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ON THE EXISTENCE
OF LARGE DEGREE GALOIS REPRESENTATIONS

FOR FIELDS OF SMALL DISCRIMINANT

JEREMY ROUSE AND FRANK THORNE

Let L/K be a Galois extension of number fields. We prove two lower bounds
on the maximum of the degrees of the irreducible complex representations
of Gal(L/K ), the sharper of which is conditional on the Artin conjecture
and the generalized Riemann hypothesis. Our bound is nontrivial when [K :

Q] is small and L has small root discriminant, and might be summarized as
saying that such fields can’t be “too abelian”.

1. Introduction

It is known that the discriminant of a number field cannot be too small. Minkowski’s
work on the geometry of numbers implies that

|Disc(K )|>
(e2π

4
− o(1)

)[K :Q]
;

we write this bound as rdK > e2π/4 − o(1), where rdK := (|Disc(K )|)1/[K :Q]

is the root discriminant of K . These bounds can be improved by using analytic
properties of the Dedekind zeta function of K , and this was noticed by Stark (see the
parenthetical comment in the proof of Lemma 4 on page 140 of [Stark 1974]), and
worked out in detail by Andrew Odlyzko [1976] in his MIT dissertation (supervised
by Stark). The sharpest known bounds, due to Poitou [1977] (see also [Odlyzko
1990]), are

(1-1) rdK ≥ (60.8395 . . . )r1/[K :Q](22.3816 . . . )2r2/[K :Q]− O([K :Q]−2/3),

where [K : Q] = r1 + 2r2, and r1 and r2 are the numbers of real and complex
embeddings of K , respectively. (The error term in (1-1) can be improved.) If one
assumes the generalized Riemann hypothesis, the constants above can be improved
to 215.3325 . . . and 44.7632 . . . respectively.

Conversely, Golod and Shafarevich [1964] proved that these bounds are sharp
apart from the constants, by establishing the existence of infinite class field towers
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K1 ⊆ K2 ⊆ K3 ⊆ · · · where each Ki+1/Ki is abelian and unramified, so that
each field Ki has the same root discriminant. Martinet [1979] gave the example
K1 = Q(ζ11 + ζ

−1
11 ,
√
−46), which has an infinite 2-class field tower of root dis-

criminant 92.2 . . . , and Hajir and Maire [2001; 2002] constructed a tower of fields
with root discriminants bounded by 82.2, in which tame ramification is allowed.

It is expected that fields of small discriminant should be uncommon. For example,
Odlyzko [1990] asked whether there are infinitely many fields of prime degree
of bounded root discriminant; such fields cannot be constructed via class field
towers. Several researchers have studied this question in small degree. Jones and
Roberts [2007] studied the set of Galois number fields K/Q with certain fixed
Galois groups G; for a variety of groups, including A4, A5, A6, S4, S5, S6, they
proved that rdK > 44.7632 . . . apart from a finite list of fields K which they compute
explicitly. Voight [2008] studied the set of all totally real number fields K with
rdK ≤ 14, finding that there are exactly 1229 such fields, each with [K :Q] ≤ 9.

In light of this work, it is natural to ask whether Galois extensions of small
absolute discriminant must have any special algebraic properties. (The analogous
problems for nonnormal extensions are much more delicate.) The easiest result to
prove is that they cannot be abelian, and we carry this out over Q in the introduction
(starting with (1-4)). In [Leshin 2013], it is proven that, given a number field
K , a positive integer n, and real number N , there are only finitely many Galois
extensions L/K with Gal(L/K ) solvable with derived length≤ n and with rdL ≤ N .
In this paper, we study the representation theory of Galois groups of extensions of
small discriminant, and prove that such Galois groups must have (relatively) large
degree complex representations.

We will prove two versions of this result. The first is the following:

Theorem 1.1. Let L/K be a Galois extension and let r be the maximum of the
degrees of the irreducible complex representations of Gal(L/K ). Then there is a
constant C1 so that

(1-2) r ≥
1

log rdL

(
C1

log log[L :Q]
log log log[L :Q]

− log[K :Q]
)
.

Remark. The bound of course only makes sense for large [L :Q]. A straightforward
but somewhat lengthy calculation shows that we may take C1 =

1
16 provided

[L :Q] ≥ ee8
.

