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ON THE CLASSIFICATION OF COMPLETE
AREA-STATIONARY AND STABLE SURFACES IN THE

SUBRIEMANNIAN SOL MANIFOLD

MATTEO GALLI

We study the classification of area-stationary and stable C2 regular surfaces
in the space of the rigid motions of the Minkowski plane E(1, 1), equipped
with its subriemannian structure. We construct examples of area-stationary
surfaces that are not foliated by subriemannian geodesics. We also prove
that there exist an infinite number of C2 area-stationary surfaces with a
singular curve. Finally we show the stability of C2 area-stationary surfaces
foliated by subriemannian geodesics.

1. Introduction

The study of the subriemannian area functional in three-dimensional pseudohermi-
tian manifolds and in other subriemannian spaces has been largely investigated in
the last years, see [Ambrosio et al. 2006; Barbieri and Citti 2011; Barone Adesi
et al. 2007; Bigolin and Cassano 2010; Capogna et al. 2009; Cheng and Hwang
2010; Cheng et al. 2012; 2005; 2007; Danielli et al. 2007; 2008; 2009; Galli 2013;
Galli and Ritoré 2013; Garofalo and Nhieu 1996; Hladky and Pauls 2008; Hurtado
et al. 2010; Hurtado and Rosales 2008; ≥ 2014; Ritoré 2009; Ritoré and Rosales
2008; Rosales 2012; Shcherbakova 2009], among others.

One of the more interesting questions concerning the subriemannian area func-
tional is this:

Problem 1. Which are the area-minimizing surfaces in a given three-dimensional
contact subriemannian manifold?

A surface 6 is area-minimizing if A(6)6 A(6̃), for any compact deformation
6̃ of 6. To answer the previous question, a natural preliminary step is to study the
area-stationary surfaces, the critical points of the area functional.
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Problem 2. Which are the area-stationary surfaces in a given three-dimensional
contact subriemannian manifold?

We will consider these questions in the class of C2 regular surfaces. For a general
introduction about the study of the area functional in subriemannian spaces, we
refer the interested reader to [Capogna et al. 2007] and [Galli 2012], which treat
the case of Hn and the contact subriemannian manifolds respectively.

In Sasakian space forms, the classification of C2 area stationary surfaces was
given in [Hurtado et al. 2010] in the case of the Heisenberg group H1 and in [Rosales
2012] for the Sasakian structures of S3 and

∼
SL2(R). In the case of pseudohermitian

three-manifolds that are not Sasakian, the only known results concerning Problem 1
and Problem 2 are given in [Galli 2013], where the group of the rigid motions of
the Euclidean plane E(2) is studied.

Concerning the three-dimensional pseudohermitian manifolds, we have the fol-
lowing classification result, [Perrone 1998, Theorem 3.1], in terms of the Webster
scalar curvature W and of the pseudohermitian torsion τ :

Proposition 1.1. Let M be a simply connected contact 3-manifold that is homo-
geneous (in the sense of [Boothby and Wang 1958]). The following possibilities
arise:

1. If M is unimodular, it is

(i) the first Heisenberg group H1 when W = |τ | = 0;

(ii) the three-sphere group SU(2) when W > 2|τ |;

(iii) the group
∼

SL2(R) when −2|τ | 6=W < 2|τ |;

(iv) the group ∼E(2), universal cover of the group of rigid motions of the
Euclidean plane, when W = 2|τ |> 0;

(v) the group E(1, 1) of rigid motions of Minkowski 2-space, when W =
−2|τ |< 0;

2. If M is not unimodular, the Lie algebra is given by

[X, Y ] = αY + 2T, [X, T ] = γY, [Y, T ] = 0, α 6= 0,

where {X, Y } is an orthonormal basis of H, J (X) = Y and T is the Reeb
vector field. In this case W < 2|τ | and when γ = 0 the structure is Sasakian
and W =−α2.

