we present their short proofs for the reader’s convenience.

Lemma 24. Let X be a quasi-Banach symmetric space on .0; 1/. If we set p WD
1
2

log�1
2 .2 C.X //, then X �Lp.0; 1/ and

kxkp � 8 C 3.X /kxkX ; x 2X:

Proof. Define an increasing function  on .0; 1/ by the formula  .u/ WD k�Œ0;u�kX ,
0< u< 1. It follows from the definition of a quasinorm that

 .2u/� 2 C.X / .u/; 0< u� 1;

whence
 .2�n/� .2 C.X //�n; n� 0:

If u 2 .0; 1� is arbitrary, then u 2 Œ2�n�1; 2�n� for some n� 0. Hence,

 .u/�  .2�n�1/� 2�.nC1/ log2.2C.X //
�

1

2 C.X /
ulog2.2C.X //:

If x 2X , then for every 0< t � 1 we have

kxkX � kx
�.t/�Œ0;t �kX � x�.t/

1

2 C.X /
t log2.2C.X //:
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Hence,
x�.t/� 2 kxkX C.X / t� log2.2C.X //; 0< t � 1:

The assertion follows immediately. �

Lemma 25. If 0 < p < 1 and x;y 2 L1.0; 1/ are positive, then from y � x it
follows that kykp � kxkp.

Proof. Fix " > 0. Passing to step-function approximation, we easily infer that there
exist n 2 N and a function

z WD

nX
kD1

�kxk with xk � 0; x�k D x� and
nX

kD1

�k D 1; �k � 0;

such that ky � zk1 � ". It follows now from the Minkowski inequality that

kzkp D





 nX
kD1

�kxk






p

�

nX
kD1

�kkxkkp D kxkp:

Since " > 0 is arbitrarily small and the quasinorm in Lp.0; 1/, 0 < p < 1, is
continuous with respect to L1-convergence, the proof is complete. �

Lemma 26. Let 0 < p < 1 and let fykg
n
kD1

, n 2 N, be a sequence of positive
bounded independent functions on .0; 1/. We have

(14)




 nM

kD1

yk






1

� 21=p max
�

sup
1�k�n

kykk1;





 nX
kD1

yk






p

�
:

Proof. Without loss of generality, we can assume that

sup
1�k�n

kykk1 D 1; kykk1 D ˛k ; 1� k � n:

Let ˛ D
nP

kD1

˛k . If ˛ � 1, then the assertion is evident. If ˛ � 1, then

yk � ˛�Œ0;˛�1˛k �
; 1� k � n:

From Lemma 13 it follows that
nX

kD1

yk � ˛

nX
kD1

�Œ0;˛�1˛k �
.!k/;

whence, according to Lemma 25, we have



 nX
kD1

yk






p

� ˛





 nX
kD1

�Œ0;˛�1˛k �
.!k/






p

:
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Combining this inequality with [Johnson and Schechtman 1989, Lemma 3], we
infer

2 C.p/





 nX
kD1

yk






p

� ˛





 nM
kD1

�Œ0;˛�1˛k �






p

D ˛:

Since C.p/D 21=p�1 for 0< p < 1, the assertion follows. �

Lemma 27. Let X be a quasi-Banach symmetric space on .0; 1/. If fxkg
n
kD1
�X ,

n 2 N, is a sequence of bounded independent functions, then



 nM
kD1

xk






2

� 32 C 5.X /max
�

sup
1�k�n

kxkk1;





� nX
kD1

x2
k

�1=2




X

�
:

Proof. If p D 1
2

log�1
2 .2 C.X //, then by Lemma 24 we have

8C 3.X /





� nX
kD1

x2
k

�1=2




X

�





� nX
kD1

x2
k

�1=2




p

D





 nX
kD1

x2
k





1=2

p=2

:

Clearly, 



 nM
kD1

xk






2

D





 nM
kD1

x2
k





1=2

1

and kxkk1 D kx
2
kk

1=2
1 :

Now, applying Lemma 26 to the functions yk D x2
k

, 1 � k � n, we obtain the
result. �

Lemma 28. Let X be a quasi-Banach symmetric space on .0; 1/. If fxkg
n
kD1
�X ,

n 2 N, is a sequence of independent functions and if x WD
Ln

kD1 xk , then

2C.X /





� nX
kD1

x2
k

�1=2




X

� x�.1/:

Proof. A simple argument shows that it is sufficient to consider the case when

(15)
nX

kD1

m.supp.xk//D 1:

Since jxk j � x�.1/�supp.xk/, 1� k � n, we have

nX
kD1

x2
k � .x

�.1//2
nX

kD1

�supp.xk/:
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Since the functions xk , 1� k � n, are independent, the support of the function at
the right-hand side of the inequality above has Lebesgue measure equal to

1�

nY
kD1

�
1�m.supp.xk//

�
;

which is bigger than 1
2

(thanks to the condition (15) and to the arithmetic-geometric
mean inequality). Therefore, since k�.0;1/kX D 1, we obtain



� nX

kD1

x2
k

�1=2




X

� x�.1/k�Œ0;1=2�kX �
x�.1/

2 C.X /
;

and the proof is complete. �
Let 1� p <1 and let X be a quasi-Banach symmetric function space on .0; 1/

or .0;1/. The p-concavification of X , X 1=p, is defined by

X 1=p
WD fx 2 S.0; 1/ .or S.0;1// W jxj1=p 2X g; kxkX 1=p WD k jxj1=p k

p
X
:

Note that the space X 1=p, equipped with the quasinorm k � kX 1=p , is also a quasi-
Banach symmetric function space (see, for instance, [Lindenstrauss and Tzafriri
1979]).

We are now ready to prove the main result of this section.

Proof of Theorem 22. Setting x WD
Ln

kD1 xk , by Theorem 21, we have

(16)




 nX

kD1

xk






Y

� 8 Cabs C 2.Y /kKkX!Y .kx
��.0;1/kX Ckx

��.1;1/k2/:

Arguing in the same way as in the proof of Theorem 16, we can define two
sequences of independent functions fxk;1g and fxk;2g such that x1k Cx2k D xk ,
jxk;1j � jxk j, jxk;2j � jxk j, for 1 � k � n, and the disjoint sums

Ln
kD1 jxk;1j

and
Ln

kD1 jxk;2j are equimeasurable with the functions x��.0;1/ and x��.1;1/,
respectively. Applying Lemma 27 to the sequence fxk;2g

n
kD1

, we obtain

kx��.1;1/k2 D





 nM
kD1

xk;2






2

� 32 C 5.X /max
�

sup
1�k�n

kxk;2k1;





� nX
kD1

x2
k;2

�1=2




X

�
:

Note that kxk;2k1 � x�.1/ for 1� k � n. Using Lemma 28, we obtain

(17) kx��.1;1/k2 � 64 C 6.X /





� nX
kD1

x2
k

�1=2




X

:
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On the other hand,

kx��.0;1/kX D





 nM
kD1

xk;1






X

D





 nM
kD1

x2
k;1





1=2

X 1=2

;

and 



� nX
kD1

x2
k

�1=2




X

�





� nX
kD1

x2
k;1

�1=2




X

D





 nX
kD1

x2
k;1





1=2

X 1=2

:

Applying [Johnson and Schechtman 1989, Lemma 3] to the space X 1=2 and the
functions x2

k;1
, we obtain

kx��.0;1/kX � .2 C.X 1=2//1=2




� nX

kD1

x2
k

�1=2




X

:

Since C.X 1=2/� 4C 2.X /, the assertion follows now from the last inequality and
inequalities (16) and (17). �

Lemma 29. Let x 2 S.0; 1/, x � 0, and let n 2 N. If xk , k D 1; 2; : : : ; 2n, are
independent copies of the function �1=nx, then for all sufficiently large n 2 N we
have � nX

kD1

x2k

��
� �3

� 2nX
kD1

.�1/kxk

��
:

Proof. It is clear that the functions x2k�1 � x2k , 1 � k � n, are independent.
Therefore,

m

�� nX
kD1

x2k �x2k�1 > t

��
�m

�� nX
kD1

x2k > t;

nX
kD1

x2k�1 D 0

��

Dm

�� nX
kD1

x2k > t

��
�m

�� nX
kD1

x2k�1 D 0

��

D

�
1�

1

n

�n

m

�� nX
kD1

x2k > t

��
:

Hence, for all sufficiently large n 2 N,

m

��ˇ̌̌̌ nX
kD1

x2k�1�x2k

ˇ̌̌̌
> t

��
�

1

3
m

�� nX
kD1

x2k > t

��
: �
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Proof of Theorem 23. We have to prove only the implication (a) D) (b).
Let x 2 X , x � 0, and n 2 N. Taking for xk , k D 1; 2; : : : ; 2n, independent

copies of the function �1=nx, by Lemma 29 we have



 nX
kD1

x2k






X

�





�3

� 2nX
kD1

.�1/kxk

�




X

� 3 C.X /2




 2nX

kD1

.�1/kxk






X

:

On the other hand, the functions x2k�1 � x2k , 1 � k � n, are independent and
symmetrically distributed. Therefore, by the assumption, we have



 2nX

kD1

.�1/kxk






X

� C





� nX
kD1

.x2k�1�x2k/
2

�1=2




X

� C





� nX
kD1

x2
2k�1

�1=2

C

� nX
kD1

x2
2k

�1=2




X

� 2 C �C.X /





� nX
kD1

x2
2k

�1=2




X

:

Combining these inequalities, we obtain



 nX
kD1

x2k





� 6 C �C.X /3




� nX

kD1

x2
2k

�1=2




X

� 6 C �C.X /3




� max

1�k�n
x2k �

nX
kD1

x2k

�1=2




X

:

It follows now from Lemma 2 that



 nX
kD1

x2k






X

� 6 C �C.X /4



 max

1�k�n
x2k




1=2

X
�





 nX
kD1

x2k





1=2

X

:

Hence,



 nX
kD1

x2k






X

� 36 C 2 C.X /8



 max

1�k�n
x2k





X
� 36 C 2 C.X /8





 nM
kD1

x2k






X

:

Appealing to the definition of xk , 1� k � 2n, we obtain� nM
kD1

x2k

��
D x� and

� nX
kD1

x2k

��
D .Hnx/�;

where the operator Hn is defined by (3).
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Recall that, by Lemma 6, .Hnx/�! .Kx/� almost everywhere on .0; 1/. There-
fore, if X has the Fatou property, it follows that kKxkX � 36C 2 C.X /8kxkX , and
the proof in this case is complete. If X is separable, we can repeat almost verbatim
the arguments used in the second part of the proof of Theorem 7. �

6. Von Bahr–Esseen type inequalities

We have the following remarkable theorem.

Theorem 30 [von Bahr and Esseen 1965, Theorem 2]. If 1�p� 2 and ffkg
n
kD1
�

Lp.0; 1/, n 2 N, is a sequence of independent mean zero functions, then

(18)




 nX

kD1

fk






p

�

�
2

nX
kD1

kfkk
p
p

�1=p

:

In [Braverman 1994, § II,2], Theorem 30 is extended to Banach symmetric
function spaces with the Kruglov property. Versions of disjointification inequalities
obtained in Sections 3 and 4 for quasi-Banach symmetric spaces allow us to extend
Braverman’s result to the quasi-Banach setting. Moreover, we shall consider differ-
ent quasinorms at the left- and right-hand sides of (18). Our proofs appear to be
more straightforward (and simpler) than the proofs for the special case considered
in [Braverman 1994].

Definition 31. Quasi-Banach symmetric function spaces X and Y (in this order)
satisfy the von Bahr–Esseen r -estimate (written .X;Y / 2 .BE/r ) if there exists a
constant B > 0 such that

(19)




 nX

kD1

fk






Y

� B

� nX
kD1

kfkk
r
X

�1=r

for every sequence of independent symmetrically distributed functions ffkg
n
kD1
�X ,

n 2 N. If, in addition, X D Y , then we say that X satisfies the von Bahr–Esseen
r -estimate (written X 2 .BE/r ).

In view of this definition, we may restate Theorem 30 as Lp.0; 1/ 2 .BE/p.

Remark 32. If Y �L1.0; 1/, then an application of Lemma 20 yields the estimate
(19) for all mean zero independent functions.

Clearly, .X;Y / 2 .BE/r implies that X � Y . Taking Rademacher functions
(see Section 1) as the fk , it is easy to see that we always have 0< r � 2. Finally, if
X is p-normed, then p � r � 2.
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Recall that a quasi-Banach lattice X satisfies an upper r -estimate, r > 0, if there
is a constant C > 0 such that



 nX

kD1

xk






X

� C

� nX
kD1

kxkk
r
X

�1=r

for every sequence of mutually disjoint elements fxkg
n
kD1
�X , n 2 N.

Recall also that a quasi-Banach symmetric space Lr;1, r > 0, consists of all
x 2 S.0; 1/ such that

kxkr;1 WD sup
0<t�1

x�.t/ t1=r <1:

Theorem 33. Let 0 < r < 2. For all quasi-Banach symmetric function spaces X

and Y the following statements hold:

(a) If K WX ! Y and X satisfies an upper r -estimate, then .X;Y / 2 .BE/r .

(b) If K W Y ! Y and, for some C > 0 and for every sequence of mutually disjoint
functions ffkg

n
kD1
�X .n 2 N/, we have

(20)




 nX

kD1

fk






Y

� C

� nX
kD1

kfkk
r
X

�1=r

;

then .X;Y / 2 .BE/r .

(c) If .X;Y / 2 .BE/r , then (20) holds for every sequence of mutually disjoint
functions ffkg

n
kD1
�X , n 2 N.

The main part of the proof of Theorem 33 is given below in Lemma 36.
Let 0< p < r < 2 and let r > 1. Recall that Lr;1 satisfies an upper r -estimate

(see, for example, [Braverman 1994, Theorem 1.12]) and that K WLr;1!Lr;1

by Theorem 1.3 of the same reference. Setting X DLr;1 and Y DLp.0; 1/ and
taking into account Remark 32, we obtain the well-known Esseen–Janson theorem
(see [Esseen and Janson 1985, Theorem 4]). It is worth noting that, in contrast to
the previous reference, we do not require that the functions fk are equidistributed.

Lemma 34. Let r > 0 and let X and Y be quasi-Banach symmetric function spaces.
Suppose that there is a constant C > 0 such that for every sequence of mutually
disjoint functions ffkg

n
kD1
�X , n 2 N, inequality (20) holds. Then X �Lr;1.

Proof. Fix t 2 .0; 1� and let n 2 N be such that 1=2 < nt � 1. Since �.0;tn/DPn
kD1 �.t.k�1/;tk/, the functions 'X .t/ WD k�.0;t/kX and 'Y .t/ WD k�.0;t/kY sat-

isfy the estimate

'Y .tn/� C

� nX
kD1

k�.t.k�1/;tk/k
r
X

�1=r

D C 'X .t/ n1=r ;
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by (20). Hence, we obtain that

'X .t/� C�1 'Y .tn/ n�1=r
� C�1 'Y .1=2/ t1=r

D C�1
1 t1=r ;

whence for every x 2X

kxkX � x�.t/ k�.0;t/kX D x�.t/'X .t/� C�1
1 x�.t/ t1=r ; 0< t � 1:

Therefore, kxkr;1 � C1kxkX for all x 2X and the proof is completed. �

Lemma 35. Let X be a quasi-Banach symmetric function space on .0; 1/ satisfying
an upper r -estimate, 0< r < 2. There exists CX > 0 such that for every sequence
fxkg

1
kD1
�X we have



 1M

kD1

xk






Z2

Lr;1

� CX

� 1X
kD1

kxkk
r
X

�1=r

:

Proof. By Lemma 34, we have X � Lr;1. Therefore, x�
k
� kxkkr;1 �r , where

�r .t/D t�1=r , 0< t � 1, whence



 1M
kD1

xk






Z2

Lr;1

� C





 1M
kD1

kxkkr;1 �r






Z2

Lr;1

:

Note that for any ak � 0 we have

1M
kD1

ak�r �

� 1X
kD1

ar
k

�1=r

�r :

Hence,



 1M
kD1

xk






Z2

Lr;1

�C

� 1X
kD1

kxkk
r
r;1

�1=r

k�rkZ2
Lr;1

�C 0k�rkZ2
Lr;1

� 1X
kD1

kxkk
r
X

�1=r

;

and the result follows. �

Lemma 36. Let X be a quasi-Banach symmetric function space on .0; 1/ satisfying
an upper r -estimate, 0< r < 2. There exists a constant BX > 0 such that for every
sequence fxkg

1
kD1
�X we have



 1M

kD1

xk






Z2

X

� BX

� 1X
kD1

kxkk
r
X

�1=r

:

Proof. By the definition of the quasinorm in Z2
X

, we have that

(21) kzkZ2
X
� kz��.0;1/kX CkzkZ2

Lr;1

; z 2Z2
X :
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Denote
L1

kD1 jxk j by x, for brevity. Without loss of generality, we can assume
that x� does not have any interval of constancy. Setting yk D xk�fjxk j>x�.1/g, we
have

1M
kD1

jyk j � x��.0;1/:

Therefore, since X satisfies an upper r -estimate, we obtain

kx��.0;1/kX D





 1M
kD1

yk






X

� C

� 1X
kD1

kykk
r
X

�1=r

� C

� 1X
kD1

kxkk
r
X

�1=r

:

The assertion follows now from inequality (21) and the preceding lemma. �
Proof of Theorem 33. The first assertion follows from Theorem 21 and Lemma 36.
The proof of the second assertion is identical.

Now, we prove the third assertion. Suppose that .X;Y / 2 .BE/r . Let the
functions fk 2 X , 1 � k � n, be pairwise disjoint and let gk , 1 � k � n, be
their independent copies. Without loss of generality, we can assume that the fk

(and therefore the gk as well) are symmetrically distributed. By [Johnson and
Schechtman 1989, Theorem 1], we have



 nX

kD1

fk






Y

D





 nX
kD1

fk






Z2

Y

� C 0




 nX

kD1

gk






Y

� C 0B

� nX
kD1

kfkk
r
X

�1=r

;

which is (20) with C D C 0B. �
If X D Y , then estimate (20) means that X satisfies an upper r -estimate and we

obtain the following corollary.

Corollary 37. Let 0 < r < 2 and let X be a quasi-Banach symmetric function
space such that K WX !X . Then X 2 .BE/r if and only if X satisfies an upper
r -estimate.

In the Banach-space setting this result may be found in [Braverman 1994, Theo-
rem 2.3].

For r D 2, we have the following result.

Theorem 38. Let X and Y be quasi-Banach symmetric function spaces.

(a) Suppose that X �L2.0; 1/. If K WX !Y and X satisfies an upper 2-estimate,
or if K W Y ! Y and for some C > 0 and for every sequence of mutually
disjoint functions ffkg

n
kD1
�X , n 2 N, we have

(22)




 nX

kD1

fk






Y

� C

� nX
kD1

kfkk
2
X

�1=2

;

then .X;Y / 2 .BE/2.
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(b) If .X;Y / 2 .BE/2, then X � L2.0; 1/ and inequality (22) holds for some
C > 0 and for every sequence of mutually disjoint functions ffkg

n
kD1
� X ,

n 2 N.

Proof. (a) The proof is identical to that of the preceding theorem, substituting the
reference to Lemma 36 with the reference to the following assertion.

Lemma 39. Let a quasi-Banach symmetric space X satisfy an upper 2-estimate
and let X �L2.0; 1/. There exists a constant BX > 0 such that for every sequence
fxkg

1
kD1
�X we have



 1M

kD1

xk






Z2

X

� BX

� 1X
kD1

kxkk
2
X

�1=2

:

(b) Inequality (22) can be proved in exactly the same way as in Theorem 33.
Therefore, it remains to show that X �L2.0; 1/.

Let f 2 X be symmetrically distributed and let ffkg
1
kD1

be a sequence of its
independent copies. By assumption, .X;Y / 2 .BE/2 and, therefore,



 n�1=2

nX
kD1

fk






Y

� C

�
n�1

nX
kD1

kfkk
2
X

�1=2

D Ckf kX ; nD 1; 2; : : : :

By Lemma 24, there exists p > 0 such that Y �Lp.0; 1/. Hence, by the previous
inequality, we have

sup
n�1

Z 1

0

ˇ̌̌̌
n�1=2

nX
kD1

fk.t/

ˇ̌̌̌p
dt <1:

Applying [Esseen and Janson 1985, Theorem 2], we obtain that f 2L2.0; 1/. Since
both X and L2.0; 1/ are symmetric, the assertion follows. �
Corollary 40. Let X be a quasi-Banach symmetric space such that K W X ! X .
Then X 2 .BE/2 if and only if X satisfies an upper 2-estimate and X �L2.0; 1/.

This assertion was proved by Braverman [1994, Theorem 2.4] in the Banach
setting.

Remark 41. Though the condition K W X ! X is essential in both Theorem 33
and Theorem 38, it is not necessary. For example, Exp L2 2 .BE/2 [Braverman
1994, Theorem 2.9], but K W Exp L2 6! Exp L2.
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HAMILTONIAN EVOLUTIONS OF TWISTED POLYGONS
IN PARABOLIC MANIFOLDS:

THE LAGRANGIAN GRASSMANNIAN

GLORIA MARÍ BEFFA

We show that the moduli space of twisted polygons in G=P , where G is
semisimple and P parabolic, and where g has two coordinated gradations
has a natural Poisson bracket that is directly linked to G -invariant evo-
lutions of polygons. This structure is obtained by reducing the quotient
twisted bracket on G N (as defined by M. Semenov-Tian-Shansky) to the
moduli space G N=P N . We prove that any Hamiltonian evolution with re-
spect to this bracket is induced on G N=P N by an invariant evolution of
polygons. We describe in detail the Lagrangian Grassmannian case (G D

Sp.2n/) and we describe a submanifold of Lagrangian subspaces where the
reduced bracket becomes a decoupled system of Volterra Hamiltonian struc-
tures. We also describe a very simple evolution of polygons whose invariants
evolve following a decoupled system of Volterra equations.

1. Introduction

The difference geometry of lattices, although a relatively young subject, has been
known to be related to completely integrable systems almost from its conception.
Indeed, parallel to the well-known fact that the sine-Gordon equation describes
surfaces with constant negative Gauss curvature, the work of Bobenko and others
on difference geometry of lattices (see for instance [Bobenko and Suris 2008])
consistently relates certain types of 2-lattices to completely integrable lattice systems.
While in the continuous case the sine-Gordon equation appears as the Codazzi–
Mainardi equation of the surface in appropriately chosen coordinates, in the lattice
case they are described as the compatibility condition of special types of lattices, with
the different properties of lattices playing the role of specially chosen coordinates.

More recently, a flurry of work on the pentagram map, its generalizations and
related subjects (see, for example, [Ovsienko et al. 2010; Marí Beffa 2013; Khesin
and Soloviev 2013], although the bibliography on this subject is quite vast) has
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clearly pointed at a relation between dynamics of polygons, rather than 2-lattices,
and completely integrable systems. Indeed the pentagram map, a map defined on
projective planar polygons (both twisted and closed), was proven to be completely
integrable and a discretization of the Boussinesq equation when written in terms
of the discrete projective invariants of the polygons [Ovsienko et al. 2010; 2013;
Soloviev 2013].

A plethora of work in the continuous case takes us in this same direction when
one works with curves rather than surfaces. Most, if not all, well-known completely
integrable PDEs have been realized as systems induced on differential invariants
by a flow of curves in some homogeneous manifold. For example, the KdV
equation is induced on the Schwarzian derivative of a flow in RP1 solution of the
so-called Schwarzian-KdV equation (this is a classical result that one can check by
hand). Similarly Adler–Gel’fand–Dikii flows are induced on projective differential
invariants of flows in RPn by some known evolutions (see [Marí Beffa 1999]).
Likewise the literature shows realizations of mKdV [Terng and Thorbergsson 2001],
NLS [Terng and Uhlenbeck 2006] Sawada–Kotera [Chou and Qu 2002], modified
Sawada–Kotera [Chou and Qu 2003], vector sine-Gordon [Wang 2002] and most
other well-known systems as flows of curves in several different manifolds. This
list is by no means exhaustive and many equations are realized as a curve flow in
more than one geometry; see, for example, [Calini et al. 2009; Chou and Qu 2002;
2003].

Inspired by the recent developments in discrete maps, we studied in [Mansfield
et al. 2013] the relation between evolutions of twisted polygons in homogeneous
manifolds and completely integrable lattice systems on the geometric invariants
of the flow. In particular we found an evolution of projective planar polygons
that when written in terms of projective curvatures becomes a modified Volterra
lattice. We also found realizations of the Toda lattice as evolution of polygons
in the centro-affine plane; an integrable discretization of the Toda lattice induced
by a centro-affine map; and a realization of a Volterra-type equation as evolution
of polygons on the homogeneous 2-sphere. In [Marí Beffa and Wang 2013] we
proved that one can obtain a Hamiltonian structure on the moduli space of twisted
polygons in RPn through the reduction of a twisted Poisson bracket on lattices
defined by Semenov-Tian-Shansky [1985], and that any Hamiltonian with respect
to the reduced bracket was induced on invariants by an evolution of polygons in
RPn, with the gradient of the Hamiltonian defining the evolution in a direct and
simple fashion. The reduced bracket was a Hamiltonian structure for an integrable
discretization of Wn-algebras, and this discretization was induced on projective
invariants by a rather simple polygon evolution. We also found a second structure
for the system via reduction of the right bracket, a structure that was not originally
Poisson.
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This paper can be viewed as a second part to [Marí Beffa and Wang 2013]. Here
we consider the case of polygons in G=P , with G semisimple, P parabolic, and g

a j1j-graded algebra (and Lie algebra with parabolic gradation gD g1˚ g0˚ g�1,
pD g1˚g0). These include many of the well-known nonaffine geometries (confor-
mal n-sphere, RPn, Grassmannians, Lagrangian Grassmannians, pure spinors and
other flag manifolds). We assume that the parabolic gradation is coordinated with
a second gradation of the form gC˚ h˚ g�, with h commutative. We prove that
the twisted Poisson bracket of Semenov-Tian-Shansky defined and associated to
this second gradation can also be reduced to the moduli space of polygons in G=P

resulting on a natural Poisson structure on the space of polygon invariants. We
also prove that there are simple ways to connect the reduced Hamiltonian structure
to evolutions of polygons with evolutions inducing Hamiltonian systems on the
invariants of the flow. In particular, we prove that any Hamiltonian evolution is
induced on invariants by an evolution of polygons in G=P . This result is valid also
in more general settings, and we discuss this fact in our last section.

We study in detail the example of the Lagrangian Grassmannian, that is, polygons
of Lagrangian subspaces in R2n, M D Sp.2n/=P , with P a parabolic subgroup.
We find an appropriate discrete moving frame along twisted polygons, and we
define the Schwarzian difference of Lagrangian planes (a discrete analogue of the
Schwarzian derivative defined in [Ovsienko 1993].) The frame provides us with a
complete description of the invariants and produces a generating set that includes the
eigenvalues of the Schwarzian difference. We then apply our general theorem to find
a Hamiltonian structure on the space of invariants associated to our moving frame.
We show that the reduced Poisson bracket can be reduced once more to the space of
polygons for which the nonschwarzian invariants are equal to the identity, and we
show that this reduction decouples into a system of n second Hamiltonian structures
for the Volterra chain [Khanizadeh et al. 2013]. Using this information we define
evolutions of Lagrangian planes inducing the Volterra chain on the eigenvalues of
the Schwarzian difference of the flow. The continuous analogue of this study can
be found in [Marí Beffa 2007].

Section 2 includes background definitions and results that will be used in the
paper, both in the subject of discrete moving frames and on Poisson Lie groups and
Semenov-Tian-Shansky’s bracket. Section 3 proves the existence of the Poisson
bracket on the moduli space (as represented by the discrete invariants) and its
relation to the Sklyanin bracket (Theorem 3.4). In Section 4 we describe in detail the
direct relation between polygon evolutions and reduced Hamiltonians; in particular
we prove that any Hamiltonian is induced on invariants by a polygon evolution
and we give the direct connection between both (Theorem 4.2). We study the
Lagrangian Grassmannian in Section 5 while Section 6 summarizes the paper
and discusses generalizations to other homogeneous manifolds and some open



290 GLORIA MARÍ BEFFA

problems. Recall that in the projective case [Marí Beffa and Wang 2013] the
Poisson structures obtained in the planar case were not preserved by the pentagram
map (the bihamiltonian nature of the map is still an open problem, as far as we
know). This was also pointed out by Marshall [2010].

2. Background and definitions

As a starting point we will give a brief description of discrete moving frames and
their associated invariants. The description is taken from [Mansfield et al. 2013]
and can also be found in [Marí Beffa and Wang 2013], but we include it here for
completeness.

Discrete moving frames. Let G be a Lie group and let g be its Lie algebra (it can
be real or complex). Let M be a manifold and let G �M !M be the action of
the group G on M .

Definition 2.1 (twisted N -gon). A twisted N -gon in M is a map � W Z!M such
that �.pCN /D g ��.p/ for some fixed g 2G and for all p 2Z. (The dot notation
represents the action of G on M .) The element g 2 G is called the monodromy
of the polygon. We will denote a twisted N -gon by its image x D .xs/, where
xs D �.s/.

The main reason to work with twisted polygons is our desire to work with
periodic invariants (in order to have a finite number of them). One could restrict
further to closed polygons, but since the solution of a periodic discrete equation
is, in general, twisted, restricting to closed polygons creates additional technical
problems we would like to avoid here. We will denote by PN the space of twisted
N -gons in M . Clearly PN ŠM N , and since G acts on M , it also acts on PN

with the diagonal action g � .xs/D .g �xs/.

Definition 2.2 (discrete moving frame). Let GN denote the Cartesian product of N

copies of the group G. Elements of GN will be denoted by .gs/. Allow G to act on
the right of GN using the inverse diagonal action g � .gs/D .gsg�1/ (respectively
left, using the diagonal action g � .gs/D .ggs/). We say a map

� W PN !GN

is a right (respectively left) discrete moving frame if � is equivariant with respect to
the diagonal action of G on PN and the right inverse (respectively left) diagonal
action of G on GN . Whenever �.x/2GN , we will denote by �s its s-th component;
that is �D .�s/, where �s.x/ 2G for all s, x D .xs/. Clearly, if �D .�s/ is a right
moving frame, then ��1 D .��1

s / is a left moving frame, and vice versa. Thus, a
moving frame associates an element of the group to each vertex of the polygon in
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an equivariant fashion. In our examples the moving frame will be invariant under
the shift �xs D xsC1, but this need not be the case in general.

Proposition 2.3 [Mansfield et al. 2013]. Let C be a collection C1; : : : ;CN of local
cross-sections to the orbit of G through x1; : : : ;xN . Let �D .�s/ 2G be uniquely
determined by the condition

(1) �s � .xr / 2 Cs

for any s. Then �D .�s..xr ///2GN is a right moving frame along the N -gon .xr /.

Discrete moving frames carry the invariant information of the polygon, as we
see next.

Definition 2.4 (discrete invariant). Let I WPN!R be a function defined on N -gons.
We say that I is a scalar discrete invariant if

(2) I..g �xs//D I..xs//

for any g 2G and any x D .xs/ 2 PN .

We will naturally refer to vector invariants when considering vectors whose
components are scalar invariants. Although not necessary, for simplicity of notation
we will assume from now on that G �GL.n;R/. Nevertheless, results are also true
for some exceptional Lie algebras, as we will see later.

Definition 2.5 (Maurer–Cartan matrix). Let � be a right (respectively left) discrete
moving frame evaluated along a twisted N -gon. The element of the group

Ks D �sC1�
�1
s .respectively ��1

s �sC1/

is called the right (respectively left) s-Maurer–Cartan matrix for �. We will
call the equation �sC1 D Ks�s the right s-Serret–Frenet equation (respectively
�sC1 D �sKs is the left one). The element K D .Ks/ 2 GN is called the right
(respectively left) Maurer–Cartan matrix for �.

One can directly check that if K D .Ks/ is a Maurer–Cartan matrix for the right
frame �, then .K�1

s / is a left one for the left frame ��1D .��1
s /, and vice versa. The

entries of a Maurer–Cartan matrix are functional generators of all discrete invariants
of polygons, as it was shown in [Mansfield et al. 2013]. This fact is an immediate
consequence of the following recursion formulas: Let’s denote by �r �xs D I r

s the
so-called basic invariants. One can check directly from the definitions that if K is
a right Maurer–Cartan matrix, then

(3) Kr � I
r
s D I rC1

s
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for any r; s. The basic invariants with r fixed generate other invariants since from (2),
if I is an invariant,

I..�r �xs//D I..xs//D I.I s
r /:

From this and (3), one concludes that the entries of Ks are generators also (see
[Mansfield et al. 2013]).

Assume next that M D G=H , with G acting on M via left multiplication on
representatives of the class. Let us denote by o 2M the class of H .

The following theorem, which can be found in [Mansfield et al. 2013], describes
how to write a general invariant polygon evolution in terms of moving frames.
Denote by ˆg W G=H ! G=H the map defined by the action of g 2 G on G=H ,
that is, ˆg.x/D g �x.

Theorem 2.6. Let � be a right moving frame, and for simplicity assume that
�s �xs D o for all s. Any G-invariant evolution can be written as

(4) .xs/t D dˆ��1
s
.o/.vs/;

where vs.x/ 2 Txs
M is an invariant vector.

Notice that if, in general, �s �xs D ys ¤ o, one can easily change �s to O�s D gs�s ,
where gs �ys D o (the action is transitive). The frame O�s will also be a right moving
frame and thus one can always find a frame with the condition given by the theorem.
This fact will greatly simplify both notations and calculations.

If a family of polygons x.t/ is evolving according to (4), there is a simple process
to describe the evolution induced on the Maurer–Cartan matrices and hence on a
generating set of invariants. It is described in the following theorem, which can
also be found in [Mansfield et al. 2013], slightly modified.

Before our next theorem, let us settle some notation and choices. Assume

(5) gDm˚ h;

where m is a linear complement to h. Consider & W G=H ! G to be a section
of G=H such that &.o/ D e 2 G and m is the tangent to the image of & . Let �
be a right moving frame coordinated with & . That is, assume �s � xs D o so that
�s D �

H
s &.xs/

�1, for some �H
s 2H .

Let Ks be a right Maurer–Cartan matrix and define NsD .�s/t�
�1
s 2g to describe

the time evolution of the frame.

Theorem 2.7. Assume x.t/ is a flow of polygons solution of (4). Then

(6) .Ks/t DNsC1Ks �KsNs

and, if Ns DN
h
s CN m

s splits according to (5), then

(7) N m
s D�d&.o/vs:
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In most examples Equation (6) and condition (7) completely determine N and
the evolution of K, even if we do not know the moving frame explicitly. This will
be clear later in our Lagrangian example.

Finally, in [Marí Beffa and Wang 2013], we proved the following theorem, which
is true for any homogeneous manifold. Assume we have a nondegenerate twisted
polygon x D .xs/ in a manifold M DG=H with associated right moving frame �
such that �s �xs D o for all s. By nondegenerate we mean a polygon for which a
moving frame can be constructed, but we can also think of generic cases. (It was
shown in [Boutin 2002] that generically a moving frame always exists for N large
enough.) Let us assume that the subgroup H N acts naturally on GN via the gauge
transformation

.gs/! .hsC1gsh�1
s /

(assuming hsCN D hs for all s).

Theorem 2.8. In a neighborhood of a nondegenerate polygon, the right Maurer–
Cartan matrices K associated to right moving frames � describe a section of the
quotient GN=H N . That is, let x 2 GN=H N be a nondegenerate twisted polygon,
U with x 2U an open set of GN=H N containing nondegenerate twisted polygons,
and let K be the set of all the Maurer–Cartan matrices in GN associated to right
moving frames for elements in U and determined by a fixed transverse section as in
Proposition 2.3. Then the map

(8) K!GN=H N ; .Ks/! Œ.Ks/�

is a section of the quotient, a local isomorphism.

For more details, see [Mansfield et al. 2013].

Semenov-Tian-Shansky’s twisted Poisson brackets. In this section we will assume
that g is semisimple and that h � ; � i is a nondegenerate inner product in g that allows
us to identify g and g� (a multiple of the one generated by the Killing form). Denote
by Ei;j the matrix with 0s everywhere except for the .i; j / entry, where it has a 1.
Since we are assuming that G � GL.n;R/, we can assume that, for example, the
inner product is the trace of the product of matrices, so that E�i;j D Ej ;i . The
following definitions and descriptions are due to Drinfeld [1983].

Definition 2.9 (Poisson–Lie group). A Poisson–Lie group is a Lie group equipped
with a Poisson bracket such that the multiplication map G �G!G is a Poisson
map, where we consider the manifold G �G with the product Poisson bracket.

Definition 2.10 (Lie bialgebra). Let g be a Lie algebra such that g� also has a Lie
algebra structure given by a bracket Œ � ; � ��. Let ı W g!ƒ2g be the dual map to the
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dual Lie bracket, that is,

hı.v/; .� ^ �/i D hŒ�; ���; vi

for all �; � 2 g�, v 2 g. Assume that ı is a one-cocycle, that is

ı.Œv; w�/D Œv˝ 1C 1˝ v; ı.w/�� Œw˝ 1C 1˝w; ı.v/�

for all v;w 2 g. Then .g; g�/ is called a Lie bialgebra.

If G is a Lie–Poisson group, the linearization of the Poisson bracket at the identity
defines a Lie bracket in g�. The map ı is called the cobracket. The inverse result
(any Lie bialgebra corresponds to a Lie–Poisson group) is also true for connected
and simply connected Lie groups, as shown in [Drinfeld 1983].

Definition 2.11 (admissible subgroup). Let M be a Poisson manifold, G a Poisson–
Lie group and G �M ! M a Poisson action. A subgroup H � G is called
admissible if the space C1.M /H of H -invariant functions on M is a Poisson
subalgebra of C1.M /.

The following proposition describes admissible subgroups.

Proposition 2.12 [Semenov-Tian-Shansky 1985]. Let .g; g�/ be the tangent Lie
bialgebra of a Poisson Lie group G. A Lie subgroup H �G with Lie algebra h� g

is admissible if h0 � g� is a Lie subalgebra, where h0 is the annihilator of h.

We will now describe the Poisson brackets that will be at the center of our study.

Definition 2.13 (factorizable Lie bialgebras and R-matrices). A Lie bialgebra
.g; g�/ is called factorizable if the following two conditions hold:

(a) g is equipped with an invariant bilinear form h � ; � i so that g� can be identified
with g via � 2 g�! v� 2 g with �.�/D hv� ; �i

(b) the Lie bracket on g� Š g is given by

(9) Œ�; ��� D
1

2
.ŒR.�/; ��C Œ�;R.�/�/;

where R 2 End.g/ is a skew-symmetric operator satisfying the modified clas-
sical Yang–Baxter equation

ŒR.�/;R.�/�DR.ŒR.�/; ��C Œ�;R.�/�/� Œ�; ��:

R is called a classical R-matrix. Let r be the 2-tensor image of R under the
identification g˝ gŠ g˝ g� Š End.g/. That is,

(10) r.� ^ �/D h�;R.�/i:

The tensor r is often referred to as the R-matrix also.
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The simplest example of an R-matrix is as follows: assume that g has a splitting
of the form gD gC˚h0˚g�, where gC and g� are subalgebras dual of each other
and where h0 is commutative (for example, h0 could be the Cartan subalgebra).
Then it is well-known that the map R W g! g given by

(11) R.�CC �0C ��/D
1
2
.�C� ��/

defines a classical R-matrix.
Given a Poisson Lie group G and its associated factorizable Lie bialgebra .g; g�/,

we can define an induced Poisson structure on GN , as explained in [Semenov-Tian-
Shansky 1985]. Indeed, we equip gN D

L
N g with a nondegenerate inner product

given by

hX;Y i D

NX
kD1

hXk ;Yki

and we extend R 2 End.g/ to R 2 End.gN / using R..Xs//D .R.Xs//. Then GN

is a Poisson Lie-group (with the product Poisson structure) and .gN ; gN
R
/ is its

factorizable Lie bialgebra, where gR denotes g with Lie bracket (9). Note that we
are abusing notation, using h � ; � i and R to denote both the inner product and the
R-matrix in g and gN . We will point out the difference only when it is not clear
from the context and notation.

Definition 2.14 (left and right gradients). Let F W GN ! R be a differentiable
function. We define the left gradient of F at LD .Ls/ 2GN as the element of gN

denoted by rF.L/D .rsF.L//, with rsF.L/ satisfying

d

d�

ˇ̌̌
�D0

F..exp.��s/Ls//D hrsF.L/; �si

for all s and any � D .�s/ 2 gN .
Analogously, we define the right gradient of F at L as the element of gN denoted

by r 0F.L/D .r 0sF.L//, with r 0sF.L/ satisfying

d

d�

ˇ̌̌
�D0

F..Lsexp.��s///D hr 0sF.L/; �si

for all s and any � D .�s/ 2 gN . Clearly

(12) r
0
sF.L/DL�1

s rsF.L/Ls:

If r is given as in (10) for some R-matrix R, the Poisson structure in GN given
by the formula

(13) fF;GgS .L/D

NX
sD1

Or.rsF^rsG/�

NX
sD1

Or.r 0sF^r 0sG/
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is called the Sklyanin bracket. Now, given a factorizable Lie bialgebra, Semenov-
Tian-Shansky [1985] defined what is called a twisted Poisson structure on GN .
Here we will give the definition of this structure, and we refer the reader to the
same reference for explanations on how to obtain it and to [Frenkel et al. 1998,
Theorem 1] for the explicit formula.

Let F;G WGN ! R be two functions. Let � be the shift operator �.Xs/DXsC1.
We define the � -twisted Poisson bracket as

(14) fF;Gg.L/D
NX

sD1

r.rsF^rsG/C

NX
sD1

r.r 0sF^r 0sG/

�

NX
sD1

.� ˝ id/.r/.r 0sF˝rsG/C

NX
sD1

.� ˝ id/.r/.r 0sG˝rsF/:

In [Frenkel et al. 1998; Semenov-Tian-Shansky 1985] it was proved that not only
is this a Poisson bracket but the gauge action of GN on itself, that is, the action
GN �GN !GN given by

(15) .Ls/! .gsC1Lsg�1
s /;

is a Poisson map and the gauge orbits are Poisson submanifolds. This is the relevant
bracket to our study of polygon evolutions.

3. A Hamiltonian bracket on the moduli space
of twisted polygons in parabolic manifolds

Let G be a semisimple group and g its Lie algebra. Assume g has a gradation of
the form

(16) gD g1˚ g0˚ g�1;

where g1 and g�1 are dual to each other with respect to an adjoint-invariant inner
product. Let Gi be the subgroup of G with Lie algebra gi , and P �G the parabolic
subgroup of G with Lie algebra pD g1˚ g0.

Consider the space of polygons in the homogeneous manifold M D G=P . In
this section we will show that under some assumptions, (14), defined in GN , can
be reduced to the quotient GN=PN to define a Poisson structure on the space of
Maurer–Cartan matrices associated to polygons in M , and hence on the space of
invariants as shown in Theorem 2.8.

Before we go into our main theorem, we will recall some known facts about
the action of G on G=P when g is a j1j-graded algebra as in (16). The following
descriptions can be found, for example, in [Ochiai 1970]. Let G1 and G�1 be the
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connected Lie subgroups of G corresponding to g1 and g�1, respectively. We define
G0 to be the normalizer of g0 in P , that is, G0 D fa 2 P jAd.a/.g0/D g0g.

Proposition 3.1. The exponential mappings exp W g1!G1 and exp W g�1!G�1

are bijective. Furthermore, G0 is also the normalizer of g�1 in P and P is the
semidirect product of G0 and G1.

The subgroup G0 is called the linear isotropy subgroup of the semisimple homo-
geneous space G=P and it is clearly locally bijective, via the exponential map, to g0.
Perhaps a more important description for this paper is the following well-known
result. It can be obtained from [Ochiai 1970], although here it is simplified for a
clearer exposition.

Proposition 3.2. Let G �M ! M be the action of G on M D G=P given by
left multiplication on class representatives. Let Gi and gi be given as above,
i D 1; 0;�1. Then the infinitesimal action of g�1 is constant in x, the one of g0 is
linear in x and the one of g1 is quadratic in x.

Next, assume that g can be endowed with two different splittings: the original
parabolic gradation (16), and a splitting of the form

(17) gD g�˚ h˚ gC;

where h0 is commutative and g� and gC are dual to each other. Assume also that
this splitting can be chosen so that g1 � gC, g�1 � g� and h� g0, while g0 will
have, in general, intersection with all gC; h and g�.

Remark 3.3. This assumption is not too restrictive. For example, in the complex
case, given a simple Lie algebra (a semisimple one will be the sum of its simple
terms) one can always find two gradations related as above, a pair per root with
weight equal to 1. One way to find the gradations is as follows:1 Let h be a
choice of Cartan subalgebra and � D f˛r g

`
rD1

a simple root system associated
to h. Let ˆC be the set of positive roots and ˆ� the set of negative roots. Let
�2� have weight 1 and letˆ1Df˛ 2ˆ

Cwith � in its linear expansiong andˆ�1

the negative analogue. Define g1 D
L
˛2ˆ1

g˛ and g�1 D
L
˛2ˆ�1

g˛. Let g0

be the sum of the root spaces associated to the remaining roots (the ones that do
not contain �). We see that g1 is commutative since � cannot appear in any linear
expansion with a coefficient higher than one, and if ˛; ˇ 2ˆ1, then the coefficient
of ˛Cˇ would be 2. Likewise with ˆ�1. The second gradation is simply given by
gC D

L
˛2ˆC g˛, g� D

L
˛2ˆ� g˛ and h, ensuring that g1 � gC and g�1 � g�.

Not all algebras have such roots. The ones that do are: Ar (with r different
choices of roots), Br (one choice), Cr (one choice), Dr (3 choices), E6 (two

1The author is very grateful to Professor Georgia Benkart for the description and discussions on
this matter.



298 GLORIA MARÍ BEFFA

choices), E7 (one choice). In the case of a simple real Lie algebra, Kobayashi and
Nagano [1964; 1965] described all semisimple real Lie algebras with gradations
(16) as direct sums of simple ones belonging to the following list:

(1) gD sl.pC q;R/ with g0 D sl.p;R/˚ sl.q;R/˚R;

(2) gD so.n; n/ with g0 D gl.n;R/;

(3) gD so.pC 1; qC 1/ with g0 D so.pC q/˚R;

(4) gD sp.2n;R/ with g0 D gl.n;R/;

(5) gDE1
6

with g0 D so.5; 5/˚R;

(6) gDE1
7

with g0 DE1
6
˚R.

Using their representations, one can see that the standard finest gradation inherited
from gl.n;R/ with nD pC q will work as gradation (17) for (1); case (2) is very
similar to (4), which we will describe in detail in our last section, while cases (3),
(5) and (6) are not clear to us. As the reader can see, some of the exceptional cases
satisfy our assumptions.

We are now ready for our main theorem.

Theorem 3.4. Assume G and g are as above. The twisted Poisson structure (14)
defined on GN , with r associated to (17) as in (11), is locally reducible to the
quotient GN=PN , and the reduced bracket coincides with the reduction of the
Sklyanin bracket (13) with tensor

Or.�; �/D h��1; �1i;

where ��1 and �1 correspond to the parabolic gradation (16) defining M .

Notice that Or is not an R-matrix and hence the Sklyanin bracket is not Poisson
before reduction.

Proof. The proof is similar to the one for RPn that appeared in [Marí Beffa and
Wang 2013], with some differences. From Theorem 2.8, the quotient is locally
a manifold, and as explained in [Semenov-Tian-Shansky 1985] the gauge action
is a Poisson action for the twisted bracket, whose symplectic leaves are gauge
orbits. Therefore, using the same reasoning as the one used in [Marí Beffa and
Wang 2013, Theorem 5.5] we conclude that the bracket can be reduced whenever
P is admissible (see Definition 2.11). According to Proposition 2.12, this is true
whenever p0 D g1 is a Lie subalgebra of g�, and this is the only condition we need
to check to prove the first part of the theorem.

The Lie bracket in g� is defined by the linearization of the twisted Poisson
bracket at the identity e 2G. That is,

Œde�; de'�� D def�; 'g 2 g
�:
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Since p0 D g1, we will look for functions 'i
s such that de'

i
s generate g1.

First of all, we can locally identify M with the section represented by G�1

through a map x 7! `.x/2G�1. Let ' WU �M!Rn be local coordinates around o

defined as follows: choose coordinates for G�1 given by the exponential map
composed with linear coordinates in g�1, and define '.`.x//D'.x/. Assume 'i are
the components of '; that is, if wi are generators of g�1, then `.x/D…iexp.˛iwi/

and 'i.x/D˛i , i D 1; : : : ; n (recall that G�1 is commutative). Now, let L2GN be
close enough to e 2GN so that LD .Ls/ can be factored as Ls DLs

�1
Ls

0
Ls

1
with

Ls
i 2Gi , according to the gradation (16). We choose xs 2U �M such that Ls

�1
D

`.xs/, and define 'i.L/D .'i.Ls//D .'
i.Ls
�1
//D .'i.`.xs///D .'

i.xs//. Since
de'

i is in the dual of the tangent to M at the identity (which we can identify with
g�1, with dual equal to g1) and ' are coordinates, the elements de'

i , i D 1; : : : ; n,
must generate g1 D p0. Now we only need to check that if f � ; � g is the quotient
bracket in (14), then

Œde'
i ; de'

j �� D def'
i ; 'j
g 2 p0

D g1:

This will imply that P is admissible.
Identify M N with the section represented by GN

�1
via the map

.xs/! .`.xs// 2GN
�1:

Then the action of GN on M N is uniquely determined by the relation

(18) gs`.xs/D `.gs �xs/ps

for some ps 2P . Let �s 2 g and VsD exp.��s/. As before, assume LsDLs
�1

Ls
0
Ls

1

with Ls
�1
D `.xs/ for some xs 2M . Let Vs D exp.��s/. Using (18), we obtain

'.VsLs/D '.VsLs
�1/D '.Vs`.xs//D '.`.Vs �xs//D '.Vs �xs/:

(1) If �s 2 g�1 and given that the infinitesimal action of g�1 on M is constant,
we have that

(19)
d

d�

ˇ̌̌
�D0

'.VsLs/D hrs'.Ls/; �si

is constant in Ls . That is to say, if rs'.Ls/ splits according to the parabolic
gradation (16), then its g1 component is constant for any Ls and for all s.

(2) If � 2 g0, then '.VsLs/ is again '.Vs �xs/ as above. The infinitesimal action
is now linear, and hence rs'.Ls/ has a g0-component that is linear in Ls

�1
D

`.xs/, for all s. This will vanish at xs D 0, or what is the same, at Ls D e.

(3) If � 2 g1, the infinitesimal action will be quadratic, and hence rs'.Ls/ will
have a g�1 component that is quadratic in Ls

�1
D `.xs/, for all s. Thus, it

vanishes at xs D 0 or Ls D e.
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We now calculate def'
i ; 'j g where f � ; � g is the twisted bracket (14) with the

r -matrix given by (11). We want to show that def'
i ; 'j g 2 p0 and so we need to

show that d
d�

ˇ̌
�D0
f'i

s; '
j
s g.e

��/D 0 whenever � 2 pD g1˚ g0.
Given that .de'

i
s/�1 D 0 and .r'i

s.L//�1 is quadratic in `.xs/ (with `.o/D e)
we can conclude that d

d�

ˇ̌
�D0

.r'i
s.e

��//�1 D 0.
Also, r 0'i

s.e
��/D e���r'i

s.e
��/e�� , and therefore

d

d�

ˇ̌̌
�D0
r
0'i

s.e
��/D Œde'

i
s; �s �C

d

d�

ˇ̌̌
�D0
r'i

s.e
��/:

Since de'
i
s 2 g1, whenever � 2 p we have that Œde'

i
s; �s � 2 p and hence

d

d�

ˇ̌̌
�D0

�
r
0'i

s.e
��/
�
�1
D 0:

Furthermore, .de'
i
s/0 D 0 also. Finally, we split

hrC'
i
s;r�'

i
si D hr1'

i
s;r�1'

i
siC hr

0
C'

i
s;r

0
�'

i
si;

where r0
C'

i
s and r0

�'
i
s are the components of rC'i

s and rC'i
s in g0. Substituting

this splitting in the definition of the twisted bracket and going over each one of
its terms, we get that they all vanish, d

d�

ˇ̌
�D0
f'i

s; '
j
s g.e

��/D 0, and hence p0 is a
subalgebra of g�.

We now look at the second assertion of the theorem. The reduced bracket is
calculated as follows: let f; h WK! R be two functions on the quotient space KD

U N=PN , where PN is acting on the open set U N �M N by gauge transformations.
Consider two extensions of f; h to U N , call them F and H, constant on the gauge
leaves of P . That means

F.psC1Ksp�1
s /D F.Ks/D f .ks/

for any ps 2 P , where ks are coordinates for Ks (i.e., a generating system of
invariants defined by Ks). Choosing ps D exp.��s/, �s 2 p and differentiating, we
get that

NX
sD1

h�r
0
sFC ��1

rsF; �si D 0:

That is,

(20) �r
0FC ��1

rF 2 .p0/N D gN
1 :

Likewise for H. The reduced bracket is then defined as

(21) ff; hginv.k/D fF;Hg.K/:
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We now use this description to finish the proof. Since �r 0F�rF2 .p0/N D gN
1

and g� � g�1˚ g0, we have that �.r 0F/� D .rF/�, and from this the reduced
Poisson bracket can be expressed as

ff; hg.k/D 1
2

�
h.rF/�; .rH/Ci � h.rF/C; .rH/�i

C h.r 0F/�; .r
0H/Ci � h.r

0F/C; .r
0H/�i

�
� h�.r 0F/�; .rH/CiC h�.r

0H/�; .rF/Ci

D
1
2

�
�h.rF/�; .rH/CiC h.rF/C; .rH/�i

C h.r 0F/�; .r
0H/Ci � h.r

0F/C; .r
0H/�i

�
�

1
2

�
�h.rF/�; .rH/CiC h.rF/C; .rH/�i

C h.r 0F/�; .r
0H/Ci � h.r

0F/C; .r
0H/�i

�
D

1
2
h.rH/�; .rF/C� �.r

0F/Ci �
1
2
h.rF/�; .rH/C� �.r

0H/Ci:

Since g1 � gC, this is equal to

1
2
h.rH/�1; .rF/1� �.r

0F/1i �
1
2
h.rF/�1; .rH/1� �.r

0H/1i;

and from this we can go back to

�
1
2

�
�h.rF/�1; .rH/1iC h.rF/1; .rH/�1i

C h.r 0F/�1; .r
0H/1i � h.r

0F/1; .r
0H/�1i

�
;

which coincides with the evaluation of (13) defined by the parabolic gradation (16)
on the extensions F and H. �

4. Polygon evolutions inducing a Hamiltonian evolution on invariants

In this section we will study which invariant evolutions of polygons induce an evo-
lution on k which is Hamiltonian with respect to the reduced bracket we described
in our previous section. In particular, we will link the invariant vector vs describing
the evolution (4), to the gradient of the Hamiltonian f determining the evolution of
the invariants. The relation is simple and straightforward and we will show that any
Hamiltonian flow on the invariants is induced by a polygon evolution.

First of all, recall that if .xs/ evolves under (4), then the evolution of the Maurer–
Cartan invariants is given by (6), where N D �t�

�1 2 gN satisfies the condition

.Ns/�1 D�d&.o/vs:

Lemma 4.1. Let h be a function of the invariants k, and let H be an extension of h

constant on the gauge orbits of P . Assume that, for a fixed function f ,
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NX
sD1

hrsH; .Ks/tK
�1
s i D ff; hginv.k/ for any function h:

Then KtK
�1 defines a f � ; � ginv-Hamiltonian evolution on the coordinates k, with

Hamiltonian f .

Proof. Let kD .ks/ and ks D .k
i
s/ be coordinates for K (we write Ks DKs.k/),

and assume x evolves according to (4). The evolution induced on Ks (through k)
is given by the relation

.Ks/tK
�1
s D

NX
rD1

nX
iD1

.ki
r /t
@Ks

@ki
r

K�1
s :

On the other hand, let h be a function of k and H an extension constant on the
leaves of P . If ZsDKs.k

i
r .�//K

�1
s .ki

r /, with ki
r .0/Dki

r and d
d�

ˇ̌
�D0

ki
r .0/D v

i
r ,

we have

(22)
d

d�

ˇ̌̌
�D0

H.ZsKs/D
X

s

D
rsH.K/;

d

d�

ˇ̌̌
�D0

Zs

E
on the one side, while on the other side

d

d�

ˇ̌̌
�D0

H.ZsKs/D
d

d�

ˇ̌̌
�D0

H.Ks.k
i
r .�///D

d

d�

ˇ̌̌
�D0

h.ki
r .�//D

NX
rD1

nX
iD1

vi
r

@h

@ki
r

:

We further see that

d

d�

ˇ̌̌
�D0

Zs D

NX
rD1

nX
iD1

vi
r

@K

@ki
r

K�1:

Comparing the two sides of (22), which must be equal for any values of vi
r , we

arrive at
@h

@ki
r

D

X
s

D
rsH.K/;

@Ks

@ki
r

K�1
s

E
:

Finally, assume that

NX
sD1

hrsH; .Ks/tK
�1
s i D ff; hginv.k/

for any h. Then

NX
sD1

NX
rD1

nX
iD1

D
.ki

r /t
@Ks

@ki
r

K�1
s ;rsH

E
D

X
s

X
r;i

.ki
r /t

@h

@ki
r

D ff; hginv.k/

for any h, and hence, by definition, k evolves via a Hamiltonian evolution, with
Hamiltonian function f . �
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Theorem 4.2. Let .xs/ evolve using an evolution of the form (4), for some invariant
vector vs , and let & be a section such that �s D �

P
s &.xs/

�1, �P
s 2 P , for any s.

Assume that there exits a function f .k/, with extension F constant on the gauge
orbits of P, and such that

(23) d&.o/vs D �
�1.rsF/�1:

The evolution induced on k by (4) is Hamiltonian with respect to f � ; � ginv, with
Hamiltonian f .

Proof. Using (6) and (21), we have that, on the one hand

(24)
NX

sD1

h.Ks/tK
�1
s ;rsHi D

NX
sD1

hNsC1�KsNsK�1
s ;rsHi;

and on the other hand

ff; hginv.k/D
1

2

NX
sD1

h.rsH/�1; .rsF� �r 0sF/1i � h.rsF/�1; .rsH� �r 0sH/1i:

Now, since rsF� �r 0sF 2 g1, and g�1 is the dual of g1, we have

h.rsH/�1; .rsF� �r 0sF/1i D hrsH;rsF� �r 0sFi

D hrsH;rsFi � hrsH; �r 0sFi:

Also, since h � ; � i is invariant under the adjoint action and under the shift operator,P
shrsH;rsFi D

P
sh�r

0
sH; �r 0sFi. Substituting this in our calculations we getX

s

h.rsH/�1; .rsF� �r 0sF/1i D
X

s

h�r 0sH; �r 0sFi � hrsH; �r 0sFi

D

X
s

h�r 0sH�rsH; �r 0sFi

D

X
s

h.�r 0sH�rsH/1; .�r
0
sF/�1i

D

X
s

h.�r 0sH�rsH/1; .rsF/�1i;

where we have used that .rsF/�1D .�r
0
sF/�1 since rsF��r 0sF2 g1. Therefore

ff; hginv.k/D�

NX
sD1

h.rsF/�1; .rsH� �r 0sH/1:

Back to (24). SinceX
s

hKsNsK�1
s ;rsHi D

X
s

hNs;K
�1
s rsHKsi D

X
s

h�Ns; �.K
�1
s rsHKs/i;
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we have

NX
sD1

hNsC1�KsNsK�1
s ;rsHi D

NX
sD1

h�Ns;rsH� �.K�1
s rsHKs/i

D

NX
sD1

h�Ns;rsH� �r 0sHi

D

NX
sD1

.h�Ns/�1; .rsH� �r 0sH/1i:

But, if �&.o/vsDr�1F (and since .Ns/�1D�d&.o/vs by (7)), we get .�Ns/�1D

�.rF/�1, and hence

NX
sD1

h.Ks/tK
�1
s ;rsHi D �

NX
sD1

h.rsF/�1; .rsH� �r 0sH/1i D ff; hginv.k/:

Using our previous lemma, we conclude the proof. �

Remark 4.3. In all examples we can think of the values of .Ns/�1 D�d&.o/vs

and condition (4) as determining Ns uniquely. This means that if xs induces an
evolution on k which is Hamiltonian with respect to f � ; � ginv with Hamiltonian f ,
then necessarily �.Ns/�1D�.rsF/�1, since this choice induces the same evolution
and Ns is unique given those determining values. Hence, assuming that N is
uniquely determined by .Ns/�1, sD 1; : : : ;N , and (4), the converse of the theorem
is also true.

5. The Lagrangian Grassmannian example:
the Lagrangian Schwarzian difference and Volterra evolutions

In this section we apply the previous construction to the case of the Lagrangian
Grassmannian. In this example G D Sp.2n/ and the parabolic gradation of the
algebra is given by

(25)
�

0 0

Z 0

�
2 g1;

�
A 0

0 �AT

�
2 g0;

�
0 Y

0 0

�
2 g�1;

where 0 is the zero n�n block, Z and Y are symmetric matrices, and A is a general
n� n matrix. Here pD g0˚ g1. The associated local factorization of the group is
given by

(26) g D

�
I 0
yS I

��
‚ 0

0 ‚�T

��
I S

0 I

�
2G1G0G�1;
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with ‚ 2 GL.n;R/, yS and S symmetric. Also, P D G1G0 and G=P is the
Lagrangian Grassmannian. For a more geometric definition, consider n vectors
defining a given n-dimensional subspace x of R2n. We can find n such vectors so
that when placed as columns in a matrix, the matrix will look like�

u

I

�
:

If the subspace is Lagrangian, u will be symmetric. We identify this subspace with
the matrix

(27) &.x/D

�
I u

0 I

�
2G�1;

which defines a section of the quotient G=P .
The second gradation (17) is given by

(28)
�

AL 0

C �AT
L

�
2 gC;

�
d 0

0 �d

�
2 h;

�
AU B

0 �AT
U

�
2 g�;

where AL is strictly lower triangular, AU is strictly upper triangular, and d is
diagonal. One can readily see that gC, g� and h are all subalgebras of g. Also clearly
h is commutative, g1� gC, g�1� g� and h� g0, so that we can apply Theorem 3.4
to obtain a Poisson bracket on the moduli space of Lagrangian Grassmannian
polygons. This structure is, in general, very complicated. What we want to do in
this section is to show that some of the invariants of Lagrangian polygons behave
in familiar and interesting ways under selected evolutions. For this we will go into
details, constructing explicitly the invariants and their evolutions. We will then
restrict the reduced bracket further to a submanifold generated by these special
invariants.

