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MONOIDS OF MODULES AND ARITHMETIC
OF DIRECT-SUM DECOMPOSITIONS

NICHOLAS R. BAETH AND ALFRED GEROLDINGER

Let R be a (possibly noncommutative) ring and let C be a class of finitely
generated (right) R-modules which is closed under finite direct sums, direct
summands, and isomorphisms. Then the set V.C/ of isomorphism classes of
modules is a commutative semigroup with operation induced by the direct
sum. This semigroup encodes all possible information about direct sum
decompositions of modules in C. If the endomorphism ring of each mod-
ule in C is semilocal, then V.C/ is a Krull monoid. Although this fact was
observed nearly a decade ago, the focus of study thus far has been on ring-
and module-theoretic conditions enforcing that V.C/ is Krull. If V.C/ is
Krull, its arithmetic depends only on the class group of V.C/ and the set
of classes containing prime divisors. In this paper we provide the first sys-
tematic treatment to study the direct-sum decompositions of modules using
methods from factorization theory of Krull monoids. We do this when C
is the class of finitely generated torsion-free modules over certain one- and
two-dimensional commutative Noetherian local rings.

1. Introduction

The study of direct-sum decompositions of finitely generated modules is a classical
topic in module theory dating back over a century. In the early 1900s, Wedderburn,
Remak, Krull, and Schmidt proved unique direct-sum decomposition results for
various classes of groups (see [Maclagan-Wedderburn 1909; Remak 1911; Krull
1925; Schmidt 1929]). A few decades later Azumaya [1950] proved uniqueness
of (possibly infinite) direct-sum decomposition of modules provided that each
indecomposable module has a local endomorphism ring. In the commutative setting,
Evans [1973] gave an example due to Swan illustrating a nonunique direct-sum
decomposition of a finitely generated module over a local ring. The past decade has
seen a new semigroup-theoretical approach. This approach was first introduced by
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Facchini and Wiegand [2004] and has been used by several authors (for example,
see [Baeth 2007; 2009; Baeth and Luckas 2011; Baeth and Saccon 2012; Diracca
2007; Facchini 2002; 2006; 2012; Facchini and Halter-Koch 2003; Facchini et al.
2006; Facchini and Wiegand 2004; Hassler et al. 2007; Herbera and Příhoda 2010;
Levy and Odenthal 1996]). Let R be a ring and let C be a class of right R-modules
which is closed under finite direct sums, direct summands, and isomorphisms. For a
module M in C, let ŒM � denote the isomorphism class of M . Let V.C / denote the
set of isomorphism classes of modules in C. (We assume here that V.C / is indeed
a set, and note that this hypothesis holds for all examples we study.) Then V.C/ is
a commutative semigroup with operation defined by ŒM �C ŒN �D ŒM ˚N � and all
information about direct-sum decomposition of modules in C can be studied in terms
of factorization of elements in the semigroup V.C/. In particular, the direct-sum
decompositions in C are (essentially) unique (in other words, the Krull–Remak–
Schmidt–Azumaya theorem — KRSA — holds) if and only if V.C / is a free abelian
monoid. This semigroup-theoretical point of view was justified by Facchini [2002]
who showed that V.C/ is a reduced Krull monoid provided that the endomorphism
ring EndR.M / is semilocal for all modules M in C. This result allows one to
describe the direct-sum decomposition of modules in terms of factorization of
elements in Krull monoids, a well-studied class of commutative monoids.

However, thus far much of the focus in this direction has been on the study
of module-theoretic conditions which guarantee that all endomorphism rings are
semilocal, as well as on trying to describe the monoid V.C/ in terms of various
ring- and module-theoretic conditions. Although some factorization-theoretic com-
putations have been done in various settings (e.g., the study of elasticity in [Baeth
2009; Baeth and Luckas 2011; Baeth and Saccon 2012] and the study of the !-
invariant in [Diracca 2007]), the general emphasis has not been on the arithmetic
of the monoid V.C/. Our intent is to use known module-theoretic results along
with factorization-theoretic techniques in order to give detailed descriptions of the
arithmetic of direct-sum decompositions of finitely generated torsion-free modules
over certain one- and two-dimensional local rings. We hope that this systematic
approach will not only serve to inspire others to consider more detailed and abstract
factorization-theoretic approaches to the study of direct-sum decompositions, but to
provide new and interesting examples for zero-sum theory over torsion-free groups.
We refer to [Facchini 2003] and to the opening paragraph in the recent monograph
[Leuschke and Wiegand 2012] for broad information on the Krull–Remak–Schmidt–
Azumaya theorem, and to the surveys [Facchini 2012; Baeth and Wiegand 2013]
promoting this semigroup-theoretical point of view. More details and references
will be given in Section 3.

Krull monoids, both their ideal theory and their arithmetic, are well-studied;
see [Geroldinger and Halter-Koch 2006] for a thorough treatment. A reduced
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Krull monoid is uniquely determined (up to isomorphism) by its class group G,
the set of classes GP � G containing prime divisors, and the number of prime
divisors in each class. Let V.C / be a monoid of modules and suppose V.C/ is
Krull with class group G and with set of classes containing prime divisors GP .
We are interested in determining what this information tells us about direct-sum
decompositions of modules. Let M be a module in C and let M DM1˚� � �˚M`

where M1; : : : ;M` are indecomposable right R-modules. Then ` is called the
length of this factorization (decomposition into indecomposables), and the set
of lengths L.M / � N is defined as the set of all possible factorization lengths.
Then KRSA holds if and only if jGj D 1. Moreover, it is easy to check that
jL.M /j D 1 for all M in C provided that jGj � 2. Clearly, sets of lengths are a
measure how badly KRSA fails. Assuming that V.C/ is Krull, M has at least one
direct-sum decomposition in terms of indecomposable right R-modules, and, up to
isomorphism, only finitely many distinct decompositions. In particular, all sets of
lengths are finite and nonempty. Without further information about the class group
G and the subset GP �G, this is all that can be said. Indeed, there is a standing
conjecture that for every infinite abelian group G there is a Krull monoid with
class group G and set GP such that every set of lengths has cardinality one (see
[Geroldinger and Göbel 2003]). On the other hand, if the class group of a Krull
monoid is infinite and every class contains a prime divisor, then every finite subset
of N�2 occurs as a set of lengths (see Proposition 6.2).

Thus an indispensable prerequisite for the study of sets of lengths (and other
arithmetical invariants) in Krull monoids is detailed information about not only the
class group G, but also on the set GP � G of classes containing prime divisors.
For the monoid V.C/, this is of course a module-theoretic task which depends on
both the ring R and the class C of R-modules. Early results gave only extremal
sets GP and thus no further arithmetical investigations were needed. In Sections 4
and 5 we determine, based on deep module-theoretic results, the class group G of
V.C/. We then exhibit well-structured sets GP providing a plethora of arithmetically
interesting direct-sum decompositions. In particular, we study the classes of finitely
generated modules, finitely generated torsion-free modules, and maximal Cohen–
Macaulay modules over one- and two-dimensional commutative Noetherian local
rings. We restrict, if necessary, to specific families of rings in order to obtain explicit
results for GP , since it is possible that even slightly different sets GP can induce
completely different behavior in terms of the sets of lengths. Given this information,
we use transfer homomorphisms, a key tool in factorization theory and introduced
in Section 3, which make it possible to study sets of lengths and other arithmetical
invariants of general Krull monoids instead in an associated monoid of zero-sum
sequences (see Lemma 3.4). These monoids can be studied using methods from
additive (group and number) theory (see [Geroldinger 2009]).
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Factorization theory describes the nonuniqueness of factorizations of elements
in rings and semigroups into irreducible elements by arithmetical invariants such as
sets of lengths, catenary, and tame degrees. We will define each of these invariants in
Section 2. The goal is to relate the arithmetical invariants with algebraic parameters
(such as class groups) of the objects under consideration. The study of sets of lengths
in Krull monoids is a central topic in factorization theory. However, since much
of this theory was motivated by examples in number theory (such as holomorphy
rings in global fields), most of the focus so far has been on Krull monoids with
finite class group and with each class containing a prime divisor. This is in contrast
to Krull monoids stemming from module theory which often have infinite class
group (see Section 4). A key result in Section 6 shows that the arithmetic of these
two types of Krull monoids can have drastically different arithmetic.

In combination with the study of various arithmetical invariants of a given
Krull monoid, the following dual question has been asked since the beginning of
factorization theory: Are arithmetical phenomena characteristic for a given Krull
monoid (inside a given class of Krull monoids)? Affirmative answers have been
given for the class of Krull monoids with finitely generated class groups where
every class contains a prime divisor. Since sets of lengths are the most investigated
invariants in factorization theory, the emphasis in the last decade has been on the
following question: Within the class of Krull monoids having finite class group and
such that every class contains a prime divisor, does the system of sets of lengths
of a monoid H characterize the class group of H? A survey of these problems
can be found in [Geroldinger and Halter-Koch 2006, Sections 7.1 and 7.2]. For
recent progress, see [Schmid 2009b; 2009a; Baginski et al. 2013]. In Theorem 6.8
we exhibit that for many Krull monoids stemming from the module theory of
Sections 4 and 5, the system of sets of lengths and the behavior of absolutely
irreducible elements characterizes the class group of these monoids.

In Section 2 we introduce some of the main arithmetical invariants studied in
factorization theory as well as their relevance to the study of direct-sum decomposi-
tions. Our focus is on sets of lengths and on parameters controlling their structure,
but we will also need other invariants such as catenary and tame degrees. Section 3
gives a brief introduction to Krull monoids, monoids of modules, and transfer homo-
morphisms. Sections 4 and 5 provide explicit constructions stemming from module
theory of class groups and distribution of prime divisors in the classes. Finally, in
Section 6, we present our results on the arithmetic of direct-sum decomposition in
the Krull monoids discussed in Sections 4 and 5.

We use standard notation from commutative algebra and module theory (see
[Leuschke and Wiegand 2012]) and we follow the notation of [Geroldinger and
Halter-Koch 2006] for factorization theory. All monoids of modules V.C/ are
written additively, while all abstract Krull monoids are written multiplicatively.
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This follows the tradition in factorization theory, and makes sense also here because
our crucial tool, the monoid of zero-sum sequences, is written multiplicatively. In
particular, our arithmetical results in Section 6 are written in a multiplicative setting
but they are derived for the additive monoids of modules discussed in Sections 4
and 5. Since we hope that this article is readable both for those working in ring and
module theory as well as those working in additive theory and factorization theory,
we often recall concepts of both areas which are well known to the specialists in
the respective fields.

2. Arithmetical preliminaries

In this section we gather together the concepts central to describing the arithmetic
of nonfactorial monoids. In particular, we exhibit the arithmetical invariants which
will be studied in Section 6 and which will give a measure of nonunique direct sum
decompositions of classes of modules studied in Sections 4 and 5. When possible,
we recall previous work in the area of direct-sum decompositions for which certain
invariants have been studied. For more details on nonunique factorization, see
[Geroldinger and Halter-Koch 2006]. First we record some preliminary terminology.

Notation. We denote by N the set of positive integers and set N0 D N[f0g. For
every n2N, Cn denotes a cyclic group of order n. For real numbers a; b 2R we set
Œa; b�Dfx2Z Wa�x�bg. We use the convention that sup∅Dmax∅Dmin∅D0.

Subsets of the integers. Let L;L0�Z. We denote by LCL0DfaCb Wa2L; b2L0g

the sumset of L and L0. If ∅¤L� N, we call

�.L/D sup
�

m

n
Wm; n 2L

�
D

sup L

min L
2Q�1[f1g

the elasticity of L. In addition, we set �.f0g/D 1. Distinct elements k; l 2L are
called adjacent if L\ Œminfk; lg;maxfk; lg�D fk; lg. A positive integer d 2 N is
called a distance of L if there exist adjacent elements k; l 2 L with d D jk � l j.
We denote by �.L/ the set of distances of L. Note that �.L/D∅ if and only if
jLj � 1, and that L is an arithmetical progression with difference d 2N if and only
if �.L/� fdg.

Monoids and rings. By a monoid H we always mean a commutative semigroup
with identity 1 which satisfies the cancellation law; that is, if a, b, and c are elements
of the H with ab D ac, then b D c.

Let H be a monoid. We denote by A.H / the set of atoms (irreducible elements)
of H , by q.H / a quotient group of H with H � q.H /D fa�1b W a; b 2H g, and
by H� the set of invertible elements of H . We say that H is reduced if H� D f1g,
and we denote by HredDH=H�D faH� W a 2H g the associated reduced monoid.
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Let H 0�H be a subset. We say that H 0 is divisor-closed if a2H 0 and b 2H with
b j a implies that b 2H 0. Denote by ŒH 0��H the submonoid generated by H 0.

A monoid F is called free abelian with basis P � F if every a 2 F has a unique
representation of the form

aD
Y

p2P
pvp.a/ with vp.a/ 2 N0 and vp.a/D 0 for almost all p 2 P :

If F is free abelian with basis P , we set F D F.P/ and call

jaj D
X
p2P

vp.a/

the length of a, and
supp.a/D fp 2 P W vp.a/ > 0g

the support of a. The multiplicative monoid F.P/ is, of course, isomorphic to the
additive monoid .N.P/

0
;C/.

Throughout this manuscript, all rings have a unit element and, apart from a few
motivating remarks in Section 3, all rings are commutative. Let R be a ring. Then
we let R� DRn f0g denote the nonzero elements of R and let R� denote its group
of units. Note that if R is a domain, then R� is a monoid as defined above. By the
dimension of a ring we always mean its Krull dimension.

Abelian groups. Let G be an additive abelian group and let G0 � G a subset.
Then �G0 D f�g W g 2G0g, G�

0
DG0 n f0g, and hG0i �G denotes the subgroup

generated by G0. A family .ei/i2I of elements of G is said to be independent if
ei ¤ 0 for all i 2 I and, for every family .mi/i2I 2 Z.I /,X

i2I

miei D 0 implies miei D 0 for all i 2 I:

The family .ei/i2I is called a basis for G if G D
L

i2I heii. The total rank
r�.G/ is the supremum of the cardinalities of independent subsets of G. Thus
r�.G/D r0.G/C

P
p2P rp.G/, where r0.G/ is the torsion-free rank of G and rp.G/

is the p-rank of G for every prime p 2 P.

Factorizations. Let H be a monoid. The free abelian monoid Z.H /DF.A.Hred//

is called the factorization monoid of H , and the unique homomorphism

� W Z.H /!Hred satisfying �.u/D u for each u 2A.Hred/

is called the factorization homomorphism of H . For a 2H and k 2 N,

� ZH .a/D Z.a/D ��1.aH�/� Z.H / is the set of factorizations of a,

� Zk.a/D fz 2 Z.a/ W jzj D kg is the set of factorizations of a of length k,
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� LH .a/D L.a/D
˚
jzj W z 2 Z.a/

	
� N0 is the set of lengths of a, and

� L.H /D fL.b/ W b 2H g is the system of sets of lengths of H .

By definition, we have Z.a/ D f1g and L.a/ D f0g for all a 2 H�. If H is
assumed to be Krull, as is the case in the monoids of modules we study, and a 2H ,
then the set of factorizations Z.a/ is finite and nonempty and hence L.a/ is finite
and nonempty. Suppose that there is a 2H with jL.a/j> 1 with distinct k; l 2 L.a/.
Then for all N 2N, L.aN /� f.N � i/kC i l W i 2 Œ0;N �g and hence jL.aN /j>N .
Thus, whenever there is an element a 2H that has at least two factorizations of
distinct lengths, there exist elements of H having arbitrarily many factorizations of
distinct lengths. This motivates the need for more refined measures of nonunique
factorization.

Several invariants such as elasticity and the �-set measure nonuniqueness in
terms of sets of lengths. Other invariants such as the catenary degree provide an
even more subtle measurement in terms of the distinct factorizations of elements.
However, these two approaches cannot easily be separated and it is often the case
that a factorization-theoretical invariant is closely related to an invariant of the set
of lengths. Thus the exposition that follows will introduce invariants as they are
needed and so that the relations between these invariants can be made as clear as
possible.

The monoid H is called

� atomic if Z.a/¤∅ for all a 2H ,

� factorial if jZ.a/j D 1 k for all a 2H (equivalently, Hred is free abelian), and

� half-factorial if jL.a/j D 1 for all a 2H .

Let z; z0 2 Z.H /. Then we can write

z D u1�:::�ulv1�:::�vm and z0 D u1�:::�ulw1�:::�wn;

where l;m; n 2 N0 and u1; : : : ;ul ; v1; : : : ; vm; w1; : : : ; wn 2A.Hred/ satisfy

fv1; : : : ; vmg\ fw1; : : : ; wng D∅:

Then gcd.z; z0/D u1�:::�ul , and we call

d.z; z0/Dmaxfm; ng Dmax
˚
jz gcd.z; z0/�1

j; jz0 gcd.z; z0/�1
j
	
2 N0

the distance between z and z0. If �.z/D �.z0/ and z ¤ z0, then clearly

2C
ˇ̌
jzj � jz0j

ˇ̌
� d.z; z0/:

For subsets X;Y � Z.H /, we set

d.X;Y /Dminfd.x;y/ W x 2X; y 2 Y g;

and thus d.X;Y /D 0 if and only if (X \Y ¤∅, X D∅, or Y D∅).
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From this point on, we will assume all monoids to be atomic. Since the monoids
described in Sections 4 and 5 are of the form V.C/ for C a subclass of finitely
generated modules over a commutative Noetherian ring, they are Krull and hence
atomic.

The set of distances and chains of factorizations. We now recall the �-set of a
monoid H , an invariant which describes the sets of lengths of elements in H , and
illustrate its relationship with distances between factorizations of elements in H .
We denote by

�.H /D
[

L2L.H /

�.L/� N

the set of distances of H . By definition, �.H / D ∅ if and only if H is half-
factorial. For a more thorough investigation of factorizations in H , we will need
a distinguished subset of the set of distances. Let ��.H / denote the set of all
d D min�.S/ for some divisor-closed submonoid S � H with �.S/ ¤ ∅. By
definition, we have ��.H /��.H /.

Suppose that H is not factorial. Then there exists an element a 2 H with
jZ.a/j > 1, and so there exist distinct z; z0 2 Z.a/. Then, for N 2 N, we have
Z.aN / � fzN�i.z0/i W i 2 Œ0;N �g. Although d.zN ; .z0/N / D Nd.z; z0/ > N

suggests that the factorizations zN and .z0/N of aN are very different,

d.zN�i.z0/i ; zN�iC1.z0/i�1/D d.z; z0/

for each i 2 Œ1;N �. This illustrates that the distance alone is too coarse of an
invariant, and motivates the study of the catenary degree as a way of measuring
how distinct two factorizations are. As will be described below, there is a structure
theorem for the set of lengths of a Krull monoid. However, except in very simple
situations, there is no known structure theorem for the set of factorizations of an
element in a Krull monoid. Thus we use the catenary degree, its many variations,
the tame degree, and other invariants help to measure the subtle distinctions between
factorizations.

Let a 2 H and N 2 N0 [ f1g. A finite sequence z0; : : : ; zk 2 Z.a/ is called
a .monotone/ N -chain of factorizations if d.zi�1; zi/ � N for all i 2 Œ1; k� and
(jz0j � � � � � jzk j or jz0j � � � � � jzk j respectively). We denote by c.a/ (or by
cmon.a/ respectively) the smallest N 2 N0[f1g such that any two factorizations
z; z0 2 Z.a/ can be concatenated by an N -chain (or by a monotone N -chain
respectively). Then

c.H /D supfc.b/ W b 2H g 2 N0[f1g;

cmon.H /D supfcmon.b/ W b 2H g 2 N0[f1g
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denote the catenary degree and the monotone catenary degree of H . The monotone
catenary degree is studied by using the two auxiliary notions of the equal and the
adjacent catenary degrees. Let ceq.a/ denote the smallest N 2 N0 [ f1g such
that any two factorizations z; z0 2 Z.a/ with jzj D jz0j can be concatenated by a
monotone N -chain. We call

ceq.H /D supfceq.b/ W b 2H g 2 N0[f1g

the equal catenary degree of H . We set

cadj.a/D supfd.Zk.a/;Zl.a// W k; l 2 L.a/ are adjacentg;

and the adjacent catenary degree of H is defined as

cadj.H /D supfcadj.b/ W b 2H g 2 N0[f1g:

Obviously, we have

c.a/� cmon.a/D supfceq.a/; cadj.a/g � sup L.a/ for all a 2H;

and hence
c.H /� cmon.H /D supfceq.H /; cadj.H /g:

Note that cadj.H /D 0 if and only if H is half-factorial, and if H is not half-factorial,
then 2C sup�.H / � c.H /. Moreover, ceq.H / D 0 if and only if for all a 2 H

and all k 2 L.a/ we have jZk.a/j D 1. Corollary 2.12 of [Coykendall and Smith
2011] implies that if D is a domain, we have that ceq.D

�/D 0 if and only if D� is
factorial.

We call

�H ;eq D
˚
.x;y/ 2 Z.H /�Z.H / W �.x/D �.y/ and jxj D jyj

	
the monoid of equal-length relations of H . Let Z � Z.H / be a subset. We say that
an element x 2Z is minimal in Z if for all elements y 2Z with y jx it follows that
x D y. We denote by Min.Z/ the set of minimal elements in Z. Let x 2Z. Since
the number of elements y 2 Z with y jx is finite, there exists an x� 2 Min.Z/
with x� jx.

Lemma 2.1. Let H be an atomic monoid.

(1) ceq.H /� sup
˚
jxj W .x;y/ 2A.�H ;eq/ for some y 2 Z.H / n fxg

	
.

(2) For d 2 �.H / let Ad D fx 2 Z.H / W jxj � d 2 L.�.x//g. Then cadj.H / �

supfjxj W x 2Min.Ad /; d 2�.H /g.

Proof. See [Blanco et al. 2011, Proposition 4.4]. �
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Unions of sets of lengths and the refined elasticities. We now return to studying
sets of lengths. We note that the elasticity of certain monoids of modules were
studied in [Baeth and Luckas 2011; Baeth and Saccon 2012], but that in Section 6
we will provide results which generalize these results to larger classes of Krull
monoids. In addition, we will fine tune these results by also computing the refined
elasticities. Let k; l 2 N. If H ¤H�, then

Uk.H /D
[
k2L

L2L.H /

L

is the union of all sets of lengths containing k. In other words, Uk.H / is set of
all m 2 N for which there exist u1; : : : ;uk ; v1; : : : ; vm 2A.H / with u1�:::�uk D

v1�:::�vm. When H�DH , we set Uk.H /Dfkg. In both cases, we define �k.H /D

supUk.H /2N[f1g and �k.H /DminUk.H /2 Œ1; k�. Clearly, we have U1.H /D

f1g, k 2 Uk.H /, and since Uk.H /CUl.H /� UkCl.H /, it follows that

�kCl.H /� �k.H /C�l.H /� kC l � �k.H /C �l.H /� �kCl.H /:

The elasticity �.H / of H is defined as

�.H /D supf�.L/ WL 2 L.H /g 2 R�1[f1g;

and it is not difficult to verify that

�.H /D sup
�
�k.H /

k
W k 2 N

�
D lim

k!1

�k.H /

k
:

The structure of sets of lengths. To describe the structure of sets of lengths and
of their unions, we need the concept of arithmetical progressions as well as various
generalizations. Let l;M 2 N0, d 2 N, and f0; dg �D � Œ0; d �. We set

Pl.d/D dZ\ Œ0; ld �D f0; d; 2d; : : : ; ldg:

Thus a subset L�Z is an arithmetical progression (with difference d 2N and length
l 2 N0) if LD min LCPl.d/. A subset L � Z is called an almost arithmetical
multiprogression (AAMP for short) with difference d , period D, and bound M , if

LD yC .L0[L�[L00/ � yCDC dZ;

where

� L� is finite and nonempty with min L�D 0 and L�D .DCdZ/\Œ0;max L��,

� L0 � Œ�M;�1� and L00 �max L�C Œ1;M �, and

� y 2 Z.

Note that an AAMP is finite and nonempty, and that an AAMP with period f0; dg
and bound M D 0 is a (usual) arithmetical progression with difference d .
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The !-invariant and the tame degrees. We now study the !-invariant as well as
local and global tame degrees. We note that these notions have been studied in
specific noncommutative module-theoretic situations in terms of the so-called
semiexchange property (see [Diracca 2007]). Moreover, when describing the
sets of lengths of elements within a Krull monoid H in terms of AAMPs (see
Proposition 6.2), the bound M (described above) is a tame degree related to the
monoid H . We begin with the definition. For an atom u 2H , let !.H;u/ denote
the smallest N 2 N[f1g having the following property:

For any multiple a of u and any factorization a D v1 �:::�vn of a, there
exists a subset �� Œ1; n� such that j�j �N and

u divides
Q
�2�

v� :

Furthermore, we set

!.H /D supf!.H;u/ W u 2A.H /g 2 N[f1g:

An atom u 2H is prime if and only if !.H;u/D 1, and thus H is factorial if and
only if !.H /D 1. If H satisfies the ascending chain condition on divisorial ideals
(in particular, H is a Krull monoid or a Noetherian domain), then !.H;u/ <1
for all u 2A.H / [Geroldinger and Hassler 2008, Theorem 4.2]. Roughly speaking,
the tame degree t.H;u/ is the maximum of !.H;u/ and a factorization length of
u�1

Q
�2� v� in H . More precisely, for an atom u 2 H , the local tame degree

t.H;u/ is the smallest N 2 N0[f1g having the following property:

For any multiple a of u and any factorization aD v1�:::�vn of a which
does not contain u, there is a short subproduct which is a multiple of u,
say v1�:::�vm, and a refactorization of this subproduct which contains u,
say v1 �:::�vm D uu2 �:::�u`, such that maxf`;mg �N .

Thus the local tame degree t.H;u/ measures the distance between any factorization
of a multiple a of u and a factorization of a which contains u. As before, we set

t.H /D supft.H;u/ W u 2A.H /g 2 N0[f1g:

We conclude this section with the following lemma (see [Geroldinger and Halter-
Koch 2006, Chapter 1; Geroldinger and Kainrath 2010]) which illustrates how the
primary invariants measure the nonuniqueness of factorizations and show that all
of these invariants are trivial if the monoid is factorial.

Lemma 2.2. Let H be an atomic monoid.

(1) H is half-factorial if and only if �.H /D 1 if and only if �k.H /D k for every
k 2 N.

(2) H is factorial if and only if c.H /D t.H /D 0 if and only if !.H /D 1.
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(3) c.H /D 0 or c.H /� 2, and if c.H /� 2, then H is half-factorial.

(4) c.H /� !.H /� t.H /� !.H /2, and if H is not factorial, then

maxf2; �.H /g � !.H /:

(5) If c.H /D 3, every L 2 L.H / is an arithmetical progression with difference 1.

3. Krull monoids, monoids of modules, and transfer homomorphisms

The theory of Krull monoids is presented in detail in the monographs [Halter-Koch
1998; Geroldinger and Halter-Koch 2006]. Here we gather the terminology required
for our treatment. We then present an introduction to monoids of modules — the
key objects of our study. Finally, we recall important terminology and results about
monoids of zero-sum sequences and transfer homomorphisms — the key tools in
our arithmetical investigations.

Krull monoids. Let H and D be monoids. A monoid homomorphism ' WH !D

is called

� a divisor homomorphism if '.a/ j'.b/ implies that a j b for all a; b 2H .

� cofinal if for every a 2D there exists some u 2H such that a j'.u/.

� a divisor theory (for H ) if DDF.P/ for some set P , ' is a divisor homomor-
phism, and for every a 2 F.P/, there exists a finite nonempty subset X �H

satisfying aD gcd.'.X //.

We call C.'/D q.D/=q.'.H // the class group of ', use additive notation for this
group, and for a 2 q.D/, we denote by Œa�D a q.'.H // 2 q.D/=q.'.H // the class
containing a. Clearly D=H D fŒa� W a 2Dg � C.'/ is a submonoid with quotient
group C.'/. The homomorphism ' is cofinal if and only if C.'/DD=H and, by
definition, every divisor theory is cofinal. Let ' W H ! D D F.P/ be a divisor
homomorphism. Then '.H /D fa 2D W Œa�D Œ1�g and

GP D fŒp�D pq.'.H // W p 2 Pg � C.'/

is called the set of classes containing prime divisors. Moreover, hGPi D C.'/ and
ŒGP �D fŒa� W a 2Dg.

The monoid H is called a Krull monoid if it satisfies one of the following
equivalent conditions:

(a) H is completely integrally closed and satisfies the accending chain condition
on divisorial ideals.

(b) H has a divisor theory.

(c) H has a divisor homomorphism into a free abelian monoid.
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If H is a Krull monoid, then a divisor theory is unique up to unique isomorphism,
and the class group associated to a divisor theory depends only on H . It is called the
class group of H and will be denoted by C.H /. Moreover, a reduced Krull monoid
H with divisor theory H ,! F.P/ is uniquely determined up to isomorphism
by its characteristic .G; .mg/g2G/ where G is an abelian group together with
an isomorphism ˆ W G ! C.H / and with family .mg/g2G of cardinal numbers
mg D jP \ˆ.g/j (see [Geroldinger and Halter-Koch 2006, Theorem 2.5.4], and
the forthcoming Lemma 3.4).

It is well known that a domain R is a Krull domain if and only if its multiplicative
monoid R� is a Krull monoid, and we set the class group of R to be C.R/D C.R�/.
Property (a) shows that a Noetherian domain is Krull if and only if it is integrally
closed. In addition, many well-studied classes of commutative monoids such as
regular congruence monoids in Krull domains and Diophantine monoids are Krull.
The focus of the present paper is on Krull monoids stemming from module theory.

Monoids of modules. Let R be a (not necessarily commutative) ring and C a class
of (right) R-modules. We say that C is closed under finite direct sums, direct
summands, and isomorphisms provided the following holds: Whenever M;M1 and
M2 are R-modules with M ŠM1˚M2, we have M 2C if and only if M1;M2 2C.
We say that C satisfies the KRSA theorem if the following holds:

If k; l 2N and M1; : : : ;Mk ;N1; : : : ;Nl are indecomposable modules in
C with M1˚� � �˚Mk ŠN1˚� � �˚Nl , then l D k and, after a possible
reordering of terms, Mi ŠNi for all i 2 Œ1; k�.

Suppose that C is closed under finite direct sums, direct summands, and isomor-
phisms. For a module M 2 C, we denote by ŒM � its isomorphism class, and by V.C/
the set of isomorphism classes. (For our purposes here, we tacitly assume that this
is actually a set. For the classes of modules studied in Sections 4 and 5 this is indeed
the case. For the involved set-theoretical problems in a more general context, see
[Facchini 2012, Section 2].) Then V.C/ is a commutative semigroup with operation
ŒM �C ŒN � D ŒM ˚N � and all information about direct-sum decompositions of
modules in C can be studied in terms of factorizations in the semigroup V.C/. By
definition, C satisfies KRSA if and only if V.C/ is a free abelian monoid, which
holds if EndR.M / is local for each indecomposable M in C (see [Leuschke and
Wiegand 2012, Theorem 1.3]).

If the endomorphism ring EndR.M / is semilocal for all modules M in C, then
V.C/ is a Krull monoid ([Facchini 2002, Theorem 3.4]). There is an abundance of
recent work which provides examples of rings and classes of modules over these
rings for which all endomorphism rings are semilocal (see [Facchini 2004; 2006;
2012]. For monoids of modules, a characterization of when the class group is a
torsion group is given in [Facchini and Halter-Koch 2003]).
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Suppose that V.C/ is a Krull monoid. Then to understand the structure of direct-
sum decompositions of modules in C is to understand the arithmetic of the reduced
Krull monoid V.C/. Since any reduced Krull monoid H is uniquely determined by
its class group and by the distribution of prime divisors (that is, the characteristic
of H ), one must study these parameters.

In the present paper we will focus on the following classes of modules over a
commutative Noetherian local ring S , each closed under finite direct sums, direct
summands, and isomorphisms. For a commutative Noetherian local ring S , we
denote by

� M.S/ the semigroup of isomorphism classes of finitely generated S -modules,

� T .S/ the semigroup of isomorphism classes of finitely generated torsion-free
S -modules, and

� C.S/ the semigroup of isomorphism classes of maximal Cohen–Macaulay
(MCM) S -modules.

Note that in order to make C.S/ a semigroup, we insist that Œ0S � 2 C.S/, even
though the zero module is not MCM. We say that a commutative Noetherian local
ring S has finite representation type if there are, up to isomorphism, only finitely
many indecomposable MCM S-modules. Otherwise we say that S has infinite
representation type.

Throughout, let .R;m/ be a commutative Noetherian local ring with maximal
ideal m, and let . yR; ym/ denote its m-adic completion. Let V.R/ and V. yR/ be any
of the above three semigroups. If M is an R-module such that ŒM � 2 V.R/, then
yM ŠM ˝R

yR is an yR-module with Œ yM � 2 V. yR/, and every such yR-module is
called extended. Note that R has finite representation type if and only if yR has
finite representation type (see [Leuschke and Wiegand 2012, Chapter 10]), and that
the dimension of R is equal to the dimension of yR. The following crucial result
shows that the monoid V.R/ is Krull.

Lemma 3.1. Let .R;m/ be a commutative Noetherian local ring with maximal
ideal m, and let . yR; ym/ denote its m-adic completion.

(1) For each indecomposable finitely generated yR-module M , End yR.M / is local,
and therefore M. yR/, T . yR/, and C. yR/ are free abelian monoids.

(2) The embedding M.R/ ,!M. yR/ is a divisor homomorphism. It is cofinal
if and only if every finitely generated yR-module is a direct summand of an
extended module.

(3) The embeddings T .R/ ,! T . yR/ and C.R/ ,! C. yR/ are divisor homomor-
phisms.
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In particular, M.R/; T .R/, and C.R/ are reduced Krull monoids. Moreover, the
embeddings in (2) and (3) are injective and map R-modules onto the submonoid of
extended yR-modules.

Proof. Property (1) holds by the KRSA theorem (see [Leuschke and Wiegand 2012,
Chapter 1]).

Wiegand [2001] proved that the given embedding is a divisor homomorphism (see
also [Baeth and Wiegand 2013, Theorem 3.6]). The characterization of cofinality
follows from the definition and thus (2) holds.

Let M;N be R-modules such that either ŒM �; ŒN � 2 V.R/ where V.R/ denotes
either T .R/ or C.R/ and suppose that Œ yM � divides Œ yN � in V. yR/. Then we have
divisibility in M. yR/, and hence in M.R/ by (2). Since V.R/�M.R/ is divisor-
closed, it follows that ŒM � divides ŒN � in V.R/, proving (3).

Together, (2) and (3) show that M.R/; T .R/, and C.R/ satisfy Property (c) in
the definition of Krull monoids. Since each of these monoids is reduced, the maps
induced by ŒM � 7! Œ yM � are injective. �

Note that the embedding M.R/ ,!M. yR/ is not necessarily cofinal, as is shown
in [Hassler and Wiegand 2009; Frankild et al. 2008]. In Sections 4 and 5 we
will study in detail the class group and the distribution of prime divisors of these
Krull monoids, in the case of one-dimensional and two-dimensional commutative
Noetherian local rings.

Monoids of zero-sum sequences. We now introduce Krull monoids having a com-
binatorial flavor which are used to model arbitrary Krull monoids. Let G be an
additive abelian group and let G0 � G be a subset. Following the tradition in
additive group and number theory, we call the elements of F.G0/ sequences over
G0. Thus a sequence S 2 F.G0/ will be written in the form

S D g1�:::�gl D

Y
g2G0

gvg.S/:

We will use all notions (such as the length) as in general free abelian monoids. We
set �S D .�g1/�:::�.�gl/, and call �.S/D g1C� � �Cgl 2G the sum of S . The
monoid

B.G0/D fS 2 F.G0/ W �.S/D 0g

is called the monoid of zero-sum sequences over G0, and its elements are called
zero-sum sequences over G0. Obviously, the inclusion B.G0/ ,!F.G0/ is a divisor
homomorphism, and hence B.G0/ is a reduced Krull monoid by Property (c) in the
definition of Krull monoids. By definition, the inclusion B.G0/ ,!F.G0/ is cofinal
if and only if for every g 2 G0 there is an S 2 B.G0/ with g jS ; equivalently,
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there is no proper subset G0
0
¨ G0 such that B.G0

0
/ D B.G0/. If jGj ¤ 2, then

C.B.G//ŠG, and every class contains precisely one prime divisor.
For every arithmetical invariant �.H /, as defined for a monoid H in Section 2,

it is usual to write �.G0/ instead of �.B.G0// (whenever the meaning is clear
from the context). In particular, we set A.G0/DA.B.G0//, L.G0/D L.B.G0//,
cmon.G0/D cmon.B.G0//, etc.

The study of sequences, subsequence sums, and zero-sums is a flourishing sub-
field of additive group and number theory (see, for example, [Gao and Geroldinger
2006; Geroldinger and Ruzsa 2009; Grynkiewicz 2013]). The Davenport constant
D.G0/, defined as

D.G0/D supfjU j W U 2A.G0/g 2 N0[f1g;

is among the most studied invariants in additive theory and will play a crucial role
in the computations of arithmetical invariants (see the discussion after Lemma 3.4).
We will need the following two simple lemmas which we present here so as to not
clutter the exposition of Section 6.

Lemma 3.2. Suppose that the inclusion B.G0/ ,!F.G0/ is cofinal. The following
are equivalent.

(a) There exist nontrivial submonoids H1;H2�B.G0/ such that B.G0/DH1�H2.

(b) There exist nonempty subsets G1;G2 � G0 such that G0 D G1 ] G2 and
B.G0/D B.G1/�B.G2/.

(c) There exist nonempty subsets G1;G2 � G0 such that G0 D G1 ] G2 and
A.G0/DA.G1/]A.G2/.

Proof. Clearly (b) implies (a). The converse follows from [Geroldinger and Halter-
Koch 2006, Proposition 2.5.6]. The implication (b) implies (c) is obvious. We now
show that (c) implies (b). Let B 2 B.G0/. Since B.G0/ is a Krull monoid, it is
atomic and hence B D U1�:::�Ul with U1; : : : ;Ul 2A.G0/. After renumbering (if
necessary), we can find k 2 Œ0; l � such that U1; : : : ;Uk 2A.G1/ and UkC1; : : : ;Ul 2

A.G2/. Thus B.G0/D B.G1/B.G2/. If B 2 B.G1/\B.G2/, then B is a product
of atoms from A.G1/ and a product of atoms from A.G2/. Since their intersection
is empty, both products are empty. Therefore B D 1 and hence B.G0/D B.G1/�

B.G2/. �

Lemma 3.2.(c) shows that B.G�/ is not a direct product of submonoids. Suppose
that 0 2 G0. Then 0 2 B.G0/ is a prime element and B.G0/ D B.f0g/� B.G�

0
/.

But B.f0g/DF.f0g/Š .N0;C/, and thus all the arithmetical invariants measuring
the nonuniqueness of factorizations of B.G0/ and of B.G�

0
/ coincide. Therefore

we can assume that 0 62G0 whenever it is convenient.
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Lemma 3.3. Let G be an abelian group and let G0 � G be a subset such that
1< D.G0/ <1.

(1) For all k 2 N,

�.G0/� D.G0/=2; k � �k.G0/� k�.G0/; �.G0/
�1k � �k.G0/� k:

(2) Suppose that �2.G0/D D.G0/. Then �.G0/D D.G0/=2, and for all k 2 N,

�2k.G0/D kD.G0/ and kD.G0/C 1� �2kC1.G0/� kD.G0/C
D.G0/

2
:

Moreover, if j ; l 2 N0 are such that lD.G0/C j � 1, then

2l C
2j

D.G0/
� �lD.G0/Cj .G0/� 2l C j:

Proof. By definition, �k.G0/�k��k.G0/. Since �.G0/D supf�k.G0/=k Wk 2Ng,
it follows that �k.G0/� k�.G0/ and k � �.G0/�k.G0/. Furthermore, 2�k.G0/�

kD.G0/ for all k 2 N implies that �.G0/� D.G0/=2. This gives (1).
We now prove (2). Since �k.G0/C �l.G0/� �kCl.G0/ for every k; l 2 N, (1)

implies that

kD.G0/D k�2.G0/� �2k.G0/� .2k/
D.G0/

2
D kD.G0/;

and hence

kD.G0/C 1D �2k.G0/C �1.G0/� �2kC1.G0/� .2kC 1/�.G0/

� kD.G0/C
D.G0/

2
:

Letj; l 2N0 be such that lD.G0/Cj �1. For convenience, set �0.G0/D�0.G0/D0.
Since

2l D
2

D.G0/
lD.G0/� �lD.G0/.G0/ and �2l.G0/D lD.G0/;

it follows that �lD.G0/.G0/D 2l , and hence

2l C
2j

D.G0/
D

2

D.G0/

�
lD.G0/C j

�
D �.G0/

�1
�
lD.G0/C j

�
� �lD.G0/Cj .G0/� �lD.G0/.G0/C�j .G0/� 2l C j: �

Transfer homomorphisms. Transfer homomorphisms are a central tool in factor-
ization theory. In order to study a given monoid H , one constructs a transfer
homomorphism � W H ! B to a simpler monoid B, studies factorizations in B,
and then lifts arithmetical results from B to H . In the case of Krull monoids,
transfer homomorphisms allow one to study nearly all of the arithmetical invariants
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introduced in Section 2 in an associated monoid of zero-sum sequences. We now
gather the basic tools necessary for this approach.

A monoid homomorphism � WH ! B is called a transfer homomorphism if it
has the following properties:

(T1) B D �.H /B� and ��1.B�/DH�.

(T2) If u 2 H , b; c 2 B and �.u/ D bc, then there exist v; w 2 H such that
uD vw, �.v/' b and �.w/' c.

The next result provides the link between the arithmetic of Krull monoids and
additive group and number theory. This interplay is highlighted in the survey
[Geroldinger 2009].

Lemma 3.4. Let H be a Krull monoid, ' W H ! D D F.P/ a cofinal divisor
homomorphism, GD C.'/ its class group, and GP �G the set of classes containing
prime divisors. Let ž WD! F.GP/ denote the unique homomorphism defined by
ž.p/D Œp� for all p 2 P .

(1) The inclusion B.GP/ ,! F.GP/ is cofinal, and the homomorphism

ˇ D ž ı' WH ! B.GP/

is a transfer homomorphism.

(2) For all a 2 H , LH .a/ D LB.GP /.ˇ.a//. In particular, L.H / D L.GP/,
�.H /D�.GP/, Uk.H /DUk.GP/, �k.H /D�k.GP/, and �k.H /D�k.GP/

for each k 2 N.

(3) Suppose that H is not factorial. Then c.H / D c.GP/, cadj.H / D cadj.GP/,
cmon.H /D cmon.GP/, ��.H /D��.GP/, and !.H /� D.GP/.

Proof. See [Geroldinger and Halter-Koch 2006, Section 3.4] for details pertaining
to most of the invariants. For the statements on the monotone catenary degree,
see [Geroldinger et al. 2010]. Roughly speaking, all of the statements in (2) are
straightforward, but the statements in (3) are more subtle. Note that a statement
corresponding to (3) does not hold true for the tame degree (see [Gao et al. 2015]).

�

In summary, if the monoid of modules V.R/ is Krull with class group G and
set GP of classes containing prime divisors, then the arithmetic of direct-sum
decompositions can be studied in the monoid B.GP/ of zero-sum sequences over
GP . In particular, if H DM.R/ and DDM. yR/ as in Lemma 3.1 and all notation
is as in Lemma 3.4, then

D.GP/
D sup

˚
l W yM ŠN1˚ � � �˚Nl with ŒM � 2A.H / and ŒNi � 2A.D/ 8i 2 Œ1; l �

	
:
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4. Monoids of modules: class groups and distribution of prime divisors, I

Throughout this section we use the following setup:

(S) .R;m/ denotes a one-dimensional analytically unramified commutative Noe-
therian local ring with unique maximal ideal m, k D R=m its residue field,
yR its m-adic completion, and spl.R/ D jspec. yR/j � jspec.R/j the splitting

number of R.

In this section we investigate the characteristic of the Krull monoids M.R/

and T .R/ for certain one-dimensional local rings. This study is based on deep
module-theoretic work achieved over the past several decades. We gather together
module-theoretic information and proceed using a recent construction (see 4.4) to
obtain results on the class group and on the set GP of classes containing prime
divisors. The literature does not yet contain a systematic treatment along these
lines. Indeed, early results (see Theorem 4.2 below) indicated only the existence
of extremal sets GP which imply either trivial direct-sum decompositions or that
all arithmetical invariants describing the direct-sum decompositions are infinite. In
either case there was no need for further arithmetical study. Here we reveal that
finite and well-structured sets GP occur in abundance. Thus, as we will see in
Section 6, the arithmetical behavior of direct-sum decompositions is well-structured.

We first gather basic ring and module-theoretic properties. By definition, yR and
R are both reduced and the integral closure of R is a finitely generated R-module.
Moreover, we have C.R/D T .R/. Let M be a finitely generated R-module. If p is
a minimal prime ideal of R, then Rp is a field, Mp is a finite-dimensional Rp-vector
space, and we set rankp.M / D dimRp

.Mp/. If p1; : : : ; ps are the minimal prime
ideals of R, then rank.M /D .r1; : : : ; rs/ where ri D rankpi

.M / for all i 2 Œ1; s�.
The module M is said to have constant rank if r1 D � � � D rs .

We start with a beautiful result of Levy and Odenthall, which gives us a tool to
determine which finitely generated yR-modules are extended from R-modules.

Proposition 4.1 [Levy and Odenthal 1996, Theorem 6.2]. Let M be a finitely
generated torsion-free yR-module. Then M is extended if and only if rankp.M /D

rankq.M / whenever p and q are minimal prime ideals of yR with p\RD q\R. In
particular, if R is a domain, then M is extended if and only if its rank is constant.

We start our discussion with a result which completely determines the charac-
teristic of the Krull monoid M.R/. The arithmetic of this monoid is studied in
Proposition 6.2.2.

Theorem 4.2 [Hassler et al. 2007, Theorem 6.3]. Let G denote the class group of
M.R/ and let GP �G denote the set of classes containing prime divisors.

(1) If R is not Dedekind-like, then G is free abelian of rank spl.R/ and each class
contains jkj@0 prime divisors.
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(2) If R is a DVR, then G D 0.
(3) If R is Dedekind-like but not a DVR, then either

(a) spl.R/D 0 and G D 0, or
(b) spl.R/D 1, G is infinite cyclic with G D hei and GP D f�e; 0; eg. Each

of the classes e and �e contain @0 prime divisors and the class 0 contains
jkj@0 prime divisors.

Thus, for the rest of this section, we focus our attention on T .R/. To determine
if the divisor homomorphism T .R/ ,! T . yR/ is a divisor theory, we will require
additional information. For now, we easily show that it is always cofinal.

Proposition 4.3. The embedding T .R/ ,! T . yR/ is a cofinal divisor homomor-
phism.

Proof. By Lemma 3.1 the embedding is a divisor homomorphism. If M is a
finitely generated torsion-free yR-module, we can consider its rank, rank.M / D

.r1; : : : ; rt /, where t is the number of minimal primes of yR. If r1 D � � � D rt ,
then by Proposition 4.1 M is extended, say M D yN for some finitely generated
torsion-free R-module N and the result is trivial. If the rank of M is not constant,
set r Dmaxfr1; : : : ; rtg and consider the yR-module

LD . yR=q1/
r�r1 ˚ � � �˚ . yR=qt /

r�rt ;

where q1; : : : ; qt denote the minimal primes of yR. Then rank.N ˚L/D .r; : : : ; r/

is constant and hence N˚L is extended, say N˚LŠ yP for some finitely generated
torsion-free R-module P . Clearly M is isomorphic to a direct summand of yP and
the result follows. �

Since T . yR/ is free abelian, we can identify it with the free abelian monoid N
.P/
0

,
where P is an index set for the isomorphism classes of indecomposable finitely
generated torsion-free yR-modules. We then use Proposition 4.1 to describe T .R/ in
detail. The following construction has been used numerous times (see, for example,
[Baeth and Luckas 2011; Baeth and Saccon 2012; Facchini et al. 2006]).

Construction 4.4. � Let p1; : : : ; ps be the distinct minimal prime ideals of R. For
each i 2 Œ1; s�, let qi;1; : : : ; qi;ti

be the minimal primes of yR lying over pi . Note
that spl.R/D

Ps
iD1.ti � 1/.

� Let P be the set of isomorphism classes of indecomposable finitely generated
torsion-free yR-modules.

� Let A.R/ be the spl.R/� jPj matrix whose column indexed by the isomorphism
class ŒM � 2 P is�

r1;1� r1;2 � � � r1;1� r1;t1
� � � rs;1� rs;2 � � � rs;1� rs;ts

�T
;

where ri;j D rankqi;j
.M /.
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Then T .R/Š ker.A.R//\N.P/ � N
.P/
0

is a Diophantine monoid.

If one has a complete description of how the minimal prime ideals of yR lie over
the minimal prime ideals of R together with the ranks of all indecomposable finitely
generated torsion-free yR-modules, then Construction 4.4 completely describes
the monoid T .R/. In certain cases (e.g., Section 4A) we are able to obtain all
of this information. Other times we know only some of the ranks that occur for
indecomposable yR-modules and thus have only a partial description for T .R/.
However, as was shown in [Baeth and Saccon 2012], the ranks of indecomposable
cyclic yR-modules gives enough information about the columns of A.R/ to prove that
T .R/ ,! T . yR/ is nearly always a divisor theory. First we recall that if q1; : : : ; qt

are the minimal primes of yR, and E � Œ1; t �. Then

rank
�
yRT

i2E

qi

�
D .r1; : : : ; rt /; where ri D

�
1 if i 2E;

0 if i 62E:

Thus every nontrivial t-tuple of zeros and ones can be realized as the rank of
a nonzero (necessarily indecomposable) cyclic yR-module. Thus we have the
following:

Construction 4.5. Let all notation be as in Construction 4.4. After renumbering if
necessary, there is p 2 Œ0; s� such that t1; : : : ; tp � 2 and such that ti D 1 for each
i 2 ŒpC 1; s�. Then spl.R/D

Pp
jD1

tj �p. For each i 2 Œ1;p�, let Ai be the set of
.ti � 1/� 1 column vectors all of whose entries are either 0 or 1, and let Bi be the
set of .ti � 1/� 1 column vectors all of whose entries are either 0 or �1.