The only case for which Problems 1 and 2 have not been investigated is that of
Sol geometry, modeled by the space E(1, 1). Its study is the aim of the present
work.

After some preliminaries, the paper is organized as follows.
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In Section 3, we compute explicitly the coordinates of the characteristic curves
with given initial conditions. These curves play an important role in the study of
area-stationary surfaces, since the regular part 6−60 of a surface 6 is foliated by
characteristic curves, that are not in general subriemannian geodesics, since E(1, 1)
is characterized by a nonvanishing pseudohermitian torsion.

Section 4 is the core of the paper. We first characterize the C2 complete, area-
stationary surfaces immersed in E(1, 1) with singular points or singular curves
that are subriemannian geodesics. On the other hand, for the first time in the
three-dimensional pseudohermitian setting, we also find examples of area-stationary
surfaces that are not foliated by subriemannian geodesics. We stress that these
examples form an infinite family; that is, given an horizontal curve 0, we can
construct an area-stationary surface having 0 as singular set 60.

Finally in Section 5 we prove that complete area-stationary surfaces with non-
empty singular set, whose characteristic curves are subriemannian geodesics, are
stable. We also find three families of nonsingular planes that are area-minimizing,
using a calibration argument.

We remark that Section 5 opens two interesting questions. Is a stable complete
area-stationary surface in E(1, 1) with a singular curve always foliated by sub-
riemannian geodesics in 6−60? Do some other complete stable area-stationary
surfaces in E(1, 1) with empty singular set exist?

2. Preliminaries

The group E(1, 1) of rigid motions of the Minkowski plane. We consider the
group of rigid motions of the Minkowski plane E(1, 1), a unimodular Lie group
with a natural subriemannian structure. As a model of E(1, 1) we choose the
underlying manifold R3 with the following orthonormal basis of left-invariant
vector fields:

(2-1) X = ∂

∂z
, Y = 1

√
2

(
−ez ∂

∂x
+ e−z ∂

∂y

)
, T = 1

√
2

(
ez ∂

∂x
+ e−z ∂

∂y

)
.

We have that {X, Y } is an orthonormal basis of the horizontal distribution H and
T is the Reeb vector field. The scalar product of two vector fields W and V with
respect to the metric induced by the basis {X, Y, T } will be often denoted by 〈W, V 〉.
This structure of E(1, 1) is characterized by the following Lie brackets, [Milnor
1976],

(2-2) [X, Y ] = −T, [X, T ] = −Y, [Y, T ] = 0.

In fact, applying [Galli 2013, (9.1) and (9.3)] we obtain that the Webster scalar
curvature is W =− 1

2 and the matrix of the pseudohermitian torsion τ in the X, Y, T
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basis is  0 −1
2 0

−
1
2 0 0
0 0 0

 .
The following derivatives can be easily computed:

(2-3)
∇X X = 0, ∇Y X= 0, ∇T X = 1

2 Y,

∇X Y = 0, ∇Y Y = 0, ∇T Y =− 1
2 X,

where ∇ denotes the pseudohermitian connection; see [Dragomir and Tomassini
2006]. Moreover we have −2|τ |2 = W < 0, which characterizes E(1, 1); see
[Perrone 1998]. We also define the involution J on H, called the complex structure,
by J (X)= Y and J (Y )=−X .

The geometry of regular surfaces in E(1, 1). Consider a C1 surface 6 immersed
in E(1, 1). We define the subriemannian area of 6 as

A(6)=
∫
6

|Nh| d6,

where Nh denotes the projection of the Riemannian unit normal N to H and d6
denotes the Riemannian area element on 6. In the sequel we always denote by N
the inner unit normal. The singular set 60 is composed of the points in which T6
coincides with H. Outside 60, we can define the horizontal unit normal as

νh :=
Nh

|Nh|

and the characteristic vector field as Z := J (νh). It is straightforward to verify that
{Z , S} is an orthonormal basis of T6 outside 60, where

S := 〈N , T 〉νh − |Nh|T .