A moving frame along Lagrangian Grassmannian polygons. Let g be factored
as in (26). If we identify M with symmetric matrices u, using the section (27),
and given that the action of Sp.2n/ on M is determined by (18), we can write the
action explicitly as

(29) g �uD‚.uCS/.‚�T
C yS‚.uCS//�1:

Assume we factor our right moving frame �D .�s/2 Sp.2n/N according to (26) as

�s D

�
I 0
ySs I

��
‚s 0

0 ‚�T
s

��
I Ss

0 I

�
:

If we define transverse sections as in (1) through the normalizations

�s �us D 0; �s �us�1 D�I; �s �usC1 D I;
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we obtain the equations

usCSs D 0;

‚s.usC1CSs/D‚
�T
s C ySs‚s.usC1CSs/;

‚s.us�1CSs/D�.‚
�T
s C ySs‚s.us�1CSs//:

These can be solved for

Ss D�us; ySs D I �‚�T
s .usC1�us/

�1‚�1
s

and

(30) ‚T
s ‚s D

1
2

�
.usC1�us/

�1
C .us �us�1/

�1
�
D U�1

s :

Equation (30) determines ‚ completely up to an orthogonal factor, assuming that
U�1

s D
1
2

�
.usC1 � us/

�1C .us � us�1/
�1
�

is positive definite. In fact, we have
‚s D �sU�1=2

s , where �s 2O.n/ and U�1=2
s is a square root of a symmetric matrix

as defined in [Ovsienko 1993], unique up to the action of the orthogonal group.
That is, U

�T=2
s U

�1=2
s D U�1

s .
To determine the last factor �s , and with it the rest of the moving frame, we need

to choose one more normalization, thus completing the definition of the transverse
section. Let’s choose �s �usC2 to be diagonal. After substituting all the values we
have already found we get

�s �usC2 D
�
I C‚�T ..usC2�us/

�1
� .usC1�us/

�1/‚�1
��1

:

Definition 5.1 (Lagrangian Schwarzian difference). Given a generic polygon of
Lagrangian planes us , we define S.u/D .Ss.u// to be

Ss.u/D U�1=2
s

�
U�1

s C .usC2�us/
�1
� .usC1�us/

�1
��1

U�T=2
s

D U�1=2
s

�
.usC2�us/

�1
�

1
2
.usC1�us/

�1
C

1
2
.us �us�1/

�1
��1

U�T=2
s

and we call it the Lagrangian Schwarzian difference of u, where Us is as in (30).

This definition is the discrete analogue to the Lagrangian Schwarzian derivative
defined in [Ovsienko 1993] for curves of Lagrangian planes. In fact, if we denote
u.sC k/D 
 .xC k�/, a long but standard calculation shows that the continuous
limit of Ss.u/ is indeed a multiple of the Lagrangian Schwarzian derivative defined
in the same reference. Now, in order to diagonalize �s �usC2 we need to choose �s

to be an element of the orthogonal group that diagonalizes the symmetric matrix
Ss.u/. If we call

(31) zDs D �sSs.u/�
T
s ;
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then �s �usC2D
zD will be diagonal. These normalization choices describe transverse

sections as in (1), and they determine the moving frame � uniquely. From now on
we will denote Ds D I � zD�1

s , and hence I s
sC2
D .I CDs/

�1.

Maurer–Cartan invariants and their evolutions. Once we have determined a mov-
ing frame, we would like to describe the right Maurer–Cartan matrix associated to
it. To do this we will use the recursion equations (3)

Ks � I
s
k D I sC1

k
:

Using the choices I s
s D 0, I s

sC1
D I , I s

s�1
D�I and I s

sC2
D .ICDs/

�1, we select
the equations

(32) Ks � 0D�I; Ks � I D 0; Ks � I
s
sC2 D I;

as those determining K. Assume that Ks factorizes as

Ks D

�
I 0

Ks;1 I

��
Ks;0 0

0 .Ks;0/
�T

��
I Ks;�1

0 I

�
:

Straightforward calculations using formula (29) show that the three recursion
equations (32) determine the values

Ks;�1 D�I; KT
s;0Ks;0 D�

1
2
D�1

s ; Ks;1 DK�T
s;0 K�1

s;0 � I:

Assuming that Ds is negative definite, we obtain the solutions

(33) Ks;�1 D�I; Ks;0 D
yKs;0
yDs; Ks;1 D�.I C 2 yKs;0Ds

yKT
s;0/;

where

(34) yDs D
1
p

2
.�Ds/

�1=2; yKs;0 2 O.n/:

Remark 5.2. the negative definite condition imposed on Ds can be removed by
merely choosing different normalizations. Indeed, if we choose arbitrary values
for I s

r , the relations between the different invariants determined by equations (32)
become

KT
s;0..I

s
sC1/

�1
� .I s

s�1/
�1/Ks;0 D�.I

s
sC1/

�2D�1
s :

Thus, if Ds is positive definite, we could choose I s
sC1
D�I and I s

s�1
D I instead.

We can also change the sign of the different entries in I , depending on the sign of
the different eigenvalues of S.u/. For simplicity we will keep the choices above.

The following theorem summarizes our findings.
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Theorem 5.3. There exists a right moving frame along polygons of Lagrangian
subspaces such that its associated Maurer–Cartan matrix is of the form

(35) Ks D

 
I 0

�.I C 2 yKs;0Ds
yKT

s;0
/ I

! 
yKs;0
yDs 0

0 yKT
s;0
yD�1

s

!�
I �I

0 I

�
where yDs is given as in (34). The entries of Ds and yKs;0 functionally generate all
invariants of Lagrangian polygons.

Next we turn to the study of invariant evolutions of Lagrangian polygons (that is,
those for which Sp.2n/ takes solutions to solutions) and the equations they induce
on the invariants. Assume .us.t//, with us.t/ symmetric, represents a family of
polygons of Lagrangian planes, and assume it is a solution of an invariant evolution.
According to Theorem 2.6, the equation can be written in terms of our moving
frame. Since the linearization at o of the action (29) is given by

v 7!‚v‚T

and having in mind that the G0 factor of ��1
s is U

1=2
s �T

s , from (4) we conclude
that any invariant evolution can be written as

(36) .us/t D U 1=2
s �T

s vs�sU T=2
s

for symmetric matrices vs depending on the entries of .Dr / and . yKr;0/, and where
�s diagonalizes the Lagrangian Schwarzian difference of the flow. From now on
we will assume that Ds D diag.d s

i /, with d s
i ¤ d s

j for all i ¤ j .

Theorem 5.4. Let vs be diagonal, and assume the initial condition us.0/ satisfies
yKs;0 D I . Then yKs;0 D I is preserved by the flow (36) and whenever vs D

�
1
2
.1C ��1/Dsrsf for some Hamiltonian function f , Ds satisfies a Hamiltonian

equation with respect to the Poisson structure

(37) PD
X

s

Ds

�
Ds�

�1
�Ds�C2.��1

��/C��1Ds��DsC�
�1Ds�

�1
��Ds�

�
Ds:

with Hamiltonian f . Assume vs D�I (and hence rsf DD�1
s ). Then, as polygons

evolve following

.us/t D 2..us �usC1/
�1
� .us �us�1/

�1/�1;

the eigenvalues of the Lagrangian Schwarzian difference evolve following a decou-
pled system of Volterra equations.

Proof. From now on, and to avoid cluttering, we will drop the subindex s and will
only use it if needed to avoid confusion. Thus, NsC1 will become �N , Ns will
become N , yDs will become yD, and so on.
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We will use Theorem 2.7. Consider the section & WM !G�1 given by

&.u/D

�
I u

0 I

�
:

It satisfies �D �P&.u/�1 with �P 2P . Theorem 2.7 tells us that N D �t�
�1 must

be of the form

N D

�
N0 �v

N1 �N T
0

�
for some N0 2 gl.n/, N1 symmetric and for some symmetric matrix v depending
on the invariants. A straightforward calculation shows that if K is as in (35), and if
yK0 D I , then

KNK�1
D

�
I 0

K1 I

� 
yD.N0�N1/ yD

�1 yD.N0CN T
0
�N1� v/ yD

yD�1N1
yD�1 yD�1.N1�N T

0
/ yD

!�
I 0

�K1 I

�
;

where K1 D�.I C 2D/. To simplify formulas we will conjugate (4) by
�

I
�K1

0
I

�
.

Direct, although longer, calculations show that if yK0 D I�
I 0

�K1 I

�
KtK

�1

�
I 0

K1 I

�
D

 
. yK0/t�

1
2
D�1Dt 0

2.�DtCD. yK0/t�. yK0/tD/ . yK0/tC
1
2
D�1Dt

!
;

where we have used the relationship

yD�1. yD/t D�
1
2
D�1Dt :

Also�
I 0

�K1 I

��
�N0 ��v

�N1 ��N
T
0

��
I 0

K1 I

�
D 

�N0C�v.I C 2D/ ��v

�N1C�N0C�N
T
0
C 2D�N0C2TN T

0
DC.IC2D/2�v ��N T

0
�.IC2D/�v

!
:

Substituting these values in the conjugation of 2.7 by
�

I
�K1

0
I

�
, and equating the

different entries, we arrive at the equations

�v D yD.vCN1�N0�N T
0 /
yD;

D�1Dt D
yD.N0�N1/ yD

�1
C yD�1.N T

0 �N1/ yD� 2.I C 2D/�v� �N0� �N
T
0 ;

2. yK0/t D�N
T
0 � �N0C

yD.N0�N1/ yD
�1
C yD�1.N1�N T

0 /
yD;

2.D. yK0/t � . yK0/tD�Dt /D �N1C �N0C �N
T
0 C 2.D�N0C �N

T
0 D/

C .I C 2D/2�v� yD�1N1
yD�1:

The last three equations result in a compatibility condition that can be obtained as
follows: we use the second equation and we multiply once on the left and once
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on the right by D, thus obtaining two equations. We substitute the sum of these
two equations in place of 2Dt in the last equation, and use the third equation to
substitute . yK0/t . After some straightforward work we obtain

�N1C �N0C �N
T
0 D

yD�1.N0CN T
0 �N1/ yD

�1
� �v.I � 4D2/:

We now use the first equation, and we get

(38) �N1 D�.�.D�v/C �vCDv/:

From this, if v is diagonal, so is N1. The first equation implies that N0CN T
0

is
also diagonal. Back to the second equation, we see that yDN0

yD�1C yD�1N T
0
yD is

once more diagonal, which with our assumption di ¤ dj implies that N0 is diagonal.
If N0 and N1 are diagonal, the third equation tells us that . yK0/t D 0, proving the
first assertion of the theorem.

We can now find Dt . Using (38) and the first equation we have

2N0 D .D� � �
�1D/v;

and substituting everything into the second equation we get

(39) D�1Dt D .D� �D� C �
�1D�D� C 2� 2�/v:

Finally, if we substitute v D 1
2
.1C ��1/Drf , we have

(40) Dt D
1
2
D
�
D��1

�D�C2.��1
��/C��1D��DC��1D��1

��D�
�
Drf;

which is a Hamiltonian equation with respect to the Hamiltonian structure

PDD
�
D��1

�D� C 2.��1
� �/C ��1D� �DC ��1D��1

� �D�
�
D:

This is the second Hamiltonian structure for the Volterra equation

Dt DD.� � ��1/D

(see [Khanizadeh et al. 2013]), which we obtain whenever v D I and rf DD�1.
Adopting subindices again and using (36) and (30), if vs D I , the corresponding
evolution for us is given by

.us/t D U�1=2
s U�T=2

s D U�1
s D 2

�
.usC1�us/

�1
C .us �us�1/

�1
��1

concluding the proof of the theorem. �

Of course, we did not guess the relation

(41) v D 1
2
.1C ��1/Drf I
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it was given to us by the general reduction process and the compatibility condition
(23). We will describe the reduction next for our particular example and see how
we arrived to relation (41).

The reduced bracket and the double reduction to D. Before we prove that the
reduced bracket found in the previous section is further reducible to D, we will
describe the reduced bracket itself in a little more detail. Once more we are dropping
the subindex to avoid cluttering. As explained in (21), to calculate the reduction one
considers two functions f and h defined on the invariants (coordinates) generating
D and yK0. Let us denote these invariants by d D .di/ and ki;j , i < j . Let us
also denote by ı1f the diagonal matrix ı1f D diag@f=@di , and by ı0f a skew
symmetric matrix generated by @f=@ki;j . (The precise form of ı0f will become
clear along the process, therefore we will postpone the description until relevant.)

Set

(42) rFD

�
F0 F�1

F1 �FT
0

�
and let us split F0 as

(43) F0 D F�0 CF�k
0 CFd

0 ;

where � indicates the symmetric diagonal free components, �k is the skew-
symmetric component, and d the diagonal. Likewise for F�1 and F1 (clearly
F�k
�1
D F�k

1
D 0). Let us denote by K.D; yK0/ the family of matrices (35), and

consider the element of Sp.2n/N

Z.�/DK.DC �V; yK0/K.D; yK0/
�1;

where V is an arbitrary diagonal matrix. Let us call v the diagonal of V , written as
a vector. On the one hand, direct calculations show that when yK0 D I ,

d

d�

ˇ̌̌
�D0

Z.�/D

�
�

1
2
D�1V 0

D�1V 1
2
D�1V

�
:

On the other hand Z.�/K DK.DC �V; yK0/ and since F is an extension of f

F.Z.�/K/D F.K.DC �V; yK0//D f .d C �v; ki;j /:

Differentiating with respect to �,�
rF;

�
�

1
2
D�1V 0

D�1V 1
2
D�1V

� �
D hD�1.Fd

�1�Fd
0 /;V i D hı1f;V i:

This is true for any value of V , and therefore

(44) Fd
�1�Fd

0 DDı1f:
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Likewise, we can choose Z.�/ such that

F.Z.�/K/D F.D; yK0.�//D f .d; ki;j .�//

with ki;j .0/D ki;j and d
d�

ˇ̌
�D0

ki;j .�/D wi;j . Indeed Z.�/DK.D; yK0.�//K
�1,

with yK0.�/ chosen so that yK0.0/ D yK0 and yK�1
0

d
d�

ˇ̌
�D0
yK0 D W , W D .wi;j /.

(One can be more specific and create Z.�/ using the exponential function, but any
such family can be used and the precise form is not relevant.)

Differentiating with respect to �, we have�
rF;

�
W 0

0 W

� �
D h2F0;W i D hı0f;W i;

and hence F�
0
D

1
2
ı0f . We can now determine how the matrix ı0f is created: it

is defined as the skew-symmetric matrix such that

d

d�

ˇ̌̌
�D0

f .d; ki;j .�//D hı0f;W i

with W D .wi;j / (that is, .ı0f /i;j D @f=@kj ;i). With this in mind, we proceed to
our last theorem.

Theorem 5.5. The reduced Poisson bracket (21) can be further reduced to the
submanifold yK0 D I . When using the coordinates given by the invariants D, the
resulting bracket is a decoupled system of Hamiltonian structures for the Volterra
equation as in (37).

Proof. More precisely, what we will show is that if f is independent of ki;j and h

is independent of di , at yK0 D I their reduced bracket vanishes, while the reduced
bracket of two functions that only depend on D is given by the second Volterra
structure. Once again, and as explained in (21), if f and h are two functions
depending on D and yK0, their reduced bracket is defined as

ff; hginv D
1
2
h.rH/�1; .rF/1� �.r

0F/1i �
1
2
h.rF/�1; .rH/1� �.r

0H/1i;

where F and H are two extensions satisfying (20). Assume rF is given as in
(42) with the splitting (43). After conjugating r 0F back to rF and simplifying,
condition (20) results in two equations at yK0 D I , namely

��1F0 D
yD�1.F0�F�1K1/ yDC yD.F1CK1F0CFT

0 K1�K1F�1K1/ yD;(45)

��1F�1D
yD.F�1�FT

0 /
yD�1
���1F0:(46)

Case 1: Assume that f depends only on D. Then F�k
0
D

1
2
ı0f D 0. Using (45),

0D ��1.F0�FT
0 /D

yD�1.F0�F�1K1/ yD� yD.F
T
0 �K1F�1/ yD

�1:
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Using that K1 D I � yD�2, we get

0D yD�1.F0�F�1/ yD� yD.F
T
0 �F�1/ yD

�1;

which, under the condition di ¤ dj , implies

F�0 D F�
�1:

Substituting this in (45) we get

2�F�1 D
yD�1F�

�1
yD�1
� yD�1F�

�1
yD�1
D 0

and, therefore,
F�
�1 D F�0 D 0:

This implies that F1 and F0 are both diagonal. If we now look at (45) we clearly
see that F1 is also diagonal. These diagonals can easily be found from (45)-(46)
and the relation Fd

�1
DDı1f CFd

0
. They are

Fd
�1 D

1
2
.� C I/Dı1f(47)

Fd
0 D

1
2
.� � I/Dı1f(48)

Fd
1 D

�
D��1DCD2

�
1
2
�DC 3

2
D
�
ı1f:(49)

Case 2: Assume that f does not depend on D. Then Fd
�1
D Fd

0
CDı1f D Fd

0
,

and equating the diagonals in (46) we get Fd
�1
D Fd

0
D 0. Doing the same with

(45), we have that Fd
1
D 0 also.

Now, assume that f depends on D, while h doesn’t. Then, both .rF/�1 and
.rF� �r 0F/1, whose only nonconstant block is given by

F1� �. yD.F1CK1F0CFT
0 K1�K1F�1K1/ yD/;

are diagonal, while .rH/�1 and .rH� �r 0H/1 are diagonal free. Therefore as
one can readily see from the formula in (21),

ff; hginv D 0:

If both f and h depend on D only, we can substitute (47)-(48)-(49) in (21) to find
the double reduction. It is given by

ff; hginv.D/

D
1
2

˝
ı1h;D

�
.��1

��/DCD.��1
��/C2.��1

��/C��1D��1
��D�

�
Dı1f

˛
;

which is a decoupled system of second Hamiltonian structures for the Volterra
lattice, as stated. �
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We can now see where the relation vs D
1
2
.I C ��1/Dsısf came from: F�1 D

1
2
.� C 1/Dı1f and �vs D F�1, according to (23).

6. Conclusion and further study

In this paper we have shown that, if G is semisimple and g is a j1j-graded Lie algebra
with a parabolic gradation compatible with a second grading of the form (17), then
the moduli space of polygons in G=P is endowed with a natural Poisson bracket that
can be linked to invariantizations of polygon evolutions. As an example we described
in detail the case of polygons of Lagrangian subspaces in R2n. We show that
under some nondegeneracy conditions the Poisson bracket can be restricted further
to a certain submanifold of Lagrangian planes, and that on this submanifold the
eigenvalues of the Lagrangian Schwarzian difference evolve following a Hamiltonian
evolution, one that becomes a decoupled system of Volterra equations when a proper
Hamiltonian is chosen.

In the continuous case, the existence of a Poisson structure on the moduli space
of curves is guaranteed not only for the case of j1j-graded Lie algebras but also for
general homogeneous manifolds of the form G=H with G semisimple [Marí Beffa
2010] and for semidirect products [Marí Beffa 2006]. It is well possible that the
same is true for the discrete counterpart, but the discrete case is more difficult to
study. The main obstacle is the need to rely on R-matrices to define the Poisson
Lie group at the beginning of our construction. If we consider a general case
G=H , with Oh being the Lie algebra of H , then to be able to use these Poisson
structures we will need to coordinate Oh with a gradation of the form (17), with
Oh0 � gC: on the one hand (17) is used to define the R-matrix, and on the other
hand Oh is used for the reduction itself, so both need to be coordinated throughout
calculations. Not only that, if m is a linear complement for Oh, so g D Oh˚m, in
order for the proof of Theorem 3.4 to go through, one can check that we would
need the condition m�\mD 0. At first sight, this seems to not be always possible
since choosing OhD g1 (instead of OhD g1˚ g0) provides a simple counterexample.
Furthermore, in the general case, the action of G on G=H will also determine
whether or not the bracket reduces. Indeed, the fact that the infinitesimal action
was either constant, linear or quadratic, depending on which subgroup of G we
were using, was fundamental to the admissibility of p (we need the action to vanish
at zero, and the derivative of the infinitesimal action of Oh0 to also vanish at zero).
Hence, one will have to decide which actions qualify and which ones don’t. Thus,
although a more general theorem is true for those other cases that satisfy these
three conditions, it would not be as general as the theorem for curve evolutions.
Surprisingly, the case of the homogeneous 2-sphere SO.3/=SO.2/ does not satisfy
these three conditions (one can check that if m is a linear complement m�\m¤ 0),
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but nevertheless in [Mansfield et al. 2013], we described polygon evolutions on
the 2-sphere SO.3/=SO.2/ inducing an equation of Volterra type on the discrete
curvature of the polygon. Thus, perhaps a somehow different approach is needed to
increase the generality. Work in that direction is under way.

A different and very interesting question is how one can get a second Hamiltonian
structure, a companion for the reduction, to be used for integrability of difference
evolutions. This point is not at all clear: in the continuous case it is know that
it comes from a reduction of a second Hamiltonian structure (see [Marí Beffa
2010]), but it is also known that this second structure is not always reducible
(a counterexample can be found in [Marí Beffa 2007]). No such natural second
structure seems to exist in the discrete case and the situation becomes more murky.
In [Marí Beffa and Wang 2013] we showed that in the case of RPn, even though
the right bracket (the portion of the Sklyanin bracket involving right gradients
only) is not Poisson, when reduced to GN=PN the result is Poisson and a second
Hamiltonian structure for integrable discretizations of Wn-algebras. It seems to be
a similar situation as having the Sklyanin bracket reduce to a Poisson bracket, even
though it is not a Poisson bracket with our choice of parabolic gradation. Thus,
perhaps there is an underlying bracket that coordinates with the right bracket to
give the same result, but what bracket this might be is unknown to us.
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ON SCHWARZ–CHRISTOFFEL MAPPINGS

MARTIN CHUAQUI AND CHRISTIAN POMMERENKE

We extend previous work on Schwarz–Christoffel mappings, including the
special cases when the image is a convex polygon or its complement. We
center our analysis on the relationship between the pre-Schwarzian of such
mappings and Blaschke products. For arbitrary Schwarz–Christoffel map-
pings, we resolve an open question from earlier work of Chuaqui, Duren
and Osgood that relates the degrees of the associated Blaschke products
with the number of convex and concave vertices of the polygon. In addi-
tion, we obtain a sharp sufficient condition in terms of the exterior angles
for the injectivity of a mapping given by the Schwarz–Christoffel formula,
and study the geometric interplay between the location of the zeros of the
Blaschke products and the separation of the prevertices.

1. Introduction

The purpose of this paper is to provide further information about Schwarz–Christoffel
mappings that adds to the results obtained in [Chuaqui et al. 2011; 2012]. We refer
the reader to [Bhowmik et al. 2009] for related interesting work on concave func-
tions.

Let f be a Schwarz–Christoffel mapping of the unit disk D onto the interior of
an (n+1)-gon. In other words, f is a conformal map onto a domain in the extended
complex plane whose boundary consists of finitely many line segments, rays or
lines. In [Chuaqui et al. 2012], it is shown that the pre-Schwarzian of f has the form

(1-1)
f ′′

f ′
=

2B1/B2

1− zB1/B2

for some finite Blaschke products B1, B2 without common zeros, with respective
degrees d1, d2 satisfying d1+ d2 = n. The polygon is convex if and only if d2 = 0
(see also [Chuaqui et al. 2011]). The representation for f ′′/ f ′ is obtained from a

Chuaqui was partially supported by Fondecyt Grant #1110321.
MSC2000: primary 30C20, 30C35; secondary 30C45.
Keywords: Schwarz–Christoffel mapping, prevertices, convex, concave, univalent mapping, Blaschke

product.
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well-known formula:

(1-2)
f ′′

f ′
=−2

n+1∑
k=1

βk

z− zk
,

where each zk is a prevertex and 2πβk is the exterior angle at zk (that is, π minus
the interior angle); we have

∑n+1
k=1 βk = 1. The formula (1-2) remains valid for

polygons with one vertex at infinity. (The angle at infinity between two sides is,
by definition, −1 times the angle determined, at their crossing in the plane, by the
lines containing the sides.)

As a consequence of (1-1) and (1-2), the prevertices are shown to be the roots of
the equation

(1-3)
zB1(z)
B2(z)

= 1.

It is interesting that (1-3) corresponds to a polynomial equation of degree n + 1
for which all roots are simple and lie on |z| = 1. This is a particular feature of the
pair of Blaschke products B1, B2 arising from Schwarz–Christoffel mappings. Note
that the topological degree of zB1/B2 on ∂D is 1+ d1− d2, so that zB1/B2 must
be traversing in the negative sense at many of the prevertices. In fact, as the proof
of Theorem 2 shows, at a prevertex zk , zB1/B2 is traversing ∂D in the positive or
negative sense according to whether f (zk) is a convex or a concave vertex. It is
also interesting to observe that when d2 = 0, any solution of (1-1) will result in a
univalent mapping because 1+Re{z f ′′/ f ′} ≥ 0. In this paper we answer the natural
question of finding a geometric interpretation for the degree d2, and show that this
integer coincides with the number of concave vertices of the polygon.

In Section 2, we also address the case of Schwarz–Christoffel mappings f onto
the exterior of an (n+2)-gon, with the normalization f (0)=∞. In [Chuaqui et al.
2012], we showed that the pre-Schwarzian of such a mapping is given by

(1-4) z
f ′′

f ′
=

2
z2(B1/B2)− 1

,

for finite Blaschke products B1, B2 without common zeros, with degrees d1, d2,
respectively, for which d1+ d2 = n. The polygon is convex if and only if d2 = 0
and, as before, we show in this paper that d2 is equal to the number of concave
vertices of the polygon.

Another issue we address in this paper is the question of when a solution of (1-2),
or equivalently, of

f ′(z)=
n+1∏
k=1

(z− zk)
−2βk ,

n+1∑
k=1

βk = 1,
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does indeed correspond to a univalent mapping. In Theorem 4 below we obtain the
sharp sufficient condition

∑n+1
k=1 |βk | ≤ 2 for univalence. The result is optimal in

the sense that there are nonunivalent solutions of (1-2) for which
∑n+1

k=1 |βk | differs
from 2 by an arbitrarily small amount.

In Section 3 we obtain results on the separation of the prevertices of convex or
concave Schwarz–Christoffel mappings, expressed in terms of the location of the
zeros a1, . . . , an of the Blaschke product B1 that appears in (1-1) or (1-4) (recall
that, in this case, d2 = 0). The results are sharp, and show, for example, that the
prevertices tend to be uniformly separated on ∂D when all |ak | are very small. Finally,
in Section 4 we derive some necessary conditions for the location of the zeros of
the Blaschke products B1, B2 in (1-1) and (1-4) for arbitrary polygonal mappings.

2. Blaschke products and univalence

In [Chuaqui et al. 2011] we revisit the classical theme of convex mappings. The
starting point is the observation that such mappings correspond exactly to the
solutions of

f ′′

f ′
=

2h
1− zh

,

for some function h analytic in D and bounded by 1. The image f (D) is the interior
of a polygon if and only if h is a finite Blaschke product. We can express h in terms
of p = f ′′/ f ′ as

h =
p

2+ zp
,

and draw the following result.

Theorem 1. Let h be analytic in D with |h(z)| ≤ 1 everywhere. Then there exists
a sequence {Bn}n∈N of finite Blaschke products converging to h locally uniformly
in D.

Proof. Let f be the convex mapping corresponding to h as above, and let �n be
a sequence of convex polygons converging to f (D) in the sense of Carathéodory.
Properly normalized Schwarz–Christoffel mappings fn of D onto �n will converge
locally uniformly to f . Each mapping fn satisfies (1-1) for a certain finite Blaschke
product B1 = B1,n and B2 = 1. The theorem now follows by expressing B1,n in
terms of the pre-Schwarzian of fn . �

Next, we give an answer to an important issue left unresolved in [Chuaqui et al.
2012], namely the connection between the degrees d1, d2 and the number of convex
and concave vertices of the polygon.

Theorem 2. Let f map D onto the interior of an (n+1)-gon, and let B1, B2 be the
corresponding Blaschke products in the representation (1-1). Then d2 is equal to the
number of concave vertices, while d1+ 1 is equal to the number of convex vertices.
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Proof. Let

(2-1) ϕ(t)= arg
{

ei t B1
B2
(ei t)

}
,

with a well-defined branch of the argument once its value has been assigned at one
given vertex. In any case,

(2-2) ϕ′(t)= 1+ ei t
(

B ′1
B1
(ei t)−

B ′2
B2
(ei t)

)
= 1+ |B ′1(e

i t)| − |B ′2(e
i t)|.

On the other hand, we see from (1-1) and (1-2) that

B1/B2

zB1/B2− 1
=

n+1∑
k=1

βk

z− zk
;

hence

(2-3) βk = lim
z→zk

(z− zk)
B1/B2

zB1/B2− 1
=

B1/B2

(zB1/B2)′
(zk)=

1
ϕ′(tk)

,

where we have written zk = ei tk . We say that zk is convex or concave according
to whether the polygon is convex or concave at f (zk). We conclude that ϕ′(tk) is
positive at convex prevertices and negative at concave prevertices. Furthermore, the
points zk are the solutions of (1-3). Hence we see from (2-1) that, for all k,

ϕ(tk)= 2π jk, jk ∈ Z, and ϕ(t) 6= 2π j, t 6= tk .

It follows now that

(2-4)
∫ tk+1

tk
ϕ′(t)=


2π when zk, zk+1 are both convex,
0 when zk, zk+1 are one convex and one concave,
−2π when zk, zk+1 are both concave.

Let a be the number of consecutive convex prevertices, b the number of instances
a vertex of one type is followed by one of the other type, and c the number of
consecutive concave prevertices. Then a+ b+ c = n+ 1, and we see by (2-4) that∫ 2π

0
ϕ′(t) dt = 2π(1+ d1− d2)= 2π(a− c).

Hence we have

1+ d1+ d2 = n+ 1= a+ b+ c, 1+ d1− d2 = a− c.

We conclude that
1+ d1 = a+ b

2
, d2 = c+ b

2
.

To obtain the theorem, we claim that c+ (b/2) is equal to the number of concave
vertices (or prevertices). To see this, let zk, . . . , zl be any maximal chain of con-
secutive concave prevertices. Hence zk−1 and zl+1 are convex prevertices. The
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collection zk, . . . , zl of concave prevertices contributes l − k to the count of c and
contributes 2 to the count of b. Thus its contribution in the count of c+ (b/2) is
exactly the number of points in the chain. This proves the claim, and completes the
proof of the theorem. �

Similar results hold for mappings f onto the exterior of an (n+2)-gon, having
the important normalization f (0)=∞. For such mappings we have that

f ′′

f ′
= 2

( n+2∑
k=1

βk

z− zk
−

1
z

)
,

where, as before, zk are the prevertices and 2πβk are the exterior angles, which
satisfy −1< βk < 1 and

∑n+2
k=1 βk = 1. In [Chuaqui et al. 2012], this was shown to

lead to

z
f ′′

f ′
=

2
z2(B1/B2)− 1

,

for Blaschke products B1, B2 of degree d1, d2 satisfying d1+ d2 = n. Again, the
case d2 = 0 corresponds exactly to when the polygon is convex. The prevertices
appear as the solutions of the equation z2 B1 = B2, yet no further information was
provided in connection with the degrees of the Blaschke products. With a similar
argument as in the proof of Theorem 2, one can show:

Theorem 3. Let f map D onto the exterior of an (n+2)-gon, and let B1, B2 be the
corresponding Blaschke products in the representation (1-4). Then d2 is equal to the
number of concave vertices, while d1+ 2 is equal to the number of convex vertices.

Next, we address the question of the univalence of solutions of (1-2).

Theorem 4. Let 0≤ t1< · · ·< tn+1< 2π , zk = ei tk , βk ∈R, k= 1, . . . ,n+1, and let

(2-5)
n+1∑
k=1

βk = 1,
n+1∑
k=1

|βk | ≤ 2 .

Then the function f defined by

(2-6) f ′(z)= a
n+1∏
k=1

(z− zk)
−2βk , a ∈ C, a 6= 0,

is univalent in D.

Observe that there exist polygons with
∑
|βk | arbitrarily large for which f

remains univalent. For example, one can consider a polygon inscribed between
two disjoint logarithmic spirals. On the other hand, once

∑n+1
k=1 |βk | is allowed to

exceed 2, then the sum of exterior angles at concave vertices will be larger than π
in absolute value, thus making it possible for the image f (D) to intersect itself.
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Proof of Theorem 4. Let f be given as in (2-6) and suppose that (2-5) holds. Then f
is locally injective in D, and we will show that f is univalent there, and, in fact, that
it is close-to-convex. Among the various equivalent formulations of this geometric
property (see, e.g., [Duren 1983, p. 48]), we will show for 0≤ θ1 < θ2 < 2π that

I = I (θ1, θ2)=

∫ θ2

θ1

Re
{

1+ z
f ′′

f ′
(z)
}

dθ >−π, z = reiθ .

To prove this, observe that

Re
{

1+ z
f ′′

f ′
(z)
}
=

∑
k

βk Re
{ zk + z

zk − z

}
=

∑
k

βk
1− r2

|zk − z|2
.

In trying to obtain a lower bound for I we can discard the terms with βk > 0. For
the other terms, we have that∫ θ2

θ1

1− r2

|zk − reiθ |2
dθ < 2π

because of the properties of the Poisson kernel. Hence

I > 2π
∑
βk<0

βk ≥−π,

as desired. �

Example. Avkhadiev and Wirths [2002; 2005; 2007] initiated the study of the
so-called concave mappings, that is, univalent mappings of the disk D onto the
complement of a convex set. As an example of Theorem 4 we can consider a convex
polygon P with∞∈ P and the conformal mapping of D onto the complement of P .
Let πλ be the angle of f (D) at∞, with 1≤ λ≤ 2. It follows from [Avkhadiev and
Wirths 2005] that

f ′(z)= a(z− zn+1)
−λ−1

n∏
k=1

(z− zk)
γk ,

n∑
k=1

γk = λ− 1,

that is, βk =
1
2γk for k = 1, . . . , n, and βn+1 =

1
2(1+ λ). Therefore

n+1∑
k=1

|βk | =
1
2(λ+ 1)+ 1

2(λ− 1)= λ ∈ [1, 2].

Next, we establish the following variant of Theorem 4:

Theorem 5. Let f be defined by (2-6) with
n+1∑
k=1
βk = 1, and suppose that

(2-7)
Im{ f (z)}

Im{z}
> 0 for |z| ≤ 1, Im{z} 6= 0.
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Let θ± be the interior angles of the polygon f (∂D) at f (±1). If

(2-8)
n+1∑
k=1

|βk | ≤ 3+ 1
π

max(θ+−π, 0)+ 1
π

max(θ−−π, 0),

then f is univalent.

The expression on the right-hand side of (2-8) lies in [3, 5], and it is easy to see
that any value in this range can be achieved. Therefore, Theorem 5 gives a better
result than Theorem 4 under the stronger assumption (2-7). The condition (2-7)
implies, in particular, that f (D) is symmetric with respect to R.

Proof of Theorem 5. By (2-7), the polygon P = f (∂D) is symmetric with respect
to R. Hence m := (n+1)/2∈N. We may assume that z1= 1, z2=−1 in (2-6). Then

β1 =
1
2
−
θ+
2π
, β2 =

1
2
−
θ−
2π
,

which satisfy |β1|, |β2| ≤
1
2 . It follows that

1
π

max(θ+−π, 0)=max(−2β1, 0)= |β1| −β1,

1
π

max(θ−−π, 0)=max(−2β2, 0)= |β2| −β2.

Let ϕ± be the conformal mappings of D onto the semidiscs {z ∈ D : Im z ≷ 0}
such that ϕ±(1)= 1, ϕ±(−1)=−1 and ϕ±(±i)=±i . Then

(2-9) P± = f (ϕ±(∂D))= f (∂D∩ {Im z ≷ 0})∪ [ f (−1), f (+1)]

are the upper and lower parts of P union [ f (−1), f (1)]. We may also assume
that βk , k = 3, . . . ,m+ 1, belong to the vertices of P that lie in P+.

Consider the upper polygon P+. The values γk of P+ corresponding to the βk are

γk =

{1
4 +

1
2βk ≥ 0 k = 1, 2,

βk k = 3, . . . ,m+ 1,

(for which
m+1∑
k=1

γk = 1). In light of the symmetry with respect to R, we get

2
m+1∑
k=1

|γk | = 1+β1+β2+

n+1∑
k=3

|βk | = 1+
n+1∑
k=1

|βk | − (|β1| −β1)− (|β2| −β2).

Using (2-8), we conclude that

2
m+1∑
k=1

|γk | ≤ 4,

and it follows from Theorem 4 that f ◦ ϕ+ is univalent in D. The same holds
for f ◦ϕ−.
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By (2-9) we have

f (D)= ( f ◦ϕ+)(D)∪ f ((−1, 1))∪ ( f ◦ϕ−)(D),

which are disjoint unions by (2-7). Hence f is univalent in D. �

3. Separation of prevertices

Let f be a Schwarz–Christoffel mapping taking D onto a convex (n+1)-gon.
Recall that

f ′′

f ′
(z)=

2B(z)
1− zB(z)

,

where B(z) is a Blaschke product of degree n. We write

B(z)= c
n∏

k=1

z− ak

1− ākz
,

where |c| = 1 and all |ak |< 1. The prevertices z1, . . . , zn+1 correspond to the roots
of the equation zB(z)= 1, and after rotating f , we may assume that c = 1. Recall
also that, in this case, any choice of Blaschke product B = B(z) will result in a
univalent mapping f . The separation of consecutive prevertices zk, zk+1 is to be
understood as arg{z̄kzk+1} ∈ (0, 2π).

Theorem 6. Suppose that |ak | ≤ r < 1 for all k. Then:

(i) The minimum separation in argument of consecutive prevertices is given by 2θ ,
where θ is the unique root in (0, π/2) of the equation

(3-1) π = θ + 2n arctan
{1+r

1−r
tan θ

2

}
.

The result is sharp. The optimal configuration occurs when a1 = · · · = an = rc
for some root of the equation cn+1

=−1, and the lower bound is attained for
the prevertices eiθc, e−iθc. The distance between any other pair of consecutive
prevertices will be larger.

(ii) The maximum separation in argument of consecutive prevertices is given by 2ψ ,
where ψ is the unique root in (0, π) of the equation

(3-2) π = ψ + 2n arctan
{1−r

1+r
tan ψ

2

}
.

The result is sharp. The optimal configuration occurs when a1 = · · · = an = rd
for some root of the equation dn+1

= (−1)n , and the upper bound is attained
for the prevertices −eiψd,−e−iψd. The distance between any other pair of
consecutive prevertices will be larger.
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Proof. We must estimate the distance between two consecutive roots a= eiα, b= eiβ

of the equation zB(z)= 1. Because zB(z) traces the boundary ∂D for z ∈ ∂D in a
monotonic way, we must have from (2-2) and (2-4) that

(3-3)
∫ β

α

(1+ |B ′(ei t)|) dt = 2π,

with

|B ′(ei t)| =

n∑
k=1

1− |ak |
2

|ei t − ak |
2 .

(Equation (3-3) shows that 0 < β − α < 2π .) We claim that for α, β fixed, the
contribution of any single summand

(3-4)
∫ β

α

1− |ak |
2

|ei t − ak |
2 dt

will be maximal if |ak | = r and ak/|ak | is the midpoint c of the shorter arc joining
a and b. Let rk = |ak | and write ak = rkei tk . Then∫ β

α

1− |ak |
2

|ei t − ak |
2 dt =

∫ β−tk

α−tk

1− r2
k

|1− rkei t |2
dt.

For rk ≤ r given, this integral is maximal when 1∈ ∂D is the midpoint of the shorter
arc between ei(α−tk) and ei(β−tk). The integral is then equal to∫ θ

−θ

1− r2
k

|1− rkei t |2
dt = 4 arctan

{1+rk
1−rk

tan θ
2

}
,

where 2θ = β −α, and becomes maximal if rk = r . In other words,

(3-5)
∫ β

α

1− |ak |
2

|ei t − ak |
2 dt ≤ 4 arctan

{1+r
1−r

tan θ
2

}
,

which proves our claim for the contribution of any single term, and therefore the
minimum separation between consecutive roots will occur if this holds for all
k = 1, . . . , n. Equation (3-1) follows. The analysis shows that for the extremal
configuration, all ak=rc are equal and that e±iθc are roots of the equation zB(z)=1.
Because B(c)= c, then cB(c)= cn+1, and since zB(z) traces the arc between the
two roots in symmetric fashion with respect to the midpoint, we conclude that
cn+1
=−1. This proves part (i).

For part (ii), we observe that, for rk = |ak | fixed, (3-4) will be minimal provided
−1∈ ∂D is the midpoint of the shorter arc between ei(α−tk) and ei(β−tk). The integral
is then equal to ∫ π+ψ

π−ψ

1− r2
k

|1− rkei t |2
dt = 4 arctan

{1−rk
1+rk

tan ψ
2

}
,
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where 2ψ = β −α, and becomes minimal when rk = r . Thus,

(3-6)
∫ β

α

1− |ak |
2

|ei t − ak |
2 dt ≥ 4 arctan

{1−r
1+r

tan θ
2

}
.

Therefore, the maximum separation between consecutive roots will occur if, for
all k = 1, . . . , n, we have that |ak | = r and ak/r is equal to the midpoint of the
longer arc between a and b. From this, (3-2) follows. As before, the analysis of
the extremal configuration gives ak = rd for all k. The points −e±iψd are roots of
zB(z)= 1, which by symmetry as before implies that dn+1

= (−1)n . �

Corollary 7. Suppose that |ak | ≤ ε for all k. Then the maximum separation 2ψ
and minimum separation 2θ between consecutive prevertices satisfy

(3-7)
π

1+ (1+ 2ε)n
+ O(ε2)≤ θ ≤ ψ ≤

π

1+ (1− 2ε)n
+ O(ε2), ε→ 0.

Proof. For fixed x ∈ [0, π/2], let F(δ) = arctan((1+ δ) tan x). Then F(0) = x ,
F ′(0)= sin x cos x = 1

2 sin 2x and F ′′(0)=−2 sin3 x cos x , hence

F(δ)= x + 1
2 sin 2xδ+ O(δ2), δ→ 0.

Using that (1+ r)/(1− r)= 1+ 2r + O(r2), r→ 0, and that sin 2x ≤ 2x , we see
from (3-1) that the minimum separation θ satisfies

π ≤ θ + 2n
(
θ

2
+ ε sin(θ)+ O(ε2)

)
≤ (1+ (1+ 2ε)n)θ + O(ε2).

This implies the lower bound in (3-7). A similar analysis applies to the maximum
separation ψ , and the upper bound in (3-7) obtains. �

Suppose now that f is a Schwarz–Christoffel mapping taking D onto the com-
plement of a bounded convex (n+2)-gon, with the normalization f (0) =∞. In
this situation, we know that

z
f ′′

f ′
(z)=

2
z2 B(z)− 1

,

where B(z) again is a Blaschke product of degree n. We write

B(z)= c
n∏

k=1

z− ak

1− ākz
,

where |c| = 1 and all |ak |< 1. The prevertices z1, . . . , zn+2 are now given by the
roots of the equation z2 B(z) = 1, and after a rotation of f , we may assume that
c = 1. The following result is obtained in a way similar to Theorem 6, and the
proof will be omitted.

Theorem 8. Suppose that |ak | ≤ r < 1 for all k. Then:
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(i) The minimum separation in argument of consecutive prevertices is given by 2θ ,
where θ is the unique root in (0, π/2) of the equation

π = 2θ + 2n arctan
{1+r

1−r
tan θ

2

}
.

The result is sharp. The optimal configuration occurs when α1 = · · · = αn = rc
for some root of the equation cn+2

=−1, and the lower bound is attained for
the prevertices eiθc, e−iθc. The distance between any other pair of consecutive
prevertices will be larger.

(ii) The maximum separation in argument of consecutive prevertices is given by
2ψ , where ψ is the unique root in (0, π/2) of the equation

π = 2ψ + 2n arctan
{1−r

1+r
tan ψ

2

}
.

The result is sharp. The optimal configuration occurs when α1= · · · = αn = rd
for some root of the equation dn+2

= (−1)n+1, and the upper bound is attained
for the prevertices −eiψd,−e−iψd. The distance between any other pair of
consecutive prevertices will be larger.

A statement similar to Corollary 7 can be made in this case. If |ak | ≤ ε then the
maximum and minimum separation between prevertices satisfy

(3-8)
π

2+ (1+ 2ε)n
+ O(ε2)≤ θ ≤ ψ ≤

π

2+ (1− 2ε)n
+ O(ε2), ε→ 0.

We finish this section with some remarks on the separation of prevertices for
arbitrary polygonal mappings. Suppose f is a mapping of the form given by (1-1),
where after rotation, we may assume expressions for B1, B2 given by

B1(z)=
d1∏

k=1

z− ak

1− ākz
, B2(z)=

d2∏
k=1

z− bk

1− b̄kz
.

Then

ϕ′(t)= 1+ |B ′1(e
i t)| − |B ′2(e

i t)| = 1+
d1∑

k=1

1− |ak |
2

|ei t − ak |
2 −

d2∑
k=1

1− |bk |
2

|ei t − bk |
2 .

Let a = eiα, b= eiβ be consecutive convex prevertices, with separation β−α = 2δ,
and let r be the radius of the smallest centered subdisk that contains the zeros
of B1, B2. We deduce from (2-4) and the estimates (3-5), (3-6), that

(3-9) δ+ 2d1 arctan
x
λ
− 2d2 arctan(λx)≤ π

≤ δ+ 2d1 arctan(λx)− 2d2 arctan
x
λ
,

where λ= 1+r
1−r

and x = tan δ
2

. Thus, for example, with given d1, d2, a relatively
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small separation 2δ can only occur if r is rather close to 1. Because the univalence
of f is no longer guaranteed when B1, B2 are chosen arbitrarily, it seems of interest
to determine under which circumstances the inequalities (3-9) remain sharp. We
provide here a simple example where one can show sharpness in the right-hand
side of (3-9) when d1 = d2 = 1.

Example. Consider the Blaschke products B1, B2 given by

B1(z)=
z+r

1+r z
, B2(z)=

z−r
1−r z

, r ∈ (0, 1),

and let f be defined, up to an affine change, by

f ′′

f ′
=

2B1/B2

1− zB1/B2
=

2(z+ r)(1− r z)
(z− r)(1+ r z)− z(z+ r)(1− r z)

.

In analyzing the roots of zB1= B2, we observe that z3= 1 is one immediate solution.
The other solutions are the roots of

r z2
+ (r2

+ 2r − 1)z+ r = 0,

which are given by

z1,2 =
(1− 2r − r2)±

√
−(1− r2)(r2+ 4r − 1)

2r
.

For r > r0 =
√

5− 2= 0.236 . . . , the discriminant is negative and |z1,2| = 1, with
z1 = z2(=−1) only for r = 1. In the partial fraction decomposition

f ′′

f ′
=−2

(
β1

z− z1
+

β2

z− z2
+

β3

z− z3

)
,

we must have β1 = β2 because of symmetry, while β1+β2+β3 = 1 by equating
coefficients with the above representation for f ′′/ f ′. Recall (2-3), which relates
the exterior angles 2πβk with the boundary function ϕ(t). Here

ϕ′(t)= 1+
1− r2

|1+ rei t |2
−

1− r2

|1− rei t |2
;

hence

ϕ′(0)= 1+
1− r
1+ r

−
1+ r
1− r

.

One readily verifies that ϕ′(0)≤−2 precisely when r ≥ r1= (1+
√

13)/(5+
√

13)=
0.535 . . . , in which case β3 ∈

(
−

1
2 , 0

)
and β1 = β2 ∈

( 1
2 ,

3
4

)
. Thus, for r ≥ r1,

we deduce from Theorem 4 that f is univalent, and z1,2 are convex prevertices,
while z3 is a concave prevertex. The convex vertices f (z1,2) are at infinity, and
the image f (D) corresponds to a half-plane minus a symmetric slit ending at the
concave vertex when r = r1, or a wedge when r > r1.
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Finally, to show sharpness in the right-hand side of (3-9), observe that for r ≥ r1

the conjugate points z1 = z̄2 have negative real part, and thus their separation 2θ
will correspond to the root θ ∈ (0, π/2) of the equation

θ + 2 arctan(λx)− 2 arctan
x
λ
= π.

For consecutive concave prevertices, we deduce in similar fashion that

(3-10) δ+ 2d1 arctan x
λ
− 2d2 arctan(λx)≤−π

≤ δ+ 2d1 arctan(λx)− 2d2 arctan x
λ
,

once again forcing r to be very close to 1 if a small separation is to happen.
A similar analysis can be carried through to obtain information about the sepa-

ration between consecutive convex or concave prevertices in the case of exterior
mappings. The resulting inequalities are analogous to (3-9) and (3-10), with the
single term δ replaced by 2δ. The proof will be omitted.

4. Location of zeros

In this section we study the location of the zeros of the Blaschke products appearing
in the representation formulas (1-1) and (1-4) of Schwarz–Christoffel mappings.
Convex or concave mappings impose no restriction on the location of the zeros,
since in the absence of the Blaschke product B2, (1-1) and (1-4) will always render
univalent mappings. It is probably an ambitious task to determine conditions on B1

and B2 that are both necessary and sufficient for all mappings of the form (1-1) and
(1-4) to be univalent. Nevertheless, some necessary conditions can be established.
We deal first with the case of mappings arising from (1-1). Because 1+Re{z f ′′/ f ′}
will be positive or negative according to whether |zB1|< |B2| or |zB1|> |B2|, it
follows readily from the radius of convexity for the class S that we must have

|zB1(z)|< |B2(z)|, |z| ≤ 2−
√

3.

In particular, all zeros of B2 must lie in the region |z|> 2−
√

3.

Theorem 9. Let f be given by (1-1), with d1, d2 the degrees of the Blaschke prod-
ucts B1, B2, respectively, and suppose that d2 ≥ 1. Suppose that all the zeros
of B1, B2 are contained in the subdisk |z| ≤ r < 1. Then

(4-1) r ≥max
{√

4d1d2+ 9+ 3− 2d2
√

4d1d2+ 9+ 3+ 2d2
,

2d2− 1−
√

1+ 4d1d2

2d2+ 1+
√

1+ 4d1d2

}
.

In particular, if d2 = 1 then

(4-2) r ≥

√
4n+ 5+ 1
√

4n+ 5+ 5
≥

1
2
.
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The estimate (4-2) is sharp for the Koebe function.

Proof. Recall the boundary function ϕ(t) in (2-2). At a concave prevertex ei t0 , the
exterior angle 2πβ0 lies in [−π, 0), and hence β0 lies in

[
−

1
2 , 0

)
. It follows from

(2-3) that
ϕ′(t0)≤−2.

If we write

B1(z)= c1

d1∏
k=1

z− ak

1− ākz
, B2(z)= c2

d2∏
k=1

z− bk

1− b̄kz
,

then

ϕ′(t)= 1+
d1∑

k=1

1− |ak |
2

|ei t − ak |
2 −

d2∑
k=1

1− |bk |
2

|ei t − bk |
2 .

After evaluating at t = t0, a simple estimate gives

1+ d1
1−r
1+r
− d2

1+r
1−r
≤−2.

With s = (1+ r)/(1− r), we obtain

d2s2
− 3s− d1 ≥ 0,

which implies (4-1). If d2 = 1, then d1 = n − 1, which proves the first estimate
in (4-2).

In order to obtain the second estimate, we observe that at a convex prevertex ei t1 ,
the exterior angle 2πβ1 is positive, and therefore ϕ′(t1) > 0. This now gives

1+ d1
1+r
1−r
− d2

1−r
1+r

> 0,

and the second estimate follows.
To show sharpness, we consider the Koebe function k(z) = z/(1− z)2. Then

k ′(z)= (1+ z)/(1− z)3, and thus

k ′′

k ′
(z)= 1

z+1
−

3
z−1

,

which is consistent with a polygonal mapping onto a 2-gon with a concave vertex
with exterior angle −π at k(−1)=−1

4 , and a convex vertex with exterior angle 3π
at k(1)=∞. A calculation gives

k ′′

k ′
(z)=

1/B2(z)
1− z/B2(z)

,

with B2(z)=
(
z+ 1

2

)
/
(
1+ 1

2 z
)
. Then r = 1

2 , which coincides with the lower bound
in (4-2) with n = 1. �
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Remark. The first estimate in (4-1) is the better one when d1 � d2, while the
second will provide better information for d2� d1.

The final theorem describes the analogous situation for mappings of the form
(1-4) onto the complement of polygons. The corresponding boundary function is
now given by

ϕ(t)= arg
{

e2i t B1

B2
(ei t)

}
,

for which
ϕ′(t)= 2+ |B ′1(e

i t)| − |B ′2(e
i t)|.

Since the proof is based on an almost identical analysis, it will be omitted.

Theorem 10. Let f be given by (1-4), with d1, d2 the degrees of the Blaschke
products B1, B2, respectively, and suppose that d2 ≥ 1. Suppose that all the zeros
of B1, B2 are contained in the subdisk |z| ≤ r < 1. Then

(4-3) r ≥max
{√

d1d2+ 4+ 2− d2
√

d1d2+ 4+ 2+ d2
,

d2− 1−
√

1+ d1d2

d2+ 1+
√

1+ d1d2

}
.
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VANISHING VISCOSITY IN THE PLANE
FOR NONDECAYING VELOCITY AND VORTICITY, II

ELAINE COZZI

We consider solutions to the two-dimensional incompressible Navier–Stokes
and Euler equations for which velocity and vorticity are bounded in the
plane. We show that for every T > 0, the Navier–Stokes velocity converges
in L∞([0, T ]; L∞(R2)) as viscosity approaches 0 to the Euler velocity gen-
erated from the same initial data. This improves our earlier results to the
effect that the vanishing viscosity limit holds on a sufficiently short time
interval, or for all time under the assumption of decay of the velocity vector
field at infinity.

1. Introduction

In this paper, we study the vanishing viscosity limit of solutions to the two-
dimensional incompressible Navier–Stokes equations. Recall that the Navier–Stokes
equations modeling incompressible viscous fluid flow on Rn are given by

(NS)


∂t uν + uν · ∇uν − ν1uν =−∇ pν,
div uν = 0,
uν |t=0 = u0

ν .

When ν = 0, the Navier–Stokes equations reduce to the Euler equations modeling
incompressible inviscid fluid flow on Rn:

(E)


∂t u+ u · ∇u =−∇ p,
div u = 0,
u|t=0 = u0.

There are a number of results addressing the vanishing viscosity limit of solutions
of (NS) on Rn under various assumptions on the initial data (see, for example,
[Constantin 1986; Masmoudi 2007; Kelliher 2004; Chemin 1996; Kato 1972;
Swann 1971]). Here we focus our attention on solutions to (NS) and (E) in the plane
with bounded velocity and vorticity which do not necessarily decay at infinity. We
show that such solutions to (NS) converge to solutions of (E) with the same initial

MSC2010: 76D05.
Keywords: fluid mechanics, inviscid limit.
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data in the L∞-norm, where convergence is uniform over any finite time interval.
This result builds upon and is a continuation of work in [Cozzi 2009; 2010]. For
this reason, we will often refer to these articles for background information and
useful estimates.

The existence and uniqueness of solutions to (NS) without any decay assumptions
on the initial velocity is considered by Giga, Inui, and Matsui in [Giga et al. 1999].
The authors establish the short-time existence and uniqueness of mild solutions vν
to (NS) in the space C([0, T0];BUC(Rn)) when initial velocity is in BUC(Rn)

and n ≥ 2. Here BUC(Rn) denotes the space of bounded uniformly continuous
functions on Rn . In [Giga et al. 2001], Giga, Matsui, and Sawada prove that
when n = 2, the unique solution can be extended globally in time. Existence and
uniqueness of solutions to (E) with bounded velocity and vorticity with n = 2 is
due to Serfati [1995]. We briefly discuss these results in Section 2.

In this paper we prove that solutions uν to (NS) of [Giga et al. 2001] converge
uniformly on R2 to Serfati solutions to (E) as viscosity approaches 0, where con-
vergence is uniform over any finite time interval (see Theorem 3). To establish
the result, we apply Littlewood–Paley theory and Bony’s paradifferential calculus
[1981] and follow the general strategy of [Cozzi 2009; 2010]. Specifically, we
consider low and high frequencies of the difference between the solutions to (NS)
and (E) separately. We first show that for fixed t and for any positive integer n,

(1.3) ‖uν(t)− u(t)‖L∞ ≤ n‖uν(t)− u(t)‖B0
∞,∞
+ 2−n

‖ων(t)−ω(t)‖L∞,

where ων = curl uν and ω = curl u. (See [Cozzi 2009] for a definition of the
Besov space B0

∞,∞.) Letting n be a function of ν such that n approaches ∞
as ν approaches 0, we show that the right-hand side of (1.3) approaches 0 as n
approaches∞. Since the second term on the right in (1.3) can be bounded above by
2−n(‖ων(t)‖L∞ +‖ω(t)‖L∞), we have essentially reduced the problem to proving
that the vanishing viscosity limit holds in the B0

∞,∞-norm. Since L∞ embeds
continuously into B0

∞,∞, we expect this problem to be easier than proving that the
vanishing viscosity limit holds in the L∞-norm; however, we must establish a rate
of convergence sufficiently fast to combat the growth of the factor of n in front of
the Besov norm.

Working in the Besov space B0
∞,∞ has several advantages over working in L∞.

Recall that for two-dimensional fluids we can express the Euler velocity gradient in
terms of its vorticity by the relation∇u=∇∇⊥1−1ω. We can also express the Euler
pressure in terms of velocity by the equality p(t)=

∑2
i, j=1 Ri R j ui u j (t), where Ri

denotes the Riesz operator (similar relations hold for the Navier–Stokes velocity,
vorticity, and pressure). The main mathematical obstacle when studying solutions
to fluid equations in L∞ is the lack of boundedness of the Calderon–Zygmund
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operators ∇∇⊥1−1 and R j Ri on L∞. However, if we let1 j denote the Littlewood–
Paley operator which projects in frequency space onto an annulus with inner and
outer radius of order 2 j , then for any j ≥ 0, f ∈ S ′, and Calderon–Zygmund
operator A, we have

(1.4) ‖1 j A f ‖L∞ ≤ ‖1 j f ‖L∞ .

Therefore, when proving estimates in the B0
∞,∞-norm, we can localize the frequen-

cies of (NS) and (E) by applying the Littlewood–Paley operator 1 j to the equations.
We can then estimate the difference 1 j (uν − u) in the L∞-norm using (1.4). The
presence of the Littlewood–Paley operator thus facilitates estimates for velocity
gradients and pressure terms.

In [Cozzi 2009] we proved that when u, uν , ω andων belong to L∞loc(R
+
; L∞(R2)),

there exists T > 0 such that

(1.5) ‖uν − u‖L∞([0,T ];L∞(R2))→ 0 as ν→ 0.

To show (1.5), we reduced the problem to showing that the vanishing viscosity limit
holds in the homogeneous Ḃ0

∞,∞-norm, but we were only able to show convergence
in this norm for short time. In this paper, we show that (1.5) holds for every T > 0 by
showing that the vanishing viscosity limit holds in the inhomogeneous B0

∞,∞-norm
on any finite time interval [0, T ].

We remark that this improvement of our previous result is not a consequence
of using the inhomogeneous norm in place of the homogeneous norm. In fact, we
are able to prove the same convergence result regardless of which Besov norm we
use (the proof using the inhomogeneous norm is cleaner). Rather, in this paper
we are able to improve upon the results in [Cozzi 2009] because we change our
approach when estimating the commutator resulting from an application of the
Littlewood–Paley operator to the nonlinear terms in (NS) and (E). Our approach
here is similar to those in [Vishik 1999; Bahouri and Chemin 1994; Taniuchi et al.
2010]. As a result of our methods, we are able to prove the estimate

(1.6) ‖(uν − u)(t)‖B0
∞,∞
≤ C(T )2−nα

+

∫ t

0
C(2−p

+ p‖(uν − u)(s)‖B0
∞,∞
)

for any p ∈ [2,∞). By choosing p as a logarithmic function of ‖uν − u‖B0
∞,∞

, we
are able to apply Osgood’s lemma, yielding a rate of convergence. In [Cozzi 2009],
our methods only allow us to prove an estimate similar to (1.6) with n in place of p.
Since n is a function of viscosity, we must apply Gronwall’s lemma and introduce a
factor of ent on the right hand side, which prevents us from proving that the inviscid
limit holds on any finite time interval.

The paper is organized as follows. In Section 2, we review properties of nonde-
caying solutions to the fluid equations. In Section 3 and Section 4, we state and
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prove the main result; we devote Section 4 entirely to showing that the vanishing
viscosity limit holds in the B0

∞,∞-norm.
For background information on Littlewood–Paley theory, Bony’s paraproduct

decomposition, Besov spaces, and technical lemmas used throughout the paper, we
refer the reader to Section 2 of [Cozzi 2009].

2. Existence and uniqueness of nondecaying solutions to the fluid equations

In this section, we briefly summarize what is known about nondecaying solutions
to (NS) and (E). We begin with the mild solutions to (NS) established in [Giga et al.
1999]. By a mild solution to (NS), we mean a solution uν of the integral equation

(2.1) uν(t, x)= etν1u0
ν −

∫ t

0
e(t−s)ν1P(uν · ∇uν)(s) ds.

In (2.1), eτν1 denotes convolution with the Gauss kernel; that is, for f ∈ S′,
eτν1 f = Gτν ∗ f , where Gτν(x)= 1/(4πτν) exp(−|x |2/(4τν)). Also, P denotes
the Helmholtz projection operator with i, j component given by δi j + Ri R j , where
Rl = (−1)

−1/2∂l is the Riesz operator. Giga, Inui, and Matsui proved the following
result regarding mild solutions in Rn , n ≥ 2:

Theorem 1 [Giga et al. 1999]. Let BUC denote the space of bounded uniformly
continuous functions, and assume u0

ν belongs to BUC(Rn) for fixed n ≥ 2. There
exists T0 > 0 and a unique solution to (2.1) in the space C([0, T0];BUC(Rn))

with initial data u0
ν . Moreover, if we assume div u0

ν = 0, and if we define pν(t)=∑2
i, j=1 Ri R j uνi uν j (t) for each t ∈ [0, T0], then uν belongs to C∞([0, T0] × Rn)

and solves (NS).

Remark 2.2. For the main theorem of this paper, we assume that u0 and ω0 are
bounded on R2 and that div u0

= 0. These assumptions imply that u0 belongs to
Cα(R2) for every α < 1 and is therefore in BUC(R2) (see, for example, Lemma 4
of [Cozzi 2009]).

Giga, Matsui, and Sawada [2001] showed that when n = 2, the solution to (NS)
established in Theorem 1 can be extended to a global-in-time smooth solution.
Sawada and Taniuchi [2007] showed that if u0

ν and ω0
ν belong to L∞(R2), then the

following exponential estimate holds:

(2.3) ‖uν(t)‖L∞ ≤ C‖u0
ν‖L∞eCt‖ω0

ν‖L∞ .

For ideal incompressible fluids, we have the following result:

Theorem 2 [Serfati 1995]. Let u0 and ω0 belong to L∞(R2), and let c ∈ R. For
every T > 0, there exists a unique solution (u, p) to (E) in the space

L∞([0, T ]; L∞(R2))× L∞([0, T ];C(R2))
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with ω ∈ L∞([0, T ]; L∞(R2)), p(0)= c, and with p(t, x)/|x | → 0 as |x | →∞.

Serfati also proved an estimate analogous to (2.3) for his solutions:

(2.4) ‖u(t)‖L∞ ≤ C‖u0
‖L∞eC1‖ω

0
‖L∞ t .

Finally, we recall that we have a uniform bound in time on the L∞-norms of the
vorticities corresponding to the solutions of (NS) and (E). For fixed ν ≥ 0, we have
that

(2.5) ‖ων(t)‖L∞ ≤ ‖ω
0
ν‖L∞

for all t ≥ 0. One can prove this bound by applying the maximum principle to
the vorticity formulations of (NS) and (E). We refer the reader to Lemma 3.1 of
[Sawada and Taniuchi 2007] for a detailed proof.

