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PERTURBATIONS OF A CRITICAL FRACTIONAL EQUATION

EDUARDO COLORADO, ARTURO DE PABLO AND URKO SÁNCHEZ

We deal with the following fractional critical problem:{
(−1)α/2u = |u|2α/(N−α)u+ f (x) in �,
u = 0 on ∂�,

where � ⊂ RN is a regular bounded domain, 0 < α < 2 and N > α. Under
appropriate conditions on the size of f , we prove existence and multiplicity
of solutions.

1. Introduction

It is well known, using the Pohozhaev identity [1970], that the critical problem

(1-1)
{
−1u = |u|4/(N−2)u in �,
u = 0 on ∂�

has no positive solution whenever � is a star-shaped domain. Starting from this
nonexistence result, in the last decades several perturbations of this problem have
been investigated in order to obtain a solution and understand the criticality of
the problem. A pioneering work in that sense is the one performed by Brézis and
Nirenberg [1983], in which the authors study the existence of positive solutions of
the problem

(1-2)
{
−1u = |u|4/(N−2)u+ f (x, u) in �,
u = 0 on ∂�,

where f (x, u)= f (u)= λu, with λ ∈ R and N > 2. Among other extensions, we
highlight the work [Ambrosetti et al. 1994], where the authors studied the case
f (u)= λ|u|q−2u with 1< q < 2, as well as [Tarantello 1992], in which the case
f (x, u)= f (x) was investigated; see also [Rey 1992].

Our purpose here is to study the similar situation that occurs for the fractional
Laplacian in a bounded domain and the corresponding critical power.

E. Colorado is partially supported by Spanish Research Projects Ref. MTM2009-10878 and
MTM2010-18128. A. de Pablo is partially supported by Spanish Research Project Ref. MTM2011-
25287.
MSC2010: 35A15, 49J35, 35R11.
Keywords: semilinear elliptic equations, fractional Laplacian, critical problem.

65

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.271-1
http://dx.doi.org/10.2140/pjm.2014.271.65


66 EDUARDO COLORADO, ARTURO DE PABLO AND URKO SÁNCHEZ

We define the fractional Laplacian in a bounded domain � via its spectral
decomposition, namely

(−1)α/2u =
∑

a jρ
α/2
j ϕ j ,

where {ρ j , ϕ j } is the spectral decomposition of the operator −1 in � under zero
Dirichlet boundary conditions and the a j are the coefficients of u for the base
{ϕ j } in L2(�). A more precise notation would be (−1)α/2� , because the operator
strongly depends on the domain �, but we omit the subscript since the domain
is fixed throughout the paper. We also recall that in the case where the domain
under consideration is the whole space RN , the associated fractional Laplacian
operator (−1)α/2F is defined via Fourier transformation for functions in the Schwartz
class: [

(−1)
α/2
F g

]∧
(ξ)= |ξ |α ĝ(ξ),

which gives a different operator.
The critical problem corresponding to (1-2) with the fractional Laplacian is

(1-3)
{
(−1)α/2u = |u|2α/(N−α)u+ f (x, u) in �,
u = 0 on ∂�.

First, there is again a (fractional) Pohozhaev-type identity, which in the case f ≡ 0
yields, as for the classical problem (1-1), the nonexistence of positive solutions
whenever � is a star-shaped domain; see [Brändle et al. 2013]. Note that

2α
N−α

= 2∗α − 2, where 2∗α :=
2N

N−α

is the critical Sobolev exponent associated to α.
Next, in the case f (x, u)= f (u), we point out [Barrios et al. 2012], in which

an existence and multiplicity result was proved for positive solutions when

f (u)= λ|u|q−2u, λ > 0, 0< α < 2, N > α, and 1< q <
2N

N −α
.

The case α = 1 and q = 2 was studied previously in [Tan 2011].
In this paper we investigate zero order perturbations, f (x, u)= f (x) small in

(1-3), of the critical problem f ≡ 0, in relation to the results of [Tarantello 1992]
for the classical Laplace operator. Thus, we consider the following problem:

(P)
{
(−1)α/2u = |u|p−2u+ f (x) in �,
u = 0 on ∂�,

where 0< α < 2, N > α, p = 2N
N−α

and f belongs to a suitable space.
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In order to establish the functional setting, we define the function space Hα/2
0 (�)

as the completion of C∞0 (�) endowed with the norm

‖u‖Hα/2
0
= ‖(−1)α/4u‖2 =

(∑
a2

jρ
α/2
j

)1/2
.

The operator L(u) = (−1)α/2u − |u|p−2u is well defined from Hα/2
0 (�) into its

dual H−α/2(�) by the Sobolev inequality; see (2-3) below. Thus it is natural to
consider data f in that space: we have f ∈ H−α/2(�) if and only if f = (−1)α/2g
with g ∈ Hα/2

0 (�); the associated norm is given by ‖ f ‖H−α/2 = ‖g‖Hα/2
0

.
Throughout, we will consider solutions of the problem (P) in the following sense:

Definition 1.1. Let f ∈ H−α/2(�). We say that u ∈ Hα/2
0 (�) is an energy solution

to the problem (P) if

(1-4)
∫
�

(−1)α/4u(x)(−1)α/4ψ(x) dx =
∫
�

(|u(x)|p−2u(x)+ f (x))ψ(x) dx

for every ψ ∈ Hα/2
0 (�).

In the sequel we use the simplified notation
∫

f =
∫

f (x) dx when no confusion
can arise.

The paper is organized as follows: In Section 2 we state the main existence
results and establish some preliminaries, and Sections 3 and 4 contain the proofs.