Finally, outside 60, we define the mean curvature of 6 by

(2-4) H := −〈∇Zνh, Z〉.

Given a surface 6 as the zero level set of a function u :�⊂ E(1, 1)→ R, we can
express

(2-5) νh =−
uz X + 1

√
2
(−ezux + e−zu y)Y√

u2
z +

1
2(−ezux + e−zu y)2

and

(2-6) Z =
1
√

2
(−ezux + e−zu y)X − uzY√
u2

z +
1
2(−ezux + e−zu y)2

.
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We define a minimal surface as a surface with vanishing mean curvature H .

Proposition 2.1. Let 6 be a minimal surface defined as the zero level set of a C2

function u :�⊂ E(1, 1)→ R. Then u satisfies the equation

(2-7) uzz(−ezux + e−zu y)
2
+ u2

z (−e2zuxx − 2uxy + e−2zu yy)

− uz(−ezux + e−zu y)(−2ezuxz − ezux + 2e−zu yz − e−zu y)= 0

on �.

Proof. From (2-4), (2-5) and (2-6) we find that u has to satisfy
(2-8)
Y (u)2 X (X (u))− Y (u)X (u)Y (X (u))− Y (u)X (u)X (Y (u))+ X (u)2Y (Y (u))= 0

on �. Now, using (2-1), we can transform (2-8) into (2-7). �

We will call (2-7) the minimal surface equation.

Remark 2.2. From (2-8), we immediately note that a surface 6 satisfying uz ≡ 0
or −ezux + e−zu y ≡ 0 is always minimal.

In the following lemma, we compute some important quantities related to the
torsion and the geometry of a surface. The lemma follows from [Galli 2013, (9.8)].

Lemma 2.3. Let 6 be a C1 surface in E(1, 1). Then we have

〈τ(Z), Z〉 = −〈Z , X〉〈Z , Y 〉 = 〈νh, X〉〈νh, Y 〉 = −〈τ(νh), νh〉,

〈τ(Z), νh〉 =
1
2(〈Z , Y 〉2−〈Z , X〉2).

3. Characteristic curves in E(1, 1)

In this section we will study the equation of the integral curves of Z on 6, known as
characteristic curves. It is well-known that a surface with constant mean curvature
H is foliated by characteristic curves in6−60. In general, a characteristic curve is
an arc-length parametrized horizontal curve γ in E(1, 1) that satisfies the equation

(3-1) ∇γ̇ γ̇ + H J (γ̇ )= 0,

where γ̇ denotes the tangent vector along γ and H is the (constant) curvature of γ .
We stress that a curve γ satisfying (3-1) is not a subriemannian geodesic. In fact
a characteristic curve γ is a subriemannian geodesic if and only if H = 0 and γ̇
satisfies the additional equation

(3-2) 〈τ(γ̇ ), γ̇ 〉 = 0,

see [Rumin 1994, Proposition 15], which forces γ to be an integral curve of X
or Y , by Lemma 2.3.
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Proposition 3.1. Let γ be a characteristic curve in E(1, 1) with curvature H = 0.
Then γ belongs to the family of curves

(3-3) γ (t)= (x0+ ẋ0t, y0+ ẏ0t, z0)

or to the family

(3-4) γ (t)=
(

x0+
ẋ0

ż0
(eż0t
− 1), y0−

ẏ0

ż0
(e−ż0t

− 1), z0+ ż0t
)
,

where γ (0)= (x0, y0, z0) and γ̇ (0)= (ẋ0, ẏ0, ż0).

Proof. We consider the curve γ : I →6, where I denotes an interval. We express
γ (t)= (x(t), y(t), z(t)) and we get

(3-5) γ̇ (t)= ẋ ∂
∂x
+ ẏ ∂

∂y
+ ż ∂

∂z

= ż X + 1
√

2
(ẏez
− ẋe−z)Y + 1

√
2
(ẏez
+ ẋe−z)T,

since
∂

∂x
=

1
√

2
e−z(T − Y ), ∂

∂y
=

1
√

2
ez(Y + T ).