3. Statement and proof of the main result

We are now prepared to state the main theorem:

Theorem 3. Let uν be the unique solution to (NS) and u the unique solution to (E),
both with initial data u0 and ω0 belonging to L∞(R2), and with pν and p satisfying
the conditions of Theorems 1 and 2, respectively. Let M be defined by (3.2) below
and let T > 0 be fixed. Then there exists a constant CM,T , increasing with both M
and T , such that the following estimate holds for any fixed α ∈ (0, 1):

(3.1) ‖uν − u‖L∞([0,T ];L∞(R2)) ≤ CM,T
(
2− log(

√
ν)αe−CM,T )

(
√
ν)αe−CM,T

.

Proof. Throughout the proof of Theorem 3, we let M denote a constant, dependent
on T , which satisfies

(3.2) M ≥ 1+ sup
t∈[0,T ]

(‖uν(t)‖L∞ +‖u(t)‖L∞ +‖ων(t)‖L∞ +‖ω(t)‖L∞).

We note that the value of M will change throughout the proof but will always
satisfy (3.2). The existence results in Section 2 imply that M will be finite for any
T > 0.

Let u be the unique Serfati solution to (E), and let uν be the unique solution
to (NS) given by [Giga et al. 2001]. We fix n to be a positive integer and we fix
T > 0. We will eventually choose n = −1

2 log2 ν so that as ν approaches 0, n
approaches∞.
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We begin with the following inequality:

(3.3) ‖uν − u‖L∞([0,T ];L∞) ≤

n∑
j=−1

‖1 j (uν − u)‖L∞([0,T ];L∞)

+

∞∑
j=n+1

‖1 j (uν − u)‖L∞([0,T ];L∞).

We can estimate the second term on the right-hand side of (3.3) using Bernstein’s
lemma and the estimate

(3.4) ‖1 j∇u‖L∞ ≤ ‖1 jω‖L∞ for j ≥ 0.

(Both (3.4) and Bernstein’s lemma can be found in Section 2 of [Cozzi 2009].) We
obtain the inequality

(3.5)
∞∑

j=n+1

‖1 j (uν − u)‖L∞([0,T ];L∞) ≤

∞∑
j=n+1

2− j
‖1 j (∇uν −∇u)‖L∞([0,T ];L∞)

≤ M2−n.

To estimate the first term on the right-hand side of (3.3), we use the definition of
B0
∞,∞ to observe that

(3.6)
n∑

j=−1

‖1 j (uν − u)‖L∞([0,T ];L∞) ≤ Cn‖uν − u‖L∞([0,T ];B0
∞,∞)

.

After substituting (3.6) and (3.5) into (3.3), we conclude that

(3.7) ‖uν − u‖L∞([0,T ];L∞) ≤ Cn‖uν − u‖L∞([0,T ];B0
∞,∞)
+M2−n.

We must estimate the difference of uν and u in the B0
∞,∞-norm. We temporarily

assume that the following estimate holds for all α ∈ (0, 1):

(3.8) ‖uν − u‖L∞([0,T ];B0
∞,∞)
≤ CM,T

(
2− log 2−nαe−CM,T )2−nαe−CM,T

.

Assuming that (3.8) holds, we see from (3.7) and (3.8) that

‖uν − u‖L∞([0,T ];L∞) ≤ CM,T
(
2− log 2−nαe−CM,T )2−nαe−CM,T

.

The estimate (3.1) follows after setting ν = 2−2n . Therefore, to complete the proof
of Theorem 3, it remains to prove (3.8).
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4. Proof of (3.8)

Let un = Snu, ωn = Snω(u), ūn = uν − un , and ω̄n = ων −ωn . Throughout most
of the proof of (3.8), the time t is fixed and suppressed in the calculations.

Fix p ∈ (1,∞) (to be chosen later). We apply Bernstein’s lemma and (3.4) to
establish the estimate

(4.1) ‖uν − u‖B0
∞,∞
≤ sup
−1≤l≤2

‖1l(uν − u)‖L∞ + sup
3≤l≤p

2−l
‖1l(ων −ω)‖L∞

+ sup
l>p

2−l
‖1l(ων −ω)‖L∞ .

The separation of frequencies at l = 2 will simplify estimates in what follows.
We will first consider the difference sup3≤l≤p 2−l

‖1l(ων − ω)‖L∞ . We will
eventually need to estimate the viscosity term ν‖1ω‖L∞ . To facilitate this estimate,
we smooth out the Euler vorticity and write

(4.2) sup
3≤l≤p

2−l
‖1l(ων−ω)‖L∞ ≤ sup

3≤l≤p
2−l
‖1lω̄n‖L∞+ sup

3≤l≤p
2−l
‖1l(ωn−ω)‖L∞

≤ sup
3≤l≤p

2−l
‖1lω̄n‖L∞+sup

l≥n
2−l
‖1l(ωn−ω)‖L∞

≤ sup
3≤l≤p

2−l
‖1lω̄n‖L∞+M2−n,

where we used properties of the Fourier support of ωn to get the second inequality.
We now estimate sup3≤l≤p 2−l

‖1lω̄n‖L∞ . We note that ων and ωn satisfy

(4.3) ∂tων + uν · ∇ων − ν1ων = 0

and

(4.4) ∂tωn + un · ∇ωn =∇ · τn(u, ω),

where τn(u, ω)= (u− un)(ω−ωn)− rn(u, ω) and

rn(u, ω)=
∫
ψ̌0(y)(u(x − 2−n y)− u(x))(ω(x − 2−n y)−ω(x)) dy.

Hereψ0 denotes the Fourier multiplier associated with the Littlewood-Paley operator
1−1. Equation (4.4) was utilized by Constantin and Wu [1996] and by Constantin,
E, and Titi in a proof of Onsager’s conjecture in [Constantin et al. 1994]. We
subtract (4.4) from (4.3) and, for fixed l, we apply the Littlewood–Paley operator
1l to the difference of the two equations. After adding (Sl−2uν) · ∇1lω̄n to both
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sides of the resulting equation, we obtain

(4.5) ∂t1lω̄n + (Sl−2uν) · ∇1lω̄n − ν11lω̄n

= (Sl−2uν) · ∇1lω̄n −1l(uν · ∇ω̄n)

−1l(ūn · ∇ωn)+ ν11lωn −1l∇ · τn(u, ω).

Borrowing notation from [Taniuchi et al. 2010], we define

(4.6) I l,k
= (Sl−2uk

ν)∂k1lω̄n − ∂k1l(uk
νω̄n) and J l,k

=−∂k1l(ūk
nωn).

From (4.5), we see that

(4.7) ∂t1lω̄n + (Sl−2uν) · ∇1lω̄n − ν11lω̄n

=

2∑
k=1

(I l,k
+ J l,k)+ ν11lωn −1l∇ · τn(u, ω).

Since Sl−2uν belongs to L1
loc(R

+
;Lip(R2)) and is divergence-free, we can apply

the following lemma for the transport diffusion equation from [Hmidi 2005].

Lemma 4. Let p ∈ [1,∞], and let u be a divergence-free vector field belonging to
L1

loc(R
+
;Lip(Rd)). Moreover, assume the function f belongs to L1

loc(R
+
; L p(Rd))

and the function a0 belongs to L p(Rd). Then any solution a to the problem{
∂t a+ u · ∇a− ν1a = f,
a|t=0 = a0,

satisfies the estimate

‖a(t)‖L p ≤ ‖a0
‖L p +

∫ t

0
‖ f (s)‖L p ds.

An application of Lemma 4 to (4.7) yields

(4.8) ‖1lω̄n(t)‖L∞ ≤ ‖1lω̄n(0)‖L∞+

∫ t

0

( 2∑
k=1

(
‖I l,k(s)‖L∞+‖J l,k(s)‖L∞

))
ds

+

∫ t

0
(ν‖11lωn(s)‖L∞ +‖1l∇ · τn(u, ω)(s)‖L∞) ds.

Our goal is to establish an upper bound for sup3≤l≤p 2−l
‖1lω̄n(t)‖L∞ . In what

follows, we will estimate each term on the right-hand side of (4.8), multiply by
2−l , and take the supremum over l satisfying 3≤ l ≤ p. Estimates for the last two
terms on the right-hand side of (4.8) follow from work in [Cozzi 2009]. Indeed, in
that paper we used boundedness of the Euler vorticity and membership of the Euler
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velocity in Cα(R2) for any α ∈ (0, 1) to show that for such α,

(4.9) sup
l≥0

2−l
‖1l∇ · τn(u, ω)‖L∞ ≤ ‖∇ · τn(u, ω)‖L∞ ≤ M2−nα.

We also showed there, using Bernstein’s lemma and properties of the Fourier support
of ωn , that

(4.10) sup
l≥0

2−lν‖1l1ωn‖L∞ ≤ 2nν‖ωn‖L∞ ≤ M2−n,

where we set ν = 2−2n . To estimate the initial data, we used the Fourier support of
ω0

n = Snω
0 to write

(4.11) sup
3≤l≤p

2−l
‖1lω̄n(0)‖L∞ ≤ sup

l≥n
2−l
‖1lω̄n(0)‖L∞ ≤ M2−n.

Multiplying (4.8) by 2−l , taking the supremum of (4.8) over l satisfying 3≤ l ≤ p,
and applying the estimates (4.9), (4.10), and (4.11) gives

(4.12) sup
3≤l≤p

2−l
‖1lω̄n(t)‖L∞

≤ M(t + 1)2−nα
+ sup

3≤l≤p
2−l

∫ t

0

( 2∑
k=1

(
‖I l,k(s)‖L∞ +‖J l,k(s)‖L∞

))
ds.

It remains to estimate I l,k and J l,k . We begin with J l,k . We again borrow notation
from [Taniuchi et al. 2010] and use Bony’s paraproduct decomposition to write

(4.13) J l,k
=−∂k1l

∑
| j−l|≤3

j≥1

S j−2ūk
n1 jωn

− ∂k1l

∑
| j−l|≤3

j≥1

1 j ūk
n S j−2ωn

− ∂k1l

∑
| j− j ′|≤1

max{ j, j ′}≥l−3

1 j ūk
n1 j ′ωn

= J l,k
1 + J l,k

2 + J l,k
3 .

We estimate J l,k
1 . Several applications of Bernstein’s lemma give

(4.14) ‖J l,k
1 ‖L∞ ≤ 2l

∑
| j−l|≤3

j≥1

‖S j−2ūn‖L∞‖1 jωn‖L∞

≤ 2l
∑
| j−l|≤3

j≥1

‖1 jω‖L∞
∑

k≤ j−2

‖1k ūn‖L∞ .
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Multiplying by 2−l and taking the supremum over l satisfying 3 ≤ l ≤ p, we
conclude that

(4.15) sup
3≤l≤p

2−l
‖J l,k

1 ‖L∞ ≤ Mp‖ūn‖B0
∞,∞
.

We now estimate J l,k
2 . We write

(4.16) ‖J l,k
2 ‖L∞ ≤ 2l

∑
| j−l|≤3

j≥1

‖1l(1 j ūn S j−2ωn)‖L∞

≤ 2l
∑
| j−l|≤3

j≥1

‖1 j ūn‖L∞‖S j−2ωn‖L∞

so that

(4.17) sup
3≤l≤p

2−l
‖J l,k

2 ‖L∞ ≤ M‖ūn‖B0
∞,∞
.

To estimate J l,k
3 , we use properties of Littlewood–Paley operators to observe that

(4.18) ‖J l,k
3 ‖L∞ ≤ 2l

∑
| j− j ′|≤1

max{ j, j ′}≥l−3

‖1 j ūn‖L∞‖1 j ′ωn‖L∞

≤ C2l
∑

j≥l−3

‖1 j ūn‖L∞‖1 jωn‖L∞ ≤ C2l
‖ω‖L∞‖ūn‖B0

∞,1
.

We estimate the B0
∞,1-norm of ūn as follows: We bound the low frequencies using

the definition of B0
∞,∞, and we estimate the high frequencies using Bernstein’s

lemma, (3.4), and boundedness of vorticity. We have the series of estimates

(4.19) ‖ūn‖B0
∞,1
≤

p∑
j=−1

‖1 j ūn‖L∞+
∑
j>p

2− j
‖1 j ω̄n‖L∞ ≤Cp‖ūn‖B0

∞,∞
+M2−p.

Substituting this estimate into (4.18), multiplying by 2−l and taking the supremum
over l between 3 and p yields the estimate

(4.20) sup
3≤l≤p

2−l
‖J l,k

3 ‖L∞ ≤ M(2−p
+ p‖ūn‖B0

∞,∞
).

Combining the estimates for (4.15), (4.17), and (4.20), we conclude that

(4.21) sup
3≤l≤p

2−l
2∑

k=1

‖J l,k
‖L∞ ≤ M(2−p

+ p‖ūn‖B0
∞,∞
).
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We now estimate I l,k for l satisfying 3≤ l ≤ p. We apply Theorem 6.1 of [Vishik
1999] to write

2∑
k=1

‖I l,k
‖L∞ ≤ C

∑
| j−l|≤3

‖S j−2∇ω̄n‖L∞‖1 j uν‖L∞

+

∑
| j−l|≤3

‖S j−2∇uν‖L∞‖1 j ω̄n‖L∞

+C2l
∑

j≥l−3
| j− j ′|≤1

2− j
‖1 j∇uν‖L∞‖1 j ′ω̄n‖L∞

= X l
1+ X l

2+ X l
3.

To estimate X l
1, keeping in mind that l ≥ 3, we use Bernstein’s lemma and (3.4) to

write ∑
| j−l|≤3

‖S j−2∇ω̄n‖L∞‖1 j uν‖L∞ ≤ C2l
∑
| j−l|≤3

‖S j−2ūn‖L∞‖1 jων‖L∞ .

The remainder of the estimate for X l
1 is identical to that for J l,k

1 . Multiplying by 2−l

and taking the supremum over l between 3 and p, we conclude that

(4.22) sup
3≤l≤p

2−l X l
1 ≤ Mp‖ūn‖B0

∞,∞
.

To estimate X l
2 for 3 ≤ l ≤ p, we again apply Bernstein’s lemma and (3.4) to

write

(4.23) X l
2 =

∑
| j−l|≤3

‖S j−2∇uν‖L∞‖1 j ω̄n‖L∞

≤ C2l
∑
| j−l|≤3

(‖uν‖L∞ + ( j − 1)‖ων‖L∞)‖1 j ūn‖L∞

≤ Ml2l
∑
| j−l|≤3

‖1 j ūn‖L∞ .

To get the first inequality above, we bounded the term ‖S j−2∇uν‖L∞ above by the
sum resulting from the S j−2 operator. We then applied (3.4). After multiplying
(4.23) by 2−l and taking the supremum over l satisfying 3≤ l ≤ p, we find that

(4.24) sup
3≤l≤p

2−l X l
2 ≤ Mp‖ūn‖B0

∞,∞
.
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The estimate for X l
3 is similar to that for J l,k

3 . For l satisfying 3≤ l ≤ p, we write

(4.25) X l
3 = C2l

∑
j≥l−3
| j− j ′|≤1

2− j
‖1 j∇uν‖L∞‖1 j ′ω̄n‖L∞

≤ C2l
∑

j≥l−3

‖1 jων‖L∞‖1 j ūn‖L∞,

where we used Bernstein’s lemma and (3.4) to get the last inequality. We now use
the same argument as in (4.18) and (4.19) to conclude that

(4.26) sup
3≤l≤p

2−l X l
3 ≤ M(2−p

+ p‖ūn‖B0
∞,∞
).

Combining the above estimates for X l
1, X l

2, and X l
3, we have

(4.27) sup
3≤l≤p

2−l
2∑

k=1

‖I l,k
‖L∞ ≤ M(2−p

+ p‖ūn‖B0
∞,∞
).

Applying the estimates (4.21) and (4.27) to (4.12), we conclude that

(4.28) sup
3≤l≤p

2−l
‖1lω̄n(t)‖L∞ ≤C(t+1)2−nα

+M
∫ t

0
(2−p
+ p‖W (s)‖Ḃ0

∞,∞
) ds

for any α ∈ (0, 1). We substitute (4.28) into (4.2). This gives

(4.29) sup
3≤l≤p

2−l
‖1l(ων −ω)(t)‖L∞ ≤ C(t + 1)2−nα

+M
∫ t

0
(2−p
+ p‖ūn(s)‖Ḃ0

∞,∞
) ds.

Inspection of (4.1) reveals that we must still estimate sup−1≤l≤2 ‖1l(uν−u)(t)‖L∞

and supl>p 2−l
‖1l(ων −ω)(t)‖L∞ . These two terms are more straightforward. We

estimate the term supl>p 2−l
‖1l(ων −ω)(t)‖L∞ by observing that

(4.30) sup
l>p

2−l
‖1l(ων −ω)(t)‖L∞ ≤ M2−p.

To estimate sup−1≤l≤2 ‖1l(uν−u)(t)‖L∞ , we use the velocity formulation. Setting
p̄ = pν − p and ū = uν − u, we subtract (E) from (NS). This gives

(4.31) ∂t ū+ uν · ∇ū+ ū · ∇u− ν1ū =−∇ p̄+ ν1uν .

We apply 1l to (4.31) for −1≤ l ≤ 2. This gives

(4.32) ∂t1l ū+ (1luν) · ∇1l ū− ν1l1ū = (1luν) · ∇1l ū−1l(uν · ∇ū)

−1l(ū · ∇u)−1l∇ p̄+ ν1l1uν .
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Again by Lemma 4, we have

(4.33) ‖1l ū(t)‖L∞

≤

∫ t

0

(
‖(1luν · ∇1l ū)(s)‖L∞ +‖1l(uν · ∇ū)(s)‖L∞

+‖1l(ū · ∇u)(s)‖L∞ +‖1l∇ p̄(s)‖L∞ + ν‖1l1uν(s)‖L∞
)

ds.

We have the following straightforward estimates, all which follow from Bernstein’s
lemma and the divergence-free property of the velocity:

(4.34)

‖(1luν) · ∇1l ū‖L∞ ≤ C‖uν‖L∞2l
‖1l ū‖L∞ ≤ M2l

‖ū‖L∞,

‖1l(uν · ∇ū)‖L∞ ≤ C2l
‖uν‖L∞‖ū‖L∞ ≤ M2l

‖ū‖L∞,

‖1l(ū · ∇u)‖L∞ ≤ 2l
‖ū‖L∞‖u‖L∞ ≤ M2l

‖ū‖L∞,

ν‖1l1uν‖L∞ ≤ Cν22l
‖uν‖L∞ ≤ Mν22l .

To estimate the pressure, we follow an argument in [Taniuchi et al. 2010]. For
0≤ l ≤ 2, if ϕl is the Fourier multiplier associated with 1l , then

(4.35) ‖1l∇ p̄‖L∞ =

∥∥∥∥ 2∑
i,i ′=1

Ri Ri ′∇1l
(
ūi ui ′
+ ui

ν ū
i ′)∥∥∥∥

L∞

≤ ‖Ri Ri ′∇ϕ̌l‖L1

∥∥ūi ui ′
+ ui

ν ū
i ′
∥∥

L∞ ≤ M2l
‖ū‖L∞,

where we applied the estimates ‖Ri Ri ′∇ϕ̌l‖L1 ≤ ‖Ri Ri ′∇ϕ̌l‖H1 ≤ ‖∇ϕ̌l‖H1 ≤ C2l

to get the last inequality. For the case l =−1, we apply the same series of estimates
as in (4.35) with ψ̌0 in place of ϕ̌l .

Substituting the estimates (4.34) and (4.35) into (4.33) and taking the supremum
over −1≤ l ≤ 2 yields

(4.36) sup
−1≤l≤2

‖1l ū(t)‖L∞ ≤ M
∫ t

0
(‖ū‖L∞ + 2−2n),

where we used the equality ν = 2−2n . We now apply the embedding B0
∞,1 ↪→ L∞,

along with (4.19), to conclude that

(4.37) sup
−1≤l≤2

‖1l ū(t)‖L∞ ≤ Mt2−2n
+M

∫ t

0
(p‖ū(s)‖B0

∞,∞
+ 2−p) ds.

We substitute the estimates (4.37), (4.29), and (4.30) into (4.1). We conclude that

(4.38) sup
l≥−1
‖1l ū(t)‖L∞ ≤ M(T + 1)2−nα

+M2−p

+

∫ t

0
M(2−p

+ p‖ū(s)‖B0
∞,∞
) ds.
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To complete the proof of (3.8), we will apply Osgood’s lemma to (4.38). We first
note that by the embedding L∞ ↪→ B0

∞,∞,

‖ū(t)‖B0
∞,∞
≤ ‖ū(t)‖L∞ ≤ ‖uν(t)‖L∞ +‖u(t)‖L∞ ≤ M

for all t ∈ [0, T ]. For each t ∈ [0, T ], set

(4.39) δ(t)=

∫ t
0 ‖ū(s)‖B0

∞,∞
ds

MT
≤ 1,

and set p = 2− log δ(t). Then (4.38) reduces to

(4.40) ‖ū(t)‖B0
∞,∞
≤ M(T + 1)2−nα

+M(T + 1)δ(t)+M2T (2− log2 δ(t))δ(t).

Integrating both sides over [0, t] and dividing both sides by MT yields the inequality

(4.41) δ(t)≤ (T + 1)2−nα
+

(
T + 1

T
+M

)∫ t

0
(2− log2 δ(s))δ(s) ds.

We are now in a position to use Osgood’s lemma (see [Chemin and Lerner 1995]):

Lemma 5 (Osgood’s lemma). Let ρ be a measurable positive function, let γ be a
locally integrable positive function, and let µ be a continuous increasing function.
Assume that for some number β > 0, the function ρ satisfies

ρ(t)≤ β +
∫ t

t0
γ (s)µ(ρ(s)) ds.

Then −φ(ρ(t))+φ(β)≤
∫ t

t0
γ (s) ds, where φ(x)=

∫ 1

x

1
µ(r)

dr.

We set µ(r)= r(2− log r), ρ(t)= δ(t), β = (T + 1)2−nα, and

γ (t)= T+1
T
+M := C0(M, T ),

and we apply Osgood’s lemma to obtain, for any t ≤ T ,

− log(2− log δ(t))+ log(2− log((T + 1)2−nα))≤ C0(M, T )t.

Taking the exponential twice gives

(4.42) δ(t)≤ e2−2e−C0(M,T )t
((T + 1)2−nα)e

−C0(M,T )t
.

The inequality (3.8) follows after substituting (4.42) into (4.40) and letting ν= 2−2n .
�
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AFFINE QUANTUM SCHUR ALGEBRAS
AND AFFINE HECKE ALGEBRAS

QIANG FU

Let F be the Schur functor from the category of finite-dimensional HM(r)C-
modules to that of finite-dimensional SM(n, r)C-modules, where HM(r)C is
the extended affine Hecke algebra of type A over C and SM(n, r)C is the
affine quantum Schur algebras over C. The Drinfeld polynomials associ-
ated with F(V ), where V is an irreducible HM(r)C-module, have been previ-
ously determined when n > r . Here we generalize these results to the case
n 6 r . As an application, we recover the classification of finite-dimensional
irreducible SM(n, r)C-modules proved by Deng, Du and Fu using a different
method. As another application, we generalize a result of Green to the affine
case.

1. Introduction

Finite-dimensional irreducible modules for quantum affine algebras were classified
by Chari and Pressley [1991; 1994; 1995; 1997] in terms of Drinfeld polynomials.
Finite-dimensional irreducible modules for HM(r)C were classified in [Zelevinsky
1980; Rogawski 1985], where HM(r)C is the extended affine Hecke algebra of type A
over the complex field C with a non-root of unity. The category of finite-dimensional
HM(r)C-modules and the category of finite-dimensional UC(ŝln)-modules which are
of level r are related by a functor F defined in [Chari and Pressley 1996, §4.2].
Here UC(ŝln) is quantum affine sln over C. Chari and Pressley [loc. cit.] proved that
F is an equivalence of categories if n > r . Furthermore the Drinfeld polynomials
associated with F(V ) were determined in [loc. cit., §7.6] in the case of n> r , where
V is an irreducible HM(r)C-module.

Let UC(ĝln) be quantum affine gln over C. In [Frenkel and Mukhin 2002], finite-
dimensional irreducible polynomial representations of UC(ĝln) were classified. It
was proved in [Deng, Du and Fu 2012, Theorem 3.8.1] that the natural algebra
homomorphism ζr from UC(ĝln) to the affine quantum Schur algebra SM(n, r)C is
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Education Foundation and the Fundamental Research Funds for the Central Universities.
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surjective. Every SM(n, r)C-module can be regarded as a UC(ĝln)-module via ζr .
Let F be the Schur functor from the category of finite-dimensional HM(r)C-modules
to the category of finite-dimensional SM(n, r)C-modules. It was proved in [Deng,
Du and Fu 2012, Theorem 4.1.3 and Proposition 4.2.1] that F is an equivalence of
categories in the case of n > r and that F(V )|UC(ŝln) is isomorphic to F(V ) for any
HM(r)C-module V . Furthermore, using [Chari and Pressley 1996, §7.6], the Drinfeld
polynomials associated with F(V ) were determined in [Deng, Du and Fu 2012,
Theorem 4.4.2] in the case of n > r , where V is an irreducible HM(r)C-module. We
will generalize these results to the case of n 6 r in Theorem 4.9. Using this result,
we will prove in Corollary 4.10 the classification theorem of finite-dimensional
irreducible SM(n, r)C-modules, which was established in [Deng, Du and Fu 2012,
Theorem 4.6.8]. Finally, we will relate the parametrization of irreducible SM(N , r)C-
modules, via the functor G defined in (4.10.1), to the parametrization of irreducible
SM(n, r)C-modules in Theorem 4.11. This result is the affine version of [Green
2007, (6.5f)].

2. Quantum affine gln

Let v ∈ C∗ be a complex number which is not a root of unity, where C∗ = C \ {0}.
Let (ci, j ) be the Cartan matrix of affine type An−1. We recall the Drinfeld’s new
realization of quantum affine gln as follows.

Definition 2.1. The quantum loop algebra UC(ĝln) (or quantum affine gln) is the
C-algebra generated by x±i,s (16 i < n, s ∈ Z), k±1

i , and gi,t (16 i 6 n, t ∈ Z\{0})
with the following relations:

(QLA1) ki k
−1
i = 1= k−1

i ki , [ki , k j ] = 0,

(QLA2) ki x
±

j,s = v
±(δi, j−δi, j+1)x±j,ski , [ki , g j,s] = 0,

(QLA3) [gi,s, x
±

j,t ] =


0 if i 6= j, j + 1,

±v− js([s]/s)x±j,s+t if i = j,

∓v− js([s]/s)x±j,s+t if i = j + 1,

(QLA4) [gi,s, g j,t ] = 0,

(QLA5) [x+i,s, x
−

j,t ] = δi, j (φ
+

i,s+t −φ
−

i,s+t)/(v− v
−1),

(QLA6) x±i,sx
±

j,t=x±j,tx
±

i,s for |i− j |>1, and [x±i,s+1, x
±

j,t ]v±ci j =−[x±j,t+1, x
±

i,s]v±ci j ,

(QLA7) [x±i,s, [x
±

j,t , x
±

i,p]v]v =−[x
±

i,p, [x
±

j,t , x
±

i,s]v]v for |i − j | = 1,

where [x, y]a = xy−ayx , [s] = (vs
− v−s)/(v− v−1), and the φ±i,s are defined via

generating functions in the indeterminate u by

8±i (u) := k̃±1
i exp

(
±(v− v−1)

∑
m>1

hi,±mu±m
)
=

∑
s>0

φ±i,±su±s



AFFINE QUANTUM SCHUR ALGEBRAS AND AFFINE HECKE ALGEBRAS 353

with k̃i = ki/ki+1 (kn+1 = k1) and hi,±m = v±(i−1)mgi,±m − v
±(i+1)mgi+1,±m

(16 i < n).

The algebra UC(ĝln) has another presentation which we now describe. Let
DM,C(n) be the double Ringel–Hall algebra of the cyclic quiver 4(n). By [Deng,
Du and Fu 2012, Theorem 2.3.1], the algebra DM,C(n) has the following presentation.

Lemma 2.2. The double Ringel–Hall algebra DM,C(n) of the cyclic quiver 4(n) is
the C-algebra generated by Ei , Fi , Ki , K−1

i , z+s , z−s , for 1 6 i 6 n, s ∈ Z+, and
relations:

(QGL1) Ki K j = K j Ki , Ki K−1
i = 1,

(QGL2) Ki E j = v
δi, j−δi, j+1 E j Ki , Ki F j = v

−δi, j+δi, j+1 F j Ki ,

(QGL3) Ei F j − F j Ei = δi, j (K̃i − K̃−1
i )/(v− v−1), where K̃i = Ki K−1

i+1,

(QGL4)
∑

a+b=1−ci, j

(−1)a
[

1− ci, j

a

]
Ea

i E j Eb
i = 0 for i 6= j ,

(QGL5)
∑

a+b=1−ci, j

(−1)a
[

1− ci, j

a

]
Fa

i F j Fb
i = 0 for i 6= j ,

(QGL6) z+s z
+
t = z+t z

+
s , z−s z

−
t = z−t z

−
s , z+s z

−
t = z−t z

+
s ,

(QGL7) Kiz
+
s = z+s Ki , Kiz

−
s = z−s Ki ,

(QGL8) Eiz
+
s = z+s Ei , Eiz

−
s = z−s Ei , Fiz

−
s = z−s Fi , and z+s Fi = Fiz

+
s ,

where 16 i, j 6 n, s, t ∈ Z+, and[
c
a

]
=

a∏
s=1

vc−s+1
− v−c+s−1

vs − v−s for c ∈ Z.

It is a Hopf algebra with comultiplication 1, counit ε, and antipode σ defined by

1(Ei )= Ei ⊗ K̃i + 1⊗ Ei , 1(Fi )= Fi ⊗ 1+ K̃−1
i ⊗ Fi ,

1(K±1
i )= K±1

i ⊗ K±1
i , 1(z±s )= z±s ⊗ 1+ 1⊗ z±s ,

ε(Ei )= ε(Fi )= 0= ε(z±s ), ε(Ki )= 1,

σ (Ei )=−Ei K̃−1
i , σ (Fi )=−K̃i Fi , σ (K±1

i )= K∓1
i , σ (z±s )=−z

±
s ,

where 16 i 6 n and s ∈ Z+.

Let UC(ŝln) be the subalgebra of DM,C(n) generated by Ei , Fi , K̃i , K̃−1
i for

i ∈ [1, n]. Beck [1994] proved that UC(ŝln) is isomorphic to the subalgebra of
UC(ĝln) generated by all x±i,s , k̃±1

i , and hi,t . The following result extends Beck’s
isomorphism.
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Lemma 2.3 [Deng, Du and Fu 2012, Proposition 4.4.1]. There is a Hopf algebra
isomorphism

f :DM,C(n)→ UC(ĝln)

such that

K±1
i 7→ k±1

i , E j 7→ x+j,0, F j 7→ x−j,0 (16 i 6 n, 16 j < n),

En 7→ vX̃kn, Fn 7→ v−1̃k−1
n Y, z±s 7→ ∓sv±sθ±s (s > 1),

where

θ±s =∓
1
[s]
(g1,±s + · · ·+ gn,±s),

X= [x−n−1,0, [x
−

n−2,0, . . . , [x
−

2,0, x
−

1,1]v−1 · · · ]v−1]v−1,

Y= [· · · [[x+1,−1, x
+

2,0]v, x
+

3,0]v, . . . , x
+

n−1,0]v.

We now review the classification theorem of finite-dimensional irreducible poly-
nomial UC(ĝln)-modules. We first need to introduce the elements Qi,s ∈ UC(ĝln),
which will be used to define pseudo-highest weight modules. For 1 6 i 6 n and
s ∈ Z, define the elements Qi,s ∈ UC(ĝln) through the generating functions

Q±i (u) := exp
(
−

∑
t>1

1
[t]

gi,±t(vu)±t
)
=

∑
s>0

Qi,±su±s
∈ UC(ĝln)[[u, u−1

]].

For a representation V of UC(ĝln), a nonzero vectorw∈V is called a pseudo-highest
weight vector if there exists some Qi,s ∈ C such that

(2.3.1) x+j,sw = 0, Qi,sw = Qi,sw, kiw = v
λiw

for all 16 i6n and 16 j6n−1 and s∈Z. The module V is called a pseudo-highest
weight module if V =UC(ĝln)w for some pseudo-highest weight vector w. We also
write the short form Q±i (u)w = Q±i (u)w for the relations Qi,sw = Qi,sw (s ∈ Z),
where

Q±i (u)=
∑
s>0

Qi,±su±s .

Let V be a finite-dimensional polynomial representation of UC(ĝln) of type 1.
Then V =⊕λ∈Nn Vλ, where

Vλ = {x ∈ V | k j x = vλ j x, 16 j 6 n},

and, since all Qi,s commute with the k j , each Vλ is a direct sum of generalized
eigenspaces of the form

(2.3.2) Vλ,γ = {x ∈ Vλ | (Qi,s − γi,s)
px = 0 for some p (16 i 6 n, s ∈ Z)},

where γ = (γi,s) with γi,s ∈ C. Let 0±i (u)=
∑
s>0
γi,±su±s .
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A finite-dimensional UC(ĝln)-module V is called a polynomial representation
if the restriction of V to UC(gln) is a polynomial representation of type 1 and, for
every weight λ= (λ1, . . . , λn)∈Nn of V , the formal power series 0±i (u) associated
to the eigenvalues (γi,s)s∈Z defining the generalized eigenspaces Vλ,γ as given
in (2.3.2), are polynomials in u± of degree λi so that the zeroes of the functions
0+i (u) and 0−i (u) are the same.

Following [Frenkel and Mukhin 2002], an n-tuple of polynomials

Q = (Q1(u), . . . , Qn(u))

with constant terms 1 is called dominant if, for each 1 6 i 6 n − 1, the ratio
Qi (v

i−1u)/Qi+1(v
i+1u) is a polynomial. Let Q(n) be the set of dominant n-tuples

of polynomials.
For g(u)=

∏
16i6m

(1− ai u) ∈ C[u] with constant term 1 and ai ∈ C∗, define

(2.3.3) g±(u)=
∏

16i6m

(1− a±1
i u±1).

For Q = (Q1(u), . . . , Qn(u)) ∈ Q(n), define Qi,s ∈ C, for 16 i 6 n and s ∈ Z, by
the formula

Q±i (u)=
∑
s>0

Qi,±su±s,

where Q±i (u) is defined using (2.3.3). Let I (Q) be the left ideal of UC(ĝln)

generated by x+j,s , Qi,s−Qi,s , and ki −v
λi , for 16 j 6 n−1, 16 i 6 n, and s ∈ Z,

where λi = deg Qi (u), and define

M(Q)= UC(ĝln)/I (Q).

Then M(Q) has a unique irreducible quotient, denoted by L(Q). The polynomi-
als Qi (u) are called Drinfeld polynomials associated with L(Q).
Theorem 2.4 [Frenkel and Mukhin 2002]. The UC(ĝln)-modules L(Q) with Q ∈
Q(n) are all nonisomorphic finite-dimensional irreducible polynomial representa-
tions of UC(ĝln).

If Q, Q′ ∈Q(n) satisfies Q j (v
j−1u)/Q j+1(v

j+1u)= Q′j (v
j−1u)/Q′j+1(v

j+1u)
and deg Q j (u)−deg Q j+1(u)= deg Q′j (u)−deg Q′j+1(u) for 16 j 6 n−1, then
L(Q)|UC(ŝln)

∼= L(Q′)|UC(ŝln), by [Deng, Du and Fu 2012, Lemma 4.7.1, Corollary
4.7.2]. Thus we can denote L(Q)|UC(ŝln) by L(P), where P= (P1(u), . . . , Pn−1(u))
with Pj (u)= Q j (v

j−1u)/Q j+1(v
j+1u).

Let P(n) be the set of (n− 1)-tuples of polynomials with constant term 1. The
following result is due to Chari and Pressley [1991; 1994; 1995].

Theorem 2.5. The modules L(P) with P ∈ P(n) are all nonisomorphic finite-
dimensional irreducible UC(ŝln)-modules of type 1.



356 QIANG FU

3. Affine quantum Schur algebras

In this section we collect some facts about extended affine Hecke algebras and
affine quantum Schur algebras, which will be used in Section 4. The extended
affine Hecke algebra HM(r)C is defined to be the algebra generated by

Ti , X±1
j (16 i 6 r − 1, 16 j 6 r),

and relations

(Ti + 1)(Ti − v
2)= 0,

Ti Ti+1Ti = Ti+1Ti Ti+1, Ti T j = T j Ti (|i − j |> 1),

X i X−1
i = 1= X−1

i X i , X i X j = X j X i ,

Ti X i Ti = v
2 X i+1, X j Ti = Ti X j ( j 6= i, i + 1).

Let Sr be the symmetric group with generators si := (i, i + 1) for 16 i 6 r − 1.
Let I (n, r) = {(i1, . . . , ir ) ∈ Zr

| 1 6 ik 6 n, ∀k}. The symmetric group Sr acts
on the set I (n, r) by place permutation:

iw = (iw(1), . . . , iw(r)), for i ∈ I (n, r) and w ∈Sr .

Let �C be a vector space over C with basis {ωi | i ∈Z}. For i = (i1, . . . , ir )∈Zr ,
write

ωi = ωi1 ⊗ωi2 ⊗ · · ·⊗ωir = ωi1ωi2 · · ·ωir ∈�
⊗r
C
.

The tensor space �⊗r
C

admits a right HM(r)C-module structure defined by
ωi · X−1

t = ωi1 · · ·ωit−1ωit+nωit+1 · · ·ωir for all i ∈ Zr ,

ωi · Tk =


v2ωi if ik = ik+1,
vωisk if ik < ik+1,
vωisk + (v

2
− 1)ωi if ik+1 < ik ,

for all i ∈ I (n, r),

where 16 k 6 r − 1 and 16 t 6 r .
The algebra

SM(n, r)C := EndHM(r)C(TM(n, r))

is called an affine q-Schur algebra, where TM(n, r)=�⊗r
C

. Let�n,C be the subspace
of�C spanned byωi with 16 i6n and H(r)C be the subalgebra of HM(r)C generated
by Tk for 16 k 6 r − 1. Then the algebra S(n, r)C := EndH(r)C(T(n, r)) is called
a q-Schur algebra, where T(n, r)=�⊗r

n,C.
The algebras UC(ĝln) and SM(n, r)C are related by an algebra homomorphism ζr ,

which we now describe. For i ∈Z, let ı̄ denotes the corresponding integer modulo n.
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The complex vector space �C is a natural DM,C(n)-module with the action

(3.0.1)
Ei ·ωs = δi+1,s̄ωs−1, Fi ·ωs = δı̄,s̄ωs+1, K±1

i ·ωs = v
±δı̄,s̄ωs,

z+t ·ωs = ωs−tn, z−t ·ωs = ωs+tn.

The Hopf algebra structure induces a DM,C(n)-module �⊗r
C

. By [Deng, Du and Fu
2012, Proposition 3.5.5], the actions of DM,C(n) and HM(r)C on �⊗r

C
are commute.

We will identify DM,C(n) and UC(ĝln) via the algebra isomorphism f defined in
Lemma 2.3. Consequently, there is an algebra homomorphism

ζr : UC(ĝln)=DM,C(n)→ SM(n, r)C.

It is proved in [Deng, Du and Fu 2012, Theorem 3.8.1] that ζr is surjective. Let
UC(gln) be the subalgebra of DM,C(n) generated by Ei , Fi , K j , K−1

j for 16 i 6n−1
and 1 6 j 6 n. The restriction of ζr to UC(gln) induces a surjective algebra
homomorphism ζr : UC(gln)→ S(n, r)C (see [Jimbo 1986]). Every SM(n, r)C-
module (resp., S(n, r)C-module) will be inflated into a UC(ĝln)-module (resp.,
UC(gln)-module) via ζr .

The following easy lemma relates �⊗r
C

with �⊗r
n,C.

Lemma 3.1 [Deng, Du and Fu 2012, Lemma 4.1.1]. There is a UC(gln)-HM(r)C-
bimodule isomorphism

�⊗r
n,C⊗H(r)C HM(r)C −→∼ �⊗r

C
, x ⊗ h 7→ xh.

The irreducible HM(r)C-modules were classified in [Zelevinsky 1980; Rogawski
1985], which we now describe. For a = (a1, . . . , ar ) ∈ (C

∗)r , let Ma =HM(r)C/Ja,
where Ja is the left ideal of HM(r)C generated by X j − a j for 16 j 6 r .

A segment s with center a ∈ C∗ is by definition an ordered sequence

s= (av−k+1, av−k+3, . . . , avk−1) ∈ (C∗)k .

Here k is called the length of the segment, denoted by |s|. If s = {s1, . . . , sp} is an
unordered collection of segments, define ℘(s) to be the partition associated with the
sequence (|s1|, . . . , |sp|). That is, ℘(s) = (|si1 |, . . . , |si p |) with |si1 | > · · · > |si p |,
where |si1 |, . . . , |si p | is a permutation of |s1|, . . . , |sp|. We also call |s| := |℘(s)|
the length of s.

Let Sr be the set of unordered collections of segments s with |s| = r . Then
Sr =

⋃
µ∈3+(r) Sr,µ, where Sr,µ = {s ∈ Sr | ℘(s) = µ} and 3+(r) is the set of

partitions of r .
If w = si1si2 · · · sim is reduced let Tw = Ti1 Ti2 · · · Tim . For p > 1 let

(3.1.1) 3(p, r)=
{
µ ∈ Np

∣∣∣ ∑
16i6p

µi = r
}



358 QIANG FU

For µ ∈ 3(p, r) let Sµ be the corresponding standard Young subgroup of the
symmetric group Sr , and let Dµ = {d ∈Sr | `(wd) = `(w)+ `(d) for w ∈Sµ}.
For µ ∈3(p, r) let

(3.1.2) Iµ =H(r)C yµ,

where
yµ =

∑
w∈Sµ

(−v2)−`(w)Tw ∈H(r)C.

For s={s1, . . . , sp}∈Sr,µ, let a(s)= (s1, . . . , sp)∈ (C
∗)r be the r -tuple obtained by

juxtaposing the segments in s. Let ι :H(r)C→ Ma(s) be the natural H(r)C-module
isomorphism defined by sending h to h̄. Let

Iµ = ι(Iµ)=H(r)C ȳµ =HM(r)C ȳµ.

Then,

(3.1.3) H(r)C yµ ∼= Eµ⊕
(⊕
ν`r
νBλ

mν,µEν

)
,

where Eν is the left cell module defined by the Kazhdan–Lusztig’s C-basis [1979]
associated with the left cell containing w0,ν .

Let Vs be the unique composition factor of the HM(r)C-module HM(r)C ȳµ such
that the multiplicity of Eµ in Vs as an H(r)C-module is nonzero.

The following classification theorem is due to [Zelevinsky 1980; Rogawski
1985].

Theorem 3.2. The modules Vs with s∈Sr are all nonisomorphic finite-dimensional
irreducible HM(r)C-modules.

Let SM(n, r)C-mod (resp., HM(r)C-mod) be the category of finite-dimensional
SM(n, r)C-modules (resp., HM(r)C-modules). The categories SM(n, r)C-mod and
HM(r)C-mod are related by the Schur functor F, which we now define. Using the
SM(n, r)C-HM(r)C-bimodule �⊗r

C
, we define a functor

(3.2.1) F= Fn,r :HM(r)C-mod→ SM(n, r)C-mod, V 7→�⊗r
C
⊗HM(r)C V .

Let
S(n)r = {s = {s1, . . . , sp} ∈ Sr , p > 1, |si |6 n, ∀i}.

The following classification theorem is given in [Deng, Du and Fu 2012, Theo-
rems 4.3.4 and 4.5.3].

Lemma 3.3. For s ∈ Sr we have F(Vs) 6= 0 if and only if s ∈ S(n)r . Furthermore,
the set

{F(Vs) | s ∈ S(n)r }
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is a complete set of nonisomorphic finite-dimensional irreducible SM(n, r)C-modules.

The following result, which will be used in Theorem 4.9, is taken from [Chari
and Pressley 1996, §7.6; Deng, Du and Fu 2012, Theorem 4.4.2 and Lemma 4.6.5].

Lemma 3.4. Assume n > r . Let s = (av−r+1, av−r+3, . . . , avr−1) be a single
segment and µ = ℘(s) = (r). Then Vs = Iµ and F(Vs) ∼= L(Q), where Q =
(Q1(u), . . . , Qn(u)) with

Qn(u)= (1− av−n+1u)δn,r ,

Qi (uvi−1)

Qi+1(uvi+1)
= (1− au)δi,r for 16 i 6 n− 1.

4. Identification of irreducible SM(n, r)C-modules

In this section we will prove that F(I℘(s)) is isomorphic to the tensor product
of irreducible SM(n, r)C-modules for s ∈ S(n)r and F(I℘(s)) = 0 for s 6∈ S(n)r in
Proposition 4.6. Using this result, we will relate the parametrization of irreducible
HM(r)C-modules, via the functor F defined in (3.2.1), to the parametrization of finite-
dimensional irreducible polynomial representations of UC(ĝln) in Theorem 4.9. As
applications, we will classify finite-dimensional irreducible SM(n, r)C-modules in
Corollary 4.10, and generalize [Green 2007, (6.5f)] to the affine case.

To compute F(I℘(s)), we need Proposition 4.3 of [Rogawski 1985], which we
now describe. For 16 j 6 p, let Hµ, j be the subalgebra of H(r)C generated by Ti

with si ∈Sµ( j) , where

µ( j)
= (1µ[1, j−1], µ j , 1r−µ[1, j]),

and µ[1, j] = µ1+µ2+ · · · +µ j . Since Hµ, j ∼=H(µ j )C for 16 j 6 p and �⊗µ j
n,C

is a right H(µ j )C-module, �⊗µ j
n,C can be also regarded as a right Hµ, j -module.

Recall the notation Iµ defined in (3.1.2). For µ ∈3(p, r) and 16 j 6 p let

Jµ =
⋂

si∈Sµ
16i6r−1

H(r)CCi , Jµ, j =
⋂

si∈Sµ( j)
16i6r−1

Hµ, j Ci , and Iµ, j =Hµ, j yµ( j) .

where Ci = v
−1Ti − v and yµ( j) =

∑
w∈S

µ( j)

(−v2)−`(w)Tw. By Proposition 4.3 of
[Rogawski 1985] we have:

Lemma 4.1. We have Iµ = Jµ, Iµ, j = Jµ, j for µ ∈3(p, r) and 16 j 6 p.

Lemma 4.2. Assume I is a left ideal of H(r)C. Then �⊗r
n,C⊗H(r)C I ∼=�⊗r

n,C I .
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Proof. Since H(r)C is semisimple, there exist a left ideal J of H(r)C such that
H(r)C = I ⊕ J . Then �⊗r

n,C
∼=�

⊗r
n,C⊗H(r)C H(r)C ∼=�⊗r

n,C⊗H(r)C I ⊕�⊗r
n,C⊗H(r)C J .

Thus the natural linear map f :�⊗r
n,C⊗H(r)C I →�⊗r

n,C defined by sending w⊗ h to
wh is injective. Consequently, �⊗r

n,C⊗H(r)C I ∼= Im( f )=�⊗r
n,C I . �

By Lemmas 3.1, 4.1, and 4.2 we conclude that F(Iµ)∼=�⊗r
n,C⊗H(r)C Jµ∼=�

⊗r
n,CJµ,

where µ= ℘(s) for some s ∈ Sr . We now compute �⊗r
n,CJµ.

Lemma 4.3. For µ ∈3(p, r), we have

�⊗r
n,CJµ =�

⊗µ1
n,C Jµ,1⊗ · · ·⊗�

⊗µp
n,C Jµ,p.

Proof. Since Jµ =
⋂

16 j6p Jµ( j) we have �⊗r
n,CJµ ⊆

⋂
16 j6p

(
�⊗r

n,CJµ( j)
)
. Fur-

thermore by Lemma 4.1 we have Jµ( j) = Iµ( j) = Xµ, j Iµ, j = Xµ, j Jµ, j where
Xµ, j = span{Tw | w ∈ D−1

µ( j)}. This implies that

�⊗r
n,CJµ( j) =�⊗r

n,CJµ, j =�
µ1
n,C⊗ · · ·⊗�

µ j−1
n,C ⊗�

⊗µ j
n,C Jµ j ⊗�

⊗µ j+1
n,C ⊗ · · ·⊗�

⊗µp
n,C

for 16 j 6 p. Thus,

�⊗r
n,CJµ ⊆

⋂
16 j6p

(
�
µ1
n,C⊗ · · ·⊗�

µ j−1
n,C ⊗�

⊗µ j
n,C Jµ j ⊗�

⊗µ j+1
n,C ⊗ · · ·⊗�

⊗µp
n,C

)
=�

⊗µ1
n,C Jµ,1⊗ · · ·⊗�

⊗µp
n,C Jµ,p.

On the other hand, we assume w1h1⊗· · ·⊗wph p ∈�
⊗µ1
n,C Jµ,1⊗· · ·⊗�

⊗µp
n,C Jµ,p,

where w j ∈ �
⊗µ j
n,C and h j ∈ Jµ, j . Since hkhl = hlhk for any k, l and h j ∈ Jµ, j ,

we have h1h2 · · · h p = (h1 · · · h j−1h j+1 · · · h p)h j ∈ H(r)CJµ, j ⊆ H(r)CCi for
1 6 i 6 r − 1, 1 6 j 6 p with si ∈ Sµ( j) . This implies that h1h2 · · · h p ∈ Jµ.
It follows that w1h1 ⊗ · · · ⊗ wph p = (w1 ⊗ · · · ⊗ wp)h1 · · · h p ∈ �

⊗r
n,CJµ. The

assertion follows. �

For µ ∈3(p, r) and 16 j 6 p, let H̃µ, j be the subalgebra of HM(r)C generated
by Ti and Xµ[1, j−1]+1, . . . , Xµ[1, j] with si ∈Sµ( j) . Since H̃µ, j ∼=HM(µ j )C and �⊗µ j

C

is a right HM(µ j )C-module, one can regard �⊗µ j
C

as a right H̃µ, j -module.
For s = {s1, . . . , sp} ∈ Sr,µ, let a = (s1, . . . , sp) ∈ (C

∗)r be the r -tuple obtained
by juxtaposing the segments in s. For 16 j 6 p let Iµ, j be the left ideal of H̃µ, j

generated by Xk − ak for µ[1, j−1]+ 16 k 6 µ[1, j]. Let ι j :Hµ, j → H̃µ, j/Iµ, j be
the natural Hµ, j -module isomorphism defined by sending h to h̄. Let

Iµ, j = ι j (Iµ, j )=Hµ, j ȳµ( j) = H̃µ, j ȳµ( j) .

By Lemma 4.3 we have the following corollary.

Corollary 4.4. Maintain the notation above. There is a UC(gln)-module isomor-
phism

ϕ : (�
⊗µ1
C
⊗H̃µ,1

Īµ,1)⊗ · · ·⊗ (�
⊗µp
C
⊗H̃µ,p

Īµ,p)→ F(Īµ)
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such that ϕ(w1⊗ h̄1⊗· · ·⊗wp⊗ h̄ p)=w1⊗· · ·⊗wp⊗ h1 · · · h p for w j ∈�
⊗µ j
n,C

and h j ∈ Iµ, j with 16 j 6 p.

Proof. Combining Lemmas 3.1, 4.1 with 4.2 yields F(Iµ) ∼= �
⊗r
n,C ⊗H(r)C Jµ ∼=

�⊗r
n,CJµ and �⊗µ j

C
⊗H̃µ, j

Iµ, j ∼=�
⊗
µ j

n,C ⊗Hµ, j Jµ, j ∼=�
⊗
µ j

n,C Jµ, j for 16 j 6 p. This,
together with Lemma 4.3, implies the assertion. �

We now prove that ϕ is in fact a UC(ĝln)-module isomorphism.

Lemma 4.5. The map ϕ is a UC(ĝln)-module homomorphism.

Proof. Let u ∈ UC(ĝln) and w = w1⊗ h̄1⊗ · · ·⊗wp⊗ h̄ p ∈ (�
⊗µ1
C
⊗H̃µ,1

Īµ,1)⊗

· · · ⊗ (�
⊗µp
C
⊗H̃µ,p

Īµ,p), where wi ∈ �
⊗µi
n,C and hi ∈ Iµ,i for 1 6 i 6 p. Assume

1(p−1)(u)=
∑

(u) u1⊗· · ·⊗u p, uiwi =
∑

ki
wi,ki gi,ki and gi,ki hi =

∑
ji gi,ki , ji X ji ,

where wi,ki ∈�
⊗µi
n,C , gi,ki ∈ H̃µ,i , and gi,ki , ji ∈Hµ,i , X ji ∈ H̃µ,i . Then

gi,ki (ιi (hi ))= gi,ki hi =
∑

ji

a ji gi,ki , ji .

Hence,

uw =
∑
(u)

u1w1⊗ h̄1⊗ · · ·⊗ u pwp⊗ h̄ p

=

∑
(u)

∑
k1,...,kp

w1,k1 ⊗ g1,k1 h̄1⊗ · · ·⊗wp,kp ⊗ gp,kp h̄ p

=

∑
(u)

∑
k1,...,k p
j1,..., jp

a j1 · · · a jpw1,k1 ⊗ g1,k1, j1 ⊗ · · ·⊗wp,kp ⊗ gp,kp, jp .

Since

g1,k1 · · · gp,kp h1 · · · h p = g1,k1h1 · · · gp,kp h p =
∑

j1,..., jp

a j1 · · · a jp g1,k1, j1 · · · gp,kp, jp ,

we conclude that

ϕ(uw)=
∑
(u)

∑
k1,...,k p
j1,..., jp

a j1 · · · a jpw1,k1 ⊗ · · ·⊗wp,kp ⊗ g1,k1, j1 · · · gp,kp, jp

=

∑
(u)

∑
k1,...,kp

w1,k1 ⊗ · · ·⊗wp,kp ⊗ g1,k1 · · · gp,kp h1 · · · h p

=

∑
(u)

u1w1⊗ · · ·⊗ u pwp⊗ h1 · · · h p

= u(w1⊗ · · ·⊗wp⊗ h1 · · · h p)

= uϕ(w). �
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We can now describe F(I℘(s)) as follows.

Proposition 4.6. Let s = {s1, . . . , sp} ∈ Sr,µ with si = (aiv
−µi+1, aiv

−µi+3, . . . ,

aiv
µi−1). Then F(Iµ) = 0 for s 6∈ S(n)r and F(Īµ) ∼= L(Q1)⊗ · · · ⊗ L(Q p) for

s ∈ S(n)r , where Qi = (Qi,1(u), . . . , Qi,n(u)) with Qi,n(u) = (1− aiv
−n+1u)δµi ,n

and Qi, j (uv j−1)/Qi, j+1(uv j+1)= (1− ai u)δ j,µi for 16 i 6 p and 16 j 6 n− 1.

Proof. Since Iµi
∼= Vsi for 16 i 6 p, by Corollary 4.4 and Lemma 4.5 we conclude

that F(Iµ)= Fn,r (Iµ)∼= Fn,µ1(Vs1)⊗· · ·⊗Fn,µp(Vsp). If s 6∈S(n)r , then there exists
1 6 k 6 p such that |sk | = µk > n. By Lemma 3.3 we have Fn,µk (Vsk ) = 0 and
hence F(Iµ)= 0. If s ∈ S(n)r , then by Lemma 3.4 we have Fn,µi (Vsi )

∼= L(Qi ) for
16 i 6 p. Consequently, F(Iµ)∼= L(Q1)⊗ · · ·⊗ L(Q p). �

We now turn to studying F(Vs) for s ∈ S(n)r . To compute F(Vs), we need to
generalize [Chari and Pressley 1996, §7.2] to the case of n 6 r . Recall the notation
3(n, r) defined in (3.1.1). Let3+(n, r)=3(n, r)∩3+(r). For λ∈Nn let L(λ) be
the irreducible UC(gln)-module with highest weight λ. For 16 i 6n, let ki = ζr (Ki )

and [
ki ; 0

t

]
=

t∏
s=1

kiv
−s+1
− k−1

i vs−1

vs − v−s .

For µ ∈ Nn let kµ =
[ k1;0
µ1

]
· · ·
[ kn;0
µn

]
. The following result is the generalization of

[Chari and Pressley 1996, §7.2].

Lemma 4.7. Let µ ∈ 3+(r). Then �⊗r
n,C ⊗H(r)C Eµ 6= 0 if and only if µ′ ∈

3(n, r), where µ′ is the dual partition of µ. Furthermore if µ′ ∈ 3+(n, r), then
�⊗r

n,C⊗H(r)C Eµ ∼= L(µ′).

Proof. We choose N such that N >max{n, r}. Let e =
∑

µ∈3(n,r) kµ ∈ S(N , r)C.
It is well known that for µ ∈3+(N , r), eL(µ) 6= 0 if and only if µ ∈3(n, r) (see
[Green 2007, (6.5f)]). Furthermore by [Chari and Pressley 1996, §7.2; Deng, Du and
Fu 2012, Lemma 4.3.3] we have �⊗r

n,C⊗H(r)C Eµ ∼= e
(
�⊗r

N ,C⊗H(r)C Eµ
)
∼= e(L(µ′)).

Thus �⊗r
n,C ⊗H(r)C Eµ 6= 0 if and only if µ′ ∈ 3(n, r). If µ′ ∈ 3+(n, r), then

�⊗r
n,C⊗H(r)C Eµ ∼= e(L(µ′))∼= L(µ′). �

In the case of n > r , the Drinfeld polynomials associated with F(Vs) were
calculated for s ∈ S(n)r in [Chari and Pressley 1996, §7.6; Deng, Du and Fu 2012,
Theorem 4.4.2]. We are now prepared to use Proposition 4.6 and Lemma 4.7 to
generalize these results to the case of n 6 r in Theorem 4.9.

Let Q(n)r = {Q ∈ Q(n) |
∑

16i6n deg Qi (u) = r}. For s = {s1, . . . , sp} ∈ S(n)r

with
si = (aiv

−µi+1, aiv
−µi+3, . . . , aiv

µi−1) ∈ (C∗)µi ,
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define Qs = (Q1(u), . . . , Qn(u)) by setting Qn(u)=
∏

16i6p
µi=n

(1− ai uv−n+1) and

Qi (u)= Pi (uv−i+1)Pi+1(uv−i+2) · · · Pn−1(uvn−2i )Qn(uv2(n−i))

for 16 i 6 n− 1, where

Pi (u)=
∏

16 j6p
µ j=i

(1− a j u).

Then ∑
16i6n

deg Qi (u)= n deg Qn(u)+
∑

16i6n−1

i deg Pi (u)=
∑

16i6p

µi = r.

So Qs ∈ Q(n)r . Consequently, we obtain a map ∂n,r : S
(n)
r → Q(n)r defined by

sending s to Qs.

Lemma 4.8. The map ∂n,r : S
(n)
r → Q(n)r is bijective.

Proof. It is clear that ∂n,r is injective. Let Q = (Q1(u), . . . , Qn(u)) ∈ Q(n)r and
let λ ∈3(n, r), with λi = deg Qi (u). For 16 j 6 n− 1 let

Pj (u)=
Q j (uv j−1)

Q j+1(uv j+1)

and ν j = deg Pj (u)= λ j − λ j+1. We write, for 16 i 6 n− 1,

Pi (u)= (1− aν1+···+νi−1+1u)(1− aν1+···+νi−1+2u) · · · (1− aν1+···+νi−1+νi u),

and Qn(u)= (1−b1u) · · · (1−bλn u). Let p′ =
∑

16i6n−1 νi and p = p′+λn . Let
s = {s1, . . . , sp}, where

si =

{
(aiv

−µi+1, aiv
−µi+3, . . . , aiv

µi−1) for 16 i 6 p′,
(bi−p′, bi−p′v

2, . . . , bi−p′v
2(n−1)) for p′+ 16 i 6 p,

and (µ1, . . . , µp′)= (1ν1, . . . , (n− 1)νn−1). Since∑
16i6p

|si | =
∑

16 j6p′
µ j + nλn =

∑
16i6n−1

iνi + nλn =
∑

16i6n

λi = r,

we have s ∈ S(n)r . It is easy to see that ∂n,r (s)= Q. Thus ∂n,r is surjective. �

Theorem 4.9. For s = {s1, . . . , sp} ∈ S(n)r with si = (aiv
−µi+1, aiv

−µi+3, . . . ,

aiv
µi−1), we have F(Vs) ∼= L(Qs), where Qs = ∂n,r (s). In particular, we have

F(Vs)|UC(ŝln)
∼= L(P), where

Pi (u)=
∏

16 j6p
µ j=i

(1− a j u) for 16 i 6 n− 1.
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Proof. Let W = F(Īµ). By Proposition 4.6 we have W ∼= L(Q1)⊗ · · ·⊗ L(Q p),
where Qi = (Qi,1(u), . . . , Qi,n(u)) with Qi,n(u)= (1− aiv

−n+1u)δµi ,n and

Pi, j (u) :=
Qi, j (uv j−1)

Qi, j+1(uv j+1)
= (1− ai u)δ j,µi

for 16 i 6 p and 16 j 6 n− 1. We will identify W with L(Q1)⊗ · · ·⊗ L(Q p).
Let w=w1⊗· · ·⊗wp ∈W , where wi is the pseudo-highest weight vector in L(Qi ).
Then by [Chari and Pressley 1996, §6.3; Frenkel and Mukhin 2002, Lemma 4.1]
we conclude that w is the pseudo-highest weight vector in W such that kiw= v

λiw

and Q±i (u)w = Q±i (u)w for 16 i 6 n, where λi = deg Q+i (u),

Q±n (u)=
∏

16i6p

Q±i,n(u)=
∏

16i6p

(1− (ai u)±1v±(−n+1))δµi ,n

=

∏
16i6p
µi=n

(1− (ai u)±1v±(−n+1))

and

P±j (u) :=
Q±j (v

j−1u)

Q±j+1(v
j+1u)

=

∏
16i6p

P±i, j (u)

=

∏
16i6p

(1− (ai u)±1)δ j,µi =

∏
16i6p
µi= j

(1− (ai u)±1)

for 16 j 6 n− 1. By definition we have Qs = (Q+1 (u), . . . , Q+n (u)). Since

λ j = deg Q+j (u)= λn +
∑

j6s6n−1

deg P+s (u)=
∣∣{16 i 6 p | µi > j}

∣∣
for 16 j 6 n, we have λ= (λ1, . . . , λn)= µ

′.
Let L = F(Vs). Since Vs is a semisimple H(r)C-module, by Lemmas 3.1 and 4.7

we have [L : L(λ)] = [L :�⊗r
n,C⊗H(r)C Eµ] = [�⊗r

n,C⊗H(r)C Vs :�
⊗r
n,C⊗H(r)C Eµ] =

[Vs : Eµ] = 1. Thus

(4.9.1) dim Lλ = 1.

Since Vs is the irreducible subquotient of Iµ, there is a surjective UC(ĝln)-module
homomorphism f : M → L , where M is a certain submodule of W . Since 1 =
dim Lλ 6 dim Mλ 6 dim Wλ = 1, we conclude that dim Mλ = dim Wλ = 1. Hence
Mλ =Wλ = span{w} and Lλ = span{ f (w)}. By (4.9.1) we have f (w) 6= 0. Since
f is a UC(ĝln)-module homomorphism, f (w) is the pseudo-highest weight vector
in L such that ki f (w) = f (kiw) = v

λi f (w) and Q±i (u) f (w) = f (Q±i (u)w) =
Q±i (u) f (w) for 16 i 6 n. This implies that L is the irreducible quotient module
of M(Qs) and hence L ∼= L(Qs). �
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Combining Lemmas 3.3, 4.8 with 4.9 yields the following classification theorem
of irreducible SM(n, r)C-modules, which was proved as Theorem 4.6.8 in [Deng,
Du and Fu 2012] using a different approach.