The basic idea of the proof is to regard L as an abelian extension of an intermediate
field F of small degree. The existence of such an F follows from Theorem 12.23 of
[Isaacs 2006], which states that if G is a finite group with the property that all of its
irreducible representations have degree ≤ r , then G must have an abelian subgroup
of index ≤ (r !)2. (There is also a converse given in Problem 2.9 of [Isaacs 2006]:
if G has an irreducible representation of degree > r , then G cannot have an abelian
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subgroup of index ≤ r .) We may then adapt our proof for the abelian case to prove
that either L has small root discriminant, or F has relatively large degree.

It is also possible to study the representations of Gal(L/Q) directly, without first
passing to an intermediate extension F , via Artin L-functions. We were unable to
improve upon Theorem 1.1 this way, but under the hypothesis that Artin L-functions
are well behaved we prove the following improvement of Theorem 1.1:

Theorem 1.2. Assume that all Artin L-functions are entire and satisfy the Riemann
hypothesis. There is a positive constant C2 so that if L/K is any Galois extension
of number fields of degree d, then Gal(L/K ) must have an irreducible complex
representation of degree at least

(1-3)
C2(log[L :Q])1/5

(log rdL)2/5 [K :Q]3/5
.

Remark. Two issues arise when attempting to prove an unconditional version of
this result. The first is that the unconditional zero-free regions for L-functions
have implied constants that depend quite badly on the degree of the L-function
involved. (See for example Theorem 5.33 of [Iwaniec and Kowalski 2004].) The
second is the presence of the possible exceptional zero. Without accounting for the
exceptional zero issue, it seems that the best lower bound we can obtain using the
zero-free regions mentioned above is r �

√
log log[L :Q], for an implied constant

depending on K and on rdL .

We now illustrate the nature of our question by handling the case where L/Q is
abelian of degree > 2. By Kronecker–Weber we have L ⊆Q(ζn) for some n, and

(1-4) ζL/Q(s)= ζ(s)
[L:Q]∏
i=2

L(s, χi ),

where χi are Dirichlet characters of conductor Ni for some Ni |n. We have
Disc(L)=

∏
i Ni , and therefore

(1-5) log rdL =
1

[L :Q]

[L:Q]∑
i=2

log Ni .

Let M :=
√
[L :Q]/2. There are at most M2 Dirichlet characters with conduc-

tor ≤ M , so that with [L :Q] = 2M2 the right side of (1-5) is greater than 1
2 log M ,

so that

(1-6) rdL > exp
( 1

4 log
( 1

2 [L :Q]
))
,

a bound of the same shape as our theorems. Although this proof is not complicated,
it makes essential use of class field theory and it seems that the use of sophisticated
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tools cannot be avoided. We could improve our bound somewhat, but note that it is
already stronger than the (conditional) bound log rdL ≥ C2(log[L :Q])1/5 implied
by Theorem 1.2. Observe also that for L =Q(ζp) we have rdL = p(p−2)/(p−1) and
[L :Q] = p− 1≈ rdL , implying a limit on the scope for improvement.

As an application of Theorem 1.2 we can say something about unramified
extensions of a fixed number field K . Of course, the maximal unramified abelian
extension of K is the Hilbert class field of K and the degree of this extension
is hK , the order of the ideal class group. However, there are number fields K
with Galois extensions L unramified at all finite primes so that Gal(L/K ) has no
nontrivial abelian quotients. One of Artin’s favorite examples is K =Q(

√
2869),

where if L is the splitting field of x5
− x − 1 over Q, then L/K is unramified and

Gal(L/K )∼= A5.

Corollary 1.3. Assume that all Artin L-functions are entire and satisfy the Riemann
hypothesis. Let L1/K , L2/K , . . . , L N/K be linearly disjoint unramified Galois ex-
tensions and suppose that Gal(L i/K ) has an irreducible representation of degree r
for 1≤ i ≤ N. Then there is a constant C3 so that

log N ≤ C3r5 log2(|Disc(K )|)[K :Q].

Remark. The main theorem proven in [Ellenberg and Venkatesh 2006] shows that
the number M of degree n unramified extensions of K satisfies

log M �ε nε
(
n log|Disc(K )| +C4 [K :Q]

)
for a constant C4 depending on n. Because the power of log|Disc(K )| is smaller,
this result is better for fixed n and varying K . However, since the size of C4 is not
specified, our result is better for fixed K and varying n.