2. Main results and preliminaries

We will focus on functions f ∈ H−α/2(�) that are small in the following sense:

(2-1)
∫
�

f ϕ < c(α, N )‖ϕ‖(N+α)/αHα/2
0

for all ϕ ∈ Hα/2
0 (�) with ‖ϕ‖p = 1,

where
c(α, N )= 2α

N−α

(N−α
N+α

)N+α
2α
.

The main result of the paper is the following:

Theorem 2.1. Assume f 6≡ 0 satisfies (2-1). Then the problem (P) has at least two
solutions. Moreover, if f ≥ 0 a.e. in �, then these solutions are nonnegative a.e.
in �.

We will also prove that, if we relax the strict inequality in condition (2-1) by
replacing it with the condition

(2-2)
∫
�

f ϕ ≤ c(α, N )‖ϕ‖(N+α)/αHα/2
0

for all ϕ ∈ Hα/2
0 (�) with ‖ϕ‖p = 1,

then we still obtain the existence of at least one solution:
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Theorem 2.2. Assume f 6≡ 0 satisfies (2-2). Then the problem (P) has at least one
solution. Moreover, if f is nonnegative a.e. in � then this solution is nonnegative
a.e. in �.

For the fractional Laplacian defined above and N > α, the following Sobolev
inequality holds:

(2-3)
∫
�

|(−1)α/4ϕ|2 ≥ S(α, N )
(∫

�

|ϕ|2N/(N−α)
)N−α

N
for all ϕ ∈ Hα/2

0 (�).

See, for example, [Brändle et al. 2013], where the inequality is proved as a conse-
quence of the Hardy–Littlewood–Sobolev inequality [Hardy and Littlewood 1928;
Sobolev 1938]. In the case of RN and (−1)α/4F , it takes the form

(2-4)
∫

RN
|(−1)

α/4
F ϕ|2 ≥ S(α, N )

(∫
RN
|ϕ|2N/(N−α)

)N−α
N

for all ϕ ∈ S(RN ).

The value of S(α, N ) can be seen, for instance, in [Lieb 1983]. It is independent
of the domain and is not attained in any bounded domain, although it is attained
in RN .

The condition (2-1) is equivalent to

(2-5)
∫
�

f ϕ < c(α, N )
‖ϕ‖

(N+α)/α
Hα/2

0

‖ϕ‖
N/α
p

for all ϕ ∈ Hα/2
0 (�)\{0}.

Moreover, since

(2-6)
∫
�

f ϕ ≤ ‖ f ‖H−α/2‖ϕ‖Hα/2
0
,

using the Sobolev inequality (2-3) we obtain the following sufficient condition for f
to satisfy (2-1):

(2-7) ‖ f ‖H−α/2 ≤ c(α, N )S(α, N )N/2α.

Remarks. (1) An assumption on the size of f like (2-1) is necessary in order to
find solutions of problem (P). For example, if f is a sufficiently large positive
constant, then problem (P) has no solutions.

(2) Condition (2-7) seems not to be sharp, in view of the result in [Castro and
Zuluaga 1993] for the case α = 2, which could also be proved in our func-
tional framework.

The associated energy functional to problem (P) is given by

I (u)= 1
2

∫
�

∣∣(−1)α/4u
∣∣2− 1

p

∫
�

|u|p −
∫
�

f u.
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Clearly, critical points of I correspond to solutions of (P) in the sense of (1-4).
Indeed, one of the solutions we will construct in the proof of Theorem 2.1 is a local
minimum of I in Hα/2

0 (�).

3. Proof of Theorem 2.1

First solution. We start with the definition of the Nehari manifold associated to
problem (P):

N= {u ∈ Hα/2
0 (�) : u 6≡ 0, 〈I ′(u), u〉 = 0}.

It is natural to look for solutions in this manifold. Note that the condition u ∈ N is
equivalent to the identity

(3-1) ‖u‖2Hα/2
0
= ‖u‖p

p +

∫
�

f u.

Therefore the functional I restricted to N takes the equivalent forms

(3-2) I (u)= α

2N
‖u‖2Hα/2

0
−

N+α
2N

∫
�

f u = α

2N
‖u‖p

p −
1
2

∫
�

f u.

We will use both expressions in the sequel. In particular, using the first one we
deduce that the functional I is bounded from below on N:

(3-3) I (u)≥ α

2N
‖u‖2Hα/2

0
−

N+α
2N
‖ f ‖H−α/2 ‖u‖Hα/2

0
≥−

(N+α)2

8Nα
‖ f ‖2H−α/2,

where the last step is a consequence of the minimization of the function

αt2
− (N +α)‖ f ‖H−α/2 t.

Remark. Taking (3-3) into account, it makes sense to define

(3-4) c0 = infN I >−∞,

although the functional is not bounded from below in the whole space Hα/2
0 (�).

Note that if u0 is a local minimum of I in Hα/2
0 (�), then necessarily

‖u0‖
2
Hα/2

0
− (p− 1)‖u0‖

p
p ≥ 0.

In fact, as we will prove in Lemma 3.4, this inequality is strict; namely,

(3-5) ‖u0‖
2
Hα/2

0
− (p− 1)‖u0‖

p
p > 0.

In the same way, if u0 is a local maximum of I , we have

(3-6) ‖u0‖
2
Hα/2

0
− (p− 1)‖u0‖

p
p < 0.
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Thus, we first minimize the restriction of the functional I to N in order to find
a critical point and therefore a solution to the problem (P). As we will see, c0 is
achieved. To prove that, we start with some preliminary results.

Lemma 3.1. Let f 6≡ 0 satisfy (2-1). Given u ∈ Hα/2
0 (�), assume

∫
�

f u > 0. Then
there exist unique numbers σ = σ(u) > 0 and τ = τ(u) > σ with σu, τu ∈ N and
such that (3-5) is satisfied with u0 = σu and (3-6) with u0 = τu.