We now define T to be the spl.R/�
Qp

iD1
.2ti�1/matrix, each of whose columns

has the form 264 T1

:::

Tp

375 ; where Ti 2Ai [Bi for each i 2 Œ1;p�.

With the notation as in Constructions 4.4 and 4.5, we give a realization result
which shows that the matrix T occurs as a submatrix of A.R/.

Proposition 4.6 [Baeth and Saccon 2012, Proposition 3.7]. For each column ˛
of T , there exist nonnegative integers ri;j and an indecomposable torsion-free
yR-module M˛ of rank

.r1;1; : : : ; r1;t1
; : : : ; rp;1; : : : ; rp;tp ; rpC1;1; : : : ; rs;1/

such that

˛D
�
r1;1� r1;2 � � � r1;1� r1;t1

� � � rp;1� rp;2 � � � rp;1� rp;tp
�T
:
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In particular, the matrix A.R/ nearly always satisfies the hypotheses of the
following lemma.

Lemma 4.7 [Baeth and Saccon 2012, Lemma 4.1]. Fix an integer q � 1, and let
Iq denote the q � q identity matrix. Let P be an index set, and let D be a q � jPj
integer matrix whose columns are indexed by P . Assume DD

�
D1 jD2

�
, where D1

is the q � .2qC 2/ integer matrix264 1 �1

Iq �Iq

:::
:::

1 �1

375 ;
and D2 is an arbitrary integer matrix with q rows (and possibly infinitely many
columns). Let H D ker.D/\N

.P/
0

.

(1) The map D W Z.P/! Z.q/ is surjective.

(2) The natural inclusion H ,! N
.P/
0

is a divisor theory.

(3) ker.D/D q.H /.

(4) C.H /Š Z.q/, and this isomorphism maps the set of classes containing prime
divisors onto the set of distinct columns of D.

In particular, we observe the following: Given a fixed column ˛ of D, the cardinality
of fˇ W ˇ is a column of D and ˇ D ˛g is equal to the cardinality of prime divisors
in the class corresponding to ˛. Therefore, the characteristic of the Krull monoid
H is completely given by the matrix D.

Based on the previous results, one easily obtains the following theorem which
provides the framework for our study of the characteristic of T .R/.

Theorem 4.8. (1) If spl.R/D 0, then T .R/Š T . yR/ is free abelian.

(2) If spl.R/�2 then the embedding T .R/ ,!T . yR/ is a divisor theory. Moreover,

(a) T .R/Š ker.A.R//\N
.P/
0

,
(b) C.T .R//Š Z.spl.R//, and this isomorphism maps the set of classes con-

taining prime divisors onto the set of distinct columns of A.R/.

Suppose that spl.R/D 1. The embedding T .R/ ,! T . yR/ is a divisor theory if
and only if the defining matrix A.R/ contains at least two positive and at least two
negative entries (see Proposition 6.1.2).

In many cases, computing the ranks of indecomposable yR-modules and hence the
columns of the defining matrix A.R/ is difficult. However, an additional hypotheses
on R implies that the set of classes containing prime divisors satisfies GP D�GP ,
a crucial property for all arithmetical investigations (see Proposition 6.2 and the
subsequent remarks).
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Corollary 4.9. Suppose in addition that yRŠS=.f / where .S; n/ is a hypersurface,
that is, a regular Noetherian local ring of dimension two and where 0 6D f 2 n. If G

is the class group of T .R/ ,! T . yR/ and GP is the set of classes containing prime
divisors, then GP D�GP .

Proof. With the hypotheses given, we can apply [Baeth and Saccon 2012, Proposi-
tion 6.2] to see that if M is any indecomposable yR-module with rank .r1; : : : ; rt /,
then there is an indecomposable yR-module N with rank .m�r1;m�r2; : : : ;m�rt /

for some m�maxfr1; : : : ; rtg. Using Construction 4.4 we see that if ˛D
�
a1 � � � aq

�
is the column of A.R/ indexed by M , then �˛ is the column indexed by N .
Therefore, since GP corresponds to the distinct columns of A.R/, GP D�GP . �
Remark 4.10. Although the system of equations developed in Construction 4.4
is somehow natural, it is not the only system of equations which can be used to
define T .R/. Indeed, the matrix A.R/ can be adjusted by performing any set of
elementary row operations. If J is an elementary matrix corresponding to such
a set of row operations, then T .R/ Š ker.A.R//\N

.P/
0
Š ker.JA.R//\N

.P/
0

.
Moreover, this isomorphism gives rise to an automorphism of C.T .R// mapping
the set of classes containing prime divisors to another set of classes containing
prime divisors. Example 4.20 illustrates the usefulness of considering an alternate
defining matrix for T .R/.

4A. Finite representation type. Throughout this subsection, let R be as in Setup
(S), and suppose in addition that R has finite representation type.

Decades of work, going back to [Green and Reiner 1978], and including [Wiegand
and Wiegand 1994; Cimen 1998; Arnavut et al. 2007; Baeth 2007], culminated
in a precise classification of tuples that can occur as the ranks of indecomposable
torsion-free R-modules [Baeth and Luckas 2009]. We note that since R has finite
representation type, both R and yR have at most three minimal primes (see [Cimen
et al. 1995, Theorem 0.5]).

Proposition 4.11 [Baeth and Luckas 2009, Main Theorem 1.2]. (1) If yR is a
domain, then every indecomposable finitely generated torsion-free yR-module
has rank 1, 2 or 3.

(2) If yR has exactly two minimal prime ideals, then every indecomposable finitely
generated torsion-free yR-module has rank .0; 1/, .1; 0/, .1; 1/, .1; 2/, .2; 1/ or
.2; 2/.

(3) If yR has exactly two minimal prime ideals, then every indecomposable finitely
generated torsion-free yR-module has rank .0; 0; 1/, .0; 1; 0/, .1; 0; 0/, .0; 1; 1/,
.1; 0; 1/, .1; 1; 0/, .1; 1; 1/ or .2; 1; 1/.

Note the lack of symmetry in case (3): With a predetermined order on the minimal
prime ideals of yR, there is an indecomposable module of rank .2; 1; 1/, but not of
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rank .1; 2; 1/ or .1; 1; 2/. As is stated in [Baeth and Luckas 2009, Remark 5.2],
even for a fixed number of minimal primes, not each of these tuples will occur
as the rank of an indecomposable module for each ring. However, since when
applying Construction 4.4 we cannot distinguish between an indecomposable of
rank .2; 1/ and one of rank .1; 0/, and since all nontrivial tuples of zeros and ones
occur as ranks of indecomposable cyclic modules, we have [Baeth and Luckas 2011,
Proposition 3.3]:

(1) If spl.R/D 1, then A.R/D
�
1 � � � 1 �1 � � � �1 0 � � � 0

�
.

(2) If spl.R/D 2, then A.R/D

�
0 �1 1 �1 1 0 0 1 � � �

�1 0 1 �1 0 1 0 1 � � �

�
.

When spl.R/D 1, we are guaranteed at least one entry for each of 1, �1, and 0,
coming from the ranks of indecomposable cyclic yR-modules. If we have at most
one 1 or at most one �1 in the defining matrix A.R/, then it must be the case that
R is a domain, yR has exactly two minimal primes p and q, and up to isomorphism
either yR=p is the only indecomposable torsion-free yR-module of rank .r; s/ with
r � s D 1 or the yR=q is the only indecomposable torsion-free yR-module of rank
.r; s/ with r � s D�1. If this is the situation, we say that R satisfies condition (|).
In case spl.R/D 2, we are guaranteed that each column listed appears at least once
as a column of A.R/.

We then have the following refinement of Theorem 4.8 when R has finite rep-
resentation type. The arithmetic of this monoid is studied in Proposition 6.2.2,
Theorem 6.4, and Corollary 6.10.

Theorem 4.12 [Baeth and Luckas 2011, Proposition 3.3]. (1) If spl.R/D 1 and
R satisfies condition (|) then T .R/ ,! T . yR/ is not a divisor theory but T .R/
is free abelian.

(2) If spl.R/D 1 and R does not satisfy condition (|), then T .R/ ,! T . yR/ is a
divisor theory with infinite cyclic class group G D hei, and GP D f�e; 0; eg.

(3) If spl.R/D 2, then T .R/ ,! T . yR/ is a divisor theory and C.T .R//Š Z.2/.
Moreover, this isomorphism maps the set of classes containing prime divisors
onto ��

1

1

�
;

�
�1

�1

�
;

�
1

0

�
;

�
�1

0

�
;

�
0

1

�
;

�
0

�1

��
:

4B. Infinite representation type. Throughout this subsection, let R be as in Setup
(S), and suppose in addition that R has infinite representation type.

Unfortunately, in this case, there is no known complete list of the tuples that
can occur as ranks of indecomposable finitely generated torsion-free R-modules.
Thus we cannot give a full description of T .R/ using Construction 4.4. However,
with the additional assumption that yR=q has infinite representation type for some
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minimal prime ideal q of yR, we can produce a wide variety of interesting ranks
and can provide a partial description of T .R/. This information is enough to show
that, very much unlike the finite representation type case of Section 4A, all of the
arithmetical invariants we study are infinite.

Proposition 4.13 [Saccon 2010, Theorem 3.4.1]. Let S be a one-dimensional
analytically unramified commutative Noetherian local ring with residue field K, and
with t minimal prime ideals q1; : : : ; qt such that S=q1 has infinite representation
type. Let .r1; : : : ; rt / be a nonzero t -tuple of nonnegative integers with ri � 2r1 for
all i 2 Œ2; t �.

(1) There exists an indecomposable torsion-free S -module of rank .r1; : : : ; rt /.

(2) If the residue field K is infinite, then the set of isomorphism classes of inde-
composable torsion-free S -modules of rank .r1; : : : ; rt / has cardinality jKj.

By Proposition 4.13 the conditions of Lemma 4.7 are satisfied. Therefore the
map T .R/ ,! T . yR/ is a divisor theory and the class group C.T .R// is free abelian
of rank spl.R/. Our main result of this subsection is a refinement of Theorem 4.8.
Its arithmetical consequences are given in Proposition 6.2.1, strongly improving
the arithmetical characterizations given in [Baeth and Saccon 2012].

Theorem 4.14. Suppose that spl.R/ � 1 and that there is at least one minimal
prime ideal q of yR such that yR=q has infinite representation type. Then C.T .R// is
free abelian of rank spl.R/ and the set of classes containing prime divisors contains
an infinite cyclic subgroup.

Proof. Let p1; : : : ; ps denote the minimal primes of R and, for each i 2 Œ1; s�,
let qi;1; : : : ; qi;ti

denote the set of minimal primes of yR lying over pi . With-
out loss of generality, assume that yR=q1;1 has infinite representation type. If
t1 D 1, then without loss of generality, t2 > 1. From Proposition 4.13 there is,
for each pair .r; s/ of nonnegative integers (not both zero), an indecomposable
yR-module M with rankq2;1

.M / D r , rankq2;2
.M / D s, and rankqi;j

.M / D 0

for all .i; j / 62 f.1; 1/; .2; 1/; .2; 2/g. Now suppose that t1 > 1. Then we have,
from Proposition 4.13, for each pair .r; s/ of nonnegative integers (not both zero)
satisfying r � s � �s, an indecomposable yR-module M with rankq1;1

.M / D r ,
rankq1;2

.M / D s, and rankqi;j
.M / D 0 for all .i; j / 62 f.1; 1/; .1; 2/g. In either

case, using Construction 4.4 we see that the set˚�
x 0 � � � 0

�T
W x 2 Z

	
occurs as a set of columns for A.R/ and hence occurs as a subset of the set of
classes containing prime divisors. �
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4C. Divisor-closed submonoids of T .R/. Suppose that R has infinite representa-
tion type but, in contrast to Theorem 4.14, suppose that yR=q has finite representation
type for each minimal prime q of yR. Then there is no known classification of all
ranks of indecomposable finitely generated torsion-free R-modules. Specific rings
have been studied in the literature, but even in these settings, a complete solution
has been unattainable. We now give such an example which we will return to in
Section 4D.

Example 4.15. Let K be an algebraically closed field of characteristic zero. Con-
sider the ring S D KŒŒx;y��=.x4 � xy7/ which has exactly two minimal primes
xS and .x3�y7/S . Detailed constructions in [Karr and Wiegand 2011; Saccon
2010] show that S has indecomposable modules of ranks .m;m/, .mC 1;m/,
and .mC 2;m/ for each positive integer m. Moreover, [Baeth and Saccon 2012,
Proposition 6.2] guarantees indecomposable modules of ranks .s� .mC1/; s�m/

and .t � .mC 2/; t �m/, where s � mC 1 and t � mC 2 are positive integers.
Determining what other tuples occur as ranks of indecomposable torsion-free S-
modules appears to be quite difficult.

Thus, since studying T .R/ as a whole is out of reach at the present state of
knowledge, we pick finitely many R-modules M1; : : : ;Mn, and study the direct-
sum relations among them. In more technical terms, instead of studying the full Krull
monoid T .R/, we focus on divisor-closed submonoids. Suppose that H is a Krull
monoid and H ,! F.P/ a cofinal divisor homomorphism. If H 0 �H is a divisor-
closed submonoid, then H 0 ,!H ,! F.P/ is a divisor homomorphism. For each
of the arithmetical invariants �. � / introduced in Section 2, we have �.H 0/� �.H /

or �.H 0/ � �.H /; for example we have c.H 0/ � c.H /, L.H 0/ � L.H /, and so
on. Moreover, if H 0 is the smallest divisor-closed submonoid containing finitely
many elements a1; : : : ; ak 2H , it is also the smallest divisor-closed submonoid
containing a1�:::�ak .

For the rest of Section 4, we study divisor-closed submonoids of T .R/ generated
by a single R-module M , regardless of whether R has finite or infinite representation
type. We denote this monoid by add.M /. Before discussing specific examples in
Section 4D, we carefully recall the consequences of our main Construction 4.4 for
such submonoids.

Construction 4.16. Let R and yR be as in Construction 4.4. Let M be a finitely
generated torsion-free R-module. Then add.M / consists of all isomorphism classes
ŒN �2 T .R/ such that N is isomorphic to a direct summand of M .n/ for some finite
positive integer n.

Write yM D L
.n1/
1
˚ � � � ˚ L

.nk/

k
, where the Li are pairwise nonisomorphic

indecomposable finitely generated torsion-free yR-modules and the ni are posi-
tive integers. If ŒN � 2 add.M /, then Œ yN � 2 add. yM / and thus, since direct-sum
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decomposition is essentially unique over yR,

yN ŠL
.a1/
1
˚ � � �˚L

.ak/

k
;

with each ai a nonnegative integer at most ni . Thus there is a divisor homomorphism
‰ W add.M /! N

.k/
0

given by ŒN � 7! .a1; : : : ; ak/. We identify add.M / with the
saturated submonoid �.M /D‰.add.M // of N

.k/
0

.
Moreover, if A.M / is the spl.R/� k integer-valued matrix for which the l-th

column is the transpose of the row vector�
r1;1� r1;2 � � � r1;1� r1;t1

� � � rs;1� rs;2 � � � rs;1� rs;ts

�
;

where ri;j D rankqi;j
.Vl/, then add.M /Š �.M /D ker.A.M //\N

.k/
0

.

We now state a corollary of Theorem 4.8 for add.M /.

Corollary 4.17. Let M be a finitely generated torsion-free R-module as in Con-
struction 4.16.

(1) If spl.R/D 0, then add.M /Š add. yM / is free abelian.

(2) If spl.R/ � 1 and A.M / satisfies the conditions of Lemma 4.7, then the
inclusion �.M /� N

.k/
0

is a divisor theory. Moreover:

(a) add.M /Š ker.A.M //\N
.k/
0

.

(b) C.add.M // Š Z.spl.R//, and this isomorphism maps the set of classes
containing prime divisors onto the set of distinct columns of A.M /.

Before considering explicit examples, we give a realization result (see also
[Leuschke and Wiegand 2012, Chapter 1]).

Proposition 4.18. Let H be a reduced Krull monoid with free abelian class group
G of rank q and let GP � G denote the set of classes containing prime divisors.
Suppose that GP is finite and that G has a basis .e1; : : : ; eq/ such that

G0 D fe0 D e1C� � �Ceq; e1; : : : ; eq; �e0; : : : ; �eqg �GP :

Then there exists an analytically unramified commutative Noetherian local domain
S and a finitely generated torsion-free S -module M such that add.M /ŠH .

Proof. Let ˆ WG! Z.q/ denote the isomorphism which maps .e1; : : : ; eq/ onto the
standard basis of Z.q/. Let S be an analytically unramified Noetherian local domain
with completion yS having qC 1 minimal primes Q0; : : : ;Qq such that yS=Q0 has
infinite representation type. For sD Œs1 � � � sq �2ˆ.GP/, set r0D s1C� � �Csq and
riD

P
j 6Di sj for each i 2 Œ1; q�. By Proposition 4.13 there exists an indecomposable

finitely generated torsion-free yS -module Ns such that rank.Ns/D .r0; : : : ; rq/. Set

N D
M

s2ˆ.GP /

Ns ;
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and write rank.N /D .a0; : : : ; aq/. Set aDmaxfa0; : : : ; aqg and

LD

qM
iD0

. yS=Qi/
.a�ai /:

Then N ˚ L is a finitely generated torsion-free yS-module with constant rank
and is thus extended from a finitely generated torsion-free S-module M . By
Construction 4.16 and Corollary 4.17 we see that add.M / has class group isomor-
phic to Z.q/ and this isomorphism maps the set of prime divisors onto the elements
of the set ˆ.GP/. �

4D. Examples. In this section we provide the constructions of naturally occurring
monoids add.M / where M is a finitely generated torsion-free R-module. In
particular, we construct specific modules M , whose completion yM is often a direct
sum of indecomposable cyclic yR-modules and we determine the class group G

of add.M / and the set of classes GP � G containing prime divisors. Note that
the Krull monoids M.R/ of all finitely generated R-modules and T .R/ of all
finitely generated torsion-free R-modules have class groups G0 � G and a set
G0P of classes containing prime divisors such that G0P � GP . Since add.M / is a
divisor-closed submonoid of both M.R/ and of T .R/, a study of the arithmetic of
add.M / provides a partial description of M.R/ and T .R/. Moreover, the values
of arithmetical invariants of add.M / give lower bounds on the same arithmetical
invariants of M.R/ and T .R/.

In each of the following examples we construct an yR-module LDL
n1

1
˚� � �˚L

nk

k

of constant rank, where L1; : : : ;Lk are pairwise nonisomorphic indecomposable
yR-modules. Then, by Corollary 4.17 with yM ŠL for some R-module M ,

add.M /Š ker
�
A.M /

�
\N

.k/
0
� N

.k/
0
Š add.L/:

In particular, we do so in such a way that the natural map add.M / ,! add.L/ is a
divisor theory with class group isomorphic to Z.spl.R// and where the set of classes
containing prime divisors maps onto the distinct columns of A.M /.

Example 4.19. We now construct a monoid of modules whose arithmetic will
be studied in Proposition 6.12. Let S be as in Example 4.15. Then there are
indecomposable torsion-free S -modules M1, M�1, M2, M�2, N1, N�1, N2, and
N�2 with ranks (respectively) .2; 1/, .1; 2/, .3; 1/, .1; 3/, .3; 2/, .3; 2/, .2; 3/, .4; 2/,
and .2; 4/. Set L to be the direct sum of these eight indecomposable S -modules. By
Lech’s theorem [1986], there exists a Noetherian local domain .R;m/ with m-adic
completion yRŠS . Since L has constant rank, L is extended from some R-module
M , and add.M / ,! add.L/ Š N

.8/
0

is a divisor theory with infinite cyclic class
group G and with GP D f�2e;�e; e; 2eg where G D hei.
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Example 4.20. We now provide an example that illustrates the convenience of
choosing an alternate defining matrix for add.M /, as is described in Remark 4.10.
Its arithmetic is given in Theorem 6.4. Suppose that R has two minimal prime
ideals p1; p2 and that yR has five minimal prime ideals q.1;1/, q.1;2/, q.1;3/, q.2;1/,
and q.2;2/, with q.i;j/ lying over pi for each i 2 Œ1; 2� and for each j . Set

LD
yR

q.1;1/\q.1;3/\q.2;2/
˚

yR

q.1;1/\q.1;2/\q.2;1/
˚

yR

q.1;2/\q.2;1/

˚

yR

q.1;1/
˚

yR

q.1;3/\q.2;2/
˚

yR

q.1;2/\q.1;3/\q.2;1/\q.2;2/
:

Since L has constant rank 3, there is an R-module M such that yM Š L. Then
add.M /Š ker.A.M //\N

.6/
0

where

A.M /D

24 1 0 �1 1 0 �1

0 1 0 1 �1 �1

�1 1 1 0 �1 0

35
�

24 1 0 �1 1 0 �1

�1 1 1 0 �1 0

0 0 0 0 0 0

35�
241 0 �1 1 0 �1

0 1 0 1 �1 �1

0 0 0 0 0 0

35D JA.M /:

Thus

add.M /Š ker.JA.M //\N
.6/
0
Š ker

�
1 0 �1 1 0 �1

0 1 0 1 �1 �1

�
\N

.6/
0
:

Since the matrix A.M / has rank two, the representation of add.M / as a Diophantine
matrix defined by two equations more clearly describes this monoid. Moreover,
since the map from Z.6/ to Z.2/ is surjective (the map A.M / W Z.6/! Z.3/ is not
surjective), we immediately see that C.add.M // Š Z.2/, and this isomorphism
maps the set of classes containing prime divisors onto��

1

0

�
;

�
0

1

�
;

�
�1

0

�
;

�
0

�1

�
;

�
1

1

�
;

�
�1

�1

��
:

Example 4.21. We now consider a monoid add.M / which generalizes the monoid
T .R/ when R has finite representation type, and its arithmetic is studied in
Theorem 6.7 and Corollary 6.10. Suppose that yR has q C 1 minimal primes
q1; : : : ; qqC1, and set

LD
M

I�Œ1;qC1�
I 6D∅

yRT
i2I qi

:
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From the symmetry of the set of ranks of the indecomposable cyclic yR-modules

yRT
i2I

qi

we immediately see that L has constant rank .2q; : : : ; 2q/ and is therefore extended
from some R-module M . Then

add.M /Š ker.A.M //\N
.q/
0
;

where A.M / is an q � 2qC1� 1 integer-valued matrix with columns Œ�1 � � � �q �
T

where either �i 2 f0; 1g for all i 2 Œ1; q� or �i 2 f0;�1g for all i 2 Œ1; q�.
Since the columns of A.M / contain a basis for Z.q/, add.M / ,! add.L/ŠN

.q/
0

is a divisor theory with class group C.add.M //Š Z.q/, and this isomorphism maps
the set of classes containing prime divisors onto�˚

Œ�1 � � � �q �
T
W �i 2 f0; 1g

	
[
˚
Œ�1 � � � �q �

T
W �i 2 f0;�1g

	�
n
˚
Œ0 � � � 0�

	
:

Example 4.22. In this example we construct a monoid add.M / which generalizes
the monoid of Example 4.21 by including all vectors having entries in f�1; 0; 1g

in the set GP . This larger set of classes containing prime divisors adds much
complexity to the arithmetic. Suppose that R has q minimal primes and that yR has
2q minimal primes

q.1;1/; q.1;2/; q.2;1/; : : : ; q.q;2/ ;

where q.i;j/\RD q.i0;j 0/\R if and only if i D i 0. As in the previous example, let

LD
M

I�f.1;1/;:::;.q;2/g
I¤∅

yRT
.i;j/2I

q.i;j/
:

From the symmetry of the set of ranks of the indecomposable cyclic yR-modules
yR=
T
fi;jg2I qi;j ; we immediately see that L has constant rank .22q�1; : : : ; 22q�1/

and is therefore extended from some R-module M . Then

add.M /Š ker.A.M //\N
.q/
0
;

where A.M / is an q � 22q � 1 integer-valued matrix with columns of the form�
r.1;1/� r.1;2/ r.2;1/� r.2;2/ � � � r.q;1/� r.q;2/

�T
;

where .r.1;1/; r.1;2/; : : : ; r.q;2// is the rank of one of the 22q � 1 indecomposable
cyclic yR-modules — that is, any one of the q-tuples of 1s and 0s (not all 0). In
other words, the columns of A.M / are exactly the 3q columns Œ�1 � � � �q �

T , where



MONOIDS OF MODULES AND ARITHMETIC OF DIRECT-SUM DECOMPOSITIONS 287

�i 2 f�1; 0; 1g for all i 2 Œ1; q�, repeated with some multiplicity. For example, the
column of all zeros occurs for each of the indecomposable cyclic yR-modules

yRT
.i;j/2I

q.i;j/
;

where .i; 1/ 2 I if and only if .i; 2/ 2 I .
Since the columns of A.M / contain a basis for Z.q/,

add.M / ,! add.L/Š N
.22q�1/
0

is a divisor theory whose class group G Š Z.q/, and this isomorphism maps the set
of classes containing prime divisors onto˚

Œ�1 � � � �q �
T
W �i 2 f�1; 0; 1g

	
:

Example 4.23. In this example we consider add.M / when the completion of M

is isomorphic to a direct sum of some (but not all) of the indecomposable cyclic
yR-modules. In this case, the example is constructed in such a way that B.GP/ is a

direct product of nontrivial submonoids (see Lemma 3.2). Suppose that R has q

minimal primes and that yR has 3q minimal primes˚
q.i;j/ W i 2 Œ1; q�; j 2 Œ1; 3�

	
;

where q.i;j/\RD q.i0;j 0/\R if and only if i D i 0. Let L be the yR-module

qM
iD1

�
yR=q.i;1/˚ yR=q.i;2/˚ yR=q.i;3/

˚ yR=.q.i;1/\ q.i;2//˚ yR=.q.i;1/\ q.i;3//˚ yR=.q.i;2/\ q.i;3//
�
:

We see immediately that L has constant rank .3; : : : ; 3/ and thus L is extended
from some R-module M . Then add.M /Š ker.A.M //\N

.2q/
0

where A.M / is an
2q � 6q integer-valued matrix with columns˚

e2k�1; e2k ; e2k�1Ce2k ; �e2k�1; �e2k ; �e2k�1�e2k W k 2 Œ1; q�
	
;

where .e1; : : : ; e2q/ denotes the canonical basis of Z.2q/.
For k 2 Œ1; q�, we set

Gk D
˚
e2k�1; e2k ; e2k�1Ce2k ; �e2k�1; �e2k ; �e2k�1�e2k

	
:

Then GPD
U

k2Œ1;q�Gk is the set of classes containing prime divisors and B.GP/D

B.G1/ � � � � � B.Gq/. From Proposition 6.1 we will see that B.Gk/ ,! F.Gk/
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is a divisor theory, whence B.GP/ ,! F.GP/ and add.M / ,! add.L/ are divi-
sor theories. The arithmetic of this monoid is studied in Proposition 6.12 and
Corollary 6.15.

Example 4.24. As in Example 4.23, suppose that R has q minimal primes and
suppose that the completion yR of R has 3q minimal primes˚

q.i;j/ W i 2 Œ1; q�; j 2 Œ1; 3�
	
;

where q.i;j/ \R D q.i0;j 0/ \R if and only if i D i 0. Further suppose that yR D
S=.f / where .S; n/ is a regular Noetherian local ring of dimension two and where
0¤ f 2 n and that yR=q.i;j/ has infinite representation type for all pairs .i; j /. By
Proposition 4.13, for each k 2 Œ1; q� there are indecomposable finitely generated
torsion-free yR-modules Mk and Nk of ranks .r1;1; : : : ; rq;3/ and .s1;1; : : : ; sq;3/

where

ri;j D

8<:
0 if i 6D k;

2 if i D k; j 2 Œ1; 2� ;

0 if i D k; j D 3;

and si;j D

8̂̂̂<̂
ˆ̂:

0 if i 6D k;

3 if i D k; j D 1;

2 if i D k; j D 2;

0 if i D k; j D 3:

Moreover, by Corollary 4.9, for each k 2 Œ1; q� there are constant tk � 2 and t 0
k
� 3

and indecomposable finitely generated torsion-free yR-modules M 0
k

and N 0
k

having
ranks .r 0

1;1
; : : : ; r 0

q;3
/ and .s0

1;1
; : : : ; s0

q;3
/ where

r 0i;j D

8<:
tk if i 6D k;

tk � 2 if i D k; j 2 Œ1; 2� ;

tk if i D k; j D 3;

and s0i;j D

8̂̂̂<̂
ˆ̂:

t 0
k

if i 6D k;

t 0
k
� 3 if i D k; j D 1;

t 0
k
� 2 if i D k; j D 2;

t 0
k

if i D k; j D 3:

Let

LD yR˚

� qM
kD1

.Mk ˚Nk ˚M 0
k ˚N 0k/

˚ yR=.q.i;1/\q.i;3//˚ yR=.q.i;1/\q.i;2//˚ yR=q.i;2/˚ yR=q.i;3/

�
:

Since L has constant rank, L is extended from an R-module M . Then add.M /Š

ker.A.M //\N
.2q/
0

where A.M / is an 2q � .8qC 1/ integer-valued matrix with
columns 0 and˚
e2k�1;e2k ;2e2k ;e2k�1C2e2k ;�e2k�1;�e2k ;�2e2k ;�e2k�1�2e2k Wk 2 Œ1;q�

	
;

where .e1; : : : ; e2q/ denotes the canonical basis of Z.2q/.
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For k 2 Œ1; q�, we set

Gk D fe2k�1; e2k ; 2e2k ; e2k�1C2e2k ; �e2k�1; �e2k ; �2e2k ; �e2k�1�2e2kg:

Then GPD
U

k2Œ1;q�Gk is the set of classes containing prime divisors and B.GP/D

B.G1/ � � � � � B.Gq/. From Proposition 6.1 we will see that B.Gk/ ,! F.Gk/

is a divisor theory, whence B.GP/ ,! F.GP/ and add.M / ,! add.N / are divi-
sor theories. The arithmetic of this monoid is studied in Proposition 6.13 and
Corollary 6.15.

Example 4.25. In our final example we construct a tuple .G;GP/which generalizes
the monoid T .R/ when R has finite representation type (see Theorem 4.12). The
arithmetic of such Krull monoids is studied in Theorem 6.4 and Corollary 6.10.
Suppose that yR has qC 1 minimal primes q1; : : : ; qqC1, and set

LD

qC1M
jD1

��
yR
ıT

i 6Dj

qi

�
˚ . yR=qj /

�
:

Note that L has constant rank .q; : : : ; q/ and is hence extended from some R-module
M . Then add.M /Š ker.A.M //\N

.q/
0

where A.M / is an q � 2q integer-valued
matrix with columns

e1; : : : ; eq; e0 D e1Ce2C� � �Ceq; �e1; : : : ; �eq; �e0:

By Proposition 6.1, add.M / ,! add.L/ŠN
.2q/
0

is a divisor theory with class group
C.add.M //Š Z.q/, and this isomorphism maps the set of classes containing prime
divisors onto

fe0 D e1C� � �Ceq; e1; : : : ; eq; �e0; : : : ; �eqg:

5. Monoids of modules: class groups and distribution of prime divisors, II

In this section we investigate the characteristic of the Krull monoids T .R/ and
C.R/ for two-dimensional Noetherian local Krull domains (see Theorem 5.4). We
will show that, apart from a well-described exceptional case, their class groups are
both isomorphic to the factor group C. yR/=�.C.R//, where � W C.R/! C. yR/ is the
natural homomorphism between the class groups of R and yR. In a well-studied
special case where R is factorial and yR is a hypersurface with finite representation
type, this factor group is a finite cyclic group (see Theorem 5.5). This is in strong
contrast to the results on one-dimensional rings in the previous section where all
class groups are torsion-free.

Let S be a Krull domain and let I�v .S/ denote the monoid of nonzero divisorial
ideals. Then ' W S! I�v .S/, defined by a 7! aS , is a divisor theory. In this section
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we view C.S/ as the class group of this specific divisor theory. First we give a
classical result (see [Bourbaki 1988, Chapter VII, Section 4.7]).

Lemma 5.1. Let S be a Noetherian Krull domain. One can associate to each
finitely generated S -module M a class c.M / 2 C.S/ in such a way that

(1) If 0 ! M 0 ! M ! M 00 ! 0 is an exact sequence of finitely generated
S -modules, then c.M /D c.M 0/C c.M 00/.

(2) If I is a fractional ideal of S and Iv the divisorial ideal generated by I , then
c.I/D c.Iv/.

Note that if S is any Noetherian domain, every ideal of S is obviously an
indecomposable finitely generated torsion-free S-module. If, in addition, the ring
has dimension two, then we have the following stronger result.

Lemma 5.2. Let S be a Noetherian local Krull domain of dimension two.

(1) Every divisorial ideal of S is an indecomposable MCM S -module [Evans and
Griffith 1985, Lemma 1.1 and Theorem 3.6].

(2) In addition, assume that the m-adic completion yS of S is a Krull domain. Then
a finitely generated torsion-free yS -module N is extended from an S -module if
and only if c.N / is in the image of the natural homomorphism � W C.S/! C. yS/
[Rotthaus et al. 1999, Proposition 3].

We now give a result on abstract Krull monoids which encapsulates the structure
of the monoids of modules described in Theorem 5.4.

Lemma 5.3. Let DDF.P/ be a free abelian monoid, G an additive abelian group,
 WD!G a homomorphism, and H D  �1.0/�D.

(1) If H �D is cofinal, then the inclusion H ,!D is a divisor homomorphism
and  WD=H !  .D/�G given by  .Œa�/D  .a/ is an isomorphism.

(2) The inclusion H ,!D is a divisor theory if and only if h .P/i D Œ .P nfqg/�
for every q 2 P . If this is the case, then  WD=H !  .D/ is an isomorphism
and, for every g 2 .D/, the set P\ �1.g/ is the set of prime divisors in the
class  �1.g/.

(3) If the restriction  j P W P!G of  to P is an epimorphism, then H ,!D is
cofinal. Moreover, it is a divisor theory apart from the following exception:

G D f0;gg and jP \ �1.g/j D 1:

If H ,!D is not a divisor theory, then H is factorial.

Proof. For the proofs of (1) and (2), see [Geroldinger and Halter-Koch 2006,
Proposition 2.5.1]. We now consider the proof of (3).
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Let a 2 D. Since  j P W P ! G is an epimorphism, there exists p 2 P � D

such that  .p/D� .a/. Therefore ap 2H and the inclusion H ,!D is cofinal.
In order to show that H ,!D is a divisor theory we distinguish three cases. First
suppose that jGj D 1. Then jD=H j D 1, and hence H D D. Next suppose that
jGj> 2. By (2) we must verify that

 .q/ 2 Œ .P nfqg/� for every q 2 P :

Let q 2 P . Since jGj> 2, there exist g1;g2 2G n f0;  .q/g with  .q/D g1Cg2.
Since the restriction  j P WP!G is an epimorphism, there exist p1;p2 2P n fqg
with  .pi/D gi for i 2 Œ1; 2�. Therefore

 .q/D g D g1Cg2 D  .p1/C .p2/ 2 Œ .P nfqg/�:

Finally, suppose that jGj D 2. Then H ,!D is a divisor theory if and only if
h .P/i D Œ .P nfqg/� for every q 2P if and only if there exist distinct q1; q2 2P
such that  .qi/¤ 0 for i 2 Œ1; 2�. Clearly, if q 2P is the unique element of P with
 .q/¤ 0, then H is free abelian with basis P n fqg[ fq2g. �

We are now able to determine both the class group and the set of classes containing
prime divisors for the monoids T .R/ and C.R/. This generalizes and refines the
results of [Baeth 2009]. Since each divisorial ideal over a two-dimensional local
ring is MCM and thus finitely generated and torsion-free, Theorem 5.4 can be stated
in parallel both for T .R/ and C.R/.

Theorem 5.4. Let .R;m/ be a Noetherian local Krull domain of dimension two
whose m-adic completion yR is also a Krull domain. Let V.R/ (respectively V. yR/)
denote either T .R/ (respectively T . yR/) or C.R/ (respectively C. yR/), and let
� W C.R/! C. yR/ be the natural map.

(1) The embedding V.R/ ,! V. yR/ is a cofinal divisor homomorphism. The class
group of this divisor homomorphism is isomorphic to G D C. yR/=�.C.R// and
every class contains a prime divisor. Moreover the embedding is a divisor
theory except if yR satisfies the following condition:

(E) jGj D 2 and, up to isomorphism, there is precisely one nonextended
indecomposable yR-module M with ŒM � 2 V. yR/.

In particular, V.R/ satisfies KRSA if and only if either jGj D 1 or yR satisfies
(E).

(2) Suppose that the embeddings T .R/ ,! T . yR/ and C.R/ ,! C. yR/ are both
divisor theories. Then their class groups are isomorphic. If .G; .mg/g2G/

is the characteristic of T .R/ and .G; .ng/g2G/ is the characteristic of C.R/,
then mg � ng for all g 2G. Moreover,

P
g2G mg infinite.
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.An/ kŒŒx;y; z��=.x2Cy2C znC1/, n� 1

.Dn/ kŒŒx;y; z��=.x2zCy2C zn�1/, n� 4

.E6/ kŒŒx;y; z��=.x3Cy2C z4/

(E7) kŒŒx;y; z��=.x3Cxz3Cy2/

.E8/ kŒŒx;y; z��=.x2Cy3C z5/

Table 1. Two-dimensional rings with finite representation type.

Proof. We set D DF.P/D V. yR/. By (1) of Lemma 5.1 there is a homomorphism

 W V. yR/! C. yR/=�.C.R//DG given by ŒM � 7! c.M /C �.C.R//:

By (1) of Lemma 5.2, every divisorial ideal of yR is an indecomposable MCM yR-
module. That is, the class of each divisorial ideal of yR in C. yR/ is the image of some
ŒM � 2 V. yR/, where M is an indecomposable MCM yR-module. In other words,  
restricted to P DA.D/ is an epimorphism and  .A.D//D C. yR/=�.C.R//.

By Lemma 5.3, the inclusion H D  �1.0/�D is a cofinal divisor homomor-
phism. By (2) of Lemma 5.2, H is the image of the embedding V.R/ ,!V. yR/, and
thus the embedding V.R/ ,! V. yR/ is a divisor theory if and only if the inclusion
H ,! D is a divisor theory. By Lemma 5.3 this always holds apart from the
described Exception (E). A Krull monoid is factorial if and only if its class group
is trivial. Thus, if V.R/ ,! V. yR/ is a divisor theory then KRSA holds for V.R/ if
and only if jGj D 0. If V.R/ ,! V. yR/ is not a divisor theory, then the inclusion
H ,!D is not a divisor theory. By Lemma 5.3, H is factorial, whence V.R/ is
factorial.

Since each MCM R-module is finitely generated and torsion-free, it is clear
that mg � ng for each g 2 G. From [Bass 1962] we know that there infinitely
many nonisomorphic indecomposable finitely generated torsion-free yR-modules,
and therefore

P
g2G mg infinite. �

Let R be as in the above theorem and assume in addition that

� R contains a field and k D R=m is algebraically closed with characteristic
zero;

� yR is a hypersurface, that is, yR is isomorphic to a three-dimensional regular
Noetherian local ring modulo a regular element;

� R has finite representation type.

Such rings were classified in [Buchweitz et al. 1987; Knörrer 1987] and are given,
up to isomorphism, in Table 1. Note that since yR has finite representation type
and each divisorial ideal of yR is and indecomposable MCM yR-module, C. yR/ and
hence C.R/ is finite.
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An amazing theorem of Heitmann [1993] gives the existence of a local factorial
domain whose completion is a ring as in Table 1. In this situation we can determine
the characteristic of C.R/.

Theorem 5.5. Let .R;m/ be a Noetherian local factorial domain with m-adic
completion yR isomorphic to a ring in Table 1.

(1) If yR is a ring of type (An), then C.C.R// is cyclic of order nC 1 and each
class contains exactly one prime divisor.

(2) Suppose yR is a ring of type (Dn).

(a) If n is even, then C.C.R//ŠC2˚C2. The trivial class contains n=2 prime
divisors. Two nontrivial classes each contain a single prime divisor and
their sum contains .n� 2/=2 prime divisors.

(b) If n is odd, then C.C.R// is cyclic of order four. The classes of order four
each contain a single prime. The remaining classes each contain .n�1/=2

prime divisors.

(3) If yR is a ring of type (E6), then C.C.R// is cyclic of order three. The trivial
class contains three prime divisors, while each remaining class contains two
prime divisors.

(4) If yR is a ring of type (E7), then C.C.R// is cyclic of order two. The trivial
class contains five prime divisors and the nontrivial class contains three prime
divisors.

(5) If yR is a ring of type (E8), then C.C.R// is trivial, with the trivial class
containing all nine prime divisors.

Proof. The class groups C. yR/ for yR a ring listed in Table 1 were given in [Brieskorn
1967–1968]. Since R is factorial, C.R/D 0 and by Theorem 5.4, C.C.R//Š C. yR/.
Following the proof of [Baeth 2009, Theorem 4.3] one can compute the class of each
indecomposable yR-module in C. yR/ by using the Auslander–Reiten sequence for yR.
The result follows by considering the map defined in the proof of Theorem 5.4. �

The above theorem completely determines the characteristic of the monoid C.R/.
With this information, in addition to being able to completely describe the arithmetic
of C.R/ as we do in Theorem 6.8, we can easily enumerate the atoms of C.R/ (the
nonisomorphic indecomposable MCM modules). We now illustrate this ability with
an example. If ˇ W C.R/! B.GP/ is the transfer homomorphism of Lemma 3.4,
then A.C.R//D ˇ�1

�
A.B.GP//

�
. Suppose that yR is a ring of type (Dn) with n

even. Then yR has exactly nC 1 nonisomorphic indecomposable MCM modules. If
C2˚C2 D f0; e1; e2; e1C e2g, then
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A.C2˚C2/D f0; e
2
1 ; e

2
2 ; .e1C e2/

2; e1e2.e1C e2/g;

and hence R has exactly

jA.C.R//j D
n

2
C 1 � 1C 1 � 1C

n� 2

2
�
n� 2

2
C 1 � 1 �

n� 2

2
D

n2C 8

4

nonisomorphic indecomposable MCM modules.
We conclude this section by noting that a two-dimensional local Krull domain

.R;m/ having completion isomorphic to a ring in Table 1 may not be factorial.
However, Theorem 5.4 implies that C.C.R// is a factor group of a group given
in Theorem 5.5. In particular, C.C.R// is a finite cyclic group such that every
class contains a prime divisor, and thus the arithmetic of C.R/ is described in
Theorem 6.8.

6. The arithmetic of monoids of modules

In this section we study the arithmetic of the Krull monoids that have been discussed
in Sections 4 and 5. Thus, using the transfer properties presented in Section 2,
we describe the arithmetic of direct-sum decompositions of modules. Suppose
that H is a Krull monoid having a divisor homomorphism ' WH ! F.P/ and let
GP �C.'/ be the set of classes containing prime divisors. The first subsection deals
with quite general sets GP and provides results on the finiteness or nonfiniteness
of various arithmetical parameters. The second subsection studies three specific
sets GP , provides explicit results on arithmetical parameters, and establishes a
characterization result (Theorems 6.4, 6.7, 6.8, and Corollary 6.10). The third
subsection completely determines the system of sets of lengths in case of small
subsets GP . It shows that small subsets in torsion groups and in torsion-free groups
can have the same systems of sets of lengths, and it reveals natural limits for
arithmetical characterization results (Corollary 6.15).

6A. General sets GP of classes containing prime divisors. In this subsection we
consider the algebraic and arithmetic structure of Krull monoids with respect to GP .
We will often assume that GP D�GP , a property which has a strong influence on
the arithmetic of H . Recall that GP D�GP holds in many of the (finite and infinite
representation type) module-theoretic contexts described in Sections 4 and 5. More
generally, all configurations .G;GP/ occur for certain monoids of modules (see
Proposition 4.18, [Herbera and Příhoda 2010] and [Leuschke and Wiegand 2012,
Chapter 1]) and, by Claborn’s realization theorem, all configurations .G;GP/ occur
for Dedekind domains (see [Geroldinger and Halter-Koch 2006, Theorem 3.7.8]).
In addition, every abelian group can be realized as the class group of a Dedekind
domain which is a quadratic extension of a principal ideal domain, and in this case
we have GP D�GP (see [Leedham-Green 1972]).
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Proposition 6.1. Let H be a Krull monoid, ' WH!F.P/ a divisor homomorphism
with class group G D C.'/, and let GP � G denote the set of classes containing
prime divisors.

(1) If GP is finite, then A.GP/ is finite and hence D.GP/<1. If G has finite total
rank, then GP is finite if and only if A.GP/ is finite if and only if D.GP/ <1.

(2) If GP D �GP , then ŒGP � D G. Moreover, the map ' W H ! D and the
inclusion B.GP/ ,! F.GP/ are both cofinal.

(3) Suppose that G is infinite cyclic, say G D hei, and that f�e; eg � GP . Then
B.GP/ ,! F.GP/ is a divisor theory if and only if there exist k; l 2 N�2 such
that �ke; le 2GP .

(4) Let r; ˛ 2N with rC˛ > 2. Let .e1; : : : ; er /2Gr
P be independent and let e0 2

GP such that ˛e0D e1C� � �Cer , f�e0; : : : ;�er g�GP , and he0; : : : ; er iDG.
(a) The map ' WH ! F.P/ and the inclusion B.GP/ ,! F.GP/ are divisor

theories with class group isomorphic to G.
(b) If 0 62GP , then B.GP/ is not a direct product of nontrivial submonoids.

Proof. (1) follows from [Geroldinger and Halter-Koch 2006, Theorem 3.4.2].
If GP D �GP , then ŒGP � D hGPi D G. By Lemma 3.4, (2) follows once we

verify that ' is cofinal. If p 2 P , then there is a q 2 P with q 2 �Œp�, whence there
is an a 2H with '.a/D pq, and so ' is cofinal.

If f�ke W k 2 Ng \GP D f�eg or fke W k 2 Ng \GP D feg, then B.GP/ is
factorial. Since F.GP/¤ B.GP/, the inclusion B.GP/ ,! F.GP/ is not a divisor
theory. Conversely, suppose that there exist k; l 2 N�2 such that �ke; le 2 GP .
Let m 2 N. If me 2 GP , then me D gcd

�
.me/.�e/m; .me/k.�ke/m

�
, and if

�me 2 GP , then �me D gcd
�
.�me/em; .�me/l.le/m

�
. Thus every element of

GP is a greatest common divisor of a finite set of elements from B.GP/ and hence
B.GP/ ,! F.GP/ is a divisor theory.

We now suppose that G and GP are as in (4). To prove (a) it is sufficient to show
that B.GP/ ,! F.GP/ is a divisor theory. By [Geroldinger and Halter-Koch 2006,
Proposition 2.5.6] we need only verify that hGPi D ŒGP n fgg� for every g 2GP .
Let g 2G. We will show that

ŒGP n fgg�D ŒGP �D Œe0; : : : ; er ;�e0; : : : ;�er �:

If g 62 fe0; : : : ; er ;�e0; : : : ;�er g, the assertion is clear. By symmetry it suffices to
consider the case where g 2 fe0; : : : ; er g. If g D ei for some i 2 Œ1; r �, then

ei D˛e0C.�e1/C� � �C.�ei�1/C.�eiC1/C� � �C.�er /2 Œf˙e� W � 2 Œ0; r �nfig� ;

and hence

ŒGP n fgg�� Œf˙e� W � 2 Œ0; r � n figg�D Œ˙e0; : : : ;˙er �DG :
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If g D e0, then

e0 D e1C � � �C er C .˛� 1/.�e0/ 2 ŒGP n fe0g� ;

and hence ŒGP n fgg�D ŒGP �DG.
To prove (b) we use Lemma 3.2 and suppose that 0 62GP with GP DG1]G2

such that A.GP/DA.G1/]A.G2/. We must show that either G1 or G2 is empty.
Suppose that V D e1�:::�er .�e0/

˛ 2A.G1/. Since .�e0/e0; : : : ; .�er /er 2A.GP/,
it follows that f˙e0; : : : ;˙er g�G1. Let g2GP . Since GP �GD Œ˙e0; : : : ;˙er �,
there exists U 2 A.GP/ such that g 2 supp.U / � fg;˙e0; : : : ;˙er g, and hence
g 2G1. Thus G1 DGP and G2 D∅. �

For our characterization results, we need to recall the concept of an absolutely
irreducible element, a classical notion in algebraic number theory. An element u in
an atomic monoid H is called absolutely irreducible if u 2A.H / and jZ.un/j D 1

for all n 2 N; equivalently, the divisor-closed submonoid of H generated by u is
factorial. Suppose that H ,! F.P/ is a divisor theory with class group G and that
uDp

k1

1
�:::�p

km
m where m; k1; : : : ; km 2N and where p1; : : : ;pm 2P are pairwise

distinct. Then u is absolutely irreducible. if and only if .k1; : : : ; km/ is a minimal
element of the set

� D f.s1; : : : ; sm/ 2 Nl
0 W p

s1

1
�:::�psm

m 2H g n f0g

relative to the usual product ordering, and the torsion-free rank of hŒp1�; : : : ; Œpm�i in
G is m�1 (see [Geroldinger and Halter-Koch 2006, Proposition 7.1.4]). In particular,
if Œp1� 2G has finite order, then p

ord.Œp1�/
1

is absolutely irreducible, and if Œp1� 2G

has infinite order, then p1q1 is absolutely irreducible for all q1 2 P \ .�Œp1�/.

Proposition 6.2. Let H be a Krull monoid, ' W H ! F.P/ a cofinal divisor
homomorphism with class group G, and let GP � G denote the set of classes
containing prime divisors.

(1) Suppose that GP is infinite.

(a) If GP has an infinite subset G0 such that G0 [ .�G0/ � GP and hG0i

has finite total rank, then Uk.H / is infinite for each k � 2. Moreover,
D.GP/D �k.H /D !.H /D t.H /D1.

(b) If there exists e 2G such that GP \fke W k 2Ng and GP \f�ke W k 2Ng

are both infinite, then �.H / is infinite and c.H /D cmon.H /D1.

(c) If GP contains an infinite group, then every finite subset L� N�2 occurs
as a set of lengths.

(2) Suppose that GP is finite and that H is not factorial.

(a) The set �.H / is finite and there is a constant M1 2 N such that every set
of lengths is an AAMP with difference d 2��.H / and bound M1.
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(b) There is a constant M2 2 N such that, for every k � 2, the set Uk.H / is
an AAMP with period f0;min�.H /g and bound M2.