Corollary 4.10. The set {L(Q) | Q ∈ Q(n)r } is a complete set of nonisomorphic
finite-dimensional irreducible SM(n, r)C-modules.

Finally we will use Theorem 4.9 to generalize [Green 2007, (6.5f)] to the affine
case in Theorem 4.11. Assume N > n. Let e =

∑
λ∈3(n,r) kλ ∈ SM(N , r)C. Then

eSM(N , r)Ce ∼= SM(n, r)C. Consequently, the categories eSM(N , r)Ce-mod and
SM(n, r)C-mod may be identified. With this identification, we define a functor

(4.10.1) G= GN ,n,r : SM(N , r)C-mod→ SM(n, r)C-mod, V 7→ eV .

Then by definition we have GN ,n,r ◦ FN ,r = Fn,r . For Q = (Q1(u), . . . , Qn(u)) ∈
Q(n)r let Q̃=(Q1(u), . . . , Qn(u), 1, . . . , 1)∈Q(N )r . Let Q̃(n)r={ Q̃ | Q∈ Q(n)r }
⊆ Q(N )r . Clearly, by definition, we have

(4.10.2) ∂N ,r (s)= ∂̃n,r (s) for s ∈ S(n)r .

Theorem 4.11. Assume N > n. Then G(L( Q̃)) ∼= L(Q) for Q ∈ Q(n)r . In
particular we have dim L( Q̃)α = dim L(Q)α for α ∈ 3(n, r). Furthermore, for
Q′ ∈ Q(N )r , G(L(Q′)) 6= 0 if and only if Q′ ∈ Q̃(n)r .

Proof. If Q ∈ Q(n)r then by Lemma 4.8 we conclude that there exist s ∈ S(n)r such
that Q=∂n,r (s). By Theorem 4.9 and (4.10.2) we have L( Q̃)∼=TM(N , r)⊗HM(r)C Vs.
So by [Deng, Du and Fu 2012, Lemma 4.3.3] and Theorem 4.9 we have

G(L( Q̃))∼= (eTM(N , r))⊗HM(r)C Vs ∼= TM(n, r)⊗HM(r)C Vs ∼= L(Q).

By [Green 2007, (6.2g)], the set {G(L(Q′)) 6= 0 | Q′ ∈Q(N )r } forms a complete set
of non-isomorphic irreducible SM(n, r)C-modules. This together with Corollary 4.10
implies that {G(L(Q′)) 6= 0 | Q′ ∈Q(N )r }= {G(L( Q̃)) | Q ∈Q(n)r }. Consequently,
G(L(Q′)) 6= 0 if and only if Q′ ∈ Q̃(n)r . �
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ON THE CLASSIFICATION OF KILLING SUBMERSIONS
AND THEIR ISOMETRIES

JOSÉ M. MANZANO

A Killing submersion is a Riemannian submersion from an orientable 3-
manifold to an orientable surface whose fibers are the integral curves of a
unit Killing vector field in the 3-manifold. We classify all Killing submer-
sions over simply connected Riemannian surfaces and give explicit models
for many Killing submersions, including those over simply connected con-
stant Gaussian curvature surfaces. We also fully describe the isometries
of the total space preserving the vertical direction. As a consequence, we
prove that the only simply connected homogeneous 3-manifolds which ad-
mit a structure of Killing submersion are the E.�; �/-spaces, whose isometry
group has dimension at least 4.

1. Introduction

Simply connected homogeneous Riemannian 3-manifolds with an isometry group
of dimension 4 or 6 different from H3 can be represented by a 2-parameter family
E.�; �/, where �; � 2 R. They include R3, S3, H2 � R, S2 � R, the Heisenberg
group, the Berger spheres and the universal cover of the special linear group SL2.R/

endowed with a left-invariant metric (see [Daniel 2007; Daniel et al. 2009; Meeks
and Pérez 2012]). The E.�; �/-spaces are 3-manifolds admitting a global unit
Killing vector field whose integral curves are the fibers of a certain Riemannian
submersion over the simply connected constant Gaussian curvature surface M2.�/.
In the Riemannian product 3-manifolds M �R, the projection over the first factor
is a Riemannian submersion whose fibers are also the trajectories of a unit Killing
vector field. In general, Riemannian submersions sharing this property will be
called Killing submersions (see [Espinar and de Oliveira 2013; Rosenberg et al.
2010] and Definition 1.1 below).

Constant mean curvature surfaces in E.�; �/ and M �R have been extensively
studied during the last decade and many results have been recently extended to the
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Killing submersion setting (e.g., see [Dajczer and de Lira 2009, 2012; Espinar and
de Oliveira 2013; Leandro and Rosenberg 2009; Rosenberg et al. 2010; Meroño
and Ortiz 2014]). Nevertheless, apart from the aforementioned spaces, the theory
of Killing submersions suffers from a lack of examples. It is necessary to mention
that these 3-manifolds are well-understood at the level of differential topology
(see [Besse 2008; Greub et al. 1976; Steenrod 1951]) since the projection defines
principal bundles with totally geodesic fibers. Nevertheless, the objective of this
paper is to classify them in the Riemannian category provided that the base is simply
connected, and give explicit models depending on the base surface and a special
geometric function, the so-called bundle curvature.

The bundle curvature has proved to be a very natural function in the surface
theory of Killing submersions. For instance, a Calabi-type correspondence for
surfaces which are graphs in the direction of the unit Killing field has been obtained
recently [Lee and Manzano 2013], swapping the bundle curvature and the mean
curvature of the graph. Note that Killing submersions also have dual Lorentzian
counterparts when the Killing vector field is assumed to be timelike: they lead
to interesting stationary spacetimes and are also related to Finsler metrics (see
[Javaloyes et al. 2013]).

Let � W E!M be a differentiable submersion from a Riemannian 3-manifold E

onto a surface M . A vector v 2 T E will be called vertical when v 2 ker.d�/ and
horizontal when v 2 ker.d�/?. The submersion � is Riemannian when it preserves
the length of horizontal vectors.

Definition 1.1. The Riemannian submersion � W E ! M , where E and M are
connected and orientable, is called a Killing submersion if it admits a complete
vertical unit Killing vector field.

As a matter of fact, any 3-manifold M admitting a unit Killing vector field � is
locally isometric to the total space of a certain Killing submersion, so the definition
is not as restrictive as it may seem.

The bundle curvature of a Killing submersion � W E ! M is defined (see
Lemma 2.1) as the unique function � 2 C1.E/ satisfying

rX � D �X ^ � for all X 2 X.E/;

where ^ is the cross product in E, � is a vertical unit Killing vector field, and r
denotes the Levi-Civita connection in E. The bundle curvature is constant along
the fibers of � so it can be seen as a function � 2 C1.M / (see Propositions 3.3
and 4.6 for other geometric interpretations of �). This gives rise to some natural
questions: Given a Riemannian surface M and � 2 C1.M /, does there exist a
Killing submersion over M with bundle curvature �? Is it unique? The main aim
of Sections 2 and 4 will be to give affirmative answers to these questions when M
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is simply connected. More specifically, we will classify Killing submersions up to
isomorphism, in the following sense:

Definition 1.2. Let � W E!M and � 0 W E0!M 0 be two Killing submersions. A
(local) isomorphism of Killing submersions from � to � 0 is a pair .f; h/, where
h W M ! M 0 is an isometry and f W E ! E0 is a (local) isometry, such that
� 0 ıf D h ı� .

Note that if .f; h/ is an isomorphism of Killing submersions, then f maps fibers
of � into fibers of � 0, and, if we consider a unit vertical Killing vector field � in E,
then f�� is also a unit vertical Killing vector field in E0.

Given a simply connected Riemannian surface M and � 2 C1.M /, we will
show that there exists a Killing submersion over M with bundle curvature � , and it
is unique (up to isomorphism) if the total space E is also simply connected. In the
process, it will turn out that the bundle curvature determines locally the geometry
of the submersion, but the topology of E is also conditioned by the bundle curvature.
More explicitly:

� If M is a topological disk, then the submersion is isomorphic to the projection
�1 WM �R!M , �1.p; t/D p, for some Riemannian metric on M �R such
that @t is a unit vertical Killing vector field. In particular, the fibers of the
submersion have infinite length.

� If, on the contrary, M D .S2;g/ for some Riemannian metric g, then we shall
distinguish cases depending on whether the total bundle curvature T D

R
M �

vanishes or not:

– If T D 0, then � is isomorphic to �1 W S
2 �R! .S2;g/, �1.p; t/D p,

for some metric on S2 �R such that @t is a unit vertical Killing vector
field, so the fibers have infinite length.

– If T ¤ 0, then � is isomorphic to �Hopf W S
3! .S2;g/, �Hopf.z; w/ D

.2zw; jzj2 � jwj2/, where S3 � C2 is endowed with a metric such that

.�=T /.iz; iw/ is a unit vertical Killing vector field. In this case, the fibers
have length j2T j.

When the total space is not simply connected, Killing submersions over M are also
classified as the quotients of those listed above under a vertical translation (i.e., an
element of the 1-parameter group of isometries associated to the unit Killing vector
field).

Though this theoretical description is exhaustive, we will give explicit models for
a wide class of Killing submersions. Firstly, for those over a disk with a conformal
metric in terms of the conformal factor, the obtained examples will generalize the
metrics for the E.�; �/-spaces in [Daniel 2007]. Secondly, we will obtain a general
method to produce trivial Killing submersions (i.e., admitting a global smooth
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section) over any surface by isometrically embedding it in Rn for some n � 3.
Finally, explicit models will also be obtained for Killing submersions over the
round sphere S2.�/ via the Hopf fibration (generalizing the metrics of the Berger
spheres in [Torralbo 2012]).

The geometries of M and E of a Killing submersion � W E!M are well-related,
and geodesics or isometries are good samples of that. On the one hand, geodesics
of E can be divided into three different types: vertical ones, horizontal ones (which
are horizontal lifts of geodesics of M ) and those which are neither vertical nor
horizontal, each of which makes a constant angle with the vertical direction and
whose projection is well-understood (see Proposition 3.6). In particular, M is
complete if and only if E is complete. On the other hand, a beautiful classification
result is obtained when we look for Killing isometries (i.e., isometries of E preserving
the vertical direction). More explicitly, if E and M are simply connected, and
� 2 C1.M / denotes the bundle curvature, then:

(a) Given a Killing isometry f W E! E, there exists a unique isometry h WM !M

such that � ı f D h ı� . Moreover, � ı hD � if f is orientation-preserving
and � ı hD�� if it is orientation-reversing.

(b) Conversely, given an isometry h WM !M and p0; q0 2 E with h.�.p0//D

�.q0/, the following properties hold:
� If � ıhD � , then there is a unique orientation-preserving Killing isometry
f W E! E with � ıf D h ı� and f .p0/D q0.

� If � ıhD�� , then there is a unique orientation-reversing Killing isometry
f W E! E with � ıf D h ı� and f .p0/D q0.

This construction provides a surjective group morphism from the group of Killing
isometries of E to the group of isometries of M which either preserve � or map
it to �� . Its kernel consists of isometries of E that leave the fibers invariant (i.e.,
vertical translations, and also symmetries with respect to a horizontal slice when
� D 0). In particular, 1-parameter groups of isometries of M preserving � give
rise to 1-parameter groups of isometries in E. Such groups have proven to be
essential in surface theory, leading to many geometric features, e.g., they are related
to holomorphic quadratic differentials (see [Abresch and Rosenberg 2005]) and
conjugate constructions (see [Manzano and Torralbo 2012]).

Finally, note that simply connected homogeneous 3-manifolds are classified:
they are all isometric to Lie groups endowed with left-invariant metrics except for
S2.�/�R, where �>0 (see [Meeks and Pérez 2012, Theorem 2.4]). In Section 5, we
will characterize the homogeneous spaces E.�; �/ as the only simply connected ho-
mogeneous 3-manifolds admitting a Killing submersion structure (see Theorem 5.2).
Hence, the only Killing submersions whose total space is isometric to a Lie group
endowed with a left invariant metric are the E.�; �/-spaces, except for S2.�/�R.
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2. Uniqueness results

The bundle curvature. The next result can be found in [Espinar and de Oliveira
2013; Souam and Van der Veken 2012], but we will include the proof here for
completeness.

Lemma 2.1. Let � W E!M be a Killing submersion. Then there exists a function
� 2 C1.E/ such that rX � D �X ^ � for all X 2 X.E/.

The function � will be called the bundle curvature of the submersion.

Proof. First of all, note that r�� D 0. Indeed, given X 2 X.E/, we have

hr��;X i D �hrX �; �i D �
1
2
X h�; �i D 0;

since � is Killing and unitary.
Let us now take X 2X.E/ linearly independent of � . On the one hand, it is clear

that hrX �; �i D 0 and, on the other hand, hrX �;X i D 0 since � is Killing. Then
there exists a unique function �

X
2C1.E/ such that rX � D �X X ^� , so it suffices

to prove that �
X

does not depend on X . It is clear that �
X

only depends on the
horizontal part of X so it will be enough to prove that �

X
D �

Y
for all X;Y 2X.E/

horizontal. By using again that � is a Killing vector field, we get

�Y hY^ �;X i D hrY �;X i D �hrX �;Y i D ��X hX ^ �;Y i D �X hY^ �;X i;

so �
X
D �

Y
, where X and Y are linearly independent. Elsewhere, the identity

�
X
D �

Y
follows from the linearity of the connection. �

Observe that the function � in the conditions of Lemma 2.1 is unique and its sign
depends on the choice of orientation in E. We will give now some consequences of
this result in order to fix some notation.

Remark 2.2. (1) The condition r�� D 0 implies that the fibers of the submersion
are geodesics of E, which will be called vertical geodesics.

(2) The elements of the 1-parameter group of isometries f�tgt2R associated to the
Killing vector field � will be called vertical translations.

Note that �t preserves the Killing field � and the orientation in E. Thus, if
we apply d�t to the identity in Lemma 2.1, we easily get � D � ı �t for all
t 2 R. This means that the bundle curvature is constant along the fibers and,
hence, it may be considered as a function either in E or in the base M .

(3) More generally, let .f; h/ be an isomorphism between two Killing submersions
� W E!M and � 0 W E0!M 0 (see Definition 1.2) and define � 2 C1.E/ and
� 0 2 C1.E0/ as their bundle curvatures with respect to some orientations in E

and E0, respectively. Then � ı f D � when f preserves the orientation, and
� ıf D�� 0 when f reverses the orientation.
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In the product spaces M � R the projection over the first factor is a Killing
submersion, so its bundle curvature is � � 0 (from Lemma 2.1 it is easy to deduce
that � � 0 in a Killing submersion if and only if the horizontal distribution in
the total space is integrable). Given �; � 2 R, there exists a Killing submersion
� W E.�; �/! M2.�/ with constant bundle curvature � . If � > 0 and � ¤ 0, the
projection is the Hopf fibration and we obtain the Berger spheres; in the remaining
cases the fibers have infinite length. We refer the reader to [Daniel 2007] for a
description of these examples, although Berger spheres from a global point of view
can be found in [Torralbo 2012].

Other examples derived from the aforementioned ones are their Riemannian
quotients by a convenient vertical translation. Thus the length of the fibers will
play an important role in the theory. Since fibers are geodesics, the following result
follows from [Besse 2008, Theorem 9.56].

Lemma 2.3. Let � W E!M be a Killing submersion. Then all the fibers of � share
the same (finite or infinite) length.

Local representation of a Killing submersion. Given a surface M and � 2C1.M /,
we are interested in finding all Killing submersions over M with bundle curvature � .
Let us begin by giving a useful technical tool that will simplify some arguments
throughout the paper.

Proposition 2.4. Let � W E!M be a Killing submersion, and suppose that M is
noncompact. Then � admits a global smooth section F WM ! E. Hence,

‰ WM �R! E; ‰.p; t/D �t .F.p//;

is a local diffeomorphism, where f�tg denotes the 1-parameter group of vertical
translations. Moreover, ‰ is a global diffeomorphism if and only if the fibers of �
have infinite length.

Proof. We can suppose that the fibers of � have finite length (otherwise, we
take a quotient of � under a vertical translation �t for some t > 0). Then � is a
codimension-one circle bundle over a noncompact surface and [Greub et al. 1976,
Section VIII.5] yields the existence of a global smooth section. Moreover, ‰ is a
local diffeomorphism since its differential is injective at every point.

Finally, note that ‰ is a global diffeomorphism if and only if it is injective, but
‰.p0; t 0/D‰.p; t/ implies pD p0 since ‰.p0; t 0/ and ‰.p; t/ belong to the same
fiber of � , so the last assertion in the statement holds. �

This result will be mostly used to ensure that there exists a smooth section
F WU ! E for any coordinate chart .U; '/ in M , but it also implies that exceptional
topologies for the total space may only arise when the base is compact. Note that,
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if the base is compact, then Proposition 2.4 no longer holds, as the Hopf fibration
from S3 to S2 shows.

The following result will be the cornerstone of the subsequent development
yielding a standard way of describing � in terms of M and � .

Proposition 2.5. Let � W E!M be a Killing submersion. Let U �M be an open
set such that there is a conformal diffeomorphism ' W U !�� R2. Then:

(a) Given a smooth section F0 W U ! ��1.U /, the transformation

(2-1) f W��R! ��1.U /; .x;y; t/ 7! �t .F0.'
�1.x;y//;

is a local diffeomorphism and satisfies � ı f D ' ı �1 in � � R, where
�1 W��R!� is the projection over the first factor.

(b) Let us write the induced metric in� as ds2
�
D �2.dx2Cdy2/ for some positive

� 2 C1.�/. Then there exist a; b 2 C1.�/ such that the metric in � � R

which makes f a local isometry can be expressed as

(2-2) ds2
D �2.dx2

C dy2/C .dt ��.a dxC b dy//2:

(c) �1 W .��R; ds2/! .�; ds2
�
/ is a Killing submersion with unit Killing vector

field @t , and .f; '�1/ is a local isomorphism from �1 to � .

Moreover, if the fibers of � have infinite length, then f is a global diffeomorphism.

Proof. We deduce from Proposition 2.4 that ‰ W U � R ! ��1.U / given by
‰.p; t/D �t .F0.p// is a local diffeomorphism, so f D‰ ı .'�1 � idR/ is also a
local diffeomorphism, and it obviously satisfies the condition ' ı�1D � ıf , so (a)
is proved. Note that Proposition 2.4 also ensures that f is a global diffeomorphism
if the fibers of � have infinite length.

To prove (b), consider the unique Riemannian metric ds2 in '.U /�R making
f a local isometry. The condition ' ı �1 D � ı f implies that �1 is a Killing
submersion. Vertical translations for � correspond (through f ) to isometries of the
form .x;y; t/ 7! .x;y; tC�/, � 2R, in .'.U /�R; ds2/. In particular, @t is a unit
vertical Killing vector field in .'.U /�R; ds2/.

Let fe1; e2g be the orthonormal frame in .'.U /; ds2
�
/, where e1 D .1=�/ @x and

e2 D .1=�/ @y , and let fE1;E2g be the horizontal lift of fe1; e2g with respect to
�1 and E3 D @t . Since �1 is the projection over the first two variables, there exist
a; b 2 C1.'.U // such that

(2-3)

8̂̂̂̂
<̂
ˆ̂̂:
.E1/.x;y;t/ D

1

�.x;y/
@xC a.x;y/ @t ;

.E2/.x;y;t/ D
1

�.x;y/
@y C b.x;y/ @t ;

.E3/.x;y;t/ D @t :
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Note that fE1;E2;E3g is an orthonormal frame in .'.U / � R; ds2/ which can
be supposed positively oriented after possibly swapping e1 and e2. Now it is
straightforward to show that the global frame (2-3) is orthonormal for ds2 if and
only if ds2 is the metric given by (2-2). �

Regardless of the values of the functions a; b 2 C1.�/, the Riemannian metric
given by (2-2) has the property that the projection over the first two variables is a
Killing submersion over .�; ds2

�
/.

Definition 2.6 (canonical example). Given an open set��R2 and �; a; b2C1.�/

with � > 0, the Killing submersion

�1 W .��R; ds2
�;a;b/ 7! .�; ds2

�/; �1.x;y; z/D .x;y/;

ds2
�;a;b D �

2.dx2
C dy2/C .dz��.a dxC b dy//2;

will be called the canonical example associated to .�; a; b/.

Equation (2-3) defines a global orthonormal frame fE1;E2;E3g for ds2
�;a;b

,
where E1 and E2 are horizontal, and E3 is a unit vertical Killing field. It is easy
to check that ŒE1;E3�D ŒE2;E3�D 0 and

ŒE1;E2�D
�y

�2
E1�

�x

�2
E2C

�
1

�2
.b�x � a�y/C

1

�
.bx � ay/

�
E3:

Taking into account Lemma 2.1, we can compute the bundle curvature � associated
to this canonical example as

(2-4) 2� D hrE1
E2;E3i � hrE2

E1;E3i D hŒE1;E2�;E3i

D
1

�2
.b�x � a�y/C

1

�
.bx � ay/D

1

�2
..�b/x � .�a/y/:

This divergence formula will come in handy in the sequel.

Lemma 2.7 (classification of canonical examples). Let � � R2 be a simply con-
nected open set and �; a0; a1; b0; b1 2 C1.�/ such that � > 0. The following
assertions are equivalent:

(i) There exists d 2 C1.�/ such that the pair .fd ; id�/, where

(2-5)
fd W .��R; ds2

�;a0;b0
/! .��R; ds2

�;a1;b1
/;

.x;y; z/ 7! .x;y; z� d.x;y//;

is an isomorphism of Killing submersions.

(ii) There exists d 2 C1.�/ such that dx D �.a1� a0/ and dy D �.b1� b0/.

(iii) The bundle curvatures �0; �1 2 C1.�/ of the two submersions coincide.
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Proof. It is easy to check that fd is an isometry if and only if d satisfies (ii), so
the equivalence between (i) and (ii) is proved. Since fd preserves the orientation
in ��R, we get that (i) implies (iii) from Remark 2.2. Finally, to prove that (iii)
implies (ii), observe that �0 D �1 means .�b0/x � .�a0/y D .�b1/x � .�a1/y in
view of (2-4). Equivalently, we have .�.a1�a0//y D .�.b1�b0//x , so (ii) follows
from Poincaré’s lemma and the fact that � is simply connected. �

We remark that condition (i) in the statement is equivalent to the fact that
the canonical examples for .�; a0; b0/ and .�; a1; b1/ represent the same Killing
submersion for different initial sections. The function d is, up to an additive
constant, the vertical distance between such sections.

Lemma 2.7 is actually a local classification result for Killing submersions, since
we have proved that all Killing submersions are locally equivalent to canonical
examples. We will now give the general version.

Theorem 2.8 (uniqueness). For i 2 f0; 1g, let �i W Ei!Mi be a Killing submersion,
Mi being simply connected, with bundle curvature �i 2 C1.Mi/ for a given
orientation in Ei . Suppose that the fibers of �0 and the fibers of �1 have the same
length and there exists an isometry h WM0!M1. Let p0 2 E0 and p1 2 E1 be such
that h.�0.p0//D �1.p1/.

(a) If �1 ı h D �0, then there exists a unique orientation-preserving isometry
f W E0! E1 such that �1 ıf D h ı�0 and f .p0/D p1.

(b) If �1 ı h D ��0, then there exists a unique orientation-reversing isometry
f W E0! E1 such that �1 ıf D h ı�0 and f .p0/D p1.

Proof. Let us first consider the case of Mi being a topological disk, so there exist
conformal diffeomorphisms 'i WMi ! � such that h ı '0 D '1, where � � R2

is an open set. For i 2 f0; 1g, Proposition 2.4 guarantees the existence of a global
smooth section Fi WMi! Ei and a local diffeomorphism fi W��R! Ei , given
by fi.x;y; t/ D �i

t .Fi.'
�1
i .x;y/// as in Proposition 2.5, where f�i

tg is the 1-
parameter group of vertical translations associated to �i . In other words, we obtain
a commutative diagram as in Figure 1, where � W��R!� is the projection over
the first factor.

Observe that '0 and '1 induce the same metric �2.dx2C dy2/ on �, and f0

and f1 induce canonical metrics ds2
�;a0;b0

and ds2
�;a1;b1

on � � R, respectively.
Moreover, the condition �1 ı h D �0 ensures that both canonical examples for
.�; b0; a0/ and .�; b1; a1/ have the same bundle curvature, so Lemma 2.7 yields
the existence of a isometry

Of W .��R; ds2
�;a0;b0

/! .��R; ds2
�;a1;b1

/
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E0
�0 //

f

��

M0

h

��

'0

~~
��R

f0

bb

� //

yf
��

�

��R

f1||

� // �

E1 �1

// M1

'1

``

Figure 1. Horizontal and vertical arrows represent Killing submer-
sions and isometries, respectively. Diagonal ones relate the original
diagram with the canonical examples.

of the form Of .x;y; z/D f .x;y; zCd.x;y// for some d 2C1.�/, so � ı Of D � .
If �1ıhD��0, the canonical examples for .�; b0; a0/ and .�; b1; a1/ have opposite
bundle curvatures, so it is easy to see that there exists an isometry of the form
Of .x;y; z/D f .x;y;�z� d.x;y// for some d 2 C1.�/.

In both cases, the isometry Of induces an isometry from the quotient of

.��R; ds2
�;a0;b0

/

by a vertical translation to the quotient of .��R; ds2
�;a1;b1

/ by the same vertical
translation. Adjusting the translation so that the length of the fibers of the quotient
is the same as in E0 or E1, the isometry in the quotient provides an isometry
f W E0! E1 such that �1 ıf D h ı�0. We get f .p0/D p1 by just composing f
with a vertical translation.

Finally, suppose that M0 and M1 are topological 2-spheres. Let U0DM0 nfq0g

for some q0 ¤ �0.p0/ and U1 D h.U0/DM1 n fh.q0/g. Note that h W U0! U1 is
an isometry in the conditions of the disk case so it lifts to an isometry f W V0! V1,
where ViD�

�1
i .Ui/ for i 2f0; 1g, satisfying �1ıf Dhı�0 in V0 and f .p0/Dp1.

Now, let zp02V0 be such that�0. zp0/¤�0.p0/, and zp1Df . zp0/. Now take zq02M0

such that zq0 62 f�0. zp0/; q0g, and zU0 DM0 n fzq0g, zU1 D h. zU0/ DM1 n fh.zq0/g.
The same reasoning above gives an isometry zf W zV0!

zV1, where zVi D�
�1
i . zUi/ for

i 2 f1; 2g, satisfying the condition �1 ı
zf D hı�0 in zV0 and zf . zp0/D zp1D f . zp0/.

Since V DV0\
zV0 is connected, we have f . zp0/D zf . zp0/, and .df / zp0

D .d zf / zp0

(because both f and zf preserve the vertical direction and �1 ı
zf D hı�0D �1 ıf

in V ), and we conclude that f D zf in V . As V0 [
zV0 D E0, we deduce that f

can be extended (by zf ) to an isometry from E0 to E1, and it trivially satisfies the
conditions in the statement. �
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Killing isometries. We will now specialize some of the results in the previous
section to study isometries of the total space of a Killing submersion � W E!M

preserving the Killing submersion structure, i.e., those preserving the direction of a
unit vertical Killing vector field �.

Definition 2.9. In the previous notation, the isometries of E satisfying f�� D � or
f�� D�� will be called Killing isometries.

The definition does not depend on the choice of � . If f�� D � (resp. f�� D��),
then f is said to preserve (resp. reverse) the orientation of the fibers. Note that
preserving the orientation of the fibers is not related to preserving or reversing the
orientation of the total space E.

Lemma 2.10. Let � W E ! M be a Killing submersion with bundle curvature
� 2 C1.M /, and let f W E! E be a Killing isometry. Then:

(a) There exists a unique isometry h WM !M such that � ıf D h ı� .

(b) If f preserves the orientation in E, then � ı hD � .

(c) If f reverses the orientation in E, then � ı hD�� .

Proof. Item (a) follows from the fact that f maps fibers to fibers and from the fact
that d� is an isometry when restricted to the horizontal distribution. Now, it is easy
to see that .f; h/ is an isomorphism of Killing submersions (see Definition 1.2), so
(b) and (c) follow from Remark 2.2. �

In fact, the map f 7! h defined by (a) of Lemma 2.10 can be easily proved to be
a group morphism from the group of Killing isometries to the group of isometries
of M with � ı hD˙� . Moreover, the normal subgroup of orientation-preserving
isometries is mapped to those isometries of M which preserve � . As an application
of Theorem 2.8, we can prove that this morphism is surjective and its kernel consists
of the vertical translations and, for � � 0, also the symmetries with respect to a slice.

Corollary 2.11. Let � W E!M be a Killing submersion with bundle curvature
� 2 C1.M / and suppose that M is simply connected. Let h W M ! M be an
isometry and take p0; q0 2 E such that h.�.p0//D �.q0/.

(a) If � ı h D � in M , then there exists a unique orientation-preserving Killing
isometry f W E! E such that � ıf D h ı� and f .p0/D q0.

(b) If � ı hD �� in M , then there exists a unique orientation-reversing Killing
isometry f W E! E such that � ıf D h ı� and f .p0/D q0.

As an immediate consequence, in the following two situations there do not exist
Killing isometries reversing the orientation of the total space:

� If the bundle curvature is a nonzero constant.

� If M is a Riemannian 2-sphere and
R

M � ¤ 0.
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3. Curves in Killing submersions

The horizontal lift of a curve.

Definition 3.1. Let � W E! M be a Killing submersion and ˛ W Œc; d �! M a
C1-curve. A horizontal (or Legendrian) lift of ˛ is a C1-curve z̨ W Œc; d �! E such
that z̨0 is always horizontal and � ı z̨ D ˛ in Œc; d �.

This concept extends to piecewise C1-curves ˛ W Œc; d �!M , i.e., ˛ such that
there is a partition c D t0 < t1 < : : : < tn D d so that ˛jŒti�1;ti � is C1 for all
i 2 f1; : : : ; ng. A horizontal lift of ˛ is a continuous curve z̨ W Œc; d �! E such that
z̨jŒti�1;ti � is a horizontal lift of ˛jŒti�1;ti � for all i 2 f1; : : : ; ng.

Lemma 3.2. Let ˛ W Œc; d �!M be a piecewise C1-curve. Given p0 2 E such that
�.p0/D ˛.c/, there exists a unique horizontal lift z̨ of ˛ such that z̨.c/D p0.

Proof. Let cD t0< t1< : : : < tnD d be a partition such that ˛jŒti�1;ti � is a C1-curve.
We can refine the partition so that ˛. Œti�1; ti � / � Ui for some conformal chart
.Ui ; 'i/ of M for all i . Thus, we can assume that ˛ is contained in such a chart
.U; '/, so z̨ will be contained in ��1.U /.

This allows us to work in the canonical example given in Definition 2.6 for
� D '.U / and some �; a; b 2 C1.'.U // with � > 0. Writing in coordinates
˛.t/D .x.t/;y.t// 2 '.U /, a horizontal lift of ˛ must be of the form z̨.t/ D
.x.t/;y.t/; z.t// for some z W Œc; d �! R, and must satisfy hz̨0; @zi D 0. This last
condition can be developed as

(3-1) z0 D �.x;y/ � .a.x;y/x0C b.x;y/y0/:

Since �.p0/D ˛.c/, we have p0 D .x.c/;y.c/; z0/ for some z0 2 R. We deduce
that there exists a unique C1-function z.t/ satisfying (3-1) with initial condition
z.c/D z0, so the horizontal lift exists and is unique. �

We can now give a geometric meaning of the bundle curvature in terms of the
difference of heights of the endpoints of the horizontal lift of closed curves (see
also [Daniel et al. 2009, Proposition 1.6.2]). Supposing that the fibers have infinite
length will be necessary for the difference of heights to make sense.

Proposition 3.3. Let � W E!M be a Killing submersion whose fibers have infinite
length. Given a simple piecewise C1-curve ˛ W Œc; d �!M bounding an orientable
relatively compact open set G �M and a horizontal lift z̨ of ˛, we haveˇ̌̌Z

G
�
ˇ̌̌
D

h

2
;

where h is the length of the vertical segment joining z̨.c/ and z̨.d/.
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Proof. Let us consider an atlas of M consisting of conformal charts. We will first
suppose that G is contained in one of the charts .U; '/, so we can suppose that we are
working in the canonical example given by Definition 2.6 for �; a; b 2 C1.'.U //

with � > 0. Moreover, (2-4) allows us to write � as a divergence in '.G/. The
divergence theorem yieldsZ

'.G/

2� D

Z
'.G/

div
�

b

�
@x �

a

�
@y

�
D

Z
@'.G/

�
b

�
@x �

a

�
@y ; �

�
;

where � is the outer unit conormal to '.G/ along its boundary. We write in
coordinates ˛ D .x;y/ and z̨ D .x;y; z/, and suppose ˛ is parametrized by arc-
length (i.e., .x0/2C .y0/2 D 1=�2). Hence �D�y0 @xCx0 @y , up to a sign, so we
deduce from (3-1) thatˇ̌̌̌Z

G

2�

ˇ̌̌̌
D

ˇ̌̌̌Z d

c

� � .ax0C by0/

ˇ̌̌̌
D

ˇ̌̌̌Z d

c

z0
ˇ̌̌̌
D jz.d/� z.c/j:

As hD jz.d/� z.c/j in this model, we are done.
If G does not lie in a single chart, we can triangulate G by a finite number of

triangles with piecewise C1 boundaries so each triangle is contained in a coordinate
chart of the atlas (see, for instance, the proof of [Jost 2002, Theorem 2.3.A.1]) and
˛ can be expressed as a finite sum of the boundaries of these triangles. As G is
orientable, such boundaries can be oriented so that the interior ones cancel out in
pairs. The argument above applied to each triangle together with the divergence
theorem gives the desired result. �

Geodesics. Let � W E ! M be a Killing submersion. Given two vector fields
X;Y 2 X.M /, we can consider their horizontal lifts X ;Y 2 X.E/. Then the
following equality holds (see [do Carmo 1992, pp. 185–187]):

(3-2) rX Y DrX Y C ŒX ;Y �v;

where r and r are the Levi-Civita connections in M and E, respectively, rX Y is
the horizontal lift of rX Y and ŒX ;Y �v is the vertical part of ŒX ;Y �.

From (3-2) we deduce that the horizontal lift of a geodesic in M is a geodesic in E.
Since not all geodesics are horizontal or vertical, we will need a slight improvement
of this argument to classify them all.

Lemma 3.4. Geodesics in E make a constant angle with a vertical Killing vector
field �.

Proof. Given a geodesic 
 in E, we can compute

d

dt
h
 0; �i D hr
 0


0; �iC h
 0;r
 0�i:
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The first term on the right-hand side vanishes since 
 is a geodesic, and the second
one also vanishes because r
 0� D �
 0 ^ � (see Lemma 2.1). �

Given a real number � 2 R and a smooth curve ˛ W Œa; b�!M , we can consider
the smooth curve

(3-3) 
 W Œa; b�! E; 
 .t/D ��t .z̨.t//;

where f�tg is the group of vertical translations associated to a unit vertical vector
field � . The chain rule allows us to compute


 0.t/D ��
.t/C .d��t /z̨.t/.z̨
0.t//;

so 
 makes a constant angle with � and will be our candidate to geodesic. Taking
into account that Œz̨0; ��D 0 and (3-2), we get

(3-4) r
 0

0
D 2�� z̨0 ^ �Cr˛0˛0:

Let us suppose that ˛ has unit speed and consider J the ˙.�=2/-rotation in TM

(the sign will be chosen below). Then there exists a function �g W Œa; b�! R, the
geodesic curvature, such that r˛0˛0 D �g � J˛

0. The horizontal lift of J˛0 is a
horizontal and unitary vector field along z̨, orthogonal to z̨0. Hence, we can choose
the sign of J so the horizontal lift of J˛0 is equal to �z̨0 ^ �. Now (3-4) implies
that 
 is a geodesic if and only if

(3-5) �g.t/D 2��.˛.t//:

Lemma 3.5. Given � 2 R, p 2M and v 2 TpM , there exist " > 0 and a unique
unit-speed smooth curve ˛ W ��"; "Œ ! M such that ˛.0/ D p, ˛0.0/ D v and
satisfying (3-5).

Moreover, if M is complete then ˛ extends to the whole real line.

Proof. We will work in a conformal parametrization ' W U � R2!M compatible
with the orientation fixed above, where U is a neighborhood of p. Then we identify
˛ with the coordinates .x;y/D '�1 ı˛. Since ˛ has unit speed, there must exist a
smooth function � such that x0D��1 cos � and y0D��1 sin � , where � denotes the
conformal factor. The geodesic curvature of ˛ with respect to J˛0D�y0 @xCx0 @y

is given by

�g D �
0
C
�x

�2
sin � �

�y

�2
cos �:

Now, (3-5) becomes the first-order ODE system
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(3-6)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

x0 D
1

�.x;y/
cos �;

y0 D
1

�.x;y/
sin �;

� 0 D 2��.x;y/�
�x.x;y/

�.x;y/2
sin � C

�y.x;y/

�2.x;y/
cos �:

The general theory of ODEs guarantees the existence of a unique smooth solution
in a neighborhood of the origin when prescribing ˛.0/, ˛0.0/ (note that these initial
data are equivalent to x.0/, y.0/ and �.0/). Observe that the solution can be
extended as long as ˛ is contained in U , so if M is complete and we take an atlas
consisting of conformal parametrizations compatible with the orientation, then ˛
extends to the whole real line. �

It is important to notice that the curve 
 given by Lemma 3.5 satisfies k
 0k2 D
1C�2, so after a reparametrization by arc-length, we obtain h
 0; �i D�=

p
1C�2.

This last expression varies in �� 1; 1Œ when � 2 R, so this construction covers all
geodesics in E, except for the vertical ones.

Proposition 3.6. Given p 2 E, all geodesics in E passing through p are of one (and
only one) of the following types:

(1) vertical geodesics (fibers of the submersion),

(2) horizontal lifts of geodesics in M passing through �.p/,

(3) of the form 
 .t/D ��t .z̨.t//, where z̨ is a horizontal lift of ˛ in M such that
˛.0/D �.p/ and satisfying (3-5) for some �¤ 0.

In particular, if M is complete, then so is E.

Remark 3.7. When the bundle curvature is constant, nonvertical geodesics project
into curves with constant geodesic curvature. Moreover, the geodesic is horizontal
if and only if its projection is also a geodesic. This gives an easy way to compute
geodesics in the E.�; �/-spaces.

4. Existence results

When the base is simply connected, Theorem 2.8 gives a uniqueness result for
Killing submersions; in this section we will investigate the existence problem and
prove that we can fix beforehand any bundle curvature under the same assumption
of simple connectedness.

Killing submersions over a disk. Given an open set � � R2 and �; � 2 C1.�/

with � > 0, we wonder whether it is possible to solve for a and b in (2-4). An
explicit way of doing so when � is star-shaped is given in the following lemma by
just taking ı D 2�2� .
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Lemma 4.1. Let � � R be open and star-shaped with respect to the origin, and
ı 2 C1.�/. Then � 2 C1.�/, given by

�.x;y/D

Z 1

0

s ı.xs;ys/ ds;

satisfies the identity ı D .x�/xC .y�/y .

Proof. It is a direct computation. �

Theorem 4.2. Let��R2 be an open set star-shaped with respect to the origin and
�; � 2 C1.�/ with � > 0. If � W E! .�; �2.dx2C dy2// is a Killing submersion
with bundle curvature � and E is simply connected, then it is isomorphic to the
canonical example

�1 W .��R; ds2/! .�; �2.dx2
C dy2//; �1.x;y; z/D .x;y/;

ds2
D �.x;y/2.dx2

C dy2/C .dzC �.x;y/.y dx�x dy//2;

where the function � 2 C1.�/ is given by

(4-1) �.x;y/D 2

Z 1

0

s �.xs;ys/ �.xs;ys/2 ds:

Remark 4.3. Note that star-shapeness makes everything explicit but an existence
and uniqueness theorem also holds in the (more general) simply connected case. It
suffices to conformally parametrize such a simply connected domain by a disk and
apply Theorem 4.2.

Remark 4.4. If we drop the condition that E is simply connected, it can be easily
shown that any Killing submersion � WE!� is isomorphic to a Riemannian quotient
of the Killing submersion constructed in Theorem 4.2 by a vertical translation. In
particular, E is diffeomorphic to ��S1.

It is interesting to specialize Theorem 4.2 to the case M DM2.�/, the complete
simply connected surface with constant Gaussian curvature � 2 R, to get models
for all Killing submersions over R2, H2.�/ and S2.�/ minus a point. Given � 2 R,
we define �� 2 C1.��/ as

��.x;y/D

�
1C

�

4
.x2
Cy2/

��1

;

where

�k D

(
f.x;y/ 2 R2 W x2Cy2 < �4=�g if � < 0;

R2 if � � 0:

Then the metric �2
�.dx2 C dy2/ in �� has constant Gaussian curvature �. If

� is constant, then � D � �� in (4-1), and we obtain the metrics of the spaces
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E.�; �/��� �R given in [Daniel 2007, Section 2.3]:

�2
�.dx2

C dy2/C .dzC � �� .y dx�x dy//2:

Recall that we are not considering a whole fiber of a point in S2.�/ for � > 0. The
global case will be treated in the next section.

Killing submersions over a 2-sphere. We can define Killing submersions over S2

as different as the Riemannian products S2�R and S2�S1 (both with � D 0) or the
Berger spheres and the lens spaces L.n; 1/ via the Hopf projection (see Remark 4.8
below). Throughout this section, we will suppose that the surface playing the role
of base surface is .S2;g/ for some Riemannian metric g.

Unlike in the cases treated above, this surface is compact. Hence, given a Killing
submersion � W E! .S2;g/ and its bundle curvature � 2 C1.M /, the total bundle
curvature

T D

Z
M

�

is well-defined and finite. This quantity will make the difference between the
possible topologies of the total space.

The case T D 0.

Proposition 4.5. Let � W E! .S2;g/ be a Killing submersion with total bundle
curvature T D 0. Then the submersion admits a global smooth section.

(a) If the length of the fibers of � is infinite, then it is isomorphic to

�1 W .S
2
�R; ds2/! .S2;g/; �1.p; t/D p;

for some Riemannian metric ds2 defined in S2 �R and such that @t is a unit
vertical Killing vector field.

(b) Otherwise, the Killing submersion is isomorphic to the Riemannian quotient of
the example in (a) by some vertical translation.

Proof. The condition T D 0 guarantees the existence of an equator � � S2 such
that D1 and D2, the two open components of S2 n� , satisfyZ

D1

� D

Z
D2

� D 0:

Let z� � E be any horizontal lift of � . If the fibers of � have infinite length, then
Proposition 3.3 implies that z� is a closed curve in E. For i 2 f1; 2g, as z� lies in the
boundary of ��1.Di/ and projects one-to-one by � onto � , there exists a section
Fi W Di ! E with Fi.�/ D z� . Thus F W S2 ! E defined by F D Fi in Di is a
global continuous section, and there is no loss of generality in supposing that F

is smooth (just by perturbing it in a neighborhood of �). Then ‰ W S2 �R! E
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given by ‰.p; t/ D �t .F.p// is a global diffeomorphism, where �t denotes the
1-parameter group of vertical isometries. The induced metric ds2 in S2�R through
‰ satisfies the requirements of (a).

In the case that the length of the fibers of � is finite, we can work in the universal
cover of ��1.Di/, for i 2 f1; 2g, repeat the arguments above, and finally take a
convenient quotient by a vertical translation. �

The rest of this section is devoted to obtaining explicit models for the metrics in
S2 �R making the projection over the first factor a Killing submersion. This will
show that Proposition 4.5 is sharp, but we will also obtain a quite general method
for constructing Killing submersions.

Inspired by the canonical metrics in (2-2), let us consider arbitrary functions
a1; : : : ; an 2 C1.Rn/ and the projection over the first n coordinates

� W .RnC1; ds2/! Rn:

Here, we endow Rn with the usual metric and

(4-2) ds2
D

nX
kD1

dx2
i C

�
dt �

nX
kD1

ak dxk

�2

;

where we denote by .x1; : : : ;xn; t/ the usual coordinates of RnC1. Then � is a
Riemannian submersion whose fibers are the integral curves of the unit Killing
vector field @t in .RnC1; ds2/.

Given a smooth orientable surface †, we can isometrically embed it in Rn for
some n 2 N by the Nash embedding theorem [1956]. Then we shall consider the
metric induced by (4-2) in † � R � RnC1. Obviously, � restricts to a Killing
submersion †�R! †. We will now compute its bundle curvature in terms of
the functions ak , but we will first need a convention for the orientation in †�R:
if a local frame fe1; e2g in † is positively oriented, then fE1;E2; @tg will be said
positively oriented in †�R, where Ei is the horizontal lift of ei for i 2 f1; 2g.

Proposition 4.6. Let† be a smooth oriented surface isometrically embedded in Rn.
The Killing submersion †�R!† defined above has bundle curvature

� D 1
2

div†.JT /;

where T D .@t /
> 2 X.†/ is the component of @t tangent to †�†� f0g � RnC1

with respect to ds2, and J W X.†/! X.†/ is a .�=2/-rotation in T†.

Proof. Let X W � � R2 ! † be a local conformal parametrization of † with
conformal factor � 2 C1.�/, and such that f.1=�/Xu; .1=�/Xvg is a positively
oriented orthonormal frame of T†. Let fE1;E2g � X.X.�/�R/ be a horizontal
lift of the frame f.1=�/Xu; .1=�/Xvg which, together with E3 D @t , is a positively
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oriented orthonormal frame in X.�/� R. As in (2-4), we can compute � from
the identity 2� D hŒE1;E2�;E3i. Note that there exist f;g 2 C1.X.�// such that
E1 D .1=�/XuCf @t and E2 D .1=�/XvCg @t , so

ŒE1;E2�D

�
1

�
Xu;

1

�
Xv

�
C

�
1

�
Xu;g @t

�
C

�
f @t ;

1

�
Xu

�
C Œf @t ;g @t �

D
1

�3
.�vXu��uXv/C

1

�
.gu�fv/ @t :

Moreover, since 0D hE1;E3i D h.1=�/XuCf @t ; @t i, we deduce that hXu; @t i D

��f and, analogously, hXv; @t i D ��g. Hence,

2� D hŒE1;E2�;E3i D
1

�2
..�g/u� .�f /v/D div†.Y /;

where Y 2 X.†/ is the vector field .g=�/Xu� .f=�/Xv. From here, it is easy to
check that Y D JT and we are done. �
Remark 4.7. If† is compact, then

R
† � D .1=2/

R
† div.JT /D 0 as an application

of the divergence theorem. Conversely, every function on a compact orientable
surface † with zero integral is well-known to be the divergence of some vector
field on †.

As a particular case, we may consider the round sphere

S2.�/D

�
.x;y; z/ 2 R3

W x2
Cy2

C z2
D

1

�

�
� R3;

and endow S2 � R � R4 with the metric given by (4-2) for n D 3 and some
a1; a2; a32C1.R3/. The stereographic projection X WR2!S2.�/nf.0; 0; 1=

p
�/g

defined by

(4-3) X.u; v/D

�
2u

�.u2C v2/C 1
;

2v

�.u2C v2/C 1
;

1
p
�

�.u2C v2/� 1

�.u2C v2/C 1

�
allows us to work out the bundle curvature � of the induced Killing submersion
S2.�/�R! S2.�/ as in the proof of Proposition 4.6. We get

2� D
p
�..ya3� za2/xC .za1�xa3/y C .xa2�ya1/z/:

The case T ¤ 0. Let us consider the 3-sphere

S3
D f.z; w/ 2 C2

W jzj2Cjwj2 D 1g � C2;

and S2.�/D f.z; t/ W jzj2C t2 D 1=�g � C�R for � > 0. The submersion

(4-4) �Hopf W S
3
! S2.�/; .z; w/ 7!

1
p
�
.2zw; jzj2� jwj2/;

is known as the Hopf projection. The fiber passing through .z; w/ 2 S3 is given
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by f.eitz; eitw/ W t 2 Rg and the orbit of a point under the 1-parameter group of
diffeomorphisms

�t .z; w/D .e
itz; eitw/; t 2 R;

coincides with its fiber with respect to the submersion.

Remark 4.8. Given a natural number n 2 N, we can consider the quotient of S3

under the group of diffeomorphisms Gn D f�2�k=n W k 2 f1; : : : ; ngg, which is
cyclic and has order n. The quotient S3=Gn is known as the lens space L.n; 1/.
The condition �Hopf ı �t D �Hopf guarantees that �Hopf induces a submersion
�n WL.n; 1/! S2.�/. Observe that, for any n 2 N, the space L.n; 1/ is orientable
and its fundamental group is isomorphic to the cyclic group of order n, so two lens
spaces L.n; 1/ and L.m; 1/ are not homeomorphic for m¤ n (see [Saveliev 1999]
for a more detailed description).

If we endow S3 with a metric making �Hopf a Killing submersion, then the fibers
of �Hopf have finite length (they are compact) and it is easy to check that �n is a
Killing submersion when we consider the quotient metric, for all n. Moreover, the
length of the fibers of �Hopf in S3 is n times the length of the corresponding fibers
of �n in L.n; 1/.

Proposition 4.9. Let � W E! .S2;g/ be a Killing submersion with total bundle
curvature T ¤ 0. Then there exists n 2 N such that the length of the fibers is equal
to j2T j=n.

(a) If nD 1, then � W E! .S2;g/ is isomorphic to the Hopf fibration

�Hopf W .S
3; ds2/! .S2;g/; �Hopf.z; w/D .2zw; jzj2� jwj2/;

for some Riemannian metric ds2 in S3 such that �.z;w/ D .�=T /.iz; iw/ is a
unit Killing vector field.

(b) If n> 1, then � W E! .S2;g/ is isomorphic to the Riemannian quotient of a
submersion as in (a) by a vertical translation of length j2T j=n.

Proof. As in the proof of Proposition 4.5, let us take a geodesic � which divides
S2 in two hemispheres D1 and D2 such thatZ

D1

� D

Z
D2

� D
T

2
:

We parametrize � as 
 W Œa; b�!S2 and a horizontal lift z� of � as z
 W Œa; b�!E. The
universal Riemannian covering space of ��1.Di/, for i 2 f1; 2g, will be denoted by
Wi �Di �R, and is a closed solid cylinder. The curve z� can be lifted to both W1

and W2. Since the outer conormal vector fields to D1 and D2 along their boundary
have opposite directions, the difference of heights between z
 .a/ and z
 .b/ when
we consider them in W1 or W2 is equal to jT j, but they have opposite signs (see
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Figure 2. The curve z� is represented in the solid cylinders W1

and W2 covering ��1.D1/ and ��1.D2/, respectively, and its
endpoints lie on the vertical geodesic containing the vertical arrow
representing a global vertical Killing vector field. After gluing
along this geodesic, we conclude that the length of the fibers is an
integer divisor of j2T j.

the proof of Proposition 3.3). In other words, we will arrive at z
 .b/ after traveling
vertically from z
 .a/ a distance of jT j, and, if we continue from z
 .b/, we will arrive
again at z
 .a/ after the same distance (see Figure 2). Thus, the length of the fibers
is an integer divisor of j2T j. In particular, ��1.D1/ and ��1.D2/ are solid tori.

Now, observe that the curve z� determines how ��1.D1/ and ��1.D2/ must be
glued together, and z� turns n times in the vertical direction, so we can work in a
n-sheet vertical covering space of both tori where z� will look like Figure 2 after
identifying the top and bottom faces of the cylinders. This way of gluing the two
tori along � provides a manifold diffeomorphic to S3, and the induced fibration is
the Hopf fibration (see [Saveliev 1999]). By pulling the metric in E back via this
diffeomorphism, (a) in the statement follows. Item (b) is also proved since we only
need to undo the covering space procedure by taking a quotient with respect to a
vertical translation of length j2T j=n. �

We can now combine the local existence given by Theorem 4.2 with Proposi-
tions 4.5 and 4.9 to obtain a description of all Killing submersions over a Riemannian
2-sphere.

Theorem 4.10. Let g be a Riemannian metric on S2 and � 2 C1.S2/. Up to
isomorphism, there exists a unique Killing submersion over .S2;g/ with bundle
curvature � and whose total space is simply connected.

Proof. The uniqueness is a consequence of Theorem 2.8 and the description of
the length of the fibers in Propositions 4.5 and 4.9. We will now assume that
T D

R
.S2;g/ � ¤ 0 (the case T D 0 is similar) and prove its existence.
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Consider an equator � � S2 splitting S2 in two hemispheres D1 and D2. By
applying Theorem 4.2 in a neighborhood of D1 and D2, we obtain Killing submer-
sions �1 and �2 over such neighborhoods with the desired bundle curvature and
noncompact fibers. The argument in Proposition 4.9 guarantees that, after taking
the quotient by vertical translations of length j2T j, the two submersions can be
glued together along ��1.�/ to produce a (continuous) submersion � W S3! S2.
In order to prove that � is smooth along ��1.�/, observe that both �1 and �2 are
defined in a neighborhood of � where they share the same bundle curvature. Thus
they locally coincide by Theorem 2.8 in a neighborhood of each p 2 ��1.�/. �

In the previous section, we showed a constructive method to obtain trivial Killing
submersions in a global way. Now, we will do the same for Killing submersions
with T ¤ 0 for round spheres S2.�/ as base surfaces, though the method can be
also adapted to the case T D 0.

Let us consider the Hopf fibration given by (4-4) and the global frame in S3�C2

defined by

.E1/.z;w/ D .�w; z/; .E2/.z;w/ D .�iw; iz/; .E3/.z;w/ D .iz; iw/:

This frame is orthonormal when we endow S3 with the round metric of curvature
one. Let � 2 C1.S2.�// be a function with integral T ¤ 0. Note that � induces a
function in z� 2C1.R2/ via the stereographic projection given by (4-3). Theorem 4.2
allows us to construct a Killing submersion over S2.�/nf.0; 0; 1=

p
�/g with bundle

curvature z� . To do this, we calculate the associated function z� 2 C1.R2/ given by

z�.x;y/D 2

Z 1

0

s � z�.sx; sy/

.1C .�=4/s2.x2Cy2//2
ds;

which extends smoothly to infinity since z� extends smoothly to infinity, and thus
induces � 2 C1.S2.�// by pulling back via the stereographic projection again.
Hence this construction induces a Riemannian metric in S3 minus the fiber of
.0; 0; 1=

p
�/ but can be extended to the whole S3. It can be shown that this metric

in S3 is the determined by the fact that

Y1 D

p
�

2
E1�

Im.zw/
�
�T jwj2� 4��.�Hopf.z; w//

�
2�
p
�jwj4

E3;

Y2 D

p
�

2
E2C

Im.zw/
�
�T jwj2� 4��.�Hopf.z; w//

�
2�
p
�jwj4

E3;

Y3 D
�

T
E3;

defines a global orthonormal frame. If � is constant, then �T D 4�� and

�.�Hopf.z; w//D jwj
2�;
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so the coefficients of E3 in Y1 and Y2 vanish, and we get the metrics of the Berger
spheres given by Torralbo [2012].

5. Characterization of homogeneous Killing submersions

Recall that a Riemannian manifold is said to be homogeneous when its isometry
group acts transitively on the manifold. In this section, we will characterize the
E.�; �/-spaces as the only simply connected homogeneous 3-manifolds admitting
the structure of a Killing submersion.

In order to obtain this result, we will compute the Riemannian curvature of the
total space E of a Killing submersion � W E!M in terms of M and the bundle
curvature � . Since the computation is purely local, we will work in a canonical
example (see Definition 2.6) associated to some functions �; a; b 2 C1.�/ with
� > 0 and �� R2 (a different approach can be found in [Espinar and de Oliveira
2013]). The Koszul formula yields the Levi-Civita connection in the canonical
orthonormal frame fE1;E2;E3g given by (2-3):

rE1
E1 D�

�y

�2
E2; rE1

E2 D
�y

�2
E1C �E3; rE1

E3 D��E2;

rE2
E1 D

�x

�2
E2� �E3; rE2

E2 D�
�x

�2
E1; rE2

E3 D �E1;(5-1)

rE3
E1 D��E2; rE3

E2 D �E1; rE3
E3 D 0:

Since the Gaussian curvature KM of M can be written in terms of the conformal
factor as

KM D�
�0.log�/

�2
D
�2

xC�
2
y

�4
�
�xxC�yy

�3
;

it is easy to work out any sectional curvature in E.

Lemma 5.1. Let � W E!M be a Killing submersion and p 2 E. Given a linear
plane …� TpE with normal vector N 2 TpE, its sectional curvature is

K.…/D �2.KM � 3�2/C .1� �2/�2
� 2�hN ^ �p; .r�/pi;

where � D hN; �pi, � denotes the unit Killing vector field, KM is the Gaussian
curvature of M at �.p/, and � is the bundle curvature at p.

The sectional curvature is KM � 3�2 for horizontal planes (i.e., planes which
are orthogonal to �) and �2 for vertical planes (i.e., planes containing the direction
�). In particular, we deduce that hyperbolic 3-space, H3, does not admit a Killing
submersion structure since H3 has constant sectional curvature of �1 and vertical
planes in a Killing submersion always have nonnegative sectional curvature.
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On the other hand, given v 2 TpE with kvk D 1, the Ricci curvature of v can be
easily deduced from Lemma 5.1 as

(5-2) Ric.v/D .KM � 2�2/� hv; �pi
2.KM � 4�2/C 2hv; �pihv^ �p;r�i:

The scalar curvature is �D 2.KM � �
2/.

Theorem 5.2. Let � W E ! M be a Killing submersion. If E is homogeneous,
then both the Gaussian curvature of M and the bundle curvature are constant. In
particular, E is a E.�; �/-space or its quotient by a vertical translation.

Proof. Given p 2 E and v 2 TpE with kvk D 1, we can decompose v D uC ��p,
where u is horizontal and � 2 R. From (5-2), we get

Ric.v/D .KM � 2�2/C � �
�
hu^ �p; .r�/pi � .KM � 4�2/�

�
:

Let Up D fv 2 TpE W kvk D 1g and Ap D fv 2 Up W Ric.v/DKM � 2�2g. Observe
that the vectors v 2 Up satisfying � D 0 form a great circle and the same happens
for hu^ �p; .r�/pi � .KM � 4�2/� D 0 if .r�/p ¤ 0 or KM ¤ 4�2. We deduce

(5-3) Ap D

8<:
Up if KM D 4�2 and .r�/p D 0;

a great circle if KM ¤ 4�2 and .r�/p D 0;

two great circles if .r�/p ¤ 0:

Let f WE!E be an isometry. Since any two great circles in a sphere intersect and
dfp maps great circles in Up to great circles in Uf .p/, we deduce that dfp.Ap/ and
Af .p/ intersect. As a consequence, KM � 2�2 attains the same value at the points
p and f .p/. If E is homogeneous, then this implies that KM �2�2 is constant, but
on the other hand, the scalar curvature 2.KM � �

2/ is also constant; hence both
KM and � are constant. �

Remark 5.3. Given a 3-dimensional metric Lie group G (i.e., it is endowed with
a left-invariant metric) with isometry group of dimension 3, it is homogeneous.
We deduce that the set of points where a Killing vector field (i.e., a right-invariant
vector field) is unitary has empty interior. Otherwise, this open subset would be
locally isometric to a E.�; �/-space, and this is impossible (see [Meeks and Pérez
2012] for a detailed description of metric Lie groups).

Finally, let us mention that the condition KM D 4�2 does not imply that E has
constant sectional curvature (unless � is constant), but it says that horizontal and
vertical planes have the same sectional curvature. Note that, if .r�/p ¤ 0 and
KM D 4�2 at some p 2M , then the set Ap in (5-3) consists of two orthogonal
great circles in the unit sphere Up.
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LOCALLY LIPSCHITZ CONTRACTIBILITY OF ALEXANDROV
SPACES AND ITS APPLICATIONS

AYATO MITSUISHI AND TAKAO YAMAGUCHI

We prove that any finite-dimensional Alexandrov space with a lower curva-
ture bound is locally Lipschitz contractible. As an application, we obtain a
sufficient condition for solving the Plateau problem in an Alexandrov space,
as considered by Mese and Zulkowski.

1. Introduction

Alexandrov spaces appear naturally in the collapsing and convergence theory of
Riemannian manifolds and play an important role in Riemannian geometry. In this
paper, when we say simply an Alexandrov space, we mean an Alexandrov space of
curvature bounded from below locally and of finite dimension. The fundamental
properties of such spaces were well studied in [Burago et al. 1992]. Perelman [1991]
carried out a remarkable study of topological structures for Alexandrov spaces,
proving a topological stability theorem: if two compact Alexandrov spaces of the
same dimension are very close in the Gromov–Hausdorff topology, then they are
homeomorphic. See also [Kapovitch 2007]. This further implies that, for any point
in an Alexandrov space, its small open ball is homeomorphic to its tangent cone.
In particular, an open ball of small radius with respect to its center is contractible.
It is expected by geometers that corresponding statements obtained by replacing
homeomorphic by bi-Lipschitz homeomorphic could be proved. Until now, we did
not know any Lipschitz structure of an Alexandrov space around singular points.
The main purpose of this paper is to prove that any finite-dimensional Alexandrov
space with a lower curvature bound is strongly locally Lipschitz contractible in the
sense defined later. For short, SLLC denotes this property. The SLLC-condition
is a strong version of the LLC-condition introduced in [Yamaguchi 1997] (see
Remark 4.5).

We define strongly locally Lipschitz contractibility. We denote by U (p, r) an
open ball centered at p of radius r in a metric space.

MSC2010: 53C20, 53C21, 53C23.
Keywords: Alexandrov space, Lipschitz contractibility.
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Definition 1.1. A metric space X is strongly locally Lipschitz contractible, or SLLC,
if for every point p ∈ X , there exists r > 0 and a map

h :U (p, r)×[0, 1] →U (p, r)

such that h is a homotopy from h( · , 0)= idU (p,r) to h( · , 1)= p and h is Lipschitz
(i.e., there exists C,C ′ > 0 such that

d(h(x, s), h(y, t))≤ Cd(x, y)+C ′|s− t |

for every x, y ∈U (p, r) and s, t ∈ [0, 1]) and such that for every r ′ < r , the image
of h restricted to U (p, r ′)×[0, 1] is U (p, r ′).

We call such a ball U (p, r) a Lipschitz contractible ball and h a Lipschitz
contraction on U (p, r).

A main result in the present paper is the following.

Theorem 1.2. Any finite-dimensional Alexandrov space is strongly locally Lipschitz
contractible.

In [Yamaguchi 1997], a weaker form of Theorem 1.2 was conjectured.
For metric spaces P and X and possibly empty subsets Q ⊂ P and A ⊂ X , we

denote by f : (P, Q)→ (X, A) a map from P to X with f (Q) ⊂ A. Two maps
f and g from (P, Q) to (X, A) are homotopic (resp. Lipschitz homotopic) if there
exists a continuous (resp. Lipschitz) map

h : (P ×[0, 1], Q×[0, 1])→ (X, A)

such that h(x, 0)= f (x) and h(x, 1)= g(x) for all x ∈ P . Then, we write f ∼ g
(resp. f ∼Lip g). Let us denote by

[(P, Q), (X, A)] and [(P, Q), (X, A)]Lip

respectively the set of all homotopy classes of continuous maps from (P, Q) to
(X, A) and the set of all Lipschitz homotopy classes of Lipschitz maps from (P, Q)
to (X, A).

Let us consider a Lipschitz simplicial complex: a metric space which admits
a triangulation such that each simplex is a bi-Lipschitz image of a simplex in a
Euclidean space. For a precise definition, see Section 4.