Proof. Let θ(t) = t‖u‖2Hα/2
0
− t p−1

‖u‖p
p. The maximum value of this function

occurs at

tM =

(
(N −α)‖u‖2Hα/2

0

(N +α)‖u‖p
p

)N−α
2α
,

and

θ(tM)=
2α

N−α

(N−α
N+α

)N+α
2α
‖u‖(N+α)/αHα/2

0

‖u‖N/α
p

= c(α, N )
‖u‖(N+α)/αHα/2

0

‖u‖N/α
p

.

Note that θ is a concave function, increasing on (0, tM) and decreasing on (tM ,∞),
with limt→∞ θ(t) = −∞. By (2-5) we get 0 <

∫
�

f u < θ(tM). Thus there exist
two unique values 0< σ < tM < τ such that

(3-7) θ(τ )=

∫
�

f u = θ(σ ), θ ′(τ ) < 0< θ ′(σ ).

Multiplying in the previous expression by τ , we have

0= τθ(τ )− τ
∫
�

f u = ‖τu‖2Hα/2
0
−‖τu‖p

p −

∫
�

τ f u;

thus τu ∈ N. Moreover,

‖τu‖2Hα/2
0
− (p− 1)‖τu‖p

p = τ
2θ ′(τ ) < 0.

Arguing in a similar way for σ , we obtain σu ∈ N and

‖σu‖2Hα/2
0
− (p− 1)‖σu‖p

p = σ
2θ ′(σ ) > 0. �

Observe that without the condition
∫
�

f u > 0 we still can find a value τ > 0
with τu ∈ N satisfying (3-5). Conversely, the condition

∫
�

f u > 0 is guaranteed
for any function u ∈ N that satisfies (3-5).

We notice that the purpose of the strict condition (2-1) on f is just to obtain∫
�

f u < θ(tM). It also appears to be of importance in Lemma 3.3 below. It is
known that, when one deals with the problem associated to the standard Laplacian,
and under certain hypotheses, the condition (2-1) is not sharp; see [Castro and
Zuluaga 1993]. We suspect that a similar fact can occur in our case.
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Corollary 3.2. Under the hypotheses of Lemma 3.1, we have

I (τu)=max
t≥σ

I (tu) and I (σu)= min
0≤t≤τ

I (tu).

Proof. It is straightforward once we notice that the function g(t)= I (tu) satisfies
g′(t)= θ(t)−

∫
�

f u. �

The next property uses a technical result analogous to Lemma 2.2 in [Tarantello
1992]. The proof follows almost word by word the one in that paper; see also [Brézis
and Nirenberg 1989]. We only have to adapt the calculations to the functional
framework of the fractional Laplacian. We leave the details to the interested reader.

Lemma 3.3. Let f 6≡ 0 satisfy (2-1). Then

(3-8) µ0 := inf
u∈Hα/2

0 (�)

‖u‖p=1

(
c(α, N )‖u‖(N+α)/αHα/2

0
−

∫
�

f u
)

is achieved, and moreover µ0 > 0.

The proof of this lemma is a straightforward adaptation to our setting of the similar
one in the classical case; see Lemma 2.2 in [Tarantello 1992], which is inspired by
the corresponding result in [Brézis and Nirenberg 1989].

The following lemma establishes a crucial property for minima of the functional;
see inequality (3-5).

Lemma 3.4. Let f 6≡ 0 satisfy (2-1) and let u ∈ N. Then

‖u‖2Hα/2
0
− (p− 1)‖u‖p

p 6= 0.

Proof. Consider the functional, defined for u ∈ Hα/2
0 (�), u 6≡ 0, by

φ(u)= c(α, N )
‖u‖(N+α)/αHα/2

0

‖u‖N/α
p

−

∫
�

f u.

If ‖u‖p = 1, we have

φ(tu)= t
(

c(α, N )‖u‖(N+α)/αHα/2
0

−

∫
�

f u
)
.

Thus, given γ > 0 (to be chosen later), by Lemma 3.3 we have

(3-9) inf
‖u‖p≥ γ

φ(u)≥ γµ0.

Note that this infimum is also positive.
Now we suppose, for a contradiction, that there exists u ∈ N such that

(3-10) ‖u‖2Hα/2
0
− (p− 1)‖u‖p

p = 0.
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By the Sobolev inequality (2-3), we obtain

S(α, N )‖u‖2p − (p− 1)‖u‖p
p ≤ 0,

which implies

‖u‖p ≥

( S(α, N )
p−1

)1/(p−2)
=: γ.

Now, substituting (3-10) into (3-1), we get

(3-11) 0= ‖u‖2Hα/2
0
−‖u‖p

p −

∫
�

f u = (p− 2)‖u‖p
p −

∫
�

f u .

Finally, by (3-9) and (3-11), we conclude that

0< γµ0 ≤ φ(u)= (p− 2)
(N−α

N+α

)N+α
2α
‖u‖(N+α)/αHα/2

0

‖u‖N/α
p

−

∫
�

f u

= (p− 2)

[(N−α
N+α

)N+α
2α
‖u‖(N+α)/αHα/2

0

‖u‖N/α
p

−‖u‖p
p

]

= (p− 2)‖u‖p
p

[(
(N −α)‖u‖2Hα/2

0

(N +α)‖u‖p
p

)N−α
2α

− 1

]
= 0,

which is a contradiction. �

Lemma 3.5. Let f 6≡ 0 be a function satisfying (2-1). Given u ∈ N, there exists a
positive function µu : Hα/2

0 (�)→ R, differentiable in a neighborhood U0 of the
origin in Hα/2

0 (�), such that

µu(0)= 1, µu(z)(u− z) ∈ N,

and

(3-12) 〈µ′u(0), z〉 =
2
∫
�
(−1)α/4u(−1)α/4z− p

∫
�
|u|p−2uz−

∫
�

f z

‖u‖2Hα/2
0
− (p− 1)‖u‖p

p
for all z ∈U0.