(c) c.H /� !.H /� t.H /� 1C 1
2
D.GP/.D.GP/� 1/ and

cmon.H / <
jG�P jC 2

2

�
.2jG�P jC 2/.jG�P jC 2/.D.GP/C 1/

�jG�P jC1
:

(d) Suppose that GP D �GP . Then !.H / D D.GP/, �.H / D D.GP/=2,
�2k.H / D kD.GP/ <1, and �kD.GP /Cj .H / D 2k C j for all k 2 N

and j 2 Œ0; 1�. If G is torsion-free, then D.GP/ is the maximal number s

of absolutely irreducible atoms u1; : : : ;us such that 2 2 L.u1�:::�us/.

(e) If , in particular, GP D�GP and D.GP/D 2, then Uk.H /D fkg for all
k 2 N and cmon.H /D c.H /D !.H /D t.H /D 2.

Proof. Throughout the proof we implicitly assume the results of Lemma 2.2 and of
Lemma 3.4. In particular, we have �.H /� !.H / and c.H /� !.H /� D.GP/.

For (1), suppose that GP is infinite. We first prove (a). Theorem 3.4.2 in
[Geroldinger and Halter-Koch 2006] implies that A.G0/ and D.G0/ are infinite.
Thus, for every k 2N, there is Uk 2A.G0/with jUk j�k and hence L

�
Uk.�Uk/

�
�

f2; jUk jg. This implies that U2.G0/ is infinite and thus Uk.G0/ is infinite for all
k � 2. Therefore �k.H /D �k.GP/D1 for all k � 2 and, since �.H /� !.H /�

t.H /, each of these invariants is infinite.
Item 1(b) follows from [Geroldinger et al. 2010, Theorem 4.2].
Item 1(c) is a realization result is due to Kainrath. See [Kainrath 1999] or

[Geroldinger and Halter-Koch 2006, Theorem 7.4.1].
Now, in order to prove (2), we suppose that GP is finite and that H is not factorial.

Then D.GP/ > 1 and 2 � c.H / � !.H / � t.H /. By Proposition 6.1, B.GP/ is
finitely generated and D.GP/ <1. The respective upper bounds given in (c) for
cmon.H / and t.H / can be found in [Geroldinger and Yuan 2013, Theorem 3.4] and
[Geroldinger and Halter-Koch 2006, Theorem 3.4.10].

We now consider (a). Since 2C sup�.H /� c.H / <1, (c) implies that �.H /

is finite. Since B.GP/ is finitely generated, the assertion on the structure of sets of
lengths follows from [Geroldinger and Halter-Koch 2006, Theorem 4.4.11].

Since t.H / <1 and �.H / is finite, [Gao and Geroldinger 2009, Theorems 3.5
and 4.2] imply the assertion in (b) on the structure of the unions of sets of lengths.

In order to prove (d), we suppose that GP D �GP . The statements about
�2k.H /, �.H /, and �kD.GP /Cj .H / follow from Lemma 3.3, and it remains to
show that !.H / D D.GP/. We have !.H / � D.GP/ <1. If D.GP/ D 2, then
!.H / D D.GP/. Suppose that D.GP/ � 3. If V D g1�:::�gl 2 A.GP/ with
jV j D l D D.GP/ and Ui D .�gi/gi for all i 2 Œ1; l �, then V jU1�:::�Ul but yet V

divides no proper subproduct of U1�:::�Ul . Thus D.GP/� !.GP/� !.H /.
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Let t denote the maximal number of absolutely irreducible atoms with the
required property. Since �.H /D D.GP/=2, it follows that t � D.GP/. Let V D

g1�:::�gl 2 A.GP/ with jV j D l D D.GP/. For i 2 Œ1; l � choose an element
pi 2 P \gi and an element qi 2 P \ .�gi/. Since G is torsion-free, the element
ui D piqi 2H is absolutely irreducible for each i 2 Œ1; l � and, by construction, we
have 2 2 L.u1�:::�ul/.

The statement in (e) follows immediately from (c) and (d). �

Let all notation be as in Proposition 6.2. We note that if GP is infinite but without
a subset G0 as in (1a), then none of the conclusions of (1a) need hold. A careful
analysis of the case where G is an infinite cyclic groups is handled in [Geroldinger
et al. 2010]. We also note that the description of the structure of sets of lengths
given in (2a) is best possible (see [Schmid 2009c]).

By Lemma 3.4, many arithmetical phenomena of a Krull monoid H are deter-
mined by the tuple .G;GP/. We now provide a first result indicating that conversely
arithmetical phenomena give us back information on the class group. Indeed,
our next corollary characterizes arithmetically whether the class group of a Krull
monoid is torsion-free or not. To do so we must study the arithmetical behavior of
elements similar to absolutely irreducible elements. Note that such a result cannot
be accomplished via sets of lengths alone (see Propositions 6.12 and 6.13 and (1c)
of Proposition 6.2; in fact, there is an open conjecture that every abelian group is
the class group of a half-factorial Krull monoid [Geroldinger and Göbel 2003]).

Proposition 6.3. Let H be a Krull monoid with class group G. Then G has an
element of infinite order if and only if there exists an irreducible element u 2 H

having the following two arithmetical properties.

(a) Whenever there are v 2H nH� and m 2 N with v jum, then u j vn for some
n 2 N.

(b) There exist l � 2 and a1; : : : ; al 2H such that u j a1�:::�al but yet

u − a�1
� .a1�:::�al/

N

for each � 2 Œ1; l � and for every N 2 N.

Proof. We may assume that H is reduced. Consider a divisor theory H ,! F.P/
and denote by GP �G the set of classes containing prime divisors.

First suppose that G is a torsion group and let u 2 A.H / have Property (a).
Then uD p

k1

1
�:::�p

km
m for some m; k1; : : : ; km 2 N and pairwise distinct elements

p1; : : : ;pm 2 P . Then (a) implies that k D 1 and hence u is absolutely irreducible.
Thus Property (b) cannot hold for any l � 2.

Conversely, suppose that G is not a torsion group. Since ŒGP �DG there exists a
p 2 P such that Œp� 2G has infinite order, and there is an element u0 2A.H / with
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p ju0. Suppose that u0 D p1�:::�pn � q1�:::�qr , where

p D p1;p2; : : : ;pn; q1; : : : ; qr 2 P;

Œp1�; : : : ; Œpn� have infinite order, and Œq1�; : : : ; Œqr � have finite order, each of which
divides some integer N . Then .q1�:::�qr /

N 2H , whence .p1�:::�pn/
N 2H . After

a possible reordering there is an atom uDp
k1

1
�:::�p

km
m 2A.H / dividing a power of

.p1�:::�pn/
N such that there is no atom v 2A.H / with suppP.v/¨ fp1; : : : ;pmg.

Thus u satisfies Property (a). Since H ,! F.P/ is a divisor theory, there exist
b1; : : : ; bs 2H such that

p
k1

1
�:::�p

km�1

m�1
D gcd.b1; : : : ; bs/:

Hence there is an i 2 Œ1; s�, say i D 1, such that pm − b1. Similarly, there are
c1; : : : ; ct 2H such that p

km
m D gcd.c1; : : : ; ct /. Without loss of generality, there

exists i 2 Œ1;m�1� such that pi − c1. Therefore u j b1c1, but yet u − bN
1

and u − cN
1

for any N 2 N, and so Property (b) is satisfied. �
Propositions 6.1, 6.2, and 6.3 provide abstract finiteness and nonfiniteness results.

To obtain more precise information on the arithmetical invariants, we require specific
information on GP . In the next subsection we will use such specific information to
give more concrete results.

6B. Specific sets GP of classes containing prime divisors and arithmetical char-
acterizations. We now provide an in-depth study of the arithmetic of three classes
of Krull monoids studied in Sections 4 and 5. Theorem 6.4 describes the arithmetic
of the monoids discussed in Examples 4.12, 4.20, 4.25 and in Theorem 4.12. Its
arithmetic is simple enough that we can more or less give a complete description.

Theorem 6.4. Let H be a Krull monoid with class group G and suppose that

GP D fe0; : : : ; er ;�e0; : : : ;�er g �G

is the set of classes containing prime divisors, where r; ˛ 2N with r C˛ > 2 and
.e1; : : : ; er / is an independent family of elements each having infinite order such
that e1C � � �C er D ˛e0. Then:

(1) A.GP/ D fV;�V;U� W � 2 Œ0; r �g, where V D .�e0/
˛e1�:::�er and U� D

.�e�/e� for all � 2 Œ0; r �. In particular, D.GP/D r C˛.

(2) Suppose that

S D

rY
iD0

e
ki

i .�ei/
li 2 F.GP/;

where k0; l0; : : : ; kr ; lr 2 N0. Then S 2 B.GP/ if and only if

li D ˛
�1.k0� l0/C ki
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for all i 2 Œ1; r �. If S 2 B.GP/ with k0 � l0 and k� Dminfk1; : : : ; kr g, then

Z.S/D

�
V �.�V /˛

�1.k0�l0/C�U
l0�˛�
0

rY
iD1

U
ki��
i W � 2 Œ0;minf˛�1l0; k

�
g�

�
and

L.S/D
˚
˛�1.k0�l0/Cl0Ck1C� � �Ckr�.rC˛�2/� W�2 Œ0;minf˛�1l0; k

�
g�
	
:

(3) The system of sets of lengths of H can be described as follows.

(a) �.H /D fr C˛� 2g.
(b) �.H /D D.GP/=2.
(c) For each k 2N, the set Uk.H / is an arithmetical progression with differ-

ence r C˛� 2.
(d) For each k 2 N and each j 2 Œ0; 1�, �2kCj .H /D kD.GP/C j .
(e) For each l 2 N0, �lD.GP /Cj .H /D 2l C j whenever j 2 Œ0;D.GP/� 1�

and lD.GP/C j � 1.
(f) Finally,

L.H /D
˚
mCf2k�C .r C˛� 2/� W � 2 Œ0; k��g Wm; k� 2 N0

	
:

(4) c.H /D cmon.H /D !.H /D t.H /D D.GP/D r C˛.

Proof. By Lemma 3.4, all assertions on lengths of factorizations and on catenary
degrees can be proved working in B.GP/ instead of H .

Obviously, fU� W � 2 Œ0; r �g �A.GP/ and to prove (1) it remains to verify that
if W 2 A.GP/ with W 6D U� , then W D V . Note that e0 2 he1; : : : ; er i but that
he0i \ hei W i 2 Ii D f0g for any proper subset I ¨ Œ1; r �. Thus, if

W D
Y
i2I

e
ki

i .�e0/
k0 2A.GP/ n fU� W � 2 Œ0; r �g;

where ∅¤I � Œ1; r � and k0; ki 2N for all i 2I , then k0e0D
P

i2I kiei 2hei W i 2Ii

and hence I D Œ1; r �. Assume to the contrary that there is i 2 Œ1; r � such that ki > 1.
Since V 2 B.GP/ and W 2A.GP/, it follows that k0 2 Œ1; ˛� 1�. Then

0¤ .k1�1/e1C� � �C.kr�1/er D .k0�˛/e0 2 Œe1; : : : ; er �\Œ�e1; : : : ;�er �Df0g;

a contradiction. Thus k1 D � � � D kr D 1 and we obtain that k0 D ˛, whence
W D V 2A.GP/.

To prove (2), suppose that S 2 B.GP/ and that l0 � k0. Then

S 0 D .�e0/
l0�k0

rY
iD1

e
ki

i .�ei/
li 2 B.GP/;

whence l0� k0 D ˛m0 2 ˛N0, S 00 D
rQ

iD1

e
ki�m0

i .�ei/
li 2 B.GP/, and
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li D ki �m0 D ki �
l0� k0

˛
D

k0� l0

˛
C ki for each i 2 Œ1; r �:

The same holds true if l0�k0. Conversely, if l1; : : : ; lr satisfy the asserted equations,
then obviously �.S/D 0.

Suppose that S 2 B.GP/ and that k0 � l0. Then

S D e
k0

0
.�e0/

l0

rQ
iD1

e
ki

i .�ei/
kiC˛

�1.k0�l0/

D
�
.�e0/e0

�l0
�
e0
˛.�e1/�:::�.�er /

�˛�1.k0�l0/
rQ

iD1

�
.�ei/ei

�ki

D
�
.�e0/e0

�l0�˛�
�
e0
˛.�e1/�:::�.�er /

�˛�1.k0�l0/C�
�
.�e0/

˛e1�:::�er

��
�

rQ
iD1

�
.�ei/ei

�ki��

D U
l0�˛�
0

.�V /˛
�1.k0�l0/C�V �

rQ
iD1

U
ki��
i

for each � 2 Œ0;minf˛�1l0; k
�g�. Therefore Z.S/ and hence L.S/ have the given

forms.
We now consider the statements of (3). The assertion on �.GP/ follows im-

mediately from (2). Since �.GP/D fr C˛� 2g, all sets Uk.GP/ are arithmetical
progressions with difference r C˛� 2. The assertion on each �2k.GP/ and each
�.GP/ follow from Proposition 6.2.

In order to determine L.GP/, let S 2 B.GP/ be given with all parameters as in
(2). First suppose that l0 � ˛k�. Then

L.S/D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/k�Cf.r C˛/k�� .r C˛� 2/� W � 2 Œ0; k��g

D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/k�Cf2k�C .r C˛� 2/� W � 2 Œ0; k��g:

Thus L.S/ has the form

L.S/DmCf2k�C .r C˛� 2/� W � 2 Œ0; k��g

for some m; k� 2 N0. Conversely, for every choice of m; k� 2 N0, there is an
S 2 B.GP/ such that L.S/ has the given form.

Now suppose that l0 � ˛k�� 1 and set m0 D bl0=˛c. Then

L.S/D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/m0Cf.r C˛/m0� .r C˛� 2/� W � 2 Œ0;m0�g
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D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/m0Cf2m0C .r C˛� 2/� W � 2 Œ0;m0�g;

and hence L.S/ has the form

L.S/DmCf2m0C .r C˛� 2/� W � 2 Œ0;m0�g

for some m 2 N and m0 2 N0.
Next we verify that, for every k 2N, �2kC1.GP/�kD.GP/C1. By [Geroldinger

and Halter-Koch 2006, Proposition 1.4.2], for all k 2 N,

�k.GP/D supfsup L WL 2 L.GP/; k Dmin Lg:

Thus we may choose k 2 N and L 2 L.GP/ with min L D 2k C 1. Then, there
exist l;m; k� 2 N0 such that

LDmCf2k�C .r C˛� 2/� W � 2 Œ0; k��g

with mD 2l C 1 and 2kC 1Dmin LD 2.k�C l/C 1. Now

max LDmC .r C˛/k� D 2l C 1C .r C˛/.k � l/

D .r C˛/kC 1� .r C˛� 2/l � kD.GP/C 1;

and thus �2kC1.GP/� kD.GP/C 1.
It remains to verify the assertions on the �lD.GP /Cj .GP/. Let l 2 N0 and

j 2 Œ0;D.GP/� 1�. Then Lemma 3.3 implies �lD.Gp/Cj .GP/ � 2l C j , and that
equality holds if j 2 Œ0; 1�. It remains to verify that �lD.Gp/Cj .GP/ � 2l C j

when j 2 Œ2;D.GP/� 1�. Let L 2 L.GP/ with lD.GP/C j 2L. Then there exist
m; k� 2 N0 such that

LDmCf2k�C .r C˛� 2/� W � 2 Œ0; k��g

DmC k�D.GP/�f.D.GP/� 2/� W � 2 Œ0; k��g:

Suppose lD.GP/C j Dmax L��.D.GP/�2/DmCk�D.GP/��.D.GP/�2/

for some � 2 Œ0; k��. Then j �mC 2� mod D.GP/ and hence mC 2� � j . This
implies

.k�� �/D.GP/C j �mC k�D.GP/� �.D.GP/� 2/D lD.GP/C j ;

and hence l � k�� �. Therefore we obtain

min LD lD.GP/C j � .k�� �/.D.GP/� 2/

D .l � k�C �/D.GP/C j C 2.k�� �/� 2l C j ;

and thus �lD.Gp/Cj .GP/� 2l C j .
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Finally we consider the catenary degrees of H and prove the statements given
in (4). Using Proposition 6.2 we infer

D.GP/D r C˛ D 2Cmax�.GP/� c.GP/D c.H /� !.H /� t.H /:

Since c.GP/ � cmon.GP/, it remains to show that cmon.GP/ � D.GP/ and that
t.H /� D.GP/.

We proceed in two steps. First we verify that

cmon.GP/Dmaxfceq.GP/; cadj.GP/g � r C˛:

Since

A.�B.GP /;eq/D f.�V;�V /; .V;V /; .U� ;U�/; .�U� ;�U�/ W � 2 Œ0; r �g;

it follows that ceq.GP/D 0. If ArC˛�2Dfx 2Z.GP/ W jxj�.rC˛�2/2 L.�.x//g,
then Min.ArC˛�2/D fU

˛
0

U1�:::�Ur g, and hence cadj.GP/� r C˛ by Lemma 2.1.
In order to show that t.H /�D.GP/, we must verify the following assertion (see

[Geroldinger and Hassler 2008, Theorem 3.6]).

(A) Let j 2 N and w;w1; : : : ; wj 2 A.H / be such that w divides the product
w1�:::�wj yet w divides no proper subproduct of w1�:::�wj . Then

min L.w�1w1�:::�wj /� D.GP/� 1:

Proof of (A). We use the transfer homomorphism ˇ WH ! B.GP/ as defined in
Lemma 3.4. Set W D ˇ.w/ and Wi D ˇ.wi/ for each i 2 Œ1; j �. Then j � jW j

and W;W1; : : : ;Wj 2A.GP/. Clearly

min L.w�1w1�:::�wj /�max L.W �1W1�:::�Wj /�
jW1�:::�Wj j � jW j

2
:

Thus, if jW j D 2, then

min L.w�1w1�:::�wj /�
jW1jC jW2j � jW j

2
� D.GP/� 1:

It remains to consider the case W 2 f�V;V g, and by symmetry we may suppose
that W D V . If jW1j D � � � D jWj j D 2, then j D jV j and w�1w1�:::�wj 2A.H /.
Suppose there is � 2 Œ1; j �, say �D1, such that ˇ.w1/2f�V;V g. Sincew does not
divide a subproduct of w1�:::�wj and gcd.V;�V /D 1, it follows that ˇ.w1/D V .
Then L.w�1w1�:::�wj /D L.W �1W1�:::�Wj /D L.W2 �:::�Wj / and hence

min L.w�1w1�:::�wj /� j � 1� jV j � 1D D.GP/� 1: �

The next corollary again reveals that certain arithmetical phenomena characterize
certain algebraic properties of the class group.
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Corollary 6.5. Let H be a Krull monoid as in Theorem 6.4 with class group G and
set GP of classes containing prime divisors. Then rC1 is the minimum of all s 2N

having the following property:

(P) There are absolutely irreducible elements w1; : : : ; ws 2 A.H / such that
2;D.GP/ 2 L.w

k1

1
�:::�w

ks
s / for some .k1; : : : ; ks/ 2 Ns

0
.

Proof. First we verify that r C1 satisfies property (P). For i 2 Œ0; s�, let pi 2 P \ ei

and qi 2 P \ .�ei/ and set wi D piqi . Then w0; : : : ; ws are absolutely irreducible
elements and, by Theorem 6.4, it follows that 2;D.GP/ 2 L.w

˛
0
w1�:::�wr /:

Conversely, let s2N, and letw1; : : : ; ws and k1; : : : ; ks be as above. For i 2 Œ1; s�,
we set Wi D ˇ.wi/. Since �.GP/D D.GP/=2 and 2;D.GP/ 2 L.W

k1

1
�:::�W

ks
s /;

it follows that
Ps

iD1 ki jWi j D D.GP/, jW1j D � � � D jWsj D 2 and Wi D .�gi/gi

for i 2 Œ1; s�, and that S D g
k1

1
�:::�g

ks
s 2 A.GP/. Now Theorem 6.4 implies

S D .�e0/
˛e1 �:::�er , whence fW1; : : : ;Wsg D f.�e0/e0; : : : ; .�er /er g. Thus

jfw1; : : : ; wsgj � jfW1; : : : ;Wsgj D r C 1;

and so r C 1 is minimal with Property (P). �
We now begin collecting information in order to study the arithmetic of the Krull

monoid presented in Example 4.21. In spite of the simple geometric structure of GP
(the set consists of the vertices of the unit cube and their negatives), the arithmetic
of this Krull monoid is highly complex. We get only very limited information.
Nevertheless, this will be sufficient to give an arithmetical characterization.

Lemma 6.6. Let G be an abelian group and let .en/n�1 be a family of independent
elements each having infinite order. For r 2 N, set

GCr D fa1e1C � � �C ar er W a1; : : : ; ar 2 Œ0; 1�g;

G�r D�GCr ; Gr DGCr [G�r :

(1) Let s 2 Œ2; r �, f0 D e1 C � � � C es , and fi D f0 � ei for all i 2 Œ1; s�. Then
.f1; : : : ; fs/ is independent, f1C � � �Cfs D .s� 1/f0, and

�.ff0; : : : ; fs;�f0; : : : ;�fsg/D f2s� 3g:

(2) Let s 2 Œ3; r �, f0 D e1C � � � C es , fi D f0 � ei for each i 2 Œ1; s � 1�, and set
f 0s D�es . Then .f1; : : : ; fs�1; f

0
s / is independent,

f1C � � �Cfs�1Cf
0

s D .s� 2/f0;

and

�.ff0; : : : ; fs�1; f
0

s ;�f0; : : : ;�fs�1;�f
0

s g/D f2s� 4g:

(3) If s � Œ1; r�1�, then D.Gr /�D.Gs/CD.Gr�s/�1. In particular, D.G1/D 2

and D.Gr / > D.Gr�1/ for r � 2.



MONOIDS OF MODULES AND ARITHMETIC OF DIRECT-SUM DECOMPOSITIONS 305

Proof. Since .e1; : : : ; es/ is a basis, there is a matrix As with .f1; : : : ; fs/ D

.e1; : : : ; es/As . Since det.As/¤ 0, it follows that .f1; : : : ; fs/ is independent. By
definition, we have f1C� � �Cfs D .s�1/f0. The assertion on the set of distances
then follows from Theorem 6.4 and we have proved (1).

We now consider (2). Note that f 0s D fs �f0. Using (1) we infer that

0D .f1C � � �Cfs/� .s� 1/f0 D .f1C � � �Cfs�1/C .fs �f0/� .s� 2/f0;

and hence f1 C � � � C fs�1 C f
0

s D .s � 2/f0. Since .f1; : : : ; fs�1;�es/ D

.e1; : : : ; es/Bs for some matrix Bs with det.Bs/D .�1/2s det.As�1/¤0, it follows
that .f1; : : : ; fs�1; f

0
s / is independent. The assertion on the set of distances follows

from Theorem 6.4.
It is clear that D.G1/D2 and that D.Gr />D.Gr�1/whenever r �2. To prove the

remaining statements of (3), suppose that s 2 Œ1; r � 1�. After a change of notation,
we may suppose that Gr�s � hesC1; : : : ; er i such that hGr i D hGsi ˚ hGr�si.
If U D a1�:::�ak 2 A.Gs/ with k D D.Gs/ and V D b1�:::�bl 2 A.Gr�s/ with
l DD.Gr�s/, then W D .a1Cb1/ �a2 �:::�akb2 �:::�bl 2A.Gr /, and hence D.Gr /�

jW j D kC l � 1D D.Gs/CD.Gr�s/� 1. �

In Theorem 6.7 we restrict to class groups of rank r � 3 because when r � 2

we are in the setting of Theorem 6.4 where we have precise information about
arithmetical invariants. For r 2 N0, we denote by Fr the r -th Fibonacci number.
That is, F0 D 0, F1 D 1, and Fr D Fr�1C Fr�2 for all r � 2.

Theorem 6.7. Let H be a Krull monoid with free abelian class group G of rank
r � 3 and let GP �G denote the set of classes containing prime divisors. Suppose
that there is a basis .e1; : : : ; er / of G such that G�P DGCP [G�P , where

GCP D f�1e1C � � �C �r er W �1; : : : ; �r 2 Œ0; 1�g and G�P D�GCP :

(1) FrC2 � D.GP/.

(2) c.H /�!.H /DD.GP/, �.H /DD.GP/=2, and �2k.H /D kD.GP/ for each
k 2 N.

(3) Œ1; 2r � 3����.H /��.H /� Œ1; c.H /� 2�.

Proof. See [Baeth et al. 2014] for the proof of assertion (1). Assertion (2) follows
from Proposition 6.2.

Note that for every s 2 Œ2; r � we have 2s� 3 2��.H / and, by Lemma 6.6, for
all s 2 Œ3; r � we have 2s � 4 2��.H /. This implies that the interval Œ1; 2r � 3� is
contained in ��.H /, giving (3). �

The third class of Krull monoids studied in this subsection are Krull monoids
with finite cyclic class group having prime divisors in each class. Thus Theorem 6.8
describes the arithmetic of the monoids constructed in Theorem 5.5. Holomorphy
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rings in global fields are Krull monoids with finite class group and prime divisors
in all classes. For this reason this class of Krull monoids has received a great deal
of attention.

Theorem 6.8. Let H be a Krull monoid with finite cyclic class group G of order
jGj D n� 3, and suppose that every class contains a prime divisor. Then:

(1) c.H /D !.H /D D.G/D n and �.H /D Œ1; n� 2�.

(2) For every k 2 N the set Uk.H / is a finite interval, whence

Uk.H /D Œ�k.H /; �k.H /�:

Moreover, for all l 2 N0 with lnC j � 1,

�2kCj .H /D knC j for j 2 Œ0; 1� ;

�lnCj .H /D

�
2l C j for j 2 Œ0; 1� ;

2l C 2 for j 2 Œ2; n� 1�:

(3) max��.H /D n� 2 and max.��.H / n fn� 2g/D bn
2
c� 1.

Proof. The proof of (1) can be found in [Geroldinger and Halter-Koch 2006,
Theorem 6.7.1] and the proof of (3) can be found in [Geroldinger and Halter-Koch
2006, Theorem 6.8.12]. For (2) see [Geroldinger 2009, Corollary 5.3.2]. �

Much recent research is devoted to the arithmetic of Krull monoids discussed
in Theorem 6.8. We briefly address some open questions. Let H be as above and
suppose that n� 5. The precise values of t.H / and of cmon.H / are unknown. It is
easy to check that D.G/D n< t.H / (in contrast to what we have in Theorem 6.4).
For recent results on lower and upper bounds of the tame degree, see [Gao et al.
2015]. We remark that there is a standing conjecture that the monotone catenary
degree is that nD c.H /D cmon.H / (this coincides what we have in Theorem 6.4;
see [Geroldinger and Yuan 2013]). For recent progress on ��.H / we refer to
[Plagne and Schmid 2013].

Having at least a partial description of the arithmetic of the three monoids
described in Theorems 6.4, 6.7, and 6.8, we now work to show that except for in a
small number of exceptions, these monoids have vastly different arithmetic. After
some preliminary work this distinction is made clear in Corollary 6.10.

Lemma 6.9. Let G be an abelian group with finite total rank and let G0 �G be a
subset with G0 D�G0. Suppose that L.G0/D L.Cn/ for some n� 5. Then there
exists an absolutely irreducible element U 2A.G0/ with jU j D D.G0/.

Proof. First observe that D.G0/ D �2.G0/ D �2.Cn/ D D.Cn/ D n and, by
[Geroldinger and Halter-Koch 2006, Theorem 3.4.2], A.G0/ is finite, say A.G0/D
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fU1;�U1; : : : ;Uq;�Uqg. If g 2 Cn with ord.g/D n, then for all k 2 N we have

Lk D f2kC �.n� 2/ W � 2 Œ0; k�g D L
�
gnk.�g/nk

�
2 L.Cn/D L.G0/:

Since �.Lk/D �.G0/D D.G0/=2, there exists, for every k 2 N, a tuple

.k1; : : : ; kq/ 2 N
.q/
0

such that k1C � � �C kq D k and

Lk D L
�
.�U1/

k1U
k1

1
�:::�.�Uq/

kq U
kq

q

�
:

Therefore there exists �2 Œ1; q� such that L
�
.�U�/

kU k
�

�
DLk for every k 2N. Set

U DU� and note that for every V 2A.G0/ with V j .�U /kU k for some k 2N, it
follows that jV j 2 f2; ng. After changing notation if necessary, we may suppose that
there is no V 2A.G0/ such that jV j D n, supp.V /¨ supp.U /, and V jU k.�U /k

for some k 2 N.
In order to show that U is absolutely irreducible, it remains to verify that the

torsion-free rank of hsupp.U /i is jsupp.U /j � 1. Assume to the contrary that there
exist t 2 Œ2; jsupp.U /j�1� and g1; : : : ;gt 2 supp.U / which are linearly dependent.
Then there are s 2 Œ1; t �, m1; : : : ;ms 2 N, and msC1; : : : ;mt 2 �N such that

m1g1C � � �CmsgsC .�msC1/.�gsC1/C � � �C .�mt /.�gt /D 0:

Then
V D g

m1

1
�:::�gms

s .�gsC1/
�msC1 �:::�.�gt /

�mt 2 B.G0/:

Without restriction we may suppose that the above equation is minimal and that
V 2 A.G0/. Since V jU k.�U /k for some k 2 N and jV j > 2, we obtain a
contradiction to the minimality of supp.U /. �

The following corollary highlights that the observed arithmetical phenomena in
our case studies — Theorems 6.4, 6.7, and 6.8 — are characteristic for the respective
Krull monoids. In particular, this illustrates that the structure of direct-sum decom-
positions over the one-dimensional Noetherian local rings with finite representation
type studied in Section 4 can be quite different from the structure of direct-sum
decompositions over the two-dimensional Noetherian local Krull domains with
finite representation type studied in Section 5. As characterizing tools we use the
system of sets of lengths along with the behavior of absolutely irreducible elements.

Corollary 6.10. For i 2 Œ1; 3�, let Hi and H 0i be Krull monoids with class groups
Gi and G0i . Further suppose that

� G1 and G0
1

are finitely generated and torsion-free of rank r1 and r 0
1

with sets of
classes containing prime divisors as in Theorem 6.4 .with parameters ˛; ˛0 2N

such that ˛C r1 � ˛
0C r 0

1
> 2/.
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� G2 and G0
2

are finitely generated and torsion-free of rank r2 � r 0
2
� 3 with sets

of classes containing prime divisors as in Theorem 6.7.

� G3 and G0
3

are finite cyclic of order jG3j � jG
0
3
j � 5 such that every class

contains a prime divisor.

Then:

(1) L.H1/DL.H 0
1
/ if and only if r1C˛D r 0

1
C˛0. If this holds, then the arithmetic

behavior of the absolutely irreducible elements of H1 and H 0
1

coincide in the
sense of Corollary 6.5 if and only if r1 D r 0

1
.

(2) L.H2/D L.H 0
2
/ if and only if r2 D r 0

2
.

(3) L.H3/D L.H 0
3
/ if and only if jG3j D jG

0
3
j.

(4) L.H1/¤ L.H2/ and L.H1/¤ L.H3/.

(5) For i 2 Œ2; 3�, let si denote the maximal number of absolutely irreducible
elements u1; : : : ;usi

2Hi such that 2 2 L.u1�:::�usi
/. Then either L.H2/¤

L.H3/ or s2 ¤ s3.

Proof. The if and only if statement in (1) follows immediately from Theorem 6.4.
Suppose that L.H1/D L.H 0

1
/. Then the assertion in (1) on the arithmetic behavior

of absolutely irreducible elements follows from Corollary 6.5.
To prove (2), first note that one implication is clear, both for H2 and H3. Suppose

that L.H2/ D L.H 0
2
/, and let GP � G2 and G0P � G0

2
denote the set of classes

containing prime divisors. Theorem 6.7 implies that

D.GP/D �2.H /D �2.H
0/D D.G0P/;

and thus Lemma 6.6 implies r2 D r 0
2
. Now consider (3). If L.H3/D L.H 0

3
/, then

Theorem 6.8 implies that

jG3j � 2Dmax�.H3/Dmax�.H 03/D jG
0
3j � 2:

For (4), note that L.H1/ is distinct from both L.H2/ and L.H3/ since

j�.H1/j D 1; j�.H2/j> 1; j�.H3/j> 1:

For (5) we assume that L.H2/D L.H3/ and let GP �G2 denote the set of classes
containing prime divisors. Theorems 6.7 and 6.8 imply that

D.GP/D �2.H2/D �2.H3/D jG3j:

By Proposition 6.3 we obtain that D.GP/D s2. Now assume to the contrary that
s2 D s3. If jG3j D n, then there are absolutely irreducible elements u1; : : : ;un and
atoms v1; v2 2A.H3/ such that v1v2 D u1�:::�un. Without restriction, we suppose
H3 is reduced and we consider a divisor theory H ,! F.P/. Since a minimal
zero-sum sequence of length n over G3 consists of one element of order n repeated
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n times, the factorization of the atoms v1; v2;u1; : : : ;un in F.P/ must have the
following form: v1Dp1�:::�pn, v2Dq1�:::�qn, and uiDpiqi for all i 2 Œ1; n�, where
p1; : : : ;pn; q1; : : : ; qn 2 P , Œp1�D � � � D Œpn� 2G3, and Œq1�D � � � D Œqn�D Œ�p1�.
But [Geroldinger and Halter-Koch 2006, Proposition 7.1.5] implies that the elements
u1; : : : ;un are not absolutely irreducible, a contradiction. �

Remark 6.11. Let H2 and H3 be as in Corollary 6.10. We set nD jG3j, r D r2,
and let GP;r �G2 denote the set of classes containing prime divisors. Assume that
L.H2/D L.H3/. Then

FrC2 � D.GP;r /D �2.H2/D �2.H3/D n:

That is, the orders of the cyclic groups for which L.H2/ D L.H3/ grow faster
than the sequence of Fibonacci numbers. We conjecture that L.H2/ and L.H3/ are
always distinct but have not further investigated this (rather delicate combinatorial)
problem which would require a more detailed investigation of D.GP;r /.

Now suppose that H is a Krull monoid with class group G such that every class
contains a prime divisor. If L.H /D L.H3/, then following Theorem 6.8, one can
show that G is isomorphic to the finite cyclic group G3 (see [Geroldinger 2009,
Corollary 5.3.3]). Therefore sets of lengths characterize Krull monoids with finite
cyclic class group having the property that every class contains a prime divisor.

6C. Small sets GP of classes containing prime divisors and limits of arithmetical
characterizations. In this final subsection we study the arithmetic of Krull monoids
having small sets of classes containing prime divisors. This study pertains to
the monoids of Theorem 4.12, Example 4.19, Example 4.20, and Theorem 5.5.
The most striking phenomenon here is that these systems of sets of lengths are
additively closed (see Proposition 6.14). As a consequence, if L.H / is such a
system and H 0 is a monoid with L.H 0/ � L.H /, then L.H �H 0/D L.H / (see
Example 4.23, Example 4.24, and Corollary 6.15). These phenomena are in strong
contrast to the results in the previous subsection, and they show up natural limits for
obtaining arithmetical characterization results. Recall that, for l 2 N0 and d 2 N,
Pl.d/D f0; d; : : : ; ldg.

Proposition 6.12. Let H be a Krull monoid with infinite cyclic class group G and
suppose that

GP D f�2e;�e; 0; e; 2eg �G D hei

is the set of classes containing prime divisors. Then there is a transfer homomor-
phism � WH ! B.C3/, and hence

L.H /D L.C3/D L.C2˚C2/D fyC 2kCPk.1/ W y; k 2 N0g:
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Moreover, L.H / coincides with the system of sets of lengths of the Krull monoid
studied in Theorem 6.4 with parameters r D 2 and ˛ D 1.

Proof. By Lemma 3.4 there is a transfer homomorphism ˇ WH ! B.GP/. Since
the composition of two transfer homomorphisms is a transfer homomorphism, it
is sufficient to show that there is a transfer homomorphism � 0 W B.GP/! B.C3/.
Write C3 D f0;g;�gg. Since

B.GP/D F.f0g/�B.G�P/ and B.C3/D F.f0g/�B.f�g;gg/;

it suffices to show that there is a transfer homomorphism � W B.G�P/! B.f�g;gg/.
In this case, L.H /DL.GP/DL.C3/. Moreover, L.C3/DL.C2˚C2/ has the form
given in [Geroldinger and Halter-Koch 2006, Theorem 7.3.2] and this coincides
with the system of sets of lengths in Theorem 6.4, provided .r; ˛/D .2; 1/.

Note that A.G�P/ D fV;�V;U1;U2g , where V D e2.�2e/, U1 D .�e/e, and
U2D .�2e/.2e/, and A.f�g;gg/D fV ;�V ;U g , where V D g3 and U D .�g/g.
Then there is a monoid epimorphism

z� W F.G�P/! F.f�g;gg/

satisfying z�.e/D z�.�2e/D g and z�.�e/D z�.2e/D�g. If

AD ek1.�e/k
0
1.2e/k2.�2e/k

0
2 2 F.G�P/ with k1; k

0
1; k2; k

0
2 2 N0;

then A 2 B.G�P/ if and only if k1 � k 0
1
C 2.k2 � k 0

2
/ D 0. If this holds, then

k1C k 0
2
� .k 0

1
C k2/� 0 mod 3 and hence

z�.A/D gk1Ck0
2.�g/k

0
1
Ck2 2 B.f�g;gg/:

Thus � D z� j B.G�P / W B.G
�

P/! B.f�g;gg/ is a monoid epimorphism satisfying
�.V /D V , �.�V /D�V , �.U1/D �.U2/D U and ��1.1/D f1g D B.G�P/�.

Thus in order to show that � is a transfer homomorphism, it remains to verify
Property (T2). Let A 2 B.G�P/ be as above and suppose that

�.A/D zB zC

with zB; zC 2 B.f�g;gg/ and zB D gm.�g/m
0

such that m 2 Œ0; k1 C k 0
2
�, m0 2

Œ0; k 0
1
C k2� and m � m0 mod 3. Our goal is to find B;C 2 B.G�P/ such that

AD BC , �.B/D zB, and �.C /D zC . Clearly it is sufficient to find B 2 B.G�P/
with B jA and �.B/D zB, that is, to find parameters

m1 2 Œ0; k1� ; m01 2 Œ0; k
0
1� ; m2 2 Œ0; k2� ; m02 2 Œ0; k

0
2� ;

such that

(C1) m1Cm02 Dm; m01Cm2 Dm0; m1�m01C 2.m2�m02/D 0:
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To do so we proceed by induction on j zBj. If j zBj D jAj, then

k1C k 01C k2C k 02 D jAj D j
zBj DmCm0;

and hence mD k1C k 0
1

and m0 D k 0
1
C k2. Thus we set

m1 D k1; m01 D k 01; m2 D k2; m02 D k 02;

and the assertion is satisfied with B D A. Suppose now that the quadruple
.m1;m

0
1
;m2;m

0
2
/ satisfies (C1) with respect to the pair .m;m0/. Dividing zB

by an atom of B.f�g;gg/ (if possible) shows that we must verify that there are
solutions to (C1) with respect to each of the pairs .m�1;m0�1/, .m�3;m0/, and
.m;m0�3/ in N

.2/
0

. One checks respectively that at least one of the following
quadruples satisfy (C1).

� .m1�1;m0
1
�1;m2;m

0
2
/ or .m1;m

0
1
;m2�1;m0

2
�1/;

� .m1�2;m0
1
;m2;m

0
2
�1/ or .m1�3;m0

1
�1;m2C1;m0

2
/;

� .m1;m
0
1
�2;m2�1;m0

2
/ or .m1�1;m0

1
�3;m2;m

0
2
C1/.

Now the assertion follows by the induction hypothesis. �

Proposition 6.13. Let H be a Krull monoid with free abelian class group G of rank
2. Let .e1; e2/ be a basis of G and suppose that

GP D f0; e1; e2; 2e2; e1C2e2; �e1; �e2; �2e2; �e1�2e2g

is the set of classes containing prime divisors. Then there is a transfer homomor-
phism � WH ! B.C4/ and hence

L.H /D L.C4/

D
˚
yC kC 1CPk.1/ W y; k 2 N0

	
[
˚
yC 2kCPk.2/ W y; k 2 N0

	
� L.C3/:

Proof. As in Proposition 6.12, it suffices to show that there is a transfer homomor-
phism � W B.G�P/! B.C �

4
/. Then L.H / D L.GP/ D L.C4/ and L.C4/ has the

form given in [Geroldinger and Halter-Koch 2006, Theorem 7.3.2]. Proposition 6.12
shows that L.C3/� L.C4/.

We note that A.G�P/D fW;�W;V1;�V1;V2;�V2;U1;U2;U3;U4g, where

W D e1e2e2.�e1� 2e2/; U3 D .�e1� 2e2/.e1C 2e2/;

U1 D .�e1/e1; V1 D e1.2e2/.�e1� 2e2/;

U2 D .�e2/e2; V2 D e2e2.�2e2/;

U4 D .�2e2/.2e2/:
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We set C4D f0;g; 2g;�gg and observe that A.C �
4
/D fW ;�W ;V ;�V ;U 1;U 2g,

where

W D g4; V D g2.2g/; U 1 D .�g/g and U 2 D .2g/.2g/:

There is a monoid epimorphism z� W F.G�P/! F.C �
4
/ satisfying

z�.e1/D z�.e2/D z�.�e1� 2e2/D g;

z�.�e1/D z�.�e2/D z�.e1C 2e2/D�g;

z�.2e2/D z�.�2e2/D 2g:

If

AD e
k1

1
.�e1/

k0
1e

k2

2
.�e2/

k0
2.2e2/

k3.�2e2/
k0

3.e1C2e2/
k4.�e1�2e2/

k0
4 2F.G�P/;

with k1; k
0
1
; : : : ; k4; k

0
4
2 N0, then A 2 B.G�P/ if and only if

k1� k 01C k4� k 04 D 0 and k2� k 02C 2k3� 2k 03C 2k4� 2k 04 D 0:

If this holds, then

k1� k 01C k2� k 02� .k4� k 04/C 2k3C 2k 03 � 0 mod 4;

and hence

z�.A/D gk1Ck2Ck0
4.�g/k

0
1
Ck0

2
Ck4.2g/k3Ck0

3 2 B.C �4/:

Thus � D z� j B.G�P / W B.G
�

P/! B.C �
4
/ is a monoid epimorphism satisfying

�.W /DW ; �.�V1/D �.�V2/D�V ;

�.�W /D�W ; �.U1/D �.U2/D �.U3/D U 1;

�.V1/D �.V2/D V ; �.U4/D U 2;

��1.1/D f1g D B.G�P/
�:

Thus in order to show that � is a transfer homomorphism, it remains to verify
Property (T2). Let A 2 B.G�P/ be as above and suppose that

�.A/D zB zC

with zB; zC 2 B.C �
4
/ and zB D gm.�g/m

0

.2g/m
00

such that

m 2 Œ0; k1C k2C k 04� ; m0 2 Œ0; k 01C k 02C k4� ; m00 2 Œ0; k3C k 03� ;

and
m�m0C 2m00 � 0 mod 4:
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Our goal is to find B;C 2 B.G�P/ such that AD BC , �.B/D zB, and �.C /D zC .
It will suffice to find B 2 B.G�P/ with B jA and �.B/ D zB. Thus we must find
parameters

m� 2 Œ0; k� � and m0� 2 Œ0; k
0
� � for � 2 Œ1; 4� ;

such that

(C2)
m1Cm2Cm04 Dm; m01Cm02Cm4 Dm0; m3Cm03 Dm00;

m1�m01Cm4�m04 D 0; m2�m02C 2m3� 2m03C 2m4� 2m04 D 0:

We proceed by induction on j zBj DmCm0Cm00. If j zBj D jAj, then we set m� D k�
and m0� D k 0� for all � 2 Œ1; 4�, and the assertion is satisfied with B DA. Suppose
now that the octuplet .m1;m

0
1
; : : : ;m4;m

0
4
/ satisfies (C2) with respect to the triple

.m;m0;m00/. Dividing zB by an element of A.C �
4
/ (if possible) shows that we must

verify that there are solutions to (C2) with respect to each of the triples

.m� 1;m0� 1;m00/; .m� 2;m0;m00� 1/; .m;m0� 2;m00� 1/;

.m;m0;m00� 2/; .m� 4;m0;m00/; .m;m0� 4;m00/;

provided that they lie in N
.8/
0

. As in proof of the previous proposition, one finds the
required solutions and hence the assertion follows by the induction hypothesis. �

Let L be a family of subsets of Z. We say that L is additively closed if the sumset
LCL0 2 L for all L;L0 2 L.

Proposition 6.14. Let G be a finite cyclic group. Then L.G/ is additively closed if
and only if jGj � 4.

Proof. We suppose that jGj D n and distinguish four cases.
First assume that n� 2. Since B.G/ is factorial, it follows that

L.G/D ffmg Wm 2 N0g;

which is obviously additively closed.
Next assume that nD 3. By Proposition 6.12 we have

L.C3/D fyC 2kCPk.1/ W y; k 2 N0g:

If y1;y2; k1; k2 2 N0. Then

.y1C 2k1CPk1
.1//C .y2C 2k2CPk2

.1//

D .y1Cy2/C 2.k1C k2/CPk1Ck2
.1/ 2 L.C3/;

and hence L.C3/ is additively closed.
Now assume that nD 4. By Proposition 6.13 we have

L.C4/D fyC kC 1CPk.1/ W y; k 2 N0g[ fyC 2kCPk.2/ W y; k 2 N0g:
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Clearly, the sumset of two sets of the first form is of the first form again, and the
sumset of two sets of the second form again the second form. Thus it remains to
consider the sumset L1CL2 where L1 has the first form, L2 has the second form,
and both L1 and L2 have more than one element. If y1;y2 2 N0 and k1; k2 2 N,
then

.y1C k1C 1CPk1
.1//C .y2C 2k2CPk2

.2//

D .y1Cy2/C .k1C 2k2/C 1CPk1C2k2
.1/ 2 L.C4/:

Finally, assume that n � 5 and assume to the contrary that L.G/ is additively
closed. Let d 2 Œ1; n�2�. Then f2; dC2g 2L.G/ by [Geroldinger and Halter-Koch
2006, Theorem 6.6.2], and hence the k-fold sumset

f2; d C 2gC � � �C f2; d C 2g D 2kCPk.d/

lies in L.G/ for all k 2 N. Then [Geroldinger and Halter-Koch 2006, Corol-
lary 4.3.16] implies that n � 3 divides some d 2 ��.G/. By Theorem 6.8 we
have

max��.G/D n� 2 and max.��.G/ n fn� 2g/D
j

n

2

k
� 1;

a contradiction to n� 5. �

Corollary 6.15. (1) Let H be an atomic monoid such that L.H / is additively
closed, and let H 0 be an atomic monoid with L.H 0/� L.H /. Then

L.H �H 0/D L.H /:

(2) Let H be an atomic monoid with L.H / D L.Cn/ for n 2 Œ3; 4�. For k 2

N and i 2 Œ1; k�, let Hi be an atomic monoid with L.Hi/ � L.Cn/. Then
L.H �H1 � � � � �Hk/D L.Cn/.

Proof. Since L.H �H 0/D fLCL0 WL 2 L.H /;L0 2 L.H 0/g, (1) follows.
For (2), we set H 0 D H1 � � � � � Hk . Since L.Cn/ is additively closed by

Proposition 6.14, it follows that

L.H 0/D fL1C � � �CLk WLi 2 L.Hi/; i 2 Œ1; k�g � L.Cn/:

Finally (1) implies that L.H �H 0/D L.H /. �

We conclude this manuscript by suggesting a rich program for further study.
Any progress in these directions will lead to a better understanding of direct-sum
decompositions of classes of modules where each module has a semilocal endomor-
phism ring. Moreover, this program could stimulate new studies in combinatorial
factorization theory where much of the focus has been on Krull monoids having
finite class group.
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Program for further study

A. Module-theoretic aspect. Let R be a ring and let C be a class of right R-modules
which is closed under finite direct sums, direct summands, and isomorphisms, and
such that the endomorphism ring EndR.M / is semilocal for each module M in
C (such classes of modules are presented in a systematic way in [Facchini 2004]).
Then V.C/, the monoid of isomorphism classes of modules in C is a reduced Krull
monoid with class group G and set GP �G of classes containing prime divisors.

Since the long-term goal — to determine the characteristic of V.C/— is out of
reach in most cases, the focus of study should be on those properties of GP which
have most crucial influence on the arithmetic of direct-sum decompositions. In
particular,

� Is GP finite or infinite?

� Is GP well-structured in the sense of Proposition 6.2?

B. Arithmetical aspect of direct-sum decompositions. Let H be a Krull monoid
with finitely generated class group G and let GP � G denote the set of classes
containing prime divisors.

1. Finiteness conditions.

(a) Characterize the finiteness of arithmetical invariants (introduced in Section 2)
and the validity of structural finiteness results (as given in Proposition 6.2, items
(2a) and (2b)).

For infinite cyclic groups much work in this direction can be found done in
[Geroldinger et al. 2010].

(b) If GP contains an infinite group, then every finite subset L� N�2 occurs
as a set of lengths in H (see Proposition 6.2) and hence �.H / D N, and
Uk.H /D N�2 for all k � 2. Weaken the assumption on GP to obtain similar
results.

A weak condition on GP enforcing that �.H /D N can be found in [Hassler
2002].

2. Upper bounds and precise formulas. Suppose that G is torsion-free, say GP �

G D Z.q/ � .R.q/; j � j/, where j � j W R.q/! R�0 is a Euclidean norm.

(a) If GP � fx 2 R W jxj �M g for some M 2 N, then derive upper bounds for
the arithmetical invariants in terms of M .

(b) If GP has a simple geometric structure (e.g., the set of vertices in a cube; see
Examples 4.21 and 4.22), derive precise formulas for the arithmetical invariants,
starting with the Davenport constant.

A first result in this direction can be found in [Baeth et al. 2014].
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(c) Determine the extent to which the arithmetic of a Krull monoid with GP as
in (b) is characteristic for GP . In particular, determine how this compares with
the arithmetic of a Krull monoid H 0 where G0P has the same geometric structure
as GP with different parameters and how this compares with the arithmetic of a
Krull monoid having finite class group and prime divisors in all classes.
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ON THE TORSION ANOMALOUS CONJECTURE
IN CM ABELIAN VARIETIES

SARA CHECCOLI AND EVELINA VIADA

The torsion anomalous conjecture (TAC) states that a subvariety V of an
abelian variety A has only finitely many maximal torsion anomalous subva-
rieties. In this work we prove, with an effective method, some cases of the
TAC when the ambient variety A has CM, generalising our previous results
in products of CM elliptic curves. When V is a curve, we give new results
and we deduce some implications on the effective Mordell–Lang conjecture.