Corollary 1.3. Let P be a finite Lipschitz simplicial complex and Q a possibly
empty subcomplex of P. Let X be an Alexandrov space and A an open subset of X.
Then, the natural map from [(P, Q), (X, A)]Lip to [(P, Q), (X, A)] is bijective.

For a metric space X , a point x0 ∈ X , and k ∈ N, we define the k-th Lipschitz
homotopy group πLip

k (X, x0) by setting πLip
k (X, x0)= [(Sk, ∗), (X, x0)]Lip as sets,

where ∗ ∈ Sk is an arbitrary point; it is equipped with the group operation of the
usual homotopy groups.
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Corollary 1.4. For an Alexandrov space X , a point x0 ∈ X , and k ∈ N, the natural
map

π
Lip
k (X, x0)→ πk(X, x0).

is an isomorphism of groups.

Application: the Plateau problem. The Plateau problem in an Alexandrov space
was considered by Mese and Zulkowski [2010] as follows. Let W 1,2(D2, X) denote
the (1, 2)-Sobolev space from D2 to an Alexandrov space X , in the sense of the
Sobolev space of a metric space target defined by Korevaar and Schoen [1993].
Giving a closed Jordan curve 0 in X , we set

F0 :=
{
u ∈W 1,2(D2, X)∩C(D2, X)

∣∣ u|∂D2 parametrizes 0 monotonically
}
.

Mese and Zulkowski defined the area A(u) of a Sobolev map u ∈ W 1,2(D2, X).
Under these settings, the Plateau problem is stated as follows:

Find a map u ∈W 1,2(D2, X) such that A(u)= inf{A(v) | v ∈ F0}.

Theorem 1.5 [Mese and Zulkowski 2010]. Let X be a finite-dimensional compact
Alexandrov space and 0 a closed Jordan curve in X. If F0 6=∅, then there exists a
solution to the Plateau problem.

For Alexandrov spaces, no condition on 0 implying F0 6=∅ was known. As an
application of Theorem 1.2, we can obtain such a condition of 0.

Corollary 1.6. Let 0 be a rectifiable closed Jordan curve in an Alexandrov space X.
If 0 is topologically contractible in X , then F0 6=∅.

Application: simplicial volume. Yamaguchi [1997, Theorem 0.5] proved, assum-
ing an LLC-condition on an Alexandrov space, an inequality between Gromov’s
simplicial volume and the Hausdorff measure of the Alexandrov space. As an
immediate consequence of Theorem 1.2, we obtain:

Corollary 1.7 [Gromov 1982; Yamaguchi 1997]. Let X be a compact orientable
n-dimensional Alexandrov space without boundary, of curvature ≥ κ for κ < 0.
Then ‖X‖ ≤ n! (n− 1)n

√
−κ

n
Hn(X).

Here, ‖X‖ is Gromov’s simplicial volume, which is the `1-norm of the fun-
damental class of X , and Hn denotes the n-dimensional Hausdorff measure. For
precise terminology, we refer to [Gromov 1982; Yamaguchi 1997].

Further, if we assume “a lower Ricci curvature bound” for X in the sense of
[Bacher and Sturm 2010], then we obtain the following:

Theorem 1.8. Let X be a compact orientable n-dimensional Alexandrov space
without boundary. Let m be a locally finite Borel measure on X with full support
that is absolutely continuous with respect to Hn . If the metric measure space
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(X,m) satisfies the reduced curvature-dimension condition CD∗(K , N ) locally for
K , N ∈ R with N ≥ 1 and K < 0, then

‖X‖ ≤ n!
√
−(N − 1)K

n
Hn(X).

Theorem 1.8 is new even if X is a manifold, because a reference measure m can
be freely chosen.

Organization. We review fundamental properties of Alexandrov spaces in Section 2.
In particular, we recall the theory of the gradient flow of distance functions on an
Alexandrov space, established in [Petrunin 1995] and [Perelman and Petrunin 1994].
In Section 3, we prove that the distance function from a metric sphere at each point
in an Alexandrov space is regular on a much smaller concentric punctured ball.
Then, using the gradient flow of the distance function, we prove Theorem 1.2. In
Section 4, we recall precise terminology of the applications in the introduction,
and prove Corollaries 1.3, 1.4 and 1.6. In Section 5, we note that our proof given
in Section 3 also works for infinite-dimensional Alexandrov spaces whenever the
space of directions is compact. In Section 6, we recall several notions of a lower
Ricci curvature bound on a metric space together with a Borel measure and their
relation. By using the Bishop–Gromov-type volume growth inequality, we prove
Theorem 1.8.

2. Preliminaries

This section consists of a review of the definition of Alexandrov spaces and a
somewhat detailed review of the gradient flow theory of semiconcave functions on
Alexandrov spaces. For further details, we refer to [Burago et al. 1992; 2001] or
[Petrunin 2007].

We recall the definition of Alexandrov spaces:

Definition 2.1 [Burago et al. 1992; 2001]. Let κ ∈ R. We call a complete metric
space X an Alexandrov space of curvature ≥ κ if it satisfies the following:

(1) X is a geodesic space; i.e., for every x and y in X , there is a curve γ :
[0, |x, y|] → X such that γ (0)= x , γ (|x, y|)= y, and the length of γ equals
|x, y|. Here, |x, y| denotes the distance between x and y, written also as |xy|
or d(x, y). We call such a curve γ a geodesic between x and y, and denote it
by xy.

(2) X has curvature ≥ κ; i.e., for every p, q , r ∈ X (with |p, q|+ |q, r |+ |r, p|<
2π/
√
κ if κ > 0) and every x in a geodesic qr between q and r , taking a

comparison triangle 4 p̃q̃r̃ = 4̃pqr in a simply connected complete surface
Mκ of constant curvature κ and a corresponding point x̃ in q̃r̃ , we have

|p, x | ≥ | p̃, x̃ |.
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We simply say that a complete metric space X is an Alexandrov space if it is a
geodesic space, and for any p ∈ X , there exist a neighborhood U of p and κ ∈ R

such that U has curvature ≥ κ in the sense that it satisfies condition (2); i.e., any
triangle in U (whose sides are contained in U ) is not thinner than its comparison
triangle in Mκ .

If X is compact, then it has a uniform lower curvature bound. Throughout
the paper, we do not need a uniform lower curvature bound, since we are mainly
interested in local properties. It is known that if X has a uniform lower curvature
bound, say κ , then X has curvature ≥ κ [Burago et al. 1992].

Semiconcave functions. In this subsection, we refer to [Petrunin 2007; 1995].

Definition 2.2. Let I be an interval and λ ∈ R. We say a function f : I → R is
λ-concave if the function

f̄ (t)= f (t)−
λ

2
t2

is concave on I . That is, for any t < t ′ < t ′′ in I , we have

f̄ (t ′)− f̄ (t)
t ′− t

≥
f̄ (t ′′)− f̄ (t ′)

t ′′− t ′
.

We say a function f : I→R is λ-concave in the barrier sense if for any t0 ∈ int I ,
there exist a neighborhood I0 of t0 in I and a twice-differentiable function g : I0→R

such that
g(t0)= f (t0), g ≥ f and g′′ ≤ λ on int I.

Lemma 2.3 [Petrunin 1995]. Let f : I→R be a continuous function on an interval
I and λ ∈ R. Then the following are equivalent:

(1) f is λ-concave in the sense of Definition 2.2.

(2) For any t0 ∈ I , there is A ∈ R such that

f (t)≤ f (t0)+ A(t − t0)+
λ

2
(t − t0)2

for any t ∈ I .

(3) f is λ-concave in the barrier sense.

Proof. By considering f (t)− (λ/2) t2, we may assume that λ= 0.
Let us prove the implication (1)⇒ (2). Let us take t0 ∈ I , not equal to the

supremum of I . By the concavity of f , the value

A = lim
ε→0+

f (t0+ ε)− f (t0)
ε
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is well-defined. And, the concavity of f implies

f (t)≤ f (t0)+ A(t − t0).

When t0 ∈ I is the supremum of I , we obtain the same inequality as above by
replacing A with limε→0+( f (t0− ε)− f (t0))/ε.

The implication (2)⇒ (3) is trivial.
Let us assume that f satisfies (3), and take t0 in the interior of I . Then there

exists a twice-differentiable function g : I → R such that

g(t0)= f (t0), g ≥ f and g′′ ≤ 0.

Hence, for any t ′ < t0 < t , we have

f (t)− f (t0)
t − t0

≤
g(t)− g(t0)

t − t0
≤

g(t0)− g(t ′)
t0− t ′

≤
f (t0)− f (t ′)

t0− t ′
.

Therefore, f is concave. �

Let X be a geodesic space and U be an open subset of X . Let f : U → R be
a function. We say that f is λ-concave on U if for every geodesic γ : I → U ,
the function f ◦ γ : I → R is λ-concave on I . For a function g :U → R, we say
that f is g-concave if for any p ∈ U and ε > 0, there is an open neighborhood
V of p in U , such that f is (g(p)+ ε)-concave on V . We say that f :U → R is
g-concave in the barrier sense if for any p ∈ U and ε > 0, there exists an open
neighborhood V of p in U such that for every geodesic γ contained in V , f ◦ γ
is (g(p)+ ε)-concave in the barrier sense. By an argument similar to the proof of
Lemma 2.3, f is g-concave if and only if f is g-concave in the barrier sense.

From now on, we fix an Alexandrov space X . We use results and notions on
Alexandrov spaces obtained in [Burago et al. 1992], and we refer to [Burago et al.
2001] and [Petrunin 2007]. Tp X denotes the tangent cone of X at p and 6p X
denotes the space of directions of X at p.

For any λ-concave function f :U → R on an open subset U of X , p ∈U , and
δ > 0, a function fδ : δ−1U→R is defined as the same function fδ = f on the same
domain δ−1U =U as sets. Since the metric of δ−1U is the metric of U multiplied
by δ−1, fδ is δ2λ-concave on δ−1U . In addition, if f is Lipschitz near p, then the
blow-up dp f : Tp X→ R, that is, the limit with respect to some sequence δi → 0,

lim
i→∞

fδi : lim
i→∞

(δ−1
i U, p)→ R

is 0-concave on Tp X . We call dp f the differential of f at p. Note that the
differential of a locally Lipschitz semiconcave function always exists and does not
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depend on the choice of sequence (δi ). Actually, dp f (ξ) is calculated by

dp f (ξ)= lim
t→0+

f (expp(tξ))− f (p)

t

if ξ ∈ 6′p is a geodesic direction, where expp(tξ) denotes the geodesic starting
from p with the direction ξ .

Distance functions as semiconcave functions. For any real number κ , let us define
“trigonometric functions” snκ and csκ by the following ODE:{

sn′′κ(t)+ κ snκ(t)= 0, snκ(0)= 0, sn′κ(0)= 1;

cs′′κ(t)+ κ csκ(t)= 0, csκ(0)= 1, cs′κ(0)= 0.

They are explicitly represented as follows.

snκ(t)=
∞∑

n=0

(−κ)n

(2n+ 1)!
t2n+1

=


1
√
κ

sin(
√
κ t) if κ > 0,

t if κ = 0,
1
√
−κ

sinh(
√
−κ t) if κ < 0,

csκ(t)= sn′κ(t)=
∞∑

n=0

(−κ)n

(2n)!
t2n
=


cos(
√
κ t) if κ > 0,

1 if κ = 0,

cosh(
√
−κ t) if κ < 0.

These functions are elementary for the space form Mκ in the sense that they satisfy
the following: Let us take any points p, q, r ∈ Mκ with |pq| + |qr | + |r p| <
2 diam Mκ , and set θ := 6 qpr . Let γ be the geodesic pr with γ (0) = p and
γ (|p, r |)= r . We set `(t)= |q, γ (t)|. When κ 6= 0, the cosine formula states

csκ(`(t))= csκ |pq| csκ t + κ snκ |pq| snκ t cos θ.

Also, we have

(2-1) (csκ(`(t)))′′+ κ csκ(`(t))= 0.

Lemma 2.4 [Perelman and Petrunin 1994]. The distance function dA from a closed
subset A in an Alexandrov space X of curvature ≥ κ is (csκ(dA)/ snκ(dA))-concave
on (X − A)∩ {dA < π/(2

√
κ)}. Here, if κ ≤ 0, then we consider π/(2

√
κ) as +∞,

and if κ = 0, then we consider csκ(dA)/ snκ(dA) as 1/dA.

Proof. We consider the case that κ 6= 0. Let us take any geodesic γ contained in
(X − A) ∩ {dA < π/(2

√
κ)}. We take x on γ and reparametrize γ as x = γ (0).

We choose w ∈ A such that |Ax | = |wx |. We set `(t) := |A, γ (t)|. Let us take a
geodesic γ̃ and a point w̃ in the κ-plane Mκ such that |w̃γ̃ (0)| = |wx | and 6 (↑w̃x̃
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, γ̃+(0))= 6 (↑wx , γ
+(0)). Let us set ˜̀(t) := |w̃, γ̃ (t)|. By Alexandrov convexity,

`(t)≤ ˜̀(t).
From (2-1), a standard calculation implies

˜̀′′ =
csκ( ˜̀)

snκ( ˜̀)
(1− ( ˜̀′)2)≤

csκ( ˜̀)

snκ( ˜̀)
.

Therefore, ` is (csκ(`)/ snκ(`))-concave. The proof is complete if κ 6= 0. When X
has nonnegative curvature, taking a negative number κ as a lower curvature bound
of X and letting κ tend to 0, we obtain csκ(dA)/ snκ(dA)→ 1/dA. �

Gradient flows. For vectors v,w in the tangent cone Tp X , setting o=op, the origin
of Tp X , we define |v| = |o, v| and

〈v,w〉 =

{
|v||w| cos 6 vow if |v|, |w|> 0,
0 otherwise.

Definition 2.5 [Perelman and Petrunin 1994; Petrunin 1995]. Let f be a λ-concave
function on an open subset U of X . We say that a vector g ∈ Tp X at p ∈ U is a
gradient of f at p if it satisfies

(1) d f p(v)≤ 〈v, g〉 for all v ∈ Tp X ;

(2) d f p(g)= 〈g, g〉.

We recall that a unique such g exists, which is denoted by ∇p f =∇ f (p).
We say that f is regular at p if dp f (v) > 0 for some v ∈ Tp X , or equivalently,
|∇p f |> 0. Otherwise, f is said to be critical at p.

Definition 2.6 [Perelman and Petrunin 1994; Petrunin 1995]. Let f :U → R be a
semiconcave function on an open subset U of an Alexandrov space. A Lipschitz
curve γ : [0, a)→ X on an interval [0, a) is said to be a gradient curve on U for f
if for any t ∈ [0, a) with γ (t) ∈U ,

lim
ε→0+

f ◦ γ (t + ε)− f ◦ γ (t)
ε

exists and is equal to |∇ f |2(γ (t)).

Note that if f is critical at γ (t), the gradient curve γ for f satisfies γ (t ′)= γ (t)
for any t ′ ≥ t .

The (multivalued) logarithm map logp : X → Tp X is defined for x 6= p as
logp(x) = |px | ·↑x

p, where ↑x
p is a direction of a geodesic px , and for x = p as

logp(x)= op. If γ is a gradient curve on U , then for t with γ (t) ∈U , the forward
direction

γ+(t) := lim
ε→0+

logγ (t)(γ (t + ε))

ε
∈ Tγ (t)X

exists and is equal to the gradient ∇ f (γ (t)).
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Proposition 2.7 [Kapovitch et al. 2010; Petrunin 2007; Petrunin 1995; Perelman
and Petrunin 1994]. Letting γ and η be gradient curves starting from x = γ (0) and
y = η(0) in an open subset U for a λ-concave function f :U → R, we obtain

|γ (s)η(s)| ≤ eλs
|xy|

for every s ≥ 0.

This proposition implies a gradient curve starting at x ∈ U is unique on its
domain.

Theorem 2.8 [Petrunin 1995; 2007; Perelman and Petrunin 1994]. For any open
subset U of an Alexandrov space, a semiconcave function f on U , and x ∈U , there
exists a unique maximal gradient curve

γ : [0, a)→U

with γ (0)= x for f , where γ is maximal, if for every gradient curve η : [0, b)→U
for f with η(0)= x , we have b ≤ a.

Definition 2.9 [Perelman and Petrunin 1994; Petrunin 1995]. Let U be an open
subset of an Alexandrov space X and f : U → R a semiconcave function. Let
{[0, ax)}x∈U be a family of intervals for ax > 0. A map

8 :
⋃
x∈U

{x}× [0, ax)→U

is a gradient flow of f on U (with respect to {[0, ax)}x∈U ) if for every x ∈ U ,
8(x, 0)= x and the restriction

8(x, · ) : [0, ax)→U

is a gradient curve of f on U .
A gradient flow 8 is maximal if each domain [0, ax) of the gradient curve is

maximal.

By Theorem 2.8 and Proposition 2.7, a maximal gradient flow on U always
exists and is unique.

Let 8 be the gradient flow of a semiconcave function on an open subset U . By
a standard argument, we obtain

8(x, s+ t)=8(8(x, s), t)

for every x ∈U and s, t ≥ 0, wherever the formula is defined.
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3. Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. Let us fix a finite-dimensional
Alexandrov space X . As we show in Section 5, the proof works for an infinite-
dimensional Alexandrov space with an additional assumption.

We first prove the following. Consider the distance function f = d(S(p, R), · )
from a metric sphere S(p, R) = {q ∈ X | |pq| = R}. We may assume that a
neighborhood of p has curvature ≥−1 by rescaling the metric of X if necessary.
We denote by B(p, R) the closed ball centered at p of radius R.

Proposition 3.1. For any p ∈ X and ε > 0, there exists R> 0 and δ0= δ0(ε, R)> 0
such that the distance function

f = d(S(p, R), · )

from the metric sphere S(p, R) satisfies

(3-1) dx f (↑p
x ) > cos ε

for every x ∈ B(p, δ0 R)−{p}. In particular, f is regular on B(p, δ0 R)−{p}.

Proposition 3.1 is key in our paper, which implies the important Lemma 3.3 later.
For a subset A of an Alexandrov space and x 6∈ A, we denote by A′x the set of

all directions of geodesics from x to A of length |x, A|.

Proof of Proposition 3.1. Since the tangent cone Tp X is isometric to the metric
cone K (6p) over the space of directions 6p, there exists a positive constant R
satisfying the following:

(3-2) For any v ∈6p, there is q ∈ S(p, R) such that 6 (v,↑q
p)≤ ε.

From now on, we set S := S(p, R). For any x ∈ S(p, δR), fixing a direction
↑

x
p ∈ x ′p, let us take q1, q2 ∈ S such that

(3-3) |x, q1| = |x, S| :=min
q∈S
|x, q|

and

(3-4) 6 xpq2 = 6 (↑
x
p,↑

q2
p )=

6 (↑x
p, S′p) := min

v∈S′p
6 (↑x

p, v).

By the condition (3-2), we have

˜6 xpq2 ≤ 6 xpq2 ≤ ε.

Then, by the law of sines, we obtain

(3-5) sin ˜6 pxq2 =
sinh R

sinh |xq2|
sin ˜6 xpq2 ≤

sinh R
sinh R(1− δ)

sin ε.
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On the other hand, by the law of cosines, we obtain

cosh |xq2| = cosh δR cosh R− sinh δR sinh R cos ˜6 xpq2

≤ cosh δR cosh R− sinh δR sinh R cos ε

and

− sinh δR sinh |xq2| cos ˜6 pxq2 = cosh R− cosh δR cosh |xq2|

≥ cosh R{1− cosh2 δR}+ sinh R sinh δR cos ε.

Therefore, if δ is smaller than some constant, then

(3-6) − cos ˜6 pxq2 > 0.

By (3-5) and (3-6), we obtain

(3-7) ˜6 pxq2 ≥ π − (1+ τ(δ))ε.

Next, let us consider the point q1 taken as in (3-3). Then, it satisfies

˜6 xpq1 =min
q∈S
˜6 xpq ≤min

q∈S
6 xpq ≤ ε.

By a similar argument with q1 instead of q2, we obtain

(3-8) ˜6 pxq1 ≥ π − (1+ τ(δ))ε.

By the quadruple condition, with (3-7) and (3-8), we obtain

˜6 q1xq2 ≤ 2π − ˜6 pxq1− ˜6 pxq2 ≤ (2+ τ(δ))ε.

If δ is small with respect to ε, then we obtain

|q1q2| ≤ 3Rε.

Therefore, we obtain

(3-9) ˜6 q1 pq2 ≤ 4ε.

For any y ∈ px −{p, x}, we set q3 = q3(y) ∈ S to be such that

|y, q3| = |y, S|.

By an argument similar to above, we obtain

(3-10) ˜6 pyq3 ≥ π − (1+ τ(|py|/R))ε > π − 2ε.

Then, we have
˜6 xyq3 < 2ε.
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By the Gauss–Bonnet theorem, if y is near x , then

˜6 yxq3 > π − 3ε.

By the first variation formula, we obtain

d fx(↑
p
x )= lim

xp3y→x

|Sy| − |Sx |
|xy|

≥ lim inf
xp3y→x

|q3 y| − |q3x |
|xy|

≥ cos 3ε.

This completes the proof. �

We fix δ0 as in the conclusion of Proposition 3.1, and fix δ ≤ δ0.

Lemma 3.2. For any x ∈ B(p, δR)−{p}, we have

6 (∇x f,↑p
x ) < ε and |∇x f,↑p

x |<
√

2ε.

Proof. By Proposition 3.1, we have

d fx(↑
p
x ) > cos ε.

By the definition of the gradient, we obtain

d fx(↑
p
x )≤ |∇x f | cos 6 (∇x f,↑p

x )≤ cos 6 (∇ f,↑p
x ).

Therefore, we have 6 (∇x f,↑p
x ) < ε.

Since f is 1-Lipschitz, |∇ f | ≤ 1. And, by the above inequality,

|∇ f |x = max
ξ∈6x

d fx(ξ)≥ d f (↑p
x ) > cos ε.

Then, we obtain

|∇x f,↑p
x |

2 < |∇ f |2+ 1− 2|∇ f | cos ε ≤ 2 sin2 ε.

Therefore, |∇ f,↑p
x |<

√
2ε. �

Let us consider the gradient flow 8t of f = d(S, · ).

Lemma 3.3. For every x ∈ B(p, δR),

|8t(x), p| ≤ |x, p| − cos ε · t,

whenever this formula is defined. In particular, for any t ≥ δR/ cos ε, we have
8t(x)= p.

Proof. Let us set γ (t)=8t(x), the gradient curve for f starting from γ (0)= x . If
γ (t0) 6= p, then

d
dt

∣∣∣
t=t0+
|8t(x), p| = −〈∇γ (t0) f,↑p

γ (t0)〉<− cos ε.
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Integrating this, we have

|8t0(x), p| − |x, p| ≤ − cos ε · t0.

This completes the proof. �

Finally, we estimate the Lipschitz constant of the flow 8 on B(p, δR). Let us
recall that f is λ-concave on B(p, δR) for some λ. By Lemma 2.4, λ can be given
as follows:

cosh( f )
sinh( f )

≤
cosh R

sinh(R(1− δ))
= λ.

By Proposition 2.7, for any x, y ∈ B(p, δR),

|8(x, t),8(y, t)| ≤ eλt
|xy|.

Since f is 1-Lipschitz, for x ∈ B(p, δR) and t ′ < t , we have

|8(x, t),8(x, t ′)| ≤
∫ t

t ′

∣∣∣∣∣ d
ds

+

8(x, s)
∣∣∣∣ ds =

∫ t

t ′
|∇ f |(8(x, s)) ds ≤ t − t ′.

Therefore, we obtain the following:

Lemma 3.4. For any x, y ∈ B(p, δR) and t ≥ s ≥ 0,

|8(x, s),8(y, t)| ≤ eλs
|x, y| + t − s.

Note that, by Lemma 3.3, setting `= δ0 R/ cos ε, the term eλ` can be bounded
from above by a constant arbitrary close to 1 if we choose δ0 and R small enough.

By Lemma 3.4, we obtain a Lipschitz homotopy

ϕ : B(p, δ0 R)×[0, 1] → B(p, δ0 R)

with ϕ( · , 1) = p, defined by ϕ(x, t) = 8(x, `t) for (x, t) ∈ B(p, δ0 R)× [0, 1].
This completes the proof of Theorem 1.2.

Remark 3.5. In the above argument, we employ the distance function from S(p, R)
to prove Theorem 1.2. Similarly, one can use the averaged distance function
constructed in [Perelman 1993] and [Kapovitch 2005] to prove Theorem 1.2.

4. Proof of applications

Proof of Corollaries 1.3 and 1.4. Let V be a metric space, U a subset of V , and
p ∈ V . We say that U is Lipschitz contractible to p in V if there exists a Lipschitz
map

h :U ×[0, 1] → V
such that

h(x, 0)= x and h(x, 1)= p



406 AYATO MITSUISHI AND TAKAO YAMAGUCHI

for any x ∈U . We call such an h a Lipschitz contraction from U to p in V . We say
that U is Lipschitz contractible in V if U is Lipschitz contractible to some point
in V .

Lemma 4.1. Let U be Lipschitz contractible in a metric space V . For any Lipschitz
map ϕ : Sn−1

→U , there exists a Lipschitz map ϕ̃ : Dn
→ V such that ϕ̃|Sn−1 = ϕ.

Proof. By definition, there exist p ∈ V and a Lipschitz map

h :U ×[0, 1] → V

such that
h(x, 0)= x and h(x, 1)= p

for any x ∈U . We define a map

ϕ1 : Sn−1
×[0, 1] → V

by ϕ1 = h ◦ (ϕ × id). Then, ϕ1 is Lipschitz with Lipschitz constant at most
Lip (h) ·max{1,Lip (ϕ)}. We define a map

ϕ2 : Dn
×{1} → V

by ϕ2(v, 1)= p for all v ∈ Dn . And we consider a space

Y = Sn−1
×[0, 1] ∪ Dn

×{1}

equipped with a length metric with respect to a gluing Sn−1
×{1} 3 (v, 1) 7→ (v, 1)∈

∂Dn
×{1}. Now we define a map ϕ3 : Y → V by

ϕ3 =

{
ϕ1 on Sn−1

×[0, 1],
ϕ2 on Dn

×{1}.

This is well-defined. Then, ϕ3 is Lip (ϕ1)-Lipschitz. Indeed, for x ∈ Sn−1
×[0, 1]

and y ∈ Dn
×{1}, we have

|ϕ3(x), ϕ3(y)| = |ϕ3(x), p|.

Let x̄ ∈ Sn−1
× {1} be the foot of a perpendicular segment from x to Sn−1

× {1}.
We note that |x, x̄ | ≤ |x, y| and ϕ3(x̄)= p. Then, we obtain

|ϕ3(x), p| = |ϕ3(x), ϕ3(x̄)| = |ϕ1(x), ϕ1(x̄)| ≤ Lip (ϕ1)|x, x̄ | ≤ Lip (ϕ1)|x, y|.

Obviously, there exists a bi-Lipschitz homeomorphism

f : Dn
→ Y

with f (0)= (0, 1) ∈ Dn
×{1} preserving the boundaries, in the sense that f (v)=

(v, 0) ∈ Sn−1
×{0} for any v ∈ Sn−1. Then, we obtain a Lipschitz map ϕ̃ := ϕ3 ◦ f

satisfying the desired condition. �
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Definition 4.2. We say that a metric space Y is a Lipschitz simplicial complex if
there exists a triangulation T of Y satisfying the following: For each simplex S ∈ T ,
there exists a bi-Lipschitz homeomorphism ϕS : 4

dim S
→ S. Here, the simplex

4
dim S is a standard simplex equipped with the Euclidean metric and S is given the

restricted metric of Y . We say that such a triangulation T is a Lipschitz triangulation
of Y . The dimension of Y is given by dim Y = sup

S∈T
dim S. We only deal with Y

such that dim Y <∞.
A Lipschitz simplicial complex Y is called finite if it has a Lipschitz triangulation

consisting of finitely many elements.

Note that a subdivision (for instance, the barycentric one) of a Lipschitz triangu-
lation is also a Lipschitz triangulation.

Proposition 4.3. Let X be an SLLC space, Y a Lipschitz simplicial complex, and
f : Y → X a continuous map. Then, there exists a homotopy

h : Y ×[0, 1] → X

from h0 = f such that h1 is Lipschitz on each simplex of Y .
Further, if f is Lipschitz on a subcomplex A of Y , then a homotopy h can be

chosen that is relative to A, that is, satisfying h(a, t)= a for any a ∈ A and t ∈ [0, 1].

Proof. If dim Y = 0, then we set h(x, t)= f (x) for x ∈ Y and t ∈ [0, 1]. Then, h is
the desired homotopy.

We assume that the assertion holds for dim Y ≤ k− 1. First, we prove that for
any f : 4k

→ X , there exists a homotopy

h : 4k
×[0, 1] → X

from h0 = f to a Lipschitz map h1. Taking a subdivision if necessary, let us take a
finite Lipschitz triangulation T of 4k satisfying the following: For any k-simplex
E ∈ T , there exists an open subset UE of X which is a Lipschitz contractible ball
such that f (E)⊂UE . For any simplex F ∈ T of dim F ≤ k− 1, we set

UF =
⋂

F⊂E∈T

UE .

This is an open subset of X . Let us denote by Z a (k − 1)-skeleton of 4k with
respect to T . By the inductive assumption, there exists a homotopy

h : Z ×[0, 1] → X

from h0 = f |Z such that for every simplex F of Z , the following hold:

• h1|F is Lipschitz.

• h(F ×[0, 1])⊂UF .
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• If f |F is Lipschitz, then ht |F = f |F for any t .

Let E be a k-simplex of 4k with respect to T . We denote by h∂E the restriction of
h to ∂E×[0, 1]. Then, the image of h∂E is contained in

⋃
T3F⊂∂E UF ⊂UE . Since

the pair (E, ∂E) has the homotopy extension property, there exists a homotopy

hE
: E ×[0, 1] →UE

from f |E which is an extension of h∂E . Then, hE
1 is Lipschitz on ∂E . For another

k-simplex E ′ of 4k with common face E ∩ E ′,

hE
t = hE ′

t

on E ∩ E ′ for all t . Since UE is a Lipschitz contractible ball, by Lemma 4.1 there
is a homotopy

hE
: E ×[0, 1] → X

relative to ∂E from hE
0 = hE

1 to a Lipschitz map hE
1 : E → X . Let us define a

homotopy ĥE
: E→ X by

ĥE(x, t)=
{

hE(x, t) if t ∈ [0, 1/2],
hE(x, t) if t ∈ [1/2, 1].

We define ĥ : 4k
×[0, 1] → X by

ĥ(x, t)= ĥE(x, t)

for x ∈ E ∈ T . Then, ĥ0 = f and ĥ1 is Lipschitz.
Next, we consider a continuous map f : Y → X from a Lipschitz simplicial

complex Y with dim Y = k. Let Z be a (k − 1)-simplex of Y . By the inductive
assumption, there exists a homotopy

h : Z ×[0, 1] → X

from h0 = f |Z , and h1 is Lipschitz on every simplex of Z . From now on, let us
denote by E a k-skeleton of Y . By using the homotopy extension property for
(E, ∂E) and Lemma 4.1, we obtain a homotopy

hE
: E ×[0, 1] → X

which is an extension of h|∂E×[0,1], with hE
0 = f |E . Since hE

1 |∂E=h1|∂E is Lipschitz,
there exists a homotopy

hE
: E ×[0, 1] → X
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relative to ∂E from hE
0 = hE

1 to a Lipschitz map hE
1 . We set h(x, t)= h(x, 1) for

x ∈ Z and t ∈ [0, 1]. And, we define a homotopy ĥ : Y ×[0, 1] → X by

ĥ(x, t)=


h(x, 2t) if x ∈ Z and t ∈ [0, 1/2],
h(x, 2t − 1) if x ∈ Z and t ∈ [1/2, 1],
hE(x, 2t) if x ∈ E ⊂ Y and t ∈ [0, 1/2],
hE(x, 2t − 1) if x ∈ E ⊂ Y and t ∈ [1/2, 1].

Then, ĥ0 = f and ĥ1 is Lipschitz on every simplex. �

Corollary 4.4. Let Y be a Lipschitz simplicial complex, X an SLLC space, and
f : Y → X a continuous map. Let T be a Lipschitz triangulation of Y and {UF |

F ∈ T } a family of open subsets of X satisfying the following properties:

• f (F)⊂UF for F ∈ T .

• UF ⊂UE for F , E ∈ T with F ⊂ E.

Then, there exists a homotopy h : Y ×[0, 1] → X from h0 = f such that for every
F ∈ T :

• h1 is Lipschitz on F.

• h(F ×[0, 1])⊂UF .

• If f is Lipschitz on F , then ht = f on F for all t .

For instance, fixing ε > 0 and setting UF an ε-neighborhood of f (F) for every
F ∈ T , the family {UF | F ∈ T } satisfies the assumption of Corollary 4.4.

Proof of Corollary 4.4. If dim Y = 0, the assertion is trivial. We assume that
Corollary 4.4 holds when dim Y ≤ k − 1 for some k ≥ 1. Let Y be a Lipschitz
simplicial complex with dim Y = k and T a Lipschitz triangulation of Y . Let us take
a family {UF | F ∈ T } of open subsets satisfying the assumption of Corollary 4.4.
By inductive assumption, there exists a homotopy

h : Y (k−1)
×[0, 1] → X

from h0= f |Y (k−1) , and h1 is Lipschitz on each F ∈T of dim≤ k−1 and ht(F)⊂UF

for all t . Let us denote by E a k-simplex in T . By Proposition 4.3, there exists a
homotopy

hE
: E ×[0, 1] →UE

from hE
0 = f |E to a Lipschitz map hE

1 such that hE
t = ht on ∂E for all t . Then, the

concatenation map

ĥ(x, t)=
{

h(x, t) if x ∈ Y (k−1),

hE(x, t) if x ∈ E,

is the desired homotopy. �



410 AYATO MITSUISHI AND TAKAO YAMAGUCHI

Remark 4.5. We note that Proposition 4.3 and Corollary 4.4 above can be also
proved assuming X is just LLC instead of SLLC. Here, we say that a metric space
X is locally Lipschitz contractible, for short LLC, if for any p ∈ X and ε > 0, there
exist r ∈ (0, ε] and a Lipschitz contraction ϕ from U (p, r) to p in U (p, ε). We
also remark that Corollaries 1.3 and 1.4 are true if X is just LLC.

Let us start to prove Corollaries 1.3 and 1.4.

Proof of Corollaries 1.3 and 1.4. Let us take a finite Lipschitz simplicial complex
pair (P, Q), with Q possibly empty. We prove Corollaries 1.3 and 1.4 assuming
X to be SLLC. Let A be an open subset in X . Let us consider a continuous map
f : (P, Q)→ (X, A). By Corollary 4.4 and Theorem 1.2, we obtain a homotopy

ϕ : (P, Q)×[0, 1] → (X, A)

from ϕ0 = f to a Lipschitz map ϕ1 : (P, Q)→ (X, A). Here, we note that since A
is open in X , the homotopy ϕt can be chosen so that ϕt(Q)⊂ A. Then, we obtain a
correspondence

(4-1) C((P, Q), (X, A)) 3 f 7→ ϕ1 ∈ Lip((P, Q), (X, A)),

where C(∗, ∗∗) (resp. Lip(∗, ∗∗)) denotes the set of all continuous (resp. Lipschitz)
maps from ∗ to ∗∗.

Let us consider two homotopic continuous maps f and g from (P, Q) to (X, A).
From the correspondence (4-1), we obtain Lipschitz maps f ′ and g′ from (P, Q) to
(X, A) which are homotopic to f and g, respectively. Connecting these homotopies,
we obtain a homotopy

H : (P, Q)×[0, 1] → (X, A)

between H( · , 0)= f ′ and H( · , 1)= g′. Now, we consider a Lipschitz simplicial
complex P̃ = P × [0, 1] and a subcomplex R̃ = P × {0, 1}. Then, the map H is
Lipschitz on R̃. Hence, by Proposition 4.3, we obtain a homotopy

H̃ : P̃ ×[0, 1] → X

relative to R̃ from H̃( · , 0) = H to a Lipschitz map H̃( · , 1). Then, H̃( · , 1)
is a Lipschitz homotopy between f ′ and g′. Therefore, we conclude that the
correspondence (4-1) sends a homotopy to a Lipschitz homotopy. This completes
the proof of Corollary 1.3.

Let us consider a pointed n-sphere (Sn, p0) and an Alexandrov space X with
point x0 ∈ X . Then, for any map f : (Sn, p0)→ (X, x0), the restriction f |{p0} is
always Lipschitz. Hence, by an argument as above and Proposition 4.3, we obtain
the conclusion of Corollary 1.4. �



LLC CONDITION FOR ALEXANDROV SPACES 411

Plateau problem. We first recall the definition of the Sobolev space of a metric
space target in order to state the setting of Plateau problem in an Alexandrov space
as in the introduction, referring to [Korevaar and Schoen 1993] and [Mese and
Zulkowski 2010]. For a complete metric space X and a domain � in a Riemannian
manifold having compact closure, a function u :�→ X is said to be an L2-map if
u is Borel measurable and, for some (equivalently, any) point p0 ∈ X , the integral∫

�

|u(x), p0|
2 dµ

is finite, where µ is the Riemannian volume measure. The set of all L2-maps
from � to X is denoted by L2(�, X). We recall the definition of the energy of
u ∈ L2(�, X): For any ε > 0, we set �ε = {x ∈� | d(∂�, x) > ε}, and define an
approximate energy density eu

ε :�ε→ R by

eu
ε (x)=

1
ωn

∫
S(x,ε)

d(u(x), u(y))2

ε2

dσ
εn−1 .

Here, n = dim�, S(x, ε) is the metric sphere around x with radius ε and σ is the
surface measure on it. By [Korevaar and Schoen 1993, 1.2(iii)], we obtain∫

�ε

eu
ε (x) dµ≤ Cε−2.

Let us take a Borel measure ν on the interval (0, 2) satisfying

ν ≥ 0, ν((0, 2))= 1, and
∫ 2

0
λ−2 dν(λ) <∞.

An averaged approximate energy density νeu
ε (x) is defined by

νeu
ε (x)=


∫ 2

0
eu
λε(x) dν(λ) if x ∈�2ε,

0 otherwise.

Let Cc(�) be the set of all continuous function on � with compact support. We
define a functional Eu

ε : Cc(�)→ R by

Eu
ε ( f ) :=

∫
�

f (x)νeu
ε dµ(x).

Then, the energy of u is defined by

Eu
= sup

f ∈Cc(�)
0≤ f≤1

lim sup
ε→0

Eu
ε ( f ).
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The (1, 2)-Sobolev space is defined as

W 1,2(�, X)= {u ∈ L2(�, X) | Eu <∞}.

We start to prove Corollary 1.6.

Proof of Corollary 1.6. Let 0 be a rectifiable closed Jordan curve in an Alexandrov
space X which is topologically contractible. Since 0 is rectifiable, we can take a
Lipschitz monotonic parametrization

γ : S1
→ 0.

By the contractibility of 0, there exists a continuous map

h : 0×[0, 1] → X

such that h( · , 0) = id0 and h( · , 1) = p for some p ∈ X . We define a map
f : S1

× [0, 1] → X by f (x, t) = h(γ (x), t). Further, we set f (y, 1) = p for
y ∈ D2. By taking a reparametrization of f : S1

×[0, 1]∪D2
×{1}→ X , we obtain

a continuous map
g : D2

→ X

such that g|∂D2 = γ .
By Proposition 4.3, there exists a homotopy

h̃ : D2
×[0, 1] → X

relative to ∂D2 such that h̃( · , 0)= g and h̃( · , 1) is Lipschitz. Thus, we obtain a
Lipschitz map g̃ = h̃( · , 1) such that g̃|∂D2 = γ . By the definition of the energy, we
obtain

E(g̃)≤ Lip(g̃)2 <∞.

Here, Lip(g̃) is the Lipschitz constant of g̃. Therefore, we conclude g̃ ∈ F0. �

5. A note on the infinite-dimensional case

It is known that the (Hausdorff) dimension of an Alexandrov space is a nonnegative
integer or is infinite. There are only a few works on infinite-dimensional Alexandrov
spaces. It is not known whether an infinite-dimensional Alexandrov space is locally
contractible.

When we consider an Alexandrov space of possibly infinite dimension, we
somewhat generalize Definition 2.1 as follows: A complete metric space X is
called an Alexandrov space if it is a length metric space and satisfies the quadruple
condition locally. Here, a complete metric space X is a length metric space if for
every two points p, q ∈ X and any ε > 0, there exists a point r ∈ X satisfying
max{|pr |, |rq|} < |pq|/2+ ε. Since a length metric space has no geodesics in
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general, to define a notion of a lower curvature bound, we change the triangle
comparison condition to the quadruple condition. Here, an open subset U of a
length space X satisfies the quadruple condition modeled on the κ-plane Mκ if for
any four distinct points p0, p1, p2 and p3 in U , we have

˜6 p1 p0 p2+ ˜6 p2 p0 p3+ ˜6 p3 p0 p1 ≤ 2π,

where ˜6 = ˜6 κ denotes the comparison angle modeled on Mκ .
By a standard argument, any geodesic triangle (if one exists) in an Alexandrov

space of possibly infinite dimension satisfies the triangle comparison condition. It
is known that finite-dimensional Alexandrov spaces are proper metric space; in
particular, by Hopf–Rinow theorem, they are geodesic spaces.

Plaut proved that an Alexandrov space of infinite dimension is an “almost”
geodesic space. Precisely:

Theorem 5.1 [Plaut 1996]. Let X be an Alexandrov space of infinite dimension.
For any p ∈ X , the subset Jp ⊂ X defined by

Jp =
⋂
δ>0

{q ∈ X −{p} | there exists x ∈ X −{p, q} with ˜6 pqx > π − δ}

is a dense Gδ-subset in X , and, for every q ∈ Jp, there exists a unique geodesic
connecting p and q.

We now show that the compactness of the space of directions at some point
implies Lipschitz contractibility around the point.

Proposition 5.2. Let X be an Alexandrov space of infinite dimension. Suppose that
there exists a point p ∈ X such that the space of directions 6p at p is compact.
Then, the following are true:

(i) The pointed Gromov–Hausdorff limit as r→∞ of the scaling space (r X, p)
exists and is isometric to the cone over 6p.

(ii) 6p is a geodesic space.

(iii) X is proper.

(iv) There exists R0 > 0, depending on p, such that for every R ≤ R0, U (p, R) is
Lipschitz contractible to p in itself.

Proof. (i) Let K = K (6p) be the Euclidean cone over 6p and B be the unit ball
around the origin o. Let Jp be the set defined in Theorem 5.1. For any ε > 0,
we take a finite ε-net {vα}α ⊂ B. We may assume that every vα is contained in
K (6′p)−{o}. That is, there exists r > 0 such that for every α, there is a geodesic
γα starting from p having direction vα/|vα|, with length at least r . Let xα ∈ B(p, r)
be defined by xα = γα(r |vα|). Then, {xα}α is an ε-net in (1/r)B(p, r). Indeed, for
any x ∈ B(p, r)∩ Jp, setting v = logp(x) ∈ K (6p), we have (1/r)v ∈ B. Then,
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there exists α such that |vα, (1/r)v| ≤ ε. Therefore, |rvα, v| ≤ rε. We may assume
that a lower curvature bound of X is less than or equal to 0. Then

expp : B(o, r)∩ dom(expp)→ B(p, r)

is 1-Lipschitz, where dom(expp) is the domain of expp. Therefore, |xα, x |X ≤ rε.
Let us retake r to be small enough that∣∣∣∣ |xα, xβ |

r
− |vα, vβ |

∣∣∣∣≤ ε.
Then, the map vα 7→ xα implies a Cε-approximation between B and (1/r)B(p, r)
for any small r . Here, C is a constant not depending on any other term. Therefore,
the pointed spaces ((1/r)X, p) are Gromov–Hausdorff convergent to (K (6p), o)
as r→ 0.

Clearly (ii) holds by (i) and (iii). We prove (iii). Let us consider any closed
ball B(p, r) centered at p. Let us take any sequence {xi } ⊂ B(p, r). We take
yi ∈ B(p, r)∩ Jp such that |xi , yi | ≤ 1/ i . Then, vi = logp(yi ) ∈ B(o, r)⊂ Tp X is
well-defined. By (i), Tp X is proper. Hence, there exists a convergent subsequence
{vn(i)}i of {vi }i . Since expp is Lipschitz, {xn(i)} is convergent.

We recall that the proof of Theorem 1.2 started from the assertion (3-2) in the
proof of Proposition 3.1. The assertion (i) guarantees (3-2). Therefore, one can
prove (iv) in the same way as the proof of Theorem 1.2. �

6. An estimation of simplicial volume of Alexandrov spaces

In this section, we consider an Alexandrov space having a lower Ricci curvature
bound, and we prove an estimation of the simplicial volume of such a space as
stated in Theorem 1.8. The original form of Theorem 1.8 was proved by Gromov
[1982] when X is a Riemannian manifold with a lower Ricci curvature bound.

Gromov’s original proof was depending on the well-known Bishop–Gromov
volume inequality. For an Alexandrov space of curvature ≥ κ for some κ ∈
R, its Hausdorff measure is known to satisfy the Bishop–Gromov-type volume
growth estimate. The second author’s proof of Corollary 1.7 was depending on
this volume growth estimate [Yamaguchi 1997]. It is known that several natural
generalized notions of a lower Ricci curvature bound induce a volume growth
estimate. Among them, the local reduced curvature-dimension condition introduced
by Bacher and Sturm [2010] can be used as a general condition implying the
inequality in Theorem 1.8. For completeness, we recall the definitions of several
generalized notions of lower Ricci curvature bound, and prove Theorem 1.8.

Several notions of lower Ricci curvature bound. We recall several generalized
notions of a lower bound of Ricci curvature, defined on a pair consisting of a metric
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space and a Borel measure on it. For the theory, history and undefined terms of the
following, we refer to [Sturm 2006a; 2006b; Bacher and Sturm 2010; Cavalletti
and Sturm 2012; Ohta 2007] and their references.

In this section, we denote by M a complete separable metric space. By P2(M)
we denote the set of all Borel probability measures µ on M with finite second
moment. A metric called the L2-Wasserstein distance W2 is defined on P2(M). Let
us fix a locally finite Borel measure m on M . Such a pair (M,m) is called a metric
measure space. Let us denote by P∞(M,m) the subset of P2(M) consisting of all
measures which are absolutely continuous in m and have bounded support.

From now on, K and N denote real numbers with N ≥ 1. For ν ∈ P∞(M,m)
with density ρ = dν/dm, its Rényi entropy with respect to m is given by

SN (ν|m) := −
∫

M
ρ1−1/N dm =−

∫
M
ρ−1/N dν.

For t ∈ [0, 1], a function σ (t)K ,N : (0,∞)→ [0,∞) is defined as

σ
(t)
K ,N (θ)=

 +∞ if K θ2
≥ Nπ2,

snK/N (tθ)
snK/N (θ)

otherwise.

And, we set τ (t)K ,N (θ)= t1/Nσ
(t)
K ,N−1(θ)

(N−1)/N .

Definition 6.1 [Bacher and Sturm 2010; Cavalletti and Sturm 2012; Sturm 2006b].
Let K and N be real numbers with N ≥ 1. Let (M,m) be a metric measure space.
We say that (M,m) satisfies the reduced curvature-dimension condition CD∗(K , N )
locally — denoted by CD∗loc(K , N )— if for any p ∈ M there exists a neighborhood
M(p) such that for all ν0, ν1 ∈ P∞(M,m) supported on M(p), denoting those
densities by ρ0, ρ1 with respect to m, there exist an optimal coupling q of ν0 and ν1

and a geodesic 0 : [0, 1] → P∞(M,m), parametrized proportionally to arclength,
connecting ν0 = 0(0) and ν1 = 0(1), such that

SN ′(0(t)|m)≤−
∫

M×M

[
σ
(1−t)
K ,N ′ (d(x0, x1))ρ

−1/N ′

0 (x0)

+ σ
(t)
K ,N ′(d(x0, x1))ρ

−1/N ′

1 (x1)
]

dq(x0, x1)

holds for all t ∈ [0, 1] and all N ′ ≥ N .
We say that (M,m) satisfies the curvature-dimension condition CD(K , N ) lo-

cally — denoted by CDloc(K , N )— if it satisfies CD∗loc(K , N ) with σ (s)K ,N ′ replaced

by τ (s)K ,N ′ for each s ∈ [0, 1] and N ′ ≥ N .

The (global) conditions CD∗(K , N ) and CD(K , N ) are defined similarly, and
imply corresponding local conditions.
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From the inequality τ (t)K ,N (θ) ≥ σ
(t)
K ,N (θ), CD(K , N ) implies CD∗(K , N ) (and

CDloc(K , N ) implies CD∗loc(K , N )). Further, it is known that the local CD-condi-
tions are equivalent in the following sense:

When a mathematical condition ϕ(K ) is given for each K ∈ R, we say that an
mathematical object P satisfies ϕ(K−) if P satisfies ϕ(K ′) for all K ′ < K .

Theorem 6.2 [Bacher and Sturm 2010, Proposition 5.5]. Let K , N ∈ R with N ≥ 1
and let (M,m) be a metric measure space. Then, (M,m) satisfies CD∗loc(K−, N )
if and only if it satisfies CDloc(K−, N ).

There is another notion of a lower Ricci curvature bound in metric measure
spaces which is called the measure contraction property, denoted by MCP(K , N ).
Since we do not use its theory to prove Theorem 1.8 in this paper, we omit its
definition. For the definition and theory, we refer to [Ohta 2007] and [Sturm 2006b].

A metric measure space (M,m) is called nonbranching if M is a geodesic space
and is nonbranching in the sense that for any four points x , y, z1, z2 in M , if y is
a common midpoint of x and z1 and of x and z2, then z1 = z2. It is known that
a nonbranching metric measure space satisfying CD(K , N ) satisfies MCP(K , N ).
Recently, Cavalletti and Sturm proved:

Theorem 6.3 [2012, Theorem 1.1]. Let (M,m) be a nonbranching metric measure
space. Let K , N ∈ R with N ≥ 1. If (M,m) satisfies CDloc(K , N ), then it satisfies
MCP(K , N ).

Bishop–Gromov volume growth estimate. Let (M,m) be a metric measure space
and x ∈ supp(m). We set

vx(r) := m(B(x, r)).

For K , N ∈ R with N > 1, we define

v̄K ,N (r)=
∫ r

0
snN−1

K/(N−1)(t) dt.

A metric measure space (M,m) satisfies the Bishop–Gromov volume growth
estimate BG(K , N ) if for any x ∈ supp(m), the function

vx(r)/v̄K ,N (r)

is nonincreasing in r ∈ (0,∞) (with r ≤ π
√
(N − 1)/K if K > 0).

Since v̄K ,N (r) is continuous in K , BG(K−, N ) implies BG(K , N ). The Bishop–
Gromov volume growth estimate is implied by several lower Ricci curvature bounds,
for instance the measure contraction property.

Theorem 6.4 [Ohta 2007, Theorem 5.1; Sturm 2006b, Remark 5.3]. If (M,m)
satisfies MCP(K , N ), then it satisfies BG(K , N ).



LLC CONDITION FOR ALEXANDROV SPACES 417

Summarizing the above facts, we can state the following implications: Let
K , N ∈ R with N ≥ 1. For a nonbranching metric measure space (M,m),

(6-1)
CD∗loc(K , N )=⇒ CD∗loc(K−, N )⇐⇒ CDloc(K−, N )

=⇒MCP(K−, N )=⇒ BG(K−, N )=⇒ BG(K , N ).

Universal covering space with lifted measure. Let X be a semilocally simply con-
nected space. Then, there is a universal covering π : Y → X . In addition, if X is a
length space, then Y can also be considered as a length space. The map π becomes
a local isometry.

In addition, we assume that (X,m) is a proper metric measure space. Let V be
the family of all open sheets of the universal covering π : Y → X . We define a set
function mY : V→ [0,∞] by

mY (V )= m(π(V )).

One can naturally extend mY to a Borel measure on Y . We also write this measure
as mY , and call it the lift of m. Since m is locally finite, so is mY .

In general, for a geodesic 0 : [0, 1] → P2(M), if 0(0) and 0(1) are supported
on U (x, r) for some x ∈ X and r > 0, then 0(t) is supported on U (x, 2r) for every
t ∈ (0, 1) [Sturm 2006a, Lemma 2.11]. Therefore, we obtain:

Proposition 6.5 [Bacher and Sturm 2010, Theorem 7.10]. The local (reduced)
curvature-dimension condition is inherited by the lift. Namely, let K , N ∈ R with
N ≥ 1 and let (X,m) and (Y,mY ) be as above. If (X,m) satisfies CDloc(K , N )
(resp. CD∗loc(K , N )), then (Y,mY ) also satisfies CDloc(K , N ) (resp. CD∗loc(K , N )).

Proof of Theorem 1.8. Let X be an n-dimensional compact orientable Alexandrov
space without boundary. Let m be a locally finite Borel measure on X with full
support. We assume that (X,m) satisfies CD∗loc(K , N ) for K < 0 and N ≥ 1. By
Proposition 6.5, the universal covering Y of X with lift mY of m also satisfies
CD∗loc(K , N ). And, Y is an n-dimensional Alexandrov space. Since m has full
support, so does mY . By the implication (6-1), (Y,mY ) satisfies BG(K , N ). There-
fore, as mentioned in the preface of this section, the original proof of Gromov’s
theorem relying on the Bishop–Gromov volume comparison works in our setting
(see [Gromov 1982, §2; Yamaguchi 1997, Appendix]). Hence, we can prove
Theorem 1.8 with a similar such an argument. For undefined terms appearing and for
facts used in the following argument, we refer to [Gromov 1982; Yamaguchi 1997].

Let M (resp. M+) be the Banach space (resp. the set) of all finite signed (resp.
positive) Borel measures on Y , where M is equipped with the norm ‖µ‖=

∫
Y d|µ| ∈

[0,∞). Due to the general theory established in [Gromov 1982, §2] and [Yamaguchi
1997, Appendix], if a differentiable averaging operator S : Y →M+ exists, then
for any α ∈ Hn(X),
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(6-2) ‖α‖1 ≤ n! (L[S])n mass(α)

holds. Here, the value L[S] is defined as follows: For y ∈ Y ,

LSy = lim sup
z→y

‖S(z)− S(y)‖
d(z, y)

and L[S] = sup
y∈Y

LSy

‖S(y)‖
.

We recall a concrete construction of a differentiable averaging operator. For
R > 0 and y ∈ Y , we set SR(y) ∈M+ to be

SR(y)= 1B(y,R) ·mY .

Here, 1A is the characteristic function of A⊂Y . For ε > 0, we define SR,ε :Y→M+
by

SR,ε(y)=
1
ε

∫ R

R−ε
SR′(y) d R′.

Its norm is ‖SR,ε(y)‖ = (1/ε)
∫ R

R−ε vy(R′) d R′ and is not less than vy(R − ε).
Here, vz(r) = mY (B(z, r)) for z ∈ Y and r > 0. Given the Lipschitz function
ψ = ψR,ε : [0,∞)→ [0, 1] defined by

ψ(t)=


1 if t ≤ R− ε,

(R− t)/ε if t ∈ [R− ε, R],
0 if t ≥ R,

we can write SR,ε(y)= ψ(d(y, · ))mY for any y ∈ Y .
We can check SR,ε is a differentiable averaging operator as follows: Since mY is

π1(X)-invariant, the maps SR and SR,ε are π1(X)-equivariant. Since m is absolutely
continuous in Hn

X , so is mY in Hn
Y . One can check that SR,ε is differentiable mY -

almost everywhere with respect to the differentiable structure of Y , where the
differentiable structure on Alexandrov spaces are defined by Otsu and Shioya
[1994]. Indeed, the differential Dy SR,ε(γ

+(0)) of SR,ε at y along a geodesic γ
starting from y = γ (0) is calculated by(

Dy SR,ε(γ
+(0))

)
(A)=

1
ε

∫
A∩A(y;R−ε,R)

cos 6 (z′y, γ
+(0)) dmY (z)

for any Borel set A ⊂ Y , where A(z; r, r ′) is the annulus around z ∈ Y of inner
radius r and outer radius r ′, for r ≤ r ′.

To estimate L[SR,ε], we use the Bishop–Gromov volume growth estimate as
follows. We obtain

L(SR,ε)y = sup
ξ∈6y

‖Dy SR,ε(ξ)‖ ≤
mY (A(y; R− ε, R))

ε
.
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It follows from BG(K , N ) that

L(SR,ε)y

‖SR,ε(y)‖
≤
vy(R)− vy(R− ε)
ε · vy(R− ε)

≤ CK ,N (R, ε).

Here, setting

v̄(R′)= v̄K ,N (R′)=
∫ R′

0
snN−1

K/(N−1)(t) dt,

we have

CK ,N (R, ε) :=
v̄(R)− v̄(R− ε)
ε · v̄(R− ε)

.

Since mass([X ])=Hn(X) [Yamaguchi 1997, Theorem 0.1], by using (6-2) and
by letting ε→ 0 and R→∞, we obtain

‖X‖ ≤ n!
√
−K (N − 1)

n
Hn(X).

This completes the proof of Theorem 1.8. �

Remark 6.6. By [Petrunin 2011] and [Zhang and Zhu 2010], it is known that for
an n-dimensional Alexandrov space X of curvature ≥ κ , the metric measure space
(X,Hn) satisfies the curvature-dimension condition CD((n− 1)κ, n). Therefore,
Corollary 1.7 is implied by Theorem 1.8.

If there exists a compact orientable n-dimensional Alexandrov space X , without
boundary, of curvature ≥ κ , with κ < 0, which has nonnegative Ricci curvature
with respect to some reference measure m such that m � Hn and supp(m) = X ,
then Theorem 1.8 yields ‖X‖ = 0.
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SEQUENCES OF OPEN RIEMANNIAN MANIFOLDS
WITH BOUNDARY

RAQUEL PERALES AND CHRISTINA SORMANI

We consider sequences of open Riemannian manifolds with boundary that
have no regularity conditions on the boundary. To define a reasonable
notion of a limit of such a sequence, we examine ı-inner regions, that avoid
the boundary by a distance ı. We prove Gromov–Hausdorff compactness
theorems for sequences of these ı-inner regions. We then build “glued limit
spaces” out of the Gromov–Hausdorff limits of ı-inner regions and study
the properties of these glued limit spaces. Our main applications assume the
sequence is noncollapsing and has nonnegative Ricci curvature. We include
open questions.

1. Introduction

Recall that Gromov’s Ricci compactness theorem states that a sequence of compact
Riemannian manifolds with nonnegative Ricci curvature and a uniform upper bound
on diameter has a subsequence that converges in the Gromov–Hausdorff sense to
a metric space [8]. When the sequence of manifolds is noncollapsing, Gromov–
Hausdorff limit spaces have a variety of properties, particularly restrictions on their
metrics, their Hausdorff measures, and their topologies. These properties were
proven by Cheeger, Colding, Naber, Wei and the second author [3; 4; 13; 5].

Here we consider an open Riemannian manifold .Mm; g/ endowed with the
length metric dM , as in (3). We define the boundary to be

(1) @M DM nM;

where M is the metric completion of M . For example, .Mm; g/ may be a smooth
manifold with boundary. However, we do not require any smoothness conditions
on this boundary.

First observe that Gromov’s Ricci compactness theorem does not hold for precom-
pact open manifolds with boundary that have a uniform upper bound on diameter,
even if they are flat and two-dimensional:
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10060059.
MSC2010: 53C23.
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Figure 1. Models of Example 1.1: M2, M3, M4; : : : .

Example 1.1. The j -fold covering spaces Mj of the annuli Ann0.1=j; 1/ � E2,
depicted in Figure 1, are flat surfaces such that

(2) Diam.Mj /� 2C� and Vol.Mj /D j.� ��.1=j /2/:

See Remark 5.5 for the proof that there is no subsequence of these spaces with a
Gromov–Hausdorff limit.

Assuming both a uniform upper bound on volume and diameter, we still do not
have Gromov–Hausdorff compactness:

Example 1.2. The smooth regionsMj � E2 with many spikes, depicted in Figure 2,
have no subsequence with a Gromov–Hausdorff limit. See Example 2.13 for details.

Compactness theorems for sequences of Riemannian manifolds with boundary,
assuming curvature controls on the boundary, have been proven by Kodani [11],
Anderson, Katsuda, Kurylev, Lassas, and Taylor [1], Wong [14] and Knox [10].
A survey of these results has been written by the first author [12]. Since we do
not wish to assume the boundary is smooth, we prove compactness theorems for
regions which avoid the boundary (Theorem 1.4). We then glue together the limits
of these regions (Theorem 6.3) and prove that these glued limit spaces have nice
properties (Theorem 8.8).

Figure 2. Models of Example 1.2: M4, M6, M8, M12; : : : .
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Definition 1.3. Given an open Riemannian manifold .M; gM / and ı > 0, we define
the ı-inner region as

M ı
D fx 2M W dM .x; @M/ > ıg;

where @M is defined as in (1),

(3) dM .x; y/ WD inffLg.C / W C W Œ0; 1�!M; C.0/D x; C.1/D yg;

and

Lg.C /D

Z 1

0

g.C 0.t/; C 0.t// dt:

There are two metrics on the ı-inner region M ı : the restricted metric dM and
the induced length metric

(4) dM ı .x; y/ WD inffLg.C / W C W Œ0; 1�!M ı ; C.0/D x; C.1/D yg:

Note that dM ı is only defined between points in the same connected component of
M ı . The intrinsic diameter

Diam.M ı ; dM ı /D supfdM ı .x; y/ W x; y 2M ı
g

will be infinite if M ı is not connected by rectifiable paths.

Theorem 1.4. Given m 2 N, ı > 0, D > 0, V > 0, and � > 0, let Mm;ı;D;V
�

be
the class of open m-dimensional Riemannian manifolds M with boundary with
nonnegative Ricci curvature, Vol.M/� V , and

(5) Diam.M ı ; dM ı /�D

that are noncollapsing at a point, in the sense that

(6) Vol.Bq.ı//� �ım for some q 2M ı :

If .Mj ; gj / �Mm;ı;D;V
�

, there is a subsequence .M ı
jk
; dMjk

/ such that the metric
completions with the restricted metric dMj converge in the Gromov–Hausdorff
sense to a metric space .Y ı ; d /.

Example 1.2 satisfies the conditions of this theorem, demonstrating why we
can only obtain Gromov–Hausdorff convergence of the M ı

j instead of the Mj
themselves. The M ı

j of Example 1.1 do not have Gromov–Hausdorff convergent
subsequences (see Remark 5.5), demonstrating the necessity of the hypothesis
requiring an upper bound on the volume. In Theorem 5.2, we remove the intrinsic
diameter condition (5) and the noncollapsing condition (6), and assume conditions
on closed geodesics and constant sectional curvature instead.



426 RAQUEL PERALES AND CHRISTINA SORMANI

Theorem 1.4 and Theorem 5.2 are proved in Section 5. We start by reviewing
Gromov–Hausdorff convergence in Section 2. In Sections 3 and 4 we study the
limits of inner regions in sequences of manifolds that have Gromov–Hausdorff
limits. See in particular Theorem 4.1. These sections contain many examples.

In Section 6 we define glued limit spaces for any sequence of open Riemannian
manifolds .Mj ; gj /, assuming that for all ı > 0, the .M ı

j ; dj / converge in the
Gromov–Hausdorff sense to a metric space .Y ı ; dı/. We build a “glued limit space”
.Y; dY / from these Y ı in Theorem 6.1 and Theorem 6.3. The metric completion of
a glued limit space is called a “completed glued limit space.”