Remark. Another potential application occurs in the case when r = 2 and K =Q.
Our theorem gives bounds on the number of degree-2 Artin L-functions with
conductor bounded by q. In the odd case, these arise from weight-1 newforms
of level q, and in the even case, these arise (conjecturally) from Maass forms
with eigenvalue 1

4 . However, we obtain bounds that are worse than polynomial
in q. Michel and Venkatesh [2002] used the Petersson–Kuznetsov formula to
obtain bounds of the form qc+ε , where c is a constant depending on the type of
representation (dihedral, tetrahedral, octahedral, or icosahedral).

Throughout the paper we use the notation |Disc(K )| for the absolute value of
the discriminant of K , OK for the ring of integers of K , rdK = |Disc(K )|1/[K :Q],
NK/Q(a) for the norm from K to Q of an ideal of OK , hK for the order of the ideal
class group of OK , and dL/K for the relative discriminant of L over K . We denote
by C1,C2, . . . a sequence of absolute constants. We also occasionally write f � g
to mean f ≤ Cg for some constant C , absolute unless otherwise noted.
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We provide a little bit of preliminary background in Section 2, and then we prove
Theorem 1.1 in Section 3 and Theorem 1.2 and Corollary 1.3 in Section 4.

2. Background on number fields, discriminants, and conductors

In this section we briefly recall a few facts related to zeta and L-functions associated
to number fields, used in the proofs of both Theorem 1.1 and Theorem 1.2.

The Dedekind zeta function of a number field L is given by the Dirichlet series

(2-1) ζL(s)=
∑

NL/Q(a)
−s,

where the sum is over integral ideals of OL . For a Galois extension L/K , this zeta
function enjoys the factorization

(2-2) ζL(s)= ζL/K (s)=
∏

ρ∈Irr(Gal(L/K ))

L(s, ρ)deg ρ,

where ρ varies over all irreducible complex representations of G :=Gal(L/K ), and
L(s, ρ) is the associated Artin L-function. (For background on Artin L-functions
see [Neukirch 1999]; see p. 524 for the proof of (2-2) in particular.)

This formula is the nonabelian generalization of (1-4). In general, it is not known
that the L(s, ρ) are “proper” L-functions (as defined on [Iwaniec and Kowalski
2004, p. 94] for example) and in particular that they are holomorphic in the critical
strip. However, this was conjectured by Artin; we refer to this assumption as the
Artin conjecture and assume its truth in Section 4.

Remark. As a consequence of Brauer’s theorem on group characters [Neukirch
1999, p. 522], it is known that the Artin L-functions are quotients of Hecke L-
functions, and therefore meromorphic, and this suffices in many applications. For
example, Lagarias and Odlyzko [1977] used this fact to prove an unconditional and
effective version of the Chebotarev density theorem.

If Gal(L/K ) is abelian, then the representations are all one-dimensional, and
class field theory establishes that the characters of Gal(L/K ) coincide with Hecke
characters of L/K , so that (2-2) becomes

(2-3) ζL/K (s)= ζK (s)
[L:K ]∏
i=2

L(s, χi ),

where the product ranges over Hecke characters of K . As in our application of
(1-4), we will argue that there cannot be too many characters χ or representations ρ
of small conductor (and, in the latter case, of bounded degree).
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We can use (2-2) to derive more general versions of (1-5): it follows [Neukirch
1999, p. 527] from (2-2) that the relative discriminant d(L/K ) satisfies the formula

(2-4) d(L/K )=
∏

ρ∈Irr(G)

f(ρ)deg ρ,

where the ideal f(ρ) of K is the Artin conductor associated to ρ.
If L/K is abelian then we can write this as d(L/K )=

∏
χi
f(χi ). Taking norms

down to Q and using the relation [Neukirch 1999, p. 202]

(2-5) |Disc(L)| = |Disc(K )|[L:K ]NK/Q(dL/K ),

we obtain

(2-6) log rdL = log rdK +
1

[L :Q]

∑
i

log NK/Q f(χi ).

If L/K is not necessarily abelian, then the conductor q(ρ) of L(s, ρ) is related
to f(ρ) by the formula

(2-7) q(ρ)= |Disc(K )|deg ρNK/Q f(ρ).