1. Introduction

Let A be an abelian variety embedded in the projective space and let V be a proper
subvariety of A. Assume that both A and V are defined over the algebraic numbers.

Definition 1.1. The variety V is a translate (resp. a torsion variety) if it is a finite
union of translates of proper algebraic subgroups by points (resp. by torsion points).

V is transverse (resp. weak-transverse) in A if V is irreducible and V is not
contained in any translate (resp. in any torsion subvariety) of A.

It is a classical problem in diophantine geometry to investigate the relationship
between the above geometrical definitions and the arithmetical properties of the
variety V . In this direction, there are several celebrated theorems, such as the
Manin–Mumford, Mordell–Lang and Bogomolov conjectures.

Recently E. Bombieri, D. Masser and U. Zannier [Bombieri et al. 2007] suggested
a new approach to this kind of investigation, introducing in particular the notion of
torsion anomalous intersections.

Definition 1.2. An irreducible subvariety Y of V is V -torsion anomalous if:

- Y is an irreducible component of V \ .B C �/, with B C � an irreducible
torsion variety.

- The dimension of Y is larger than expected; i.e.,

codim Y < codim V C codim B:

MSC2010: primary 11G50; secondary 14G40.
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The variety BC � is minimal for Y if, in addition, it has minimal dimension.
The relative codimension of Y is the codimension of Y in such a minimal BC �.

We say that Y is maximal if it is not contained in any V -torsion anomalous
variety of strictly larger dimension.

In [Bombieri et al. 2007], the authors formulate several conjectures. We state
here one natural variant.

Conjecture 1.3 (TAC, torsion anomalous conjecture). For any algebraic subvari-
ety V of a (semi)abelian variety, there are only finitely many maximal V -torsion
anomalous varieties.

The TAC is well known to have several important consequences. It implies, for
instance, the Manin–Mumford and the Mordell–Lang conjectures; it is also related
to model theory by the work of B. Zilber and to algebraic dynamics by the recent
work of J. H. Silverman and P. Morton. In addition, R. Pink generalised it to mixed
Shimura varieties.

Only a few cases of the TAC are known: Viada [2008] proved it for curves in
a product of elliptic curves, Maurin [2008] for curves in a torus, Bombieri et al.
[2007] for varieties of codimension 2 in a torus. Habegger [2008] gave related
results under some stronger assumptions on V .

In [Checcoli et al. 2014], we prove an effective TAC for maximal V -torsion
anomalous varieties of relative codimension 1 in a product of CM elliptic curves.
Our bounds are explicit and uniform in their dependence on V . As an immediate
corollary, we prove the TAC for varieties of codimension 2, obtaining an elliptic
analogue of the toric result in [Bombieri et al. 2007]. In the present work, we
generalise our results to CM abelian varieties. In [Checcoli et al. 2014], we also
point out interesting relations between this kind of theorem and other relevant
conjectures, such as the Zilber–Pink conjecture and the above-mentioned ones.

Let A� Pm be an abelian variety with CM defined over a number field k and
let ktor be the field of definition of the torsion points of A. Let A be isogenous to
a product of simple abelian varieties of dimension at most g. For a point x 2 A,
we denote by Oh.x/ its canonical Néron–Tate height. For a subvariety V �A, we
denote by h.V / its normalised height and by ktor.V / its field of definition over
ktor (see Section 2). By� we denote an inequality up to a multiplicative constant
depending on A. Our main result is the following:

Theorem 1.4. Let V � A be a weak-transverse subvariety of codimension > g.
Then there are only finitely many maximal V -torsion anomalous subvarieties Y of
relative codimension 1.

Effective version: More precisely, if BC � is minimal for Y , then for any positive
real �, there exist constants depending only on A and � such that:
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(1) If Y is not a translate, then

deg B�� .h.V /C deg V /codim BC�;

h.Y /�� .h.V /C deg V /codim BC�;

deg Y �� deg V .h.V /C deg V /codim B�1C�:

(2) If Y is a point, then

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

�codim BC�
;

Oh.Y /�� .h.V /C deg V /codim BC�Œktor.V / W ktor�
codim B�1C�;

Œktor.Y / W ktor��� deg V Œktor.V / W ktor�
codim BC�.h.V /C deg V /codim B�1C�:

(3) If Y is a translate of positive dimension, then

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

�codim BC�
;

h.Y /�� .h.V /C deg V /codim BC�Œktor.V / W ktor�
codim B�1C�;

deg Y �� deg V
�
.h.V /C deg V /Œktor.V / W ktor�

�codim B�1C�
:

In addition, the torsion points � belong to a finite set of cardinality effectively
bounded in terms of deg V , deg B and constants depending only on A.

This theorem can be reformulated in the context of several other well-known
conjectures, as explained in the introduction of [Checcoli et al. 2014].

The proof of Theorem 1.4 is split into two sections, depending on whether Y

is a translate or not: in Section 4 we prove part (1) and in Section 5 we prove parts
(2) and (3).

The main ingredients (see Section 2.3) needed for the proof of Theorem 1.4
are Zhang’s inequality, the arithmetic Bézout theorem by P. Philippon, our sharp
Bogomolov-type bound proved in [Checcoli et al. 2012], and the relative Lehmer
estimate by M. Carrizosa. As usual, the CM hypothesis is due to the use of a
Lehmer bound, known only for CM varieties. This result is only needed when Y is
a translate, while case (1) of Theorem 1.4 holds with the weaker assumption that A

has a positive density of ordinary primes, as required to apply a Bogomolov-type
bound (see [Galateau 2010, p. 779]). In particular, our method could treat the
case of general abelian varieties, if the Lehmer- and Bogomolov-type bounds were
known in such generality.

In Theorem 1.5, proved in Section 6, we expand our method in order to get
some new effective results for curves in abelian varieties. This is particularly
relevant, as bounds for the height in weak-transverse curves are hard to obtain. For
instance, such bounds allow us to deduce some cases of the effective Mordell–Lang
conjecture, stated in Corollary 1.6. The two classical approaches to the effective
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Mordell–Lang conjecture in abelian varieties are the Chabauty–Coleman and the
Manin–Demjanenko methods. These methods require hypotheses that are similar to
ours, but our result is of easier application and more explicit. Finally in Section 7,
we give some generalisations to varieties in abelian varieties.

In particular we prove the following results. We fix an isogeny of the CM
abelian variety A to the product

Q`
iD1 A

ei

i of nonisogenous simple factors Ai of
dimension gi . Since isogenies preserve finiteness, without loss of generality, we
identify A with

Q`
iD1 A

ei

i . If H � A is a subgroup, then H D H1 � � � � �H`,
where Hi �A

ei

i is isogenous to A
fi

i for some fi � ei ; therefore the matrix of the
coefficients of the forms defining H has the structure of a block diagonal matrix
with entries in the endomorphism ring of the corresponding varieties. We can now
state our effective result for weak-transverse curves, which is an example for the
effective Zilber–Pink conjecture.

Theorem 1.5. Let C �AD
Q`

iD1 A
ei

i be a weak-transverse curve. Then the set

S.C /D C \

� [
H2F

H

�
is a set of bounded Néron–Tate height, where F is the family of all subgroups
H D

Q`
iD1 Hi �A such that

codim Hj > gj dim Hj

for at least one index j (here codim Hj is the codimension of Hj in A
ej

j ).
More precisely, if Y 2 C \H , then for any real � > 0, there exists a constant,

depending only on A and �, such that

Oh.Y /�� .h.C /C deg C /
codim Hj

codim Hj�gj dim Hj
C�
Œktor.C / W ktor�

gj dim Hj
codim Hj�gj dim Hj

C�
:

To prove Theorem 1.5 we first work in the projection on the j -th factor of A,
and then we lift the construction to the variety A.

As an immediate consequence, we deduce the following corollary (proved in
Section 6.1).

Let � be a subgroup of AD
Q`

iD1 A
ei

i . Assume that the group � i <Ai generated
by the coordinates of the projections of � on the factors A

ei

i is an End.Ai/-module
of rank ti .

Corollary 1.6. Let A be a CM abelian variety and let C be a weak-transverse
curve in A. Let � be a subgroup as above, and suppose that tj < ej=.gj C 1/ for
some index j . Then, for any positive �, there exists a constant depending only on A
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and �, such that the set C \� has Néron–Tate height bounded as

Oh.C \�/�� .h.C /C deg C /
ej�tj

ej�.gjC1/tj
C�
Œktor.C / W ktor�

gj tj
ej�.gjC1/tj

C�
:

We remark that the corollary applies also to some � of infinite rank; indeed, we
only assume that the rank on one projection is small (see Remark 6.1).

2. Preliminaries

2.1. Height and subgroups. We assume that all varieties are defined over the field
of algebraic numbers.

Let A be an abelian variety with CM. We fix, up to an isogeny, a decomposition
of A D

Q`
iD1 A

ei

i in simple factors of dimension dim Ai D gi . We consider an
embedding iL of A in Pm given by a symmetric ample line bundle L on A. Heights
and degrees corresponding to L are computed via iL. More precisely, the degree of
a subvariety of A is the degree of its image under iL; OhD OhL is the L-canonical
Néron–Tate height of a point in A, and h is the normalised height of a subvariety
of A as defined, for instance, in [Philippon 1991]. Notice that if x 2A is a point,
then Oh.x/D h.x/.

By Lemma 2.2 in [Masser and Wüstholz 1993], if A is an abelian variety defined
over a number field k, then every abelian subvariety of A is defined over a finite
extension of k of degree bounded by 316.dim A/4 ; thus, without loss of generality,
we assume that all abelian subvarieties of A are defined over k.

Let BC� be an irreducible torsion variety of A. Then B DB1�� � ��Bl , where
Bi �A

ei

i is isogenous to A
fi

i for some integer 0� fi � ei .
There exists a natural correspondence between abelian subvarieties B of A,

morphisms from A to
Q`

iD1 A
ei�fi

i , and matrices made of ` blocks where the
i-th block is an .ei � fi/ � ei-matrix with entries in the endomorphism ring of
Ai . For details on such a correspondence see, for instance, [Checcoli et al. 2012,
Section 2.5]. In short, the abelian subvariety B defines the projection morphism
�B W A ! A=B. The successive minima of B give a matrix HB of the above
type. By multiplication on the left, the matrix HB gives a morphism ˆB from A toQ`

iD1 A
ei�fi

i , where B is the zero component of kerˆB .
By Minkowski’s theorem, deg B is (up to constants depending only on A) the

product of the squares of the norms of the rows of HB . In addition, B is the zero
component of the zero set of the forms h1; : : : ; hr corresponding to the rows of HB .
We order the hi by increasing degrees di so that

d1 � � � dr � deg.BC �/� d1 � � � dr :
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We also recall that, from [Masser and Wüstholz 1993, Lemmas 1.3 and 1.4],
if B is an abelian subvariety of A and B? is its orthogonal complement, then
deg B?� deg B, and therefore #.B \B?/� .deg B/2.

2.2. Torsion anomalous varieties. We recall some preliminary lemmas on torsion
anomalous varieties used for our geometric constructions in the following sections.

Lemma 2.1 [Checcoli et al. 2014, Lemma 3.5]. Let Y be a maximal V -torsion
anomalous variety and let B C � be minimal for Y . Then Y is weak-transverse
in BC � (i.e., Y is not contained in any proper torsion subvariety of BC �).

Lemma 2.2 [Checcoli et al. 2014, Lemma 3.6]. Let Y be a maximal V -torsion
anomalous variety, and let B C � be minimal for Y . Then Y is a component of
V \.B0C�/ for every algebraic subgroup B0�B with codim B0� dim V �dim Y .

The following lemma is due to Philippon [2012] and to certain properties of
orthogonality in the Mordell–Weil groups studied by D. Bertrand [1986].

We recall that the essential minimum of a subvariety X �A is defined as

�.X /D sup
˚
�2 R

ˇ̌
fx 2X.Q/ j Oh.x/� �g is nondense in X

	
:

Lemma 2.3. Let H CY0 be a weak-transverse translate in A, with Y0 a point in
the orthogonal complement H? of H . Then �.Y0/D �.H CY0/.

We conclude with a remark on translations by torsion points.

Remark 2.4. Notice that, for any subvariety X of A, translations by a torsion point �
leave invariant the degree, the field of definition over ktor and the normalised height
of X (see also [Philippon 1991, Proposition 9]). In addition, if Y � V \ .BC �/

is V -torsion anomalous, then Y � � � .V � �/\B is .V � �/-torsion anomalous.
Therefore, without loss of generality, we can work in V or in V � � with the
advantage, in the latter case, that B is an abelian subvariety.

2.3. Main ingredients. We recall here the main ingredients used in the proof of
Theorem 1.4.

2.3.1. The Zhang estimate. The theorem below follows from the crucial result
in Zhang’s proof [1998] of the Bogomolov conjecture and from the definition of
normalised height.

Theorem 2.5. Let X �A be an irreducible subvariety.
Then

�.X /�
h.X /

deg X
� .1C dim X /�.X /:
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2.3.2. The arithmetic Bézout theorem. The following version of the arithmetic
Bézout theorem is due to Philippon [1995].

Theorem 2.6. Let X and Y be irreducible subvarieties of the projective space Pn

defined over Q; let Z1; : : : ;Zg be the irreducible components of X \Y . Then

gX
iD1

h.Zi/� deg X h.Y /C deg Y h.X /C c.n/ deg X deg Y;

where c.n/ is a constant depending only on n.

2.3.3. An effective Bogomolov estimate. The following sharp Bogomolov bound is
proved by [Checcoli et al. 2012] and generalises a result of A. Galateau [2010].

Theorem 2.7 (Checcoli, Veneziano, Viada). Let A be an abelian variety with a
positive density of ordinary primes, and let Y be an irreducible subvariety of A

transverse in a translate B C p. Then, for any � > 0, there exists a positive
constant c1 depending on A and �, such that

�.Y /� c1

.deg B/1=.dim B�dim Y /��

.deg Y /1=.dim B�dim Y /C�
:

2.3.4. A relative Lehmer estimate. The following Lehmer bound is proved in [Car-
rizosa 2009].

Theorem 2.8. Let A be an abelian variety with CM defined over a number field k,
and let ktor be the field of definition of all torsion points of A. Let P be a point
of infinite order in A, and let BC � be the torsion variety of minimal dimension
containing P , with B an abelian subvariety and � a torsion point. Then for every
� > 0, there exists a positive constant c2 depending on A and �, such that

Oh.P /� c2

.deg B/1=dim B��

Œktor.P / W ktor�1=dim BC�
:

3. Finitely many maximal V -torsion anomalous varieties in V \ .B C TorA/

Let V be a weak-transverse variety in an abelian variety A. Let us fix an abelian
subvariety B of A. In [Checcoli et al. 2014, Lemma 3.9] we proved that there
are only finitely many � 2 TorB? such that V \ .BC �/ has a maximal V -torsion
anomalous component. In this section we prove that the number of such � is
effectively bounded in terms of deg V , deg B and some constants depending on A

(Proposition 3.5). We thank the referee for pointing out the effectivity question and
for his useful comments.

The proof of such an effective result is based on an induction on the dimension
of V , on Rémond’s quantitative version of the Manin–Mumford conjecture [2000]



328 SARA CHECCOLI AND EVELINA VIADA

and on the effective bound for the degree of the maximal translates in a variety
implied, for instance, by a result of Bombieri and Zannier [1996]. We first recall
these results and some other well-known bounds.

Recall that A is an abelian variety and L is a symmetric ample line bundle
on A. We denote by h1.A/ the projective height of the zero of A in the embedding
associated with L˝16 (as defined in [David and Philippon 2002, Notation 3.2]) and
by dA the degree of the field of definition of A. If G is an abelian subvariety of A

or a quotient of A, then h1.G/ is bounded in terms of h1.A/, deg A, dim A and
deg G (see [ibid., Proposition 3.9]).

Moreover, in several works, Masser and Wüstholz and then other authors proved
that for any abelian subvariety G of A, the degree of the field of definition of G is
at most 316.dim A/4dA (see [Masser and Wüstholz 1993, Lemma 2.2]). Below, we
sum up these bounds.

Estimate 3.1. If G is an abelian subvariety of A or a quotient of A, then

� dG is bounded in terms of dA and dim A;

� h1.G/ is bounded in terms of h1.A/, deg A, dim A and deg G.

For simplicity, in what follows we shall denote by c.A/ any constant depending
on dim A; dA; h1.A/ and deg A.

We recall the following consequence of Rémond’s result [2000, Theorem 1.2].

Estimate 3.2. The number of irreducible components of the closure of the torsion
of a weak-transverse variety V in an abelian variety A is effectively bounded as

c.A/.deg V /.dim A/5.dim VC1/2

:

Following the work of Rémond [2000, Theorem 2.1] and the results in [David
and Philippon 2002] one sees that if G is an abelian subvariety of A or a quotient
of A, then the corresponding constant c.G/ appearing in Estimate 3.2 is bounded
only in terms of dim A; dA; h1.A/, deg A and deg G.

In our previous joint work with F. Veneziano [Checcoli et al. 2014, Lemma 7.4],
we gave an explicit version of a corollary of Lemma 2 in [Bombieri and Zannier
1996]. This is a bound for the degree of the maximal translates contained in a
variety, and so in particular for the degree of each component of the closure of the
torsion. More precisely:

Estimate 3.3. If V is weak-transverse in an abelian variety A, then the maximal
translates contained in V have degree bounded by c.A/.deg V /2

dim V

.

Notice that if � is a torsion point such that V \.BC�/ has a V -torsion anomalous
component, then all the points in �C .B \B?/ share the same property. Indeed
BC � D BC �C .B \B?/. Clearly, we shall avoid such a redundancy and work
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up to points in B \B?. Nevertheless, jB \B?j � .deg B/2. This makes the
following definition consistent.

Definition 3.4. Let B be an abelian subvariety of an abelian variety A. Let V be
a weak-transverse subvariety of A. We denote by ZV;A the set of torsion points
� 2 B?=B \ B? such that V \ .B C �/ has a maximal V -torsion anomalous
component Y� .

We point out that the set ZV;A also depends on B. However, in our proof B is fixed,
while V and A vary. To simplify the notation we only indicate the dependence
on V and A.

In the following proposition we estimate the number of points in ZV;A. The
number of maximal V -torsion anomalous components in V \ .BCTorA/ is clearly
estimated by jZV;Aj deg V deg B.

Proposition 3.5. Let B be an abelian subvariety of an abelian variety A. Let V be
weak-transverse in A. Then the cardinality of ZV;A is effectively bounded in terms
of deg V; deg B and constants depending only on dim A; h1.A/; dA and deg A.

Proof. Consider the projection

�B WA!A=B:

We recall that the degree of the image via �B of a variety X �A and the degree
of the preimage via �B of a variety X �A=B only depend on deg X , deg B and
deg A. In particular, deg�B.V / is bounded in terms of deg V , deg B, and deg A

and deg A=B is bounded in terms of deg B and deg A.
The proof of our proposition is done by induction on the dimension of V .
The base of our induction is the case of a curve, i.e., dim V D 1. Then �B.V /

is a weak-transverse curve in A=B because V is weak-transverse in A. Moreover
the points of ZV;A map to torsion points of �B.V /. The number of torsion points
of �B.V / is estimated using Estimate 3.2. Their preimage, which contains ZV;A,
then has cardinality effectively bounded in terms of deg V , deg B and c.A/.

Suppose by inductive hypothesis that the proposition holds for every variety V

with dim V < n. We then show that it holds for V of dimension n.
To prove our result, we are going to partition ZV;A into a finite union of subsets

ZX associated with irreducible subvarieties X of V of dimension < n. We then
verify that such varieties X satisfy the assumption of the proposition; by the
inductive hypothesis, we deduce that the cardinalities jZX j are effectively bounded
in terms of deg V , deg B and c.A/.

Denote by f W V !A=B the restriction of �B to V .
If f is dominant, then the generic fibre Fp D V \ .BC Qp/ has dimension

(1) dim Fp D dim V� codim B;
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where p belongs to an open subset of A=B and f . Qp/ D p. The dimensional
equation (1) shows that the generic fibre is not anomalous. Consider the subset V�
of A=B given by all points that do not have generic fibre. By the fibre dimension
theorem (see, for instance, [Shafarevich 1972, Section 6.3, Theorem 7]), this is a
proper closed subset of �B.V / and its degree is effectively bounded in terms of
deg V , deg B and c.A/. Note that the image of ZV;A via �B is a subset of the
torsion of V� ; indeed the fibre of a point in �B.ZV;A/ is torsion anomalous and
therefore does not satisfy the equality (1).

If f is not dominant, then set V� D �B.V /. Clearly, ZV;A is a subset of the
torsion of V� .

Note that in both cases

(a) deg V� is bounded in terms of deg V , deg B and c.A/.

Let T1; : : : ;Tr be the isolated components of the closure of the torsion of V�
intersecting �B.ZV;A/. Clearly

ZV;A D

r[
iD1

.��1
B .Ti/\ZV;A/

and

jZV;Aj D

rX
iD1

ˇ̌
��1

B .Ti/\ZV;A

ˇ̌
:

From Estimate 3.2 and (a), the number r is effectively bounded in terms of deg V ,
deg B, deg A and c.A/. Thus we shall prove that, for every 1� i � r , the cardinality
j.��1

B
.Ti/\ZV;A/j is effectively bounded in terms of deg V; deg B and c.A/.

Let T be one of the above components. Define

W D ��1
B .T /\V:

We have that:

(i) deg W is bounded in terms of deg V , deg B and deg A. Indeed, by Bézout’s
theorem, deg W � deg��1

B
.T / deg V . By Estimate 3.3, deg T is bounded in

terms of the degree and the dimension of V� and thus, by (a), in terms of
deg B, deg V and c.A/.

(ii) dim W < n because V is weak-transverse in A and so it is not contained
in ��1

B
.T /.

(iii) For � 2 ��1
B
.T /\ZV;A, each maximal V -torsion anomalous component Y�

of V \ .BC �/ is contained in W ; indeed, �B.Y�/D �B.�/ 2 T .

By (iii), the variety W contains all the Y� that we are counting; however, W is not
necessarily irreducible. Therefore we cannot hope to use the inductive hypothesis
on W and we have to consider its irreducible components.
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Let X1; : : : ;Xs be the irreducible components of W . For � 2 ��1
B
.T /\ZV;A,

we denote by Y� any maximal V -torsion anomalous component of V \ .BC �/.
By (iii), clearly each Y� is contained in some Xi . We are going to count the number
of Y� contained in each Xi .

Denote

ZXj
D
˚
� 2 ��1

B .T /\ZV;A jXj contains some Y�
	
=.B \B?/:

Then

��1
B .T /\ZV;A D

s[
jD1

ZXj
:

The number s of irreducible components of W is bounded by deg W . Thus,
by (i), s is effectively bounded only in terms of deg V , deg B and c.A/.

To conclude our proof we are left to bound in an effective way the cardinality
of each ZX for X running over all irreducible components of W .

If X does not contain any Y� , then jZX j D 0.
If X D Y�0

for some �0 2ZV;A, then jZX j D 1.
Suppose that X strictly contains Y�0

for some �0 2 ZV;A. In this case we are
going to show that jZX j � jZX��0;�

�1
B
.T /��0

j. Applying the inductive hypothesis,
we estimate jZX��0;�

�1
B
.T /��0

j in terms of deg V , deg B and c.A/.

We first verify that X��0 in ��1
B
.T /��0 satisfies the assumption of the inductive

hypothesis, that is, the assumption of the proposition with dim X < n. Observe that
we need to translate by �0 in order to obtain ambient varieties which are abelian
varieties.

� The variety ��1
B
.T /� �0 is an abelian variety containing B. Indeed BC �0

is a subvariety of ��1
B
.T /, and �0 2 ��1

B
.T /.

� The variety X � �0 is weak-transverse in ��1
B
.T / � �0. Equivalently, by

Remark 2.4, we show that X is weak-transverse in ��1
B
.T /. Since Y�0

is a max-
imal V -torsion anomalous variety and X strictly contains Y�0

, then X cannot
be V -torsion anomalous. Recall that X is a component of V \��1

B
.T /. Thus

(2) dim��1
B .T /� dim X D dim A� dim V:

If X was not weak-transverse in ��1
B
.T /, then X �B1\V with B1¨��1

B
.T /

a torsion variety. This contradicts relation (2).

� By (ii), dim X � dim W < n.

Thus, by inductive hypothesis, we get that

jZX��0;�
�1
B
.T /��0

j is effectively bounded in terms of deg X; deg B; c.��1
B .T //:



332 SARA CHECCOLI AND EVELINA VIADA

We now show that by our construction deg X and c.��1
B
.T // only depend on

deg V , deg B and A.

� By (i), deg X � deg W is effectively bounded in terms of deg V , deg B

and c.A/.

� By Estimate 3.2, we know that deg T is effectively bounded in terms of deg V�
and dim V . Moreover, by (a), deg V� is bounded in terms of deg V , deg B

and c.A/. Finally, Estimate 3.1 ensures that h1.�
�1
B
.T // and d��1

B
.T / are

effectively bounded in terms of deg V , deg B and c.A/.

Therefore,

jZX��0;�
�1
B
.T /��0

j is effectively bounded in terms of deg V; deg B and c.A/:

We finally prove that

jZX j � jZX��0;�
�1
B
.T /��0

j:

We shall show that for every maximal V -torsion anomalous variety Y� � X , the
variety Y� � �0 is a maximal .X � �0/-torsion anomalous variety in ��1.T /� �0.

Clearly Y� � �0 � .X � �0/\ .BC � � �0/. Since Y� is V -torsion anomalous
we have

dim B � dim Y� < dim A� dim V:

From this and (2) we obtain

dim B � dim Y� < dim A� dim V D dim��1
B .T /� dim X:

Thus Y� � �0 is a .X � �0/-torsion anomalous variety.
In addition, Y� � �0 is maximal: let Y 0 � Y� � �0 be a maximal .X � �0/-torsion

anomalous variety and let B0C �0 be minimal for Y 0. From (2), we have

dim B0� dim Y 0 < dim��1
B .T /� dim X D dim A� dim V:

Thus Y 0C �0 � V \ .B0C �0C �0/ is V -torsion anomalous and contains Y� . The
maximality of Y� as V -torsion anomalous implies Y 0C �0 D Y� .

In conclusion, collecting all our bounds, we have proven that jZV;Aj is effectively
bounded in terms of deg V , deg B and c.A/. �

4. Nontranslate torsion anomalous varieties

Proof of Theorem 1.4, part (1). Let Y be a maximal V -torsion anomalous variety
which is not a translate, and so of positive dimension. Let BC � be minimal for Y .
We use the arithmetic Bézout theorem and the Bogomolov bound to prove that deg B

is bounded only in terms of V and A, then we deduce the bounds for h.Y / and deg Y .
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By Lemma 2.1, Y is weak-transverse in B C �, and by assumption dim B D

dim Y C 1; therefore, Y is transverse in BC �. Applying the Bogomolov estimate
(Theorem 2.7) to Y in BC �, we get

(3)
.deg B/1��

.deg Y /1C�
�� �.Y /:

Let h1; : : : ; hr be the forms of increasing degrees di such that B C � is a
component of their zero set. We have that r � codim B � rg and

(4) d1 � � � dr � deg.BC �/D deg B� d1 � � � dr :

Consider the algebraic subgroup given by the first h1 � � � hr�1 forms, and let B0

be one of its irreducible components containing BC �. Then by (4) we have

deg B0� d1 � � � dr�1� .deg B/.r�1/=r

and codim B0 � codim B �g.
Since codim V � g C 1 D g C dim B � dim Y , this implies that codim B0 �

dim V � dim Y , and thus, by Lemma 2.2, Y is a component of V \B0.
We apply the arithmetic Bézout theorem to V \B0 and recall that h.B0/ D 0

because B0 is a torsion variety; we get

(5) h.Y /� .h.V /C deg V / deg B0� .h.V /C deg V /.deg B/.r�1/=r :

Zhang’s inequality, with (3) and (5), gives

.deg B/1��

.deg Y /1C�
�� �.Y /� .h.V /C deg V /

.deg B/.r�1/=r

deg Y
:

Recall that Y is a component of V \ .BC �/. By Bézout’s theorem, deg Y �

deg B deg V , thus

.deg B/1���� .h.V /C deg V /.deg B/.r�1/=r .deg B deg V /�;

and therefore

.deg B/1=r�2�
�� .h.V /C deg V /.deg V /�:

For � small enough, we get

(6) deg B�� .h.V /C deg V /rC�.deg V /�I

this proves that the degree of B is bounded only in terms of V and A. Since there
are finitely many abelian subvarieties of bounded degree, applying Proposition 3.5,
we conclude that � belongs to a finite set of cardinality effectively bounded.
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The bound on the height of Y is now given by (5) and (6):

h.Y /�� .h.V /C deg V /rC�.deg V /�:

Finally, the bound on the degree is obtained from (6) and Bézout’s theorem for
the component Y of V \B0:

deg Y �� .h.V /C deg V /r�1C�.deg V /: �

5. Torsion anomalous translates

Proof of Theorem 1.4, parts (2) and (3). Let Y be a maximal V -torsion anomalous
translate with BC � minimal for Y .

We proceed to bound deg B and, in turn, the height and the degree of Y , using
the Lehmer estimate and the arithmetic Bézout theorem.

The variety BC � is a component of the torsion variety defined as the zero set
of forms h1; : : : ; hr of increasing degrees di , and

d1 � � � dr � deg B D deg.BC �/� d1 � � � dr :

We have that r � codim B � rg.
Consider the torsion variety defined as the zero set of the first r � 1 forms

h1; : : : ; hr�1, and take a connected component B0 containing B C �, so that
deg B0� d1 � � � dr�1� .deg B/.r�1/=r and codim B0 � codim B �g.

By Lemma 2.2, Y is a component of V \B0; indeed

codim B0 � codim B �g D dim A�g� dim Y � 1> dim V � dim Y � 1:

The proof is now divided in two cases, depending on dim Y . If Y has dimension
zero we use the arithmetic Bézout theorem and the Lehmer estimate; if Y DHCY0

is a translate of positive dimension, we can reduce to the zero dimensional case
using some properties of the essential minimum.

Proof of part (2). Consider first the case of a maximal torsion anomalous point Y .
All conjugates of Y over ktor.V / are components of V \ .BC �/; they all have

the same normalised height and their number is at least

Œktor.V;Y / W ktor.V /��
Œktor.Y / W ktor�

Œktor.V / W ktor�
:

We then apply the arithmetic Bézout theorem in V \B0, obtaining

(7) Œktor.Y / W ktor� Oh.Y /� .h.V /C deg V /Œktor.V / W ktor�.deg B/.r�1/=r :
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Applying Theorem 2.8 to Y in BC �, we obtain that, for every positive real �,

(8) Oh.Y /��
.deg B/1��

Œktor.Y / W ktor�1C�
:

Combining (8) and (7), we have

.deg B/1��

Œktor.Y / W ktor��
�� Œktor.Y / W ktor� Oh.Y /

� .h.V /C deg V /Œktor.V / W ktor�.deg B/.r�1/=r :

For � small enough, we obtain

(9) deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

�rC�
Œktor.Y / W ktor�

�:

Apply now Bézout’s theorem to V \B0. All the conjugates of Y over ktor.V / are
components of this intersection, so

(10)
Œktor.Y / W ktor�

Œktor.V / W ktor�
�� .deg B/.r�1/=r .deg V /:

Substituting (9) into (10) we have the last bound of part (2) in the statement.
Finally, we apply the arithmetic Bézout theorem to V \B0 to get

Oh.Y /� .h.V /C deg V /.deg B/.r�1/=r

�� .h.V /C deg V /rC�Œktor.V / W ktor�
r�1C�:

Having bounded deg B, in view of Proposition 3.5 the points � belong to a finite
set of cardinality effectively bounded.

Proof of part (3). Assume now that Y is a translate of positive dimension and write
Y DH CY0, with H an abelian variety and Y0 a point in H?.

To bound deg B we can assume, without loss of generality, that � D 0 (see
Remark 2.4). By Lemma 2.3,

(11) �.Y0/D �.H CY0/:

Since the intersection V \B0 is defined over ktor.V /, every conjugate of HCY0

over ktor.V / is a component of V \B0; as before, such components have the same
normalised height and their number is at least

Œktor.H CY0/ W ktor�

Œktor.V / W ktor�
:

We apply the arithmetic Bézout theorem in V \B0 and we obtain

(12) h.H CY0/
Œktor.H CY0/ W ktor�

Œktor.V / W ktor�
� .h.V /C deg V /.deg B/.r�1/=r :
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By Zhang’s inequality, (11) and (12), we deduce

(13) �.Y0/�
.h.V /C deg V /Œktor.V / W ktor�.deg B/.r�1/=r

Œktor.H CY0/ W ktor� deg H
:

The lower bound for �.Y0/ is derived as in the case of dimension zero.
Consider the smallest abelian subvariety H0 of B containing Y0. Clearly H0

is the irreducible component of H? \ B containing Y0. Indeed, they are both
one-dimensional abelian varieties containing the point Y0 of infinite order.

By the definition of H0, we have B DH CH0, and from [Masser and Wüstholz
1993, Lemma 1.2], we obtain

(14) #.H \H0/ deg B � deg H deg H0:

Moreover, from H \H0 �H \H?, we get

(15) #.H \H0/� #.H \H?/� .deg H /2:

Applying Theorem 2.8 to Y0 in H0 we get that, for every positive real �,

(16) �.Y0/D Oh.Y0/��
.deg H0/

1��

Œktor.Y0/ W ktor�1C�
:

We remark that

(17) Œktor.Y0/ W ktor�� Œktor.H CY0/ W ktor� � #.H \H0/

because if � is in Gal.k tor=ktor.H C Y0//, then �.Y0/ � Y0 is in H \ H0, so
Œktor.Y0/ W ktor.H CY0/�� #.H \H0/.

Combining the upper bound and the lower bound for �.Y0/ in (13) and (16), and
using also (14), (15) and (17), for � sufficiently small, we have

(18) deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

�rC�
;

where the dependence on deg H Œktor.H CY0/ W ktor� has been removed by applying
Bézout’s theorem to the intersection V \B0.

This also gives

deg.H CY0/�� .deg V /
�
.h.V /C deg V /Œktor.V / W ktor�

�r�1C�
:

Finally, from (12), (18) and the trivial bound Œktor.H CY0/ W ktor�� 1, we obtain

h.H CY0/�� .h.V /C deg V /rC�Œktor.V / W ktor�
r�1C�:

Since we have bounded deg B, we can conclude from Proposition 3.5 that the
points � belong to a finite set of cardinality effectively bounded. �
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6. The case of a curve and applications to the
effective Mordell–Lang conjecture

Recall that AD
Q`

iD1 A
ei

i with Ai nonisogenous simple CM factors of dimension gi .
To prove Theorem 1.5 we essentially follow the proof of Theorem 1.4, part (2),
working first in the projection on one factor, and then lifting the construction to the
abelian variety A.

Proof of Theorem 1.5. Clearly all the points in S.C / are C -torsion anomalous;
in addition, since C is a weak-transverse curve, each torsion anomalous point is
maximal.

If Y 2 S.C /, then Y 2 C \H , with H D
Q

i Hi the subgroup containing Y

which is minimal with respect to the inclusion.
Denote by Yi the projection of Y on Hi and by Ci the projection of C on A

ei

i .
Let j be one of the indices satisfying the hypothesis of the theorem. Assume first
that Yj is a torsion point, and define H 0 D A

e1

1
� � � � � fYj g � � � � �A

e`

`
. Clearly

deg H 0� 1 and h.H 0/D 0. Then, applying the arithmetic Bézout theorem to Y in
C \H 0, we get Oh.Y /� .h.C /C deg C /.

Assume now that Yj is not a torsion point. Let Bj C �j be a component of Hj

containing Yj . Clearly dim Bj D dim Hj and Yj 2 Cj \ .Bj C �j / with Bj C �j
minimal for Yj . Furthermore, Yj is a component of Cj \ .Bj C �j / because Cj is
weak-transverse and, by assumption, codim Hj > gj dim Hj > 0. This ensures that
the matrix associated to Bj C �j has at least two rows, which is necessary to apply
the method.

We now sketch the proof, which follows the proof of Theorem 1.4, part (2), and
we give the relevant bounds.

The variety Bj C �j is a component of the zero set of forms h1; : : : ; hr of
increasing degrees dj with

d1 � � � dr � deg Bj D deg.Bj C �j /� d1 � � � dr ;

and we have that r D codim Bj=gj D codim Hj=gj .
Consider the torsion variety defined as the zero set of h1, and let B0j be one of

its connected components containing Bj C �j ; then deg B0j � d1� .deg Bj /
1=r D

.deg Bj /
gj =codim Bj .

From Theorem 2.8 applied to Yj in Bj C �j , for every positive real �, we get

(19) Oh.Yj /��
.deg Bj /

1=dim Bj��

Œktor.Yj / W ktor�
1=dim BjC�

:

Notice that all conjugates of Yj over ktor.Cj / are components of Cj \B0j and
they all have the same height. Applying the arithmetic Bézout theorem to Cj \B0j
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and arguing as in the proof of Theorem 1.4, we have

(20) Oh.Yj /
Œktor.Yj / W ktor�

Œktor.Cj / W ktor�
� .h.Cj /C deg Cj /.deg Bj /

gj =dim Bj :

Recall that Œktor.Yj / W ktor�� 1. From (19) and (20) we get

.deg Bj /

codim Bj�gj dim Bj
codim Bj dim Bj

��

�� Œktor.Cj / W ktor�.h.Cj /C deg Cj /Œktor.Yj / W ktor�
1=dim Bj�1C�:

Since codim Bj �gj dim Bj D codim Hj �gj dim Hj � 1, for � sufficiently small
this yields

(21) deg Bj ��

�
Œktor.Cj / W ktor�.h.Cj /C deg Cj /

� codim Hj dim Hj
codim Hj�gj dim Hj

C�
;

where if dim Bj > 1, we use Œktor.Yj / W ktor� � 1, and if dim Bj D 1, we use
Œktor.Yj / W ktor�� Œktor.Cj / W ktor� deg B deg Cj .

We now lift the construction to A as follows. Define H 0DA
e1

1
�� � ��B0j�� � ��A

e`

`
.

Clearly deg H 0 � deg A deg B0j and Y is a component of C \H 0. Applying the
arithmetic Bézout theorem to C \H 0 and using (21), we obtain

(22) Oh.Y /� .h.C /Cdeg C / deg H 0� .h.C /Cdeg C /.deg Bj /
gj =dim Hj

�� .h.C /Cdeg C /
codim Hj

codim Hj�gj dim Hj
C�
Œktor.C / W ktor�

gj dim Hj
codim Hj�gj dim Hj

C�
:

�

6.1. An application to the effective Mordell–Lang conjecture.

Proof of Corollary 1.6. Let x 2C \� . Let j be an index such that ej=.gjC1/ > tj
and denote by .x1; : : : ;xej

/ the projection of x in �j .
Let 
1; : : : ; 
tj be generators of the free part of �j . Then there exist elements

0 ¤ ak 2 End.Aj / for k D 1; : : : ; ej , an ej � tj -matrix Mj with coefficients in
End.Aj / and a torsion point � 2A

ej

j such that

.a1x1; : : : ; aej
xej
/t DMj .
1; : : : ; 
tj /

t
C �:

If the rank of Mj is zero, then .x1; : : : ;xej
/ is a torsion point and so has height

zero.
If Mj has positive rank rj , we can choose rj equations of the system correspond-

ing to rj linearly independent rows of Mj . We use these equations to write the 
k

in terms of the xk and we substitute these expressions in the remaining equations.
We obtain a system of maximal rank with ej � rj � ej � tj linearly independent
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equations in the variables x1; : : : ;xej
:8̂<̂

:
m11x1C � � �Cm1ej

xej
D �1;

:::

mej�rj ;1x1C � � �Cmej�rj ;ej
xej
D �ej�rj

;

where �k 2 Aj are torsion points and mk` 2 End.Aj /. These equations define a
torsion variety Hj �A

ej

j . Since .gj C 1/tj < ej we have codim Hj > gj dim Hj .
Then x 2 C \H , where H satisfies the hypothesis of Theorem 1.5, which gives

the bound for the height of x. �

Remark 6.1. Notice that it is possible to apply the corollary also to subgroups �
whose rank is bounded only on one projection.

For example, let E1;E2 be two elliptic curves defined over Q and such that
E1.Q/ is an abelian group of rank 1, and consider the product ADE4

1
�E2.

Let C be a weak-transverse curve in A. Consider the subgroup � DE1.Q/
4 �

E2.Q/ of A. Then � is not of finite rank, but with the notation of the corollary, we
have g1 D 1, e1 D 4, t1 D 1 and t1 < e1=.g1C 1/D 4

2
.

The hypothesis of the corollary is therefore verified, and we have that

Oh.C \�/�� .h.C /C deg C /3=2C�Œktor.C / W ktor�
1=2C�:

7. From curves to varieties

We now adapt the proof strategy of Theorem 1.4 to obtain some new results for
varieties V of dimension > 1 embedded in a power En of a CM elliptic curve. For
subvarieties of general CM abelian varieties some technical conditions arise. This
makes a straightforward generalisation of our method of little interest.

For torsion anomalous varieties which are translates, the proof can be easily
adapted, while for nontranslates a new argument is needed. Indeed, in this last
case, the torsion anomalous variety is not transverse, but only weak-transverse in
its minimal variety, a condition which is not sufficient to use the sharp Bogomolov
bound.

The torsion varieties contained in V are already covered by the Manin–Mumford
conjecture, therefore we restrict ourselves to the V -torsion anomalous varieties
which are not torsion.

Theorem 7.1. Let E be a CM elliptic curve defined over a number field k and let
n> 1 be an integer. Denote by ktor a field of definition of all torsion points of E.

Let V � En be a weak-transverse variety. Let Y � V \B C � be a maximal
V -torsion anomalous variety which is not a torsion variety, and let BC� be minimal
for Y .

Set bDdim B, vDdim V and yDdim Y and assume that .n�b/>.v�y/.b�y/.
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Then for any � > 0, there exist constants depending only on En and � such that:

(1) If Y is a point, then

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

� .n�b/b
.n�b/�vb

C�
;

Oh.Y /�� .h.V /C deg V /
n�b

.n�b/�vb
C� Œktor.V / W ktor�

vb
.n�b/�vb

C�;

Œktor.Y / W ktor��� deg V .h.V /C deg V /
vb

.n�b/�vb
C� Œktor.V / W ktor�

n�b
.n�b/�vb

C�:

(2) If Y is a translate of positive dimension, then

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

� .n�b/.b�y/
.n�b/�.v�y/.b�y/

C�
;

h.Y /�� .h.V /C deg V /
n�b

.n�b/�.v�y/.b�y/
C� Œktor.V / W ktor�

.v�y/.b�y/
.n�b/�.v�y/.b�y/

C�;

deg Y �� deg V
�
.h.V /C deg V /Œktor.V / W ktor�

� .v�y/.b�y/
.n�b/�.v�y/

C�
:

(3) If Y is not a translate, then

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

� .b�y/.n�b/
.n�b/�.v�y/.b�y/

C�
;

h.Y /�� .h.V /C deg V /
.n�b/

.n�b/�.v�y/.b�y/
C�Œktor.V / W ktor�

.v�y/.b�y/
.n�b/�.v�y/.b�y/

C�;

deg Y �� deg V ..h.V /C deg V /Œktor.V / W ktor�/
.v�y/.b�y/

.n�b/�.v�y/.b�y/
C�:

In addition the torsion points � belong to a finite set.

Proof of Theorem 7.1, part (1). Let Y be a maximal V -torsion anomalous point
with BC � minimal for Y .

We proceed to bound deg B and, in turn, the height of Y and the degree of its
field of definition. To this aim we use the Lehmer bound in Theorem 2.8 and the
arithmetic Bézout theorem.

Let v D dim V and b D dim B. By Lemma 2.2, Y is a component of V \B0

where B0 is, like in the proof of Theorem 1.4, the zero component of the torsion
variety defined by the first v rows h1; : : : ; hv of the matrix of B. Then codim B0D v

and deg B0� .deg B/v=.n�b/.
We apply the arithmetic Bézout theorem to V \B0 to obtain

(23) Oh.Y /�
.h.V /C deg V /Œktor.V / W ktor�

Œktor.Y / W ktor�
.deg B/v=.n�b/:

Applying the Lehmer estimate in Theorem 2.8 to Y in BC �, instead, we have that
for every positive real �,

(24) Oh.Y /��
.deg B/1=b��

Œktor.Y / W ktor�1=bC�
:
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From (23) and (24), and for � small enough, we get the bound for deg B if
b > 1. If b D 1 we use Bézout’s theorem to bound the factor Œktor.Y / W ktor�

�

as
�
.deg B/.deg V /Œktor.V / W ktor�

��.
We then apply Bézout’s theorem in V \ B0 to bound Œktor.Y / W ktor� and the

arithmetic Bézout theorem in V \B0 to prove the bound for Oh.Y /. Finally, from
Proposition 3.5 it follows that the points � belong to a finite set of cardinality
effectively bounded. �

Proof of Theorem 7.1, part (2). Let Y DHCY0 be a maximal V -torsion anomalous
translate of positive dimension with minimal BC �; assume also that Y0 2H?.

We use the Lehmer bound and the arithmetic Bézout theorem to bound deg B

and, in turn, the height and the degree of H CY0. In view of Remark 2.4, without
loss of generality, we can assume that � D 0.

Let b D dim B, v D dim V and y D dim Y D dim H . Clearly v � y < n� b

because Y is torsion anomalous.
As before, by Lemma 2.2 we have that Y is a component of V \B0, where B0 is an

irreducible torsion variety with codim B0Dv�y and deg B0� .deg B/.v�y/=.n�b/:

Arguing as usual on the conjugates of H C Y0 over ktor.V /, we see that the
intersection V \B0 has at least Œktor.H CY0/ W ktor�=Œktor.V / W ktor� components.

We apply the arithmetic Bézout theorem to the intersection V \B0, obtaining

(25) h.H CY0/� .h.V /C deg V /.deg B/.v�y/=.n�b/ Œktor.V / W ktor�

Œktor.H CY0/ W ktor�
:

By Zhang’s inequality, Lemma 2.3 and (25), we deduce

(26) �.H CY0/D �.Y0/�
.h.V /C deg V /Œktor.V / W ktor�.deg B/.v�y/=.n�b/

Œktor.H CY0/ W ktor� deg H
:

For the lower bound for �.Y0/, the proof follows the case of dim Y D 0. Let
H0DH?\B. By minimality of B we have that H0 is a torsion variety of minimal
dimension containing Y0, thus

dim H0 D dim H?C dim B � nD .n�y/C b� nD b�y:

As in Theorem 1.4, part (3), one can easily see that

(27) Œktor.Y0/ W ktor�� Œktor.H CY0/ W ktor� � #.H \H0/:

By the definition of H0, we have B DH CH0 and from [Masser and Wüstholz
1993, Lemma 1.2], we get

(28) #.H \H0/ deg B � deg H deg H0:
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In addition, H \H0 �H \H?, thus

(29) #.H \H0/� .deg H /2:

Applying Theorem 2.8 to Y0 in H0 we get that, for every positive real �,

(30) �.Y0/D Oh.Y0/��
.deg H0/

1=.b�y/��

Œktor.Y0/ W ktor�1=.b�y/C�
:

Combining (26) and (30), we have

.deg H0/
1=.b�y/��

Œktor.Y0/ W ktor�1=.b�y/C�
��

.h.V /C deg V /Œktor.V / W ktor�.deg B/.v�y/=.n�b/

Œktor.H CY0/ W ktor� deg H
;

and hence, using (27)–(29) as in Theorem 1.4, part (3), we get the bound for deg B;
notice that if b�y > 1, the argument is in fact simpler, as we don’t need to deal
with the Œktor.Y0/ W ktor�

� term.
Having obtained a bound for deg B, the degree of H C Y0 can be bounded

by applying Bézout’s theorem to the intersection V \ B0 and using deg B0 �

deg B.v�y/=.n�b/. The bound for h.H C Y0/, instead, is derived from (25) and
the bound for deg B. Finally, from Proposition 3.5 we conclude that the points �
belong to a finite set of cardinality effectively bounded. �

Proof of Theorem 7.1, part (3). Assume that Y � V \ .BC �/ is not a translate.
If Y is transverse in B C �, the proof of Theorem 1.4, part (1) easily adapts

to this case as well, yielding the desired bounds; let us then assume that Y is not
transverse. Without loss of generality, we can assume � D 0 (see Remark 2.4).
Then Y is transverse in a translate H1CY0¨B, with Y0 2H?

1
and H1 of minimal

dimension.
We define H0 D B \H?

1
so that B DH1CH0 and

(31) deg B D deg.H1CH0/�
deg H1 deg H0

#.H1\H0/
:

We set yD dim Y , vD dim V , bD dim B, h1D dim H1 and h0D dim H0D b�h1.
Writing Y D Y1CY0, we have that Y1 �H1 is transverse in H1 because Y is

transverse in H1 C Y0, and Y0 � H0 is transverse in H0 because B is minimal
for Y .

By definition Y1 � H1 and Y0 2 H?
1

. From Lemma 2.3 and the definition of
essential minimum, we get

�.Y /D �.Y1/C Oh.Y0/:

As usual, the upper bound for �.Y / is obtained using the arithmetic Bézout
theorem in V \ B0 for some abelian variety B0 constructed by deleting v � y
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suitable rows from B. All conjugates of Y are components of same height in
V \B0. This gives

(32) �.Y /� .h.V /C deg V /.deg B/.v�y/=.n�b/ Œktor.V / W ktor�

deg Y Œktor.Y1CY0/ W ktor�
:

Moreover,

(33) Œktor.Y1CY0/ W ktor� #.H1\H0/� Œktor.Y0/ W ktor�

because for every � 2Gal.k tor=ktor/ which fixes Y1CY0, the difference �.Y0/�Y0

lies in H1\H0.
To obtain a lower bound for �.Y / we either apply the Bogomolov bound to Y1

in H1 or the Lehmer estimate to Y0 in H0. These give

(34)
.deg H1/

1=.h1�y/��

.deg Y /1=.h1�y/C�
�� �.Y1/� �.Y /

and

(35)
.deg H0/

1=h0��

Œktor.Y0/ W ktor�1=h0C�
��
Oh.Y0/� �.Y /:

We now relate the left-hand side to deg B. Notice that either

(i) .deg B/.h1�y/=.b�y/ < deg H1

or

(ii) .deg B/h0=.b�y/
�

deg H0

#.H1\H0/
:

Indeed if (i) and (ii) were both false, then

deg B D .deg B/
h1�y

b�y
C

h0
b�y >

deg H1 deg H0

#.H1\H0/
;

which contradicts (31).
Assume that (i) holds. Then (32), (34), (i) and the fact that n�b>.v�y/�.b�y/

give the bound

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

� .b�y/.n�b/
.n�b/�.v�y/.b�y/

C�
;

where, if h1�y D 1, the factor .deg Y /� has been removed by applying Bézout’s
theorem to Y in V \B and changing �.