Proof. Consider the function

F(µ, z)= µ‖u− z‖2Hα/2
0 (�)−µ

p−1
‖u− z‖p

p −

∫
�

f (u− z).

By Lemma 3.4, we have

∂F
∂µ
(1, 0)= ‖u‖2Hα/2

0
− (p− 1)‖u‖p

p 6= 0.

We complete the proof by applying the implicit function theorem to the function F
at the point (1, 0). �
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We are now in a position to prove one of the main results of the paper.

Proposition 3.6. The functional I possesses a local minimum in Hα/2
0 (�). In

particular, (P) has a solution. Moreover, if f is nonnegative a.e. in �, this solution
is nonnegative a.e. in �.

Proof. Consider v, the unique solution to the equation (−1)α/2v = f in Hα/2
0 (�).

Let σ = σ(v) be as defined in Lemma 3.1. Since σ(v)v ∈ N, we have

(3-13) I (σv)= σ
2

2
‖v‖2Hα/2

0
−
σ p

p
‖v‖p

p − σ‖v‖
2
Hα/2

0

=−
σ 2

2
‖v‖2Hα/2

0
+

N+α
2N

σ p
‖v‖p

p

<−
ασ 2

2N
‖v‖2Hα/2

0
=−

ασ 2

2N
‖ f ‖2H−α/2 .

Then, by (3-3) and (3-13), the infimum in (3-4) satisfies the estimate

(3-14) −
(N +α)2

8Nα
‖ f ‖2H−α/2 ≤ c0 <−

ασ 2

2N
‖ f ‖2H−α/2 < 0.

The expression (3-2) shows that the restriction of the functional I to N is weakly
lower semicontinuous. Therefore, by Ekeland’s variational principle [1974], we
obtain a minimizing sequence of the functional I constrained to N, i.e., {un} ⊂ N

such that, for every n ∈ N,

(i) I (un) < c0+
1
n

and (ii) 1
n
‖un − v‖Hα/2

0
≥ I (un)− I (v) for all v ∈ N.

Combining (i), (3-14) and (3-2), we have

I (un)=
α

2N
‖un‖

2
Hα/2

0
−

N+α
2N

∫
�

f un < c0+
1
n
<−

ασ 2

2N
‖ f ‖2H−α/2

for n large enough. Therefore

(3-15) ασ 2

N+α
‖ f ‖2H−α/2 ≤

∫
�

f un and ‖un‖
2
Hα/2

0
≤

N+α
α

∫
�

f un.

These inequalities, together with (2-6), give

(3-16) ασ 2

N+α
‖ f ‖H−α/2 ≤ ‖un‖Hα/2

0
≤

N+α
α
‖ f ‖H−α/2 .

Thus, we have (for a subsequence) that un⇀u0 weakly in Hα/2(�), with u0 6≡0. We
claim that ‖I ′(u0)‖H−α/2 = 0. Take z ∈ Hα/2

0 (�) with ‖z‖Hα/2
0
= 1. By Lemma 3.5,

for every n ∈ N, there exists a positive function µun such that

wδ = µun (δz)(un − δz) ∈ N

for δ > 0 small enough. Set tn(δ)= µun (δz). Putting v = wδ in (ii) and using the



74 EDUARDO COLORADO, ARTURO DE PABLO AND URKO SÁNCHEZ

mean value theorem, we have

1
n
‖wδ − un‖Hα/2

0
≥ (1− tn(δ))〈I ′(wδ), un〉+ δtn(δ)〈I ′(wδ), z〉+ o(δ).

Dividing by δ and taking the limit as δ goes to 0, we have

1
n
(
1+ |t ′n(0)| ‖un‖Hα/2

0

)
≥ ‖I ′(un)‖H−α/2

with |t ′n(0)| = 〈µ
′
un
(0), z〉, so that, by (3-16), we get

(3-17) ‖I ′(un)‖H−α/2 ≤
1
n

(
1+ N+α

α
|t ′n(0)| ‖ f ‖H−α/2

)
.

Thus we are done once we prove that |t ′n(0)| is uniformly bounded. By Lemma 3.5
and (3-16) we obtain

|t ′n(0)| ≤
C∣∣‖un‖

2
Hα/2

0
− (p− 1)‖un‖

p
p
∣∣

for some constant C . Assume, for a contradiction, that

(3-18) ‖un‖
2
Hα/2

0
− (p− 1)‖un‖

p
p→ 0 as n→∞.

From (3-18) and (3-1) we deduce the estimate∫
�

f un = (p− 2)‖un‖
p
p + o(1).

Moreover, from (3-16) we derive that ‖un‖p ≥ γ for some constant γ > 0. Thus,
reasoning as in Lemma 3.4, we get

0< γ (N+α)/2µ0 ≤ ‖un‖
α/N
Hα/2

0
φ(un)

= (p− 2)

[(
(N −α)‖un‖

2
Hα/2

0

N +α

)N−α
2α
− (‖un‖

p
p)
(N−α)/2α

]
→ 0,

which leads to a contradiction. Therefore ‖I ′(u0)‖H−α/2 = 0, and we have obtained
a weak solution of (P).

To obtain strong convergence, we proceed as usual. Recalling that I is weakly
lower semicontinuous in N, we get

c0 ≤ I (u0)≤ lim
n→∞

I (un)= c0.