Taking absolute norms in (2-4), multiplying by |Disc(K )|d , and again using (2-5)
we obtain

(2-8) |Disc(L)| =
∏

ρ∈Irr(G)

q(ρ)deg ρ .

3. Proof of Theorem 1.1

We first prove a lemma bounding some quantities which occur in the proof.

Lemma 3.1. For a number field F of degree f , the following hold:

(1) The number of ideals a of OF with N(a) < Y is bounded by eY (1+ log Y ) f .

(2) We have hF < e |Disc(F)|1/2
(
1+ 1

2 log|Disc(F)|
) f .

Proof. This is standard and we give an easy proof inspired by [Cojocaru and Murty
2006, p. 68]. We have that ζF (s) =

∑
∞

n=1 an(F)/ns , where an(F) is the number
of integral ideals of norm n in OF . The coefficientwise bound ζF (s) < ζ(s) f

=∑
n d f (n)n−s yields that, for σ > 1,∑

n<Y

d f (n) <
∑

n

d f (n)(Y/n)σ = Y σ ζ(σ ) f .

We now choose σ = 1+ 1/ log Y , and use the fact that ζ(σ ) < 1+ 1
σ−1 for σ > 1.

The second part follows from the classical Minkowski bound (see for example
[Neukirch 1999, Chapter 1.6]), which implies that each ideal class in OF is repre-
sented by an ideal a with N(a) <

√
|Disc(F)|. �
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Proof of Theorem 1.1. The proof is similar to that of (1-6), but we will need to work
with messier inequalities.

By the character theory remarks after the theorem, L has a subfield F for which
L/F is abelian, such that [F : K ] ≤ (r !)2 < r2r . We assume that [L : Q] and
therefore rdL are bounded below by absolute constants ([L : Q] ≥ ee8

suffices).
Depending on the relative sizes of these quantities, we will see that either

(3-1) r ≥ C5
log log[L :Q]

log log log[L :Q]
− log[K :Q]

or

(3-2) log rdL ≥ C6 log log[L :Q]

for positive constants C5 and C6, implying the theorem. There is no obstacle
to determining particular values for these constants, but for simplicity we omit
the details.

We begin with the generalization (2-6) of (1-5), which said that

(3-3) log rdL = log rdF +
1

[L :Q]

∑
i

log NF/Q f(χi ),

where χi are distinct Hecke characters of F . The number of characters of con-
ductor m is less than 2[F :Q]hF N(m) [Milne 2011, Theorem V.1.7, p. 146], and
Lemma 3.1 bounds both hF and the number of m which can appear, so that for
Y ≥ 1 the number of characters whose conductor has norm≤Y is bounded above by
e2Y 2
|Disc(F)|1/2

(
2+ log(Y 2

|Disc(F)|)
)

2[F :Q].
Given [L : Q] and [F : Q], suppose that Y > e−1

|Disc(F)|−1/2 is defined by
the equation

(3-4)
[L :Q]

2[F :Q]
= e2Y 2

|Disc(F)|1/2
(
2+ log(Y 2

|Disc(F)|)
)2[F :Q]

,

so that in (3-3) there are at least [L :Q]
2[F :Q]

characters of conductor > Y , and hence

(3-5) log rdL ≥ log rdF +
1

2[F :Q]
log Y.

(Observe that we do not necessarily have Y > 1, for example if L is the Hilbert
class field of F .) We divide our analysis of (3-5) into three cases and prove that
each implies (3-1) or (3-2).

Large discriminant. If Disc(F)≥[L :Q]1/10, we ignore (3-5) and instead note that
log rdF ≥ log[L :Q]/(10[F :Q]), and so

(3-6) log rdL ≥
1

10r2r [K :Q]
log[L :Q],
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and we obtain at least one of (3-1) and (3-2) depending on whether r2r
[K :Q]>

(log[L :Q])1/2 or not.
We assume henceforth that Disc(F) < [L :Q]1/10, which implies that [F :Q]<

1
10 log[L :Q] for [F :Q]≥3, and write Y ′ :=max(Y, 100) and Z :=Y ′2 |Disc(F)|1/2.