Assume that (ii) holds. Then (32), (35) (ii), the fact that n� b > .v�y/.b�y/

and (33) give the bound

deg B��

�
.h.V /C deg V /Œktor.V / W ktor�

� .b�y/.n�b/
.n�b/�.v�y/.b�y/

C�
;
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where, if h0 D 1 the dependence on Œktor.Y0/ W ktor� can be removed using (33),
bounding Œktor.Y / W ktor� as Œktor.V / W ktor� deg V deg B by the Bézout theorem
applied to Y in V \B and observing that

#.H1\H0/� #.H1\H?1 /� .deg H1/
2
� .deg Y /2h1 � .deg V deg B/2h1

because, since Y1 is transverse in H1, we have H1 D Y1 C � � � C Y1 (h1 times),
from which deg H1� .deg Y /h1 .

So we have bounded deg B. We obtain the bounds for deg Y and h.Y / applying
respectively the Bézout Theorem and the arithmetic Bézout theorem to the intersec-
tion Y � V \B0. Finally, Proposition 3.5 guarantees that the points � belong to a
finite set of cardinality effectively bounded. �
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EIGENVALUE ESTIMATE AND COMPACTNESS
FOR CLOSED f -MINIMAL SURFACES

XU CHENG, TITO MEJIA AND DETANG ZHOU

Let � be a bounded domain with convex boundary in a complete noncom-
pact Riemannian manifold with Bakry–Émery Ricci curvature bounded be-
low by a positive constant. We prove a lower bound on the first eigenvalue
of the weighted Laplacian for closed embedded f -minimal hypersurfaces
contained in�. Using this estimate, we prove a compactness theorem for the
space of closed embedded f -minimal surfaces with uniform upper bounds
on genus and diameter in a complete 3-manifold with Bakry–Émery Ricci
curvature bounded below by a positive constant and admitting an exhaus-
tion by bounded domains with convex boundary.

1. Introduction

A hypersurface † immersed in a Riemannian manifold .M; Ng/ is said to be
f -minimal if its mean curvature H satisfies, for any p 2†,

H D hrf; �i;

where � is the unit normal at p 2 †, f is a smooth function defined on M , and
rf denotes the gradient of f on M . When f is a constant function, an f -minimal
hypersurface is just a minimal hypersurface. One nontrivial class of f -minimal
hypersurfaces is that of self-shrinkers. Recall that a self-shrinker (for the mean
curvature flow in the Euclidean space .RnC1;gcan/) is a hypersurface immersed in
.RnC1;gcan/ satisfying

H D 1
2
hx; �i;

where x is the position vector in RnC1. Hence a self-shrinker is an f -minimal
hypersurface†with f Djxj2=4 (see more information on self-shrinkers in [Colding
and Minicozzi 2012a] and references therein).

In the study of f -minimal hypersurfaces, it is convenient to consider the ambient
space as a smooth metric measure space .M; Ng; e�f d�/, where d� is the volume

Cheng and Zhou were partially supported by CNPq and FAPERJ of Brazil. Mejia was supported by
CNPq of Brazil.
MSC2010: primary 58J50; secondary 58E30.
Keywords: Riemannian manifold, eigenvalue, drifted Laplacian, minimal surface.
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form of Ng. For .M; Ng; e�f d�/, an important and natural tensor is the Bakry–Émery
Ricci curvature Ricf WDRicCr2f . There are many interesting examples of smooth
metric measure spaces .M; Ng; e�f d�/ with Ricf � k, for a positive constant k. A
nontrivial class of examples is the shrinking gradient Ricci solitons. It is known
that, after a normalization, a shrinking gradient Ricci soliton .M; Ng; f / satisfies the
equation RicCr2f D Ng=2 or, equivalently, Ricf D 1

2
. We refer to [Cao 2010], a

survey of this topic where some compact and noncompact examples are explained.
Even though the asymptotic growth of the potential function f of a noncompact
shrinking gradient Ricci soliton is the same as that of a Gaussian shrinking soliton
[Cao and Zhou 2010], both the geometry and topology can be quite different from
known examples. We may consider f -minimal hypersurfaces in a shrinking gradient
Ricci soliton. For instance, a self-shrinker in RnC1 can be viewed as an f -minimal
hypersurface in the Gaussian shrinking soliton .RnC1;gcan; jxj

2=4/.
There are other examples of f -minimal hypersurfaces. Let M be the hyperbolic

space HnC1.�1/. Let r denote the distance function from a fixed point p 2M and
f .x/Dnar2.x/, where a>0 is a constant. Then Ricf �n.2a�1/, and the geodesic
sphere of radius r centered at p in HnC1.�1/ is an f -minimal hypersurface if it
satisfies 2ar D coth r .

An f -minimal hypersurface † has two aspects to view. One is that † is
f -minimal if and only if † is a critical point of the weighted volume func-
tional e�f d� , where d� is the volume element of †. Another one is that † is
f -minimal if and only if† is minimal in the new conformal metric QgDe�2f=n Ng (see
Section 2). f -minimal hypersurfaces, even more general stationary hypersurfaces
for parametric elliptic functionals, have been studied before. See, for instance, the
work of White [1987] and Colding and Minicozzi [2002].

In this paper, we will first estimate the lower bound on the first eigenvalue of
the weighted Laplacian �f D�� hrf;r � i for closed (i.e., compact and without
boundary) embedded f -minimal hypersurfaces in a complete metric measure space
.M; Ng; e�f d�/. Subsequently using the eigenvalue estimate, we study compactness
for the space of closed embedded f -minimal surfaces in a complete noncompact
3-manifold. To explain our result, we give some background.

Choi and Wang [1983] estimated the lower bound for the first eigenvalue of closed
minimal hypersurfaces in a complete Riemannian manifold with Ricci curvature
bounded below by a positive constant and proved the following:

Theorem 1. If M is a simply connected complete Riemannian manifold with Ricci
curvature bounded below by a constant k > 0 and † is a closed embedded minimal
hypersurface, then the first eigenvalue of the Laplacian � on † is at least k=2.

Later, using a covering argument, Choi and Schoen [1985] proved that the
assumption that M is simply connected is not needed. Recently Ma and Du [2010]
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extended Theorem 1 to the first eigenvalue of the weighted Laplacian �f on a
closed embedded f -minimal hypersurface in a simply connected compact manifold
with positive Bakry–Émery Ricci curvature Ricf . Very recently Li and Wei [2012]
also used the covering argument to delete the assumption that the ambient space is
simply connected in the result of Ma and Du.

The Bonnet–Myers theorem says that a complete manifold with Ricci curvature
bounded below by a positive constant must be compact. But the corresponding
result is not true for complete manifolds with Bakry–Émery Ricci curvature Ricf
bounded below by a positive constant. One example is the Gaussian shrinking
soliton .RnC1;gcan; e

�jxj2=4d�/, with Ricf D 1
2

. Hence the theorems of Ma and
Du and Li and Wei cannot be applied to self-shrinkers.

For self-shrinkers, Ding and Xin [2013] recently obtained a lower bound on the
first eigenvalue �1.L/ of the weighted Laplacian LD��hx;r � i=2 (i.e., �f ) on
a closed n-dimensional embedded self-shrinker in the Euclidean space RnC1, that
is, �1.L/�

1
4

.
We will discuss a lower bound for the first eigenvalue of �f of a closed embed-

ded f -minimal hypersurface in the case that the ambient space is complete and
noncompact. Precisely, we prove the following:

Theorem 2. Let .M nC1; Ng; e�f d�/ be a complete noncompact smooth metric
measure space with Bakry–Émery Ricci curvature Ricf � k, where k is a positive
constant. Let † be a closed embedded f -minimal hypersurface in M . If there is a
bounded domain D in M with convex boundary @D so that † is contained in D,
then the first eigenvalue �1.�f / of the weighted Laplacian �f on † satisfies

(1) �1.�f /�
k

2
:

Here and below the boundary @D is called convex if, for any p 2 @D, the second
fundamental form A of @D at p is nonnegative with respect to the outer unit normal
of @D.

A closed self-shrinker †n in RnC1 satisfies the assumption of Theorem 2 since
there always exists a ball D of RnC1containing †. Therefore Theorem 2 implies
the result of Ding and Xin for self-shrinkers mentioned before. Also we give a
different and hence alternative proof of their result.

Remark. If M is a Cartan–Hadamard manifold, all geodesic balls are convex. If
M is a complete noncompact Riemannian manifold with nonnegative sectional
curvature, the work of Cheeger and Gromoll [1972] asserts that M admits an
exhaustion by convex domains.

Choi and Wang [1983] used the lower bound estimate of the first eigenvalue
in Theorem 1 to obtain an upper bound on the area of a simply connected closed
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embedded minimal surface † in a 3-manifold, depending on the genus g of †
and the positive lower bound k of Ricci curvature of M . Further the lower bound
on the first eigenvalue and the upper bound on the area were used in [Choi and
Schoen 1985] to prove a smooth compactness theorem for the space of closed
embedded minimal surfaces of genus g in a closed 3-manifold M 3 with positive
Ricci curvature. Very recently Li and Wei [2012] proved a compactness theorem for
closed embedded f -minimal surfaces in a compact 3-manifold with Bakry–Émery
Ricci curvature Ricf � k, for a constant k > 0.

On the other hand, Ding and Xin [2013] recently applied the lower bound
estimate of the first eigenvalue of the weighted Laplacian on a self-shrinker to prove
a compactness theorem for closed self-shrinkers in R3 with uniform bounds on
genus and diameter. As was mentioned before, a self-shrinker in R3 is an f -minimal
surface in a complete noncompact R3 with Ricf � 1

2
. Motivated by this example, we

consider compactness for f -minimal surfaces in a complete noncompact manifold.
We prove:

Theorem 3. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that M admits
an exhaustion by bounded domains with convex boundary. Then the space, denoted
by SD;g, of closed embedded f -minimal surfaces in M with genus at most g and
diameter at most D is compact in the C m topology, for any m � 2. Namely any
sequence in SD;g has a subsequence that converges in the C m topology on compact
subsets to a surface in SD;g, for any m� 2.

Theorem 3 implies especially the compactness theorem of Ding and Xin for
self-shrinkers. We also prove the following compactness theorem, which implies
Theorem 3.

Theorem 4. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Given a bounded domain
��M , let S be the space of closed embedded f -minimal surfaces in M with genus
at most g and contained in the closure �. If there is a bounded domain U �M

with convex boundary so that �� U , then S is compact in the C m topology, for
any m� 2. Namely any sequence in S has a subsequence that converges in the C m

topology on compact subsets to a surface in S , for any m� 2.

If M admits an exhaustion by bounded domains with convex boundary, such
U as in Theorem 4 always exists. Also the assumption that f -minimal surfaces
are contained in the closure of a bounded domain � in Theorem 4 is equivalent to
there being a uniform upper bound on the extrinsic diameter of f -minimal surfaces
(see remark on page 361).

We mention that, for self-shrinkers in R3, Colding and Minicozzi [2012b] proved
a smooth compactness theorem for complete embedded self-shrinkers with uniform
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upper bound on genus and uniform scale-invariant area growth. In [Cheng et al.
2012], we generalized their result to the complete embedded f -minimal surfaces in
a complete noncompact smooth metric measure space with Ricf � k, for a constant
k > 0.

Theorems 3 and 4 have some immediate corollaries. First they imply the corre-
sponding compactness theorems for embedded closed f -minimal surfaces of fixed
topological type and bounded diameter; see Theorems 7 and 8. Second, by using an
argument as in [Choi and Schoen 1985], we have the following uniform curvature
estimates:

Corollary of Theorem 3. Let .M 3; Ng; e�f d�/ be a complete smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that M admits
an exhaustion by bounded domains with convex boundary. Then, for any integer g

and a positive constant D, there exists a constant C depending only on M , g and
D such that if † is a closed embedded f-minimal surface of genus g and diameter
at most D in M , the norm jAj of the second fundamental form of † satisfies

max
x2†
jAj � C:

Corollary of Theorem 4. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth
metric measure space with Ricf � k, where k is a positive constant. Let � be a
bounded domain whose closure is contained in a bounded domain U with convex
boundary. Then, for any integer g, there exists a constant C depending only on U ,
g such that if † is a closed embedded f-minimal surface of genus g contained in �,
the norm jAj of the second fundamental form of † satisfies

max
x2†
jAj � C:

An argument similar to the proof of Theorem 2 also works for the case where
the ambient space is a compact manifold with convex boundary. Hence we have
the following estimate:

Theorem 5. Let .M nC1; Ng/ be a simply connected compact manifold with convex
boundary @M and f a nonconstant smooth function on M . Assume that Ricf � k,
where k is a positive constant. If † is a closed f -minimal hypersurface embedded
in M and does not intersect the boundary @M , then the first eigenvalue of the
weighted Laplacian on † satisfies

(2) �1.�f /�
k

2
:

Here we give a remark: the assumption in Theorem 5 that f is a nonconstant
smooth function on M is necessary. The reason is that under the assumption
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Ric� k > 0, any closed minimal hypersurface † must intersect the convex bound-
ary @M by a standard argument similar to the one in Frankel’s intersection theorem.

The rest of this paper is organized as follows: In Section 2, some definitions and
notation are given. In Section 3, we give some facts which will be used later. In
Section 4, we prove Theorems 2 and 5. In Section 6, we prove Theorems 3 and 4.
For completeness, we give in an appendix the proof of the known Reilly formula
for a weighted metric measure space.

2. Definitions and notation

In general, a smooth metric measure space, denoted by .N;g; e�wdvol/, is a
Riemannian manifold .N;g/ together with a weighted volume form e�wdvol
on N , where w is a smooth function on N and dvol the volume element induced
by the Riemannian metric g. The associated weighted Laplacian �w is defined by

�wu WD�u� hrw;rui;

where � and r are the Laplacian and gradient on .N;g/, respectively.
The second-order operator �w is a self-adjoint operator on the space of square

integrable functions on N with respect to the measure e�wdvol. For a closed
manifold N , the first eigenvalue of �w , denoted by �1.�w/, is the lowest nonzero
real number �1 satisfying

�wuD��1u; on N:

It is well known that the definition of �1.�w/ is equivalent to

�1.�w/D infR
N ue�w dvolD0

u 6�0

R
N jruj2e�w dvolR

N u2e�w dvol
:

The1-Bakry–Émery Ricci curvature tensor Ricw (for simplicity, Bakry–Émery
Ricci curvature) on .N;g; e�wdvol/ is defined by

Ricw WD RicCr2w;

where Ric denotes the Ricci curvature of .N;g/ and r2w is the Hessian of w on N .
If w is constant, �w and Ricw are the Laplacian � and Ricci curvature Ric on N ,
respectively.

Now let .M nC1; Ng/ be an .nC 1/-dimensional Riemannian manifold. Assume
that f is a smooth function on M so that .M nC1; Ng; e�f d�/ is a smooth metric
measure space, where d� is the volume element induced by Ng.

Let i W†n!M nC1 be an n-dimensional smooth immersion. Then

i W .†n; i� Ng/! .M nC1; Ng/
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is an isometric immersion with the induced metric i� Ng. For simplicity, we still
denote i� Ng by Ng whenever there is no confusion. Let d� denote the volume element
of .†; Ng/. Then the function f induces a weighted measure e�f d� on †. Thus
we have an induced smooth metric measure space .†n; Ng; e�f d�/.

In this paper, unless otherwise specified, we denote by a bar all quantities
on .M; Ng/, for instance by r and Ric, the Levi-Civita connection and the Ricci
curvature tensor of .M; Ng/, respectively. Also we denote, for example, by r, Ric,�
and �f , the Levi-Civita connection, the Ricci curvature tensor, the Laplacian, and
the weighted Laplacian on .†; Ng/, respectively. Let p 2† and � a unit normal at p.
The second fundamental form A, the mean curvature H , and the mean curvature
vector H of hypersurface .†; Ng/ are defined, respectively, by

A W Tp†! Tp†; A.X / WD rX �; X 2 Tp†;

H WD tr AD�

nX
iD1

hrei
ei ; �i; H WD �H�:

Define the weighted mean curvature vector Hf and the weighted mean curvature Hf
of .†; Ng/ by

Hf WDH � .rf /? and Hf D�Hf �;

where ? denotes the projection to the normal bundle of †. It follows that

Hf DH � hrf; �i:

Definition. A hypersurface † immersed in .M nC1; Ng; e�f d�/ with the induced
metric Ng is called f -minimal if its weighted mean curvature Hf vanishes identically
or, equivalently, if it satisfies

(3) H D hrf; �i:

Definition. The weighted volume of .†; Ng/ is defined by

(4) Vf .†/ WD

Z
†

e�f d�:

It is well known that † is f -minimal if and only if † is a critical point of the
weighted volume functional. Namely it holds that

Proposition 1. If T is a compactly supported normal variational vector field on †
(i.e., T D T?), then the first variation formula of the weighted volume of .†; Ng/ is
given by

(5)
d

dt
Vf .†t /

ˇ̌̌
tD0
D�

Z
†

hT;Hf i Nge�f d�:
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On the other hand, an f -minimal hypersurface can be viewed as a minimal
hypersurface under a conformal metric. More precisely, define the new metric
Qg D e�2f=n Ng on M , which is conformal to Ng. Then the immersion i W †!M

induces a metric i� Qg on † from .M; Qg/. In the following, i� Qg is still denoted by Qg
for simplicity of notation. The volume of .†; Qg/ is

(6) zV .†/ WD

Z
†

d Q� D

Z
†

e�f d� D Vf .†/:

Hence Proposition 1 and (6) imply that

(7)
Z
†

hT; zH i Qg d Q� D

Z
†

hT;Hf i Nge�f d�;

where d Q� D e�f d� and zH denote the volume element and the mean curvature
vector of † with respect to the conformal metric Qg, respectively.

Equation (7) implies that zH D e2f=nHf . Therefore .†; Ng/ is f -minimal
in .M; Ng/ if and only if .†; Qg/ is minimal in .M; Qg/.

In this paper, for a closed hypersurface, we choose � to be the outer unit normal.

3. Some facts on the weighted Laplacian and f -minimal hypersurfaces

In this section, we give some known results which will be used later in this paper.
Recall that Reilly [1977] proved an integral version of the Bochner formula for
compact domains of a Riemannian manifold, which is called the Reilly formula.
Ma and Du [2010] obtained a Reilly formula for metric measure spaces, which
is the following proposition. We include its proof in an appendix for the sake of
completeness.

Proposition 2. Let � be a compact Riemannian manifold with boundary @� and
.�; Ng; e�f d�/ a smooth metric measure space. Then

(8)
Z
�

.�f u/2e�f D

Z
�

jr
2uj2e�f C

Z
�

Ricf .ru;ru/e�f

C 2

Z
@�

u�.�f u/e�f C

Z
@�

A.ru;ru/e�f C

Z
@�

u2
�Hf e�f ;

where � is the outward pointing unit normal to @� and A is the second fundamental
form of @� with respect to the normal �, the quantities with bars denote the ones
on .�; Ng/ ( for instance, Ricf denotes the Bakry–Émery Ricci curvature on .�; Ng/),
and �f and Hf denote the weighted Laplacian on @� and the weighted mean
curvature of @�, respectively.

A Riemannian manifold with Bakry–Émery Ricci curvature bounded below by a
positive constant has some properties similar to a Riemannian manifold with Ricci
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curvature bounded below by a positive constant. We refer to [Wei and Wylie 2009;
Munteanu and Wang 2014; 2012] and the references therein.

Proposition 3 [Morgan 2005] (see also [Wei and Wylie 2009, Corollary 5.1]). If a
complete smooth metric measure space .N;g; e�!d�/ has Ricw � k, where k is a
positive constant, then N has finite weighted volume and finite fundamental group.

For f -minimal hypersurfaces, the following intersection theorem holds.

Proposition 4 [Wei and Wylie 2009, Theorem 7.4]. Any two closed f -minimal hy-
persurfaces immersed in a complete smooth metric measure space .M; Ng; e�f d�/

with Ricf > 0 must intersect. Thus a closed f -minimal hypersurface in M must be
connected.

In [Cheng and Zhou 2013] it was proved that the weighted volume of a self-
shrinker †n immersed in Rm being finite implies it is properly immersed. This
result extends to f -minimal submanifolds:

Proposition 5 [Cheng et al. 2012]. Let†n be an n-dimensional completef -minimal
submanifold immersed in an m-dimensional Riemannian manifold M m, n < m.
If † has finite weighted volume, then † is properly immersed in M .

An f -minimal hypersurface is an f -minimal submanifold with codimension 1.
See more properties of f -minimal submanifolds in [Cheng et al. 2012].

4. Lower bound for �1.�f /

In this section, we apply the Reilly formula for metric measure spaces to prove
Theorems 2 and 5.

Proof of Theorem 2. Since Ricf � k, where k > 0 is constant, Proposition 3 implies
that M has finite fundamental group. We first assume that M is simply connected.
Since † is connected (Proposition 4) and embedded in M , † is orientable and
divides M into two components (see its proof in [Choi and Schoen 1985]). Thus †
divides D into two bounded components �1 and �2. That is Dn† D �1 [�2

with @�1 D† and @�2 D @D[†.
For simplicity, we denote by �1 the first eigenvalue �1.�f / of the weighted

Laplacian �f on †. Let h be a corresponding eigenfunction so that on †

�f hC�1hD 0 with
Z
†

h2e�f D 1:

Consider the solution of the Dirichlet problem on �1 so that

(9)
�
�f uD 0 in �1;

uD h on @�1 D†.

Substitute �1 for � and put the solution u of (9) in Proposition 2. Then the
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assumption on Ricf implies that

0� k

Z
�1

jruj2e�f � 2�1

Z
†

u�he�f C

Z
†

A.rh;rh/e�f ;

where � is the outer unit normal of † with respect to �1. By Stokes’ theorem
and (9), Z

†

u�he�f D

Z
�1

.jruj2Cu�f u/e�f D

Z
�1

jruj2e�f :

Thus
0� .k � 2�1/

Z
�1

jruj2e�f C

Z
†

A.rh;rh/e�f :

If
R
† A.rh;rh/e�f � 0, by u 6� C , we have

�1 �
k

2
:

If
R
† A.rh;rh/e�f < 0, we consider the compact domain �2 with the boundary

@�2 D†[ @D. Let u be the solution of the mixed problem

(10)

8<:
�f uD 0 in �2;

uD h on †;
uQ� D 0 on @D,

where Q� denotes the outer unit normal of @D with respect to �2.
Substituting �2 for � and putting the solution u of (10) in Proposition 2, we

have

0�

Z
�2

jr
2uj2e�f C k

Z
�2

jruj2e�f � 2�1

Z
†

huQ�e
�f

C

Z
†

zA.rh;rh/e�f C

Z
@D

zA.ru;ru/e�f ;

where Q� denotes the outer unit normal of † with respect to �2 and zA denotes the
second fundamental form of † with respect to the normal Q�.

On the other hand, Stokes’ theorem and (10) implyZ
�2

jruj2e�f D

Z
@�2

uuQ�e
�f
D

Z
†

huQ�e
�f :

Thus we have

(11) 0� .k � 2�1/

Z
�2

jruj2e�f C

Z
†

zA.rh;rh/e�f C

Z
@D

zA.ru;ru/e�f :

Since @D is assumed convex, the last term on the right side of (11) is nonnegative.
Observe that the orientations of † are opposite for �1 and �2. Namely Q� D��.
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Then zA.ru;ru/D�A.ru;ru/ on †. This implies that the second term on the
right side of (11) is nonnegative. Thus

0� .k � 2�1/

Z
�2

jruj2e�f :

Since u is not a constant function, we conclude that k � 2�1 � 0. Again we have

�1 �
k

2
:

Therefore we obtain that �1.�f /� k=2 if M is simply connected.
Second, if M is not simply connected, we consider its universal covering yM ,

which is a finite j�1j-fold covering. yM is simply connected and the covering map
� W yM !M is a locally isometry.

Take Of D f ı � . Obviously yM has yRic Of � k, and the lift y† of † is also Of -
minimal, embedded and closed. By Proposition 4, y† must be connected. Since
yM is simply connected, the closed embedded connected y† must be orientable and

thus divides yM into two components. Moreover the connectedness of y† implies
that the lift yD of D is also a connected domain. Also @ yD D y@D is smooth and
convex. Hence the assertion obtained for the simply connected ambient space can
be applied here. Thus the first eigenvalue of the weighted Laplacian y� Of on y†
satisfies �1.y� Of /� k=2.

Observing the lift of the first eigenfunction of † is also an eigenfunction of yM ,
we have

�1.�f /� �1.y� Of /�
k

2
: �

Remark. In Theorem 2, the boundary @D is not necessarily smooth. @D can be
assumed to be C 1, which is sufficient for the existence of the solution of the mixed
problem (10).

Theorem 5 holds by the same argument as that of Theorem 2.

5. Upper bound on area and total curvature of f -minimal surfaces

In this section, we study surfaces in a 3-manifold. First we estimate the correspond-
ing upper bounds on the area and weighted area of an embedded closed f -minimal
surface by applying the first eigenvalue estimate in Section 4. Next we discuss the
upper bound on the total curvature. We begin with a result of Yang and Yau [1980]:

Proposition 6. Let †2 be a closed orientable Riemannian surface with genus g.
Then the first eigenvalue �1.�/ of the Laplacian � on † satisfies

�1.�/Area.†/� 8�.1Cg/:
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Using Theorem 2 and Proposition 6, we obtain the following area estimates for
closed embedded f -minimal surfaces if the ambient space is simply connected.

Proposition 7. Let .M 3; Ng; e�f d�/ be a simply connected complete smooth metric
measure space with Ricf � k, where k is a positive constant. Let †2 �M be a
closed embedded f -minimal surface with genus g. If † is contained in a bounded
domain D with convex boundary @D, then its area and weighted area satisfy

(12) Area.†/�
16�.1Cg/

k
eosc† f

and

(13) Areaf .†/�
16�.1Cg/

k
e� inf† f ;

where osc† f D sup† f � inf† f .

Proof. Consider the conformal metric Qg D e�f Ng on M . Let �1.z�/ be the first
eigenvalue of the Laplacian z� on .†; Qg/, which satisfies

�1.z�/D infR
† u d Q�D0

u 6�0

R
† j
Qruj2
Qg

d Q�R
† u2 d Q�

;

where z�, zr and d Q� are the Laplacian, gradient and area element of † with respect
to the metric Qg, respectively.

On the other hand, the first eigenvalue of the weighted Laplacian �1.�f /

on .†; Ng/ satisfies

�1.�f /D infR
† ue�f d�D0

u 6�0

R
† jruj2

Nge�f d�R
† u2e�f d�

:

Since zruD efru, d Q� D e�f d� and Qg D e�f Ng,

�1.z�/D infR
† ue�f d�D0

u 6�0

R
† jruj2

Ng d�R
† u2e�f d�

� infR
† ue�f d�D0

u 6�0

R
† jruj2

Nge�fCinf†.f / d�R
† u2e�f d�

D einf† f �1.�f /:

By this inequality, Theorem 2 and Proposition 6, we have the estimate

(14) Area.†; Qg/�
16�.1Cg/

k
e� inf†.f /:
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Since Areaf .†/D
R
† e�f d� D Area.†; Qg/,

Areaf .†/�
16�.1Cg/

k
e� inf†.f /;

which is (13). Thus

Area.†/�
16�.1Cg/

k
esup†.f /�inf†.f / D

16�.1Cg/

k
eosc†.f /:

That is, (12) holds. �
Now, suppose that M is not simply connected. We use a covering argument as

in [Choi and Schoen 1985].

Proposition 8. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space
with Ricf � k, where k is a positive constant. Let †2 be a closed embedded
f-minimal surface. If † is contained in a bounded domain D of M with convex
boundary @D, then

(15) Areaf .†/�
16�

k

�
2

j�1j
�

1

2
�.†/

�
e� inf† f

and

(16) Area.†/�
16�

k

�
2

j�1j
�

1

2
�.†/

�
eosc† f ;

where j�1j is the order of the fundamental group of M , and �.†/ is the Euler
characteristic of †.

Proof. Let yM be the universal covering manifold of M . By Proposition 3, the
covering is a finite j�1j-fold covering. Let y† be the lifting of †. In the proof of
Theorem 2, we have shown that y† is orientable and satisfies the assumption of
Theorem 2. Hence Theorem 2 implies that the first eigenvalue of the weighted
Laplacian of y† satisfies �1.y� Of /� k=2, where Of is the lift of f . By Proposition 7,
we conclude that

Area.y†/�
16�

k

�
2� 1

2
�.y†/

�
eoscy†.

Qf /

and

Area Of .
y†/D

Z
y†

e�
Of d� �

16�

k

�
2� 1

2
�.y†/

�
e� infy†.

Of /:

Thus (15) and (16) follow from the equalities

�.y†/D j�1j ��.†/; infy†.
Of /D inf†.f /; oscy†.

Of /D osc†.f /;

Area.y†/D j�1j �Area.†/ and Area Of .
y†/D j�1j �Areaf .†/: �

In the following, we will give the upper bound for the total curvature of f -minimal
surfaces. Here the term the total curvature of † means

R
† jAj

2 d� not
R
† K d� .
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Proposition 9. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space
with Ricf � k, where k is a positive constant. Let †2 �M be a closed embedded
f -minimal surface with genus g. If † is contained in a bounded domain D of M

with convex boundary @D, then † satisfies

(17)
Z
†

jAj2 d� � C;

where A is the second fundamental form of .†; Ng/ and C is a constant depending
on the genus g of †, the order j�1j of the fundamental group of M , the maxi-
mum sup† NK of the sectional curvature of M on†, the lower bound k of the Bakry–
Émery Ricci curvature of M , the oscillation osc†.f / and the maximum sup† j Nrf j
on †.

Proof. By the Gauss equation and Gauss–Bonnet formula,Z
†

jAj2 d� D

Z
†

H 2
� 2

Z
†

.K�K/D

Z
†

h Nrf;ni2� 4��.†/C 2

Z
†

K

� .sup† j Nrf j/
2 Area.†/C 8�.g� 1/C 2.sup† NK/Area.†/:

Using (16), we have the conclusion of the theorem. �

To prove the compactness theorem in Section 6, we need the following total
curvature estimate for .†; Qg/, which is a minimal surface in .M; Qg/.

Proposition 10. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space
with Ricf � k, where k is a positive constant. Let †2 �M be a closed embedded
f -minimal surface with genus g. If † is contained in a bounded domain D of M

with convex boundary @�, then † satisfies

(18)
Z
†

j zAj2
Qg d Q� � C;

where zA is the second fundamental form of .†; Qg/ with respect to the conformal
metric Qg D e�f Ng of M and C is a constant depending on the genus g of †, the
order j�1j of the fundamental group of M , the maximum sup† zK of the sectional
curvature of .M; Qg/ on †, the lower bound k of the Bakry–Émery Ricci curvature
of M and the oscillation osc†.f / on †.

Proof. By the Gauss equation and the Gauss–Bonnet formula, we haveZ
†

j zAj2
Qg d Q� D

Z
†

zH 2
� 2

Z
†

. zK†
� zKM / d Q� D�4��.†/C 2

Z
†

zK d Q�

� 8�.g� 1/C 2.sup† zK/Area..†; Qg//

D 8�.g� 1/C 2.sup† zK/Areaf .†/:
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We have used zH D efHf D 0 and Area..†; Qg//D Areaf .†/. Now (18) follows
from (15). �

6. Compactness of compact f -minimal surfaces

We will prove some compactness theorems for closed embedded f -minimal surfaces
in a 3-manifold. We have two ways to prove Theorem 4.

The first proof roughly follows the one in [Colding and Minicozzi 2011] (cf.
[Choi and Schoen 1985]) with some modifications. The modifications can be made
because we have the assumptions that f -minimal surfaces are contained in the
closure of a bounded domain � of M and � is contained in a bounded domain U

with convex boundary. The second proof will need a compactness theorem of
complete embedded f -minimal surfaces that was proved in [Cheng et al. 2012].

We prefer to give two proofs here since the first one is independent of the
compactness theorem of complete embedded f -minimal surfaces. But the compact-
ness theorem of complete embedded f -minimal surfaces needs a theorem about
nonexistence of Lf -stable minimal surfaces (see [Cheng et al. 2012, Theorem 3]).

First proof. We first prove a singular compactness theorem, which is a variation
of a result from [Choi and Schoen 1985] (compare [Colding and Minicozzi 2011,
Proposition 7.14; Anderson 1985; White 1987]):

Proposition 11. Let .M 3; Ng/ be a 3-manifold. Assume that� is a bounded domain
in M . Let †i be a sequence of closed embedded minimal surfaces contained in �,
with genus g, and satisfying

(19) Area.†i/� C1

and

(20)
Z
†i

jA†i
j
2
� C2:

Then there exists a finite set of points S�� and a subsequence, still denoted by †i ,
that converges uniformly in the C m topology (m� 2) on compact subsets of M nS

to a complete minimal surface †�� (possibly with multiplicity).
The subsequence also converges to † in extrinsic Hausdorff distance. † is

smooth, embedded in M , has genus at most g and satisfies (19) and (20).

Proof. We may use the same argument as that of [Colding and Minicozzi 2011,
Proposition 7.14]. Moreover †i �� implies that the singular set S �� and the
smooth surface †��. Here we omit the details of proof. �

We can apply Proposition 11 to the f -minimal surfaces which are minimal in
the conformal metric.
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Lemma. Let .M 3; Ng; e�f d�/ be a smooth metric measure space. Assume that� is
a bounded domain in M . Let†i �� be a sequence of closed embedded f -minimal
surfaces of genus g. Suppose that Qg D e�f Ng on M and .†i ; Qg/ satisfy

(21) Area..†i ; Qg//D Areaf .†i/� C1

and

(22)
Z
†i

j zA†i
j
2
Qg d Q� � C2;

where zA†i
and d Q� denote the second fundamental form and the volume element

of .†i ; Qg/, respectively. Then there exists a finite set of points S � � and a
subsequence, still denoted by †i , that converges uniformly in the C m topology
(m � 2) on compact subsets of M nS to a complete f -minimal surface † � �
(possibly with multiplicity).

The subsequence also converges to † in extrinsic Hausdorff distance. † is
smooth, embedded in M , has genus at most g, and satisfies (21) and (22).

Proof. Since an f -minimal surface in the original metric Ng is equivalent to it
being minimal in the conformal metric Qg, we can apply Proposition 11 to get the
conclusion of the lemma. �

Proof of Theorem 4. First assume M is simply connected. Since †i ��� U , we
see from Proposition 7 and Proposition 10 that

Area..†i ; Qg//D Areaf .†i/� C1

and Z
†i

j zA†i
j
2
Qg d� Qg � C2;

where C1 and C2 depend on g, sup�j
f , sup�j

zK and k.
By the lemma, there exists a finite set of points S� z� and a subsequence †i0

that converges uniformly in the C m topology (any m � 2) on compact subsets
of M nS to a complete f -minimal surface †�� without boundary (possibly with
multiplicity). † is smooth, embedded in M and has genus at most g. Equivalently,
with respect to the conformal metric Qg, a subsequence †i0 of minimal surfaces
converges uniformly in the C m topology on compact subsets of M nS to a complete
minimal surface †, where †��.

Since complete embedded †�� satisfies (21), it must be properly embedded
(Proposition 5), thus closed and orientable.

We need to prove that the convergence is smooth across the points S. By Allard’s
regularity theorem, it suffices to prove that the convergence has multiplicity one. If
the multiplicity is not one, by a proof similar to that of [Choi and Schoen 1985]
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(see also [Colding and Minicozzi 2011, p. 249]), we can show that there is an i big
enough and a †i in the convergent subsequence, so that the first eigenvalue of the
Laplacian z�†i on †i with the conformal metric Qg satisfies �1.z�

†i / < keinf� f =2.
We have

�1.z�
†i /D inf

(R
†i
j zr�j2

Qg
d Q�R

†i
�2 d Q�

;

Z
†i

� d Q� D 0

)

D inf

( R
†i
jr�j2d�R

†i
�2e�f d�

;

Z
†i

�e�f d� D 0

)
� �1.�

†i

f
/einf� f :

By Theorem 2, †i ��� U implies �1.�
†i

f
/ � k=2. Thus we have a contra-

diction.
When M is not simply connected, we use a covering argument. The assumption

of Ricf � k, where k > 0 is constant, implies that M has finite fundamental
group �1 (Proposition 3). We consider the finite-fold universal covering yM . By the
proof of Theorem 2, we know that the corresponding lifts of †i , � and U satisfy
y†i �

y�� yU . Then Propositions 8 and 10 give uniform bounds on the area and total
curvature in the conformal metric OQg on yM . By the assertion on the simply connected
ambient manifold before, we have the smooth convergence of a subsequence of y†i .
This implies the smooth convergence of a subsequence of †i . �

Second Proof. In [Cheng et al. 2012], we proved the following:

Theorem 6. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space with
Ricf � k, where k is a positive constant. Given an integer g � 0 and a constant
V > 0, the space Sg;V of smooth complete embedded f -minimal surfaces †�M

with

� genus at most g,

� @†D∅, and

�
R
† e�f d� � V

is compact in the C m topology, for any m� 2. Namely any sequence of Sg;V has a
subsequence that converges in the C m topology on compact subsets to a surface
in SD;g, for any m� 2.

Proof of Theorem 4. Since a surface in S is contained in N��U , by Proposition 8, we
have the uniform bound V of the weighted volume of closed embedded f -minimal
surfaces in S . Hence Theorem 6 can be applied. Moreover †i �� implies that
the smooth limit surface †��. Otherwise, since the subsequence f†ig converges
uniformly in the C m topology (m� 2) on any compact subset of M to †, there is
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a surface †i (with index i big enough) in the subsequence that would not satisfy
†i ��.

By Proposition 5, † must be properly embedded. Thus † must be closed. �

To prove Theorem 3 we require a lemma.

Lemma. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric measure
space with Ricf � k > 0. If † is any closed f -minimal surface in M with genus
at most g and diameter at most D, then †� Br .p/ for some r > 0 (independent
of †), where Br .p/ is a ball in M with radius r centered at p 2M .

Proof. Fix a closed f -minimal surface †0. Obviously †0 � Br0
.p/ for some

r0 > 0. Proposition 4 says that † and †0 must intersect. Then, for x 2†,

d.p;x/� d.p;x0/C d.x0;x/� r0CD;x0 2†0:

Taking r D r0CD, we have †� Br0CD . �

Remark. In the lemma and hence in Theorem 3, D is a bound on the intrinsic
diameter of closed f -minimal surfaces or a bound on the extrinsic diameter of
closed f -minimal surfaces. Also, by Proposition 4, the assumption that f -minimal
surfaces are contained in the closure of a bounded domain � in Theorem 4 is
equivalent to that of a uniform upper bound on the extrinsic diameter of f -minimal
surfaces.

Proof of Theorem 3. By the lemma immediately above, we may apply Theorem 4 to
the space SD;g. Next the closed embedded limit † must have diameter at most D.
Otherwise, since the subsequence f†ig converges uniformly in the C m topology
(m� 2) on any compact subset of M to †, there is a surface †i (with the index i

big enough) in the subsequence that would have diameter greater than D. So †
must be in SD;g. �

As a corollary, Theorem 3 implies:

Theorem 7. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that M admits
an exhaustion by bounded domains with convex boundary. Then the space of closed
embedded f -minimal surface in M of fixed topological type and diameter at most D

is compact in the C m topology, for any m� 2.

Proof of Theorem 7. By Theorem 3, it suffices to prove that the limit f -minimal
surface of a convergent subsequence in the given space has the same topological
type, which holds by the Gauss–Bonnet formula and smooth convergence. �

Similar to the proof of Theorem 7, Theorem 4 implies:
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Theorem 8. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that � is a
bounded domain and U is a bounded domain with convex boundary so that �� U .
Then the space of closed embedded f -minimal surface in M of fixed topological
type and contained in the closure � is compact in the C m topology, for any m� 2.

Appendix: Proof of Proposition 2

The Bochner formula implies that

1
2
�f jruj2� hru;r.�f u/i D jr2uj2CRicf .ru;ru/:

Integrating this equation on � with respect to the weighted measure e�f d�, we
obtainZ
�

�
1
2
�f jruj2� hru;r.�f u/i

�
e�f D

Z
�

jr
2uj2e�f C

Z
�

Ricf .ru;ru/e�f :

On the other hand, by the divergence formula, we have

1
2
�f jruj2� hru;r.�f u/i

D
1
2

div
�
e�frjruj2

�
ef � div

�
e�f�f .u/ru

�
ef C .�f u/2:

Integrating and applying Stokes’ theorem, we have

(23)
Z
�

�
1
2
�f jruj2� hru;r.�f u/i

�
e�f

D

Z
@�

�
1
2
jruj2� � .�f u/u�

�
e�f C

Z
�

.�f u/2e�f :

Then

(24) 1
2
jruj2� � .�f u/u�

D hr�ru;rui � .�f u/u� D hrruru; �i � .�f u/u�

D hr�ru; �iu� Chrruru; �i � .�f u/u�

D
�
hr�ru; �i ��uChrf;rui

�
u� Chru;ru�i � hru;rru�i

D
�
��u�Hu�Chrf;ruiChrf; �iu�

�
u�Chru;ru�i�hru;rru�i

D �.�f uCHf u�/u� Chru;ru�i �A.ru;ru/;
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where Hf DH � hrf; �i. By substituting (24) into (23), we obtainZ
�

�
1
2
�f jruj2� hru;r.�f u/i

�
e�f

D�

Z
@�

.�f u/u�e
�f
�

Z
@�

Hf u2
�e
�f
C

Z
@�

�
hru;ru�i �A.ru;ru/

�
e�f

C

Z
�

.�f u/2e�f

D�2

Z
@�

.�f u/u�e
�f
�

Z
@�

Hf u2
�e
�f
�

Z
@�

A.ru;ru/e�fC

Z
�

.�f u/2e�f :

This immediately implies (8).
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LEFSCHETZ NUMBERS OF SYMPLECTIC INVOLUTIONS
ON ARITHMETIC GROUPS

STEFFEN KIONKE

The reduced norm-one group G of a central simple algebra is an inner form
of the special linear group, and an involution on the algebra induces an
automorphism of G . We study the action of such automorphisms in the
cohomology of arithmetic subgroups of G . The main result is a precise
formula for Lefschetz numbers of automorphisms induced by involutions
of symplectic type. Our approach is based on a careful study of the smooth-
ness properties of group schemes associated with orders in central simple
algebras. Along the way we also derive an adelic reformulation of Harder’s
Gauss–Bonnet theorem.

1. Introduction

Let G be a semisimple linear algebraic group defined over the field Q of rational
numbers. Given a torsion-free arithmetic subgroup � � G.Q/, it is in general a
very difficult task to compute the (cohomological) Betti numbers of � . However
Harder’s Gauss–Bonnet theorem [Harder 1971] makes it possible to determine the
Euler characteristic of arithmetic groups. If the Euler characteristic is nonzero,
one can extract information on the Betti numbers. Moreover, whether or not the
Euler characteristic vanishes only depends on the structure of the associated real
Lie group G.R/ (see the remark on page 384). If the Euler characteristic vanishes,
Lefschetz numbers of automorphisms of finite order of G are a suitable substitute
to gain insight into the cohomology of � . The idea to study Lefschetz numbers
in the cohomology of arithmetic groups goes back to Harder [1975]. A general
method was developed by J. Rohlfs, first for Galois automorphisms [1978] and
later in a general adelic setting [1990]. Lefschetz numbers were also studied in
[Lee and Schwermer 1983; Lai 1991]. However, only very few groups have been
considered in detail; most frequently Lefschetz numbers on Bianchi groups have
been studied (see [Krämer 1985; Rohlfs 1985; Sengün and Türkelli 2012; Kionke
and Schwermer 2012]). In this article we describe a method (based on Rohlfs’
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approach) to compute Lefschetz numbers of specific automorphisms on arithmetic
subgroups of inner forms of the special linear group.

More precisely, let F be an algebraic number field and let A be a central simple
F -algebra. The reduced norm nrdA=F is a polynomial function on A and the
associated reduced norm-one group G D SLA is a linear algebraic group defined
over F . Indeed, the algebraic group G is an inner form of the special linear group.
If A has an involution � of symplectic type (see the definition on page 377), then
the composition of � with the group inversion yields an automorphism �� of G.
We study the Lefschetz numbers of such automorphisms induced by involutions of
symplectic type.

1A. The main result. Let F be an algebraic number field and let O denote its ring
of integers. Let A be a central simple F -algebra. For our purposes we may assume
that ADMn.D/ for some quaternion F -algebra D (see Section 1C).

Let ƒD � D be a maximal O-order in D; then ƒ WD Mn.ƒD/ is a maximal
O-order in A. For a nontrivial ideal a� O we study the cohomology of the principal
congruence subgroups

�.a/ WD fg 2Mn.ƒD/ j nrdA.g/D 1 and g � 1 mod ag

of G. In fact, for n� 2 the groups �.a/ have vanishing Euler characteristic.
The quaternion algebra D is equipped with a unique involution of symplectic

type �c WD!D, called conjugation, which induces an involution of symplectic
type � WA!A by �.x/ WD �c.x/T; that is, apply �c to every entry of the matrix and
then transpose the matrix. We will call � the standard involution of symplectic type
on Mn.D/. Composition of � with the group inversion yields an automorphism ��

of order two on G. Note that the congruence groups �.a/ are stable under ��. Fix
a rational representation � WG �F F ! GL.W / of G (defined over the algebraic
closure of F ) on a finite dimensional vector space. If W is equipped with a
compatible ��-action (see the definition on page 389), then we can define the
Lefschetz number L.��; �.a/;W / of �� in the cohomology H

q
.�.a/;W /.

Main Theorem. Assume that �.a/ is torsion-free. If D is totally definite, we
assume further that n� 2. The Lefschetz number L.��; �.a/;W / is zero if F is not
totally real.

If F is totally real, the Lefschetz number is given by the formula

L.��; �.a/;W /D 2�r N.a/n.2nC1/�rd.D/
n.nC1/=2 Tr.��jW /

nY
jD1

M.j; a;D/:

Here �rd.D/ denotes the signed reduced discriminant of D (see the definition on
page 390), r denotes the number of real places of F ramified in D, and
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M.j; a;D/ WD �F .1� 2j /
Y
pja

�
1�N.p/�2j

� Y
p2Ramf .D/

p−a

�
1C .�N.p//�j

�
;

where Ramf .D/ denotes the set of finite places of F where D ramifies and �F
denotes the Dedekind zeta-function of F . If F is totally real, then the Lefschetz
number is zero if and only if Tr.��jW /D 0.

1B. Applications. We briefly give three applications of the above formula where
we always assume F to be a totally real number field.

1B1. Growth of the total Betti number. The analysis of the asymptotic behaviour
of Betti numbers of arithmetic groups is an important topic. Calegari and Emerton
[2009] have provided strong asymptotic upper bounds. We can use the main theorem
to obtain an asymptotic lower bound result.

Let G be the reduced norm-one group associated with the central simple F -
algebra Mn.D/. For a torsion-free arithmetic subgroup � �G.F / we define the
total Betti number B.�/ as

P1
iD0 dimH i .�;C/. Note that this is a finite sum

since torsion-free arithmetic groups are of type (FL) (see [Borel and Serre 1973,
Theorem 11.4.4]).

Corollary 1.1. Let �0 �G.F / be an arithmetic subgroup. For any ideal a� O we
define �0.a/ WD �0\�.a/. There is a positive real number � > 0, depending on F ,
D, �0, and n, such that

B.�0.a//� �Œ�0 W �0.a/�
n.2nC1/

4n2�1

for every ideal a such that �.a/ is torsion-free.

A proof of this corollary will be given in Section 5E.

1B2. Rationality of zeta values. Note that the Lefschetz number is an integer since
�� is of order two. We obtain a new proof of a classical theorem of Siegel [1969]
and Klingen [1962].

Corollary 1.2. If F is a totally real number field, then �F .1� 2m/ is a nonzero
rational number for all integers m� 1.

Proof. Apply the main theorem with D DM2.F /, ƒD DM2.O/ and choose W to
be the trivial one-dimensional representation. We see that for every n� 1 and all
sufficiently small ideals a� O, the number

N.a/n.2nC1/
nY

jD1

�
�F .1� 2j /

Y
pja

�
1�N.p/�2j

��
is a nonzero integer. The claim follows by induction on m. �
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1B3. Cohomology of cocompact Fuchsian groups. Let D be a division quaternion
algebra over F such that D is split at precisely one real place v0 of F . Therefore
r D ŒF WQ�� 1 is the number of real places ramified in D.

Let ƒD ƒD be a maximal O-order in D. We consider the reduced norm-one
group G D SLD defined over F . The associated real Lie group is

G1 Š SL2.R/�SL1.H/r:

Note that the group SL1.H/ is compact and so the projection p1 WG1! SL2.R/
onto the first factor is a proper and open homomorphism of Lie groups. In particular,
every discrete torsion-free subgroup � � G1 maps via p1 isomorphically to a
discrete subgroup in SL2.R/.

Let a� O be a proper ideal such that �.a/ is torsion-free. We will interpret �.a/
as a subgroup of SL2.R/. Note that since we assumed D to be a division algebra,
the group �.a/ is a cocompact Fuchsian group [Katok 1992, Theorem 5.4.1].

Let hD SL2.R/=SO.2/ be the Poincaré upper half-plane.

Corollary 1.3. The compact Riemann surface h=�.a/ has genus

g D 1C 2�ŒF WQ� N.a/3j�rd.D/�F .�1/j
Y
pja

�
1�N.p/�2

� Y
p2Ramf .D/

p−a

�
1�N.p/�1

�
:

This implies an explicit formula for the first Betti number b1.�.a// since

b1.�.a//D dimH 1.�.a/;C/D 2g:

Proof. Consider the main theorem for nD 1. Note that for nD 1 the automorphism
�� is actually the identity. This means that, using the main theorem with the trivial
representation,

L.��; �.a/;C/D �.�.a//D �.h=�.a//:

Note that the sign of the Lefschetz number is �1. Since �.h=�.a//D 2� 2g, the
claim follows immediately. �

In fact Corollary 1.3 yields a precise formula for the dimension of the space of
holomorphic weight-k modular forms for the group �.a/ [Shimura 1971, Theo-
rems 2.24 and 2.25].