From (3-5) and the fact that γ is horizontal, we have

(3-6) ẏez
+ ẋe−z

= 0.

Now ∇γ̇ γ̇ = 0 is equivalent to the system

(3-7)
{

ż = ż0,

ẏez
− ẋe−z

= c0,

where ż0 and c0 are constants. We distinguish two cases. The first one corresponds
to ż0 = 0. This means which z = z0, with z0 ∈ R, and so (3-6) and (3-7) reduce to

(3-8)
{

2ẏ = e−z0c0,

2ẋ =−ez0c0,

which implies γ (t) = (x0 − ez0(c0/2)t, y0 + e−z0(c0/2)t, z0), where c0 6= 0 and
x0, y0 ∈ R.

The second possibility is ż0 6= 0, which implies z(t)= z0+ ż0t , with z0 ∈ R. In
this case integrating (3-8) we obtain

γ (t)=
(

x0+
c0ez0

2ż0
−

c0

2ż0
ez0+ż0t, y0+

c0e−z0

2ż0
−

c0

2ż0
e−(z0+ż0)t, z0+ ż0t

)
,

where γ (0)= (x0, y0, z0). Finally, to conclude the result, we note that
c0

2
= ẏ0ez0 =−ẋ0e−z0 . �
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4. Complete area-stationary surfaces with nonempty singular set in E(1, 1)

Complete area-stationary surfaces containing isolated singular points. The local
structure of a C1 surface 6 with prescribed mean curvature H ∈ C , in a neighbor-
hood of an isolated singular point, is well understood [Cheng et al. 2012, Theorem D
and Corollary E]. In the less general case of a bounded mean curvature surface of
class C2, applying [Cheng et al. 2005, Theorem B and Section 7], we have:

Lemma 4.1. Let 6 be a C2 oriented immersed surface with constant mean curva-
ture H in E(1, 1). If p ∈ 60 is an isolated singular point, then there exists r > 0
and λ ∈ R such that the set

Dr (p)=
{
γ H

p,v(s) : v ∈ Tp6, |v| = 1, s ∈ [0, r)
}
,

is an open neighborhood of p in 6, where γ H
p,v denotes the characteristic curve

starting from p in the direction v with curvature H.

First we construct the unique example, up to contact isometries, of a minimal
surface with isolated singular points.

Proposition 4.2. Let 6 be a C2 complete, area-stationary surface immersed in
E(1, 1) with H = 0 and with an isolated singular point p0 = (x0, y0, z0). Then
6 = {(x, y, z) ∈ E(1, 1) : ez−z0(y− y0)+ x − x0 = 0}.

Proof. By Lemma 4.1, the only possible way to construct a complete area-stationary
surface, with a singular point p0, is to consider the union of all characteristic
curves γ of curvature 0 with initial conditions γ (0)= p0 and γ̇ (0) ∈ Tp06 =Hp0 ,
|γ̇ (0)| = 1. We can suppose p0 = 0, since E(1, 1) is homogeneous.

We consider the initial velocities

γ̇α(0)= cosα X (0)+ sinα Y (0)

= cosα ∂

∂z
(0)+

sinα
√

2

(
−
∂

∂x
(0)+ ∂

∂y
(0)
)
,

for α ∈ [0, 2π [. In this way we obtain as characteristic curves

(4-1) γα(t)

=

(
−

sin α
√

2 cos α
(ecos(α)t

− 1), −
sin α
√

2 cos α
(e−cos(α)t

− 1), cos(α)t
)
,

for α ∈ ]0, 2π [ and γ0(t)= (0, 0, t) when α = 0. At this point it is easy show that
6 is the zero level set of the function ez y+ x (or equivalently e−zx + y), which
satisfies (2-7). �



150 MATTEO GALLI

Complete area-stationary surfaces containing singular curves.