Small discriminant and large degree. Assume to start with that either Z ≤ (2+
2 log Z)2[F :Q] or Y < 100. Applying our upper bounds on Disc(F), [F :Q], and Z ,
we see that

(3-7) [L :Q]4/5 ≤ C7(4 log(Y ′2 |Disc(F)|))4[F :Q].

Taking logarithms and applying the bound1 Y ′2 |Disc(F)|< [L :Q], we obtain

(3-8) log[L :Q] ≤ C8 [F :Q] log log[L :Q],
so that log[L :Q]/log log[L :Q] ≤ C9 [K :Q]r2r , which implies that

r ≥ C10
log log[L :Q]

log log log[L :Q]
− log[K :Q].

Small discriminant and small degree. Finally, assume that Z >(2+2 log Z)2[F :Q]

and Y ≥ 100. Then [F : Q] ≤ C11 log Z/log log Z , and our bound on Disc(F)
implies that log Z ≤C12 log Y , so that [F :Q] ≤C13 log Y/log log Y . We thus have
log Y/(2[F :Q])≥ C14 log log Y , and so, by (3-5),

log rdL ≥ log rdF +
1

2[F :Q]
log Y ≥ log rdF +C14 log log Y.

Finally, (3-4) implies that log Y ≤ 1
2 log[L :Q], giving us

(3-9) log rdL ≥ log rdF +C15 log log[L :Q].

This completes our list of cases, and hence the proof. �

4. Proof of Theorem 1.2

In the proof we will assume familiarity with Artin L-functions and Rankin–Selberg
convolutions, as described in [Neukirch 1999] (and Section 2) and [Iwaniec and
Kowalski 2004], respectively. We also assume the truth of the Artin conjecture.
There is no theoretical obstacle to carrying out the methods of this section without
any unproved hypotheses, but when we tried this the error terms in (4-6) were too
large to be of interest.

As in the nonabelian case, we need to bound the number of possible q(ρ) of
bounded conductor (and now also of bounded degree). However, in general the
representations ρ are not (yet!) known to correspond to arithmetic objects which

1If Y ′ = 100, this follows from Disc(F) < [L :Q]1/10. If Y ′ = Y , this follows from (3-4).
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might be more easily counted. Instead, in Proposition 4.1 we (conditionally) bound
the number of possible L-functions. Assuming GRH and the Artin conjecture, we
will see that any two such Artin L-functions must have rather different Dirichlet
series representations, because their Rankin–Selberg convolution cannot have a pole.
A pigeonhole-type argument will then allow us to bound the number of possible
L-functions.

After proving Proposition 4.1 we will conclude as before. In brief, if L/K is a
Galois extension of large degree with many representations of small degree, then
many of these representations will have large conductor, and so L will have large
discriminant.

Proposition 4.1. Assume that the Artin conjecture and Riemann hypothesis hold for
Artin L-functions, and let ρ and ρ ′ be distinct irreducible nontrivial representations
of Gal(L/K ) of degree r and conductor≤q (as defined in (2-7)). The Artin L-series
of ρ and ρ ′ have Euler products

L(s, ρ)=
∏
p

d∏
i=1

(
1−αi,ρ(p)N (p)−s)−1

, L(s, ρ ′)=
∏
p

d∏
i=1

(
1−αi,ρ′(p)N (p)−s)−1

.

Assume that log q > r [K :Q]. Then, for X ≥ C16r2 log2 q , we have

(4-1)
∑

Np∈[X,2X ]
p unramified

∑
1≤i≤r

|αi,ρ(p)−αi,ρ′(p)| ≥
X

2r log X
.

Furthermore, the number of representations of degree ≤ r and conductor ≤ q is
at most

(4-2) Cr3 log2(q)[K :Q]
17 ,

for an absolute constant C17.

Remark. The bound (4-2) is rather simple-minded, and we could remove the factor
[K :Q] by instead insisting that q be sufficiently large in terms of K .

Proof. This is essentially Proposition 5.22 of [Iwaniec and Kowalski 2004]; although
our conclusion is stronger, our proof is essentially the same.