This implies, using (3-2), the limits

lim
n→∞
‖un‖Hα/2

0
= ‖u0‖Hα/2

0
, lim

n→∞
‖un‖p = ‖u0‖p.

To see that u0 is a local minimum in Hα/2
0 (�), we first show that (3-5) holds. In fact,

since u0 ∈N and also
∫
�

f u0 > 0 by (3-15), it is clear that one of the values σ(u0)
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or τ(u0) given by Lemma 3.1 equals 1. Assume, for a contradiction (see Lemma 3.4),
that u0 satisfies (3-6), i.e., σ(u0)<τ(u0)=1. By Corollary 3.2, I (σ (u0)u0)< I (u0),
which contradicts the fact that u0 is the infimum in N. Hence u0 satisfies (3-5) and
σ(u0) = 1. We remark that having the strict inequality in (2-5) is crucial in the
present argument. In particular, we have obtained 1= σ(u0) < tM < τ(u0), or

(3-19) 1<
(
(N −α)‖u0‖

2
Hα/2

0

(N +α)‖u0‖
p
p

)N−α
2α
,

which is the same. Take ε > 0 small enough such that

(3-20) 1<
(
(N −α)‖u0− z‖2Hα/2

0

(N +α)‖u0− z‖p
p

)N−α
2α
=: tM,ε

for ‖z‖Hα/2
0
<ε. By Lemma 3.5, there exists a positive function µu0 : H

α/2
0 (�)→R

such that µu0(z)(u0 − z) ∈ N for every ‖z‖Hα/2
0
< ε, with ε smaller if necessary.

Indeed, by continuity we have µu0(z) < tM,ε for ε > 0 sufficiently small. Thus we
get that µu0(z)(u0 − z) satisfies (3-5), and as a consequence of Lemma 3.1 and
Corollary 3.2 applied to u0− z, we obtain

I (s(u0− z))≥ I (µu0(z)(u0− z))≥ I (u0) for all s ∈ (0, tM,ε).

Since by (3-20) we can take s = 1, we conclude that I (u0− z)≥ I (u0) for every
‖z‖Hα/2

0
< ε, i.e, u0 is a local minimum in Hα/2

0 (�).
To finish, we assume that f ≥ 0. Then it follows that

∫
�

f |u0| > 0. Take
σ = σ(|u0|) > 0 and τ = τ(|u0|) > σ . We have

‖u0‖
p
p +

∫
�

f u0 = ‖u0‖
2
Hα/2

0
> (p− 1)‖u0‖

p
p

and, since τ |u0| satisfies (3-6), we get

τ p
‖u0‖

p
p + τ

∫
�

f |u0| = τ
2∥∥|u0|

∥∥2
Hα/2

0
< (p− 1)τ p

‖u0‖
p
p.

Thus,

(p− 2)‖u0‖
p
p <

∫
�

f u0 ≤

∫
�

f |u0| ≤ (p− 2)τ p−1
‖u0‖

p
p,

which implies τ > 1. Therefore, by Corollary 3.2, we have

I (u0)≤ I (σ |u0|)≤ I (|u0|).

On the other hand, by the generalized Stroock–Varopoulos inequality [de Pablo
et al. 2012], we have ∫

�

∣∣(−1)α/4|u0|
∣∣2 ≤ ∫

�

|(−1)α/4u0|
2,
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which implies I (|u0|) ≤ I (u0). As a consequence, I (u0) = I (|u0|), σ = 1, and
thus |u0| ∈ N is a solution. �

Second solution. We will look for the second solution using a classical approach
that relies on the well-known mountain pass theorem; see [Ambrosetti and Rabi-
nowitz 1973]. Recall that {un}⊂ Hα/2

0 (�) is a Palais–Smale (PS for short) sequence
of level c for I if I (un)→ c and ‖I ′(un)‖H−α/2→ 0 as n→∞. Moreover, we say
that I satisfies a PS condition of level c (PSc for short) if every PS sequence of level c
for I has a convergent subsequence in Hα/2

0 (�). As is usual in critical problems,
the functional I does not satisfy a global PS condition, i.e., a PSc condition for
every c. Our aim is to prove that I satisfies a PSc condition for c below a precise
critical level c∗. We define

(3-21) c∗ = c0+
α

2N
S(α, N )N/α.

This value, which is obtained in the next lemma, also appears in several other
contexts, for instance when one applies the concentration-compactness principle
to critical problems; see [Ambrosetti et al. 1994; Brézis and Nirenberg 1983;
Hardy and Littlewood 1928; Lions 1985] for the standard case, and, for example,
[Barrios et al. 2012] for the fractional case, and [Barrios et al. 2014; Servadei
and Valdinoci ≥ 2014] for different nonlocal operators which include a different
fractional Laplacian.

Lemma 3.7. The functional I satisfies a local PSc condition for any c < c∗.

Proof. Let {un} ⊂ Hα/2
0 (�) be a PS sequence of level c < c∗. It is easy to check

that the un are uniformly bounded in Hα/2(�). Thus, there exists a subsequence
(still denoted by un) such that un ⇀ z0 weakly in Hα/2

0 (�). As a consequence,
z0 ∈ Hα/2

0 (�) is a solution of (P).
We rewrite un as un = u0+φn with φn→ 0. Applying the Brézis–Lieb lemma

[1983] we get

(3-22) ‖un‖
p
p = ‖u0‖

p
p +‖φn‖

p
p + o(1).

On one hand, by (3-22) and taking n large enough we have

c∗ > I (un)= I (u0)+
1
2
‖φn‖

2
Hα/2

0
−

1
p
‖φn‖

p
p + o(1)

≥ c0+
1
2
‖φn‖

2
Hα/2

0
−

1
p
‖φn‖

p
p + o(1).