1C. Reduction to quaternion algebras. Let A be a central simple F -algebra. If
A has an involution � of symplectic type (see the definition on page 377), then A is
isomorphic to the opposed F -algebra Aop. This means that the class of A has order
two in the Brauer group of F. Since the dimension of A is even, it follows from
[Reiner 2003, Theorem (32.19)] that A is isomorphic to a matrix algebra Mn.D/

over a quaternion algebra D. Therefore we always assume ADMn.D/.
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Let � be the standard involution of symplectic type on Mn.D/. Note that in
this case � D int.g/ ı � for an element g 2 GLn.D/ with �.g/ D g. Due to this
observation it is only a minor restriction if we focus on the standard symplectic
involution � .

1D. Structure of this article. In Section 2 we give a short general treatment of
smooth group schemes over Dedekind rings which are associated with orders in
central simple algebras. In particular we treat integral models of inner forms of
the special linear group. Further, we consider the fixed points groups attached to
involutions. An important tool in the proof of the main theorem will be the pfaffian
as a map in nonabelian Galois cohomology (Section 2D). In Section 3 we give
an adelic reformulation of Harder’s Gauss–Bonnet theorem which hinges on the
notion of smooth group scheme. The calculation of the Lefschetz number is based
on Rohlfs’ method which we summarise in Section 4. Finally the proof of the
main theorem is contained in Section 5. It consists of two major steps. The first is
the analysis of various nonabelian Galois cohomology sets which occur in Rohlfs’
decomposition. The second step is the calculation of the Euler characteristics of
the fixed point groups using Harder’s Gauss–Bonnet theorem.

Notation. Apart from Section 2, where we work in a more general setting, we use
the following notation: F is an algebraic number field and O denotes its ring of
integers. Let V denote the set of places of F . We have V D V1[Vf , where V1
and Vf denote the set of Archimedean and finite places of F , respectively. Let
v 2 V be a place of F ; we denote the completion of F at v by Fv. The valuation
ring of Fv is denoted by Ov and the prime ideal in Ov is denoted by pv. For a
nonzero ideal a� O the ideal norm is defined by N.a/ WD jO=aj. As usual A denotes
the ring of adeles of F and Af is the ring of finite adeles.

2. Group schemes associated with orders in central simple algebras

In this section we will investigate the smoothness properties of group schemes
attached to orders in central simple algebras. Throughout, R denotes a Dedekind
ring and k denotes its field of fractions. For simplicity we assume char.k/D 0. In
our applications R is usually the ring of integers of an algebraic number field or a
complete discrete valuation ring.

The term scheme always refers to an affine scheme of finite type; the same
holds for group schemes. Recall that a scheme X defined over R is smooth if for
every commutative R-algebra C and every nilpotent ideal I � C the induced map
X.C /! X.C=I / is surjective. Suppose R is a complete discrete valuation ring
and let p denote its prime ideal. We will frequently use the following property: if
X is a smooth R-scheme, then the induced map X.R/! X.R=pe/ is surjective
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for every integer e � 1 [Grothendieck 1964, Corollary 19.3.11]. If G is a group
scheme, then we denote the Lie algebra of G by Lie.G/.

2A. The general linear group over an order. Let A be a central simple k-algebra
and letƒ be an R-order in A. Sinceƒ is a finitely generated torsion-free R-module,
it is a finitely generated projective R-module [Reiner 2003, Theorem (4.13)]. The
functor ƒa from the category of commutative R-algebras to the category of rings
defined by C 7!ƒ˝R C is represented by the symmetric algebra SR.ƒ�/, where
ƒ� D HomR.ƒ;R/. In fact it defines a smooth R-scheme [Grothendieck 1964,
Proposition 19.3.2].

Recall that, since ƒ is finitely generated and projective, one can attach to every
R-linear endomorphism ' ofƒ its determinant det.'/2R. More precisely, here the
determinant of ' is just the determinant of the k-linear extension '˝ Idk W A! A.
As usual one defines the norm of an element x 2 ƒ to be the determinant of the
left multiplication with x. One can check that the norm defines a morphism of
schemes over R

Nƒ=R Wƒa! A1=R

to the affine line A1 defined overR. This can be seen, for instance, by observing that
the norm is a natural transformation of functors. Let C be a commutative R-algebra.
An element x 2ƒ˝R C is a unit if and only if Nƒ=R.x/ 2 C�. It follows from
the next lemma that the associated unit group functor GLƒ W C 7! .ƒ˝R C/

� is a
smooth group scheme over R.

Lemma 2.1. Let A1 denote the affine line overR. Let X be an affine scheme overR
with a morphism f WX!A1. The subfunctor Y (from the category of commutative
R-algebras to the category of sets) defined by

C 7! fy 2 X.C / j f .y/ 2 C�g

is an affine scheme and the natural transformation Y!X is a morphism of schemes.
If X is smooth, then Y has the same property.

Proof. Let RŒX� be the coordinate ring of X and let P 2 RŒX� be the polynomial
defining f. Note that Y is canonically isomorphic to the functor given by

C 7! f.y; z/ 2 X.C /�C j f .y/z D 1g:

Using this it is easily checked that the R-algebra S WDRŒX�˝RRŒT �=.P ˝T �1/
represents Y. Clearly, S is of finite type since RŒX� is of finite type.

It remains to show that Y is smooth whenever X is smooth. Assume that X is
smooth and take a commutative R-algebra C with an ideal J such that J 2 D 0.
By assumption X.C / ! X.C=J / is surjective, so given y 2 Y.C=J / we find
x 2X.C / projecting to y. By assumption f .x/CJ is a unit in C=J . In particular,
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we can find z 2 C with f .x/z 2 1CJ . However, 1CJ consists entirely of units
and thus f .x/ 2 C�. We deduce that Y is smooth. �

We stress this once more: in this article GLƒ is always a functor and not a group.
If we take ƒ D R then we call GLƒ the multiplicative group (or multiplicative
group scheme) defined over R, and we denote it by Gm. Note that the norm defines
a homomorphism of R-group schemes

Nƒ=R W GLƒ! Gm:

We also point out that the Lie algebra of GLƒ can be (and will be) identified with
ƒa in a natural way.

2B. The special linear group over an order.

2B1. Reduced norm and trace. Let A be a central simple k-algebra. We consider
the reduced norm and trace (for definitions see [Reiner 2003, Section 9] or [Weil
1995, Chapter IX, §2]). It was observed by Weil that the reduced norm and trace
are polynomial functions. We reformulate this in schematic language: there is a
unique element nrdA=k in the symmetric algebra Sk.A�/ (here A� DHomk.A; k/)
such that for every splitting field ` of A and every splitting ' W A˝k `

'
�!Mn.`/

the induced map
S.'�/ W S`.Mn.`/

�/! Sk.A
�/˝k `

maps the determinant to nrdA=k˝1. Similarly there is the reduced trace trdA=k 2A�

with an analogous property.
Let ƒ� A be an R-order. We show that the reduced norm and trace are defined

over R in the appropriate sense. For the reduced trace this is easy: elements in ƒ
are integral over R, hence the reduced trace takes values in R on the order ƒ and
defines an R-linear map ƒ!R. In particular we obtain a morphism of schemes
over R:

trdƒ=R Wƒa! A1=R:

Consider the reduced norm. From [Reiner 2003, (9.7)] one can deduce that nrdnA=k
and Nƒ=R agree as elements in the coordinate ring Sk.A�/. However, the coordinate
ring SR.ƒ�/ of ƒa is integrally closed in Sk.A�/ and we conclude that the reduced
norm is defined over R. This means that there is a polynomial nrdƒ=R 2 SR.ƒ�/
that defines the reduced norm as a morphism of R-schemes:

nrdƒ=R Wƒa! A1:

We can also restrict the reduced norm to the unit group and obtain a homomorphism
of group schemes:

nrdƒ=R W GLƒ! Gm=R:
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Definition. The special linear group SLƒ over the order ƒ is the group scheme
over R defined by the kernel of the reduced norm:

SLƒ D ker.nrdƒ=R W GLƒ! Gm/:

2B2. Smoothness of the special linear group. Whereas the general linear group
is always smooth, independent of the chosen order, the smoothness of the special
linear group depends on the underlying order. Recall the following useful result.

Proposition 2.2 (smoothness of kernels). Let f W G ! H be a morphism be-
tween two smooth group schemes over R. If the derivative d.f / W Lie.G/.R/!
Lie.H/.R/ is surjective, then the group scheme K WD ker.f / is smooth over R.

Proof. This follows from the theorem of infinitesimal points (see [Demazure and
Gabriel 1970, p. 208]) and some easy diagram chasing. �

As a matter of fact the derivative of the reduced norm d.nrdƒ=R/ Wƒa! A1 is
the reduced trace. Having this in mind we make the following definition.

Definition. An R-order ƒ in a central simple k-algebra is called smooth if the
reduced trace trdƒ=R Wƒ!R is surjective.

Note that smoothness of orders is a local property.

Corollary 2.3. If the order ƒ is smooth then the scheme SLƒ is smooth.

Proof. This follows immediately from Proposition 2.2 using the fact that the
derivative of the reduced norm is the reduced trace. �

In fact, the converse statement also holds under the assumption char.R/ D 0.
However, we shall not need this result. The next proposition shows that smooth
orders exist.

Proposition 2.4. Assume that R=p is finite for every prime ideal p. Then every
maximal R-order in a central simple k-algebra is smooth.

Proof. Let A be a central simple k-algebra and let ƒ� A be a maximal R-order.
Since ƒ is maximal in A if and only if all p-adic completions are maximal orders
[Reiner 2003, Corollary (11.6)], and since smoothness of ƒ is a local property, we
may assume thatR is a complete discrete valuation ring. Recall thatA is isomorphic
to a matrix algebra Mr.D/ over a central division algebra D. Moreover, D has a
unique maximal R-order ��D and ƒ is (up to conjugation) the maximal order
Mr.�/ in A [Reiner 2003, Theorem (17.3)]. It is known that the reduced trace of a
matrix x D .xij /ri;jD1 2Mr.D/ is given by

trdA=k.x/D
rX
iD1

trdD=k.xi i /
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[Weil 1995, Corollary 2, Chapter IX, §2]. Hence we may assume that ADD is a
division algebra and ƒD� is the unique maximal order. Let dimkD D n2 and
let `=k be the unique unramified extension of k of degree Œ` W k�D n. The field `
embeds into D as a maximal subfield and the reduced trace trdD=k on the elements
of ` agrees with the field trace Tr`=k [Reiner 2003, proof of Theorem (14.9)]. Let
o` denote the valuation ring of `. The image of o` under the embedding `!D

lies in the maximal order �. Finally the surjectivity of trdD=k W �! R follows
from the well-known surjectivity of the field trace Tr`=k W o`!R. �

2C. Involutions and fixed point groups. Let A be a central simple k-algebra. An
involution � on A is an additive mapping � W A ! A of order two such that
�.xy/D �.y/�.x/ for all x; y 2A. We say that � is of the first kind if � is k-linear.
Otherwise, we say that � is of the second kind. In this article all involutions are
of the first kind unless the contrary is explicitly stated. We will mostly focus on
involutions of symplectic type.

Definition. We say that an involution � on A is of symplectic type if there is a
splitting field ` of the algebra A, a splitting

' W A˝k `
'
�!M2n.`/;

and a skew-symmetric matrix a 2M2n.`/ satisfying '.�.x//D a'.x/T a�1 for all
elements x 2 A˝k `. If this is the case, then every splitting (over any splitting
field) admits such a matrix.

Let � W A! A be an involution of the first kind. Let ƒ be an R-order in A and
assume that ƒ is �-stable. Since � Wƒ!ƒ is R-linear, we obtain a morphism of
R-schemes

� Wƒa!ƒa:

We restrict � to the unit group GLƒ and compose it with the group inversion to
obtain a homomorphism of group schemes

�� W GLƒ! GLƒ:

We define G.ƒ; �/ to be the group of fixed points of ��, that is, for every commuta-
tive R-algebra C we obtain

G.ƒ; �/.C /D fx 2 .ƒ˝R C/
�
j �.x/x D 1g:

We analyse the smoothness properties of group schemes constructed in this way.
Define the R-submodule Sym.ƒ; �/D fx 2ƒ j �.x/D xg of ƒ and note that it is
a direct summand.

Lemma 2.5. For every commutative R-algebra C , every y 2ƒ˝R C and every
x 2 Sym.ƒ; �/˝R C we have �.y/xy 2 Sym.ƒ; �/˝R C .
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Proof. We can write y D
P
i ui ˝ ci for certain ui 2ƒ and ci 2 C . The claim is

linear in x, hence we may assume x D e˝ c with e 2 Sym.ƒ; �/ and c 2 C . We
calculate

�.y/xy D
X
i;j

�.ui /euj ˝ ccicj

D

X
i

�.ui /eui ˝ cc
2
i C

X
i<j

.�.ui /euj C �.uj /eui /˝ ccicj ;

and see that �.y/xy 2 Sym.ƒ; �/˝R C since �.ui /eui and �.ui /euj C �.uj /eui
are elements of Sym.ƒ; �/. �

Definition. The order ƒ is called � -smooth if the map s Wƒ! Sym.ƒ; �/ defined
by x 7! xC �.x/ is surjective. Clearly � -smoothness is a local property.

Proposition 2.6. If an R-order ƒ is � -smooth, then the scheme G.ƒ; �/ is smooth.

Proof. We set G WD G.ƒ; �/. Let C be a commutative R-algebra with an ideal
I �C such that I 2D 0. We have to show that the canonical map G.C/!G.C=I /

is surjective. Take y 2G.C=I /. Since the unit group scheme GLƒ is smooth (see
Section 2A), we can find y 2GLƒ.C /D .ƒ˝C/� mapping to y modulo I . Since
y is in the fixed point group of ��, this implies that

�.y/y D 1C �

with some � 2ƒ˝ I .
We consider E WD Sym.ƒ; �/ and we obtain �.y/y 2 E˝R C by Lemma 2.5.

Consequently, there is u 2ƒ˝RC such that �.u/CuD y. Moreover, 1 2E; thus
there is some v 2ƒ˝RC with �.v/CvD 1. We deduce that �D �.u�v/C.u�v/
is an element in E˝R C , and thus

� 2 .E˝R C/\ .ƒ˝R I /DE˝R I:

As a last step we use once again that ƒ is � -smooth and deduce that there is some
w 2ƒ˝ I with �D �.w/Cw. We put y0 WD y.1�w/, which is congruent to y
modulo I and satisfies

�.y0/y0 D .1� �.w//�.y/y.1�w/D .1� �.w//.1C �/.1�w/

D 1C �� �.w/�w D 1:

Therefore y0 2G.C/ and y0 maps to y 2G.C=I / under the canonical map. �

2D. Involutions of symplectic type and the pfaffian. Let A be a central simple
k-algebra with an involution of symplectic type � . Let ƒ be a �-stable R-order
in A.
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2D1. The pfaffian. SetE WDSym.ƒ; �/ in the notation of Section 2C. The inclusion
� WE!ƒ induces a morphism of R-algebras

S.��/ W SR.ƒ
�/! SR.E

�/:

Recall that the reduced norm is given by a polynomial function nrdƒ=R 2 SR.ƒ�/
(see Section 2B1). We define nrdjE WDS.��/.nrdƒ=R/2SR.E�/. We will construct
a pfaffian, that is, a polynomial pf� 2 SR.E

�/ such that nrdjE D pf2� .
LetL=k be any field extension. It follows from [Knus et al. 1998, Proposition 2.9]

that for every x 2E˝R L the reduced norm nrdjE .x/ is a square in L. Therefore,
we may deduce that there is a polynomial f 2 SR.E�/ such that

f 2 D nrdjE :

We normalise this polynomial pf� WD ˙f such that pf� .1/D 1 and we call pf� the
pfaffian with respect to � .

Lemma 2.7. Let S.��/ denote the automorphism of the symmetric R-algebra
SR.ƒ

�/ which is induced by � . The following assertions hold:

(i) S.��/.nrdƒ=R/D nrdƒ=R.

(ii) For all y 2ƒ˝R C and all x 2 Sym.ƒ; �/˝R C , we have

pf� .�.y/xy/D nrdƒ=R.y/ pf� .x/;

where C is any commutative R-algebra.

Proof. To prove the first claim we may work over fields. However, over fields this
is the well-known statement [Knus et al. 1998, Corollary 2.2].

The same proof works for the second statement. Note that �.y/xy lies in
Sym.ƒ; �/˝R C by Lemma 2.5. Both are polynomial functions onƒ�Sym.ƒ; �/.
If they agree over all fields then they agree as polynomials. However, over fields
this is the result [Knus et al. 1998, Proposition 2.13]. �

Remark. Consider the fixed point group scheme G DG.ƒ; �/ associated with � .
Let x 2 G.C/ for some commutative R-algebra C . We see from �.x/x D 1 and
Lemma 2.7 that

nrdƒ=R.x/D pf� .�.x/x/D pf� .1/D 1:

Hence the reduced norm restricts to the trivial character on G.ƒ; �/.

2D2. The cohomological pfaffian. We study nonabelian Galois cohomology of ��

with values in the groups GLƒ.C / and SLƒ.C /. For the definition of nonabelian
cohomology we refer the reader to [Serre 1994; 1979, pages 123–126] or [Knus
et al. 1998, Chapter VII]. We shall in this context often denote � and �� by left
exponents, that is, we write ��x for ��.x/.
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Let C be a commutative R-algebra and assume that C is flat as an R-module.
A cocycle b inZ1.��;GLƒ.C // is an element of .ƒ˝C/� which satisfies b �

�

bD1,
or equivalently b D �b. In other words

Z1.��;GLƒ.C //D Sym.ƒ˝R C; �/\GLƒ.C /:

The assumption thatC is flat yields that Sym.ƒ˝RC; �/DSym.ƒ; �/˝RC . There-
fore we can apply the pfaffian associated with � to cocycles in Z1.��;GLƒ.C //.
Two cocycles b and c are cohomologous if there is y 2GLƒ.C / such that bD �ycy.
In this case it follows from Lemma 2.7 that pf� .b/D nrdƒ=R.y/ pf� .c/. Therefore
the pfaffian defines a morphism of pointed sets

pf� WH
1.��;GLƒ.C //! C�= nrdƒ=R.GLƒ.C //:

By the same reasoning we obtain a morphism of pointed sets

pf� WH
1.��;SLƒ.C //! fx 2 C� j x2 D 1g:

For simplicity we define C .2/ WD fx 2C� j x2D 1g and C�ƒ WD nrdƒ=R.GLƒ.C //.

Proposition 2.8 (cohomological diagram for symplectic involutions). Let � be an
involution of symplectic type on A and let ƒ be a �-stable R-order. For every
commutative R-algebra C which is flat as an R-module, there is a commutative
diagram of pointed sets with exact rows:

C .2/\C�ƒ
ı
���! H 1.��;SLƒ.C //

j�
���! H 1.��;GLƒ.C //

nrd
���! C�=.C�ƒ/

2


 pf�

??y pf�

??y 



C .2/\C�ƒ ���! C .2/ ���! C�=C�ƒ

�2

���! C�=.C�ƒ/
2:

The map ı is injective and the lower row is an exact sequence of groups. Here j�
denotes the map induced by the inclusion j W SLƒ.C /! GLƒ.C /.

Proof. The short exact sequence of groups

1 �! SLƒ.C /
j
�! GLƒ.C /

nrd
�! C�ƒ �! 1

is an exact sequence of groups with ��-action, where �� acts on C�ƒ by inversion.
Consider the initial segment of the associated long exact sequence in the cohomology
(see [Serre 1994, Proposition I.38]):

1 �! SLƒ.C /�
� j
�! GLƒ.C /�

� nrd
�! C�ƒ \C

.2/
�! � � � :



LEFSCHETZ NUMBERS OF SYMPLECTIC INVOLUTIONS 381

It follows from the remark on page 379 that SLƒ.C /�
� j
�!GLƒ.C /�

�

is bijective.
Thus the long exact sequence takes the form

1 �! C�ƒ \C
.2/ ı
�!H 1.��;SLƒ.C // �!H 1.��;GLƒ.C // �!H 1.��; C�ƒ/:

It is easy to see that H 1.��; C�ƒ/DC
�
ƒ=.C

�
ƒ/
2, which is a subgroup of C�=.C�ƒ/

2.
Hence we simply replace the last term by C�=.C�ƒ/

2. This yields the upper row of
the diagram. It is an easy exercise to verify that the lower row is an exact sequence
of groups.

It remains to verify the commutativity of the rectangles. The middle one is
obviously commutative by definition of the pfaffian in the cohomology. For the last
rectangle we simply use that pf� .g/

2 D nrd.g/ for all g 2Z1.��;GLƒ.C // by the
construction of the pfaffian.

Consider the first rectangle. We recall the definition of the connecting morphism ı:
given c 2C�ƒ\C

.2/, we can find an element g 2GLƒ.C / such that nrdƒ=R.g/D c;
then ı.c/ is defined to be the class of g�1 �

�

g. The pfaffian of g�1 �
�

g is

pf� .g
�1 ��g/D nrd.g/�1 D c�1 D c

(see Lemma 2.7). This proves the commutativity of the first rectangle.
Finally, note that ı is injective since pf� ı ı is injective. �

Corollary 2.9. An element x 2H 1.��;GLƒ.C // lies in the image of j� if and only
if pf� .x/ lies in the image of the canonical map C .2/! C�=C�ƒ .

Proof. Let ˛ W C .2/ ! C�=C�ƒ denote the canonical map. Suppose the class
x 2H 1.��;GLƒ.C // is in the image of j�, then we obtain immediately that pf� .x/
lies in the image of ˛.

Conversely, suppose pf� .x/D ˛.u/ for some u 2C .2/. Then the diagram shows
that nrdƒ=R.x/ is 1 in C�=.C�ƒ/

2 and therefore x lies in the image of j�. �
Remark (twisting involutions). Let A be a central simple k-algebra with an in-
volution � of symplectic type and let ƒ be a �-stable R-order. Given an element
b 2 Sym.ƒ; �/\ƒ�, we can twist the involution � with b. More precisely, we
define � jb W A ! A by x 7! b �xb�1. It is easily verified that this is again an
involution on A, and since b 2ƒ�, the order ƒ is � jb-stable. Note that � jb is again
an involution of symplectic type.

Suppose ƒ is �-smooth, we claim that ƒ is � jb-smooth as well. Take some
element y in Sym.ƒ; � jb/; this is y D b �yb�1. Consequently, yb 2 Sym.ƒ; �/
and by � -smoothness there is an element z 2ƒ which satisfies �zC z D yb. The
element b is a unit in ƒ, hence we may write z D wb for w D zb�1 2 ƒ and it
follows that � jbwCw D y. We have shown that ƒ is � jb-smooth.

Finally, for all b 2 Sym.ƒ; �/\ƒ� we have .� jb/� D int.b/ ı �� on the group
scheme GLƒ. Since b D �b is equivalent to b �

�

b D 1, such an element b is a
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cocycle for H 1.��; ƒ�/. If we now twist �� with the cocycle b (see Section 4), we
obtain

��jb WD int.b/ ı �� D .� jb/�:

2E. Hermitian forms and nonabelian Galois cohomology. We shall also need a
result due to Fainsilber and Morales from the theory of hermitian forms. Let A be
a central simple k-algebra and let � be an involution on A. In this short section it is
not important whether or not � is of the first or of the second kind.

The notion of � -smoothness is related to the theory of even hermitian forms. Let
ƒ be a � -stable R-order in A and let M be a finitely generated and projective right
ƒ-module. A hermitian form h (or more precisely a 1-hermitian form) with respect
to � on M is said to be even if there is a � -sesquilinear form s WM �M !ƒ such
that hD sC s�. Here s� is the sesquilinear form defined by

s�.x; y/ WD �s.y; x/:

It follows immediately that ƒ is �-smooth if and only if every hermitian form on
ƒ (considered as a right ƒ-module) is even. This is useful since even hermitian
forms can be handled more easily than arbitrary hermitian forms.

We consider the automorphism �� of ƒ� defined as the composition of � and the
group inversion. Similarly we obtain �� on A�. Here it is not necessary to consider
�� as a morphism of group schemes, which is a little bit more tedious if � is of the
second kind. We will need a theorem from [Fainsilber and Morales 1999] in the
following paraphrase:

Theorem 2.10. Let k be a field which is complete for a discrete valuation and let
R be its valuation ring. Let A be a central simple k-algebra with involution � .
Supposeƒ is a � -stable maximalR-order in A. Ifƒ is � -smooth, the canonical map

j� WH
1.��; ƒ�/!H 1.��; A�/

is injective.

Compared with [Fainsilber and Morales 1999] we have added the assumption of
�-smoothness to eliminate the restriction on the residual characteristic. The proof
is almost identical.

3. An adelic reformulation of Harder’s Gauss–Bonnet theorem

We briefly describe an adelic reformulation of Harder’s Gauss–Bonnet theorem
[Harder 1971] that hinges on the notion of a smooth group scheme. In fact, the
Euler characteristic of an arithmetic group can also be computed using G. Prasad’s
[1989] general volume formula. Since we have explicit underlying smooth integral
models of the algebraic groups, we think that the adelic volume formula derived in
this section is adapted much better to the applications given in this article.
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Let F be an algebraic number field and let O denote its ring of integers. Let G
be a connected semisimple algebraic group defined over F . We denote by G1 the
associated real semisimple Lie group

G1 DG.F ˝Q R/D
Y
v2V1

G.Fv/:

3A. The Euler–Poincaré measure. We define what we mean by the compact dual
group of G1, since the definition differs from author to author. Let g1 be the
real Lie algebra of G1 and let g1;C denote its complexification. Moreover, let
K1 be a maximal compact subgroup of G1 and consider the associated Cartan
decomposition

g1 D k1˚ p:

The real vector space u WD k1˚ ip� g1;C is a real Lie subalgebra of g1;C and is
even a compact real form of g1;C [Knapp 2002, page 360]. Let Gu be the unique
connected (a priori virtual) Lie subgroup of G.F ˝Q C/ with Lie algebra u. Since
the real semisimple Lie algebra u is a compact form, the Lie group Gu is compact
and thus closed in G.F ˝Q C/ [Knapp 2002, Chapter IV, Theorem 4.69]. Further
we see that the connected component K01 is a subgroup of Gu. We say that Gu is
the compact dual group of G1 containing K01. Note that the dual group depends
on the algebraic group G.

Let B W g1 � g1! R be a nondegenerate R-bilinear form such that k1 and p

are orthogonal. We extend B to a C-bilinear form (again denoted by B) on g1;C.
Note that B restricted to u is a nondegenerate R-bilinear form u�u!R. We obtain
corresponding right-invariant volume densities on G1 and on Gu which will be
denoted by jvolB j.

We define X WD K1nG1. Let � � G.F / be a torsion-free arithmetic group.
Harder’s Gauss–Bonnet theorem shows that integration over G1=� with the Euler–
Poincaré measure �� [Serre 1971, §3] yields the Euler characteristic of � — even
if � is not cocompact. Via Hirzebruch’s proportionality principle one has the
following formula for the Euler–Poincaré measure on G1 [Harder 1971; Serre
1971].

Theorem 3.1. If dim.X/ is odd or if rk.k1;C/ < rk.g1;C/, then �� D 0 is the
Euler–Poincaré measure. Otherwise, if rk.g1;C/D rk.k1;C/ and dim.X/D 2p is
even, then

�� WD
.�1/pjW.g1;C/j

j�0.G1/j jW.k1;C/j
volB.Gu/�1jvolB j:

Here �0.G1/DG1=G01 and W.g1;C/, W.k1;C/ denote the Weyl groups of the
complexified Lie algebras g1;C, k1;C.
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3B. The adelic reformulation. Let A denote the ring of adeles of F and Af the
ring of finite adeles. Let G be a connected semisimple algebraic group defined
over F . Let Kf � G.Af / be an open compact subgroup of the locally compact
group G.Af /. Borel showed that G.A/ is the disjoint union of a finite number m
of double cosets, that is,

G.A/D

mG
iD1

G1Kf xiG.F /

for some representatives x1; : : : ; xm 2G.Af / [Borel 1963, Theorem 5.1]. For every
i D 1; : : : ; m we obtain an arithmetic subgroup �i �G.F / defined by

�i WDG.F /\ x
�1
i Kf xi :

There is a G1-equivariant homeomorphism

(1) KfnG.A/=G.F /
'
�!

mG
iD1

G1=�i :

Here the right-hand side denotes the topologically disjoint union.

Remark. DefineXDK1nG1. SupposeG.F / acts freely onK1KfnG.A/. This
is the case if and only if the groups �i are torsion-free for all i D 1; : : : ; m. If
dim.X/ is odd or if rk.k1;C/ < rk.g1;C/, then

�.K1KfnG.A/=G.F //D 0:

This follows immediately from Harder’s Gauss–Bonnet theorem and the homeo-
morphism in (1).

Note further that if F has a complex place, then rk.k1;C/ < rk.g1;C/ is always
satisfied. Therefore we may restrict to the case where F is totally real.

3B1. The Tamagawa measure. We derive a description of the Tamagawa measure
in terms of the local volume densities. For a thorough definition of the Tamagawa
measure we refer the reader to [Oesterlé 1984]. Let G be a connected semisimple
linear algebraic F -group of dimension d . Let gD Lie.G/.F / be the Lie algebra
of G over F .

Fix a nondegenerate F -bilinear form B W g� g! F on the Lie algebra. For
every place v 2 V we have the left invariant volume density jvolB jv attached to B
on the Fv-analytic manifold G.Fv/. The volume density is uniquely determined
by jvolB j.e1 ^ � � � ^ ed /D j det.B.ei ; ej //j1=2 for all e1; : : : ; ed 2 g. We fix Haar
measures �v on Fv for every place v such that

(i) �v.Ov/D 1 if v 2 Vf is a finite place,

(ii) �v.Œ0; 1�/D 1 if v is a real place, and

(iii) �v.Œ0; 1�C Œ0; 1�i/D 2 if v is a complex place.
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Using these choices of Haar measures, a density on G.Fv/ defines a measure on
the analytic manifold G.Fv/.

Lemma 3.2. Let G be a d -dimensional semisimple connected linear algebraic
group defined over F . Fix a nondegenerate F -bilinear form B W g� g! F on the
Lie algebra. Then the Tamagawa measure on G.A/ is given by

� D jdF j
�d=2

Y
v2V

jvolB jv:

Proof. Let e1; : : : ; ed be a basis of g over F and take the dual basis "1; : : : ; "d of
HomF .g; F /. We define a nontrivial form of highest degree ! D "1^� � �^"d on g.
By definition of the volume density we have

jvolB jv D j det.B.ei ; ej //j1=2v j!jv:

By the product formula we know that j det.B.ei ; ej //jv D 1 for almost all places v
and further that

Q
v2V j det.B.ei ; ej //jv D 1. �

3B2. The modulus factor. We focus on the case where the algebraic group has
a smooth O-model. Let G be a smooth group scheme defined over O. For any
commutative O-algebra R we write gR WD Lie.G/.R/ to denote the R-points of the
Lie algebra of G. Let B W gF � gF ! F be a nondegenerate F -bilinear form. For
every finite place v 2 Vf we define the modulus factor m.B/v as follows: take an
Ov-basis e1; : : : ; en of the free Ov-module gv WD gOv , and define

m.B/v WD
ˇ̌
det.B.ei ; ej //

ˇ̌1=2
v
:

For almost all finite places v 2 Vf we have m.B/v D 1. To see this, take an F -basis
of gF and note that it is an Ov-basis of gv for almost all finite places v. This allows
us to define the global modulus factor m.B/ WD

Q
v2Vf

m.B/v.

3B3. Congruence groups. In the adelic formulation of Harder’s Gauss–Bonnet
theorem we focus on congruence groups which are given by local data. Let G be
a smooth O-group scheme. For every finite place v 2 Vf , let ˛v � 1 be a natural
number and we assume that ˛v D 1 for almost all v 2 Vf . Let v be a finite place
and let pv � Ov be the unique prime ideal in Ov . We define �v to be the reduction
morphism

�v WG.Ov/!G.Ov=p
˛v
v /:

Further, we assume that we are given a subgroup Uv of the finite group G.Ov=p
˛v
v /

for every place v 2 Vf . For a place v 2 Vf the group Kv.U / WD ��1v .Uv/ is an
open compact subgroup of G.Ov/. If we additionally impose the assumption that
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Uv DG.Ov=p
˛v
v / for almost all v, then the group

K.U / WD
Y
v2Vf

Kv.U /

is an open compact subgroup of the locally compact group G.Af /. We say that
K.U / is the congruence group associated with the local datum

U D .Uv/v D .Uv; ˛v/v

(usually the numbers ˛v are considered to be implicitly a part of the datum U ).

3B4. The adelic Euler characteristic formula. Let F be a totally real number field.
LetG be a smooth group scheme over O such thatG�OF is a connected semisimple
group. For every real place v we choose a maximal compact subgroupKv �G.Fv/.
The real Lie algebra of Kv will be denoted kv . The product K1 D

Q
v2V1

Kv is a
maximal compact subgroup of the associated real Lie group G1. We denote the
Lie algebra of K1 by k.

Let B W gF � gF ! F be an F -bilinear form. We say that B is nice with
respect to K1 if B is nondegenerate and for every real place v 2 V1 the Cartan
decomposition with respect to kv is orthogonal with respect to B . A nice form
induces a nondegenerate bilinear form B W g1 � g1 ! R by defining the Lie
subalgebras gv D Lie.G.Fv// to be orthogonal. Note that the form B satisfies the
requirements of Theorem 3.1.

Theorem 3.3. Let G be a smooth group scheme over O such that G �O F is a
connected semisimple group of dimension d . We fix any nice form B W gF �gF !F .
Furthermore, let Kf DK.U / be a congruence subgroup of G.Af / given by a local
datum .U; ˛/ such that G.F / acts freely on K1KfnG.A/.

If dim.X/D 2p is even and rk.kC/D rk.g1;C/, then the Euler characteristic of
the double coset space K1KfnG.A/=G.F / is given by

�.K1KfnG.A/=G.F //

D .�1/pjdF j
d=2 jW.g1;C/j�.G/

j�0.G1/jjW.kC/j
volB.Gu/�1m.B/�1

Y
v2Vf

N.pv/d˛v

jUvj
:

Here �.G/ is the Tamagawa number of G, N.pv/ denotes the cardinality of the
residue class field Ov=pv , andGu denotes the compact dual group ofG01 (remaining
notation is as in Theorem 3.1).

Proof. Let x1; : : : ; xm 2 G.Af / be a collection of representatives of the finitely
many elements of G1KfnG.A/=G.F /. We consider the torsion-free arithmetic
groups �i defined as �i WD G.F / \ x�1i Kf xi . Let Fi be a Borel measurable
fundamental domain for the right action of �i on G1. Here we mean a fundamental
domain in the strict sense, that is, Fi is a set of representatives for G1=�i (for the
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existence of measurable fundamental domains see [Bourbaki 1963, Chapter VII §2,
Example 12]). The set F defined as the union

Fm
iD1 FiKf xi � G.A/ is a Borel

measurable fundamental domain for the right action of G.F / on G.A/. We write
jvolB j1 D

Q
v2V1

jvolB jv and further jvolB jf WD
Q
v2Vf

jvolB jv. Due to Theorem 3.1
we have

�.K1KfnG.A/=G.F //D

mX
iD1

�.X=�i /D �

mX
iD1

Z
Fi

jvolB j1;

where

�D .�1/p
jW.g1;C/j

j�0.G1/j jW.kC/j
volB.Gu/�1:

By multiplication with the volume ofKf , which is simply volB.Kf /D
R
Kf
jvolB jf ,

and by Lemma 3.2, we obtain

mX
iD1

Z
Fi

jvolB j1 volB.Kf /D
Z

F

Y
v2V

jvolB jv D jdF jd=2
Z

F
� D jdF j

d=2�.G/:

This means we have

�.K1KfnG.A/=G.F //D �jdF j
d=2�.G/ volB.Kf /

�1:

Finally we are left with the task of determining volB.Kf /. We shall exploit that Kf
is given by the local datum .U; ˛/. Since volB.Kf /D

Q
v2Vf

volB.Kv.U // and
the scheme G is smooth, we can apply a theorem of Weil (for a modern formulation
see [Oesterlé 1984, Section I.2.5] or [Batyrev 1999, Theorem 2.5]) in every finite
place to deduce

volB.Kf /D
Y
v2Vf

m.B/v
jUvj

N.pv/d˛v
:

Now the claim follows readily. �

4. Rohlfs’ method

In this section we give a short summary of Rohlfs’ method for the computation of
Lefschetz numbers.

Let F be an algebraic number field and let G be a linear algebraic group defined
over F . We assume thatG has strong approximation. For example, unipotent groups
and F -simple, simply connected groups with a noncompact associated Lie group
have strong approximation [Platonov and Rapinchuk 1994, page 427]. Choose a
maximal compact subgroup K1 � G1 and set X WD K1nG1. Furthermore,
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let Kf � G.Af / be an open compact subgroup and let � WD G.F /\Kf be the
arithmetic group defined by this open compact subgroup. There is a homeomorphism

X=� '
�!K1KfnG.A/=G.F /:

To see this, consider the inclusion G1!G.A/ and use strong approximation to
observe that it factors to such a homeomorphism. Recall that � is torsion-free if
and only if G.F / acts freely on K1KfnG.A/.

Let � be an automorphism of finite order of G. We can choose K1 such that
it is �-stable. We further assume that Kf � G.Af / is a �-stable open compact
subgroup. We obtain an action of � on the double coset space

S.Kf / WDK1KfnG.A/=G.F /:

We describe the set S.Kf /� of �-fixed points following [Rohlfs 1990] under the
assumption that G.F / acts freely on K1KfnG.A/.

Consider the finite set H1.�/ defined as the fibred product

H1.�/ WDH 1.�;K1Kf / �
H1.�;G.A//

H 1.�; G.F //

of nonabelian cohomology sets. Here we usually write � instead of the finite
group h�i generated by � . We consider H1.�/ as a topological space with the
discrete topology. Rohlfs [1990, Section 3.5] constructed a surjective and continuous
map

# W S.Kf /
�
!H1.�/:

In particular the fibres are open and closed in S.Kf /� and we get a decomposition

(2) S.Kf /
�
D

G
�2H1.�/

#�1.�/:

Let 
 2 Z1.�; G.F // be a cocycle. The 
-twisted �-action on G, defined by
� j
.x/ D 
�

�x
�1� , is an automorphism defined over F and the group of fixed
points is a linear algebraic group which will be denoted G.
/. Similarly, given
a cocycle k 2 Z1.�;K1Kf / we define the k-twisted action of � on K1Kf by
� jkg WD k�

�gk�1� . The corresponding group of fixed points under this action will be
written .K1Kf /� jk . Rohlfs obtained the following description of the fibres of # .

Lemma 4.1 [Rohlfs 1990, Section 3.5]. Let Kf � G.Af / be a �-stable open
compact subgroup such that G.F / acts freely on K1KfnG.A/.

Let � 2H1.�/ be a class represented by a pair of cocycles .k; 
/ with .ks/s in
Z1.�;K1Kf / and .
s/s 2 Z1.�; G.F //. Take a 2 G.A/ such that sa D k�1s a
s
for all s 2 h�i. There is a homeomorphism

a�1.K1Kf /
� jkanG.
/.A/=G.
/.F / '�! #�1.�/:
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Combined with Theorem 4.2 below this yields a method for the computation of
Lefschetz numbers which we simply call Rohlfs’ method.

Definition. Let � W G ! GL.W / be a rational representation defined over the
algebraic closure F of F . Here W is a finite dimensional F -vector space. Given an
action of the finite group h�i on W , we say that this action is compatible with � if

s.�.g/v/D �. sg/ sv

for all v 2 V , s 2 h�i and g 2G.F /. In other words W is a .G.F /Ì h�i/-module.

Let � WG! GL.W / be a rational representation and let � �G.F / be a torsion-
free arithmetic subgroup. If W is equipped with a compatible �-action then we
define the Lefschetz number of � with values in W as

L.�; �;W / WD

1X
iD0

.�1/i Tr
�
� i WH i .�;W /!H i .�;W /

�
:

Since torsion-free arithmetic groups are of type (FL), this is a finite sum.
Given a cocycle bD .bs/s 2H 1.�; G.F // one can define the b-twisted � -action

on W by
� jbw D b�

�w

for all w 2W . We write W.b/ to denote the space W with the b-twisted � -action.
We need the following slight paraphrase of a theorem of Rohlfs.

Theorem 4.2 [Rohlfs 1990]. LetG be an algebraic F -group with strong approxima-
tion and let � be an automorphism of finite order defined over F . Let Kf �G.Af /
be a �-stable open compact subgroup such that � WD G.F /\Kf is torsion-free.
Let � WG! GL.W / be a rational representation defined over F with a compatible
� -action. Then we have

L.�; �;W /D
X

�2H1.�/

�.#�1.�//Tr.� jW.b�//;

where b� 2G.F / is any representative of the H 1.�; G.F // component of �.

Proof. This follows from Rohlfs’ decomposition — see (2) — and a suitable Lef-
schetz fixed point principle — for instance [Rohlfs and Schwermer 1998, §2.3] or
[Kionke 2012]. �

5. Proof of the main theorem

5A. Introduction. In this section we compute the Lefschetz number of an invo-
lution of symplectic type on principal congruence subgroups of inner forms of
the special linear group. For this purpose we combine the tools developed in the
previous sections.
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One should keep in mind that the central result is the adelic Lefschetz number
formula in Theorem 4.2. Whenever we want to apply this theorem, there are two
important steps to do. First step: understand the involved first nonabelian Galois
cohomology sets. Second step: compute the Euler characteristics of the fixed point
components. In the second step we use the adelic formula in Theorem 3.3 obtained
from Harder’s Gauss–Bonnet theorem.

First we introduce some notation, then we begin to determine various nonabelian
cohomology sets. In the third subsection we describe the fixed point groups and we
compute their Euler characteristics. Finally we prove the main theorem.

As before F denotes an algebraic number field and O denotes its ring of integers.
Let D be a quaternion algebra over F , that is, a central simple F -algebra of
dimension four. Note that even though we use the symbol D, the quaternion
algebra D is in general not assumed to be a division algebra. Given a place v, we
define Dv WDD˝F Fv. If Dv is isomorphic to M2.Fv/, we say that D splits at
the place v. Otherwise Dv is a division algebra and we say that D is ramified at v.
Let Ram.D/� V be the finite set of places where D ramifies, and let Ramf .D/
(resp. Ram1.D/) denote the subset of finite (resp. Archimedean) places.

Definition. The signed reduced discriminant �rd.D/ of D is the integer

�rd.D/ WD .�1/
r

Y
p2Ramf .D/

N.p/;

where r D jRam1.D/j.

5A1. The canonical involution. On the quaternion algebraD we have the canonical
involution

�c WD!D; �c.x/DW x;

sometimes called conjugation. Given a description D D Q.a; bjF / of D with
a; b 2 F �— meaning there is a basis 1; i; j; ij of D with i2 D a, j 2 D b and
ij D�j i — conjugation is defined by

�c W x0C x1i C x2j C x3ij 7! x0� x1i � x2j � x3ij:

Note that the conjugation is F -linear; that is, it is an involution of the first kind
on D. Moreover, �c is an involution of symplectic type.

The elements fixed by conjugation are precisely the elements of F . The reduced
norm and trace of D are related to conjugation by

trdD.x/D xC x; nrdD.x/D xx D xx

for all x 2D.
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5A2. Orders. Let ƒD be an O-order in D. We show that ƒD is �c-stable: let
x 2ƒD , then

x D xC x� x D trdD.x/� x:

Recall that trdD.x/ 2 O because x is integral. Since O�ƒD , we obtain x 2ƒD .
Moreover, it follows directly from the definitions that ƒD is smooth if and only if
ƒD is �c-smooth (see the second definition on page 376, and the one on page 378).

We will assume from now on that ƒD is a maximal O-order in D. In particular,
it is a smooth and �c-smooth order (see Proposition 2.4).

Let n be a positive integer. Consider the central simple F -algebra

A WDMn.D/

of n�n-matrices with entries in the quaternion algebraD. The canonical involution
on D induces an involution � on A defined by

�.x/ WD �x WD xTI

that is, conjugate every entry in the matrix x and then transpose the matrix. It is
easily checked that this defines an involution of symplectic type on A [Knus et al.
1998, Proposition 2.23].

Lemma 5.1. Let ƒD �D be a maximal O-order. The O-order ƒDMn.ƒD/ in A
is maximal, � -stable, smooth and � -smooth.

Proof. Since ƒD is stable under conjugation, it is obvious that ƒ is �-stable.
Moreover, it follows from [Reiner 2003, Theorem (21.6)] that ƒ is a maximal
O-order. In turn Proposition 2.4 shows that ƒ is also a smooth order.

Finally we need to check that ƒ is � -smooth. Let x 2 Sym.ƒ; �/ be an element
which is fixed by � . This means that x D .xij / satisfies

xij D xj i for all i ¤ j

and
xi i 2 O:

The order ƒD is smooth, therefore there is, for every i D 1; : : : ; n, an element
zi 2ƒD with trdD.zi /D ziCzi D xi i . Now we define the upper triangular element
y 2ƒ by

yij WD

8<:
0 if i > j ;
xij if i < j ;
zi if i D j ;

and it is easy to see that yC �y D x. We deduce that ƒ is � -smooth. �
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5A3. Setting and assumptions. We define G WD SLƒ to be the special linear group
over the order ƒ (see the first definition on page 376). From the previous lemma
and Corollary 2.3 we deduce that G is a smooth group scheme over O. Moreover,
the involution � induces an automorphism �� of GLƒ where �� D inv ı � (see
Section 2C). Clearly �� has order (at most) two and restricts to an automorphism
of G D SLƒ.

The real Lie group G1 associated with G is

G1 WD
Y
v2V1

G.Fv/Š SL2n.R/s �SLn.H/r �SL2n.C/t :

Here s denotes the number real places of F where D splits, r is the number of
real places where D ramifies, and t is the number of complex places of F . The
symbol H is used for Hamilton’s quaternion division algebra and SLn.H/ is the
group of elements with reduced norm one in the central simple R-algebra Mn.H/.
Note that ŒF W Q� D r C s C 2t . For every Archimedean place v we fix a ��-
stable maximal compact subgroup Kv �G.Fv/; then the group K1 WD

Q
v2V1

Kv is
a ��-stable maximal compact subgroup of G1.

We study the cohomology of congruence subgroups arising from the group SLƒ.
Let a� O be a proper ideal; we define the principal congruence subgroup

�.a/ WD ker.G.O/!G.O=a//

of level a. We shall always assume that �.a/ is torsion-free (which holds for almost
all ideals). Note that the groups �.a/ are always ��-stable.

These groups can be described by local data. Let p � O be a prime ideal of O

and let v be the associated finite place. Let �p.a/ be the maximal exponent e such
that pe divides a; then aOv D p�p.a/Ov. We obtain an open and compact subgroup
Kv �G.Ov/ defined as

Kv WD ker.G.Ov/ �!G.Ov=aOv//:

We form the direct product Kf WD
Q
v2Vf

Kv, which is an open and compact
subgroup of the locally compact group G.Af /. Clearly, �.a/DG.F /\Kf .

We keep the notation introduced in this section. We always assume that

(i) the order ƒD is a maximal order in D, and

(ii) the ideal a� O is nontrivial and chosen such that �.a/ is torsion-free.

5B. Hermitian forms and Galois cohomology. In this section we determine the
nonabelian Galois cohomology set H1.��/. Recall that H1.��/ is the fibred product

H1.��/ WDH 1.��; K1Kf / �
H1.��;G.A//

H 1.��; G.F //:
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In order to determine this set we need to calculate local and global cohomology
sets. The global problem is to determineH 1.��; G.F //, whereas locally we have to
calculateH 1.��; G.Fv// andH 1.��; Kv/ for every place v. We start by determining
the corresponding cohomology sets for GLƒ. This task amounts to the classification
of certain hermitian forms over quaternion algebras, which is well known (see
for instance [Shimura 1963, §2] or [Scharlau 1985, Chapter 10]). Afterwards we
use the pfaffian to obtain results for the special linear group.

5B1. Local results for GLƒ. We introduce the following notation: given two
integers p; q � 0, we define the diagonal matrix

Ip;q D diag.1; : : : ; 1„ƒ‚…
p

;�1; : : : ;�1„ ƒ‚ …
q

/:

Proposition 5.2. Let v 2V be a place of F . If v is a real place whereD is ramified,
then

H 1.��;GLƒ.Fv//Š fIp;q j p; q � 0 with pC q D ng:

This means that the matrices Ip;q are a system of representatives for the cohomology
classes. The cohomology is trivial for all places v 2 V nRam1.D/, that is,

H 1.��;GLƒ.Fv//D f1g:

Proof. Let b 2 Z1.��;GLƒ.Fv// be a cocycle; b is an element of GLn.Dv/
satisfying b D �b. Such a matrix b defines a regular hermitian form on the free
right Dv-module Dnv .

If v 2 V nRam1.D/ (i.e., v is not a real ramified place), regular hermitian forms
over Dv are classified by their dimension over Fv; this follows from [Scharlau
1985, Chapter 10, Theorem 1.7 and Example 1.8]. Note that these results cover
the case where Dv is a division algebra. However it is easy to obtain an analogous
result if Dv ŠM2.Fv/ (at least for free regular hermitian spaces). Thus we find
g 2 GLn.Dv/ with gb �g D 1, and so the second assertion follows immediately.

Let v 2 Ram1.D/; then Dv Š H. In this case �c-hermitian forms are classi-
fied by dimension and signature. Translated to the setting of nonabelian Galois
cohomology, this means that the set fIp;q j p; q � 0 with pC q D ng is a system
of representatives for H 1.��;GLƒ.Fv//. �

Definition. Let v 2 Ram1.D/. For a cocycle b 2 Z1.��;GLƒ.Fv// which is
cohomologous to Ip;q we say that the signature of b is the pair .p; q/.

Corollary 5.3. Let v 2 Vf be a finite place; then H 1.��;GLƒ.Ov//D f1g.