Consider the tensor product representations ρ⊗ρ and ρ⊗ρ ′, whose L-functions
are equal to the Rankin–Selberg convolutions L(s, ρ⊗ρ) and L(s, ρ⊗ρ ′) (so that
the notation is not ambiguous). A simple character-theoretic argument shows that the
trivial representation does not occur in ρ⊗ρ ′, while it occurs with multiplicity one
in ρ⊗ρ. Assuming the Artin conjecture, then, L(s, ρ⊗ρ ′) and L(s, ρ⊗ρ)ζ(s)−1

are entire functions.
Let φ be a smooth test function with support in [1, 2], image in [0, 1], and

φ̂(0)=
∫ 2

1 φ(t) dt ∈
( 3

4 , 1
)
; throughout this section, all implied constants (including
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C16, etc.) depend on our fixed choice of φ. Also, let X ≥ 2, with stricter lower
bounds to be imposed later. Then, using the “explicit formula” [ibid., Theorem 5.11]
we find (see p. 118 of [ibid.]) that, assuming GRH and the Artin conjecture,∣∣∣∣∑

n

3ρ⊗ρ′(n)φ(n/X)
∣∣∣∣�√X log q(ρ⊗ ρ ′),(4-3) ∣∣∣∣∑

n

3ρ⊗ρ(n)φ(n/X)− φ̂(0)X
∣∣∣∣�√X log q(ρ⊗ ρ),(4-4)

where the coefficients 3 are defined, for any L-function L( f, s), by the relation∑
n

3 f (n)n−s
=−

L ′

L
( f, s).

Also, q(ρ)= q(ρ)
∏r

j=1(|κ j | + 3) denotes the analytic conductor of ρ defined by
equation (5.8) of [ibid.]. To bound this analytic conductor, we require information
about the gamma factors of Artin L-functions and the conductor of ρ⊗ψ (where
ψ = ρ or ρ ′).

The fact that the L(s, ρ) are factors of the Dedekind zeta function and the fact that
the Dedekind zeta function only has gamma factors 0(s/2) and 0((s+1)/2) imply
that 0≤ κ j ≤ 1/2 for all j . We have q(ρ⊗ψ)= |Disc(K )|deg(ρ⊗ψ)NK/Q(f(ρ⊗ψ)),
where

f(ρ⊗ψ)=
∏
p-∞

pfp(ρ⊗ψ), fp(ρ⊗ψ)=
∞∑

i=0

gi

g0
codim V Gi

ρ⊗ψ .

Here Vρ⊗ψ is a vector space affording the representation ρ ⊗ ψ , Gi is the i-th
ramification group, and gi = |Gi | (this definition is from p. 527 of [Neukirch 1999]).
It is easy to see that codim V Gi

ρ⊗ψ ≤ r codim V Gi
ρ + r codim V Gi

ψ . It follows from
this and the formulas

fp(ρ)=
∞∑

i=0

gi

g0
codim V Gi

ρ and fp(ψ)=
∞∑

i=0

gi

g0
codim V Gi

ψ .

that fp(ρ⊗ψ)≤ r( fp(ρ)+ fp(ψ)) and

(4-5) q(ρ⊗ψ)≤ |Disc(K )|r
2
NK/Q(f(ρ)f(ψ)).

Combining these estimates for the analytic conductor yields the bound

log q(ρ⊗ψ)≤
(
2r2
+ r2 log|Disc(K )| + r log NK/Q(f(ρ)f(ψ))

)
≤ 3r log q.

Let αi,ρ and αi,ρ′ be the Frobenius eigenvalues for ρ and ρ ′ respectively, for 1≤ i ≤r .
Then, unpacking the definition of the Rankin–Selberg convolution (or, equivalently,
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the tensor product representation), we conclude that

(4-6)
∑

Np∈[X,2X ]

∑
1≤i, j≤r

∣∣αi,ρ(p)α j,ρ(p)−αi,ρ(p)α j,ρ′(p)
∣∣

≥
φ̂(0)X

log(2X)
−

C18
√

X
log X

(r log q).

The sum above is over prime ideals; we have removed the prime powers which
contribute (assuming X is large) less than

2r2
[K :Q]

√
X

log X
<

2r log(q)
√

X
log X

,

which is contained in the error term above. Next, we remove the terms coming from
“ramified primes”, those for which αi,ρ(p)= 0 for some i . These occur precisely at
the primes for which p|f(ρ), and the number of these between X and 2X is at most
log q/log X . Noting that for a prime p that is unramified in L/K , |αi,ρ(p)| = 1 for
all i , we get

(4-7)
∑

Np∈[X,2X ]
p unramified

∑
1≤ j≤r

|α j,ρ(p)−α j,ρ′(p)| ≥
φ̂(0)X

r log(2X)
−C19

(√
X log q+r log q

log X

)
.