Lemma 4.3 [Galli 2013, Corollary 5.4]. Let 6 be a C2 minimal surface with
nonempty singular set 60 immersed in E(1, 1). Then 6 is area stationary if and
only if the characteristic curves meet the singular curves orthogonally with respect
the metric 〈 , 〉, induced by the orthonormal basis (2-1).

A minimal area-stationary surface cannot contain more than one singular curve:

Lemma 4.4. Let 6 be a C2 complete, minimal, area-stationary surface, containing
a singular curve 0 immersed in E(1, 1). Then 6 cannot contain more singular
curves.

Proof. We consider a singular curve

0(ε)=
(
x(ε), y(ε), z(ε)

)
in 6. Since 6 is foliated by characteristic curves, we can parametrize it by the map

F(ε, t)= γε(t)=
(
x(ε, t), y(ε, t), z(ε, t)

)
,

where γε(t) is the characteristic curve with initial data γε(0)= 0(ε) and

(4-2) γ̇ε(0)= J (0̇(ε))= ż(ε)J (X)+ 1
√

2
(ẏ(ε)ez(ε)

− ẋ(ε)e−z(ε))J (Y )

=
1
√

2

(
−ż(ε)ez(ε), ż(ε)e−z(ε), ẋ(ε)e−z(ε)

− ẏ(ε)ez(ε)).
We define

Vε(t) :=
∂F
∂ε
(t, ε),

which is a smooth Jacobi-like vector field along γε(t); see [Galli 2013, Section 4].
At a singular point (ε, t), the vertical component of Vε vanishes:

〈Vε, T 〉(ε, t)=
∂x
∂ε
(ε, t)e−z(ε,t)

+
∂y
∂ε
(ε, t)ez(ε,t)

= 0.

We suppose that 0 is not an integral curve of X or Y . Then from the expressions of
the component of F(ε, t), which are

(4-3)

x(ε, t)= x(ε)+
ż(ε)ez(ε)

ẋ(ε)e−z(ε)− ẏ(ε)ez(ε) (e
(ẋ(ε)e−z(ε)

−ẏ(ε)ez(ε))t/
√

2
− 1),

y(ε, t)= y(ε)−
ż(ε)e−z(ε)

ẋ(ε)e−z(ε)− ẏ(ε)ez(ε) (e
−(ẋ(ε)e−z(ε)

−ẏ(ε)ez(ε))t/
√

2
− 1),

z(ε, t)= z(ε)+
ẋ(ε)e−z(ε)

− ẏ(ε)ez(ε)
√

2
t,
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we have

〈Vε, T 〉(ε, t)

=

(
ẋ(ε)e−z(ε)

+
z̈(ε)

ẋ(ε)e−z(ε)− ẏ(ε)ez(ε) −
ż(ε) ∂

∂ε
(ẋ(ε)e−z(ε)

− ẏ(ε)ez(ε))

(ẋ(ε)e−z(ε)− ẏ(ε)ez(ε))2

)

·
(
e−(ẋ(ε)e

−z(ε)
−ẏ(ε)ez(ε)) t

√
2 − e(ẋ(ε)e

−z(ε)
−ẏ(ε)ez(ε)) t

√
2
)

+
ż(ε)2(

ẋ(ε)e−z(ε)−ẏ(ε)ez(ε)
)2

(
e−(ẋ(ε)e

−z(ε)
−ẏ(ε)ez(ε)) t

√
2 + e(ẋ(ε)e

−z(ε)
−ẏ(ε)ez(ε)) t

√
2 − 2

)
,

which, when t is positive, vanishes only for the values (ε, 0). On the other hand, if
0 is an integral curve of Y we get

(4-4) x(ε, t)= x(ε), y(ε, t)= y(ε), z(ε, t)= z(ε)+
ẋ(ε)e−z(ε)

− ẏ(ε)ez(ε)
√

2
t,

and if 0 is an integral curve of X we have

(4-5) x(ε, t)= x(ε)−
ż(ε)ez(ε)
√

2
t, y(ε, t)= y(ε)+

ż(ε)e−z(ε)
√

2
t, z(ε, t)= z(ε).