Note that this glued limit space may exist even when .Mj ; dj / has no Gromov–
Hausdorff limit, as in Example 2.13 (see Remark 6.10). The glued limit may not
be precompact even when one has a sequence of flat Riemannian manifolds with
boundary (Examples 6.11 and 6.12).

In general the completed glued limit space of a sequence of Mj need not be
unique (Example 6.16). However, if the .Mj ; dMj / have a Gromov–Hausdorff
limit .X; dX /, then the completed glued limit space is unique and is embedded
isometrically into X (Theorem 6.6). The completed glued limit space need not be
isometric to the Gromov–Hausdorff limit (Example 4.10) even when the .Mj ; gj /
are regions in the Euclidean plane satisfying all the hypothesis of Theorem 1.4
(Remark 6.7). Intuitively, regions which collapse relative to the boundary disappear,
while regions which collapse that lie far from the boundary need not disappear.

In Section 7 we apply Theorems 5.2 and 1.4 to construct glued limit spaces
for sequences of manifolds with curvature bounds (Theorems 7.1 and 7.4). In
Section 8 we explore the properties of these glued limit spaces. First we present
an example where the curvature bounds in the sequence of manifolds is lost in
the Gromov–Hausdorff limit (Example 8.1). Then we prove Proposition 8.4 con-
cerning glued limits of manifolds with constant sectional curvature. We close
with Theorem 8.8, proving that glued limits constructed under the conditions of
Theorem 1.4 have Hausdorff dimension m, Hausdorff measure at most V , and
positive density everywhere. This final theorem is proved using Theorem 8.3,
which proves certain balls in glued limit spaces are the Gromov–Hausdorff limits
of nice balls in the open manifolds, combined with the Bishop–Gromov vol-
ume comparison theorem [8] and Colding’s volume convergence theorem [4].

Throughout the paper we state open questions at 6.14, 8.6, 8.7, 8.10, and 8.9. The
first author is in the process of proving Open question 8.10 as part of her doctoral
dissertation. Please contact us if you would like to work on one of the other open
questions or if you are interested in extending our theorems to the setting where
the sequence has a negative uniform lower Ricci curvature bound or is allowed to
collapse.
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2. Background

Here we review Gromov–Hausdorff convergence and Gromov’s compactness theo-
rem [8]. A good resource for this material is [2].

2A. Hausdorff convergence. In [8], Gromov defined the Gromov–Hausdorff dis-
tance between pairs of compact metric spaces. We review this definition here.

Definition 2.1 (Hausdorff). The Hausdorff distance between two compact subsets
A1; A2 of a metric space Z with metric dZ is defined as

dZH .A1; A2/D inffr W A1 � Tr.A2/; A2 � Tr.A1/g;

where the tubular neighborhood Tr.A/ is the set Tr.A/D fx 2Z W dZ.x; A/ < rg.

Observe that if one has a sequence of compact subsets Aj � Z such that
dH .Aj ; A1/!0, then for all a2A1 there exists aj 2Aj such that limj!1 aj Da.

Lemma 2.2. Suppose Aj � Z are compact, dZH .Aj ; A1/ D hj ! 0, aj 2 Aj
and a1 2 A1 such that dZ.aj ; a1/ D ıj ! 0. Then for all r > 0 there exist
rj D r C ıj C hj ! r such that the closed balls converge:

dZH
�
Baj .rj /\Aj ; Ba1.r/\A1

�
! 0:

Here we are not assuming that A1 or Aj are length spaces. For completeness
of exposition we include the proof of this well-known lemma:

Proof. Suppose x 2 Ba1.r/\A1; then dZ.x; a1/� r and x 2 A1 � Thj .Aj /.
So there exists yj 2 Aj such that dZ.x; yj / < hj . By the triangle inequality,

d.yj ; aj /� d.yj ; x/C d.x; a1/C d.a1; aj /� hj C r C ıj D rj :

Thus
Ba1.r/\A1 � Thj .Baj .rj /\Aj /:

Now we need only show that for all " > 0 the following inclusion holds for all
sufficiently large j :

Baj .rj /\Aj � T".Ba1.r/\A1/:

Suppose not. Then there exist "0 > 0, a subsequence j !1 and elements

(7) xj 2 .Baj .rj /\Aj / nT"0.Ba1.r/\A1/:

Since Z is compact and T"0.Ba1.r/ \ A1/ is open, a subsequence of the xj
converges to some

x1 … T"0.Ba1.r/\A1/:

Since d.xj ; aj /� rj , we have d.x1; a1/� r . Since xj 2Aj , there exists yj 2A1
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such that d.xj ; yj / < hj . By the triangle inequality,

yj 2 Ba1.r C hj /\A1:

Observe that, for our subsequence, yj ! x1; thus

x1 2 Ba1.r/\A1 � T"0.Ba1.r/\A1/;

which is a contradiction. �

2B. Gromov–Hausdorff convergence.

Definition 2.3. An isometric embedding ' W .X; dX /! .Z; dZ/ between metric
spaces is a mapping which preserves distances:

dZ.'.x1/; '.x2//D dX .x1; x2/:

Definition 2.4 (Gromov). The Gromov–Hausdorff distance between a pair of com-
pact metric spaces, .X1; dX1/ and .X2; dX2/, is defined as

(8) dGH
�
.X1; dX1/; .X2; dX2/

�
D inffdZ.'1.X1/; '2.X2// W 'i WXi !Zg

where the infimum is taken over all isometric embeddings 'i W Xi ! Z and all
metric spaces Z.

Gromov proved that the Gromov–Hausdorff distance is a distance on the space of
compact metric spaces. When studying metric spacesXi which are only precompact,
one takes the metric completions X i before comparing such spaces using the
Gromov–Hausdorff distance:

Definition 2.5. Given a precompact metric space .X; dX /, the metric completion
.X; dX / consists of equivalence classes of Cauchy sequences fx1; x2; x3; : : : g in
X , where

dX .fxj g; fyj g/D lim
j!1

dX .xj ; yj /;

and two Cauchy sequences are equivalent if the distance between them is 0. There
is an isometric embedding

' WX !X given by '.x/D fx; x; x; : : : g:

In this paper we define the boundary of an open metric space to be

@X DX nX:

When M is a smooth Riemannian manifold with boundary, then this notion of
boundary agrees with the standard notion of boundary. However, if M is a smooth
Riemannian manifold with a singular point removed, then the boundary in our
setting is just the missing singular point.
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2C. Lattices and Gromov–Hausdorff convergence. One technique that can be
applied to produce amazingly complicated Gromov–Hausdorff limits from surfaces
is the construction of lattices. The basic, well-known lemma is as follows:

Lemma 2.6. Let X D Œa1; b1�� � � � � Œak; bk� with the taxi product metric

dX
�
.x1; : : : ; xk/; .y1; : : : ; yk/

�
D

kX
iD1

jxi �yi j:

Then for any " > 0 there exists a 2-dimensional manifold M" such that

dGH.M"; X/ < ":

The classic application of this lemma is to construct a Gromov–Hausdorff limit
of Riemannian surfaces which is infinite-dimensional:

Example 2.7. Let Xj D Œ0; 1��
�
0; 1
2

�
�� � � �

�
0;
�
1
2

�j � with the taxi metric, and let

X D Œ0; 1��
�
0; 1
2

�
� � � � �

�
0;
�
1
2

�j �
� � � �

be the infinite-dimensional space also with the taxi metric

dX
�
.x1; x2; : : : /; .y1; y2; : : : /

�
D

1X
iD1

jxi �yi j:

Then

(9) dGH.Xk; X/�

1X
jDkC1

�
1
2

�j
D
�
1
2

�k
! 0:

Thus, by Lemma 2.6, we have a sequence of surfaces Mk converging to X as well.

Since we are interested in manifolds with boundary, we will prove a stronger
version of Lemma 2.6 that can be applied to produce examples later in the paper.

Proposition 2.8. Suppose that X D Œa1; b1�� � � � � Œak; bk� with the taxi product
metric, and let A� @X (possibly empty). Then for any " > 0, there exists an open
Riemannian surface M with boundary @M (possibly empty) such that

dGH.M;X/ < " and dGH.@M;A/ < ":

Suppose we have a collection of Xk and Ak � @Xk as above, with subsets Bk �Xk
and isometric embeddings  k W BkC1! Bk , and we glue X DX1 tX2 t � � � tXk
via these isometric embeddings, and set A D

S
Ak � X . Then for any " > 0 we

have an open Riemannian surface M with boundary @M (possible empty) such that

dGH.M;X/ < " and dGH.@M;A/ < ":

In fact, for any ı > 0, using the restricted distances, we have

dGH
�
.M nTı.@M/; dM /; .X nTı.A/; dX /

�
< ":
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Proof. For the first part, we take a lattice Y 0" � Y" � X such that X � T"=2.Y"/.
Here we use Y 0" to denote the points and Y" to include 1-dimensional edges between
the points in the lattice. Observe that dY".y1; y2/ D dX .y1; y2/ because we are
using the taxi norm. Let A" � Y 0" be chosen such that A" � T"=2.A/, so

(10) dGH.Y"; X/ <
"

2
and dGH.A"; A/ <

"

2
:

Note that we may now view Y" as a graph. For example, if X D Œ0; 5� � Œ0; 6�,
AD Œ0; 5�� f6g, and "D 1, then the left side of Figure 3 is the graph Y" , with A"
depicted in red.

Next we construct a smooth surface M by replacing the lattice points in A" � Y 0"
by small hemispheres of diameter� " and lattice points in Y 0" nA" by small spheres
of diameter� ". We replace the line segments in Y" by arbitrarily thin cylinders of
the same length, small enough that we can glue them to their corresponding spheres,
smoothly replacing disjoint balls in those spheres or hemispheres. This creates a
smooth manifold M such that @M is a union of the boundaries of the hemispheres,
and such that

dGH.Y";M/ <
"

2
and dGH.A"; @M/ <

"

2
:

See the right side of Figure 3, where M 2 is depicted in gray and @M 2 is in red.
This completes the first claim in the proposition.

To complete the rest, we take Mk consisting of tubes joined at spheres and
hemispheres close to Xk , as above, such that

dGH.Xk;Mk/ <
"

k
and dGH.Ak; @Mk/ <

"

k
:

Note that in the construction above we could have created B 0
k
� Y 0

k
corresponding

to Bk . We have "=.2k/ almost distance-preserving maps  0
k
WB 0

kC1
!B 0

k
. So now

we glue together the Mk to form M as follows. If b 2 B 0
k

maps to  0
k
.b/ 2 B 0

k
,

Figure 3. A"� Y" and @M �M as in the proof of Proposition 2.8.
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we connect the sphere or hemisphere corresponding to b in Mk to a sphere or
hemisphere corresponding to  k.b/ in MkC1 by a very short, very thin tube. �

2D. Review of Gromov’s compactness theorem. In [8], Gromov proved a com-
pactness theorem for sequences of compact metric spaces. We review this theorem
and related propositions here.

Theorem 2.9 (Gromov). Given D > 0 and a function N W .0;D�! N, we define
the collection MD;N of compact metric spaces .X; dX / with diameter �D that can
be covered by N.�/ balls of radius � > 0:

(11) X �

N.�/[
iD1

Bxi .�/:

This collection MD;N is compact with respect to the Gromov–Hausdorff distance.

It is standard to determine whether a metric space lies in such a compact collection
by examining maximal collections of disjoint balls:

Proposition 2.10. Given a metric space .X; dX /, let N be the maximum number of
pairwise disjoint balls of radius �=2 that can lie in X . Then the minimum number
of balls of radius � required to cover X is at most N .

Proof. Let fBxi .�=2/ W i D 1; : : : ; N g be a maximal collection of pairwise disjoint
balls of radius �=2. Let x 2 X . Then Bxi .�=2/\Bx.�=2/ is nonempty for some
i 2 f1; : : : ; N g. Thus dX .x; xi / < �, and

X �

N[
iD1

Bxi .�/: �

In a Riemannian manifold or metric measure space, the volumes of balls may
thus be applied to determine the function N .

Proposition 2.11. If there exists ‚> 0 such that

Vol.Bp.�//=Vol.M/�‚;

then the maximum number of disjoint balls of radius � is at most 1=‚.

Proof. We have

Vol.M/�

NX
iD1

Vol.Bxi .�//�
NX
iD1

‚Vol.M/DN‚Vol.M/: �
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Gromov applies his compactness theorem in conjunction with these propositions
to study the compactness of sequences of compact Riemannian manifolds for which
one is able to control the volumes of balls. We will apply the same idea to study
sequences of metric completions of open manifolds.

One of the beauties of Gromov’s compactness theorem is that the converse holds
as well:

Theorem 2.12 (Gromov). Suppose .Xj ; dj / are compact metric spaces. Suppose
that there exists �0 > 0 such that Xj contains at least j disjoint balls of radius �0.
Then no subsequence of the Xj has a Gromov–Hausdorff limit.

In particular, if .Xj ; dXj /
GH
�! .X; dX /, then they have a uniform upper bound

on diameter. Nor can they have many spikes, as in the following example:

Example 2.13. Let

Mj D f.�; r/ W � 2 S
1; r 2 .1; 3C cos.j�//g

with metric gj D dr2C r2d�2. Then Vol.Mj / � �42, Diam.Mj / � 3C � C 3,
and Mj has 0 sectional curvature.

Observe that in Mj the balls of radius 1 about .2�k=j; 3/ are disjoint because
paths between these points in Mj must reach within r � 2 between the spikes
and so have length at least 2.3� 2/. Thus, there are j disjoint balls of radius 1
in Mj , and no subsequence of the metric completions of the Mj converges in the
Gromov–Hausdorff sense.

Example 2.14. Let

(12) Xj D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
be a disjoint union of spaces with taxicab metrics glued via the map .0; y/D .0; y/.
Then Xj has no Gromov–Hausdorff convergent subsequence, because it has j
disjoint balls of radius 1 about the points .1; 0/. If we take the surfaces Mj as
constructed in Proposition 2.8, such that

dGH.Mj ; Xj /! 0;

they also have no Gromov–Hausdorff convergent subsequence.

In a later paper, Gromov proved the following useful theorem [7, page 65] by
defining an appropriate compact metric space and applying Theorem 2.16.

Theorem 2.15 (Gromov). If one has a sequence of compact metric spaces .Xj ; dXj /
such that .Xj ; dXj /

GH
�! .X1; dX1/, then there exists a common compact met-

ric space Z and isometric embeddings 'j W .Xj ; dXj / ! .Z; dZ/ such that
dH .'j .Xj /; '1.X1//! 0.
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Theorem 2.16 (Blaschke). If Z is a compact metric space then every sequence of
closed subsets of Z has a subsequence that converges in the Hausdorff sense to a
closed subset.

Theorem 2.15 implies the Gromov–Hausdorff Arzelà–Ascoli theorem:

Theorem 2.17 (Gromov). Assume Xj GH
�!X , Yj GH

�! Y , and let fj W Xj ! Yj be
an equicontinuous sequence; i.e., for all � > 0 there exists ı� > 0 such that

dXj .p; q/ < ı� D) dYj .fj .p/; fj .q// < �:

Then there is a subsequence with a continuous limit function f WX ! Y . If the fj
are isometric embeddings, then so is f .

In particular, if the Xj are geodesic spaces, then so is the limit space [8].

2E. Gromov’s Ricci compactness theorem. In this section we review Gromov’s
Ricci compactness theorem, which is based on the Bishop–Gromov volume com-
parison theorem [8]:

Theorem 2.18 (Bishop–Gromov). If M is an m-dimensional Riemannian manifold
with boundary having nonnegative Ricci curvature, and Bp.R/ �Mm does not
reach the boundary, then for all r 2 .0; R/ we have

(13)
Vol.Bp.r//
Vol.Bp.R//

�

�
r

R

�m
:

Gromov’s Ricci compactness theorem was originally stated for compact mani-
folds without boundary:

Theorem 2.19 (Gromov). Let m 2 N, D > 0 and let Mm;D be the class of com-
pact m-dimensional Riemannian manifolds M with nonnegative Ricci curvature
and Diam.M/ � D. Here the manifolds do not have boundary. Then Mm;D is
precompact with respect to the Gromov–Hausdorff distance.

In fact, Gromov’s compactness theorem has a commonly used version applied to
balls, which we state as follows:

Theorem 2.20 (Gromov). Let m 2 N, D > 0 and let Mm be the class of compact
m-dimensional Riemannian manifolds M with nonnegative Ricci curvature. If
Mj 2Mm and pj 2Mj such that d.pj ; @Mj / >D, there exists a subsequence such
that .Bpj .D=3/; dMj / converges in the Gromov–Hausdorff distance.

For completeness of exposition we show how Gromov’s original proof implies
Theorem 2.20.
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Proof. Let q 2Bpj .D=3/. Then Bpj .D=3/�Bq.2D=3/�Bpj .D/ does not reach
the boundary of Mj , so we may apply the Bishop–Gromov volume comparison
theorem to see that

Vol.Bq.r//
Vol.Bpj .D=3//

�
rm

.2D=3/m
Vol.Bq.2D=3//
Vol.Bpj .D=3//

�
rm

.2D=3/m

Vol.Bpj .D=3//
Vol.Bpj .D=3//

D
.3r/m

.2D/m
:

So now we may apply Proposition 2.11 to complete the proof. �

2F. Volume convergence theorems. In [4], Colding proved the following volume
convergence theorem:

Theorem 2.21 (Colding). Let Mm
j be complete Riemannian manifolds with non-

negative Ricci curvature and pj 2Mj such that

Bpj .1/
GH
�!B0.1/� Em;

where Em is Euclidean space of dimension m. Then

lim
j!1

Vol.Bpj .1//D Vol.B0.1//:

Remark 2.22. The proof of this theorem does not require global nonnegative Ricci
curvature on a complete manifold. In fact, Mm

j could be an open manifold as long
as Bpj .2/�M

m
j does not hit the boundary. One may not even need a radius of 2.

Colding applied this theorem to prove a number of theorems, including one in
which the Gromov–Hausdorff limit is an arbitrary compact Riemannian manifold
of the same dimension (also [4]):

Theorem 2.23 (Colding). Let Mm
j and Mm

1 be compact Riemannian manifolds
with nonnegative Ricci curvature for j D 1; 2; 3; : : : such that

Mm
j

GH
�!Mm

1:

Then for all r > 0 and for all pj 2Mj such that pj ! p1, we have

(14) lim
j!1

Vol.Bpj .r//D Vol.Bp1.r//:

Remark 2.24. Again, Colding’s proof does not really require Mj to be complete.
These Mj could be open Riemannian manifolds as long as Bpj .r/�Mj does not
hit the boundary. Here we do not need to worry about twice the radius because the
proof involves estimating countable collections of small balls Bqj;i .�j;i / in Bpj .r/
and applying Theorem 2.21 to those small balls, and one can always ensure the
Bqj;i .2�j;i / avoid the boundary as in Remark 2.22.
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Cheeger and Colding then conducted a study of the properties of Gromov–
Hausdorff limits of manifolds of nonnegative Ricci curvature in [3]. They improve
upon Theorem 2.23, allowing M1 to be an arbitrary limit space as long as the
sequence is noncollapsing:

Theorem 2.25 (Cheeger and Colding). Let V0 > 0 and let Mm
j be compact Rie-

mannian manifolds with nonnegative Ricci curvature for j D 1; 2; 3; : : : , such that

Mm
j

GH
�!Mm

1 and Vol.Mm
j /� V0:

Then for all r > 0 and for all pj 2Mj such that pj ! p1 2M1, we have

(15) lim
j!1

Vol.Bpj .r//DHm.Bp1.r//;

where Hm is the Hausdorff measure of dimension m.

Remark 2.26. Again this theorem is proved locally, so as in Remark 2.24 this
theorem holds when Mm

j are open Riemannian manifolds as long as Bpj .r/�M
m
j

do not touch the boundary.

Of course, Cheeger and Colding studied more than just manifolds with nonnega-
tive Ricci curvature and more than just noncollapsing sequences in their work, but
these theorems are the only ones needed in this paper. See also work of the second
author with Wei for an adaption of their volume convergence theorem which deals
with Hausdorff measures defined using restricted versus intrinsic distances [13].

3. Properties of inner regions

We defined in Definition 1.3 the inner regions M ı of an open Riemannian manifold
M . These spaces are open Riemannian manifolds; however, we will study them
using the restricted distance dM rather than the intrinsic length metric dM ı defined in
(4). There are natural isometric embeddings of .M ı ; dM / and its metric completion
.M ı ; dM / into .M; dM /. Thus the metric completion is, in fact, compact when M
is precompact. This occurs, for example, when M has finite diameter.

Example 3.1. In Figure 4, we depict a single flat manifold M 2, which is a flat disk
with a spike attached. For a sequence ı1 < ı2 < ı3 < ı4, the gray inner regions
depict M ıi. For ı sufficiently large, M ı is an empty set.

Figure 4. Example 3.1: Single M , varying ı.
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Lemma 3.2. For any sequence ıi ! 0, we have

(16) M D

1[
iD1

M ıi; and in fact M D
[
ı>0

M ı:

Proof. Let x 2M . Since M is open, "D dM .x; @M/ > 0. Then x 2M "=2. �

Lemma 3.3. Let ı > ı0 > 0. If y 2M ı , then for any " < ı� ı0 we have

B.y; "/D fx 2M W dM .x; y/ < "g �M
ı 0:

Proof. Let x 2 B.y; "/, so dM .x; y/ < ı � ı0. Since y 2M ı , for all z 2 @M we
have dM .y; z/ > ı. By the triangle inequality,

dM .x; z/� dM .y; z/� dM .x; y/ > ı� .ı� ı
0/D ı0: �

Inner regions M ı with restricted metrics dM are not necessarily length spaces:

Example 3.4. In the flat open manifold

M D f.x; y/ W x2Cy2 2 .1; 25/g � E2;

the distance between .3; 1/ and .�3; 1/ is

dM
�
.3; 1/; .�3; 1/

�
D 6

because they are joined by curves of length arbitrarily close to 6. However, for
ı D 1 we have

M ı
D f.x; y/ W x2Cy2 2 .4; 16/g � E2:

The length of any curve in M ı between .3; 1/ and .�3; 1/ must go around .0; 2/
and thus has length at least 2

p
9C 1 > 6.

In fact, inner regions of path connected manifolds need not be connected:

Example 3.5. Let M be the connected union of balls in the Euclidean plane:

M D B.4;0/.5/[B.�4;0/.5/� E2:

Then
@M D AC[A�;

where
AC D @B.4;0/.5/\f.x; y/ W x � 0g;

A� D @B.�4;0/.5/\f.x; y/ W �x � 0g:

Note that
.0; 3/; .0;�3/ 2 @M:

Thus, for ı > 3,
M ı
\f.0; y/ W y 2 Rg D∅:
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However, for ı < 5, we have

.4; 0/; .�4; 0/ 2M ı:

Thus M ı is not connected for ı 2 .3; 5/.

4. Manifolds with Gromov–Hausdorff limits have converging inner regions

In this section we will prove:

Theorem 4.1. Let Mj be precompact open metric spaces, .X; dX / a compact
metric space, and assume .Mj ; dMj /

GH
�! .X; dX /. For each ı > 0, there exists a

sequence of indices fjkg !1 and a compact metric space Y ıfjkg � X such that
the subsequence of ı-inner regions M ı

jk
converges to Y ıfjkg:

(17)
�
M ı
jk
; dMjk

� GH
�!

�
Y ıfjkg; dı

�
:

If (17) holds for ı D ı1 and ı D ı2, with 0 < ı2 < ı1, then

Y ı1fjkg � Y
ı2
fjkg

:

Given a sequence of decreasing positive numbers ıi ! 0, one can choose the
sequence fjkg !1 so that (17) holds for all ı D ıi ; moreover, the union

Ufıi g;fjkg D
[
i

Y ıifjkg:

is an open subset of X .
Given two sequences fıig; fˇig such that (17) holds for all ı 2 fıig[ fˇig, then

(18) Ufıi g;fjkg D Ufˇi g;fjkg:

Note that M ı
j can be an empty space; see Example 4.8. Consider the Gromov–

Hausdorff limit of an empty metric space to be an empty metric space.

Remark 4.2. In Example 4.9 we will see that a subsequence jk may be necessary
to obtain GH convergence of the ı-inner regions, and that Ufıi g;fjkg depends on
the choice of the subsequence. Even the closure of Ufıi g;fjkg may depend on the
choice of subsequence jk; see Example 4.11. The Ufıi g;fjkg may be disjoint and
not isometric; see Example 4.12.

4A. Hausdorff convergence of ı-inner regions. We begin with a basic theorem:

Theorem 4.3. Let .Z; dZ/ be a compact metric space. Suppose Mj �Z are open
metric spaces with the induced metric and X �Z is closed and such thatMj H

�!X .
Then, for each ı > 0, there exist a sequence of indices fjkg !1 and a compact
set W ı

fjkg
�X such that

(19) M ı
jk

H
�!W ı

fjkg
:
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If (19) holds for ı D ı1; ı2, with 0 < ı2 < ı1, then

W ı1
fjkg
�W ı2

fjkg
:

Given a sequence of positive numbers ıi ! 0, there exists a sequence of indices
fjkg !1 such that (19) holds for all ı D ıi ; moreover the union

U 0
fıi g;fjkg

D

[
i

W ıi
fjkg

is an open subset of X .
Given two sequences fıig; fˇig such that (19) holds for all ı 2 fıig [ fˇig, we

have

(20) U 0
fıi g;fjkg

D U 0
fˇi g;fjkg

:

Again here, M ı
j can be an empty space. We consider the Hausdorff limit of an

empty metric space to be an empty metric space.
Before we prove this theorem, we provide an example demonstrating that even if

M
ı1
jk

H
�!W ı1

fjkg
and M

ı2
jk

H
�!W ı2

fjkg

for some ı1 > ı2 > 0, there may be ı 2 .ı2; ı1/ for which M ı
jk

does not converge:

Example 4.4. Fix " < 1
3

. In 2-dimensional Euclidean space E2, consider the
sequence Mj , where M2j is a ball of radius 1 with a spike of width 4" attached
to it, as depicted in Figure 4, and M2jC1 is a ball of radius 1 with a spike whose
width decreases from 6" to 4" as j !1. Then M "

j converges to ball of radius
1� " with a spike of width 2", and M 3"

j converges to a ball of radius 1� 3" with
no spike attached. But M 2"

2j converges to a ball of radius 1� 2", while M 2"
2jC1

converges to a ball of radius 1� 2" with a line segment attached to it. Thus M 2"
j

does not converge in the Hausdorff sense.

In the proof of Theorem 4.3 we will apply the following fact:

Remark 4.5. Recall that if fAj g is a sequence of closed subsets of a metric space A
such that Aj H

�!A1, then

A1 D
˚
a 2 A W for all j 2 N; there exist aj 2 Aj such that lim

j!1
aj D a

	
:

Any subsequence fAjkg of fAj g also converges in the Hausdorff sense to A1. Then

A1 D
˚
a 2 A W for all k 2 N; there exist ajk 2 Ajk such that lim

k!1
ajk D a

	
:

Proof of Theorem 4.3. Apply Theorem 2.16 to the sequence fM ı
j g
1
jD1 to get a

subsequence fM ı
jk
g1
kD1

and a compact set W ı
fjkg

such that (19) is satisfied. Since
M ı
jk
�Mjk , we have W ı

fjkg
� X . Similarly, W ı1

fjkg
� W ı2

fjkg
when (19) holds for

0 < ı2 < ı1.
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Given ıi ! 0, start with ı1. By Theorem 2.16 there exists a sequence of integers
f�k.ı1/g !1 and a compact set W ı1

f�k.ı1/g
such that

M ı1
�k.ı1/

H
�!W ı1

f�k.ı1/g
:

For n > 1, there exists a subsequence f�k.ın/gk of f�k.ın�1/gk and a compact set
W ın
f�k.ın/g

such that
M
ın
�k.ın/

H
�!W ın

f�k.ın/g
:

Define jk D �k.ık/. Then fjkg1kDn is a subsequence of f�k.ın/g1kD1, and thus (19)
holds for all n.

Let y be an element of U 0
fıi g;fjkg

. There exists N 2 N such that y 2 W ıi
fjkg

for i � N . Suppose that x 2 X and dZ.x; y/ < ıN =6. Since y 2 W ıi
fjkg

, choose
yjk 2M

ıN
jk

such that y D limj!1 yjk and dZ.y; yjk / < ıN =6. Analogously, take
xj 2Mj such that x D limj!1 xj and dZ.x; xj / < ıN =6. Then

dZ.xjk ; yjk / < dZ.xjk ; x/C dZ.x; y/C dZ.y; yjk / <
ıN

2
:

This implies that dZ.xjk ; @.Mjk // > ıN =2. Then x 2W ıi
fjkg
� U 0

fıi g;fjkg
for some

i > N .
Given another sequence ˇi ! 0 such that (19) holds for all ı D ˇi , select for

each i some l.i/ such that ıl.i/ < ˇi . Then

W ˇi
fjkg
�W ıl.i/

fjkg
;

and so U 0
fˇi g;fjkg

�U 0
fıl.i/g;fjkg

�U 0
fıi g;fjkg

. Conversely, U 0
fıi g;fjkg

�U 0
fˇi g;fjkg

. �

Definition 4.6. With the hypotheses of Theorem 4.3, define

(21) U 0
fjkg
D

[
W ı
fjkg

;

where the union is taken over all ı for which M ı
jk

is a sequence that converges in
the Hausdorff sense to a metric space W ı

fjkg
, and define

(22) U 0 D
[
ı>0

W ı ;

where W ı is the Hausdorff limit space of some convergent subsequence of M ı
j .

4B. Finding limits of inner regions in the Gromov–Hausdorff limits.

Proof of Theorem 4.1. By Theorem 2.15 there exists a common metric space Z and
isometric embeddings 'j W .Mj ; dMj /! .Z; dZ/, ' W .X; dX /! .Z; dZ/ such that

dZH .'j .Mj /; '.X//! 0:
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Now we can apply Theorem 4.3. For each ı >0, there exist a subsequence 'jk .M
ı
jk
/

and a compact set W ı
fjkg
� '.X/ such that

'jk .M
ı
jk
/ H
�!W ı

fjkg
:

Let Y ıfjkg D '
�1.W ı

fjkg
/. Clearly, (17) holds and Y ı1fjkg � Y

ı2
fjkg

when (17) holds
for 0 < ı2 < ı1. Given a sequence of positive numbers ıi ! 0, there exists a
subsequence fjkg � N such that

'jk .M
ıi
jk
/ H
�!W ıi

fjkg

for all i . Then (17) holds for all i , and Ufıi g;fjkg D '
�1.U 0

fıi g;fjkg
/ is an open

subset of X that does not depend on the sequence ıi . �

4C. Unions of limits of inner regions in Gromov–Hausdorff limits. The follow-
ing notion of an “inner union” has some interesting properties.

Definition 4.7. In the situation of Theorem 4.1, let Dfjkg denote the set of ı > 0
such that (17) holds for a given sequence fjkg. We put

(23) Ufjkg D
[

ı2Dfjkg

Y ıfjkg

and call this set an inner union of limits for the sequence fMj g. Observe that,
by (18), we have

(24) Ufjkg D Ufıi g;fjkg

for any sequence fıig ! 0 of elements of Dfjkg.

In Theorem 6.6 we will prove that Ufjkg is a special case of the glued limits we
will construct in Theorem 6.3. Since it is easy to understand the properties of these
Ufjkg, we present a few examples of them here so that we may refer to them later
as examples of glued limit spaces.

Example 4.8. LetMj be a Euclidean disk of radius 1=j . ThenMj GH
�!X , where X

is a single point. For any ı > 0, taking j > 1=ı, we have M ı
j D∅. Thus the inner

union of limits is empty for any choice of subsequence.

In the following example we see that Ufjkg depends on the subsequence fjkg,
and in the next we see that X is not necessarily contained in the closure of Ufjkg,
even if the closure is nonempty.

Example 4.9. Let M2j be the Euclidean disk of radius 1 and M2jC1 the Euclidean
disk with the center point removed. Then Mj is a closed Euclidean disk as is the
limit space X . Given ı 2 .0; 1/, M ı

2j is the Euclidean disk of radius 1� ı. Their
metric completions converge to the closed disk of radius 1� ı. Uf2j g is the open
Euclidean disk of radius 1. However, M ı

2jC1 is a Euclidean annulus Ann0.ı; 1�ı/,
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and the metric completions converge to the closure of this annulus. Uf2jC1g is the
open Euclidean disk of radius 1 with the center point removed. In this example
U D Uf2j g.

Example 4.10. In 2-dimensional Euclidean space, consider the sequence of balls
with attached spikes depicted in Figure 4. The Gromov–Hausdorff limit of the
sequence is a ball with an interval attached, while the closure of U is just the
closed ball.

In Example 4.9, we saw that Uf2j g ¤ Uf2jC1g, yet their closures are the same.
This is not always the case; Ufjkg could even be an empty set.

Example 4.11. For j 2 N, let M2j be a flat torus (so it has no boundary), and
let the M2jC1 be flat tori with increasingly dense small holes cut out, the holes
getting smaller and smaller so the M2jC1 still converge to the flat torus X . Then
Uf2j g D X , but for any ı > 0, M ı

2jC1 becomes an empty set. So Uf2jC1g is the
empty set.

Example 4.12. For j 2N, let M2j be a flat torus S1�S1, with increasingly many
dense small holes in W �S1, where W D .0; �=4/� S1, and let M2jC1 be a flat
torus S1 �S1, with increasingly many dense small holes in .S1 nW /�S1. Then

(25) Uf2j g D .S
1
nW /�S1 and Uf2jC1g DW �S

1

with the restricted distance from S1 �S1, which are disjoint and not isometric to
each other.

Example 4.13. It is possible for a sequence of open Riemannian manifolds Mj
to have ı-inner regions M ı

j which converge in the Gromov–Hausdorff sense to
some Y ı for all ı > 0, and yet the limit has two distinct inner unions Uf2j g ¤
Uf2jC1g. This can be seen, for example, with the following F-shaped regions:

Mj D .0; 1=j /�.�1; 0� [ .0; 1/�.0; 3/ [ Œ1; 3/�.0; 1/ [ Œ1; 3/�.2; 3/nAj

in the Euclidean plane, where A2j is an increasingly dense collection of increas-
ingly tiny balls in .1; 3/� .0; 1/, and A2jC1 is an increasingly dense collection of
increasingly tiny balls in .1; 3/� .2; 3/. Then

Mj
GH
�!X D .0; 1/� .0; 3/ [ Œ1; 3/� .0; 1/ [ Œ1; 3/� .2; 3/:

For ı > 0 fixed, taking j large enough that 1=j < 2ı, we see that

M ı
2j

GH
�!Y ı D .ı; 1�ı/� .ı; 3�ı/ [ Œ1�ı; 3�ı/� .2Cı; 3�ı/;

which is isometric to

M ı
2jC1

GH
�!Y ı D .ı; 1�ı/� .ı; 3�ı/ [ Œ1�ı; 3�ı/� .ı; 1�ı/:
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Thus, the M ı
j have a GH limit without taking a subsequence. On the other hand,

the inner unions of limits are not equal, only isometric:

Uf2j g D .0; 1/� .0; 3/ [ Œ1; 3/� .2; 3/�X;

Uf2jC1g D .0; 1/� .0; 3/ [ Œ1; 3/� .0; 1/�X:

We will prove in Theorem 6.6 that when M ı
j have GH limits for all ı, all closures

of inner unions of limits are isometric.

5. Converging inner regions of sequences with curvature bounds

In this section, we prove that ı-inner regions converge under certain geometric
hypotheses on the manifolds even when the manifolds themselves have no Gromov–
Hausdorff limits.

5A. Constant sectional curvature. Here we prove that the inner regions of a se-
quence of manifolds in the following class have a subsequence which converges in
the Gromov–Hausdorff sense.

Definition 5.1. Given m 2 N, H 2 R, V > 0, and l > 0, we define Mm;V;l
H to be

the class of connected open Riemannian manifolds M of dimension at most m with
constant sectional curvature SectM DH , Vol.M/� V , and

Lmin.M/D inffLg.C / W C is a closed geodesic in M g> l;

where a closed geodesic is any geodesic which starts and ends at the same point.

Recall that complete simply connected manifolds with constant sectional curva-
ture H � 0 have no closed geodesics, by Hadamard’s theorem, while those with
H > 0 have L.M/ D 2�=

p
H . (See [6].) Here we are requiring that the closed

geodesic lies in an open manifold M , and we do not have completeness.

Theorem 5.2. Given any ı > 0, if .Mj ; gj /�Mm;V;l
H , then there is a subsequence

.M ı
jk
; dMjk

/ such that the metric completion with the restricted metric converges in
the Gromov–Hausdorff sense to a metric space .Y ı ; d /. In particular, the extrinsic
diameters measured using the restricted metric are bounded uniformly:

Diam.M ı
jk
; dMjk

/� �0
V

V mH .�0/
; Diam.Y ı ; d /� �0

V

V mH .�0/
;

where

(26) �0 D

(
1
2

min
˚
ı; l
2
; �p

H

	
if H > 0;

1
2

min
˚
ı; l
2

	
otherwise;

and V mH .�0/ is the volume of a ball of radius �0 in the complete simply connected
space with constant sectional curvature H .
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Remark 5.3. There are no closed geodesics in the Mj of Examples 1.1 and 1.2,
so L.Mj / D 1. These examples have H D 0 and m D 2. Since Example 1.2
also has a uniform upper bound on volume, it demonstrates why we can only
obtain Gromov–Hausdorff convergence of the M ı

j instead of the Mj themselves.
TheM ı

j of Example 1.1 do not have GH-convergent subsequences (see Remark 5.5),
demonstrating the necessity of an upper bound on volume.

Proof of Theorem 5.2. Let M 2Mm;V;l
H and p 2M ı . In view of (26), we see that

if 0 < � < �0, then Bp.�/ does not reach the boundary of M and does not contain
any conjugate point to p, since one does not reach a conjugate point before one
would in the comparison space.

We claim that there are also no cut points to p in Bp.�/. If there was a cut
point q, then proceeding in a similar way to Klingenberg [9], we see that there exists
a closed geodesic starting at p of length at most 2d.p; q/ < 2�0. By hypothesis,
the length of this closed geodesic is greater than l , which is a contradiction.

Thus there is a Riemannian isometric diffeomorphism

(27)  W Bp.�0/! Bx.�0/�M
m
H ;

where Mm
H is the simply connected space of constant sectional curvature H . In

particular, Vol.Bp.�// is greater than or equal to the volume of a ball of the same
radius in a simply connected space form of constant curvature H . By combining
Proposition 2.11 with Proposition 2.10 and then Gromov’s compactness theorem,
there is a subsequence .M ı

jk
; dMjk

/ such that the metric completion with the re-
stricted metric converges in the Gromov–Hausdorff sense to a metric space .Y ı ; d /.
Notice that by Proposition 2.11, the maximum number of disjoint balls of radius �0=2
that lie in M is at most .V=V mH /.�0=2/. Thus, by Proposition 2.10, the minimum
number of balls of radius �0 needed to cover M is at most .V=V mH /.�0=2/. From
this it follows that

Diam.M ı
jk
; dMjk

/� �0
V

V mH .�0=2/
:

Since

Diam.M ı
jk
; dMjk

/! Diam.Y ı ; d /;

we conclude that

Diam.Y ı ; d /� �0
V

V mH .�0=2/
: �

Remark 5.4. If the injectivity radius for each p 2 M ı
j is bounded above by a

positive constant, then the condition on the length of closed geodesics in Theorem 5.2
is satisfied.
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5B. Examples with constant sectional curvature. The volume condition in Theo-
rem 5.2 may not be replaced by a condition on diameter:

Remark 5.5. Let .Mj ; gj / be the j -th covering space of Ann.0;0/.1=j; 1/� E2.
Since every point in Mj has distance less than 1 from the inner boundary, and

the inner boundary has length j 2�.1=j /D 2� , we know

(28) Diam.Mj ; dMj /� 2� C 2:

Yet the number of disjoint balls of radius ı < 1
4

centered on the cover of @B.0;0/
�
1
2

�
is greater than 2j . So there is no subsequence of M ı

j which converges in the
Gromov–Hausdorff sense.

This sequence fails to satisfy the volume condition of Theorem 5.2:

Vol.Mj /D j.�12��=j 2/D �
j 2�1

j
:

It is worth observing that the intrinsic diameters

Diam.M ı
j ;M

ı
j /� j 2�

�
ıC

1

j

�
also diverge to infinity.

Remark 5.6. The flat manifolds of Example 1.2, described more explicitly in
Example 2.13, satisfy the hypothesis of Theorem 5.2. See Figure 5. In fact, for
fixed ı > 0, once .2�=j /4 < ı, every point with r � 2 lies within a distance ı from
the boundary because the spike is less than ı wide. So all the M ı

j eventually lie
within r < 2, where the metric is just the standard Euclidean metric, and there is a
uniform bound on the number of disjoint balls. So the Gromov–Hausdorff limit
also lies within the Euclidean ball of radius 2. On the other hand, every point within
the ball of radius 1C ı < r < 2� ı lies in M ı

j , so the Gromov–Hausdorff limit Y ı

contains Ann.0;0/.1C ı; 2� ı/. In fact, Y ı is the metric completion of this annulus
with the flat Euclidean metric.

Figure 5. Models of Example 1.2: M ı
4 , M ı

6 , M ı
8 , M ı

12, M ı
16; : : :
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5C. Manifolds with nonnegative Ricci curvature. Here we prove Theorem 1.4
by applying Gromov’s compactness theorem (Theorem 2.9) combined with the
following proposition:

Proposition 5.7. If .M; gM / is a compact Riemannian manifold with boundary
having nonnegative Ricci curvature, then for any ı > 0 and any � 2 .0; ı=2/, the
ı-inner region M ı contains a finite collection of points fp1; p2; : : : ; pN g such that

M ı
�

N[
iD1

Bpi .�/;

where

N �N.ı; �;Dı ; V; �/D
V

�

�
22Dı=�

�

�m
;

mD dim.M/, Vol.M/� V , Diam.M ı ; dM ı /�Dı , and

(29) supfVol.Bq.ı// W q 2M ı
g � �ım:

Remark 5.8. In this proposition we can use the volume of any ball centered in M ı

to estimate � in (29). This allows us to study sequences like those in Example 3.1.
One does not need a Ricci curvature condition if one has a uniform lower bound on
the volumes of all balls centered in M ı , as can be seen in Proposition 2.11 in the
review of Gromov–Hausdorff convergence.

Proof of Proposition 5.7. By Propositions 2.10 and 2.11 in the review of Gromov–
Hausdorff convergence, we need only to find a uniform lower bound on the volume
of an arbitrary ball Bp.�/ centered at p 2M ı .

Fix q as in (6). Then by the fact that Bq.ı/ does not hit @M and M has
nonnegative Ricci curvature, we may apply the Bishop–Gromov volume comparison
theorem to see that

(30) � �
Vol.Bq.ı//

ım
�

Vol.Bq.�//
�m

because ı > ı=2 > �.
Let C W Œ0; 1�!M ı be the shortest curve from p to q. Then

LD L.C/� Diam.M ı ; dM ı /�Dı :

Let n > L=� and xj D C.tj /, where tj D jL=n, so that

xj 2M
ı and dM .xj�1; xj /D L=n < �:

In particular, Bxj .2�/ lies within the interior of M and has nonnegative Ricci
curvature. Thus, by the Bishop–Gromov volume comparison theorem,

Vol.Bxj .�//�
1

2m
Vol.Bxj .2�//�

1

2m
Vol.BxjC1.�//:
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Applying this repeatedly for j D 1; : : : ; n, and finally applying (30), we have

Vol.Bp.�//�
1

2mn
Vol.Bq.�//�

1

2mDı=�
Vol.Bq.�//�

1

2mDı=�
��m:

The estimate on N.ı; �;Dı ; V; �/ then follows immediately from Propositions 2.10
and 2.11. �

6. Glued limit spaces

In this section we define glued limit spaces and completed glued limit spaces and
study their properties without making any curvature assumptions. We begin by
constructing isometric embeddings

'ıiC1;ıi W Y
ıiC1 ! Y ıi

between the Gromov-Hausdorff limits Y ıi of inner regions M ıi
j (Theorem 6.1).

We then apply these isometric embeddings to glue together the Y ıi and construct a
glued limit space Y D Y.fıig; f'ıiC1;ıi g/ (Theorem 6.3).

We next study sequences of Mj which converge in the Gromov–Hausdorff
sense. We prove that if the sequence has a completed glued limit space, then it
is unique (Theorem 6.6). However, the glued limit is not the Gromov–Hausdorff
limit (Remark 6.7), it might even be empty (Remark 6.8), and it need not exist
(Remark 6.9).

Finally, we construct some important examples of glued limit spaces for se-
quences which do not have Gromov–Hausdorff limits. In Remark 6.10 we describe
how the sequence from Example 2.13 has a bounded and precompact glued limit
space. We provide another example with a bounded glued limit space which is not
precompact (Example 6.12). We provide an example where the glued limit space
is not a length space (Example 6.13). We close this section with Example 6.16
demonstrating that these glued limit spaces and their completions depend on the
isometric embeddings used to define them and need not be unique.

6A. Gluing inner regions together. Here we prove the existence of isometric
embeddings which we will later apply as glue to connect inner regions together.

Theorem 6.1. Let ıi ! 0 be a decreasing sequence and Mj a sequence of open
manifolds such that

(31) .M
ıi
j ; dMj /

GH
�! .Y ıi ; dY ıi /

for all i , where possibly some of these sequences and their limits are eventually
empty sets. Then there exist subsequential limit isometric embeddings

(32) 'ıiC1;ıi W Y
ıi ! Y ıiC1 ;
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which are just the identity when ıi D ıiC1. If ı 2 .0; ı0�, there exists a compact
metric space Y ıi � Y ı � Y ıiC1 with the restricted metric dY ı D dY ıiC1 and a
convergent subsequence

(33) .M ı
jk
; dMjk

/ GH
�! .Y ı ; dY ı /;

and when ı 2 .ıiC1; ıi /, for any such Y ı , the restriction map 'ı;ıi W Y
ıi ! Y ı and

the inclusion map 'ıiC1;ı W Y
ı ! Y ıiC1 are isometric embeddings.

Proof. By Theorem 2.15, for each i there exists a compact metric space Zi and
isometric embeddings

'j WM
ıiC1
j !Zi and '1 W Y

ıiC1 !Zi

such that

'j .M
ıiC1
j / H

�!'1.Y
ıiC1/:

By Theorem 2.16, we can choose a subsequence fjkg1kD1 such that the 'jk .M
ıi
jk
/

converge in the Hausdorff sense to a compact subspace Xıi � '1.Y ıiC1/. By (31),

M
ıi
jk

GH
�!Y ıi :

Then, by uniqueness, up to an isometry of the Gromov–Hausdorff limit space there
exists an isometric embedding

'ıiC1;ıi W Y
ıi ! Y ıiC1 such that 'ıiC1;ıi .Y

ıi /D '�11 .Xıi /:

By Theorem 2.12 there is a uniform upper bound Di > 0 of the diameters of
.M

ıi
j ; dMj / and a function Ni W .0;Di �!N such that Ni .�/ is an upper bound for

the number of �-balls needed to cover M ıi
j for all � 2 .0;Di � and for all j 2 N. If

ı 2 .ıiC1; ıi /, define N W .0;DiC1=2�! N by N.�/DNiC1.2�/. Then

Diam.M ı
j ; dMj /� Diam.M ıiC1

j ; dMj /�DiC1:

Apply Theorem 2.9 to get a subsequence flkg1kD1 of fjkg1kD1 such that the 'lk .M
ıi
lk
/

converge in the Hausdorff sense to a closed subset Xı � '1.Y ıiC1/.
We define

Y ı D '�11 .Xı/� Y
ıiC1 :

The choice of the subsequence flkg implies that Xıi � Y ı , so Y ıi � Y ı . The rest
of the theorem immediately follows. �

Remark 6.2. The choice of isometric embeddings 'ıiC1;ıi is not unique. In
Example 6.16 we provide two distinct isometric embeddings 'ıiC1;ıi ¤ '

0
ıiC1;ıi

.
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6B. Glued limit spaces are defined. We now define a glued limit space for a
sequence of Riemannian manifolds satisfying the hypothesis of Theorem 6.1. We
prove that this glued limit space is a metric space unless it is the empty set. We prove
that it contains isometric images of all Gromov–Hausdorff limits of convergent
subsequences of inner regions (which may be empty). An example of a sequence
of open Riemannian manifolds which has an empty glued limit space will be given
in Remark 6.8. Our definitions of a glued limit space and a completed glued limit
space are stated along with their construction in the following theorem:

Theorem 6.3. Given a sequence of open Riemannian manifoldsMj with a sequence
ıi ! 0 satisfying the hypothesis of Theorem 6.1, one can define a glued limit space
Y using the subsequential limit isometric embeddings of (32) as follows:

(34) Y D Y.fıig; f'ıiC1;ıi g/D Y
ı0 t

1F
iD1

�
Y ıiC1 n'ıiC1;ıi .Y

ıi /
�

with the metric

dY .x; y/D8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

dY ı0 .x; y/ if x; y 2 Y ı0 ;

d
Y ıiC1

.x; y/ if x; y 2 Y ıiC1 n'ıiC1;ıi .Y
ıi /;

d
Y ıiC1

.x; 'ıiC1;ı0.y// if x 2 Y ıiC1 n'ıiC1;ıi .Y
ıi / for some i 2 N

and y 2 Y ı0 ,

d
Y
ıiCjC1 .x; 'ıiCjC1;ıiC1.y// if x 2 Y ıiCjC1 n'ıiCjC1;ıiCj .Y

ıiCj / and
y 2 Y ıiC1 n'ıiC1;ıi .Y

ıi / for some i; j 2 N,

where we have set

'ıiCj ;ıi D 'ıiCj ;ıiCj�1 ı � � � ı'ıiC1;ıi :

This glued limit is not defined using an arbitrary collection of isometric embeddings,
but rather only those achieved as in Theorem 6.1.

Furthermore, for all ı 2 .0; ı0� there exists a subsequence M ı
jk

which converges
in the Gromov–Hausdorff sense to a compact metric space Y ı , and for any such Y ı

there exists an isometric embedding

Fı D Fı;fıi g W Y
ı
! Y

such that for the ıi in our sequence we have

Fıi .Y
ıi /� FıiC1.Y

ıiC1/:

If ǰ is any sequence decreasing to 0, then

Y D

1[
jD1

F
ǰ
.Y ǰ /:
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We say that a sequence of open Riemannian manifolds Mj has a glued limit
space Y if there exists a sequence ıi ! 0 satisfying the hypothesis of this theorem.
A completed glued limit is defined to be the metric completion Y of a glued limit
space Y , and the boundary of a glued limit space is defined to be the set Y nY .

Remark 6.4. In Example 4.10, for sufficiently large ı0, each limit Y ı is a ball in
Euclidean 2-dimensional space. According to Theorem 6.3, the glued limit space
of this sequence is constructed by taking the disjoint union of the ball Y ı0 with the
concentric annulus Y ı0=iC1 nY ı0=i .

Remark 6.5. The definition of the glued limit space depends on the choice of ıi
and the isometric embeddings in Theorem 6.1. Even if one fixes the sequence
ıi ! 0, the glued limit need not be unique; see Example 6.16.

Proof of Theorem 6.3. We first prove that dY is positive definite. For the first and
second cases of the definition of dY , we immediately see that dY .x; y/D 0 if and
only if x D y. For the third and fourth cases, notice that

'ıiCjC1;ıiC1.y/D .'ıiCjC1;ıiCj ı'ıiCj ;ıiC1/.y/;

so

(35) 'ıiCjC1;ıiC1.y/ 2 'ıiCjC1;ıiCj .Y
ıiCj /:

Thus x ¤ 'ıiCjC1;ıiC1.y/ and

dY .x; y/D dY ıiCjC1 .x; 'ıiCjC1;ıiC1.y//¤ 0:

Define Fıi W Y
ıi ! Y by

Fıi .y/D

8̂̂̂̂
<̂
ˆ̂̂:
y if iD1;

y if i >1 and y2Y ıi n'ıi ;ıi�1.Y
ıi�1/

'�1
ıi ;ı0

.y/ if i >1 and '�1
ıi ;ı0

.y/2Y ı0 ;

'�1
ıi ;ıj

.y/ if i >1 and '�1
ıi ;ıj

.y/2Y ıj n'ıj ;ıj�1.Y
ıj�1/ for some j >1.

What we are doing in the third and fourth part of the definition of Fıi is the
following. Suppose that y 2 Y ı0=i . Then either

y 2 Y ıi n'ıi ;ıi�1.Y
ıi�1/

or y 2 'ıi ;ıi�1.Y
ıi�1/. In the latter case, there exists yi�1 2 Y ıi�1 such that

y D 'ıi ;ıi�1.yi�1/. If i � 1 > 1, either

yi�1 2 Y
ıi�1 n'ıi�1;ıi�2.Y

ıi�2/ or yi�1 2 'ıi�1;ıi�2.Y
ıi�2/:
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Proceeding in the same way, if necessary, we find j such that there exists yj 2 Y ıj

satisfying the condition yj … 'ıj ;ıj�1.Y
ıj�1/ if j > 1, and also y D 'ıi ;ıj .yj /.

It is easy to see that

(36) Fıi .Y
ıi /D Y ı0 [

i�1F
jD1

�
Y ıjC1 n'ıjC1;ıj .Y

ıj /
�
;

and for j < i ,

Fıj D Fıi ı'ıi ;ıj :

For arbitrary ı, by Theorem 6.1 there exists a subsequence M ı
jk

which converges
in the Gromov–Hausdorff sense to a limit Y ı . Define Fı W Y ı ! Y by

Fı D Ffı;fıi gg D

�
Fı0 ı'ı0;ı if ı0 < ı;
FıiC1 ı'ıiC1;ı if ıiC1 � ı < ıi ;

where 'ı0;ı ; 'ıiC1;ı are given in Theorem 6.1.
Observe that in the latter case of the definition of Fı , Fıi D Fı ı 'ı;ıi . This,

together with the definition of Fı , gives

(37) Fıi .Y
ıi /� Fı.Y

ı/� FıiC1.Y
ıiC1/:

Now that we have ǰ decreasing to 0, there exists N sufficiently large that
ǰ � ı0, and for all j �N , there exists i such that ǰ 2 ŒıiC1; ıi /. From (36) and

(37), taking ı D ˇi , we conclude that

Y D

1[
jDN

F
ǰ
.Y ǰ /D

1[
jD1

F
ǰ
.Y ǰ /

because Fˇ0.Y
ˇ0/� FˇN .Y

ˇN /.
To prove that Fı is an isometric embedding, it is enough to prove that each Fıi

is an isometric embedding. Fı0 is an isometric embedding by definition of Y .
For FıiC1 we must check three cases. Let x; y 2 Y ıiC1 .

Case (i): If x; y 2 Y ıiC1 n'ıiC1;ıi .Y
ıi /, then FıiC1.x/D x, and FıiC1.y/D y.

Case (ii): If x 2 Y ıiC1 n'ıiC1;ıi .Y
ıi / and y 2 'ıiC1;ıi .Y

ıi /, then

FıiC1.y/D '
�1
ıiC1;ıiC1�j

.y/ 2 Y ıiC1�j n'ıiC1�j ;ıi�j .Y
ıi�j /

for some j , so

dY
�
FıiC1.x/; FıiC1.y/

�
D d

Y
ıiC1�j

�
FıiC1.x/; 'ıiC1;ıiC1�j .FıiC1.y//

�
D d

Y ıiC1
.x; y/:
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Case (iii): If FıiC1.x/ D '
�1
ıiC1;ıiC1�k

.x/ and FıiC1.y/ D '
�1
ıiC1;ıiC1�j

.y/, then
take k � j . Recall that 'ıiC1;ıiC1�k ı'ıiC1�k ;ıiC1�j D 'ıiC1;ıiC1�j , so we have

dY .FıiC1.x/; FıiC1.y//

D d
Y ıiC1�k

.FıiC1.x/; 'ıiC1�k ;ıiC1�j .FıiC1.y///

D d
Y ıiC1

.'ıiC1;ıiC1�k .FıiC1.x//; 'ıiC1;ıiC1�j .FıiC1.y///

D d
Y ıiC1

.x; y/:

The triangle inequality follows from the above paragraphs. For x; y; z 2 Y ,
find ı such that x; y; z 2 Fı.Y ı/. The triangle inequality holds for the preimages
of x; y; z, and since Fı is an isometric embedding, it also holds for x; y; z. �

6C. Glued limits within Gromov–Hausdorff limits. Recall that in Theorem 4.3
we proved that if a sequence of open Riemannian manifolds Mj has a Gromov–
Hausdorff limit X , then subsequences of the inner regions M ı

j have Gromov–
Hausdorff limits. Here we assume that the Mj also have a (possibly empty) com-
pleted glued limit space as in Theorem 6.3. We prove that this completed glued limit
space is unique and provide a precise description as to how to find this completed
glued limit space as a subset of the Gromov–Hausdorff limit (Theorem 6.6).

Note that the completed glued limit need not agree with the Gromov–Hausdorff
limit (Remark 6.7). In fact, we provide an example where the completed glued
limit space is empty (Remark 6.8).

It should be emphasized that we must assume theMj have a completed glued limit
to obtain uniqueness. It is possible that a sequence Mj has a Gromov–Hausdorff
limit and that one needs a subsequence to obtain a glued limit, and that different
subsequences provide different completed glued limits (see Remark 6.9).

Theorem 6.6. Let fMj g be a sequence of open manifolds that converges in the
Gromov–Hausdorff sense to a compact metric space .X; dX /. Suppose Y is a glued
limit space of the fMj g defined as in Theorem 6.3. Then the completed glued limit Y
is isometric to the closure U fjkg �X of any limit’s inner union Ufjkg �X defined
as in Definition 4.7 for any subsequence jk . In particular, any completed glued
limit and the closure of any of the limit’s inner regions are isometric.

We do not claim all the limit’s inner regions are the same subset of X , and in
fact this is not true, even after taking a closure. They are only isometric to one
another. See Example 4.13.

Proof. Let Y be a glued limit space defined using Theorems 6.3 and 6.1 via a
sequence of isometric embeddings 'j of M ıi

j �M
ıiC1
j into a sequence of compact

metric spaces Zi rather than a single compact metric space Z.
Since we have assumed the original sequence of Riemannian manifolds has a

glued limit space Y without requiring a subsequence, the following spaces are
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isometric:
Yfıi g;fjkg Š Yfıi g Š Yfıi g;fj 0kg

for any pair of subsequences fjkg and fj 0
k
g.

Recall that Theorem 6.3 provides, for each ı > 0, an isometric embedding
Fı W Y

ı ! Y , with

(38) Y D

1[
iD1

Fıi .Y
ıi / and Fıi .Y

ıi /� FıiC1.Y
ıiC1/:

Since Y ı is the Gromov–Hausdorff limit of the inner regions M ı
j , it is isometric

to the limit of the inner regions Y ıfjkg � Ufjkg �X of Theorem 4.1. Note that we
need a subsequence for each ı to produce the limit of the inner regions. We can
produce a diagonal subsequence (also denoted fjkg) such that

Y ıfjkg � Ufjkg �X is defined for all ı 2 fıig;

so we have isometric embeddings

 ıi W Fıi .Y
ıi /� Y ! Y ıfjkg �X:

SinceFıi .Y
ıi /�FıiC1.Y

ıiC1/, for each i and any hwe may study the restriction

 ıiCh W Fıi .Y
ıi /� Y ! Y ıiChfjkg

� Ufjkg �X:

Since Fıi .Y
ıi / and X are compact, we can find a subsequence hk depending on i

which converges to a limit isometric embedding:

 i;1 W Fıi .Y
ıi /� Y ! U fjkg �X:

We may do this for each i and diagonalize the subsequences if we wish. Since  ıiCh
is a restriction of  ıiC1Ch , we see that  i;1 is a restriction of  iC1;1. Thus we
may define an isometric embedding

 1 W Y ! U fjkg �X:

Extending this, we have an isometric embedding

 1 W Y ! U fjkg:

Since X is compact, U fjkg is compact and thus so is Y .
We need only construct an isometric embedding from U fjkg to Y to prove that

these spaces are isometric, because they are compact metric spaces. We repeat the
same trick as above but now use the fact that we have isometries

F 0ıi W Y
ıi
fjkg
! Fıi .Y

ıi /� Y



SEQUENCES OF OPEN RIEMANNIAN MANIFOLDS WITH BOUNDARY 453

and

Y D

1[
iD1

F 0ıi .Y
ıi
fjkg

/;

with
F 0ıi .Y

ıi
fjkg

/� F 0ıiC1.Y
ıiC1
fjkg

/:

Since Y ıifjkg � Y
ıiC1.jk/, we may study for each i and any h the restriction

F 0iCh W Y
ıi
fjkg
! Y � Y :

Since we have shown Y is compact, a subsequence converges for each i (and we
can diagonalize these subsequences), so that we obtain isometric embeddings

F 0i;1 W Y
ıi
fjkg
! Y :

Since F 0i;1 is a restriction of F 0iC1;1, we can define an isometric embedding

(39) F 01 W Ufjkg! Y :

This extends to an isometric embedding from U fjkg to Y . Since we have a pair
of isometric embeddings between a pair of compact metric spaces, these metric
spaces are isometric. �

Remark 6.7. It is possible that the completed glued limit is not the same as the
Gromov–Hausdorff limit. Example 4.10 has a glued limit which is an open disk in
Euclidean space; its completed glued limit is the closed disk, while its Gromov–
Hausdorff limit is a disk with a line segment attached.

Remark 6.8. The glued limit of a sequence of open Riemannian manifolds may
exist but be the empty set. See, for example, the sequence M2jC1 in Example 4.11.
This sequence converges in the Gromov–Hausdorff sense but U is an empty set. It
only satisfies the conditions of Theorem 6.1 in a trivial way: for each ı > 0 there
exists Nı 2 N such that M ı

j D∅ for all j �Nı .

Remark 6.9. A sequence of Mj which converges in the Gromov–Hausdorff sense
may not have a glued limit space. In fact, one may need to take a subsequence to
obtain a glued limit, and different subsequences might produce different glued limit
spaces. In Examples 4.9–4.12, the subsequence M2j has a completed glued limit
space which is isometric to U f2j g and the subsequence M2jC1 has a completed
glued limit space which is isometric to U f2jC1g, but the sequence Mj itself does
not have a glued limit space. We thus see that the different glued limits obtained
using different subsequences are quite different. In particular, in Example 4.11
the completed glued limit of the M2j agrees with the Gromov–Hausdorff limit of
the Mj , while the completed glued limit of the M2jC1 is empty.
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6D. Glued limit spaces when there are no Gromov–Hausdorff limits. In the set-
ting of Theorem 6.1, the subsequence of manifolds Mj such that M ı

j
GH
�!Y ı need

not have any Gromov–Hausdorff limit. Here we discuss an old example and present
two new examples.

Remark 6.10. The manifolds Mj described in Example 2.13 have increasingly
many spikes, and the sequence does not have a Gromov–Hausdorff limit. However,
the sequenceM ı

j converges to the metric completion of the annulus Ann.0;0/.1Cı;
2� ı/ with the flat metric; see Remark 5.6. Start with ı0 < 1

2
; then

Y ı0 D Ann.0;0/.1C ı0; 2� ı0/

and
Y ı0=.iC1/ n'ı0=.iC1/;ı0=i .Y

ı0=i /D A1[A2;

where

A1 D Ann.0;0/
�
1C

ı0
iC1

; 1C
ı0
i

�
and A2 D Ann.0;0/

�
2�

ı0
i
; 2�

ı0
iC1

�
:

Thus Y D Ann.0;0/.1; 2/ with the flat length metric. This glued limit space Y
is precompact.