Hence, by the definition of c∗ in (3-21), we obtain

(3-23) 1
2
‖φn‖

2
Hα/2

0
−

1
p
‖φn‖

p
p <

α

2N
S(α, N )N/α

+ o(1).
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Taking into account that {un} is a PS sequence, we have

(3-24) o(1)= 〈I ′(un), un〉 = ‖un‖
2
Hα/2

0
−‖un‖

p
p −

∫
�

f un

= ‖u0‖
2
Hα/2

0
−‖u0‖

p
p −

∫
�

f u0+‖φn‖
2
Hα/2

0
−‖φn‖

p
p + o(1)

= 〈I ′(u0), u0〉+ ‖φn‖
2
Hα/2

0
−‖φn‖

p
p + o(1)

= ‖φn‖
2
Hα/2

0
−‖φn‖

p
p + o(1).

Now we want to prove that {φn} has a subsequence strongly converging to 0
in Hα/2

0 (�). Suppose, on the contrary, that there are C, k>0 such that ‖φn‖Hα/2
0
≥C

for all n ≥ k. Using (2-3) in (3-24), we get ‖φn‖
p−2
p ≥ S(α, N )+ o(1) and hence

(3-25) ‖φn‖
p
p ≥ S(α, N )N/α

+ o(1).

From (3-23) and (3-25), we have

α

2N
S(α, N )N/α

≤
α

2N
‖φn‖

p
p + o(1)= 1

2
‖φn‖

2
Hα/2

0
−

1
p
‖φn‖

p
p + o(1)

<
α

2N
S(α, N )N/α,

which is a contradiction. �

It is known (see, for instance, [Chen et al. 2006]) that the minimizers for the
Sobolev inequality (2-4) are given by the two-parameter family of functions

(3-26) uε,x0(x)=
ε(N−α)/2

(|x − x0|2+ ε2)(N−α)/2
,

where x0 ∈ RN , ε > 0. In what follows we will use the notation

(3-27) A = ‖uε,x0‖p, B = ‖(−1)α/4F uε,x0‖2 =

(∫
RN
|ξ |α|ûε,x0(ξ)|

2 dξ
)1/2

.

Note that the last quantity defines a norm in the homogeneous fractional Sobolev
space Ḣα/2(RN ). Both numbers A and B are clearly independent of ε and x0, and
moreover B2

= S(α, N )A2.
Without loss of generality we may assume that 0 ∈ �. We define a cut-off

function θ ∈ C∞(RN ) by θ(x) = θ0(|x |/ρ) with ρ > 0, where θ0 ∈ C∞(R) is a
nonincreasing function satisfying

θ0(s)= 1 if s ≤ 1
2 , θ0(s)= 0 if s ≥ 1.

We now recall that, if u0 is the solution constructed in the previous subsection,
we can find a set 6 ⊂ � of positive Lebesgue measure such that u0 ≥ ν > 0 a.e.
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in 6 (replace u0 with −u0 and f with − f if necessary). For x0 ∈ 6, we set
ũε,x0 = θuε,x0 ∈ Hα/2

0 (�).

Proposition 3.8. In the above notation, for a.e. x0 ∈6 there exists ε∗ = ε∗(x0) > 0
sufficiently small such that

(3-28) sup
t≥0

I (u0+ t ũε,x0) < c∗ for all 0< ε < ε∗.

We observe that when one evaluates the functional in (3-28), one needs to
evaluate ‖ũε,x0‖Hα/2

0
; i.e., one needs to evaluate the fractional Laplacian of a product

of functions. This requires the use of a different, but equivalent, norm which does
not involve directly the fractional Laplacian. It uses the so-called α-harmonic
extension of [Caffarelli and Silvestre 2007] for (−1)α/4F , adapted to the bounded
domain setting in [Brändle et al. 2013; Cabré and Tan 2010; Stinga and Torrea
2010].

Consider the semi-infinite cylinder C� = {(x, y) : x ∈�, y > 0} ⊂RN+1
+ and its

lateral boundary ∂LC� = ∂�× (0,∞). For a function u ∈ Hα/2
0 (�), we denote its

α-harmonic extension to C� by w = Eα(u), defined as the solution to the problem

(3-29)


div(y1−α

∇w)= 0 in C�,

w = 0 on ∂LC�,

w = u on �×{y = 0}.

Then the equation

−κα lim
y↘0

∂w

∂y
= (−1)α/2u

holds, with κα a positive constant. Let Xα
0 (C�) be the completion of C∞0 (�×[0,∞))

under the norm

‖φ‖Xα0 =

(
κα

∫
C�

y1−α
|∇φ(x, y)|2 dx dy

)1/2

.

In the case � = RN the corresponding space for functions in the upper half-
space RN+1

+ is Xα(RN+1
+ ), which can be defined in the same way with the integral

extended to RN+1
+ . The extension operator can be characterized also as a minimiza-

tion of the Xα
0 -norm (equivalently, the Xα norm) for all the functions with common

trace at y = 0. Note that the extension operator is an isometry from Hα/2
0 (�) to

Xα
0 (C�) and from Hα/2(RN ) to Xα(RN+1

+ ); that is,

‖Eα(ψ)‖Xα0
= ‖ψ‖Hα/2

0
for all ψ ∈ Hα/2

0 (�),(3-30)

‖Eα(ψ)‖Xα = ‖ψ‖Ḣα/2 for all ψ ∈ Ḣα/2(RN ).(3-31)

This means that

(3-32) ‖w‖Xα0 ≥ ‖w( · , 0)‖Hα/2
0

for all w ∈ Xα
0 (C�)
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and

(3-33) ‖w‖Xα ≥ ‖w( · , 0)‖Hα/2 for all w ∈ Xα(RN ).