In both cases, the singular set is only the curve 0(ε). �

The vertical component of Vε can be computed more directly using [Galli 2013,
Proposition 4.3], since H = 0. On the other hand, the explicit computation of the
components of the parametrization F(ε, t) allows us to characterize all C2 area-
stationary complete surfaces with a singular curve that is a characteristic curve
of curvature 0. We stress that, when the characteristic curves are subriemannian
geodesics, these examples can also be constructed from Remark 2.2.

Proposition 4.5. Let 6 be an area-stationary surface with H = 0, with a singular
curve 0 that is a characteristic curve of curvature 0. Then, if 0 is a subriemannian
geodesic, 6 belongs to one of the following families:

(i) {ax + by+ c = 0 : (x, y, z) ∈ E(1, 1), a, b, c ∈ R};

(ii) {ez−z0(y− y0)+ ez0−z(x − x0)= 0 : (x, y, z) ∈ E(1, 1), x0, y0, z0 ∈ R}.

Otherwise, we suppose that 0 is a characteristic curve passing through (x0, y0, z0)

with velocity (ẋ0, ẏ0, ż0), ẋ0, ẏ0, ż0 6= 0. We can parametrize6 by F :R2
→ E(1, 1),

with F(ε, t)= (x(ε, t), y(ε, t), z(ε, t)) and
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x(ε, t)= x0+
ẋ0

ż0
(eż0ε − 1)+

ż0ez0+ż0ε

ẋ0e−z0 − ẏ0ez0
(e(ẋ0e−z0−ẏ0ez0 )t/

√
2
− 1),

y(ε, t)= y0−
ẏ0

ż0
(e−ż0ε − 1)−

ż0e−z0−żε

ẋ0e−z0 − ẏ0ez0
(e−(ẋ0e−z0−ẏ0ez0 )t/

√
2
− 1),

z(ε, t)= z0+ ż0ε+
ẋ0e−z0 − ẏ0ez0

√
2

t.

(4-6)

Remark 4.6. The surfaces parametrized by (4-6) are the first examples of area-
stationary surfaces that are not foliated by subriemannian geodesics in three-
dimensional contact subriemannian manifolds, up to our knowledge. In fact this
phenomenon does not appear in the group of rigid motions [Galli 2013, Lemma 10.4],
even if its pseudohermitian torsion is nonvanishing. In that case, the presence of
two singular curves forces the surface to be foliated by subriemannian geodesics or
to be not area-stationary. On the other hand, it is well-known that a minimal surface
is foliated by subriemannian geodesics in any three-dimensional Sasakian manifold.

Remark 4.7. Given any horizontal curve 0 = (x(ε), y(ε), z(ε)) in E(1, 1), we
stress that (4-3) provides a parametrization F(ε, t) : R2

→ 6 ⊂ E(1, 1) of a
complete area-stationary surface 6 with 60 = 0.

5. Complete area-minimizing surfaces in E(1, 1)

Complete area-minimizing surfaces with empty singular set. Proposition 9.8 of
[Galli 2013] gave a general necessary condition for the stability of a nonsingular
surface in pseudohermitian Lie groups. This condition states that the quantity

W −〈τ(Z), νh〉 = 〈νh, Y 〉2− 1= 〈Z , X〉2− 1

must be always nonpositive. This condition is trivial in E(1, 1) due to the negativity
of the Webster scalar curvature. On the other hand it has been used crucially in
the classification of the stable, area-stationary surfaces without singular points in
the manifolds H1, SU(2) and

∼
E(2), see [Galli 2013; Hurtado et al. 2010; Rosales

2012]. In any case, we can prove:

Proposition 5.1. The families of planes

(i) {x + c = 0 : (x, y, z) ∈ E(1, 1), c ∈ R},

(ii) {y+ c = 0 : (x, y, z) ∈ E(1, 1), c ∈ R},

(iii) {z+ c = 0 : (x, y, z) ∈ E(1, 1), c ∈ R},

are area-stationary, foliated by subriemannian geodesics, and area-minimizing.