If X ≥C16r2 log2(q) with C16 =max(214, 100C2
19), the error term above is at most

X/(5r log X) and the main term is at least 7X/(10r log X), establishing the first
part of the proposition.

The second part follows easily from the first. Let M be the number of primes in
the above sum; then, if

|αi,ρ(p)−αi,ρ′(p)| ≤
X

2r2 log(X)M

for all i and unramified p, then (4-1) is contradicted. Note that since p is unramified,
αi,ρ(p) and αi,ρ′(p) lie on the unit circle. No more than 2πY points can be placed
on the unit circle with pairwise distances at least 1/Y . Hence, by the pigeonhole
principle, there can be at most

N =
(

4πr2 log(X)M
X

)r(πK (2X)−πK (X))

Artin L-functions of degree r and conductor ≤ q. Here, πK (X) is the number
of prime ideals of OK of norm at most X . We have M ≤ πK (2X)− πK (X) ≤
2[K :Q]X/log X and so

log N ≤
2r X [K :Q]

log X
(log(8πr2)+ log[K :Q]).
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We have

log X ≥ log 214
+ 2 log r + 2 log log q > log 8π + 2 log r + log[K :Q],

and hence
log N ≤ 2C16r3 log2(q)[K :Q].

As er3 log2(q)[K :Q] increases rapidly in r , the number of representations of conductor
at most q and degree r ′≤ r is bounded by Cr3 log2(q)[K :Q]

17 , for some absolute constant
C17. �

We now prove Theorem 1.2 using Proposition 4.1.

Proof of Theorem 1.2. Assume L/K is a Galois extension whose irreducible
complex representations all have degree at most r . Choose the smallest A ≥ e
such that

(4-8)
[L : K ]

2r2 ≤

r∑
i=1

Cr2(r−i) log2(A2)[K :Q]
17 .

We wish to estimate A in terms of |Disc(L)|. By Proposition 4.1, the number of
representations with degree r − i and conductor ≤ A2r/(r−i) is at most

C (r−i)3 log2(A2r/(r−i))[K :Q]
17 = C4r2(r−i) log2(A2)[K :Q]

17 .

Every other representation has q(ρ)deg ρ
≥ A2r . There are at least [L : K ]/2r2 of

these, and so (2-8) gives

|Disc(L)| =
∏

ρ∈Irr(Gal(L/K ))

q(ρ)deg ρ
≥ (A2r )[L:K ]/2r2

= A[L:K ]/r .

Thus, log A ≤ (r/[L : K ]) log|Disc(L)| = r · [K :Q] log rdL .

Equation (4-8) gives

[L : K ]
2r2 ≤ 2Cr3 log2(A2)[K :Q]

17 ,

enlarging C17 if necessary so that Ce2

17 > 2, which gives

log[L : K ] ≤ log(4r2)+ r3 log2(A)[K :Q] log C17

≤ (log 4+ log C17) · r5
[K :Q]3(log rdL)

2.

Hence, there is an absolute constant C2 so that

r ≥ C2
(log[L : K ])1/5

[K :Q]3/5(log rdL)2/5
. �

Finally, we prove Corollary 1.3 using Proposition 4.1.



GALOIS REPRESENTATIONS FOR FIELDS OF SMALL DISCRIMINANT 255

Proof of Corollary 1.3. Let L be the compositum of the L i . Then we have

Gal(L/K )=
N∏

i=1

Gal(L i/K ).

From Theorem 4.21 of [Isaacs 2006], if ρi :Gal(L i/K )→GLr (C) is an irreducible
representation, then the map ρ̃i (g)= ρi (g|L i ) is also an irreducible representation
of Gal(L/K ) which is distinct from ρ̃ j for i 6= j . All of these representations have
conductor q = |Disc(K )|r , and Proposition 4.1 implies that there is an absolute
constant C3 so that

log N ≤ C3r5 log2(|Disc(K )|)[K :Q],

as desired. �
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