Proof. The O-order ƒ is maximal and �-smooth (see Lemma 5.1) and the same
holds for the Ov-order ƒ˝Ov (see [Reiner 2003, Corollary (11.6)] and note that
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� -smoothness is a local property). By Theorem 2.10 (Fainsilber and Morales), the
canonical map

H 1.��;GLƒ.Ov//!H 1.��;GLƒ.Fv//

is injective, and hence the assertion follows immediately from Proposition 5.2. �
5B2. Global results for GLƒ. We analyse H 1.��;GLƒ.F //, again using the clas-
sification of �c-hermitian forms.

Proposition 5.4 (Hasse principle). The canonical map

H 1.��;GLƒ.F // �!
Y

v2Ram1.D/

H 1.��;GLƒ.Fv//

induced by the inclusions is bijective. This means a class in H 1.��;GLƒ.F // is
uniquely determined by its signatures at the real ramified places.

Proof. IfD is not a division algebra it is easily checked thatH 1.��;GLƒ.F //Df1g.
Thus there is nothing to show.

Assume that D is a division algebra. The regular hermitian forms over D (with
respect to �c) are classified by dimension and their signatures at the real places of
F where D ramifies [Scharlau 1985, Chapter 10, Example 1.8]. The claim follows
as in the local case. �
5B3. The pfaffian associated with � . We explain how to compute the pfaffian asso-
ciated with � (see Section 2D1) for diagonal matrices. Let k be any extension field
of F , for example a local completion. Given a diagonal matrix xDdiag.x1; : : : ; xn/
with entries in k, we can consider x as a � -fixed matrix in A˝F kDMn.D˝F k/.

Lemma 5.5. For x D diag.x1; : : : ; xn/ with entries in some extension field k of F ,
the pfaffian of x is the product of all entries:

pf� .x/D x1x2 � � � xn:

Proof. We can assume without loss of generality that k is algebraically closed. In
this case D˝F k ŠM2.k/ and the reduced norm nrdD WD˝F k! k agrees with
the determinant, in particular it is surjective. This means, for given i 2 f1; : : : ; ng,
we can write xi D nrdD.yi /D yiyi for some yi 2D˝F k. Consider the matrix
y D diag.y1; : : : ; yn/ 2Mn.D˝F k/: it satisfies �.y/y D x. By Lemma 2.7 we
obtain

pf� .x/D nrdA.y/D
nY
iD1

nrdD.yi /D
nY
iD1

xi :

Here we used that the reduced norm of a diagonal matrix in Mn.D ˝F k/ is
the product of the reduced norms of the entries; see [Weil 1995, Chapter IX, §2,
Corollary 2]. �

Note in particular that the pfaffian pf� W Sym.ƒ; �/! O is surjective.
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5B4. Transfer of results to SLƒ. The final step in this section is to transfer the
results on nonabelian Galois cohomology with values in GLƒ to the groupGDSLƒ.
Our main tool is the cohomological diagram for symplectic involutions.

Lemma 5.6. Let v 2 V nRam1.D/ be a place of F . Then the pfaffian induces a
bijection

pf� WH
1.��;SLƒ.Fv// '�! f˙1g:

Proof. If follows from Proposition 5.2 that H 1.��;GLƒ.Fv// is trivial. The
cohomological diagram for symplectic involutions (see Proposition 2.8) collapses
to

f˙1g
ı

����! H 1.��;SLƒ.Fv// ����! 1


 ??ypf�

f˙1g f˙1g:

Here we used that nrdƒ W GLƒ.Fv/! F �v is surjective, see [Reiner 2003, Theo-
rem (33.4)]. By Proposition 2.8 the morphism ı is injective, and thus bijective. �

Lemma 5.7. Let v 2 Ram1.D/. The canonical map

j� WH
1.��;SLƒ.Fv//!H 1.��;GLƒ.Fv//

is bijective.

Proof. In this case the reduced norm takes only positive values in FvŠR. Therefore
the cohomological diagram for symplectic involutions (Proposition 2.8) yields

1 ����! H 1.��;SLƒ.Fv//
j�
����! H 1.��;GLƒ.Fv//??ypf�

??ypf�

1 ����! f˙1g
'
����! R�=R�>0:

It follows directly from Corollary 2.9 that j� is surjective. Moreover, twisting the
upper row with cocycles for H 1.��;SLƒ.Fv// shows that j� is indeed injective.
For more details on twisting in nonabelian cohomology the reader may consult
[Serre 1994, Chapter I, §5.4]. Note that twisting an involution of symplectic type
gives an involution of symplectic type (see the remark on page 381). �

Lemma 5.8. Let v be a finite place and let pv � Ov be the prime ideal. For an
integer m � 0 we define Kv.m/ WD ker.G.Ov/! G.Ov=p

m
v //. Then the pfaffian

induces a bijection

pf� WH
1.��; Kv.m//

'
�!

�
f˙1g if � 1� 1 mod pmv ;

f1g otherwise.



396 STEFFEN KIONKE

Proof. We start with the special case m D 0; here Kv.m/ D SLƒ.Ov/. Here the
claim follows just as in the proof of Lemma 5.6 from Proposition 2.8, Corollary 5.3,
and the fact that the reduced norm nrdƒ W GLƒ.Ov/! O�v is onto [Reiner 2003,
Theorem (14.1) and Exercise 5 on page 152].

For m� 1 consider the short exact sequence of groups

1 �!Kv.m/ �! SLƒ.Ov/ �! SLƒ.Ov=pmv / �! 1:

Note that this sequence uses that the order ƒ, and hence the group scheme SLƒ, is
smooth by Lemma 5.1. We obtain a long exact sequence of pointed sets

G�
�

.Ov/
�
�!G�

�

.Ov=p
m
v /

ı
�!H 1.��; Kv.m//

jm
�!H 1.��; G.Ov//:

It follows from the remark on page 379 that the fixed point group G�
�

is just the
group scheme G.ƒ; �/ defined in Section 2C. Since the group scheme G.ƒ; �/ is
smooth (Proposition 2.6), the canonical map � is surjective, and so ı is trivial. Via
twisting (see the remark on page 381) we obtain that jm is injective.

We use that the pfaffian is a morphism of schemes defined over O (as explained in
Section 2D1). Given a cocycle b 2Z1.��; Kv.m//, we have pf� .b/� 1 mod pmv .
Consequently, if 1 and�1 are not congruent modulo pmv , thenH 1.��; Kv.m//Df1g

and the claim follows.
Assume now that �1� 1 mod pmv . Then the matrix diag.�1; 1; : : : ; 1/ lies in

Kv.m/ and has pfaffian �1 (see Section 5B3). �

For a real place v 2 V1 we denote the associated embedding F ! R by �v.
Define

F �D D fx 2 F
�
j �v.x/ > 0 for all v 2 Ram1.D/g:

By the Hasse–Schilling–Maass theorem [Reiner 2003, Theorem (33.15)] the image
of the reduced norm nrdA W A�! F � is F �D .

Lemma 5.9. Assume that Ram1.D/ is not empty. Then the canonical morphism
of pointed sets

j� WH
1.��;SLƒ.F // �!H 1.��;GLƒ.F //

is injective. The image consists of precisely those classes x 2 H 1.��;GLƒ.F //
which satisfy pf� .x/D˙1 �F

�
D .

If otherwise D splits at every real place, then the pfaffian induces a bijection

pf� WH
1.��;SLƒ.F // '�! f˙1g:

Proof. Assume that Ram1.D/ is empty. By the Hasse–Schilling–Maass theorem
the reduced norm GLƒ.F /! F � is surjective and the second assertion follows as
in Lemma 5.6.
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Now we assume that Ram1.D/ is not empty. The image of the reduced norm
nrdA W A�! F � is F �D . Note that F �D cannot contain the element �1 since
Ram1.D/ is not empty. Consider the cohomological diagram for symplectic
involutions (Proposition 2.8)

1 ����! H 1.��;SLƒ.F //
j�
����! H 1.��;GLƒ.F //??ypf�

??ypf�

1 ����! f˙1g ����! F �=F �D :

Twisting shows that the map j� is injective. The assertion about the image of j�
follows immediately from Corollary 2.9. �

Remark. Assume that Ram1.D/ is not empty. Let x 2 H 1.��;GLƒ.F // be a
cohomology class. For every place v 2 Ram1.D/ the class x considered as a class
in H 1.��;GLƒ.Fv// has a local signature .pv; qv/. Then according to Lemma 5.9
the class x lies in the image of j� if and only if

qv � qw mod 2

for every pair of places v;w 2 Ram1.D/. This means that either all qv are even
or all qv are odd.

Theorem 5.10. Let Kf D
Q
v2Vf

Kv � G.Af / be the open compact subgroup
associated with the congruence subgroup �.a/ (see Section 5A3). Consider the
set H1.��/ (see the beginning of Section 5B). The projection � W H1.��/ !

H 1.��; G.F // is injective and there is a short exact sequence of pointed sets

1 �!H1.��/
�
�!H 1.��; G.F //

pf�
�! f˙1g �! 1:

Proof. Consider the nonabelian cohomology set H 1.��; K1Kf /, which agrees
with the direct product H 1.��; K1/�H

1.��; Kf /. The canonical map

H 1.��; K1/!H 1.��; G1/

is bijective (see [An and Wang 2008] or [Rohlfs 1981, Lemma 1.4]). Moreover, for
every finite place v 2 Vf the group Kv is of the form

Kv.m/D ker.G.Ov/!G.Ov=p
m
v //

for some integer m. It follows from Lemma 5.8 that the inclusion Kv ! G.Fv/

induces an injection H 1.��; Kv/!H 1.��; G.Fv//. Therefore the canonical map
H 1.��; K1Kf /!H 1.��; G.A// is injective and we conclude that the projection
� WH1.��/!H 1.��; G.F // is injective.

Moreover, it follows from the considerations on diagonal matrices in Section 5B3
that the pfaffian pf� WH

1.��; G.F //! f˙1g is surjective.
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It remains to understand the image of � . Since �.a/ is (by assumption) torsion-
free, we know that �1 is not congruent to 1 modulo a. In particular there is a
prime ideal p which divides a, say e D �p.a/, such that 1 and �1 are not congruent
modulo pe . Let v 2 Vf be the finite place associated with p, then Kv DKv.e/ and
H 1.��; Kv/ D f1g by Lemma 5.8. Let 
 2 H 1.��; G.F // be in the image of � ,
say .x; 
/ is the inverse image in H1.��/. Let xv be the projection of the class x to
H 1.��; Kv/. Since x and 
 have the same image in H 1.��; G.A//, we can deduce
that pf� .
/D pf� .xv/D 1.

Conversely, given 
 2H 1.��; G.F // in the kernel of the pfaffian, then 
 lies in
the image of � . Let c1 2H 1.��; K1/ be a cohomology class such that c1 and 

define the same class inH 1.��; G1/. Let 1f denote the trivial class inH 1.��; Kf /,
then the triple .c1; 1f ; 
/ is a class in H1.��/ which is mapped to 
 by � . �

5C. The fixed point groups. Up to Section 5C6 the number field F is assumed to
be totally real.

Definition. Let R be a commutative O-algebra (for example Ov or Fv). For every
cocycle 
 inZ1.��; G.R// theR-group schemeG.
/ of ��j
 -fixed points is defined
by

G.
/.C / WD fg 2G.C/ j g D ��j
gg

for any commutative R-algebra C . Recall that the 
-twisted ��-action is given
by ��j
g D 
 �

�

g
�1.

We define the symplectic group Spn over Z by

Spn.R/ WD fg 2 GL2n.R/ j gTJg D J g;

for every commutative ring R, where J is the standard symplectic matrix

J D

�
0n 1n
�1n 0n

�
:

Note that in this notation Spn is of rank n, but consists of matrices of size 2n� 2n.
Given a cocycle 
 2Z1.��; G.O//, we want to understand the associated group

scheme G.
/. In particular we want to calculate the Euler characteristic of con-
gruence subgroups of this group. We start with some basic observations and
afterwards we collect all the ingredients necessary for an application of the adelic
Euler characteristic formula (Theorem 3.3).

Remark. If 
 2Z1.��; G.O// then G.
/DG.ƒ; � j
/ in the notation of Section
2C. The reason for this identity is that G.ƒ; � j
/ is always a closed subscheme of
SLƒ, that is, all elements have reduced norm one (see the remark on page 379).
Here � j
 is the 
 -twisted involution on A (see the remark on page 381). Recall that
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� j
 is of symplectic type, and that twisting and the operation � commute, that is
.� j
/� D ��j
 .

Lemma 5.11. For every 
 2Z1.��; G.O// the group scheme G.
/ is smooth.

Proof. By Lemma 5.1 the order ƒ is �-smooth. The remark on page 381 im-
plies further that ƒ is .� j
/-smooth as well, and thus Proposition 2.6 yields that
G.
/DG.ƒ; � j
/ is smooth. �

Lemma 5.12. Let R be a commutative O-algebra. Suppose the two cocycles 
; 
 0 2
Z1.��; G.R// define the same class in H 1.��;GLƒ.R//. Then G.
/ and G.
 0/
are isomorphic as group schemes over R.

Proof. There is c 2GLƒ.R/ satisfying 
 0 D c
 �c. We define a morphism of group
schemes f WG.
/!G.
 0/ by

fC W g 7! cgc�1

for every commutative R-algebra C and all g 2G.
/.C /. This map is well-defined:

��j
 0.cgc�1/D 
 0 �
�

c �
�

g �
�

c�1
 0�1 D c
 �
�

g
�1c�1 D cgc�1:

Obviously the inverse map of f is given by g 7! c�1gc, so f is an isomorphism. �

Corollary 5.13. Let 
 2 Z1.��; G.O// be a cocycle, and let R be a commutative
O-algebra with H 1.��;GLƒ.R// D f1g. There is an isomorphism of R-group
schemes

G.
/�OR
'
�!G.1/�OR:

In particular, this holds if RD Ov for v 2 Vf (see Corollary 5.3).
Moreover, if k is a splitting field of D, then G.
/ �O k is isomorphic to the

symplectic group Spn �Zk defined over k.

Proof. The first part follows immediately from Lemma 5.12. For the second
assertion note that we can choose a splitting ' WA˝k!M2n.k/ such that '.�.x//
equals J'.x/T J�1, where J denotes the standard symplectic matrix. �

5C1. The associated real Lie groups. Let 
 2Z1.��; G.O// be a cocycle. Consider
the real Lie group

G.
/1 D
Y
v2V1

G.
/.Fv/

associated with the group G.
/.

Lemma 5.14. Let 
 2Z1.��; G.O// be a cocycle and let v 2 Ram1.D/ be a real
ramified place. If the class of 
 in H 1.��; G.Fv// has signature .p; q/, then there
is an isomorphism of real Lie groups

G.
/.Fv/
'
�! Sp.p; q/:
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Here Sp.p; q/ is the real Lie group defined by

Sp.p; q/ WD fg 2 GLn.H/ j gT Ip;qg D Ip;qg:

Proof. This follows from Lemma 5.12 and the description of the cohomology set
H 1.��;GLƒ.Fv// in Proposition 5.2. �

For a real ramified place v 2 Ram1.D/, let .pv; qv/ denote the local signature
of the cohomology class of 
 in H 1.��; G.Fv//. It follows from Corollary 5.13
and Lemma 5.14 that there is an isomorphism of real Lie groups

G.
/1
'
�! Spn.R/

s
�

Y
v2Ram1.D/

Sp.pv; qv/:

Here s denotes the number of real places of F which split D. Note that G.
/1 is
connected and semisimple. The real Lie algebra g.
/1 of G.
/1 is isomorphic to

g.
/1 Š sp.n;R/s˚
M

v2Ram1.D/

sp.pv; qv/:

Recall that every maximal compact subgroup of the real Lie group Spn.R/ is
isomorphic to the unitary group U.n/.

Consider the group Sp.n/ WD Sp.n; 0/. One can check that this is a compact
connected semisimple real Lie group [Knapp 2002, page 111]. Moreover, it is a
maximal compact subgroup of the special linear group SLn.H/.

Let p; q � 0 be integers with pC q D n. The Lie group Sp.p; q/ is connected
and semisimple [Knapp 2002, Proposition 1.145], and the compact subgroup
Sp.p/�Sp.q/ is a maximal compact subgroup. Given any maximal compact
subgroup K.
/1 �G.
/1, we obtain an isomorphism of Lie groups

K.
/1
'
�! U.n/s �

Y
v2Ram1.D/

Sp.pv/�Sp.qv/:

5C2. The symmetric space. Consider the associated Riemannian symmetric space
X.
/ defined as X.
/ WDK.
/1nG.
/1. We have dimG.
/D n.2nC 1/, thus

dimG.
/1 D n.2nC 1/ŒF WQ�:

The dimension of the unitary group U.n/ is n2 and consequently

dimK.
/1 D sn
2
C

X
v2Ram1.D/

pv.2pvC 1/C qv.2qvC 1/:

Subtraction of both dimensions yields an obviously even number:

dimX.
/D sn.nC 1/C
X

v2Ram1.D/

4pvqv:
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5C3. Lie algebras and complexifications. We complexify the Lie algebra g.
/1
and we obtain an isomorphism

g.
/1˝R CŠ sp.n;C/ŒF WQ�:

The rank of this complex semisimple Lie algebra is rk.g.
/1;C/D nŒF WQ�. Let
k.
/1 denote the Lie algebra of the maximal compact subgroup K.
/1. The
complexification of this Lie algebra is isomorphic to

k.
/1˝R CŠ gl.n;C/s˚
M

v2Ram1.D/

sp.pv;C/˚ sp.qv;C/:

The rank of k.
/1;C is snC
P
v2Ram1.D/ pv C qv D nŒF W Q�. Thus the com-

plexified Lie algebras g.
/1;C and k.
/1;C have equal rank. The Weyl groups of
these complex reductive Lie algebras are well known; in particular,

and

jW.g.
/1;C/j D .2
nnŠ/ŒF WQ�

jW.k.
/1;C/j D .nŠ/
s

Y
v2Ram1.D/

2pvpvŠ � 2
qvqvŠ;

as can be found in [Humphreys 1972, page 66]. The quotient of the cardinalities of
the two Weyl groups is given by

jW.g.
/1;C/j

jW.k.
/1;C/j
D 2ns

Y
v2Ram1.D/

�
n
pv

�
:

Remark. The linear algebraicF -groupG.
/�OF is an inner form of the symplectic
group Spn; in particular it is a semisimple and simply connected group. Further
this implies that the Tamagawa number �.G.
// is equal to one [Kottwitz 1988].

5C4. The metric formB . Recall that the Lie algebra ofG.
/ is a functor Lie.G.
//
which assigns to a commutative O-algebra C the C -Lie algebra

Lie.G.
//.C /D fx 2 .ƒ˝O C/
�
j .� j
/.x/D�xg:

For simplicity we write g.
/C instead of Lie.G.
//.C /.
Consider the nondegenerate form B W g.
/F �g.
/F !F defined by B.x; y/ WD

�
1
2

trdA.xy/. Let � WF!C be an embedding ofF into the field of complex numbers.
The central simple algebra ADMn.D/ splits over C and we can choose a splitting
A!M2n.C/ such that � j
 is the standard symplectic involution. Via this splitting
the Lie algebra g.
/C is isomorphic to the complex semisimple Lie algebra sp.n;C/.

Proposition 5.15. Consider the compact Lie group Sp.n/ and its Lie algebra

sp.n/ WD fx 2Mn.H/ j x
T
C x D 0g;
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and the positive definite R-bilinear form B.x; y/ WD �1
2

trd.xy/ on sp.n/. With
respect to the right-invariant Riemann metric induced by B , the group Sp.n/ has
the volume

volB.Sp.n//D
nY

jD1

.2�/2j

2 � .2j � 1/Š
:

Proof. The C-linear extension of B to sp.n;C/ is given by B.x; y/D�1
2

Tr.xy/.
Recall that the Killing form ˇ on sp.n;C/ is the form ˇ.x; y/D .2nC 2/Tr.xy/
[Helgason 1978, Chapter III, §8] and hence ˇ D�4.nC 1/B . We conclude

volˇ .Sp.n//D .4.nC 1//
n.2nC1/

2 volB.Sp.n//:

The assertion follows from Ono’s formula for the volume of a compact Lie group
with respect to the Killing form [Ono 1966, Equation 3.4.9], which yields

volˇ .Sp.n//D .4.nC 1//
n.2nC1/

2

nY
jD1

.2�/2j

2 � .2j � 1/Š
: �

5C5. The modulus factor. Consider the F -bilinear form B W g.
/F � g.
/F ! F

defined by B.x; y/ WD �1
2

trdA.xy/. In this paragraph we will calculate the global
modulus factorm.B/D

Q
v2Vf

m.B/v (see Section 3B2). Note thatƒ is in general
not a free O-module, therefore we have to work locally.

We start with the finite places v 2 Vf where D splits. The main observation
is this: we can assume that ƒ˝O Ov D M2n.Ov/ and that � j
 is the standard
symplectic involution. This follows from the next lemma.

Lemma 5.16. Let R be a complete discrete valuation ring with field of fractions k
of characteristic char.k/¤ 2. Let � be an involution of symplectic type on M2n.k/

and let ƒ�M2n.k/ be a maximal R-order which is � -stable.
There is an element g 2 GL2n.k/ such that

(i) gƒg�1 DM2n.R/, and

(ii) g�.x/g�1 D J.gxg�1/T J�1, where J is the standard symplectic matrix.

Proof. It follows from [Reiner 2003, Theorem (17.3)] that there is an invertible
matrix a 2 GL2n.k/ such that aƒa�1 DM2n.R/. Moreover, � is an involution
of symplectic type and we can consider int.a/ WM2n.k/!M2n.k/ as a splitting
of the central simple k-algebra M2n.k/. There is a matrix h 2 GL2n.k/ such that
hT D�h and int.a/.�.x//D h.int.a/.x//T h�1 for every x 2M2n.k/.

Becauseƒ is � -stable, hM2n.R/h
�1DM2n.R/. After multiplication with some

power of the prime element in R, we can assume h 2 GL2n.R/. On a free module
over a complete discrete valuation ring, there is only one regular symplectic form
up to isogeny (since char.k/¤ 2); this means that there is b 2 GL2n.R/ such that
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bhbT D J . Finally, we define g WD ba and observe that

g�.x/g�1Dbh.axa�1/Th�1b�1DJ.b�1/T .axa�1/T bTJ�1DJ.gxg�1/TJ�1

for every x 2M2n.k/. �

Corollary 5.17. Let 
 2Z1.��; G.O// be a cocycle and let v 2 Vf be a finite place
of F which splits D. There is an isomorphism of group schemes over Ov:

G.
/�O Ov
'
�! Spn �ZOv:

Proof. This follows directly from the previous lemma since � j
 is an involution of
symplectic type. �

Proposition 5.18. Let v 2Vf be a finite place which splitsD. Consider the bilinear
form B W g.
/F �g.
/F !F defined by B.x; y/D�1

2
trd.xy/. The local modulus

factor (see Section 3B2) is
m.B/v D j2j

�n
v :

Proof. By Corollary 5.17 we can assume G.
/D Spn over Ov. This means

g.
/Ov D sp.n;Ov/D fx 2M2n.Ov/ j x
TJ CJx D 0g:

Note that the form B is given by the analogous formula B.x; y/ D �1
2

Tr.xy/.
Recall that the elements of sp.n;Ov/ are matrices of the form�

a b

c �aT

�
with a; b; c 2Mn.Ov/, where b and c are symmetric matrices. Let Es;t denote the
elementary 2n� 2n matrix with exactly one entry 1 in position .s; t/. We choose
an Ov-basis of sp.n;Ov/ which is made up of the following elements:

(i) ai;j WDEi;j �EjCn;iCn for all i; j 2 f1; : : : ; ng,

(ii) bi;j WDEi;jCnCEj;iCn for all 1� i < j � n,

(iii) ci;j WDEiCn;j CEjCn;i for all 1� i < j � n, and

(iv) bi WDEi;iCn and ci WDEiCn;i for all i 2 f1; : : : ; ng.

We evaluate the form B on all the basis vectors.
It is easy to observe that

0D B.ai;j ; ck;l/D B.ai;j ; bk;l/D B.ai;j ; bk/D B.ai;j ; ck/

D B.ci;j ; ck;l/D B.bi;j ; bk;l/D B.ci ; cj /D B.bi ; bj /:

for all i; j; k; l . Moreover, one readily verifies that B.bi;j ; ck/D B.ci;j ; bk/D 0
for all i; j; k. The remaining cases yield

� B.ai;j ; ak;l/D�ıj;kıi;l for all i; j; k; l 2 f1; : : : ; ng,
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� B.bi;j ; ck;l/D�ıi;kıj;l for all i < j � n and k < l � n, and

� B.bi ; cj /D�
1
2
ıi;j for all i; j 2 f1; : : : ; ng.

Using these results, we are able to calculate the modulus factor and obtain

m.B/v D

ˇ̌̌̌
det

�
0 �1

2

�
1
2

0

�ˇ̌̌̌n=2
v

D j2j�nv : �

Proposition 5.19. Let v 2 Ramf .D/ be a finite ramified place and p � O be the
associated prime ideal. The local modulus factor for the groupG.
/ and the formB
defined in Section 5C4 is

m.B/v D j2j
�n
v N.p/�n.nC1/=2:

Proof. The Fv-algebra Dv WDD˝F Fv is the unique quaternion division algebra
over Fv and � WDƒD˝O Ov is the unique maximal order in Dv.

Set H WDG.1/�Ov. Due to Corollary 5.13 we can assume that 
 D 1, that is,
G.
/�Ov is isomorphic to H . We define

h WD Lie.H/.Ov/D fx 2Mn.�/ j �.x/D�xg:

Recall that �.x/D xT.
Take an Ov-basis v0; v1; v2; v3 of� such that trdD.v0/D 1 and trdD.vi /D 0 for

i D 1; 2; 3. Such a basis exists since trdD W�! Ov is surjective (maximal orders
are smooth; see Proposition 2.4). We construct an Ov-basis of the Lie algebra h,
consisting of the following elements:

(i) as;i WD vsEi;i for all s 2 f1; 2; 3g and i 2 f1; : : : ; ng, and

(ii) bs;i;j WD vsEi;j �vsEj;i for all s 2 f0; 1; 2; 3g and i; j 2 f1; : : : ; ng with i < j .

We calculate the form B on all basis vectors. Observe that B.as;i ; bt;k;l/D 0 for
all s; t; i; k; l . Moreover, for s; t 2 f1; 2; 3g and i; j 2 f1; : : : ; ng we find

B.as;i ; at;j /D�
1
2

trd.vsEi;ivtEj;j /D�12ıi;j trdD.vsvt /:

Finally, let s; t 2 f0; 1; 2; 3g and let i; j; k; l 2 f1; : : : ; ng with i < j and k < l . We
obtain

B.bs;i;j ; bt;k;l/D
1
2

trdD.vsvt C vsv t /ıi;kıj;l D trdD.vsv t /ıi;kıj;l :

Summing up we obtain a formula for the modulus factor

(3) m.B/2v D
ˇ̌
1
8

det.trd.vsvt //s;tD1;2;3
ˇ̌n
v
�
ˇ̌
det.trd.vsv t //s;tD0;1;2;3

ˇ̌n.n�1/=2
v

Since the elements v0; v1; v2; v3 form an Ov-basis of � as well, we see that the
second term j det.trd.vsv t //s;tD0;1;2;3jv is the valuation of the discriminant of �.
It is known that the discriminant of � is p2v [Reiner 2003, Theorem (14.9)].
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To calculate the first term in (3) we consider w0 WD 1 and we define ws D vs
for s D 1; 2; 3. Note that w0; w1; w2; w3 is in general not an Ov-basis of � since
trdD.1/D 2 need not be a unit in Ov. We can write

w0 D 1D r0v0C r1v1C r2v2C r3v3

for certain r0; r1; r2; r3 in Ov . Applying the reduced trace we get 2D trdD.1/D r0.
Furthermore, this implies that the matrix .trd.wswt //s;tD0;1;2;3 can be written as a
product of matrices0BB@

2 r1 r2 r3
0 1 0 0

0 0 1 0

0 0 0 1

1CCA .trd.vivj //i;jD0;1;2;3
0BB@
2 0 0 0

r1 1 0 0

r2 0 1 0

r3 0 0 1

1CCA :
Note that

.trd.wswt //s;tD0;1;2;3 D

0BB@
2 0 0 0

0 trd.v1v1/ trd.v1v2/ trd.v1v3/
0 trd.v2v1/ trd.v2v2/ trd.v2v3/
0 trd.v3v1/ trd.v3v2/ trd.v3v3/

1CCA :
We deduce that j det.trd.vsvt //s;tD1;2;3jv D j2jv N.p/�2. In total the local modulus
factor is

m.B/v D j2j
�n
v N.p/�n�n.n�1/=2 D j2j�nv N.p/�n.nC1/=2: �

Corollary 5.20. Let 
 2 Z1.��; G.O// be a cocycle. The global modulus factor
m.B/ for the group G.
/ with respect to the form B defined in Section 5C4 is

m.B/D 2nŒF WQ�.�1/rn.nC1/=2�rd.D/
�n.nC1/=2;

where �rd.D/ denotes the signed reduced discriminant of D (see the definition on
page 390).

Proof. By Proposition 5.18, Proposition 5.19, and an application of the product
formula we obtain

m.B/D
Y
v2Vf

j2j�nv

Y
p2Ramf .D/

N.p/�n.nC1/=2 D 2nŒF WQ�
Y

p2Ramf .D/

N.p/�n.nC1/=2:
�

5C6. The Euler characteristic of the fixed point groups. Let 
 2Z1.��; G.O// be
a cocycle. We are now able to compute the Euler characteristic of torsion-free arith-
metic subgroups of G.
/. In Theorem 5.21 we give a precise formula for principal
congruence subgroups. More general subgroups can be treated analogously.
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For Theorem 5.21 the number field F need not be totally real. Let a� O be a
proper ideal. For a finite place v 2 Vf we define Kv.
; a/ to be the kernel of the
reduction morphism G.
/.Ov/!G.
/.Ov=aOv/. Note that Kv.
; a/DG.
/.Ov/
for almost all places. The group

Kf .
; a/ WD
Y
v2Vf

Kv.
; a/

is an open compact subgroup of the locally compact groupG.
/.Af /. This subgroup
is given by a local datum .U; ˛/ (see Section 3B3). Let v 2 Vf be a finite place and
let p be the associated prime ideal. Let eD �p.a/ be the exponent of p in a. We have
˛vD1 andUvDG.
/.O=p/ if eD0, otherwise ˛vDe andUvDf1g�G.
/.O=pe/.

LetG.
/1D
Q
v2V1

G.
/.Fv/ and letK.
/1�G.
/1 be a maximal compact
subgroup. For every real ramified place v2Ram1.D/we denote the local signature
of the class of 
 in H 1.��; G.Fv// by .pv; qv/ (see the definition on page 393).

Theorem 5.21. Assume that G.
/.F / acts freely on K.
/1Kf .
; a/nG.
/.A/.
The Euler characteristic of the double quotient space

S.a/ WDK.
/1Kf .
; a/nG.
/.A/=G.
/.F /

is nonzero if and only if F is totally real. In this case the following formula holds:

�.S.a//D 2�nr N.a/n.2nC1/�rd.D/
n.nC1/=2

Y
v2Ram1.D/

�
n
pv

� nY
jD1

M.j; a;D/;

where M.j; a;D/ is defined as

M.j; a;D/ WD �F .1� 2j /
Y
pja

�
1�N.p/�2j

� Y
p2Ramf .D/

p−a

�
1C .�N.p//�j

�
:

Here r is the number of real places of F where D is ramified. The sign of �.S.a//
is .�1/sn.nC1/=2, where s denotes the number of real places where D splits.

Proof. It follows from the remark on page 384 that the Euler characteristic vanishes
whenever F has a complex place. Therefore we may assume that F is totally real.
We want to apply the adelic Euler characteristic formula (Theorem 3.3). We know
thatG.
/ is a smooth group scheme over O (see Lemma 5.11). FurtherG�OF is an
inner form of the symplectic group, and is thus a semisimple and simply connected
algebraic group of dimension d D n.2nC 1/ (see the remark on page 401). Note
further that by assumption G.
/.F / acts freely on K.
/1Kf .
; a/nG.
/.A/.

Moreover, we observe that dimX.
/ is even (see Section 5C2) and that the com-
plexified Lie algebras k.
/1˝C and g.
/1;C have equal rank (see Section 5C3).
We conclude that the Euler characteristic does not vanish and Theorem 3.3 applies.
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We fix the nondegenerate bilinear form B W g.
/F � g.
/F ! F defined, as
above, by B.x; y/ WD �1

2
trdA.xy/. It is easy to see that the compact dual group

G.
/u of G.
/1 is isomorphic to Sp.n/ŒF WQ�. Note further that B is given by the
same formula on each factor of the compact dual group. Therefore the volume is

volB.G.
/u/D
� nY
jD1

.2�/2j

2 � .2j � 1/Š

�ŒF WQ�
according to Proposition 5.15. Using the global modulus factor, calculated in
Corollary 5.20, and the quotient of the orders of the involved Weyl groups, derived
in Section 5C3, the adelic formula yields

(4) �.S.a//D .�1/ŒF WQ�n.nC1/=2jdF j
d=22ns

Y
v2Ram1.D/

�
n
pv

�

�

� nY
jD1

2 � .2j � 1/Š

.2�/2j

�ŒF WQ�
2�nŒF WQ��rd.D/

n.nC1/=2
Y
p2Vf

N.p/d˛p

jUpj
:

Here s denotes the number of real places of F which split D. The only terms
that can be negative are .�1/ŒF WQ�n.nC1/=2 and the signed reduced discriminant.
Consequently, the sign of the Euler characteristic is .�1/sn.nC1/=2.

Let v 2 Vf be a finite place with associated prime ideal p and consider N.p/d˛p
jUpj

.

Case (a): D splits at v and p does not divide a. In this case ˛p D 1 and Up D

G.
/.O=p/. Since G.
/ is isomorphic to Spn over Ov (see Corollary 5.17), there
is an isomorphism of finite groups G.
/.O=p/Š Spn.O=p/. From [Wilson 2009,
Section 3.5] we deduce that

ˇ̌
G.
/.O=p/

ˇ̌
D N.p/d

nY
jD1

�
1�N.p/�2j

�
:

Case (b): D is ramified at v and p does not divide a. In this situation we have ˛pD 1
and Up D G.
/.O=p/. Let k D O=p be the finite residue class field and let `=k
be the unique quadratic extension. It is an easy exercise to show that G.
/.O=p/
is isomorphic to a semidirect product U.`=k/ËSymn.`/, where U.`=k/ denotes
the unitary group of the quadratic extension `=k and Symn.`/ denotes the abelian
group of symmetric .n�n/-matrices with entries in `. Therefore (using [Wilson
2009, Section 3.6]) we get

jG.
/.O=p/j D N.p/d
nY

jD1

�
1� .�N.p//�j

�
:



408 STEFFEN KIONKE

Case (c): p divides a. In this case ˛v D �p.a/ and jUpj D 1. Consequently,

N.p/d˛p

jUpj
DN.p/d�p.a/:

The product of these terms is

Y
p2Vf

N.p/d˛p

jUpj
DN.a/d

nY
jD1

�
�F .2j /

Y
pja

�
1�N.p/�2j

� Y
p2Ramf .D/

p−a

�
1C.�N.p//�j

��
:

Here �F denotes the zeta function of the number field F .
Note that d D n.2nC1/D

Pn
jD1 4j �1 and so jdF jd=2D

Qn
jD1 jdF j

.4j�1/=2.
The functional equation of the zeta function of the totally real number field F [Weil
1995, Chapter VII §6, Theorem 3] yields

�F .2j /jdF j
.4j�1/=2

�
2 � .2j � 1/Š

.2�/2j

�ŒF WQ�
D .�1/j ŒF WQ��F .1� 2j /

for every integer j � 1. Using this we see that

jdF j
d=2

� nY
jD1

2 � .2j � 1/Š

.2�/2j

�ŒF WQ� nY
jD1

�F .2j /D.�1/
ŒF WQ�n.nC1/=2

nY
jD1

�F .1�2j /:

Substitute this into (4); then a simple calculation proves the claim. �

5D. Proof of the main theorem. The notation and assumptions are those of the
introduction. As usual F denotes an algebraic number field and O denotes its ring
of integers. Let D be a quaternion algebra defined over F and let ƒD �D be a
maximal O-order. Let n� 1 be an integer; we consider the central simple F -algebra
A DMn.D/ and the maximal O-order ƒ DMn.ƒD/. Further G WD SLƒ is the
smooth O-group scheme defined as the kernel of the reduced norm over the order ƒ
(see the first definition on page 376).

We say that the quaternion algebra D over F is totally definite if F is totally
real and D ramifies at every real place of F .

The algebraic group G �O F has strong approximation since it is an F -simple,
simply connected group andG1ŠSL2n.R/s�SLn.H/r�SL2n.C/t is not compact.
Since the group SL1.H/ is compact, we need the assumption that n � 2 if D is
totally definite.

Let K1 �G1 be a ��-stable maximal compact subgroup. Further, let Kf be
the open compact subgroup of G.Af /, which satisfies �.a/DKf \G.F / (see
Section 5A3). Since �.a/ is torsion-free and ��-stable, we can apply Theorem 4.2
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and we obtain

(5) L.��; �.a/;W /D
X

�2H1.��/

�.#�1.�//Tr.��jW.
�//:

Here 
� is any representative of the H 1.��; G.F // component of � and

# W
�
K1KfnG.A/=G.F /

���
!H1.��/

is the surjective continuous map defined in Section 4.
By Theorem 5.10 the projection � WH1.��/!H 1.��; G.F // is injective and

there is an exact sequence of pointed sets

(6) 1 �!H1.��/
�
�!H 1.��; G.F //

pf�
�! f˙1g �! 1:

We deduce that, given a class �2H1.��/, every representative 
� 2�.�/ has pfaffian
one, and hence they all describe the trivial class in H 1.��; G.F //. Thus there is
some g 2G.F / such that 
� D g�1 �

�

g. It follows that Tr.��jW.
�//D Tr.��jW /
since ��j
� D �.g/�1 ı ��ı �.g/ on W .

As a next step we describe the fixed point components. Let � 2H1.��/. Using
strong approximation we can choose representing cocycles k� in Z1.��; K1Kf /
and 
� in Z1.��; �.a//, and an element a1 2G1 such that

�D .Œk��; Œ
��/ and ��a1 D k
�1
� a1
�:

We write k� D k1k0 with k1 2K1 and k0 2Kf . Note that k0 D 
� considered
as elements in G.Af /. By Lemma 4.1 there is a homeomorphism

#�1.�/ '�! .a�11 K
��jk1
1 a1/Kf .
�; a/nG.
�/.A/=G.
�/.F /:

In fact .a�11 K
��jk1
1 a1/ is a maximal compact subgroup of G.
�/1.

Let v 2 Ram1.D/ and let .pv; qv/ denote the local signature of 
� at v. By
Theorem 5.21 the Euler characteristic of the fixed point component is zero if F has
a complex place. If F is totally real, which we assume from now on, then

�.#�1.�//D 2�nr N.a/n.2nC1/�rd.D/
n.nC1/=2

Y
v2Ram1.D/

�
n
pv

� nY
jD1

M.j; a;D/:

The short exact sequence (6), in combination with the Hasse principle and
Lemma 5.9, shows that the map which takes cocycles to their local signatures
induces a bijection

H1.��/ '�!
Y

v2Ram1.D/

f.pv; qv/ j pvC qv D n and qv is eveng:
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The following identity can be easily verified:

X
�2H1.��/

Y
v2Ram1.D/

�
n
qv

�
D

Œn
2
�X

u1;:::;urD0

rY
iD1

�
n
2ui

�
D 2r.n�1/:

As a final step we substitute all results in formula (5) and observe:

L.��; �.a/;W /D 2�r N.a/n.2nC1/�rd.D/
n.nC1/=2 Tr.��jW /

nY
jD1

M.j; a;D/:

Note that the Lefschetz number is nonzero precisely when F is totally real and
Tr.��jW / does not vanish.

5E. The growth of the total Betti number. There are many recent results on the
asymptotic behaviour of Betti numbers of arithmetic groups. Most of these results
are upper bound results — a strong asymptotic upper bound was obtained by Calegari
and Emerton [2009]. However, there are no strong lower bound results. It seems that
the only available lower bound results are nonvanishing results for certain degrees
in the cohomology. Indeed, there is a geometric method to construct cohomology
classes in a given degree for cocompact arithmetic groups. This method originated
from the work of Millson and Raghunathan [1981] and has been further elaborated
by Rohlfs and Schwermer [1993]. Another result that can be interpreted as a result
on lower bounds has been obtained by Venkataramana [2008]. In this last section
we prove Corollary 1.1 to show that Lefschetz numbers provide asymptotic lower
bounds for the total Betti number. The only remaining step is to relate the Lefschetz
number to the index of the congruence subgroup �.a/. Let F be a totally real
number field. If D is totally definite we assume n � 2 such that G D SLƒ has
strong approximation.

Lemma 5.22. The index ŒG.O/ W �.a/� of �.a/ in G.O/ is

N.a/4n
2�1

Y
p2Ramf .D/

p−a

� 2nY
jD2

�
1�N.p/�j

�� Y
p2Ramf .D/

pja

��
1CN.p/�1

� nY
jD2

�
1�N.p/�2j

��
:

In particular, the term ŒG.O/ W �.a/�N.a/�4n
2C1 is bounded from above and from

below independent of a,

2nY
jD2

�F .j /
�1
� ŒG.O/ W �.a/�N.a/�4n

2C1

�

Y
p2Ramf .D/

�
1CN.p/�1

�
:
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Proof. Using the smoothness of the group scheme combined with strong approxi-
mation, there is a short exact sequence of groups

1 �! �.a/ �!G.O/ �!G.O=a/ �! 1;

from which we deduce ŒG.O/ W �.a/�D
Q

pja jG.Op=aOp/j. Let p be a prime ideal
which divides a, say �p.a/D e � 1. Then Op=aOp Š Op=p

eOp and it follows from
the smoothness of G that

jG.Op=p
eOp/j D N.p/.e�1/d jG.Op=pOp/j;

where d is the dimension of the group G �O F (use [Oesterlé 1984, Section I.2.1]).
The dimension of G is d D 4n2� 1.

If p 2 Ramf .D/, then one can show that

jG.Op=pOp/j D N.p/4n
2�1

�
1CN.p/�1

� nY
jD2

�
1�N.p/�2j

�
:

If otherwise p … Ramf .D/, then G �O Op is isomorphic to the special linear
group SL2n. We deduce that

jG.Op=pOp/j D N.p/4n
2�1

2nY
jD2

�
1�N.p/�j

�
;

due to [Wilson 2009, Section 3.3.1]. Now the assertions can be readily verified. �

Proof of Corollary 1.1. Since �0.a/ is a subgroup of finite index in �.a/, we obtain
from [Serre 1979, Chapter VII, Proposition 6] that bi .�.a//� bi .�0.a//. It follows
directly from the main theorem that there is a positive real number b > 0, depending
on F , D and n, such that

bN.a/n.2nC1/ � jL.��; �.a/;C/j

for every ideal a�O that makes�.a/ torsion-free. SinceB.�.a//�jL.��; �.a/;C/j,
it follows from Lemma 5.22 that

B.�.a//� aŒG.O/ W �.a/�
n.2nC1/

4n2�1

for some a > 0 depending on F , D and n. We obtain

B.�0.a//� aŒG.O/ W �.a/�
n.2nC1/

4n2�1 � aŒG.O/\�0 W �0.a/�
n.2nC1/

4n2�1

D a
�
Œ�0 WG.O/\�0�

�1Œ�0 W �0.a/�
�n.2nC1/
4n2�1 :

We define � D aŒ�0 WG.O/\�0�
�
n.2nC1/

4n2�1 . �
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CATEGORIFICATION OF A PARABOLIC HECKE MODULE
VIA SHEAVES ON MOMENT GRAPHS

MARTINA LANINI

We investigate certain categories, associated by Fiebig with the geometric
representation of a Coxeter system, via sheaves on Bruhat graphs. We
modify Fiebig’s definition of translation functors in order to extend it to
the singular setting and use it to categorify a parabolic Hecke module. As
an application we obtain a combinatorial description of indecomposable
projective objects of (truncated) noncritical singular blocks of (a deformed
version of) category O, using indecomposable special modules over the struc-
ture algebra of the corresponding Bruhat graph.

1. Introduction

A typical problem in the representation theory of Kac–Moody algebras is to under-
stand the composition series of standard objects in the corresponding category O of
Bernstein, I. Gelfand and S. Gelfand [Bernstein et al. 1976]. In the case of a standard
object lying in a regular block, this question is the core of the Kazhdan–Lusztig
theory, and the answer is known to be given by the Kazhdan–Lusztig polynomials
evaluated at the identity. If we consider a singular block, we only have to replace
these polynomials by their parabolic analogue. In the case of a principal block,
this fact was conjectured in [Kazhdan and Lusztig 1979] and proved in several
steps in [Kazhdan and Lusztig 1980; Beilinson and Bernstein 1981; Brylinski
and Kashiwara 1980]. A fundamental role in the proof of the Kazhdan–Lusztig
conjecture was played by the geometric interpretation of the problem in terms of
perverse sheaves and intersection cohomology complexes. In particular, one could
study certain properties of the Hecke algebra in the category of equivariant perverse
sheaves on the corresponding flag variety.

An alternative way to attack the Kazhdan–Lusztig conjecture is via Soergel bi-
modules, which provide a combinatorial realisation of projective objects in category
O. The combinatorial description of indecomposable projective objects we present
in this paper is an analogue of the combinatorial construction of [Soergel 1990]
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(introduced at first for finite-dimensional Lie algebras). The Soergel bimodule
approach to the Kazhdan–Lusztig conjecture recently led to an algebraic proof of it
[Elias and Williamson 2014].

The procedure of considering a complicated object, such as a category, in order
to understand a simpler one is motivated by the fact that the extra structure can
provide us with new tools and allow us to prove and hopefully generalise certain
phenomena that are difficult to address directly.

Deodhar [1987] associated with any Coxeter system (W,S) and any subset of
the set of simple reflections J ⊆ S the parabolic Hecke module M J . The aim of
this paper is to give a categorification of this module for any J generating a finite
subgroup.

We have followed the definition of categorification of M J in [Mazorchuk and
Stroppel 2005, Remark 7.8], which is actually a weak categorification. This
could be strengthened to a proper categorification by presenting the result as a 2-
representation of some 2-category (see [Mazorchuk 2012, Sections 1–3] for various
levels of categorification and Remark 5.9 of this paper for a more precise statement).
In [Mazorchuk and Stroppel 2008], the authors properly categorify induced cell
modules (in the finite case), which is a huge step outside the parabolic Hecke
module (the latter being just a special case).

If W is a Weyl group, there is a partial flag variety Y corresponding to the set J ,
equipped with an action of a maximal torus T , and as for the regular case, one
possible categorification is given by the category of B-equivariant perverse sheaves
on Y . Our goal is to describe a general categorification, which can be defined also
in the case in which there is no geometry available. In order to do this, our main
tools will be Bruhat moment graphs and sheaves on them. We will see how these
objects come naturally into the picture.

Moment graphs appeared for the first time in [Goresky et al. 1998] as 1-skeletons
of actions of tori on complex algebraic varieties. In particular, Goresky, Kottwitz and
MacPherson were able to describe explicitly the equivariant cohomology of these
varieties using only the data encoded in the underlying moment graphs. Inspired by
this result, Braden and MacPherson [2001] could study the equivariant intersection
cohomology of a complex algebraic variety equipped with a Whitney stratification,
stable with respect to the torus action. In order to do so, they introduced the notion
of sheaves on moment graphs and, in particular, of canonical sheaves. We will
refer to this class of sheaves as Braden–MacPherson sheaves, or BMP sheaves.

Even if moment graphs arose originally from geometry, Fiebig [2008b] observed
that it is possible to give an axiomatic definition of them. In particular, he associated
a moment graph to any Coxeter datum (W,S, J ) as above and in the case of J =∅,
he used it to give an alternative construction of Soergel’s category of bimodules
associated to a reflection-faithful representation of (W,S) (see [Fiebig 2008b]).
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(We refer the reader to [Williamson 2011] for the singular version of Soergel’s
bimodules.) The indecomposable objects of the category defined by Fiebig are
precisely the BMP sheaves that, if W is a Weyl group, are related to the intersection
cohomology complexes, the simple objects in the category of perverse sheaves. A
fundamental step in Fiebig’s realisation of this category were translation functors,
whose definition we extend to the parabolic setting (see p. 426).

The paper is organised as follows:
In Section 2 we recall the definition of the parabolic Hecke module M J and

the fact that it is the unique free Z[v, v−1
]-module having rank |W/〈J 〉| equipped

with a certain structure of a module over the Hecke algebra H . This structure is
described in terms of the action of the Kazhdan–Lusztig basis elements H s , for
s ∈ S. Then by a categorification of M J (as in [Mazorchuk and Stroppel 2005,
Remark 7.8]) we mean a category C, which is exact in the sense of Quillen [1973],
together with an autoequivalence G and exact functors {Fs}s∈S that provide the
Grothendieck group [C] with the structure of a Z[v, v−1

]-module and H-module,
such that there exists an isomorphism from [C] to the parabolic module, satisfying
certain compatibility conditions with these functors coming from the defining
properties of M J (see definition on p. 420).

In the third section we introduce the objects we will be dealing with in the rest of
the paper. In particular, we review basic concepts of the theory of moment graphs
and sheaves on them.

Section 4 is about Z-graded modules over ZJ, the structure algebra of a parabolic
Bruhat graph. In particular for any s ∈ S, we define the translation functor sθ and
define the category HJ of special ZJ-modules. By definition, this category is stable
under the shift in degree that we denote by 〈 · 〉 and under sθ for all s ∈ S.

In Section 5 we study certain subquotients of objects in HJ , and this allows us
to define an exact structure on HJ and hence to state our main theorem:

Theorem 5.8. The category HJ special ZJ-modules together with the shift in degree
〈−1〉 and (shifted) translation functors is a categorification of the parabolic Hecke
module M J .

Section 6 is devoted to the proof of this theorem. First we show that sθ ◦〈1〉 is an
exact functor (Lemma 6.1). Secondly we define the character map h J

: [HJ
]→M J

and prove that the functors 〈−1〉 and sθ ◦〈1〉, s ∈S, satisfy the desired compatibility
condition (Proposition 6.2). We conclude then by showing that the character map
is an isomorphism of Z[v, v−1

]-modules (Lemma 6.3 and Lemma 6.6).
Section 7 is about the categorification of a certain injective map of H-modules

i : M J ↪→ H , which allows us to see the category HJ as a subcategory of H∅.
More precisely, we define an exact functor I :HJ

→H∅ such that the following
diagram commutes:
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[HJ
]

h J

��

� � [I ] // [H∅
]

h∅

��
M J � �

i
// H

In order to construct and investigate the functor I , we give a realisation of HJ via
BMP sheaves (Proposition 6.5) and then use Fiebig’s idea [2008b] of interchanging
global and local viewpoints.