See [Brändle et al. 2013] for the details.
We define the family wε,x0 = Eα(uε,x0), with uε,x0 given in (3-26). We want

to find a family of modified minimizers in the extended space, by using a cutoff
function in C�. To do that we take

φ(x, y)= θ0

(
(|x − x0|

2
+ y2)1/2

ρ

)
,

where θ0 is defined above. With this notation we define w̃ε, x0 = φwε,x0 ∈ Xα
0 (C�)

and w̃ε, x0( · , 0)= ũε, x0( · ).
In [Barrios et al. 2012, Lemma 3.8] the following estimates for w̃ε,x0 are proved:

(3-34) ‖w̃ε,x0‖
2
Xα0
= ‖wε,x0‖

2
Xα + O(εN−α).

In view of (3-30), (3-32) and (3-34), we have

(3-35) ‖ũε,x0‖
2
Hα/2

0
≤ B2

+ O(εN−α).

Moreover,

(3-36) ‖ũε,x0‖
p
p ≥ Ap

+ O(εN ).

We now state a result that will be useful in the proof of Proposition 3.8. Its
proof follows the same arguments as in [Brézis and Nirenberg 1989], with obvious
changes for our setting, so we omit the details.

Lemma 3.9. Assume that a, b > 0 and that u0, ũε,x0 are defined as above. For
t ∈ [a, b], we have

(3-37) ‖u0+ t ũε,x0‖
p
p = ‖u0‖

p
p + t p

‖ũε,x0‖
p
p + pt

∫
�

|u0|
p−2u0ũε,x0

+ pt p−1
∫
�

|ũε,x0 |
p−2ũε,x0u0+ o(ε(N−α)/2).

Proof of Proposition 3.8. On the one hand, since I (u0+ t ũε,x0)|t=0 = c0 < c∗, by a
continuity argument we can find t0, ε0 > 0 both small enough such that

I (u0+ t ũε,x0) < c∗ for all t ∈ (0, t0) and all ε ∈ (0, ε0).

On the other hand, by Lemma 3.9, together with (3-36) and the fact that A and B
are independent of ε, we have

I (u0+ t ũε,x0)→−∞ as t→∞ for all ε > 0.
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Hence there exists t1 > 0 large enough that

I (u0+ t ũε,x0) < c0 < c∗ for all t ≥ t1 and all ε ∈ (0, ε0).

Thus, we just need to prove that there exists ε∗ ∈ (0, ε0) such that

sup
t0≤t≤t1

I (u0+ t ũε,x0) < c∗

for every 0< ε < ε∗.
Take t ∈ [t0, t1]. Clearly, we have

(3-38) I (u0+t ũε,x0)=
1
2
‖u0‖

2
Hα/2

0
+t
∫
�

(−1)α/4u0(−1)
α/4ũε,x0+

t2

2
‖ũε,x0‖

2
Hα/2

0

−
1
p
‖u0+ t ũε,x0‖

p
p −

∫
�

f u0− t
∫
�

f ũε,x0 .

Since S(α, N ) is attained for the function uε,x0 , substituting (3-35), (3-36) and
(3-37) in (3-38) we have

I (u0+ t ũε,x0)≤
1
2
‖u0‖

2
Hα/2

0
+ t
∫
�

(−1)α/4u0(−1)
α/4ũε,x0 +

t2

2
B2

−
1
p
‖u0‖

p
p −

t p

p
Ap
− t
∫
�

|u0|
p−2u0ũε,x0 − t p−1

∫
�

|ũε,x0 |
p−1u0

−

∫
�

f u0− t
∫
�

f ũε,x0 + o(ε(N−α)/2).

On the other hand, since u0 is solution of (P), we get

(3-39) I (u0+t ũε, x0)≤ I (u0)+
t2

2
B2
−t p−1

∫
�

|ũε, x0 |
p−1u0−

t p

p
Ap
+o(ε(N−α)/2).

Extending u0 by zero outside �, we get∫
�

|ũε,x0 |
p−1u0 =

∫
RN

u0(x)θ p−1(x)
ε(N+α)/2

(|x − x0|2+ ε2)(N+α)/2

= ε(N−α)/2
∫

RN
u0(x)θ p−1(x) 1

εN η
( x−x0

ε

)
,

with η(x)= (|x |2+ 1)−(N+α)/2. Thus, there exists a constant ν > 0 such that∫
RN

u0(x)θ p−1(x) 1
εN η

( x−x0
ε

)
≥ Kν

for every ε > 0 sufficiently small, x0 ∈6 and K =
∫

RN η(x) <∞. Therefore

(3-40)
∫
�

|ũε,x0 |
p−1u0 = ε

(N−α)/2Kν+ o(ε(N−α)/2).

Substituting (3-40) in (3-39), we have

(3-41) I (u0+ t ũε,x0)≤ c0+
t2

2
B2
− t p−1ε(N−α)/2Kν− t p

p
Ap
+ o(ε(N−α)/2).
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Let us now define the function

g(s)= s2

2
B2
− s p−1ε(N−α)/2Kν− s p

p
Ap for s > 0,

and let sε > 0 be the point of global maximum, i.e.,

(3-42) 0= g′(sε)= sεB2
− (p− 1)s p−2

ε ε(N−α)/2Kν− s p−1
ε Ap.

We denote S0 = (B2/Ap)1/(p−2). Note that 0 < sε < S0 and sε → S0 as ε ↘ 0.
Let δε > 0 be such that sε = S0(1− δε). Since B2/Ap

= S p−2
0 , by (3-42) we have( B2(p−1)

Ap

)1/(p−2)
(1−δε−(1−δε)p−1)−(p−1)S p−2

0 (1−δε)p−2ε(N−α)/2Kν = 0,

which implies

(3-43) (p− 2)
( B2(p−1)

Ap

)1/(p−2)
δε = (p− 1)S p−2

0 ε(N−α)/2Kν+ o(ε(N−α)/2).