Proof. We prove the result for 6 = {x = 0 : (x, y, z) ∈ E(1, 1)}, since all the cases
are similar. In this case, from (2-5) and (2-6) we have

νh = Y, Z =−X.
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So the integral curves of Z are subriemannian geodesics and 60 = ∅. Now
Remark 2.2 implies that 6 is area-stationary. Finally we can foliate a neighborhood
of 6 in E(1, 1) by translating 6. We obtain a foliation by area-stationary surfaces,
and a standard calibration argument implies that 6 is area-minimizing; see, for
example, [Barone Adesi et al. 2007; Ritoré 2009; Ritoré and Rosales 2008, § 5]. �

Remark 5.2. The planes in the family

{ax + by+ cz+ d = 0 : (x, y, z) ∈ E(1, 1), a, b, c, d ∈ R}

are not minimal, since they do not satisfy (2-7).

A very natural question is: are the planes in Proposition 5.1 the unique complete
area-minimizing surfaces with empty singular set in E(1, 1)? We have only been
able to find the following sufficient condition:

Lemma 5.3. Let6 be a C2 complete oriented minimal surface immersed in E(1, 1),
with empty singular set 60. If 〈N , T 〉6 0 holds on 6, then 6 is stable.

Proof. Taking into account the expression of the stability operator for nonsingular
surfaces in [Galli 2013, Lemma 8.3], we only need to show that

2Z(G)+G2 6 0 on 6, where G :=
〈N , T 〉
|Nh|

.

Given a point p in6, let I be an open interval containing the origin and let α : I→6

be a piece of the integral curve of S passing through p. Consider the characteristic
curve γε(s) of 6 with γε(0) = α(ε). We define the map F : I × R → 6 by
F(ε, s)= γε(s) and set V (s) := (∂F/∂ε)(0, s), which is a Jacobi-like vector field
along γ0; see [ibid., Proposition 4.3]. Let ′ represent differentiation with respect to
s. Using [ibid., Lemma 3.1, (4.4) and (4.5)] we get

〈V, T 〉(0)=−|Nh|,(5-1)

〈V, T 〉′(0)=−〈N , T 〉,(5-2)

〈V, T 〉′′(0)=−|Nh|(Z(G)+G2).(5-3)

It is easy to show that g(V, T ) never vanishes along γ0 since 60 is empty; see
[ibid., proof of Proposition 9.5]. On the other hand, by [ibid., Proposition 4.3] and
Lemma 2.3, we have that 〈V, T 〉 satisfies the ordinary differential equation

〈V, T 〉′′′(s)−〈Z , X〉2〈V, T 〉′(s)= 0

along γ0. We suppose that 〈Z , X〉 6= 0. Taking into account the initial conditions
(5-1), (5-2) and (5-3), we obtain

〈V, T 〉(s)= a cosh(|〈Z , X〉|s)+ b sinh(|〈Z , X〉|s)+ c,
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where

a =
|Nh|(Z(G)+G2)

〈X, Z〉2
, b =−

〈N , T 〉
|〈Z , X〉|

, c =−|Nh| − a.

We have that 〈V, T 〉(s) 6= 0 implies

a+ b =
|Nh|(Z(G)+G2)

〈X, Z〉2
−
〈N , T 〉
|〈Z , X〉|

6 0.