A similar example, also constructed using flat manifolds Mj � E2 with no
Gromov–Hausdorff limit, has convergent M ı

j and a glued limit space which is a
flat open manifold that is bounded but not precompact:

Example 6.11. We define a flat open manifold with j spikes of decreasing width:

Mj D Uj [Vj ;

where

Uj D
n
.r cos �; r sin �/ W r < 4C sin 4�

2

�
; � 2 .2�=j; 2��

o
;(40)

Vj D
˚
.r cos �; r sin �/ W r < 4; � 2 .0; 2�=j �

	
:(41)

As in Example 2.13, the .Mj ; dMj / have no Gromov–Hausdorff limit because they
have increasingly many spikes. Unlike Example 2.13, for any number N , there
exists ıN sufficiently small such that M ıN

j has N spikes. In fact,

.M ı
j ; dMj /

GH
�! .Y ı ; dY /;

where Y ı is the ı-inner region of the flat open manifold

Y D
n
.r cos �; r sin �/ W r < 4C sin 4�

2

�
; � 2 .0; 2��

o
:

Taking the identity maps for the isometric embeddings, we see that Y is also a
glued limit space for the Mj , even though it is bounded but not precompact.
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Recall Example 2.14 of a sequence of surfaces having no Gromov–Hausdorff
limit. We modify it to obtain a sequence of manifolds with boundary that has
no Gromov–Hausdorff limit, but whose ı-inner regions have Gromov–Hausdorff
limits, and we construct the glued limit space and see that it is also bounded and
not precompact. This glued limit space is not a manifold.

Example 6.12. Let

Xj D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
be a disjoint union of spaces with taxicab metrics, glued via the map .0; y/D .0; y/.
One may think of Xj as a book with j pages of decreasing height glued along a
spike on the left. Within Xj , choose Aj to be the union of the top edges of each of
the pages. If we take surfaces Mj as constructed in Proposition 2.8, they now have
boundary, and

dGH.Mj ; Xj /! 0 and dGH.M
ı
j ; Xj nTı.Aj //! 0:

As in Example 2.14, the Mj have no GH-convergent subsequence because the Xj
have no GH-convergent subsequence.

Observe that there exists kı such that, for all j > kı ,

Xj nTı.Aj /D
�
Œ0; 1��Œ0; ı/

�
t
�
Œ0; 1��Œ0; 1

2
�ı�

�
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�kı
�ı
��
:

Since this sequence does not depend on j , it clearly converges in the Gromov–
Hausdorff sense. Thus, the M ı

j converge to the same Gromov–Hausdorff limit
space. In fact, they converge to X1 nTı.A1/, where

X1 D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
t � � � ;

and A1 is the union of the tops of all of these pages. In fact, X1 is the glued
limit space.

6E. A glued limit space which is not geodesic. Here we present an example whose
glued limit space is not geodesic or even a length space (and neither is its metric
completion):

Example 6.13. In Euclidean space E2, define

(42) Mj D
�
.�1; 1/� .�1; 1/

�
n
��
�
1
2
; 1
2

�
�
�
0; 1� 1

j

��
:

Then, for ı < 1
4

, there is J D J.ı/ such that

M ı
j D

�
.�1C ı; 1� ı/� .�1C ı;�ı/

�
t
��
�1C ı;�1

2
� ı
�
� .�ı; 1� ı/

�
t
��
1
2
� ı; 1� ı

�
� .�ı; 1� ı/

�
for j � J .
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Thus M ı
j is a constant sequence for j � J , and M ı

j
GH
�!Y ı , where

Y ı D Œ�1C ı; 1� ı�� Œ�1C ı; 0� [
�
�1C ı;�1

2
C ı

�
� Œ0; 1� ı�

[
�
1
2
� ı; 1� ı

�
� Œ0; 1� ı�:

The completed glued limit is not a length space:

Y D Œ�1; 1�� Œ�1; 0� [
�
�1;�1

2

�
� Œ0; 1� [

�
1
2
; 1
�
� Œ0; 1�� E2:

Note that Mj GH
�!X D Y [

�
f1g �

�
�
1
2
; 1
2

��
.

Open question 6.14. Is a glued limit space locally geodesic: for all y 2 Y , does
there exist �y >0 such that B.y; �y/ is geodesic? If there is a counterexample, what
conditions can be imposed on the space to guarantee that it is locally geodesic?

6F. Balls in glued limit spaces. Recall from Lemma 3.3 that for any p 2M ıi , if
x 2 Bp.ıi � ıiC1/�M , then x 2M ıiC1 . This is not true for glued limit spaces.
That is, it is possible for p 2 Fıi .Y

ıi / to have an x 2 Bp.ıi � ıiC1/� Y such that
x … FıiC1.Y

ıiC1/. In fact, we can take the ball of arbitrarily small radius and still
have x … FıiC1.Y

ıiC1/:

Example 6.15. In Example 6.12 we constructed a sequenceMj having no Gromov–
Hausdorff limit, but such that the M ı

j converge in the Gromov–Hausdorff sense to
Y ı DX1 nTı.A1/, where

X1 D
�
Œ0; 1�� Œ0; 1�

�
t
�
Œ0; 1��

�
0; 1
2

��
t � � � t

�
Œ0; 1��

�
0;
�
1
2

�j ��
t � � � ;

where each piece is connected along .0; y/ � .0; y/ and A1 is the union of the
tops of all of these pages. This X1 is a glued limit space for this example.

Then Fı.Y ı/ D X1 n Tı.A1/. Take any ball about the common point .0; 0/
in X1. For any radius r > 0, B.0;0/.r/ contains infinitely many points

(43) yj D
�
r

2
; 0
�
2 Œ0; 1��

�
0;
�
1
2

�j �
:

However, yj … Fı.Y ı/ for j sufficiently large that
�
1
2

�j
< ı.

6G. Nonuniqueness of the glued limit space. We now see that glued limit spaces
and completed glued limit spaces are not necessarily unique. Recall that in
Theorem 6.6 we explained that if the Mj have a Gromov–Hausdorff limit, then
the completed glued limit space is unique. So we need to construct a sequence
of manifolds Mj having no Gromov–Hausdorff limit. In fact, we will imitate
Example 6.12, applying Proposition 2.8 to construct the following example:

Example 6.16. There are a sequence fMj g of Riemannian surfaces with boundary,
a sequence ıi ! 0, and metric spaces Y ıi such that

dGH.M
ıi
j ; Y

ıi /! 0;
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with two different glued limit spaces

Y1 D Y.ı2i ; 'ı2i ;ı2iC2/ and Y2 D Y.ı2i ; '
0
ı2i ;ı2iC2

/;

constructed as in Theorem 6.3 and Theorem 6.1, whose metric completions are
not isometric.

Proof. Let

(44) Pj D Œ0; 1��
h
�
1

2j
;
1

2j

i
for j D 1; 2; : : : ;

and let

Xj D P1 t .P2 tP2/t � � � t .Pj t � � � tPj / (2i�1 copies of Pi , 1� i � j )

be a disjoint union of Nj D 1C 2C 4C � � �C 2j�1 spaces endowed with taxicab
metrics, glued via with the map  .0; y/D .0; y/. One may think of Xj as a book
with Nj pages of different heights glued along a spike on the left.

Let Hj � Pj be defined by

Hj D Œ0; 1��
n
�
1

2j

o
[ f1g �

h
�
1

2j
;
1

2j

i
[ Œ0; 1��

n
1

2j

o
� Pj ;

and let Aj �Xj be defined by

Aj DH1 t .H2 tH2/t � � � t .Hj t � � � tHj / (2i�1 copies of Hi , 1� i � j ).

If we take surfaces Mj as constructed in Proposition 2.8, they now have a
boundary, and we have

dGH.Mj ; Xj /! 0 and dGH.M
ı
j ; Xj nTı.Aj //! 0:

As in Example 2.14, the Mj have no GH-convergent subsequence because the Xj
have no GH-convergent subsequence.

Now

Xj nTı.Aj /D
�
P1 nTı.H1/

�
t
�
P2 nTı.H2/

�
t
�
P2 nTı.H2/

�
t
�
P3 nTı.H3/

�
t � � � t

�
P3 nTı.H3/

�
:::

t
�
Pj nTı.Hj /

�
t � � � t

�
Pj nTı.Hj /

�
:

Observe that

Pj nTı.Hj /D Œ0; 1� ı��
h
�
1

2j
C ı;

1

2j
� ı
i
:

Taking ı D ı2i D 1=.2i/ and j > i , we have

Pi nTı.Hi /D
h
0; 1�

1

2i

i
� f0g
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and
Pj nTı.Hj /D∅:

Thus

Xj nTı.Aj /D
�
P1 nTı.H1/

�
t
�
P2 nTı.H2/

�
t
�
P2 nTı.H2/

�
t
�
P3 nTı.H3/

�
t � � � t

�
P3 nTı.H3/

�
:::

t
�
Pi�1 nTı.Hi�1/

�
t � � � t

�
Pi�1 nTı.Hi�1/

�
t

h
0; 1�

1

2i

i
� f0g t � � � t

h
0; 1�

1

2i

i
� f0g;

endowed with taxicab metrics and glued together with the map  .0; y/D .0; y/.
There are 1C2C4C� � �C2.i�1/�1 rectangular pages and 2i�1 pages that are just
intervals of length 1� 1=.2i/. Taking j !1, we get

(45) dGH.Xj nTı.Aj /; Y
ı/! 0;

where
Y ı2i D Y 1=.2i/ DXj nTı2i .Aj / for all j > i:

So

Y ı2i D
�
P1 nT1=.2i/.H1/

�
t
�
P2 nT1=.2i/.H2/

�
t
�
P2 nT1=.2i/.H2/

�
t
�
P3 nT1=.2i/.H3/

�
t � � � t

�
P3 nT1=.2i/.H3/

�
:::

t
�
P2i�1 nT1=.2i/.H2i�1/

�
t � � � t

�
P2i�1 nT1=.2i/.H2i�1/

�
t

h
0; 1�

1

2i

i
� f0g t � � � t

h
0; 1�

1

4i

i
� f0g;

endowed with taxicab metrics and glued together with the map  .0; y/D .0; y/;
there are 1C 2C 4C � � �C 2.i�1/�1 rectangular pages and 2i�1 pages that are just
intervals of length 1� 1=.2i/.

If we define 'ı2i ;ı2iC2 WY
ı2i!Y ı2iC2 to be the inclusion map and then construct

the glued limit space as in Theorem 6.1, we obtain

Y1 D Y.ı2i ; 'ı2i ;ı2iC2/D Y

D .P1 nH1/ t .P2 nH2/ t .P2 nH2/

t .P3 nH3/ t � � � t .P3 nH3/

:::

t .Pj nHj / t � � � t .Pj nHj / � � �
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endowed with taxicab metrics glued with a gluing map  .0; y/D .0; y/. This has
infinitely many pages, all shaped like rectangles.

Now we define '0
ı2i ;ı2iC2

W Y ı2i ! Y ı2iC2 to be an isometric embedding which
maps a point

.x; y/ 2 Pk nTı2i .Hk/� Y
ı2i

for k < i to
.x; y/ 2 Pk nTı2iC2.Hk/� Y

ı2iC2

via the inclusion map, and which maps

.x; y/ 2 Pi nTı2i .Hi /D
h
0; 1�

1

2i

i
� f0g � Y ı2i

to

.x; y � ı2i C ı2iC2/ 2 PiC1 nTı2iC2.HiC1/D
h
0; 1�

1

2iC2

i
� f0g � Y ı2iC2 :

This is possible because we have enough copies of PiC1 nTı2iC2.HiC1/ in Y ı2iC2 .
In particular, '0

ı2i ;ı2iC2
maps the interval pages into interval pages. If we then

construct the glued limit space as in Theorem 6.1, we obtain

Y2 D Y.ı2i ; '
0
ı2i ;ı2iC2

/D Y t Œ0; 1�� f0g t Œ0; 1�� f0g t Œ0; 1�� f0g t � � � ;

which has infinitely many pages that are intervals in addition to all the pages
shaped like rectangles. So we have two distinct glued limit spaces for the sequence
ı2i D 1=.2i/, and their metric completions are not isometric. �

7. Glued limits under curvature bounds

In this section we prove the existence of glued limits of sequences of manifolds with
certain natural geometric conditions (Theorems 7.1 and 7.4). We do not require the
sequences of manifolds themselves to have Gromov–Hausdorff limits.

7A. Constructing glued limits of manifolds with constant sectional curvature.
In this section we prove that if Mj 2Mm;V;l

H for all j (see Definition 5.1) then the
sequence has a glued limit space (Theorem 7.1). The sequence need not have a
Gromov–Hausdorff limit (see Remark 7.2).

Theorem 7.1. Given any ı0 > 0, if .Mj ; gj / � Mm;V;l
H , then there is a Gromov–

Hausdorff convergent subsequence fM ı0
jk
g and a glued limit space Y such that

for all ı 2 .0; ı0� there exists a further subsequence fj 0
k
g of fjkg for which M ı

j 0
k

converges in the Gromov–Hausdorff sense to a compact metric space Y ı , and for
any such Y ı there exists an isometric embedding

(46) Fı W Y
ı
! Y:
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Remark 7.2. The sequences of flat surfaces Mj � E2 defined in Example 2.13 and
Example 6.11 have a common finite upper volume bound, but there is no common
finite upper bound for the number of disjoint balls in Mj of radius less than 1. Thus,
these two sequences do not have a Gromov–Hausdorff limit. Nonetheless, since

Lmin.Mj /D inffLg.C / W C is a closed geodesic in Mj g> l;

Theorem 7.1 demonstrates that we can construct glued limits for these spaces.

Remark 7.3. The choice of a further subsequence fj 0
k
g of fjkg in Theorem 7.1 is

necessary. Let .Mj ; gj / �M2;V;l
0 be the sequence defined in Example 4.4. Take

ı0 D 3". Then fM ı0
j g is a Gromov–Hausdorff convergent sequence. Choosing

2" 2 .0; ı0�, we see that M 2"
2j converges in the Gromov–Hausdorff sense but M 2"

j

does not.

Proof. Consider the sequence ı0, ıi D ı0=i , i 2 N. Start with ı0. By Theorem 5.2,
there exist a sequence f�k.ı0/g of integers and a compact metric space Y ı0 such
that

(47) .M�k.ı0/; dM�k.ı0/
/ GH
�! .Y ı0 ; dY ı0 /:

Proceeding as before, for each n2N there is a subsequence f�k.ın/gk of f�k.ın�1/gk
and a compact metric space Y ınf�k.ın/g such that

.M
ın
�k.ın/

; dM�k.ın/
/ GH
�!Y ın :

Define jk D �k.ık/. We have

.M
ın
jk
; dMjk

/ GH
�!Y ın

for nD 0; 1; 2; : : : since fjkg1kDn is a subsequence of f�k.ın/g1kD1. We may now
apply Theorem 6.3 to complete the proof. �

7B. Constructing glued limits with Ricci curvature bounds. Here we prove that
glued limits exist for noncollapsing sequences of manifolds with nonnegative Ricci
curvature and bounded volume which have control on the intrinsic diameters of
their inner regions (defined in (4)):

Theorem 7.4. Given m 2 N, a decreasing sequence ıi ! 0, (i � 0), V > 0,
� > 0, and Di > 0, let .Mj ; gj / be a sequence of m-dimensional open Riemannian
manifolds with nonnegative Ricci curvature such that Vol.Mj /� V ,

supfDiam.M ıi
j ; dM

ıi
j

/ W j 2 Ng<Di for all i 2 N;

and such that

for all j 2 N; there exists qj 2M
ı0
j such that Vol.Bqj .ı0//� �ı

m
0 :
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Then there exists a sequence fjkg !1 such that for all ıi the sequence fM ıi
jk
g

converges in the Gromov–Hausdorff sense to a compact metric space Y ıi . Thus,
the Mjk have a glued limit space Y such that for all ı 2 .0; ı0� there is a further
subsequence fj 0

k
g of fjkg for which M ı

j 0
k

converges in the Gromov–Hausdorff sense
to a compact metric space Y ı isometrically embedded in Y :

(48) Fı W Y
ı
! Y:

Remark 7.5. If there is D > 0 such that

sup
ı2.0;ı0�

fDiam.M ı
j ; dM ı

j
/g �D;

then we could take Di DD for all i . But this requirement is unnecessarily strong.

Remark 7.6. The choice of a further subsequence fj 0
k
g of fjkg in Theorem 7.1 is

necessary. For the sequence .Mj ; gj / defined in Example 4.4, consider a decreasing
sequence ıi ! 0 such that ı0D 3" and ı1D ". Then the hypotheses of the theorem
are satisfied. For all ıi , fM

ıi
j g converges in the Gromov–Hausdorff sense. However,

for 2" 2 .0; ı0�, fM 2"
j g does not have a Gromov–Hausdorff limit.

Proof of Theorem 7.4. Take ı 2 .0; ı0�; by hypothesis and the Bishop–Gromov
volume comparison (Theorem 2.19),

Vol.Bqj .ı//� Vol.Bqj .ı0//
�
ı

ı0

�m
� �ım:

This and the hypotheses of the theorem imply that, for each i ,

f.Mj ; gj /g �Mm;ıi ;Di ;V

�
:

Start with ı0. By Theorem 1.4 there exists a sequence f�k.ı0/g of integers such that�
M
ı0
�k.ı0/

; dM�k.ı0/
� GH
�!

�
Y ı0 ; dY ı0

�
:

Proceeding as before, for each n 2 N there exists a subsequence f�k.ın/gk of
f�k.ın�1/gk and a compact metric space Y ınf�k.ın/g such that�

M
ın
�k.ın/

; dM�k.ın/
� GH
�!

�
Y ın ; dY ın

�
:

Define jk D �k.ık/. We have�
M
ın
jk
; dMjk

� GH
�!

�
Y ın ; dY ın

�
since fjkg1kDn is a subsequence of f�k.ın/g1kD1. Finally, apply Theorem 6.3. �
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8. Properties of glued limit spaces under curvature bounds

In this final section of the paper we consider the local properties of the glued limits
of sequences of manifolds with constant sectional curvature as in Theorem 7.1 and
manifolds with nonnegative Ricci curvature as in Theorem 7.4. We begin with an
example indicating how even when the sequences of manifolds have a Gromov–
Hausdorff limit, one need not retain curvature conditions on the Gromov–Hausdorff
limit space (Example 8.1). This is in sharp contrast with the setting where the
Riemannian manifolds are compact without boundary. In this example, the glued
limit space is empty. Then we have a subsection about balls in glued limit spaces
without any assumption on curvature (Theorem 8.3). We apply this control on
the balls to prove that local curvature properties do persist on glued limit spaces.
In particular, we prove (Proposition 8.4) that the glued limits of manifolds with
constant sectional curvature bounds (and other conditions) are unions of manifolds
with constant sectional curvature. We close with Theorem 8.8, concerning the
metric measure properties of glued limits of manifolds with nonnegative Ricci
curvature.

8A. An example with no curvature control. We now construct a sequence of flat
open manifolds whose Gromov–Hausdorff limit is not flat:

Example 8.1. Let Bp.1/� H2 be a unit ball in hyperbolic space and B0.1/� E2

be the unit ball in Euclidean space. Then expp W B0.1/! Bp.1/. Let

(49) Sj D

��
i

j
;
k

j

�
W i; k 2 Z

�
\B0.1/� E2

and S 0j D expp.Sj /. Form a graph Aj whose vertices are in Sj and whose edges
form a triangulation, by connecting .i=j; k=j / to ..iC1/=j; k=j /, .i=j; .kC1/=j /
and ..iC1/=j; .kC1/=j /. We let A0j D expp.Aj /, and set the lengths of the edges
in A0j to be the distances between the vertices viewed as points in H2. Then A0j
converges to Bp.1/� H2 in the Gromov–Hausdorff sense.

Now define A00j to be the simplicial complex formed by filling in the triangles
in A0j with flat Euclidean triangles. Observe that fA00j g converges to Bp.1/ � H2

in the Gromov–Hausdorff sense as well. Finally, for each j we remove tiny balls
of radius � 1=j around the vertices in A00j , to create a flat open manifold Mj .
These Mj converge in the Gromov–Hausdorff sense to Bp.1/� H2.

Remark 8.2. Example 8.1 has an empty glued limit space. In the next subsections
we will see that the glued limit spaces do retain some of the curvature properties
of the initial sequence of manifolds. Thus the glued limit space is a more natural
object of study than the Gromov–Hausdorff limit, even when the Gromov–Hausdorff
limit exists.
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8B. Balls to glued limit spaces. Generally when one wishes to study the properties
of a complete noncompact limit space, one studies balls in the limit space as
Gromov–Hausdorff limits of balls in the sequence. Here we cannot control balls in
the limit space, but we can control balls of radius � < ıi�ıiC1 centered in Fıi .Y

ıi /

intersected with FıiC1.Y
ıiC1/. This will suffice to study the geometric properties

of the glued limit spaces.

Theorem 8.3. Let Y be a glued limit of a sequence fMj g of Riemannian manifolds,
as in Theorem 6.3. If y2Y ıi and �<ıi�ıiC1, then there exist a subsequence fM ıi

jk
g

containing points yjk and a sequence �jk ! � such that

(50) B.yjk ; �jk /D fx 2Mjk W dM .x; yjk / < �jkg �M
ıiC1
jk

and

(51) dGH

��
B.yjk ; �jk /; dMjk

�
;
�
B.Fıi .y/; �/\FıiC1.Y

ıiC1/; dY
��
! 0:

Note that in Example 6.15 we saw that B.Fıi .y/; �/\FıiC1.Y
ıiC1/ need not

be isometric to B.Fıi .y/; �/� Y , even when � is taken arbitrarily small.

Proof. Recall that in Theorem 6.1 we found 'ıiC1;ıi defined in the following way.
We picked isometric embeddings

'j WM
ıiC1
j !Z and '1 W Y

ıiC1 !Z

such that
dZH
�
'j .M

ıiC1
j /; '1.Y

ıiC1
j /

�
! 0:

Then we found a subsequence such that

dZH
�
'jk .M

ıi
jk
/; Xıi

�
! 0

and chose 'ıiC1;ıi to be an isometry such that

'ıiC1;ıi .Y
ıi /D '�11 .Xıi /:

Then there exist
yjk 2M

ıi
jk
�M

ıiC1
jk

�Mjk

such that
dZ
�
'jk .yjk /; '1.'ıiC1;ıi .y/

�
! 0:

Let �0 2 .0; ıi � ıiC1/. Then by Lemma 3.3 we have

B.yjk ; �
0/D fx 2Mjk W dM .x; yjk / < �

0
g �M

ıiC1
jk

:

From this, and since 'jk WM
ıiC1
jk

!Z is an isometry into its image, we see that�
B.yjk ; �

0/; dM
ıiC1
jk

�
is isometric to

�
B.'jk .yjk /; �

0/\'jk .M
ıiC1
jk

/; dZ
�
:



464 RAQUEL PERALES AND CHRISTINA SORMANI

By Lemma 2.2, for any � 2 .0; ıi � ıiC1/, there exists �jk ! � eventually in
.0; ıi � ıiC1/, such that

B
�
'jk .yjk /; �jk

�
\'jk

�
M
ıiC1
jk

� H
�! B

�
'1'ıiC1;ıi .y/; �

�
\'1

�
Y ıiC1

�
:

Now, �
B.'1'ıiC1;ıi .y/; �/\'1.Y

ıiC1/; dZ
�

is isometric to �
B.'ıiC1;ıi .y/; �/; dY ıiC1

�
;

which is isometric to�
FıiC1B.'ıiC1;ıi .y/; �/; dFıiC1 .Y

ıiC1 /

�
;

which is isometric to�
B.FıiC1'ıiC1;ıi .y/; �/\FıiC1Y

ıiC1 ; dY
�
:

Hence

dGH

��
B.yjk ; �jk /;dMjk

�
;
�
B.FıiC1.'ıiC1;ıi .y//;�/\FıiC1Y

ıiC1 ;dY
��
!0: �

8C. Properties of glued limits of manifolds with constant sectional curvature.
Here we prove a proposition, present a key example and state two open questions
concerning the glued limits of manifolds with constant sectional curvature.

Proposition 8.4. Let Y be a glued limit space obtained as in Theorem 7.1 from a
sequence Mj 2Mm;V;l

H . Then there exists a countable collection of sets Wi � Y ,
each of which is isometric to an m-dimensional smooth open manifold of constant
sectional curvature H , such that

(52) Y �

1[
iD1

Wi :

In fact,
Fıi .Y

ıi /�Wi � FıiC1.Y
ıiC1/� Y:

See Example 8.5, in which the glued limit space is a countable collection of flat
tori which are not connected to one another but have a metric restricted from a
larger compact metric space of finite volume.

Proof. Recall that any glued limit space Y defined as in Theorem 6.3 depends on
a sequence ıi ! 0 and gluings 'ıiC1;ıi W Y

ıiC1 ! Y ıi via the subsequential limit
isometric embeddings of (32). There are isometric embeddings Fıi W Y

ıi ! Y

such that

(53) Y �

1[
iD1

Fıi .Y
ıi /
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and

(54) Fıi .Y
ıi /� FıiC1.Y

ıiC1/:

Let
�i D

1
2

min
n
ıi � ıiC1;

l

2
;
�
p
h

2

o
;

where hDH when H > 0 and hD .l=�/2 otherwise.
Let

Wi D T�i
�
Fıi .Y

ıi /
�
\FıiC1.Y

ıiC1/� Y:

First observe that by (54) we have

Fıi .Y
ıi /�Wi :

So combined with (53), we have (52). So we need only show Wi is a smooth
m-dimensional open manifold of constant sectional curvature H .

For all w 2Wi , there exists y1 2 Fıi .Y
ıi / such that w 2 By1.�i /� Y . Since

By1.�i /� T�i
�
Fıi .Y

ıi /
�

we have

(55) U D By1.�i /\FıiC1.Y
ıiC1/D By1.�i /\Wi :

We need only show that U is isometric to a ball of radius �i in Mm
H , the m-

dimensional simply connected manifold with constant sectional curvature H .
There exists y 2 Y ıi such that y1 D Fıi .y/. By Theorem 8.3, and the fact that

�i < ıi � ıiC1, there exists a subsequence M ıi
jk

containing points yjk and �jk ! �i
such that (50) and (51) are satisfied.

Since �i < l=2, we have �jk < l=2 for k sufficiently large, and so by (50)
the Mj satisfy the conditions of Theorem 5.2, and by (27) we know there is a
Riemannian isometric diffeomorphism from B.yjk ; �jk / to a ball in Mm

H , the m-
dimensional simply connected manifold with constant sectional curvature H . Since
�i <
p
H�=2 when H > 0, we have a convex ball, so that, as metric spaces,�

B.yjk ; �jk /; dM
�

is isometric to
�
B.p; �jk /; dMm

H

�
:

Taking k ! 1, the closures of these latter balls converge in the Gromov–
Hausdorff sense to .B.p; �i /; dMm

H
/. Thus, by (51) and the uniqueness of GH limits,�

B.y1; �i /\FıiC1.Y
ıiC1/; dY

�
is isometric to

�
B.p; �i /; dMm

H

�
:

Thus we have (55), and we are done. �

Example 8.5. In this example we construct a glued limit space Y for a sequence
of manifolds Mm

j satisfying the conditions of Theorem 5.2. In addition, the Mm
j

converge in the Gromov–Hausdorff sense to a metric space X , so that the glued
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limit space is unique. The glued limit Y is a countable union of connected flat
manifolds with the restricted metric from X .

Proof. Let M1 be two flat square annuli connected by a slanted strip of width 1 and
length

p
2:

M1 D C0;1[C1;1[S0;1 � R3;

where

C0;1 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

���
� f0g;

C1;1 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

���
� f1g;

S0;1 D
˚
.x; y; z/ W .x; y/ 2

�
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

�
; z D xC 1

2

	
:

Endowed with the length metric, this is isometric to an open manifold with constant
sectional curvature 0. Note that, for ı > 1

4
,

M ı
1 � C0;1[C1;1:

Let M2 be three flat square annuli of total area at most 4C 4C 4
�
1
4

�
connected

by two slanted strips of width 1
2

:

M2 D C0;2[C1;2[C2;2[S1;2[S2;2 � R3;

where

C0;2 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

���
� f0g;

C1;2 D
���
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

��
n
��
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

���
� f

1
2
g;

C2;2 D
��
.�1; 1/� .�1; 1/

�
n
��
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

���
� f

2
2
g;

S0;2 D
˚
.x; y; z/ W .x; y/ 2

�
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

�
; z D xC 1

4

	
;

S1;2 D
˚
.x; y; z/ W .x; y/ 2

�
�
1
4
; 1
4

�
�
�
�
1
4
; 1
4

�
; z D xC 3

4

	
:

Endowed with the length metric, this is isometric to an open manifold with constant
sectional curvature 0. Note that, for ı > 1

8
,

M ı
1 � C0;2[C1;2[C2;2 n

�
B..0; 0/; ı/� Œ0; 1�

�
:

Let Mj be .j C 1/ flat square annuli of total area at most 4C 4
Pj
iD0

�
1
2

�j ,
connected by j slanted strips of width

�
1
2

�j :

(56) Mj D

j[
iD0

Ci;j [

j�1[
iD0

Si;j � R3;

where, with the notation
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Ik D
�
�
�
1
2

�k
;
�
1
2

�k�
; I k D

�
�
�
1
2

�k
;
�
1
2

�k�
; and mj D

2iC1�j � 2i�j�
1
2

�jC1
�
�
�
1
2

�jC1 ;
we define

C0;j D
�
.I0 � I0/ n .IjC1 � IjC1/

�
� f0g;

Ci;j D
�
.Ij�i � Ij�i / n .IjC1 � IjC1/

�
� f2i�j g;

Cj;j D
�
.I0 � I0/ n .IjC1 � IjC1/

�
� f2j�j g;

S0;j D
˚
.x; y; z/ W .x; y/ 2 IjC1 � IjC1; z D xC

�
1
2

�jC1	
;

Si;j D
˚
.x; y; z/ W .x; y/ 2 IjC1 � IjC1; z Dmj

�
xC

�
1
2

�jC1�
C 2i�j

	
:

Endowed with the length metric, this is isometric to an open manifold with constant
sectional curvature 0. Note that, for ı >

�
1
2

�jC2,

M ı
j � C0;j [ � � � [Cj;j n

�
B..0; 0/; ı/� Œ0; 1�

�
:

The Gromov–Hausdorff limit of the Mj exists and can be see to be

(57) X D

1[
jD0

Cj [S0 � R3;

where
C0 D I0 � I0 � f0g;

Ci D Ij�i � Ij�i � f2
i�j
g;

S0 D f0g � f0g � Œ0; 1�;

endowed with the length metric. The Gromov–Hausdorff limit Y ı of the M ı
j

exists, and
Y ı �X n

�
B..0; 0/; ı/� Œ0; 1�

�
:

In fact, Y DX nS0. �

Open question 8.6. Are the glued limits of sequences of manifolds with constant
sectional curvature open manifolds with constant sectional curvature? We know
they need not be connected by Example 8.5.

Open question 8.7. Are the glued limits of sequences of manifolds with constant
sectional curvature unique? Perhaps an adaptation of Example 8.5 could be applied
to show that they are not.

8D. Properties of glued limits of manifolds with nonnegative Ricci curvature.
We now prove the final theorem of our paper and state the last two open questions:

Theorem 8.8. Suppose that we have a sequence ofm-dimensional open Riemannian
manifolds Mj with nonnegative Ricci curvature and Vol.Mj / � V0, and there
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exists a sequence ıi ! 0 such that the inner regions M ıi
j converge in the Gromov–

Hausdorff sense as j!1 to Y ıi without collapsing. Suppose that Y is a glued limit
constructed as in Theorem 6.3. Then Y has Hausdorff dimension m, Hm.Y /� V0,
and its Hausdorff measure has positive lower density everywhere.

Note that this theorem may be applied to study the glued limits of sequences of
manifolds satisfying the conditions of Theorem 7.4.

To prove this theorem we will apply Cheeger and Colding’s volume conver-
gence theorem [3; 4], which was reviewed in Section 2F. See Theorem 2.25 and
Remark 2.26 for the precise statement we will use here.

Proof. First we prove that

Wi D T.ıi�ıiC1/=2
�
Fıi
�
Y ıi

��
\FıiC1

�
Y ıiC1

�
� Y

have Hausdorff dimension m and have doubling Hausdorff measures. For any
w 2Wi , let

Uw D B
�
w;
ıi�ıiC1

2

�
\Wi :

We can find y 2 Y ıi such that dY .y; w/ < .ıi � ıiC1/=2. Then we have

(58) Uw D B
�
w;
ıi�ıiC1

2

�
\B.Fıi .y/; ıi � ıiC1/\FıiC1.Y

ıiC1/:

By Theorem 8.3, we have a sequence fjkg, points yjk 2 M
ıi
jk

, and a sequence
f�jkg ! � D .ıi � ıiC1/=2 satisfying (50) and (51):

dGH

��
B.yjk ; �jk /; dMjk

�
;
�
B.Fıi .y/; �/\FıiC1.Y

ıiC1/; dY
��
! 0:

Combining this with the fact that

w 2 B
�
y;
ıi�ıiC1

2

�
� B.Fıi .y/; �/\FıiC1.Y

ıiC1/� Y;

there exist

zj;k 2 B
�
yjk ;

ıi�ıiC1
2

�
� B.yjk ; �jk /�Mjk

such that
dGH

��
B
�
zjk ;

ıi�ıiC1
2

�
; dMjk

�
; .Uw ; dY /

�
! 0:

Since we assumed this is noncollapsing, then by the Cheeger–Colding volume
convergence theorem mentioned above we have

Hm.Bw.r/\Uw/D lim
k!1

Hm.Bzjk
.r//

for all r � ri D .ıi � ıiC1/=2: By (58) and Bishop’s volume comparison theorem,
we see that

Hm.Bw.r/\Wi /DHm.Bw.r/\Uw/� !mr
m for all r � ri
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is positive and finite for any w 2 Wi . By the Bishop–Gromov volume compari-
son theorem,

(59)
Hm.Bw.r1/\Wi /

Hm.Bw.r2/\Wi /
�
rm1
rm2

for all w 2Wi ; r1 < r2 � ri :

Since Wi is a subset of the compact FıiC1.Y
ıiC1/, it is precompact. Choose a

maximal collection fw1; : : : ; wN g�Wi such that theB.wi ; ri=2/ are disjoint. Then

Wi �

N[
nD1

B.wn; ri /

and

Hm.Wi /�

NX
nD1

Hm.B.wn; ri /�
�
1
4

�m NX
nD1

Hm.B.wn; ri=4//:

But it is not hard to see, examining (50), that B.wn; ri=2/ are the limits of disjoint
balls in Mj , so

NX
nD1

Hm.B.wn; ri=4//� lim sup
j!1

Hm.M
ıi
j /� V0:

So Wi has Hausdorff dimension m and

Hm.Wi /� V0:

Now

Y D

1[
iD1

Wi ;

so it has Hausdorff dimension m and

Hm.Y /� V0:

Now to see that Y has positive density everywhere, we must show

‚�.y;H
m/D lim inf

r!0

Hm.B.y; r//

rm
> 0:

For fixed i � Iy , we have

Hm.B.y; r//�Hm.B.y; r/\Wi /:
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Combining this with (59), we have

‚�.y;H
m/D lim inf

r!0

Hm.B.y; r/\Wi /

rm

� lim inf
r!0

Hm.B.y; ri /\Wi /

rmi

�
Hm.B.y; ri /\Wi /

rmi
> 0: �

Open question 8.9. Are glued limit spaces of sequences as in Theorem 8.8 unique?

Open question 8.10. Are glued limit spaces of sequences as in Theorem 8.8
countably Hm-rectifiable?
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INVARIANT DIFFERENTIAL OPERATORS
ON A CLASS OF MULTIPLICITY-FREE SPACES

HUBERT RUBENTHALER

If (G, V ) is a multiplicity-free space with a one-dimensional quotient, we
give generators and relations for the noncommutative algebra D(V )G′ of in-
variant differential operators under the semisimple part G′ of the reductive
group G. More precisely we show that D(V )G′ is the quotient of a Smith
algebra by a completely described two-sided ideal.

1. Introduction

Let H be a reductive algebraic group over C and let X be a smooth irreducible
H -variety. Let C[X ] be the algebra of regular functions on X and let D(X) be the
algebra of differential operators on X . Then the H -action on X extends naturally
to C[X ] and D(X). Let C[X ]H (resp. D(X)H ) be the subalgebras of H -invariants
in C[X ] (resp. D(X)). The ring C[X ]H is the ring of regular functions on the
categorical quotient X//H . The problem of determining the structure of D(X)H

was investigated by several authors [Levasseur and Stafford 1989; Van den Bergh
1996; Schwarz 2002]. On the other hand under the above mentioned hypothesis
there exists an H -equivariant restriction map

δ : D(X)H
→ D(X//H),

obtained by applying elements in D(X)H to functions in C[X ]H. It is expected that
D(X)H, as well as its image under δ (the so-called algebra of radial components),
should share many properties of enveloping algebras [Schwarz 2002; Levasseur
2009]. In this paper we obtain the precise structure of D(V )G

′

in the case where
(G, V ) is a so-called multiplicity-free space with a one-dimensional quotient (here
G is reductive and G ′=[G,G] is the derived group). These spaces are defined to be
the multiplicity-free spaces (G, V ) for which the quotient V//G ′ is one-dimensional.
To be more precise we show that the (noncommutative) algebra D(V )G

′

is a quotient
of a generalized Smith algebra. Over C this kind of algebra was introduced by
S. P. Smith [1990] as a natural generalization of the enveloping algebra of sl2. As a
corollary we describe by generators and relations the algebras of radial components

MSC2010: primary 22E46, 16S32; secondary 11S90.
Keywords: multiplicity-free space, invariant differential operator, Smith algebra.
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attached to the G ′-isotypic components in the polynomial algebra C[V ] (the image
under δ above corresponds to the trivial representation of G ′).

According to the classification obtained in [Rubenthaler 2013], the class of
multiplicity-free spaces with a one-dimensional quotient is a rather large class
inside the multiplicity-free spaces. It contains both irreducible and nonirreducible
representations.

The representations (Str(V ), V ), where V is a simple Jordan algebra over C and
where Str(V ) is the structure group of V, are examples of irreducible multiplicity-
free spaces with a one-dimensional quotient (see Remark 2.2.7 and Example 2.3.3
below). Among these there is the natural representation of GL(n,C) on the space
Symn(C) of n × n symmetric matrices and also the irreducible 27-dimensional
representation of E6×C∗.

The spin representation of Spin(7)×C∗ and the irreducible 7-dimensional repre-
sentation of G2×C∗ are other irreducible examples.

The representation (SL(n,C)× (C∗)2,31⊕3
2(31)) (n odd and n ≥ 5), where

31 is the natural representation of SL(n,C) and 32(31) is its second exterior
power, provides a nonirreducible example.

Let us now give a more precise description of our paper.
In Section 2 we give basic definitions and properties of, and notation for,

multiplicity-free spaces, including multiplicity-free spaces with a one-dimensional
quotient. If (G, V ) is a multiplicity-free space then G has an open orbit on V (i.e.,
(G, V ) is a prehomogeneous vector space). We also prove that in the so-called
regular case the G-invariant differential operators on the open orbit of a multiplicity-
free space always have polynomial coefficients (in fact a slightly more general
result is proved; see Theorem 2.2.6).

In Section 3 we introduce the various algebras of differential operators we are
interested in. We define their natural gradings and we define the so-called Bernstein–
Sato polynomial of a homogeneous operator of any degree, not only for degree-zero
operators as usual. We obtain there the first results concerning these algebras.
Using the Harish-Chandra isomorphism for multiplicity-free spaces [Knop 1998],
we prove a key lemma on invariant polynomials under the so-called little Weyl
group which enables us to prove that D(V )G is a polynomial algebra over the
center Z(T) of D(V )G

′

, with the Euler operator as generator (Theorem 3.2.6). We
also give generators of the center Z(T) (Theorem 3.2.10) and obtain some specific
results in the case of prehomogeneous vector spaces of commutative parabolic type
(Theorem 3.3.1).

Section 4, which is the main section, is devoted to the structure of D(V )G
′

. We
first briefly define and study Smith algebras over a commutative ring A with unit
and no zero divisors (the original definition by Smith was over C). These algebras
are defined by generators and relations (involving a polynomial in A[t]), and their
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center is a polynomial algebra A[�1], where �1 is a generalized Casimir element.
Our main result asserts that D(V )G

′

is isomorphic to the quotient of a Smith algebra
over its center Z(T) by the two-sided ideal generated by the element�1. Concretely,
we give generators and relations for D(V )G

′

(see Theorem 4.2.2).
Section 5 is devoted to the study of the algebras of radial components. By

radial component of a differential operator in D(V )G
′

we mean the restriction of
D to a G ′-isotypic component of C[V ]. As a corollary of the preceding results
we prove that these algebras are quotients of “classical” Smith algebras, that is,
Smith algebras over C (see Theorem 5.2.3). Of course the defining relations depend
on the G ′-isotypic component. We also give generators of the kernel of the radial
component map. In the case of the trivial representation of G ′, the structure of
the algebra of radial components was first obtained by Levasseur [2009], by other
methods.

2. Multiplicity-free spaces with a one-dimensional quotient

2.1. Prehomogeneous vector spaces, basic definitions and properties. Let G be
a connected algebraic group over C, and let (G, ρ, V ) be a rational representation
of G on the (finite-dimensional) vector space V . Then the triplet (G, ρ, V ) is called
a prehomogeneous vector space (abbreviated to PV) if the action of G on V has a
Zariski open orbit � ⊂ V . For the general theory of PVs, we refer the reader to
the book of Kimura [2003] or to [Sato and Kimura 1977]. The elements in � are
called generic. The PV is said to be irreducible if the corresponding representation
is irreducible. The singular set S of (G, ρ, V ) is defined by S = V \�. Elements
in S are called singular. If no confusion can arise we often simply denote the PV
by (G, V ). We will also write g.x instead of ρ(g)x , for g ∈ G and x ∈ V . It is
easy to see that the condition for a rational representation (G, ρ, V ) to be a PV is
in fact an infinitesimal condition. More precisely let g be the Lie algebra of G and
let dρ be the derived representation of ρ. Then (G, ρ, V ) is a PV if and only if
there exists v ∈ V such that the map

g → V,
X 7→ dρ(X)v,

is surjective (we will often write X.v instead of dρ(X)v). Therefore we will call
(g, V ) a PV if the preceding condition is satisfied.

Let (G, V ) be a PV. A rational function f on V is called a relative invariant
of (G, V ) if there exists a rational character χ of G such that f (g.x)= χ(g)P(x)
for g ∈ G and x ∈ V . From the existence of an open orbit it is easy to see that a
character χ which is trivial on the isotropy subgroup of an element x ∈� determines
a unique relative invariant P . Let S1, S2, . . . , Sk denote the irreducible components
of codimension one of the singular set S. Then there exist irreducible polynomials
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P1, P2, . . . , Pk such that Si = {x ∈ V | Pi (x)= 0}. The polynomials Pi are unique
up to nonzero constants; they are relative invariants of (G, V ) and any nonzero
relative invariant f can be written in a unique way as f = cPn1

1 Pn2
2 · · · P

nk
k , where

ni ∈ Z and c ∈ C∗. The polynomials P1, P2, . . . , Pk are called the fundamental
relative invariants of (G, V ). Moreover if the representation (G, V ) is irreducible
then there exists at most one irreducible polynomial which is relatively invariant.

The prehomogeneous vector space (G, V ) is called regular if there exists a
relative invariant polynomial P whose Hessian HP(x) is nonzero on �. If G is
reductive, then (G, V ) is regular if and only if the singular set S is a hypersurface, or
if and only if the isotropy subgroup of a generic point is reductive. If the PV (G, V )
is regular, or if G is reductive, then the contragredient representation (G, V ∗) is
again a PV.

2.2. Multiplicity-free spaces. For the results concerning multiplicity-free spaces
we refer the reader to the survey by Benson and Ratcliff [2004] or to [Knop 1998].
Let (G, V ) be a finite-dimensional rational representation of a connected reductive
algebraic group G. Let C[V ] be the algebra of polynomials on V . Then G acts on
C[V ] by

g.ϕ(x)= ϕ(g−1x) (g ∈ G, ϕ ∈ C[V ]).

As the space C[V ]n of homogeneous polynomials of degree n is stable under this
action, the representation (G,C[V ]) is completely reducible. Let D(V ) be the
algebra of differential operators on V with polynomial coefficients. The group G
acts also on D(V ) by

(g.D)(ϕ)= g.(D(g−1.ϕ)) (g ∈ G, D ∈ D(V ), ϕ ∈ C[V ]).

Recall the G-equivariant identifications between C[V ] and the symmetric algebra
S(V ∗) of the dual space V ∗ and between C[V ∗] and the symmetric algebra S(V )
of V . The embedding

V → D(V ),
v 7→ Dv,

where DvP(x)= limt→0(P(x + tv)− P(x))/t , extends uniquely to an embedding
S(V )→ D(V ) whose image is the ring of differential operators with constant
coefficients. If f ∈ S(V )'C[V ∗] we denote by f (∂) the corresponding differential
operator. Another way to construct f (∂) for f ∈ C[V ∗] is to say that f (∂) is the
unique differential operator on V satisfying

f (∂x)e〈x,y〉 = f (y)e〈x,y〉 (x ∈ V, y ∈ V ∗). (2-2-1)
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Recall also that the C[V ]-module D(V ) can be identified with C[V ] ⊗ S(V )
through the multiplication map

m : C[V ]⊗ S(V )
'
−→ D(V ),

ϕ⊗ f 7−→ ϕ f (∂).

The preceding map is in fact G-equivariant and therefore the G-module D(V )
is isomorphic to the G-module C[V ] ⊗ S(V ). The duality pairing V ⊗ V ∗→ C

extends uniquely to the nondegenerate G-equivariant pairing

S(V )⊗ S(V ∗)' C[V ∗]⊗C[V ] → C,

f ⊗ϕ 7→ 〈 f, ϕ〉 = f (∂)ϕ(0),
(2-2-2)

which gives rise to an embedding C[V ∗] ↪→ C[V ]∗. It is easy to see that if i 6= j ,
〈Ci
[V ∗],C j

[V ]〉 = {0}.

Definition 2.2.1. Let G be a connected reductive algebraic group, and let V be
the space of a finite-dimensional (complex) rational representation of G. The
representation (G, V ) is said to be multiplicity-free (abbreviated to MF ) if each
irreducible representation of G occurs at most once in the representation (G,C[V ]).

Remark 2.2.2. Historically the classification of MF spaces goes as follows. Kac
[1980] determined all the MF spaces where the representation (G, V ) is irreducible.
Brion [1985] did the case where G ′ = [G,G] is (almost) simple. Finally, Benson
and Ratcliff [1996; 2004] and independently Leahy [1998] (see also [Knop 1998])
classified all indecomposable saturated MF spaces up to geometric equivalence.

The following theorem summarizes some basic results concerning MF spaces
(see [Howe and Umeda 1991; Knop 1998; Benson and Ratcliff 2004]):

Theorem 2.2.3. 1) A finite-dimensional representation (G, V ) is MF if and only if
(B, V ) is a prehomogeneous vector space for any Borel subgroup B of G (and
hence each MF space (G, V ) is a PV ).

2) A finite-dimensional representation (G, V ) is MF if and only if the algebra
D(V )G of invariant differential operators with polynomial coefficients is com-
mutative.

3) If (G, V ) is a MF space, then the dual space (G, V ∗) is also MF.

Proof. The first assertion is due to [Vinberg and Kimelfeld 1978]; another proof
can be found in [Knop 1998]. The second assertion is due to [Howe and Umeda
1991, Theorem 7.1]. For the third assertion note that as 〈Ci

[V ∗],C j
[V ]〉 = {0} for

i 6= j , we obtain that f 7→ 〈 f, 〉 is a G-equivariant isomorphism between Ci
[V ∗]

and Ci
[V ]∗, and hence (G, V ∗) is multiplicity-free. �
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Let us be more precise about the decomposition of the polynomials under the
action of the group G or a Borel subgroup. Therefore we need more notation.
We can write G = G ′C , where G ′ = [G,G] is the subgroup of commutators and
C = Z(G)◦ ' (C∗)p is the connected component of the center of G. Let T ′ be a
maximal torus in G ′, and let B ′ = T ′U be a Borel subgroup of G ′, where U is the
nilradical of B ′. The group T = T ′C is a maximal torus in G and B = T U is a
Borel subgroup of G. We will denote by g, g′, t, t′, c, b, b′, u the corresponding Lie
algebras. Let R be the set of roots of (g′, t′), let 1= {α1, . . . , α`} be the basis of
simple roots corresponding to b′ and let R+ be the corresponding set of positive
roots.

Denote by3′ the lattice of weights of (g′, t′). Then3′=Zω1⊕Zω2⊕· · ·⊕Zω`,
where the ωi are the fundamental weights. Let 3′+ = Nω1⊕Nω2⊕ · · ·⊕Nω` be
the set of dominant weights. Denote by X (C) the group of algebraic characters
of C , which we will sometimes consider as linear forms on c. Set

3=3′⊕ X (C), 3+ =3′+⊕ X (C).

For λ∈3+ (resp. λ′∈3′+) let us denote by V−λ (resp. V−λ′) an irreducible g-module
(resp. g′-module) with the highest weight λ (resp. λ′). We use this unusual notation
because we want to index the modules occurring in C[V ] by the character of their
highest weight polynomial, rather than by the highest weight.

For a multiplicity-free space (G, V ) we have the decomposition

C[V ] =
⊕
λ∈3+

V m(λ)
−λ ,

where m(λ) = 0 or 1. If m(λ) = 1, then there exists a uniquely defined positive
integer d(λ) such that V−λ ∈ C[V ]d(λ). The integer d(λ) is called the degree of λ.
Let us denote by 10,11, . . . ,1k, . . . ,1r the fundamental relative invariants of
the PV (B, V ), indexed in such a way that 10,11, . . . ,1k are the fundamental
relative invariants of the PV (G, V ) and such that the other invariants are ordered
by decreasing degree. We denote by di the degree of 1i (i = 0, . . . , r). It is
worthwhile noticing that at least1r is of degree one as the highest weight vectors of
the irreducible components of V ∗ must occur. Then any relative invariant of (B, V )
is of the form c1a, where a = (a0, a1, . . . , ar ) ∈ Zr+1 and 1a

= 1
a0
0 · · ·1

ar
r .

The nonnegative integer r + 1 is called the rank of the MF space (G, V ). The
algebra of U -invariants is the subalgebra generated by the 1i ; i.e., C[V ]U is given
by C[10, . . . ,1r ]. As the polynomials 1i are algebraically independent, this
latter algebra is a polynomial algebra. Let λi be the character of 1i (we use the
same notation λi for the character of the group and for its derivative, which is an
element of3+). Hence the (infinitesimal) character of1a is λa = a0λ0+· · ·+arλr .
Of course by definition the elements1a (ai ≥0, i=0, . . . , r ) are the highest weights



INVARIANT DIFFERENTIAL OPERATORS ON MULTIPLICITY-FREE SPACES 479

vectors in C[V ]. Due to the fact that the group action on 1a is given by g.1a(x)=
1a(g−1x), the infinitesimal highest weight of 1a is −λa =−a0λ0− · · ·− arλr .

If we set Va = V−λa , we therefore can write

C[V ] =
⊕

a0≥0,...,ar≥0

Va. (2-2-3)

Sometimes, if λ = a0λ0 + · · · + arλr , we simply write Vλ instead of Va. If we
denote by di the degree of 1i , one can notice that all elements in Va are of degree
d(a)= a0d0+ a1d1+ · · ·+ ar dr . It is also worthwhile noticing that we have

Va =1
a0
0 1

a1
1 · · ·1

ak
k V0,...,0,ak+1,...,ar . (2-2-4)

The proof of the following lemma is straightforward.

Lemma 2.2.4. Define O = {x ∈ V | 1i (x) 6= 0, i = 0, . . . , k}. Let C[O] be the
ring of regular functions on O (elements of C[O] are just rational functions whose
denominators are of the form 1

a0
0 · · ·1

ak
k , with a0, . . . , ak ≥ 0). As the polynomials

10, . . . ,1k are relative invariants under G, the open set O is G-stable, and there-
fore G acts on C[O]. Then C[O] decomposes without multiplicities under the action
of G. More precisely the decomposition into irreducibles is given by

C[O] =
⊕

(a0,...,ak)∈Zk+1

(ak+1,...,ar )∈Nr−k

Va,

where Va =1
a0
0 1

a1
1 · · ·1

ak
k V0,...,0,ak+1,...,ar is the irreducible subspace of C[O] gen-

erated by the highest weight vector 1a
=1

a0
0 1

a1
1 · · ·1

ar
r .

Remark 2.2.5. We want to draw the attention of the reader to the fact that if (G, V )
is not a regular PV, then the open set O may be distinct from the open G-orbit �.

The preceding lemma has the following consequence.

Theorem 2.2.6. Let (G, V ) be a multiplicity-free space. As before set

O= {x ∈ V |1i (x) 6= 0, i = 0, . . . , k}.

Then D(V )G = D(O)G . In other words any G-invariant differential operator with
coefficients in C[O] has in fact polynomial coefficients.

Proof. Let D ∈ D(O)G . As we know from the preceding lemma that C[O] decom-
poses without multiplicities under G, we obtain that D defines a G-equivariant endo-
morphism on each Va, a∈Zk+1

×Nr−k . Thus D stabilizes C[V ]=
⊕

a0≥0,...,ar≥0 Va.
It is easy to see that a differential operator with rational coefficients and which
stabilizes the polynomials must have polynomial coefficients. �
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Remark 2.2.7. Let V be a simple Jordan algebra over C or R. Let � be the set of
invertible elements in V and let G be the structure group of V . It is known that
(G, V ) is a multiplicity-free space with � as open G-orbit. Then the preceding
theorem implies that D(V )G = D(�)G . This result was already known in this
context and is usually obtained by computing an explicit set of generators of
D(�)G (see [Nomura 1989; Faraut and Korányi 1994; Yan 2000]). Through the
so-called Kantor–Koecher–Tits construction there is a one-to-one correspondence
between these spaces and the PVs of commutative parabolic type (see Example 2.3.3
below).

Proposition 2.2.8. Let (G, V ) be a MF space. For ã = (ak+1, . . . , ar ) ∈ Nr−k we
define Vã = V(0,...,0,ak+1,...,ar ). Then for a = (a0, . . . , ak, ak+1, . . . , ar ) the spaces
Va =1

a0
0 · · ·1

ak
k Vã are G ′-equivalent if ã is fixed and if (a0, . . . , ak) ∈ Zk+1. If we

define

Uã =
⊕

(a0,...,ak)∈Nk+1

1
a0
0 · · ·1

ak
k Vã, Wã =

⊕
(a0,...,ak)∈Zk+1

1
a0
0 · · ·1

ak
k Vã,

the decompositions of C[V ] and C[O] into G ′-isotypic components are given by

C[V ] =
⊕

ã

Uã, C[O] =
⊕

ã

Wã.

Proof. The map P 7→1
a0
0 · · ·1

ak
k P is a G ′-equivariant isomorphism between Vã

and 1a0
0 · · ·1

ak
k Vã; hence all these spaces are G ′-equivalent. To prove the second

assertion it is enough to prove that if ã 6= b̃, then the spaces Vã and V b̃ are not
G ′-equivalent. Suppose that this would be the case and let 1ã and 1b̃ be the
corresponding highest weight vectors with characters λã and λb̃ respectively. From
the G ′-equivalence we know that λã t′ = λb̃ t′ and hence P =1ã/1b̃ is a relative
invariant under B whose character is trivial on t′. Therefore it generates a one-
dimensional representation; hence P is a relative invariant under G. Finally we
obtain that 1ã

=1
a0
0 · · ·1

ak
k 1

b̃, and this is not possible if ã 6= b̃. �

As (G, V ∗) is multiplicity-free (Theorem 2.2.3) and Ci
[V ∗] ' Ci

[V ]∗, we have

C[V ∗] =
⊕

a0≥0,...,ar≥0

V ∗a , (2-2-5)

where V ∗a is the irreducible G-submodule of C[V ∗] generated by a lowest weight
vector 1∗a

∈ C[V ∗], defined up to a multiplicative constant, whose character with
respect to the opposite Borel subgroup B− is equal to −λa =−a0λ0− · · ·− arλr .
Let us fix a lowest weight vector 1∗i (i = 0, . . . , r ) with character −λi (with respect
to B−). Then we can choose 1∗a

=1∗0
a01∗1

a1 · · ·1∗r
ar. Of course the module V ∗a

is the dual module of Va through f 7→ 〈 f, 〉 (see (2-2-2)).
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As Va is a G-irreducible module, it is well known that the tensor G-module
Va⊗V ∗a contains, up to a constant, a unique G-invariant vector Ra and that Va⊗V ∗b
does not contain any nontrivial G-invariant vector if a 6= b (see for example
[Howe and Umeda 1991]). To be more precise we define Ra to be the operator
corresponding to the “unit matrix” in Va ⊗ V ∗a ' Hom(Va, Va). Moreover as
C[V ] ⊗ C[V ∗] is G-isomorphic to D(V ), the element Ra can be viewed as a
G-invariant differential operator with polynomial coefficients. The operators Ra are
sometimes called Capelli operators. They are also called unnormalized canonical
invariants in [Benson and Ratcliff 2004]. Moreover the family of elements Ra
(a ∈ Nr+1) is a vector basis of the vector space D(V )G = D(O)G .

The Capelli operators Ri corresponding to the space Vλi (i = 0, . . . , r) will be
of particular importance because of the result below.

Theorem 2.2.9 (Howe and Umeda). Let (G, V ) be a MF space. The Capelli opera-
tors Ri (i = 0, . . . , r) are algebraically independent and D(V )G = C[R0, . . . , Rr ].

Proof. See [Howe and Umeda 1991, Theorem 9.1; Benson and Ratcliff 2004,
Corollary 7.4.4]. �

Remark 2.2.10. a) Recall that for i = 0, 1, . . . , k the polynomials 10,11, . . . ,1k

are the fundamental relative invariants under the action of the full group G. Once
these polynomials are fixed, let us define the polynomial 1∗i ∈ C[V ∗] as the
unique fundamental relative invariant of (G, V ∗) with character λ−1

i , such that
1∗i (∂)1i (0)= 1, for i = 0, . . . , k. Then the Capelli operators Ri (i = 0, . . . , k) are
given by Ri =1i (x)1∗i (∂), and the Capelli operator corresponding to the irreducible
component Va0λ0+···+akλk is a scalar multiple of1a0

0 (x)· · ·1
ak
k (x)1

∗

0(∂)
a0 · · ·1∗k(∂)

ak .
More generally the Capelli operator Ra corresponding to Va, where

a = a0λ0+ · · ·+ akλk + ak+1λk+1+ · · ·+ arλr ,

is a scalar multiple of 1a0
0 (x) · · ·1

ak
k (x)Rak+1λk+1+···+arλr1

∗

0(∂)
a0 · · ·1∗k(∂)

ak .

b) Moreover, in the case where (G, V ) is irreducible, as 1r is the highest weight
vector in V ∗, the operator Rr is nothing but the Euler operator E .

c) More generally, if V = V1 ⊕ · · · ⊕ V`, where the representations (G, Vi ) are
irreducible, the various Euler operators Ei on Vi are the Capelli operators associated
to the irreducible subspaces V ∗i ∈C[V ]. Of course the global Euler operator E on V
is given by E = E1+· · ·+ E`. As the highest weight vectors of the spaces (G, V ∗i )
occur as the last ` elements of 10, . . . ,1r , we have Rr−`+1 = E1, . . . , Rr = E`.

d) According to b) and c), one can always take {R0, R1, . . . , Rr−1, E} as a set of
algebraically independent generators of D(V )G .



482 HUBERT RUBENTHALER

2.3. Multiplicity-free spaces with a one-dimensional quotient. Let us now define
the main objects this paper deals with, namely the MF spaces with a one-dimensional
quotient, which were introduced by T. Levasseur.

Definition 2.3.1 [Levasseur 2009, Sections 3.2 and 4.2]. 1) A prehomogeneous
vector space (G, V ) is said to be of rank one∗ if there exists a homogeneous
polynomial 10 on V such that 10 /∈ C[V ]G and C[V ]G

′

= C[10].

2) A multiplicity-free space (G, V ) is said to have a one-dimensional quotient if it
is a PV of rank one.

Remark 2.3.2. a) The classification of multiplicity-free spaces with a one-dimen-
sional quotient has been obtained in [Rubenthaler 2013].

b) It can be shown that if (G, V ) is a PV of rank one, then the polynomial 10 is
the unique fundamental relative invariant of (G, V ). More precisely a PV (G, V )
is of rank one if and only if it has a unique fundamental relative invariant [ibid.].
Hence in the notation of Section 2.2 we have k = 0, in other words 10 is the unique
fundamental G relative invariant among the B relative invariants 10,11, . . . ,1r .

We give now some examples of MF spaces with a one-dimensional quotient.

Example 2.3.3. PVs of commutative parabolic type (for details we refer to [Muller
et al. 1986]; [Rubenthaler and Schiffmann 1987] is also relevant).

Let g̃ be a simple complex Lie algebra. Assume we are given a 3-grading of g̃:

g̃= V−⊕ g⊕ V+.

Then g is a reductive Lie subalgebra and it is well known that the representation
(g, V+) is prehomogeneous (here g acts on V+ via the bracket). Let G̃ be the
adjoint group of g̃ and let G be the connected subgroup of G̃ whose Lie algebra
is g. Then the space (G, V+) is multiplicity-free. Moreover such a space has a
one-dimensional quotient if and only if it is a regular PV. Up to local isomorphism
one obtains the following list:

1) (SL(n,C)× SL(n,C)×C∗,Mn(C)) acting via (g1, g2, t).x = tg1xg−1
2 , where

g1, g2 ∈ SL(n,C), t ∈ C∗, x ∈ Mn(C); here 10(x)= det(x).

2) (O(n,C)×C∗,Cn) with the natural action. Here 10(x)= Q(x)=
∑i=n

i=1 x2
i .

3) (GL(n,C),Symn(C)), where Symn(C) denotes the n× n symmetric matrices,
with the action g.x = gx tg. Then 10(x)= det(x).

4) (GL(n,C),Skewn(C)), n even, with the action g.x = gx tg, where Skewn(C)

denotes the n×n skew-symmetric matrices. Then10(x)= P f (x), where P f (x)
denotes the pfaffian of the even skew-symmetric matrix x .

∗If (G, V ) is also multiplicity-free, its rank as a PV is not the same as its rank as an MF space.
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5) (E6 × C∗,C27) (the irreducible 27-dimensional representation of E6). The
fundamental relative invariant is of degree 3; it is known as the Freudenthal
cubic.

Example 2.3.4. We consider (GL(2)× Sp(n),C2
⊗ C2n) (tensor product of the

natural representations). Here the action is given by

(g1, g2).X = g2 X ( tg1), g1 ∈ SL(2), g2 ∈ Sp(n), X ∈ M2n,2

The relative invariant 10 is given by P f ( tX J X), where

J =
(

0 Idn

−Idn 0

)
,

and where P f ( · ) is the pfaffian of a 2× 2 skew symmetric matrix. The rank is
equal to 3 and it is a regular PV. For details see [Howe and Umeda 1991, case 11.6;
Rubenthaler 2013, case 4.1.7].

Example 2.3.5. (GL(n)×GL(n− 1),Mn,1⊕Mn,n−1). The action is given by

(g1, g2)(v, x)= (g1v, g1xg−1
2 ), g1 ∈GL(n), g2 ∈GL(n−1), v ∈Mn,1, x ∈Mn,n−1.