By (3-41) with t = sε and (3-43), we have

I (u0+ sεũε,x0)≤ c0+
s2
ε

2
B2
− s p−1

ε ε(N−α)/2Kν− s p
ε

p
Ap
+ o(ε(N−α)/2)

= c0+
S2

0

2
B2
− S p−1

0 ε(N−α)/2Kν−
S p

0

p
Ap
+ o(ε(N−α)/2)

= c0+
α

2N
S(α, N )N/α

− S p−1
0 ε(N−α)/2Kν+ o(ε(N−α)/2)

= c∗− S p−1
0 ε(N−α)/2Kν+ o(ε(N−α)/2).

Taking ε sufficiently small, this finishes the proof. �

Lemma 3.10. Assume f 6≡ 0 satisfies (2-1). Then the functional I possesses a
critical point different from u0. In particular, (P) has a second solution. Moreover,
if f ≥ 0 a.e. in � then this solution is nonnegative a.e. in �.

Proof. Set ηε,M = u0+Mũε,x0 , with 0 < ε < ε∗ and x0 ∈ 6 so that (3-28) holds.
Assume that M > 0 is large enough such that I (ηε,M) < c0.

Now we set

0 = {γ : [0, 1] → Hα/2
0 (�) such that γ (0)= u0, γ (1)= ηε,M}.

By Proposition 3.8 we have

c0 < c1 = inf
γ∈0

max
t∈[0,1]

I (γ (t)) < c∗.

Thus, using the mountain pass theorem, we obtain a PS sequence of level c1, and
as a consequence of Lemma 3.7 we can find a critical point u1 in Hα/2

0 (�) with
energy level c1 > c0, i.e., u1 is a solution of (P) with u1 6≡ u0.
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To prove that the solution is positive in the case that f ≥ 0, we set

Ñ := {u ∈ N : u satisfies (3-6)}

and c2 = infÑ I . Is easy to see that, taking a larger M if necessary, we can assume

(3-44) c0 < c2 ≤ c1 < c∗.

Now, using Ekeland’s variational principle and following the steps of the proof
of Proposition 3.6, we can obtain a PS sequence of level c2. Again, Lemma 3.7
implies the existence of a solution u2 ∈N such that I (u2)= c2. Put τ = τ(|u2|) > 0.
Then τ |u2| ∈ Ñ. Finally, by Corollary 3.2,

inf
Ñ

I = I (u2)=max
t≥tM

I (tu2)≥ I (τu2)≥ I (τ |u2|),

which finishes the proof. �

Remark. Note that u2 could coincide with u1.

4. Proof of Theorem 2.2

When f satisfies condition (2-2) instead of (2-1), we use an approximation argument.

Proof of Theorem 2.2. Consider a sequence of numbers {εk}k∈N ⊂ (0, 1) such that
εk ↘ 0 as k→∞, and define fk = (1− εk) f . Clearly fk satisfies condition (2-1)
for every k ∈ N. We define Ik and Nk in a natural way:

Ik(u)=
1
2

∫
�

|(−1)α/4u|2− 1
p

∫
�

|u|p −
∫
�

fku,

Nk = {u ∈ Hα/2
0 (�) : u 6≡ 0, 〈I ′k(u), u〉 = 0}.

Let uk ∈ Nk be the local minimum found via Theorem 2.1, namely,

Ik(uk)= inf
Nk

Ik := ck .

In particular, we have

(4-1) 〈I ′k(uk), z〉 = 0 for all z ∈ Hα/2
0 (�),

and moreover

(4-2) ‖uk‖
2
Hα/2

0
−‖uk‖

p
p −

∫
�

fkuk = 0,

which, by (2-3) and (2-6), implies that ‖uk‖
2
Hα/2

0
< C for any k ∈ N and some

constant C > 0 independent of k. Take u ∈ N satisfying (3-5). Then∫
�

fku > 0 for all k ∈ N.
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Applying Lemma 3.1 with f = fk and N=Nk , we find the values 0<σk < tMk <τk

such that σku, τku ∈ Nk . Since u satisfies the inequality (3-5), we have τk > 1.
Thus, by Corollary 3.2 we have Ik(σku)≤ Ik(u), which leads to

ck ≤ Ik(σku)≤ Ik(u)≤ I (u)+ εk‖ f ‖H−α/2‖u‖Hα/2
0
≤ I (u)+Cεk .

In particular, ck ≤ c0+Cεk . Finally, reasoning as in (3-13) with f = fk , we obtain

−
(N+α)2

8Nα
‖ f ‖2H−α/2 <−

(N+α)2

8Nα
‖ fk‖

2
H−α/2 ≤ ck ≤ c0+Cεk .

After passing to a subsequence, we can assume that ck converges to some value c′

such that
−
(N+α)2

8Nα
‖ f ‖2H−α/2 ≤ c′ ≤ c0.

Moreover, since ‖uk‖
2
Hα/2

0
is uniformly bounded, again for a subsequence if neces-

sary, we have uk ⇀ u∗ weakly in Hα/2
0 (�). Then by (4-1) we have

〈I ′(u∗), z〉 = 0 for all z ∈ Hα/2
0 (�),

and I (u∗)≤ c0. This implies u∗ ∈N and I (u∗)= c0, which finishes the proof. The
positivity of the solution when the datum f is taken nonnegative follows from the
same argument as in the proof of Theorem 2.1. �

We finally remark that the solution constructed in this way is not necessarily a
minimum of the functional. Therefore we cannot prove the mountain pass geometry
in order to find a second solution.
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