Then we can conclude that

2Z(G)+G2 6 2(Z(G)+G2)6 2|〈Z , X〉|
〈N , T 〉
|Nh|

6 0

on γ0. Now since the choice of p is arbitrary, we get the statement.
If 〈Z , X〉 = 0, we conclude that 6 is stable if and only if 〈N , T 〉 = 0, by [Galli

2013, Proposition 9.8]. �

Remark 5.4. The surfaces described in the points (i), (ii) and (iii) of Proposition 5.1
are characterized by 〈N , T 〉 =−ez/

√
2, 〈N , T 〉 =−ez/

√
2 and 〈N , T 〉 ≡ 0, respec-

tively, where N denotes the inward unit normal on 6. In the third family the planes
are vertical surfaces and they satisfy W −〈τ(Z), νh〉 ≡ 0.

Taking into account the geometric invariants of E(1, 1), we expect the existence
of other examples of complete oriented minimal surface with empty singular set.

Complete area-minimizing surfaces with nonempty singular set. We consider the
stability operator constructed in [Galli 2013, Theorem 8.6].

Lemma 5.5. Let 6 be a C2 oriented minimal surface immersed in E(1,1), with
singular set 60 and ∂6 =∅. If 6 is stable then, for any function u ∈ C1

0(6) such
that Z(u) = 0 in a tubular neighborhood of a singular curve and constant in a
tubular neighborhood of an isolated singular point, we have Q(u)> 0, where

Q(u) :=∫
6

{
|Nh|

−1 Z(u)2+|Nh|
(
(1+〈Z , Y 〉2)−

(
|Nh|(

1
2−〈Z , Y 〉2)−〈∇Sνh, Z〉

)2)u2} d6

+ 4
∫
(60)c

〈N , T 〉〈Z , Y 〉2〈Z , ν〉u2 d(60)c+

∫
(60)c

S(u)2 d(60)c.

Here d(60)c is the Riemannian length measure on (60)c and ν is the external unit
normal to (60)c.

Corollary 5.6. Let 6 be a plane in the family

{ax + by+ c = 0 : (x, y, z) ∈ E(1, 1), a, b, c ∈ R}.

Then 6 is stable.
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Proof. We know that 6 is area-stationary with a singular line, obtained intersecting
6 with the plane z = log

√
b/a. From (2-6) we get

Z =
−bez

+ ae−z

| − bez + ae−z|
X,

which is orthogonal to the singular line. Since 〈∇Sνh, Z〉 = 〈∇SY, X〉 =
|Nh|

2
, the

stability operator

Q(u)=
∫
6

{|Nh|
−1 Z(u)2+ |Nh|〈N , T 〉2u2

} d6+
∫
60

S(u)2 d60

is always nonnegative for any admissible test function u. �

Remark 5.7. The planes {ax + by + c = 0 : (x, y, z) ∈ E(1, 1), a, b, c ∈ R} are
also area-minimizing, by calibration arguments.

Corollary 5.8. The surface 6 = {ez y+ e−zx = 0 : (x, y, z) ∈ E(1, 1)} is stable.

Proof. From (2-6) we get

Z =−
(ez y− e−zx)Y
|ez y− e−zx |

and 60 = {(0, 0, z) : (x, y, z) ∈ E(1, 1)}. From (2-3) we have

〈∇Sνh, Z〉 = 〈∇SY, X〉 = −
|Nh|

2
,

which implies

Q(u)=
∫
6

{|Nh|
−1 Z(u)2+ 2|Nh|

2u2
} d6+

∫
60

S(u)2 d60+ 4
∫
60

u2 d60 > 0,

for all admissible u. �

Corollary 5.9. The surfaces defined in Proposition 4.2 are stable.

Proof. For simplicity we will prove the statement in the case of x0 = y0 = z0 = 0.
We note that, since 60 = (0, 0, 0), the argument in the proof of Lemma 5.3 works
and the condition 〈N , T 〉 = −(1 + ez)/

√
2 6 0 is sufficient for the stability in

the complement of any tubular neighborhood of 60. Finally we observe that the
stability operator in Lemma 5.5 makes no contribution to the singular set in the
case of isolated singular points. �
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