The relative invariant 10 is given by 10(x)= det(v; x), where (v; x) is the n× n
matrix obtained by putting the column vector v left to the n× (n−1) matrix x . The
rank is equal to 2n− 1 and it is a regular PV. For details see [Benson and Ratcliff
2000, case 4.2.4; Rubenthaler 2013, case 4.2.5].

3. Algebras of differential operators

From now on we suppose that (G, V ) is an MF space with a one-dimensional
quotient.

3.1. Gradings and Bernstein–Sato polynomials. Recall that 10, . . . ,1r denote
the fundamental relative invariants under a fixed Borel subgroup B of G. As the
space has a one-dimensional quotient, 10 is the unique polynomial among them
which is relatively invariant under G (this means that k = 0 in the notation of
Section 2.2). We also set O= {x ∈ V |10(x) 6= 0}.

Of course the Euler operator E on V , defined for P ∈ C[V ] by

EP(x)= ∂

∂t
P(t x)t=1 = P ′(x)x,

is invariant by any element in GL(E).
Once and for all we also define the following two elements in D(V ):

X =10 (multiplication by 10), Y =1∗0(∂).



484 HUBERT RUBENTHALER

The operator
X−1 (multiplication by 1−1

0 ),

which belongs to D(O), will also play an important role. From the definition of the
G action on C[V ] and on D(V ) we have

g.X = λ0(g−1)X, g.X−1
= λ0(g)X−1, g.Y = λ0(g)Y, (3-1-1)

and hence X, Y ∈ D(V )G
′

and X−1
∈ D(O)G

′

.
We now introduce some notation used in the rest of the paper:

T= D(O)G
′

, T0 = D(V )G = D(O)G

(the last equality comes from Theorem 2.2.6). Remember that T0 is a polynomial
algebra in r + 1 variables (Theorem 2.2.9). We have the inclusions

T0 = D(V )G = D(O)G ⊂ D(V )G
′

⊂ T= D(O)G
′

.

An element D in T is said to be of degree m if [E, D] = m D. As differential
operators in T have coefficients which are fractions whose denominators are
homogeneous (powers of 10), it is clear that T is graded by its homogeneous
components. But on the other hand any homogeneous element D in T preserves
the G ′-isotypic components Wã =

⊕
n∈N1

n
0Vã (see Proposition 2.2.8). Therefore

a homogeneous element D maps 1n
0Vã on 1n+ j

0 Vã for some j and hence only
multiples of d0 (the degree of10) occur as homogeneous degrees in T. If we define,
for p ∈ Z, Tp = {D ∈ T | [E, D] = pd0 D}, then

T=
⊕
p∈Z

Tp (3-1-2)

(At this point it is not completely evident that the two definitions of T0 coincide,
that is, D(V )G = {D ∈T | [E, D] = 0}. This will be a consequence of the proof of
Proposition 3.1.6 below.)

Similarly if we define

D(V )G
′

p =
{

D ∈ D(V )G
′ ∣∣ [E, D] = pd0 D

}
,

we have D(V )G
′

=
⊕
p∈Z

D(V )G
′

p .

Definition 3.1.1. For a = (a0, a1, . . . , ar ) and p ∈ N, we define

a+ p = (a0+ p, a1, . . . , ar ).

Then if D∈Tp, the Schur Lemma ensures that if P ∈Va we have D P=bD(a)X p P ,
where bD(a) ∈ C. It is easy to see that bD is a polynomial in the variables
(a0, a1, . . . , ar ) (see for example [Knop 1998, proof of Corollary 4.4]). This
polynomial is called the Bernstein–Sato polynomial of D.
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Example 3.1.2. Relations (3-1-1) imply that X ∈T1, X−1
∈T−1 and Y ∈T−1. And

of course E ∈ T0. Obviously, from the definition, we have bX (a)= bX−1(a)= 1,
bE(a)= d0a0+ d1a1+ · · · + dr ar = the degree of Va (recall that di is the degree
of 1i ). The computation of bY is more difficult. However it is known in the
case of PVs of commutative parabolic type (see Example 2.3.3). In this case, for
X = (X0, X1, . . . , Xr ) it is given by

bY (X)= c
r∏

j=0

(
X0+ · · ·+ X j + j

d
2

)
, (3-1-3)

where the constant c can be made explicit (see [Bopp and Rubenthaler 1993,
Théorème 3.19]) and where d/2 = (dim(V ) − d0)/((d0 − 1)d0). This explicit
computation of the polynomial bY in the particular case of PVs of commutative
parabolic type has been obtained by several authors, using distinct methods (see
[Kostant and Sahi 1991; Wallach 1992; Bopp and Rubenthaler 1993; Faraut and
Korányi 1994]). The constant d is the same as the constant d which is familiar to
specialists of Jordan algebras.

The following lemma is obvious, but useful.

Lemma 3.1.3. Let D1, D2 ∈ Tp. Then D1 = D2 if and only if bD1 = bD2 .

Definition 3.1.4. The automorphism τ of T= D(O)G
′

is defined by

τ(D)= X DX−1 for all D ∈ T.

Proposition 3.1.5. The algebra T0 is stable under τ and for any D ∈ T0 we have

X D = τ(D)X, (3-1-4)

DY = Y τ(D). (3-1-5)

Proof. By definition, T0 = D(V )G . From relations (3-1-1) we see that if D is
G-invariant so is τ(D). Obviously τ(D) ∈ D(O)G . But D(O)G = D(V )G by
Theorem 2.2.6; hence T0 is τ -stable. Relation (3-1-4) is just the definition of τ . We
will now prove that (3-1-5) holds on each subspace Va. Let bD be the Bernstein–
Sato polynomial of D. Then an easy calculation shows that the left and right sides
of (3-1-5) act on Va by bD(a−1)bY (a)X−1. Then Lemma 3.1.3 implies (3-1-5). �

Let us denote by T0[X, Y ] the subalgebra of T generated by T0, X and Y . From
the preceding proposition and from the fact that XY and Y X belong to T0 we know
that any element D∈T0[X, Y ] can be written as a finite sum D=

∑
p,q∈N ap,q X pY q

with ap,q ∈T0. Similarly, let T0[X, X−1
] denote the subalgebra of T generated by

T0, X and X−1. Also any element D in T0[X, X−1
] can we written as a finite sum

D =
∑

p∈Z ap X p. The following proposition shows that D(V )G
′

= T0[X, Y ] and
that T= D(O)G

′

= T0[X, X−1
] and makes the gradings more precise.
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Proposition 3.1.6. 1) We have

D(V )G
′

= T0[X, Y ] =
( ⊕

p∈N∗
T0Y p

)
⊕T0⊕

( ⊕
p∈N∗

T0 X p
)

(in particular D(V )G
′

p = T0 X p if p ≥ 0, and D(V )G
′

p = T0Y−p if p < 0).
Equivalently,

D(V )G
′

= T0[X, Y ] =
( ⊕

p∈N∗
Y pT0

)
⊕T0⊕

(⊕
p∈N

X pT0

)
.

2) We have T= D(O)G
′

= T0[X, X−1
] =

⊕
p∈Z

T0 X p
=
⊕
p∈Z

X pT0.

3) Any element D in T0[X, Y ] can be written uniquely in the form

D =
∑
i>0

ui Y i
+

∑
i≥0

vi X i or D =
∑
i>0

Y i ui +
∑
i≥0

X ivi (finite sums)

with ui , vi ∈ T0.
Any element D ∈ T can be written uniquely in the form

D =
∑
i∈Z

ui X i or D =
∑
i∈Z

X i ui (finite sums)

with ui ∈ T0.

Proof. 1) For the moment we define T0 by T0 = D(V )G . From Proposition 2.2.8
we know that the decomposition of C[V ] into G ′-isotypic components is given by

C[V ] =
⊕
ã∈Nr

Uã, where Uã =
⊕
a0∈N

1
a0
0 Vã and ã = (0, a1, . . . , ar ).

We will now use the technique of [Howe and Umeda 1991] which we have al-
ready mentioned before Theorem 2.2.9. As C[V ] ⊗ C[V ∗] is G ′-isomorphic to
D(V ), each subspace 1a0 Vã ⊗ (1

b0 Vã)
∗ will give rise to a unique G ′-invariant

differential operator Ra0,b0,ã. Then by the same arguments as in Remark 2.2.10,
it is easy to see that Ra0,b0,ã = 10(x)a0 R0,0,ã1

∗

0(∂)
b0 = Xa0 R0,0,ãY b0 . The el-

ements Xa0 R0,0,ãY b0 (a0, b0 ∈ N, ã ∈ Nr ) form a vector basis of D(V )G
′

. Re-
mark now that R0,0,ã is in D(V )G = T0. Then from Proposition 3.1.5, we get
Xa0 R0,0,ãY b0 = τ a0(R0,0,ã)Xa0Y b0 and τ a0(R0,0,ã) ∈ T0. If now a0 ≤ b0, then
Xa0 R0,0,ãY b0 = RY b0−a0 , where R = τ a0(R0,0,ã)Xa0Y a0 ∈ T0. If a0 > b0, then
Xa0 R0,0,ãY b0 = R Xa0−b0 , where R = τ a0(R0,0,ã)τ

a0−b0(Xb0Y b0) ∈ T0. The first
decomposition in assertion 1) is proved. The second decomposition is a consequence
of relations (3-1-4) and (3-1-5).

2) A slight extension of (2-2-2) shows that C[O]⊗C[V ∗] is G-isomorphic to D(O)
through the map ϕ⊗ f 7→ ϕ f (∂). Then the same proof as in 1) above shows that the
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elements Xa0 R0,0,ãY b0 (a0 ∈ Z, b0 ∈N, ã ∈Nr ) form a vector basis of D(O)G
′

=T.
Consider now an element D ∈ T such that [E, D] = 0. Then necessarily D is
a linear combination of elements of the form Xa0 R0,0,ãY a0 with a0 ∈ N. Then,
as announced previously, the two definitions of T0 coincide (T0 = D(V )G and
T0= {D ∈T | [E, D] = 0}). Now if D ∈Tp, then D= DX−p X p and DX−p

∈T0.
Hence Tp = T0 X p

= X pT0.

Assertion 3) is then obvious. �

Remark 3.1.7. The inclusion D(V )G
′

⊂ D(O)G
′

is obviously strict (note that
X−1
∈ D(O)G

′

\ D(V )G
′

), but the preceding results show that these two graded
algebras have the same “positive part”

(⊕
p∈NT0 X p

)
.

The following proposition, whose proof is straightforward, shows that all the
Bernstein–Sato polynomials are known if one knows the Bernstein–Sato polynomi-
als of Y and of the elements of T0.

Proposition 3.1.8. Let D = D0 Xn (n ∈ Z) and D′ = D0Y n (n ∈N∗), D0 ∈T0, be
generic homogeneous elements in T= T0[X, X−1

] and T0[X, Y ]. Then bD(a)=
bD0(a+ n) and bD′(a)= bD0(a− n)bY (a)bY (a− 1) · · · bY (a− n+ 1).

3.2. The Harish-Chandra isomorphism and the center of T. The aim of this
subsection is to describe T0 = D(V )G as a module over the center of T. For this
we will use the Harish-Chandra isomorphism for MF spaces due to F. Knop.

Let (G, V ) be an MF space with a one-dimensional quotient. Let B be a fixed
Borel subgroup of G. Remember that (B, V ) is a PV. Recall also that we denote
by 10,11, . . . ,1r the set of fundamental relative invariants of (B, V ) and that 10

is the unique fundamental relative invariant under G. We denote by di (resp. λi )
the degree (resp. the infinitesimal character) of 1i . Let b be the Lie algebra of B,
let t⊂ b be a Cartan subalgebra of g and let 6 be the set of roots of the pair (g, t).
Denote by W the Weyl group of 6. Denote by 6+ the set of positive roots such
that b= t+

∑
α∈6+ g

α. Let ρ = 1
2

∑
α∈6+ α. We define

a∗ =

r⊕
i=0

Cλi ⊂ t∗ and A = a∗+ ρ ⊂ t∗.

Let Z(g) be the center of the enveloping algebra of g. Denote by C[t∗]W the
W -invariant polynomials on t∗. One knows that the classical Harish-Chandra
isomorphism is an isomorphism H : Z(g)→ C[t∗]W which can be computed the
following way. For any λ ∈ t∗, let Vλ be the irreducible highest weight module with
highest weight λ. It is well known that Z(g) acts by scalar multiplication on Vλ.
The scalar by which an element z ∈ Z(g) acts on Vλ is precisely H(z)(λ+ ρ).

The natural representation of G on C[V ] extends to a representation of the
enveloping algebra U(g) on the same space C[V ]. Hence z ∈Z(g) acts on Va by the
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scalar H(z)(−λa+ ρ),† where λa =
∑r

i=0 aiλi (remember that a = (a0, . . . , ar )).
Conversely if λ=a0λ0+· · ·+arλr we define aλ= (a0, . . . , ar )∈Cr+1. By abuse of
notation if bD is the Bernstein–Sato polynomial of D ∈T0, we set bD(λ)= bD(aλ).

On the other hand any D ∈ D(V )G = T0 acts on each Va by the scalar bD(a),
where bD(a) is the Bernstein–Sato polynomial of D. This allows us to define the
map

h : D(V )G → C[A],
D 7→ h(D) : −λ+ ρ 7→ h(D)(−λ+ ρ)= bD(λ),

where C[A] denotes the algebra of polynomials on the affine space A= a∗+ρ ⊂ t∗.
Let π(z) be the operator in D(V )G which represents the action of z on C[V ]

and let r : C[t∗]W → C[A] be the restriction homomorphism. It is clear from the
definitions that the following diagram commutes:

Z(g)

π

��

H // C[t∗]W

r
��

D(V )G h // C[A]

Theorem 3.2.1 [Knop 1998, Theorem 4.8 and Corollary 4.9; Benson and Ratcliff
2004, Theorem 9.2.1]. The homomorphism h is injective and there exists a finite
group W0 (sometimes called the little Weyl group) which is a subgroup of the
stabilizer of A in W , such that the image of h is C[A]W0 . Hence h is an isomorphism
between D(V )G and C[A]W0 . The isomorphism h is called the Harish-Chandra
isomorphism for the MF space (G, V ). Moreover W0 acts as a reflection group
on a∗.

Let us see what is the automorphism of C[A]W0 which corresponds to the action
of τ on D(V )G through the Harish-Chandra isomorphism h. Let D ∈ D(V )G.
Then h(τ (D))(−λ+ ρ)= h(X DX−1)(−λ+ ρ)= bX DX−1(λ)= bD(λ− λ0). This
calculation proves of course that C[A]W0 is stable under P(λ+ρ) 7→ P((λ−λ0)+ρ).
Therefore we make the following definition.

Definition 3.2.2. By abuse of notation τ will also denote the automorphism of
C[A]W0 which is defined by τ(P)(λ+ ρ) = P((λ− λ0)+ ρ) (P ∈ C[A]W0). Let
C[A]W0,τ denote the set of elements in C[A]W0 that are invariant under τ .

Proposition 3.2.3. Let Z(T) be the center of T = D(O)G
′

. Then Z(T) is also the
center of T0[X, Y ] = D(V )G

′

. Moreover the following assertions are equivalent:
i) D ∈ Z(T).

ii) D ∈ T0 and τ(D)= D (i.e., D commutes with X ).

†The change of sign is due to the fact that we consider here characters of relative invariants instead
of highest weights.
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iii) D ∈T0 and the Bernstein–Sato polynomial bD(a0, a1, . . . , ar ) does not depend
on a0.

iv) D ∈ T0 and D commutes with Y .

v) D ∈ T0 and h(D) ∈ C[A]W0,τ .

Proof. i)⇒ ii): Let D ∈ Z(T). Then [E, D] = 0, hence D ∈ T0, and [D, X ] = 0.

ii)⇒ iii): Let D ∈ T0. If X D = DX then, from the definitions we have

bX D(a0, a1, . . . , ar )= bD(a0, a1, . . . , ar )= bDX (a0, a1, . . . , ar )

= bD(a0+ 1, a1, . . . , ar );

hence bD(a0, a1, . . . , ar ) does not depend on a0.

iii) ⇒ i): Suppose that for D ∈ T0, the Bernstein–Sato polynomial does not
depend on a0. Then the elements X D and DX in T1 have the same Bernstein–Sato
polynomial. Hence XD = DX (Lemma 3.1.3). Then from Proposition 3.1.6(2) we
see that D ∈ Z(T).

iii)⇒ iv): Let D ∈ T0 such that bD does not depend on a0. Then

bDY (a0, a1, . . . , ar )= bD(a0− 1, a1, . . . , ar )bY (a0, a1, . . . , ar )

= bD(a0, a1, . . . , ar )bY (a0, a1, . . . , ar )

= bYD(a0, a1, . . . , ar ).

Hence DY = YD.

iv)⇒ iii): If DY = YD, then

bDY (a0, a1, . . . , ar )= bD(a0− 1, a1, . . . , ar )bY (a0, a1, . . . , ar )

= bYD(a0, a1, . . . , ar )

= bY (a0, a1, . . . , ar )bD(a0, a1, . . . , ar ).

Hence bD does not depend on a0.

The equivalence of iii) and v) is obvious since h(D)(−λ+ ρ)= bD(λ).
From ii) we obtain that Z(T) is also the center of T0[X, Y ]. �

Remark 3.2.4. As a consequence of the preceding proposition it is worthwhile
noticing that if D ∈ D(V )G

′

(or D ∈ T) commutes with two operators among
(X, E, Y ), then D commutes with the third one. This is a well known property
if (X, E, Y ) is an sl2-triple. But we know from [Igusa 1981] that except if 10 is
quadratic or linear the Lie algebra generated by (X, E, Y ) is infinite-dimensional.
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We will see in Theorem 4.2.2 that the associative algebra generated by (X, E, Y )
over Z(T) is “similar” to U(sl2(Z(T)).

Define a linear form µ on a∗ by

µ(a0λ0+ · · ·+ arλr )=

r∑
i=0

ai di = bE(a) (a = (a0, . . . , ar ) ∈ Cr+1)

(µ is the degree form, as its value on a= (a0, . . . , ar ) ∈Nr+1 is equal to the degree
of the polynomials in Va). Define also

M= {λ ∈ a∗ | µ(λ)= 0} and M =M+ ρ ⊂ A.

Note that M = {λ+ρ ∈ A | h(E)(−λ+ρ)= 0}. As h(E) is W0-invariant, so is the
set M . Set

I (M)=
{

P ∈ C[A]W0 | P M = 0
}
.

The key lemma is the following.

Lemma 3.2.5. We have I (M)= C[A]W0h(E) and

C[A]W0 = C[A]W0,τ ⊕ I (M).

Proof. Let P ∈ I (M). Then P is a polynomial on the affine subspace A ⊂ t∗

vanishing on M , the set of zeros of the irreducible polynomial h(E). Therefore
P = h(E)Q. As P and h(E) are W0-invariant, so is also the polynomial Q. Hence
I (M)⊂ C[A]W0h(E). The reverse inclusion is obvious.

Let F = Cλ0 ⊂ a∗. As obviously a∗ =M⊕ F , we have A= M⊕ F . Remember
that t= c⊕t′, where c is the center of g. The infinitesimal character λ0 is a character
of g, and is therefore trivial on t′ ⊂ g′. As any w0 ∈W0 fixes pointwise the center c
of g, we see that F is pointwise fixed by W0.

Let Q ∈ C[M]W0 . Define

Q̃(m+ f )= Q(m), for all m ∈ M, f ∈ F.

From the preceding discussion we obtain that Q̃ is W0-invariant; in other words
Q̃ ∈ C[A]W0 . But in fact Q̃ is also τ -invariant:

τ(Q̃)(m+ f )= Q̃(m+ f − λ0)= Q(m)= Q̃(m+ f ).

Hence Q̃ ∈ C[A]W0,τ ; in other words any W0-invariant polynomial on M can be
extended to a (W0, τ )-invariant polynomial on A. This extension is in fact unique:
for any τ -invariant extension ˜̃Q of Q we have ˜̃Q(m + xλ0) =

˜̃Q(m + (x + 1)λ0)
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and hence ˜̃Q = Q̃. Hence we have proved that the restriction map

C[A]W0,τ → C[M]W0,

P 7→ P M ,

is bijective (and therefore C[A]W0,τ ∩ I (M)= {0}) and the inverse map is Q 7→ Q̃.
Now for P ∈ C[A]W0 we can write

P = P̃ M +
(
P − P̃ M

)
.

From the discussion above we have P̃ M ∈ C[A]W0,τ , and
(
P − P̃ M

)
∈ I (M). �

Theorem 3.2.6. 1) T0 = D(V )G = Z(T)⊕ ET0.

2) Any element H ∈ D(V )G can be uniquely written in the form

H = H0+ E H1+ E2 H2+ · · ·+ Ek Hk,

where Hi ∈ Z(T), i = 1, 2, . . . , k ∈ N.

Proof. Through the Harish-Chandra isomorphism h, the algebra D(V )G = T0

corresponds to C[A]W0 , the algebra Z(T) corresponds to C[A]W0,τ and the ideal
ET0 corresponds to I (M). Therefore the first assertion is just the pullback by h of
the decomposition obtained in Lemma 3.2.5.

An element H ∈ D(V )G can therefore be uniquely written H = H0+E H 1, with
H0 ∈ Z(T), and H 1

∈ T0. By induction we obtain a decomposition

H = H0+ E H1+ E2 H2+ · · ·+ Ek−1 Hk−1+ Ek H k,

where H0, . . . , Hk−1 ∈Z(T), and H k
∈T0. The process stops because if k is greater

than the degree in a0 of bH , then necessarily H k
= 0 (see Proposition 3.2.3). �

From this theorem and Proposition 3.1.6 we obtain immediately this consequence:

Corollary 3.2.7. 1) Let D ∈ T. Then D can be written uniquely in the form

D =
∑
k∈Z
`∈N

Hk,`E`X k or D =
∑
k∈Z
`∈N

Hk,`X k E` (finite sums),

where Hk,` ∈ Z(T).

2) Let D ∈ T0[X, Y ]. Then D can be written uniquely in the form

D =
∑
k∈N∗

`∈N

Hk,`E`Y k
+

∑
r∈N
s∈N

H ′r,s E s X r (finite sums) or

D =
∑
k∈N∗

`∈N

Hk,`Y k E`+
∑
r∈N
s∈N

H ′r,s X r E s (finite sums),

where Hk,`, H ′r,s ∈ Z(T).
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Corollary 3.2.8. Let P ∈ C[A]W0 . Then P can be uniquely written in the form

P(−λ+ ρ)=
p∑

i=0

αi (−λ+ ρ)(a0d0+ a1d1+ · · ·+ ar dr )
i ,

where αi ∈ C[A]W0,τ and λ= a0λ0+ a1λ1+ · · ·+ arλr ∈ a
∗.

Proof. As h(E)(−λ+ρ)= a0d0+ a1d1+· · ·+ ar dr , the preceding decomposition
is just the image through the Harish-Chandra isomorphism of the decomposition in
Theorem 3.2.6(2). �

Remark 3.2.9. It is easy to see that as W0 stabilizes the affine space A = a∗+ρ it
also stabilizes a∗ (this is implicit in Theorem 3.2.1). Moreover if we denote by 0ρ
the barycenter of the W0-orbit of ρ, then 0ρ is a fixed point of the W0-action on
A which is in M . As C[A]W0 = C[a∗ + ρ]W0 = C[a∗ + 0ρ]W0 ' C[a∗]W0 , and as
T0= D(V )G 'C[A]W0 is a polynomial algebra in r+1 variables by Theorem 2.2.9,
the group W0 acts as a reflection group on a∗ by the Shephard–Todd–Chevalley
theorem (this is a part of Knop’s argument for Theorem 3.2.1). Hence by the
theorem of Chevalley, the r + 1 algebraically independent generators of the algebra
C[A]W0 ' C[a∗]W0 can be chosen to be homogeneous, either as functions on the
vector space a∗, or as functions on A, for the vector space structure on A defined
by taking 0ρ as origin.

We will now describe more precisely the algebra Z(T).

Theorem 3.2.10. 1) Z(T) is a polynomial algebra in r variables. For D ∈T0, let
us denote by D the projection of D on Z(T) according to the decomposition
T0=Z(T)⊕ET0. Remember from Theorem 2.2.9 that the set R0, . . . , Rr−1, Rr

of Capelli operators associated to the invariants 10,11, . . . ,1r ordered by
decreasing degree is a set algebraically independent generators of T0. Then
{R0, . . . , Rr−1} is a set of algebraically independent generators of Z(T).

2) Let D be an element of T0 and let bD be its Bernstein–Sato polynomial. Then
the Bernstein–Sato polynomial of D is given by

bD(a0, a1, . . . , ar )= bD

(
−

a1d1+ · · ·+ ar dr

d0
, a1, . . . , ar

)
.

Proof. 1) Let us remark first that Z(T) is already known to be a polynomial algebra
from a result of Knop [1994]. He has proved that for a regular action of a reductive
group on a smooth affine variety the center of the ring of invariant differential oper-
ators is always a polynomial algebra. We give here a direct proof and obtain some
extra information. We know from Proposition 3.2.3 that Z(T) is isomorphic, through
the Harish-Chandra isomorphism h, to C[A]W0,τ . From the proof of Lemma 3.2.5
we know that W0 stabilizes M and that C[A]W0,τ ' C[M]W0 = (C[A]W0) M . As
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W0 is a reflection group on A (this means that it is generated by the reflec-
tions it contains), so is W0 M . Therefore C[M]W0 (and hence Z(T)) is a poly-
nomial algebra in r = dim M variables by Chevalley’s Theorem. We know from
Remark 2.2.10(d) that {R0, . . . , Rr−1, E} is also a set algebraically independent gen-
erators of T0; hence {h(R0), . . . , h(Rr−1), h(E)} is a set of algebraically indepen-
dent generators of C[A]W0 . We obtain that C[M]W0 = C[h(R0) M , . . . , h(Rr−1) M ]

as h(E) M = 0. As the transcendence degree of Frac(C[M]W0) over C is r , the
generators h(R0) M , . . . , h(Rr−1) M are algebraically independent. Taking their
inverse image under h gives the first assertion of the theorem.

2) As we have seen the decomposition T0 = Z(T)⊕ ET0 is nothing else but the
inverse image under h of the decomposition C[A]W0=C[A]W0,τ⊕I (M). Let D∈T0.
From the proof of Lemma 3.2.5 we have h(D) = ˜h(D) M , where ˜h(D) M is the
unique (W0, τ )-invariant extension to A of h(D) M . For λ= a0λ0+· · ·+arλr ∈ a

∗,
we have h(E)(λ+ρ)= bE(−λ)=−(a0d0+· · ·+ar dr )=−µ(λ) (the degree form).
Remember also that a∗ =M⊕ F , where M = ker(µ) and F = Cλ0. Let us write
λ = mλ + αλ0, according to this decomposition. Then bE(λ) = αbE(λ0) = αd0.
Hence α = µ(λ)/d0 and mλ = λ− (µ(λ)/d0)λ0. Then we obtain

bD(λ)= h(D)(−λ+ ρ)= ˜h(D) M(−λ+ ρ)

= ˜h(D) M

(
−λ+

µ(λ)

d0
λ0−

µ(λ)

d0
λ0+ ρ

)
= ˜h(D) M

(
−λ+

µ(λ)

d0
λ0+ ρ

)
= h(D) M

(
−λ+

µ(λ)

d0
λ0+ ρ

)
= h(D)

(
−λ+

µ(λ)

d0
λ0+ ρ

)
= bD

(
λ−

µ(λ)

d0
λ0

)
.

If we translate this into the (a0, . . . , ar )-variables we obtain the second assertion. �

Corollary 3.2.11. Let bY be the Bernstein–Sato operator of Y . For any ` ∈ N

the element of End(C[V ]) that acts on each space Va as scalar multiplication by
bY (−(a1d1+ · · ·+ ar dr )/d0+ `, a1, . . . , ar ) is the differential operator

X1−`Y X` ∈ Z(T).

Moreover, if (G, V+) is a PV of commutative parabolic type, the differential opera-
tors X1−`Y X` (`= 0, 1, . . . , r ) are generators of Z(T).

Proof. As bX1−`Y X`(a0, . . . , ar )= bY (a0+`, a1, . . . , ar ), the first assertion follows
immediately from Theorem 3.2.10. If (G, V+) is a PV of commutative parabolic
type, we know from Theorem 3.3.1 below that the operators X1−`Y X` (`=0, . . . , r )
are (algebraically independent) generators of T0. �
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3.3. The case of regular PV’s of commutative parabolic type. In the case where
(G, V+) is a regular PV of commutative parabolic type (see Example 2.3.3), we
obtain some specific results.

Theorem 3.3.1. Let (G, V+) be a regular PV of commutative parabolic type.

1) The degree of 10 is equal to r + 1 which is the rank of (G, V+) as a MF space.
More generally the degree of 1i is equal to r + 1− i .

2) For ` ∈ Z set D` = X1−`Y X`. Then D0, D1, . . . , Dr are algebraically indepen-
dent generators of T0 = D(V+)G ( i.e., T0 = C[D0, D1, . . . , Dr ]).

3) We have T= D(�+)G
′

= C[X, X−1, Y ], where C[X, X−1, Y ] is the associative
subalgebra of D(�+) generated by X, X−1, Y .

4) We have T0[X, Y ] = D(V )G
′

= C[X, Y, R1, . . . , Rr ], where the Ri are the
Capelli operators introduced before Theorem 2.2.9 and C[X, Y, R1, . . . , Rr ] is
the associative subalgebra of D(V+) generated by X , Y , R1, . . . , Rr .

Proof. 1) This first assertion is proved in [Muller et al. 1986, Proposition 2.16 and
Lemme 3.7].

2) We need now to use some technical results from the structure theory of commu-
tative PVs of parabolic type. For details see [Muller et al. 1986; Rubenthaler and
Schiffmann 1987]. We need also results concerning the symmetric space structure
of the open G orbit �+ in V+; they can be found in [Bopp and Rubenthaler 1993].
Let t be a Cartan subalgebra of g; then t is also a Cartan subalgebra of g̃ (see the
notation in Example 2.3.3). Let 6̃ and 6 be the root systems of (g̃, t) and (g, t),
respectively. We choose an order on 6̃ such that the roots occurring in V+ are
positive. We know from Proposition 2.9. in [Bopp and Rubenthaler 1993] that the
open G-orbit�+={x ∈V+ |10(x) 6=0} is a symmetric space G/H , where H is the
isotropy subgroup of a point I+ ∈�+. The choice of I+ can be made the following
way. It is known that any maximal set of strongly orthogonal long roots occurring
in V+ has r + 1 = rank(G, V+) elements. There is a canonical way to construct
such a maximal set, called the “descent”; see [Muller et al. 1986, Theorem 2.7,
p. 101]. If {α0, α1, . . . , αr } is such a maximal set of strongly orthogonal long roots,
then the element I+ = Xα0 + Xα1 + · · ·+ Xαr is generic (here as usual the Xαi are
nonzero root vectors). Let h = Zg(I+) be the Lie algebra of H , and let q be the
orthogonal complement of h in g with respect to the Killing form of g̃. Let Hαi ∈ t

be the coroot of αi . Set a =
∑r

i=0 CHαi . Then a is a maximal abelian subspace
of q [Bopp and Rubenthaler 1993, Proposition 5.4] and the dual space a∗ can be
identified with the space of restrictions of the fundamental characters λ0, λ1, . . . , λr

[ibid., Lemme 2.5]. Hence this definition of a∗ is coherent with the direct definition
of a∗ given in Section 3.2 in the general case

(
a∗ =

∑r
i=0 Cλi

)
.
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For λ ∈ t∗, we will denote by λ the restriction of λ to a. Through the “classical”
Harish-Chandra isomorphism γ for symmetric spaces [Heckman and Schlichtkrull
1994, Part II, Theorem 4.3] the algebra T0 is isomorphic to S(a)WR = C[a∗]WR ,
where WR is the Weyl group of the root system R of (g, a). This root system
is known to be of type Ar (the proof is the same as for Theorem 3.11 in [Bopp
and Rubenthaler 2005]). Hence WR is the symmetric group of r + 1 variables
and it acts by permutations on the αi . We will choose an order on R such that
6+ ⊂ R+. As in [Muller et al. 1986; Rubenthaler and Schiffmann 1987] we
consider here relative invariants 10,11, . . . ,1r with respect to the Borel subgroup
defined by 6−. Define ρ = 1

2

∑
β∈R− β. It is well known that for D ∈ T0 and

λ =
∑r

i=0 aiλi ∈ a∗, γ (D)(−λ + ρ) is equal to the eigenvalue of D acting on
1

a0
0 · · ·1

ar
r . In other words we have

γ (D)(−λ+ ρ)= bD(λ).

From [Rubenthaler and Schiffmann 1990, Lemme 3.9, p. 155], we know that

ρ =
d
4

∑
i< j

(αi −α j )=
d
4

r∑
i=0

(r − 2i)αi

and from [ibid., Lemme 3.8, p. 155], we also have

λ= a0α0+ (a0+ a1)α1+ · · ·+ (a0+ · · ·+ ar )αr .
‡

Let us now make the following change of variables:

si = a0+ · · ·+ ai , for i = 0, . . . , r.

As bD`
(λ) = bY (s0+ `, . . . , sr + `) = c

∏r
i=0(si + `+ id/2) (see Example 3.1.2)

we obtain

γ (D`)(λ)= bD`
(−λ+ ρ)= bD`

( r∑
i=0

−siαi +
d
4

r∑
i=0

(r − 2i)αi

)

= c
r∏

i=0

(
−si +

d
4

r + `
)
.

As expected the polynomials γ (D`) are symmetric in the si variables (i.e.,
invariant under WR). Moreover it is easy to prove that these polynomials, for
`= 0, . . . , r , are algebraically independent generators of the algebra of symmetric
polynomials. This proves 2).

‡The change of sign with respect to Lemme 3.8 in [Rubenthaler and Schiffmann 1990] is again
due to the fact that we consider here characters of relative invariants instead of the highest weights.
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3) As T = T0[X, X−1
] (see Proposition 3.1.6), and as, from 2), the elements of

T0 are polynomials in X, X−1, Y we obtain that T⊂ C[X, X−1, Y ]. The inverse
inclusion is obvious.

4) The inclusion C[X, Y, R1, . . . , Rr ] ⊂ D(V+)G
′

= T0[X, Y ] is obvious. Con-
versely, from Theorem 2.2.9 we have T0[X, Y ] = C[R0, R1, . . . , Rr ][X, Y ]. As
R0 = XY (see Remark 2.2.10), we have T0[X, Y ] ⊂ C[X, Y, R1, . . . , Rr ]. �

Remark 3.3.2. According to [Terras 1988, p. 208], the operators D` were first
considered by Selberg on positive definite symmetric matrices. They appear also in
[Maaß 1971], in the same context of positive definite symmetric matrices. In the
setting of symmetric cones, the analogue of assertion 2) of the preceding theorem
can be found in [Faraut and Korányi 1994, Corollary XIV.1.6].

Remark 3.3.3. Note that for PVs of commutative parabolic type we have Rr = E .
In the special case where G ' SO(k)×C∗ and V+ ' Ck , we have always r = 1,
and assertion 4) of the preceding theorem yields

D(Ck)SO(k)
= C[Q(x), Q(∂), E],

where Q(x)= X =
∑k

i=1 x2
i , Q(∂)= Y =

∑k
i=1 ∂

2/∂x2
i .

This was proved by S. Rallis and G. Schiffmann [1980, Lemma 5.2, p. 112].

4. The structure of D(V )G′

4.1. Smith algebras over rings. As usual if a, b are elements of an associative
algebra we define [a, b] = ab− ba.

Definition 4.1.1. Let A be a commutative associative algebra over C, with unit
element 1 and without zero divisors. Let f, u ∈ A[t] be two polynomials in one
variable with coefficients in A. Let n ∈ N∗.

1) The Smith algebra S(A, f, n) is the associative algebra over A with generators
(x, y, e) subject to the relations [e, x] = nx , [e, y] = −ny, [y, x] = f (e).

2) The algebra U (A, u, n) is the associative algebra over A with generators (x̃, ỹ, ẽ)
subject to the relations [ẽ, x̃] = nx̃ , [ẽ, ỹ] = −n ỹ, x̃ ỹ = u(ẽ), ỹ x̃ = u(ẽ+ n).

Remark 4.1.2. 1) The algebras S(C, f, n) were introduced and intensively studied
by Smith [1990], who called them “algebras similar to U(sl2)”, where U(sl2)

is the enveloping algebra of sl2. In fact they share many interesting properties
with U(sl2), in particular they have a very rich representation theory.

2) One can prove, as in [Smith 1990], that if the degree of f is one and n 6= 0, and
if the leading coefficient is invertible in A, then S(A, f, n) is isomorphic to the
enveloping algebra U(sl2(A)).
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Let R be a ring and let σ ∈ Aut(R). Let us recall that a σ -derivation of R

is an additive map δ : R → R such that δ(su) = sδ(u) + δ(s)σ (u). Given a
σ -derivation δ, the skew polynomial ring over R determined by σ and δ is the ring
R[t, σ, δ] := 〈R, t〉/{st − tσ(s)− δ(s) | s ∈ R}, where 〈R, t〉 stands for the ring
freely generated by R and an element t with the relations given by the ring structure
on R (for details see [McConnell and Robson 1987, Section 1.2, p. 15; Goodearl
and Warfield 2004, p. 34]).

Proposition 4.1.3. Let b the 2-dimensional Lie algebra over A, with basis {ε, α}
and relation [ε, α] = nα. Let U(b) be the enveloping algebra of b. Define an auto-
morphism σ of U(b) by σ(α)=α and σ(ε)= ε−n and define also a σ -derivation δ
of U(b) by δ(α)= f (ε) and δ(ε)= 0. Then S(A, f, n)'U(b)[t, σ, δ].

Proof. The proof is almost the same as the one given by Smith [1990, Proposi-
tion 1.2]. The isomorphism S(A, f, n)'U(b)[t, σ, δ] is given by e 7→ ε, x 7→ α

and y 7→ t . �

Corollary 4.1.4. S(A, f, n) is a noetherian domain with A-basis

{yi x j ek
| i, j, k ∈ N}

(or any similar family of ordered monomials obtained by permutation of the elements
(y, x, e)).

Proof. (compare with [Smith 1990, proof of Corollary 1.3, p. 288]). We know
from [McConnell and Robson 1987, Theorem 1.2.9], that as U(b) is a noetherian
domain, so is S(A, f, n)'U(b)[t, σ, δ]. Since

U(b)[t, σ, δ] =U(b)⊕U(b)t ⊕U(b)t2
⊕U(b)t3

⊕ · · ·⊕U(b)t`⊕ · · ·

=U(b)⊕ tU(b)⊕ t2U(b)⊕ t3U(b)⊕ · · ·⊕ t`U(b)⊕ · · ·

(direct sums of A-modules) and since the Poincaré–Birkhoff–Witt theorem is still
true for enveloping algebras of Lie algebras which are free over rings (see [Bourbaki
1971]), the ordered monomials in (y, x, e) beginning or ending with y form a basis
of the algebra S(A, f, n). To obtain the basis {ei y j xk

} or {xk y j ei
} it suffices to

replace the algebra b by the algebra b− which is generated by e and y. �

Remark 4.1.5. The adjoint action of e (u 7→ [e, u]) on S(A, f, n) is semisimple
and gives a decomposition of S(A, f, n) into weight spaces:

S(A, f, n)=
⊕
ν∈Z

S(A, f, n)ν,

where S(A, f, n)ν={u∈ S(A, f, n) | [e, u]=νnu}. As [e, x j yi ek
]=n( j−i)yi x j ek ,

we obtain, using Corollary 4.1.4, that the ordered monomials of the form x i yi ek

form an A-basis for S(A, f, n)0. Moreover as yx = xy + f (e), it is easy to see
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that S(A, f, n)0 = A[xy, e] = A[yx, e], where A[xy, e] (resp. A[yx, e]) denotes
the A-subalgebra generated by xy (resp. yx) and e.

The proof of the following lemma is straightforward.

Lemma 4.1.6. Let n ∈N∗ and let f ∈ A[t]. There exists an element u ∈ A[t], which
is unique up to addition of an element of A, such that

f (t)= u(t + n)− u(t) (4-1-1)

Proposition 4.1.7 (compare with [Smith 1990, Proposition 1.5]). Let u be as in the
preceding lemma. Define

�1 = xy− u(e).

Then the center of S(A, f, n) is A[�1] which is isomorphic to the polynomial
algebra A[t].

Proof. Let us now prove that �1 is central. Obviously �1 commutes with e.
From the defining relations of S(A, f, n) we have ex = x(e+ n) and therefore,

for any k ∈ N, ek x = x(e+ n)k .
This implies of course that for any polynomial P ∈ A[t] we have

P(e)x = x P(e+ n) or P(e− n)x = x P(e). (4-1-2)

Similarly one proves that

P(e)y = y P(e− n) or P(e+ n)y = y P(e). (4-1-3)

Let us show that�1 commutes with x . Using Lemma 4.1.6 and (4-1-2) we obtain

x�1 = x(xy− u(e))= x2 y− xu(e)= x(yx − f (e))− xu(e)

= x(yx − u(e+ n)+ u(e))− xu(e)= xyx − xu(e+ n)= xyx − u(e)x

=�1x .

A similar calculation using (4-1-3) shows that �1 commutes also with y. Hence
�1 belongs to the center of S(A, f, n).

Let now z be a central element of S(A, f, n). Then z ∈ S(A, f, n)0. We have
S(A, f, n)0 = A[xy, e] = A[�1, e], and hence z can be written as follows:

z =
∑

ci (e)�i
1 (finite sum),

where ci (e) ∈ A[e].
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We have

0= [z, x] =
[∑

ci (e)�i
1, x

]
=
∑
[ci (e), x]�i

1

=
∑
(ci (e)x − xci (e))�i

1

=
∑

x(ci (e+ n)− ci (e))�i
1 (using (4-1-2))

= x
∑
(ci (e+ n)− ci (e))�i

1.

As the algebra S(A, f, n) has no zero divisors we get∑
(ci (e+ n)− ci (e))�i

1 = 0.

As �1 = xy− u(e), we have �i
1 = x i yi modulo monomials of the form ek x p y p

with p< i . Then from Corollary 4.1.4 above we obtain ci (e+n)−ci (e)= 0 for all
i . As the elements ek are free over A (Corollary 4.1.4) we obtain from Lemma 4.1.6
that ci ∈ A, for all i . �

Remark 4.1.8. Conversely, let us start with u ∈ A[t]. Define f ∈ A[t] by f (t)=
u(t + n)− u(t). From the definitions we have

U (A, u, n)= S(A, f, n)/(xy− u(e))= S(A, f, n)/(�1),

where (xy− u(e))= (�1) is the ideal generated by xy− u(e)=�1. Again, as for
S(A, f, n), the adjoint action of ẽ gives a decomposition of U (A, u, n) into weight
spaces:

U (A, u, n)=
⊕
ν∈Z

U (A, u, n)ν, (4-1-4)

where U (A, u, n)ν = {ṽ ∈U (A, u, n) | [ẽ, ṽ] = νnṽ}.

Proposition 4.1.9. Let u ∈ A[t] and s ∈ N. The A-linear mappings

ϕ,ψ : A[t] →U (A, u, n)

given by

ϕ(P)= x̃ s P(ẽ), ψ(P)= ỹs P(ẽ)

are injective (in particular the subalgebra A[ẽ] ⊂U (A, u, n) generated by ẽ is a
polynomial algebra).

Proof. Define f (t)= u(t + n)− u(t). Every element of S(A, f, n) can be written
uniquely in the form ∑

ak,`,mek x`ym (ak,`,m ∈ A)
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(Corollary 4.1.4). Therefore, from Remark 4.1.8, every element in U (A, u, n) can
be written in the form ∑

ak,`,m ẽk x̃` ỹm (ak,`,m ∈ A).

Let P(t)=
∑p

i=0 ai t i (ai ∈ A) be a polynomial such that x̃ s P(ẽ)=0 (i.e., P ∈kerϕ).
As U (A, u, n)= S(A, f, n)/(�1), we see that there exists α ∈ S(A, f, n) such that

x s
p∑

i=0

ai ei
= α�1 = α(xy− u(e)).

If α =
∑

ak,`,mek x`ym , using the fact that �1 = xy− u(e) is central and relation
(4-1-2) we get

x s
p∑

i=0

ai ei
=

(∑
k,`,m

ak,`,mek x`ym
)
(xy− u(e))=

∑
k,`,m

ak,`,mek x`(xy− u(e))ym

=

∑
k,`,m

ak,`,mek x`+1 ym+1
−

∑
k,`,m

ak,`,mek x`u(e)ym

=

∑
k,`,m

ak,`,mek x`+1 ym+1
−

∑
k,`,m

ak,`,meku(e− `n)x`ym . (4-1-5)

Suppose now that α 6= 0; then one can define

`0 =max{` ∈ N | ∃k,m, ak,`,m 6= 0}.

Let k0, m0 be such that ak0,`0,m0 6= 0. From (4-1-5) we get

x s
p∑

i=0

ai ei
+

∑
k,`,m

ak,`,meku(e− `n)x`ym
=

∑
k,`,m

ak,`,mek x`+1 ym+1.

Using again (4-1-2) we obtain

p∑
i=0

ai (e− ns)i x s
+

∑
k,`,m

ak,`,meku(e− `n)x`ym
=

∑
k,`,m

ak,`,mek x`+1 ym+1.

The left side of this equality does not contain the monomial ek0 x`0+1 ym0+1, but
the right side does. As the elements ek x`ym are a basis over A (Corollary 4.1.4), we
obtain a contradiction. Therefore α = 0, and hence x s ∑p

i=0 ai ei vanishes. Again
from Corollary 4.1.4, we obtain that ai = 0 for all i . This proves that kerϕ = {0}.
The proof for ψ is similar. �
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Corollary 4.1.10. Every element ũ in U (A, u, n) can be written uniquely in the
form

ũ =
∑

`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, r≥0

βm,r x̃m ẽr

with αk,`, βm,r ∈ A.

Proof. We have already noticed that any element in U (A, u, n) can be written (in a
non unique way) as a linear combination, with coefficients in A, of the elements
x̃ i ỹ j ẽk .

Suppose that i ≥ j . Then we have x̃ i ỹ j ẽk
= x̃ i− j x̃ j ỹ j ẽk . As x̃ ỹ = u(ẽ), we see

that x̃ j ỹ j
= Q j (ẽ), where Q j is a polynomial with coefficients in A. Therefore

x̃ i ỹ j ẽk
=
∑

` γ` x̃
i− j ẽ`, with γ` ∈ A. Similarly one can prove that if i < j , we have

x̃ i ỹ j ẽk
=
∑

` δ` ỹ j−i ẽ`, with δ` ∈ A. This shows that any element ũ in U (A, u, n)
can be written in the expected form.

Suppose now that ∑
`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, r≥0

βm,r x̃m ẽr
= 0.

Then, as ỹ`ẽk
∈ U (A, u, n)−` and x̃m ẽr

∈ U (A, u, n)m , we deduce from (4-1-4)
that ∑

k

αk,` ỹ`ẽk
= 0 for all ` > 0,

∑
r

βm,r x̃m ẽr
= 0 for all m ≥ 0.

Then from Proposition 4.1.9, we deduce that αk,` = 0 and βm,r = 0. �

4.2. Generators and relations for D(V )G′ . Let Z(T)[t] be the polynomials in one
variable with coefficients in Z(T). From the commutation rules [E, X ] = d0 X and
[E, Y ] = −d0Y , we easily deduce that for P ∈ Z(T)[t] we have

Y P(E)= P(E + d0)Y, X P(E)= P(E − d0)X. (4-2-1)

From Theorem 3.2.6 above, we know that any element in D(V )G can be written
uniquely as a polynomial in E with coefficients in Z(T). As XY and Y X belong to
D(V )G , there exist therefore two uniquely determined polynomials u XY and uY X

in Z(T)[t] such that XY = u XY (E) and Y X = uY X (E). From (4-2-1) we obtain
that

Y XY = uY X (E)Y = Y u XY (E)= u XY (E + d0)Y

and therefore
uY X (E)= u XY (E + d0). (4-2-2)

As the polynomial u XY will play an important role in Theorem 4.2.2 below, let
us emphasize the connection between u XY and the Bernstein–Sato polynomial bY .
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Remark first that bY = bXY . We know from Corollary 3.2.8 that

h(XY )(−λ+ ρ)= bXY (λ)= bY (λ)

=

p∑
i=0

αi (−λ+ ρ)(a0d0+ a1d1+ · · ·+ ar dr )
i

=

p∑
i=0

αi (−λ+ ρ)(h(E)(−λ+ ρ))i

with uniquely defined polynomials αi ∈ C[A]W0,τ. Therefore we obtain

Proposition 4.2.1. Keeping the notation above, we have

u XY (t)=
p∑

i=0

h−1(αi )t i .

Theorem 4.2.2. Let fXY (t)= u XY (t + d0)− u XY (t). The mapping

x̃ 7→ X, ỹ 7→ Y, ẽ 7→ E

extends uniquely to an isomorphism of Z(T)-algebras between U (Z(T), u XY , d0)

(which is isomorphic to S(Z(T), fXY , d0)/(�1)) and D(V )G
′

= T0[X, Y ].

Proof. As [E, X ] = d0 X , [E, Y ] = −d0Y , XY = u XY (E) and Y X = u XY (E + d0)

(see (4-2-2)), and as from Theorem 3.2.6 the algebra D(V )G
′

= T0[X, Y ] is gener-
ated over Z(T) by X, Y, E , we know (universal property) that the mapping

x̃ 7→ X, ỹ 7→ Y, ẽ 7→ E

extends uniquely to a surjective morphism of Z(T)-algebras:

ϕ :U (Z(T), u XY , d0)→ D(V )G
′

.

From Corollary 4.1.10 any element ũ in U (Z(T), u XY , d0) can be written uniquely
in the form

ũ =
∑

`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, r≥0

βm,r x̃m ẽr

with αk,`, βm,r ∈ Z(T). Suppose now that ũ ∈ ker(ϕ), then

ϕ(ũ)=
∑

`>0, k≥0

αk,`Y `Ek
+

∑
m≥0, r≥0

βm,r Xm Er
= 0,

with αk,`, βm,r ∈ Z(T). Then Corollary 3.2.7 implies that αk,` = βm,r = 0. Hence
ϕ is an isomorphism. �
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5. Radial components

5.1. Radial components and Bernstein–Sato polynomials. Remember that for
ã = (a1, a2, . . . , ar ) ∈ Nr we have defined Vã = V(0,a1,...,ar ). Remember also
that for a= (a0, a1, . . . , ar ) we have Va =1

a0 Vã. We know from Proposition 2.2.8
that the spaces Uã =

⊕
a0∈N1

a0
0 Vã are the G ′-isotypic components of C[V ] and

that the spaces Wã =
⊕

a0∈Z1
a0
0 Vã are the G ′-isotypic components of C[O]. There-

fore the algebra D(V )G
′

= T0[X, Y ] stabilizes each space Uã and the algebra
D(O)G

′

= T0[X, X−1
] = T stabilizes each space Wã.

Let us consider the restriction map

D(O)G
′

→ End(Wã),

D 7→ rã(D)= D Wã
.

Definition 5.1.1. Let D ∈ D(O)G
′

=T0[X, X−1
] =T. The operator rã(D)= D Wã

is called the radial component of D with respect to ã.

Example 5.1.2. Consider the case where ã = 0. Then Wã = C[10,1
−1
0 ], and

r0(D) is the endomorphism of C[t, t−1
] defined by D(ϕ ◦10) = r0(D)(ϕ) ◦10.

The operator r0(D) is the usual radial component of D (we will see below that it is
a differential operator).

Notice now that the space Wã =
⊕

a0∈Z1
a0
0 Vã can be viewed as the space of

Laurent polynomials in 10, with coefficients in Vã, in other words any P ∈Wã can
be written uniquely under the form

P =
∑

1
p
0 γp

with γp ∈ Vã. This can also be written as P = ϕ ◦ (10), with ϕ(t) =
∑

t pγp

in Vã[t, t−1
] (this being precisely the set of linear combinations

∑
t pγp, with

γp ∈ Vã).
There is a natural action of D(C∗) = C[t, t−1, t d/dt] on Vã[t, t−1

] given by
(d/dt)t pγp = pt p−1γp.

Proposition 5.1.3. Let D ∈ Tn a homogeneous element of degree n. Let bD be its
Bernstein–Sato polynomial. Let ϕ ∈ Vã[t, t−1

]. Then

D(ϕ ◦10)=
(
tnbD(t d/dt, a1, . . . , ar )ϕ

)
◦10;

in other words, rã(D)= tnbD(t d/dt, a1, . . . , ar ).

Proof. It is enough to show that the two operators coincide on elements of the form
1

p
0 γp, with γp ∈ Vã. Then ϕ = t pγp. Let us write

bD(a)=
∑

k

ck(a1, . . . , ar )ak
0 .
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We have(
tnbD

(
t d
dt
, a1, . . . , ar

)
ϕ
)
◦10 = tn

(∑
k

ck(a1, . . . , ar )
(

t d
dt

)k
ϕ
)
◦10

= tn
(∑

k
ck(a1, . . . , ar )pk t pγp

)
◦10

= (tnbD(p, a1, . . . , ar )t pγp) ◦10

= bD(p, a1, . . . , ar )1
p+n
0 γp

= D(1p
0 γp). �

Corollary 5.1.4. If (G, V ) is a PV of commutative parabolic type of rank r + 1,
then the radial component of Y is given by

rã(Y )= ct−1
r∏

j=0

(
t d
dt
+ a1+ · · ·+ a j + j d

2

)
.

Proof. This is just a consequence of the formula for bY given in Example 3.1.2. �

Example 5.1.5. Consider case 1) in Example 2.3.3: then G= (SL(n)×SL(n))×C∗

acting on x ∈ V = Mn(C) by (g1, g2, t).x = tg1xg−1
2 . Then 10 = X = det x and

Y =1∗0(∂)= det
(
∂

∂xi j

)
,

where xi j are the coefficients of the matrix X . As in this case d/2= 1 (see [Muller
et al. 1986, Table 2, p. 122]), we have

bY (a0, a1, . . . , an−1)=

n−1∏
j=0

(a0+ a1+ · · ·+ a j + j).

Hence the radial component r0(Y ) defined by det
(
∂

∂xi j

)
(ϕ ◦ det)= (r0(Y )ϕ) ◦ det

is given by

r0(Y )= t−1
n−1∏
j=0

(
t d
dt
+ j

)
.

This radial component has already been calculated by Raïs [1972, p. 22], by other
methods. He obtained that r0(Y )=

[∏n
j=2(t d/dt+ j)

]
d/dt . A simple calculation

shows that the two operators are the same.

5.2. Algebras of radial components.

Definition 5.2.1. The radial component algebra Rã is the image of D(V )G
′

=

T0[X, Y ] under the map D 7→ rã(D).
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Remember from Proposition 3.2.3 that the elements D in Z(T) are characterized
by the fact that the corresponding Bernstein–Sato polynomial bD does not depend
on the a0 variable. Therefore such a D acts by the scalar bD(0, ã) on Wã; that is,
rã(D)= bD(0, ã )IdWã

.
Let us consider the polynomial u XY ∈ Z(T)[t] introduced in Section 4.2. If

u XY =
∑

i
ci t i , with ci ∈ Z(T), we define

rã(u XY )=
∑

i

rã(ci )t i
∈ C[t].

Lemma 5.2.2. Let a= (a0, a1, . . . , ar )∈Nr+1. Suppose that a0 > 0. Then the map
P 7→ YP from Va to Va−1 is a G ′-equivariant isomorphism.

Sketch of proof. It is enough to prove that this map is not 0. As 1∗0
a0 · · ·1∗r

ar is the
lowest weight vector of V ∗a ⊂C[V ∗]we have1∗0(∂)

a0 · · ·1∗r (∂)
ar1

a0
0 · · ·1

ar
r (0) 6=0.

Hence 1∗0(∂)1
a0
0 · · ·1

ar
r 6= 0. �

Theorem 5.2.3. The radial component algebra Rã is isomorphic, as an associative
algebra over C, to the algebra U (C, rã(u XY ), d0) introduced in Definition 4.1.1.

Proof. The algebra Rã is generated over C by the elements rã(E), rã(X), rã(Y ).
The defining relations of U (C, rã(u XY ), d0) are satisfied:

[rã(E), rã(X)] = rã([E, X ])= d0rã(X),

[rã(E), rã(Y )] = rã([E, Y ])=−d0rã(Y ),

rã(X)rã(Y )= rã(XY )= rã(u XY )(rã(E)),

rã(Y )rã(X)= rã(Y X)= rã(u XY )(rã(E)+ d0).

Therefore the mapping

x̃ 7→ rã(X), ỹ 7→ rã(Y ), ẽ 7→ rã(E)

extends uniquely to a surjective morphism of C-algebras

ϕã :U (C, rã(u XY ), d0)→ Rã.

From Corollary 4.1.10 any element ũ in U (C, rã(u XY ), d0) can be written
uniquely in the form

ũ =
∑

`>0, k≥0

αk,` ỹ`ẽk
+

∑
m≥0, s≥0

βm,s x̃m ẽs

with αk,`, βm,s ∈ C. Suppose now that ũ ∈ ker(ϕã), then

ϕã(ũ)=
∑

`>0, k≥0

αk,`rã(Y )
`rã(E)

k
+

∑
m≥0, s≥0

βm,srã(X)
mrã(E)

s
= 0.
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Applying this operator to a function of the form 1a0 P , with P ∈ Vã, we obtain∑
`>0

Y `
(∑

k≥0

αk,`Ek1a0 P
)
+

∑
m≥0

Xm
(∑

s≥0

βm,s E s1a0 P
)
= 0.

As the operators X and Y have degree d0 and −d0, respectively, this implies that

Y `
(∑

k≥0

αk,`Ek1a0 P
)
= 0 for all `,

Xm
(∑

s≥0

βm,s E s1a0 P
)
= 0 for all m.

Therefore, by Lemma 5.2.2 we obtain
∑

k≥0 αk,`Ek1a0 P = 0 for all ` and all
a0>`, and

∑
s≥0 βm,s E s1a0 P = 0 for all m, a0. As E1a0 P = (a0d0+d(ã))1a0 P ,

where d(ã) = a1d1+ · · · + ar dr , we have
∑

k≥0 αk,`(a0d0+ d(ã))k1a0 P = 0 for
all ` and all a0 > `, and

∑
s≥0 βm,s(a0d0+ d(ã))s1a0 P = 0 for all m, a0. Hence∑

k≥0 αk,`(a0d0+d(ã))k = 0 for all ` and a0>`, and
∑

s≥0 βm,s(a0d0+d(ã))s = 0
for all m, a0. This implies that αk,` = 0 and βm,s = 0 for all `, k,m, s. Hence ũ = 0
and ϕã is injective. �

Remark 5.2.4. For ã = 0, the preceding result was first obtained by Levasseur
[2009], by other methods.

Now define Jã= ker(rã D(V )G′
). This is a two-sided ideal of D(V )G

′

=T0[X, Y ].
Remember from Proposition 3.1.6 that any D ∈ D(V )G

′

can be written uniquely in
the form

D =
∑
k∈N∗

ukY k
+

∑
n∈N

vn Xn (finite sums),

where uk, vn ∈ T0 = D(V )G.

Lemma 5.2.5. Jã =

{
D =

∑
k∈N∗

ukY k
+

∑
n∈N

vn Xn
∣∣∣ uk, vn ∈ Jã ∩T0

}
.

Proof. From Theorem 5.2.3 the algebra Rã is isomorphic to U (C, rã(u XY ), d0). If
rã(D)=

∑
k∈N∗ rã(uk)rã(Y )

k
+
∑

n∈N rã(vn)rã(X)
n
=0, then from Corollary 4.1.10

we obtain that rã(uk)= 0 and rã(vn)= 0 for all k and all n. �

Let us now give a set of generators for the ideal ker(rã) in D(V )G
′

= T0[X, Y ].
From Proposition 5.1.3 we obtain that rã(E) = d0(t d/dt) + d(ã). Therefore
rã((E − d(ã))/d0)= t d/dt . Define G ã

i = Ri − bRi ((E − d(ã))/d0, ã), where the
Ri are the Capelli operators introduced in Section 2.2. Obviously G ã

i ∈D(V )G=T0.
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Using Proposition 5.1.3 again we obtain

rã(G
ã
i )= rã

(
Ri − bRi

(
E − d(ã)

d0
, ã
))

= rã(Ri )− bRi

(
rã

(
E − d(ã)

d0

)
, ã
)

= bRi

(
t

d
dt
, ã
)
− bRi

(
t

d
dt
, ã
)
= 0.

Hence the elements G ã
i belong to Jã ∩T0.

Theorem 5.2.6. The elements G ã
i are generators of Jã:

Jã = ker
(
rã D(V )G′

)
=

r∑
i=0

D(V )G
′

G ã
i =

r∑
i=0

G ã
i D(V )G

′

.

Proof. From Lemma 5.2.5, it is now enough to prove that

Jã ∩T0 ⊂

r∑
i=0

D(V )G G ã
i =

r∑
i=0

T0G ã
i .

Let D ∈ Jã ∩ T0. As T0 = C[R0, . . . , Rr ] (Theorem 2.2.9), we have also
T0 = C[G ã

0, . . . ,G ã
r , E]. Therefore D =

∑
Qi E i , where Qi ∈ C[G ã

0, . . . ,G ã
r ].

Hence Qi ∈ Qi (0)+
∑r

i=0 D(V )G G ã
i . Then

0= rã(D)=
∑

i

Qi (0)rã(E
i )=

∑
i

Qi (0)
(

d0

(
t d
dt

)
+ d(ã)

)i
.

Therefore Qi (0) = 0 (i = 0, . . . , r). Hence Qi ∈
∑r

i=0 D(V )G G ã
i , which yields

D ∈
∑r

i=0 D(V )G G ã
i . �

Remark 5.2.7. For ã = 0, the result of the preceding theorem is due to [Levasseur
2009, Theorem 4.11(v)].

5.3. Rational radial component algebras.

Definition 5.3.1. The rational radial component algebra Rr
ã is the image of

D(O)G
′

= T0[X, X−1
] = T

under the map D 7→ rã(D).

In fact as shown in the following proposition the structure of the algebras Rr
ã

is simpler than the structure of Rã, and the ideal Iã = ker(rã) ⊂ T has the same
generators as Jã.

Proposition 5.3.2. 1) For all ã, the rational radial component algebra Rr
ã is iso-

morphic to C[t, t−1, t d/dt].
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2) Iã = ker(rã)=
r∑

i=0
TG ã

i =
r∑

i=0
G ã

i T.

Proof. 1) We have T = T0[X, X−1
]. And T0 = Z(T)[E], from Theorem 3.2.6.

Therefore T = Z(T)[X, X−1, E]. On the other hand we have rã(Z(T)) = C,
rã(X)= t , rã(X

−1)= t−1 and rã(E)= d0(t d/dt)+ d(ã). Hence

Rr
ã = rã(T)= C

[
t, t−1, d0

(
t d
dt

)
+ d(ã)

]
= C

[
t, t−1, t d

dt

]
.

2) Obviously
∑r

i=0 TG ã
i ⊂ Iã. As Iã is a two-sided ideal of T, it is easily seen

to be graded. If D ∈ Iã ∩Tp, then X−p D ∈ T0 ∩ Iã = T0 ∩ Jã =
∑r

i=0 T0G ã
i .

Therefore D ∈
∑r

i=0 TG ã
i . �
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