In the last section we discuss briefly the relationship between HJ and noncritical
blocks of an equivariant version of category O for symmetrisable Kac–Moody
algebras. In particular, we show that the indecomposable projective objects of a
truncated, noncritical block OR,3≤ν are combinatorially described by indecompos-
able modules in HJ , with J depending on 3 (Proposition 8.3).

2. Hecke modules

Here we recall some classical constructions, following [Soergel 1997]. We close
the section by defining the concept of categorification of the parabolic Hecke
module M J .

Hecke algebra. The Hecke algebra associated to a Coxeter system (W,S) is noth-
ing but a quantisation of the group ring Z[W]. Let ≤ be the Bruhat order on W and
` :W→ Z be the length function associated to S. Denote by L := Z[v, v−1

] the
ring of Laurent polynomials in the variable v over Z.

Definition 2.1. The Hecke algebra H = H(W,S) is the free L-module having
basis {Hx | x ∈W}, subject to the following relations, for x ∈W, s ∈ S:

(1) Hs Hx =

{
Hsx if sx > s,
(v−1
− v)Hx + Hsx if sx < x,

It is well known that this defines an associative L-algebra [Humphreys 1990].
It is easy to verify that Hx is invertible for any x ∈ W, and this allows us to

define an involution on H , that is, the unique ring homomorphism · : H→ H such
that v = v−1 and H x = (Hx−1)−1.

Kazhdan and Lusztig [1979] showed the existence of another basis {H x} for H ,
the so-called Kazhdan–Lusztig basis, that they used to define complex represen-
tations of the Hecke algebra and hence of the Coxeter group. The entries of the
change of basis matrix are given by a family of polynomials in Z[v], which are
called Kazhdan–Lusztig polynomials. There are many different normalisations of
this basis appearing in the literature. The one we adopt, following [Soergel 1997],
is determined by Theorem 2.2 (see Remark 2.3).
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Parabolic Hecke modules. Deodhar [1987] generalised this construction to the
parabolic setting in the following way. Let W,S and H be as above. Fix a
subset J ⊆ S and denote by WJ = 〈J 〉 the subgroup of W generated by J . Since
(WJ , J ) is also a Coxeter system, it makes sense to consider its Hecke algebra
HJ = H(WJ , J ).

For any simple reflection s ∈ S, the element Hs satisfies the quadratic relation
(Hs)

2
= (v−1

− v)Hs + He, that is, (Hs + v)(Hs − v
−1) = 0. If u ∈ {v−1,−v},

we may define a map of L-modules ϕu : HJ → L by Hs 7→ u. In this way, L is
endowed with the structure of a HJ -bimodule, which we denote by L(u).

The parabolic Hecke modules are then defined as M J
:= H ⊗HJ L(v−1) and

N J
:= H ⊗HJ L(−v). As in the Hecke algebra case, it is possible to define an

involutive automorphism of these modules. Namely,

(2)
· : H ⊗HJ L(u) → H ⊗HJ L(u),

H ⊗ a 7→ H ⊗ a.

For u ∈ {v−1,−v}, let H J,u
w := Hw ⊗ 1 ∈ L(u)⊗HJ H . Denote by WJ the set of

minimal length representatives of W/WJ .

Theorem 2.2 [Deodhar 1987].

(1) For all w ∈WJ there exists a unique element H J,v−1

w ∈M J such that

(a) H J,v−1

w = H J,v−1

w , and
(b) H J,v−1

w =
∑

y∈WJ m J
y,wH J,v−1

y ,

where the m J
y,w are such that m J

w,w = 1 and m J
y,w ∈ vZ[v] if y 6= w.

(2) For all w ∈WJ there exists a unique element H J,−v
w ∈N J such that

(a) H J,−v
w = H J,−v

w , and
(b) H J,−v

w =
∑

y∈WJ n J
y,wH J,−v

y ,

where the n J
y,w are such that n J

w,w = 1 and n J
y,w ∈ vZ[v] if y 6= w.

Remark 2.3. In the case J = ∅, the two parabolic modules coincide with the
regular module: M∅

= N∅
= H . Moreover H∅,v−1

w = H∅,−v
w = Hw for all w ∈W .

From now on, we will focus on the case u = v−1; that is, we will deal only
with M J . The action of the Hecke algebra H on M J is defined as follows. Let
s ∈ S be a simple reflection and let x ∈WJ ; then we have (see [Soergel 1997, §3])

(3) H s · H J,v−1

x =


H J,v−1

sx + vH J,v−1

x if sx ∈WJ , sx > x,
H J,v−1

sx + v−1 H J,v−1

x if sx ∈WJ , sx < x,
(v+ v−1)H J,v−1

x if sx 6∈WJ .
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Definition of the categorification of M J . For any category C which is exact in the
sense of [Quillen 1973], let us denote by [C] its Grothendieck group, that is, the
abelian group with generators

[X ] for X ∈ Ob(C)

and relations

[Y ] = [X ] + [Z ] for every exact sequence 0→ X→ Y → Z→ 0.

For an exact endofunctor F on C, denote by [F] the induced endomorphism
of [C].

By a categorification of M J , we mean an exact category C together with an au-
toequivalence G and a family of exact endofunctors {Fs}s∈S satisfying the following
requirements:

(C1) [C] becomes an L-module via vi
· [A] = [Gi A] for any i ∈ Z, and there is an

isomorphism h J
: [C]

∼
−→ M J of L-modules.

(C2) For any simple reflection s ∈ S, we have an isomorphism G Fs ∼= Fs G of
functors.

(C3) For any simple reflection s ∈ S, the following diagram commutes:

[C]

h J

��

[Fs ] // [C]

h J

��
M J

H s ·
// M J

Remark 2.4. Our notion of M J -categorification differs from the one in [Mazorchuk
and Stroppel 2005, Remark 7.8]. Indeed we made the (weaker) requirement of C

being exact instead of abelian. If we take the above categorification, restrict it to
the additive category of projective objects and then abelianise it in the standard
way, then this abelianisation is a 2-functor (see [Mazorchuk 2012, §3.3]) and will
transform the above categorification into a categorification using abelian categories,
in the spirit of [Mazorchuk and Stroppel 2005].

Remark 2.5. Williamson [2011] studied the 2-category of singular Soergel bi-
modules. A full tensor subcategory of it (∅BJ in his notation) also provides a
categorification of M J .

The main goal of this paper is to construct such a categorification. In particular,
we will generalise a categorification of the Hecke algebra obtained in [Fiebig 2011],
which is known by results in [Fiebig 2008b] to be equivalent to the one via the
bimodules of [Soergel 2007].
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3. Sheaves on moment graphs

Definition 3.1 [Fiebig 2008b]. Let k be a field, V a finite-dimensional k-vector
space, and P(V ) the corresponding projective space. A V -moment graph is given
by a tuple (V,E,E, l) satisfying these conditions:

(MG1) (V,E) is a graph with a set of vertices V and a set of edges E.

(MG2) E is a partial order on V such that x, y ∈ V are comparable if they are
linked by an edge.

(MG3) l : E→ P(V ) is a map, called the label function.

Remark 3.2. This is the traditional definition. We note that the fact that V is
equipped with a partial order (similarly to the notion of quasihereditary algebra) is
used only in the definition of Braden–MacPherson sheaves.

As in [Fiebig 2008b], we think of the order as giving each edge a direction: we
write E : x→ y ∈ E if x ≤ y. We write x−− y or y−−x if we want to ignore the
order.

Bruhat graphs. Let (W,S) be a Coxeter system and denote by mst the order of the
product of two simple reflections s, t ∈ S. Let V be the geometric representation
of (W,S) (see [Humphreys 1990, §5.3]). Then V is a real vector space with basis
indexed by the set of simple reflections 5= {αs}s∈S and s acts on V by

s : v 7→ v− 2〈v, αs〉αs,

where 〈 · , · 〉 : V × V −→ R is the symmetric bilinear form given by

〈αs, αt 〉 =

{
−cos(π/mst) if mst 6= ∞,

−1 if mst =∞.

Consider a subset J ⊆ S and keep the same notation as in the previous section.
Choose λ ∈ V such that WJ = StabW(λ). Then WJ can be identified with the orbit
W · λ via x 7→ x(λ).

Recall that the set of reflections T of W is

T= {wsw−1
| s ∈ S, w ∈W}.

Definition 3.3 [Fiebig 2008b, §2.2]. The Bruhat moment graph GJ associated to
the Coxeter datum (W,S, J ) is the following V -moment graph:

• The set of vertices is given by W · λ↔WJ , and x → y is an edge if and
only if `(x) < `(y) and there exists a reflection t ∈T such that x(λ)= t y(λ),
that is, y = t xw for some w ∈WJ and y 6∈ xWJ .

• The partial order W J is the (induced) Bruhat order.

• l(x→ t xw) is given by the line generated by x(λ)− t x(λ) in P(V ).
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Consider now two Bruhat moment graphs on V , namely G= G(W,S,∅) and
GJ
= G(W,S, J ). The canonical quotient map p J

: G→ GJ is induced by the map
p J

V : x→ x J , with x J a minimal length representative of the coset xWJ .

Example 3.4. Let W= S3, the symmetric group on three letters. In this case we
have V = R2, 5 = {α, β}, and the angle between the two roots is 2π/3. If we
fix J = {sα}, then p J is as follows.

G =

e

sβsα

sαsβsα

sβsαsαsβ

〈
α
+
β
〉

〈α
〉 〈β

〉

〈β
〉 〈α

〉

〈
α
+
β
〉

〈
α
+
β
〉

〈α〉〈β
〉

p J

e

sβ

sαsβ

〈
β
〉

〈
α
〉

〈
α
+
β
〉

= GJ

We have
p J

V(e)= p J
V(sα)= e,

p J
V(sβ)= p J

V(sβsα)= sβ,

p J
V(sαsβ)= p J

V(sαsβsα)= sαsβ .

Sheaves on a V-moment graph.

Conventions. For any finite-dimensional vector space V over the field k (with
char k 6= 2), we denote by S = Sym(V ) its symmetric algebra. Then S is a
polynomial ring and we provide it with the grading induced by setting S{2} = V .
From now on, all the S-modules will be finitely generated and Z-graded. Moreover
we will consider only degree-zero morphisms between them. For a graded S-module
M =

⊕
i M{i} and for j ∈ Z, we denote by M〈 j〉 the Z-graded S-module obtained

from M by shifting the grading by j , that is, (M〈 j〉){i} = M{ j+i}.

Definition 3.5 [Braden and MacPherson 2001]. Let G=(V,E,E, l) be a V -moment
graph. A sheaf F on G consists of ({Fx

}, {FE
}, {ρx,E }) satisfying these conditions:

(SH1) Fx is an S-module for all x ∈ V.

(SH2) FE is an S-module such that l(E) ·FE
= {0} for all E ∈ E.

(SH3) ρx,E : F
x
→ FE is a homomorphism of S-modules, for all x ∈ V, E ∈ E

with x incident to the edge E .
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Remark 3.6. We may consider the following topology on the space 0 = V∪ E

(see [Braden and MacPherson 2001, §1.3]). We say that a subset O ⊆ 0 is open if
whenever a vertex x is in O , then all edges adjacent to x are also in O . With this
topology, the object in Definition 3.5 is a sheaf of S-modules on 0 in the usual sense.
For our purposes, it will be sufficient to consider sheaves as purely combinatorial,
algebraic objects.

Example 3.7 [Braden and MacPherson 2001, §1]. The structure sheaf Z of V -
moment graph G= (V,E,E, l) is defined as follows:

• Zx
= S for all x ∈ V.

• ZE
= S/ l(E) · S for all E ∈ E.

• ρx,E : S→ S/ l(E) · S is the canonical quotient map, for all x ∈V and E ∈ E

such that x is incident to the edge E .

Definition 3.8 [Fiebig 2009]. Let G= (V,E,E, l) be a V -moment graph and let
F = ({Fx

}, {FE
}, {ρx,E }), F′ = ({F′x}, {F′E }, {ρ ′x,E }) be two sheaves on G. A

morphism ϕ : F−→ F′ is given by the following data:

(MSH1) ϕx
: Fx
→ F′x is a homomorphism of S-modules, for all x ∈ V.

(MSH2) ϕE
: FE
→ F′E is a homomorphism of S-modules, for all E ∈ E, and if

x ∈ V is incident to the edge E , the following diagram commutes:

Fx

ϕx

��

ρx,E // FE

ϕE

��

F′x
ρ′x,E

// F′E

Definition 3.9. Let G be a V -moment graph. We denote by Sh(G) the category of
sheaves on G and corresponding morphisms.

Remark 3.10. The category of sheaves on G is graded, with the shift of grading
autoequivalence 〈1〉 : Sh(G)→ Sh(G) given by

({Fx
}, {FE

}, {ρx,E }) 7→ ({Fx
〈1〉}, {FE

〈1〉}, {ρx,E ◦ 〈1〉}).

Moreover Sh(G) is an additive category, with zero object ({0}, {0}, {0}), biproduct
given by

({Fx
}, {FE

}, {ρx,E })⊕ ({F
′x
}, {F′E }, {ρ ′x,E })

= ({Fx
⊕F′x}, {FE

⊕F′E }, {(ρx,E , ρ
′

x,E)}),

and idempotent split.
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Sections of a sheaf on a moment graph. Even if Sh(G) is not a category of sheaves
in the usual sense, we may define the notion of sections following [Fiebig 2008a].

Definition 3.11. Let G= (V,E,E, l) be a V -moment graph,

F= ({Fx
}, {FE

}, {ρx,E }) ∈ Sh(G),

and I⊆ V. The set of sections of F over I is denoted by 0(I,F) and defined as

0(I,F) :=

{
(mx) ∈

∏
x∈I

Fx
∣∣∣ ρx,E(mx)= ρy,E(m y)

for all E : x−− y ∈ E, x, y ∈ I

}
.

We denote by 0(F) := 0(V,F) the set of global sections of F.

Example 3.12. A very important example is given by the set of global sections of
the structure sheaf (see Example 3.7). In this case, we get the structure algebra:

Z := 0(Z)=

{
(zx)x∈V ∈

∏
x∈V

S
∣∣∣ zx − zy ∈ l(E) · S

for all E : x−− y ∈ E

}
.

Remark 3.13. The algebra Z should be thought of as the centre of a noncritical
block in the deformed category O (see [Fiebig 2003, Theorem 3.6]).

It is easy to check that Z, equipped with componentwise addition and multipli-
cation, is an algebra and that there is an action of S on it by diagonal multiplication.
Moreover for any sheaf F ∈ Sh(G), the structure algebra Z acts on the space 0(F)
via componentwise multiplication, so 0 defines a functor from the category of
sheaves on G to the category of Z-modules:

(4) 0 : Sh(G)→ Z-mod.

BMP-sheaves. Let G= (V,E,E, l) be a V -moment graph. For all F ∈ Sh(G) and
x ∈ V, we set

Eδx := {E ∈ E | there is y ∈ V with E : x→ y},

Vδx := {y ∈ V | there is E ∈ Eδx with E : x→ y}.

Additionally for any x ∈ V denote {Fx} = {y ∈ V | y F x} and define Fδx as the
image of 0({Fx},F) under the composition of the following functions:

ux : 0({Fx},F)−→
⊕
yFx

Fy
−→

⊕
y∈Vδx

Fy
⊕
ρy,E
−→

⊕
E∈Eδx

FE .

Theorem 3.14 [Braden and MacPherson 2001]. Suppose G = (V,E,E, l) is a
V -moment graph and let w ∈ V. There exists a unique up to isomorphism indecom-
posable sheaf B(w) on G with the following properties:
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(BMP1) If x ∈ V, then B(w)x ∼= 0, unless x E w. Moreover B(w)w ∼= S.

(BMP2) If x, y ∈ V and E : x→ y ∈ E, then the map ρy,E :B(w)
y
→B(w)E is

surjective, with kernel l(E) ·B(w)y .

(BMP3) If x, y, w ∈ V, x 6= w and E : x → y ∈ E , then ρδx :=
⊕

E∈Eδx
ρx,E :

B(w)x → B(w)δx is a projective cover in the category of graded S-
modules.

We call B(w) the BMP sheaf.

4. Modules over the structure algebra

Let Z be the structure algebra (see p. 424) of a regular Bruhat graph G= G(W,∅)
and denote by Z-modf the category of Z-graded Z-modules that are torsion-free
and finitely generated over S. Fiebig [2008b] defined translation functors on the
category Z-modf. Using these, he defined inductively a full subcategory H of
Z-mod and proved that H, in characteristic zero, is equivalent to a category of
bimodules introduced by Soergel [2007]. In [Fiebig 2011], it is shown that H

categorifies the Hecke algebra H (and the periodic module M), using translation
functors. The aim of this section is to define translation functors in the parabolic
setting and to extend some results of [Fiebig 2011].

Let W be a Weyl group, let S be its set of simple reflections and let J ⊆ S.
Hereafter we will keep the notation we used in Section 2. Recall that for any
z ∈ W, there is a unique factorisation x = x J x J , with x J

∈ WJ , x J ∈ WJ and
`(x)= `(x J )+ `(x J ) (see [Björner and Brenti 2005, Proposition 2.4.4]).

In [Fiebig 2008b], for all s ∈ S, an involutive automorphism σs of the structure
algebra of a regular Bruhat graph is given. In a similar way, we will define an
involution sσ for a fixed simple reflection s ∈ S on the structure algebra ZJ of the
parabolic Bruhat moment graph GJ .

Let x, y ∈WJ . Notice that l(x−− y) = αt if and only if l(sx−−sy) = s(αt)

because sxw(sy)−1
= sxwy−1s = sts, for some w ∈WJ .

Denote by τs the automorphism of the symmetric algebra S induced by the
mapping λ 7→ s(λ) for all λ ∈ V . For (zx)x∈WJ ∈ ZJ, we set sσ

(
(zx)x∈WJ

)
=

(z′x)x∈WJ , where z′x := τs(z(sx)J ). This is again an element of the structure algebra
from what we have observed above.

Let us fix the following notation:

•
sZJ denotes the space of invariants with respect to sσ ;

•
−sZJ denotes the space of anti-invariants with respect to sσ .

We denote by αs the element of ZJ whose components are all equal to αs . We
obtain the following decomposition of ZJ as a sZJ-module:

Lemma 4.1. ZJ
=

sZJ
⊕αs ·

sZJ.
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Proof. Because sσ is an involution, we get ZJ
=

sZJ
⊕
−sZJ. Since αs ∈ ZJ and

s(αs) = −αs , it follows that sσ(αs) = −αs and so αs ·
sZJ
⊆
−sZJ and we now

have to prove the other inclusion, that is, every element z ∈−sZJ is divisible by αs

in −sZJ.
If z = (zx) ∈

−sZJ, then for all x ∈WJ ,

zx =−τs(z(sx)J )≡−z(sx)J (mod αs).

On the other hand,

zx ≡ z(sx)J (mod αs).

It follows that 2zx ≡ 0 (mod αs), that is, αs divides zx in S.
It remains to verify that z′ := αs

−1
· z ∈ Z, that is, z′x − z′

(t x)J ≡ 0 (mod αt) for
any x ∈WJ and t ∈ T. If (t x)J

= (sx)J there is nothing to prove since αs divides
z′x = z(sx)J and z′

(sx)J = zx and hence also their difference. On the other hand, if
(t x)J

6= (sx)J we get the following:

αs · (z′x − z′
(t x)J )= zx − z(t x)J ≡ 0 (mod αt).

Since αs and αt are linearly independent, αs 6≡ 0 (mod αt) and we obtain

z′x − z′
(t x)J ≡ 0 (mod αt). �

Translation functors and special modules. In order to define translation functors,
we need an action of S on sZJ and ZJ.

Lemma 4.2. For any λ ∈ V and any x ∈WJ , let us set

(5) c(λ)J
x :=

∑
xJ∈WJ

xx J (λ).

Then c(λ)J
:= (c(λ)J

x )x∈WJ ∈
sZJ.

Proof. First we prove that c(λ)J
∈ ZJ, that is, c(λ)J

x −c(λ)J
(t x)J ≡ 0 (mod αt). Since

for any x J there exists an element yJ such that xx J = t (t x)J yJ , we obtain∑
xJ∈WJ

xx J (λ)−
∑

xJ∈WJ

(t x)J x J (λ)=
∑

yJ∈WJ

t (t x)J yJ (λ)−
∑

yJ∈WJ

(t x)J yJ (λ)

= t
( ∑

yJ∈WJ

(t x)J yJ (λ)
)
−

∑
yJ∈WJ

(t x)J yJ (λ)

=

( ∑
yJ∈WJ

2
〈
(t x)J yJ (λ), αt

〉)
αt

≡ 0 (mod αt).
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To conclude it is left to show that c(λ)J is invariant with respect to sσ . For any
x ∈WJ , one has

τs
(
c(λ)J

x
)
= τs

( ∑
xJ∈WJ

xx J (λ)
)
=

∑
xJ∈WJ

sxx J (λ)= c(λ)J
sx .

Hence we have sσ(c(λ)J )= (τsc(λ)J
sx)x∈WJ = c(λ)J . �

For any x ∈WJ , denote by ηx the map of (free) SWJ -modules S→ SWJ induced
by the map λ 7→ c(λ)J

x for all λ ∈ V . Now by Lemma 4.2, the action of S on ZJ

given by

(6) p.(zx)x∈WJ = (ηx(p)zx), p ∈ S , z ∈ ZJ,

preserves sZJ. Thus any ZJ-module or sZJ-module has an S-module structure
as well. Suppose ZJ-modf, respectively, sZJ-modf, is the category of Z-graded
ZJ-modules, respectively, sZJ-modules, that are torsion-free and finitely generated
over S, respectively, SWJ -modules.

The translation on the wall is the functor s,onθ : ZJ -mod→ sZJ-mod defined
by the mapping M 7→ Res

s ZJ

ZJ M .
The translation out of the wall is the functor s,outθ : sZJ -mod→ ZJ-mod defined

by the mapping N 7→ Ind
s ZJ

ZJ N = ZJ
⊗s ZJ N . Observe that this functor is well

defined due to Lemma 4.1.
By composition, we get a functor sθ J

:=
s,outθ ◦ s,onθ : ZJ-mod→ ZJ-mod that

we call the (left) translation functor.

Remark 4.3. This construction is very similar to the one in [Soergel 1990], where
translation functors are defined in the finite case for the coinvariant algebra.

Remark 4.4. One could consider the idempotent split additive tensor category
generated by the translation functors we defined above and describe indecomposable
projective objects. This would be useful in order to strengthen our main result
to a proper categorification (see Remark 5.9). In this paper we are not going to
investigate this category of translation functors but the one of special modules,
defined on p. 428.

The following proposition describes the first properties of sθ :

Proposition 4.5. (1) The functors from sZJ-mod to ZJ-mod mapping M to
ZJ
〈2〉⊗s ZJ M and Homs ZJ(ZJ,M), respectively, are isomorphic.

(2) The functor sθ = ZJ
⊗s ZJ− : ZJ-mod→ ZJ-mod is self-adjoint up to a shift.
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Proof. (1) Let M ∈ sZJ-mod. We must prove that ZJ
〈2〉⊗s ZJ M ∼=Homs ZJ(ZJ,M)

as ZJ-modules.
First we show that ZJ

〈2〉 ∼= Homs ZJ(ZJ, sZJ) as sZJ-modules. By Lemma 4.1,
{1, αs} is a sZJ-basis for ZJ. Let 1∗, αs

∗
∈Homs ZJ(ZJ, sZJ) be the sZJ-basis dual

to 1 and αs , that is,

1∗(1)= 1, 1∗(αs)= 0, αs
∗(αs)= 1, αs

∗(1)= 0,

where 1 ∈ sZJ, respectively, 0 ∈ sZJ, is the section with 1, respectively, 0, in all
entries. Since deg(1)− 2 = −2 = deg(αs

∗) and deg(αs)− 2 = 0 = deg 1∗, we
have an isomorphism of sZJ-modules ZJ

〈2〉 ∼= Homs ZJ(ZJ, sZJ) defined by the
mapping

1 7→ αs
∗, αs 7→ 1∗.

Because ZJ is free of rank two over sZJ,

Homs ZJ(ZJ,M)∼= Homs ZJ(ZJ, sZJ)⊗s ZJ M

by the map
ϕ 7→ αs

∗
⊗ϕ(αs)+ 1∗⊗ϕ(1).

This conclude the proof of (1).

(2) Since ZJ
⊗s ZJ − and Homs ZJ(ZJ,−) are, respectively, left- and right-adjoint

to the restriction functor, we obtain the following chain of isomorphisms for any
pair M, N ∈ ZJ:

HomZJ(sθM, N )= HomZJ
(

ZJ
⊗s ZJ (Res

s ZJ

ZJ M), N
)

∼= HomZJ
(
Res

s ZJ

ZJ M,Res
s ZJ

ZJ N
)

∼= HomZJ
(
M,Homs ZJ(ZJ,Res

s ZJ

ZJ N )
)

∼= HomZJ
(
M, ZJ

〈2〉⊗s ZJ (Res
s ZJ

ZJ N )
)

= HomZJ(M, sθ〈2〉N ). �

Parabolic special modules. As in [Fiebig 2008b], we define inductively a full
subcategory of ZJ-mod.

Let B J
e ∈ ZJ-mod be the free S-module of rank one on which z = (zx)x∈WJ acts

via multiplication by ze.

Definition 4.6. The category HJ of special ZJ-modules is the full subcategory of
ZJ-modf whose objects are isomorphic to a direct summand of a direct sum of
modules of the form si1 θ ◦ · · · ◦ sir θ(B J

e )〈n〉, where si1, . . . , sir ∈ S and n ∈ Z.
The category sHJ of special sZJ-modules is the full subcategory of sZJ-modf

whose objects are isomorphic to a direct summand of s,onθ(M) for some M ∈HJ .
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Finiteness of special modules. Let� be a finite subset of WJ and denote by ZJ(�)

the sections of the structure sheaf over �, that is,

ZJ(�)=

{
(zx) ∈

∏
x∈�

S
∣∣∣ zx ≡ zy ( mod αt)

if there is w ∈WJ s.t. yw x−1
= t ∈ T

}
.

If �⊆WJ is s-invariant, that is, s�=�, we may restrict sσ to it. We denote
by sZJ(�) ⊆ ZJ(�) the space of invariants and using Lemma 4.1, we get a
decomposition ZJ(�)= sZJ(�)⊕αs ·

sZJ(�).
In the following lemma we prove the finiteness of special ZJ-modules as Fiebig

[2011] does for special Z-modules.

Lemma 4.7. (1) Let M ∈HJ . Then there exists a finite subset �⊂WJ such that
ZJ acts on M via the canonical map ZJ

→ ZJ(�).

(2) Let s ∈ S and let N be an object in sHJ . Then there exists a finite s-invariant
subset�⊂WJ such that sZJ acts on N via the canonical map sZJ

→
sZJ(�).

Proof. We prove (1) by induction. It holds clearly for Be, since ZJ acts on it via
the map ZJ

→ ZJ({e}). Now we have to show that if the claim is true for M ∈HJ ,
then it holds also for sθ(M). Suppose ZJ acts via the map ZJ

→ ZJ(�) over M .
Observe that we may assume � s-invariant since we can just replace it by �∪ s�,
which is still finite. In this way the sZJ-action on sθM factors via sZJ

→
sZJ(�)

and so we obtain sθM := ZJ
⊗s ZJ M = ZJ(�)⊗s ZJ(�) M .

Claim (2) follows directly from claim (1). �

5. Modules with Verma flag and statement of the main result

We recall some notation from [Fiebig 2008a]. Let Q be the quotient field of S and
let A be an S-module. Then we denote by AQ = A⊗S Q. Let us assume G to be
such that for any M ∈ Z-modf there is a canonical decomposition

(7) MQ =
⊕
x∈V

M x
Q

and so a canonical inclusion M ⊆
⊕
x∈V

M x
Q . For all subsets of the set of vertices

�⊆ V, we may define

M� := M ∩
⊕
x∈�

M x
Q,

M�
:= M/MV\� = im

(
M→ MQ→

⊕
x∈�

M x
Q

)
.

For all x ∈ V, we set

M[x] := ker
(
M {Dx}

→ M {Fx}
)
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and if x G y and [x, y] = {x, y}, we denote

M[x,y] := ker
(
M {Dx}

→ M {Dx}\{x,y}) .
Remark 5.1. In [Fiebig 2008a], the module M[x] is denoted by M [x]. The notation
we are adopting in this paper is the one from [Fiebig 2011].

Modules with a Verma flag. From now on, let G be a Bruhat moment graph. In
[Fiebig 2008a] it is shown that in this case any M ∈ Z-modf admits a decomposition
like (7) and hence the modules M[x] are well defined for any x ∈ V.

Let V denote the full subcategory of Z-modf whose objects admit a Verma flag,
that is, M ∈V if and only if M� is a graded free S-module for any �⊆V upwardly
closed with respect to the partial order in the set of vertices. In our hypotheses
this condition is equivalent to M[x] being a graded free S-module for any x ∈ V

(see [Fiebig 2008a, Lemma 4.7]).

Exact structure. Now we want to equip the category V with an exact structure.

Definition 5.2. A sequence L→ M→ N in V is called short exact if

0→ L [x]→ M[x]→ N[x]→ 0

is a short exact sequence of S-modules for any x ∈ V.

Remark 5.3. This is not the original definition of exact structure Fiebig [2008a]
gave, which was on the whole category Z-modf, but it is known to be equivalent to
it if we only consider the category V, that is, precisely the one we are dealing with
(see [Fiebig 2008b, Lemma 2.12]).

Decomposition and subquotients of modules on ZJ. To show that HJ categorifies
the parabolic Hecke algebra, we will use a description of the action of sθ on the
subquotients M[x], for x ∈ V (Lemma 5.6). As a stepping-stone we prove an easy
combinatorial consequence (Lemma 5.5) of the so-called lifting lemma:

Lemma 5.4 (lifting lemma [Humphreys 1990, Lemma 7.4]). Let s∈S and v, u∈W

be such that vs < v and u < v.

(1) If us < u, then us < vs.

(2) If us > u, then us ≤ v and u ≤ vs.

Thus in both cases, us ≤ v.

Lemma 5.5. Let x ∈WJ and t ∈ S. If t x 6∈WJ , then (t x)J
= x.

Proof. If t x 6∈WJ , then there exists a simple reflection r ∈ J such that t xr < t x
and since x ∈WJ , xr > x . Using (the left version of) Lemma 5.4(1) with s = t ,
v = xr and u = t x , we get t xr < x . Applying Lemma 5.4(1) with s = r , v = x and
u = t xr it follows t x > x . Finally from Lemma 5.4(2) we obtain t xr ≤ x , which
together with x < xr , gives t xr = x . �
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Lemma 5.6. Let s ∈ S and x ∈WJ ; then

(sθM)[x] ∼=


M[x]〈−2〉⊕M[sx]〈−2〉 if sx ∈WJ , sx > x,
M[x]⊕M[sx] if sx ∈WJ , sx < x,
M[x]〈−2〉⊕M[x] if sx 6∈WJ .

Proof. By Lemma 5.5, if sx 6∈WJ , then (sx)J
= x and M[x] ∈ sZJ-mod; so by

Lemma 4.1, we get ZJ
⊗s ZJ M[x] = M[x]〈−2〉⊕M[x].

If x 6= sx , we have a short exact sequence of S-modules

0→ M[x]→ M[x,sx]→ M[sx]→ 0.

By Lemma 4.1, the finitely generated free S-module ZJ is flat over sZJ, which
is a finitely generated free SWJ -module. Hence sθM[x,sx] = ZJ

⊗s ZJ Mx,sx =

(sθM)[x,sx]=
sθM[x]⊕ sθM[sx]. Also sθM[x,sx]= ZJ({x, sx})⊗s ZJ({x,sx}) M[x,sx] .

The two isomorphisms follow keeping in mind that ZJ({x, sx})[x] ∼= S〈−2〉 if
x < sx , while ZJ({x, sx})[x] ∼= S if x > sx . �

Using induction, we obtain the following corollary:

Corollary 5.7. Let M ∈ HJ ; then for any x ∈ WJ , M[x] is a finitely generated
torsion-free S-module and hence M ∈ V.

In this way we get an exact structure on HJ as well and we are finally able to
state the main result of this paper:

Theorem 5.8. The category HJ together with the shift in degree 〈−1〉 and (shifted)
translation functors is a categorification of the parabolic Hecke module M J .

Remark 5.9. Theorem 5.8 could be strengthen to a proper categorification by
presenting the result as a 2-representation of a 2-category. The 2-category to be
considered is the one generated by the translation functors we defined on p. 426,
and the 2-representation to look at is given by the action of these functors on the
category HJ we constructed on p. 428. The question of describing indecomposable
1-morphisms in this category, which we are not going to address in this paper, seems
to be very interesting.

Remark 5.10. It follows from [Elias and Williamson 2014] that the results of
[Mazorchuk and Stroppel 2005] transfer to all Coxeter systems.

6. Proof of the categorification theorem

The proof of Theorem 5.8 consists of several steps:

(1) We show that the functor sθ ◦ 〈1〉 is exact (Lemma 6.1).

(2) We define the character map h J
: [HJ
] → M J (p. 432).
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(3) We observe that the map [〈−1〉] : [HJ
]→ [HJ

] provides [HJ
] with a structure

of L-module and that h J is a map of L-modules (p. 432).

(4) Via explicit calculations, we prove that the functors sθ◦〈1〉, s ∈S, satisfy (C3),
that is, the maps they induce on [HJ

] commute with h J (Proposition 6.2).

(5) We demonstrate that the character map is surjective by choosing a certain
basis for M J and showing that every element of this basis has a preimage in
[HJ
] under h J (Lemma 6.3).

(6) We prove that the character map is surjective (Lemma 6.6) using a description
of indecomposable special modules in terms of Braden–MacPherson sheaves
(Proposition 6.5).

This concludes the proof since (C2), that is, 〈−1〉 ◦ (sθ ◦ 〈1〉)∼= (sθ ◦ 〈1〉) ◦ 〈−1〉
for any s ∈ S, is trivially satisfied.

We start by proving the exactness of shifted translation functors.

Lemma 6.1. For any s ∈ S the functor sθ ◦ 〈1〉 :HJ
→HJ is exact.

Proof. Let L→ M→ N be an exact sequence; then for any x ∈ V

0→ L [x]→ M[x]→ M[x]→ 0

is a short exact sequence of S-modules. In particular,

0→ L [sx]→ M[sx]→ N[sx]→ 0

is short exact as well. The claim follows immediately from Lemma 5.6 and the fact
that finite direct sums and shifts preserve exactness. �

Character maps. Let A be a Z-graded, free and finitely generated S-module; then
A ∼=

⊕n
i=1 S〈ki 〉 for some ki ∈ Z. We can associate to A its graded rank, that is,

the following Laurent polynomial:

rk A :=
n∑

i=1

v−ki ∈ L.

This is well defined because the ki are uniquely determined, up to reordering.
Let M ∈HJ . By Corollary 5.7, we may define a map h J

: [HJ
] → M J by

h J ([M]) :=
∑

x∈WJ

v`(x) rk M[x] H J,v−1

x ∈ M J .

The Grothendieck group [HJ
] is equipped with a structure of L-module via

vi
[M] = [M〈−i〉]. Observe that for any M ∈HJ

h J (v[M])= h J ([M〈−1〉])= vh J ([M])

and so h J is a map of L-modules.
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Proposition 6.2. For each M ∈HJ , s ∈S we have h J ([sθM〈1〉])= H s ·h J ([M]);
that is, the following diagram is commutative:

[HJ
]

h J
��

[
sθ◦〈1〉]// [HJ

]

h J
��

M J
H s ·

// M J

Proof. By Lemma 5.6, for any x ∈WJ we have

rk(sθM)[x] =


v2(rk M[x]+ rk M[sx]) if sx ∈WJ , sx > x,
rk M[x]+ rk M[sx] if sx ∈WJ , sx < x,
(v2
+ 1) rk M[x] if sx 6∈WJ .

Then

h J ([sθM〈1〉])=
∑

x∈WJ

v`(x)−1 rk(sθM)[x]H J,v−1

x

=

∑
x∈WJ, sx∈WJ

sx>x

v`(x)+1(rk M[x]+ rk M[sx])H J,v−1

x

+

∑
x∈WJ, sx∈WJ

sx<x

v`(x)−1(rk M[x]+ rk M[sx])H J,v−1

x

+

∑
x∈WJ, sx 6∈WJ

(v`(x)+1
+ v`(x)−1) rk M[x]H J,v−1

x .

Finally

H s · h J ([M])=
∑

x∈WJ

v`(x)(rk M[x])H s · H J,v−1

x

=

∑
x∈WJ ,sx∈WJ

sx>x

v`(x)(rk M[x])(H J,v−1

sx + vH J,v−1

x )

+

∑
x∈WJ, sx∈WJ

sx<x

v`(x)(rk M[x])(H J,v−1

sx + v−1 H J,v−1

x )

+

∑
x∈WJ, sx 6∈WJ

v`(x) rk M[x](v+ v−1)H J,v−1

x

=

∑
x∈WJ, sx∈WJ

sx>x

[
(v`(x)v rk M[x])+ (v`(sx) rk M[sx])

]
H J,v−1

x

+

∑
x∈WJ, sx∈WJ

sx<x

[
(v`(x)v−1 rk M[x])+ (v`(sx) rk M[sx])

]
H J,v−1

x

+

∑
x∈WJ, sx 6∈WJ

(v`(x)+1
+ v`(x)−1) rk M[x]H J,v−1

x
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= h J ([sθM〈1〉]). �

The character map is an isomorphism. In order to prove that (HJ , 〈−1〉, {sθ ◦
〈1〉}) is a categorification of M J , the only step left is to show that h J is an isomor-
phism.

Lemma 6.3. The map h J
: [HJ
] → M J is surjective.

Proof. We start by defining a basis of M J . Let us set H̃ J,v−1

e = H J,v−1

e . For any
x ∈WJ with `(x)= r > 0, let us fix a reduced x = si1 . . . sir , with si1, . . . , sir ∈ S,
and denote

H̃ J,v−1

x = H J,v−1

s1
· · · H J,v−1

sr
.

From Theorem 2.2, it follows that

(8) H̃ J,v−1

x = H J,v−1

x +

∑
y∈WJ

y<x

py H J,v−1

y , with pz ∈ Z[v, v−1
].

Since {H J,v−1

x }x∈WJ is a basis of M J as a Z[v, v−1
]-module, {H̃ J,v−1

x }x∈WJ is
also a basis for M J and it is enough to show that, for any x ∈WJ , there exists an
object H ∈HJ such that h J ([H ])= H̃ J,v−1

x .
By definition, h J (B J

e )= Me = H J,v−1

e . By applying Proposition 6.2, we obtain

h J (si1 θ ◦ · · · ◦ sir θB J
e 〈n〉

)
= (H J,v−1

s1
· · · H J,v−1

sr
)Me

= H J,v−1

s1
· · · H J,v−1

sr
= H̃ J,v−1

x .

This concludes the proof of the lemma. �

Proposition 6.5 will allow us to see any element in HJ as the space of global
sections of some BMP sheaf on GJ . From now on, we will denote by B J (w) the
space of global sections of the indecomposable BMP sheaf BJ (w) ∈ Sh(GJ ). Let
us recall a fundamental characterisation of B J (w).

Theorem 6.4 [Fiebig 2008b, Theorem 5.2]. For anyw∈GJ , the module B J (w)∈V

is indecomposable and projective. Moreover every indecomposable projective object
in V is isomorphic to B J (w)〈k〉 for a unique w ∈ GJ and a unique k ∈ Z.

Proposition 6.5. A module M ∈ ZJ-mod f is an indecomposable special module if
and only if there exist a BMP sheaf B ∈ Sh(GJ ) and k ∈ Z such that M ∼= 0(B〈k〉)
as ZJ-modules.

Proof. By induction, from the exactness of sθ J, it follows that the objects of HJ

are all projective, and then by Theorem 6.4, any M ∈HJ may be identified (up to a
shift) with the space of global sections of a BMP sheaf on GJ .

We now want to show that for any x ∈WJ , B J (x) ∈HJ . We prove the claim by
induction on # supp(M), where supp(M)={x ∈WJ

|M x
6=0}. Clearly Be∼= B J (e).
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The statement follows straightforwardly, once we prove that if sx > x , then
sθ J(B J (x))= B J (sx)⊕ B.

First we show that supp(sθ J(B J (x)))⊆ {≤ sx}, that is, (sθ JB J (x))y
= 0 for all

y 6∈ {≤ sx} ∩WJ . From Lemma 5.6, it follows easily that (sθ J(B J (x)))[y] = 0 for
all y 6∈ {≤ sx} ∩WJ .

Let us observe that as sθ JB J (x) ∈HJ , from what we have proved above, there
exist w1, . . . , wr ∈WJ and k1, . . . , kr such that sθ J(B J (x))=

⊕r
i=1 B J (wi )〈ki 〉,

and for any y ∈WJ ,( r⊕
i=1

B J (wi )〈ki 〉

)
[y]
=

r⊕
i=1

B J (wi )[y]〈ki 〉.

So, in particular, for all y 6∈ {≤ sx} ∩WJ ,

0= B J (wi )[y]

= ker
(
ρδy :B

J (wi )
y
→BJ (wi )

δy).
This implies BJ (wi )

y
= B J (wi )

y
= 0 for all i = 1, . . . r , and so

sθ J(B J (x))=
r⊕

i=1

B J (wi )〈ki 〉,

where wi ∈ {≤ sx} for all i = 1, . . . , r .
It is left to show that there exists at least one i ∈ {1, . . . , r} such that wi = sx . By

applying once again Lemma 5.6, we obtain (sθ J(B J (x)))sx
= (sθ J(B J (x)))[sx]∼= S

and hence the statement. �

Lemma 6.6. The map h J
: [HJ
] → M J is injective.

Proof. By Theorem 6.4 and Proposition 6.5 we know that {[B J (w)]}w∈WJ is
a Z[v, v−1

]-basis of [HJ
] and so every element Y ∈ [HJ

] can be written as
Y =

∑
aw[B J (w)], with ax ∈ Z[v, v−1

]. Let us suppose Y ∈ ker(h J ). Then

0= h J (Y )=
∑
w∈WJ

aw
∑

x∈WJ

v`(x) rk B J (w)[x] H J,v−1

x

=

∑
x∈WJ

( ∑
w∈WJ

v`(x)aw rk B J (w)[x]

)
H J,v−1

x .

Since the elements H J,v−1

x are linearly independent, it follows that∑
w∈WJ

v`(x)aw rk B J (w)[x] = 0 for any x ∈WJ .

If it were the case that Y 6= 0, then we would find a maximal element w such that
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aw 6= 0. By (BMP1), we obtain B J (w)[w] = 0 for all w < w and B J (w)[w] ∼= S.
Then

0=
∑
w∈WJ

v`(x)aw rk B J (w)[w] = v
`(x)aw rk B J (w)[w] = v

`(x)aw rk S = v`(x)aw.

The chain of equalities above gives us a contradiction since we assumed aw 6= 0. �

This concludes the proof of Theorem 5.8.

7. The functor I

In this section we define an exact functor I : HJ
→ H∅ such that the following

diagram commutes:

[HJ
]

h J

��

� � [I ] // [H∅
]

h∅

��
M J � �

i
// H

where i : M J ↪→ H is the map of L-modules given by

(9) H J,v−1

x 7→

∑
z∈WJ

v`(wJ )−`(z)Hxz,

with wJ the longest element of WJ .
The map i is interesting since it gives us a way to see the parabolic Hecke

module M J as submodule of H , and hence its categorification tells us that we can
think about the HJ as a subcategory of H∅.

We construct the functor I by using a localisation-globalisation procedure. More
precisely, we first map the elements of HJ to certain sheaves on GJ , then apply a
pullback functor mapping them to sheaves on G, and finally we take global sections
of the latter. A priori it is not clear that we obtain an object in H∅. This fact is
shown in Lemma 7.3. We then demonstrate the exactness of I (Proposition 7.5) and
the commutativity of diagram 7 (Proposition 7.7) by a study of the subquotients
involved in the definition of the character map. The realisation of special modules in
terms of Braden–MacPherson sheaves given in the previous section (Proposition 6.5)
plays a crucial role in the proof of any of the above results.

Construction of the functor I. The definition of I involves Fiebig’s localisation
functor L [2008a, §3.3], which allows us to see objects of ZJ-mod as sheaves on
the parabolic Bruhat moment graph GJ .

Let us assume G to be such that for any M ∈ Z-modf there is a canonical
decomposition like the one in (7). Let Z be the corresponding structure algebra
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and M ∈ Z-modf. For any vertex x ∈ V, we set

(10) L(M)x = M x .

For any edge E : x−− y, let us consider Z(E)= {(zx , zx)∈ S⊕S | zx−zy ∈ l(E)S}
and M(E) := Z(E) ·M x,y . For m = (mx ,m y) ∈ M(E), let us set πx((m)) = mx ,
πy((m)) = m y . Then we get L(M)E as the pushout in the following diagram of
S-modules:

M(E)
πx //

πy

��

M x

ρx,E
��

M y ρy,E // L(M)E

This provides us also with the restriction maps ρx,E and ρy,E .
It is not hard to verify (see [Fiebig 2008a, §3.3]) that this is a well defined functor

(11) L : Z-modf
→ Sh(G).

Moreover the localisation functor L turns out to be left-adjoint to 0 (see [Fiebig
2008a, Theorem 3.5]). Let

• Z-modloc be the full subcategory of Z-modf whose objects are the elements
M such that there is an isomorphism 0 ◦L(M)∼= M , and

• Sh(G)glob be the full subcategory of Sh(G) whose objects are the elements F

such that there is an isomorphism L ◦0(F)∼= F.

Remark 7.1. In general, for a given a sheaf F, one has (L◦0(F))x =0(F)x ⊆Fx .
If we consider a BMP sheaf B, then by property (BMP3), 0(B)x = Bx for any
vertex x ∈ V and L(0(B))E ∼=BE for any edge E ∈ E. Therefore L ◦0(B)∼=B

and B ∈ Sh(G)glob.

Thus the functors L and 0 induce two inverse equivalences:

Z-modloc // Sh(G)globoo .

Let us focus again on the Bruhat case and consider the functor

p J,∗
: Sh(GJ )→ Sh(G)

defined as follows:

• (p J,∗F)x := Fx J
for all x ∈W.

• for all E : x−− y ∈ E,

(p J,∗F)E
=

{
F fV(x)/ l(E)F fV(x) if x J

= y J ,

F fE(E) otherwise .
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• for all x ∈W and E ∈ E such that E : x−− y,

(p J,∗ρ)x,E =

{
canonical quotient map if x J

= y J ,

ρ fV(x), fE(E) otherwise .

Finally we set I := 〈−`(wJ )〉 ◦0 ◦ p J,∗
◦L.

To prove that the functor I maps HJ to H, we need to recall the moment graph
analogue of a theorem by Deodhar relating parabolic Kazhdan–Lusztig polynomials
and regular ones. The following is a reformulation of Theorem 6.1 of [Lanini 2012]:

Theorem 7.2. Let J ⊆ S be such that WJ is finite, with longest element wJ . Let
w ∈WJ ; then p J,∗(BJ (w))∼=B∅(wwJ ) as sheaves on G= G(W,∅).

Lemma 7.3. The functor I maps HJ to H.

Proof. Let M ∈ HJ ; then, by Proposition 6.5, there exist w1, . . . wr ∈ WJ and
m1, . . .mr ∈ Z such that M =

⊕r
i=1 B J (wi )〈mi 〉. Then

I (M)= I
( r⊕

i=1

B J (wi )〈mi 〉

)
=

r⊕
i=1

0 ◦ p J,∗
◦L(B J (wi ))〈mi − `(wJ )〉.

By Remark 7.1, L(B J (wi ))∼=BJ (wi ) for any i and, by Theorem 7.2, we conclude
that

I (M)∼=
r⊕

i=1

B∅(wiwJ )〈mi − `(wJ )〉. �

Exactness of I .

Lemma 7.4. Let w ∈WJ . Then for all x ∈W,

(0 ◦ p J,∗BJ (w))[x] =

( ∏
y∈Vδx ,
y∈xWJ

αy

)
B J (w)[x J ],

where αy denotes the label of x→ y.

Proof. For z ∈ WJ and E an edge of GJ
= G(W, J ), let us denote by ρz,E the

corresponding restriction map. Then we have

(0 ◦ p J,∗BJ (w))[x] =
⋂

y∈Vδx

ker
(
(p∗,Jρ)x,x→y

)
=

( ⋂
y∈Vδx

y 6∈xWJ

ker(ρx J ,x J→y J )

)
∩

( ⋂
y∈Vδx ,
y∈xWJ

kerπx,x→y

)
,

where πx,x→y :B
J (w)x

J
→BJ (w)x

J
/αyBJ (w)x

J
is the canonical quotient map

and αy is a generator of l(x→ y).
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Let us observe that by definition,⋂
y∈Vδx

y 6∈xWJ

ker(ρx J ,x J→y J )= B J (w)[x J ].

Moreover since there is at most one edge adjacent to x labelled by a multiple
of αy , the labels of such edges are pairwise linearly independent and we get⋂

y∈Vδx ,
y∈xWJ

kerπx,x→y =
∏

y∈Vδx ,
y∈xWJ

αy ·B
J (w)x

J
.

It follows that

(0 ◦ p J,∗BJ (w))[x] =
( ∏

y∈Vδx ,
y∈xWJ

αy

)
BJ (w)[x J ].

This concludes the proof of the lemma. �

Proposition 7.5. The functor I is exact with respect to the exact structure in
Section 5.

Proof. Let us take M, N ∈HJ , with M=
⊕

k B J (wk)〈mk〉 and N =
⊕

l B J (wl)〈nl〉.
Let us consider the map f : L→ M and the induced maps f[x J ] : M[x J ]→ N[x J ]

for any x J
∈WJ . Thanks to Lemma 7.4, it is easy to describe I ( f )[x]. Namely if∏

y∈Vδx

y∈xWJ

αy = αi1 · · ·αir ,

we obtain
I ( f ) : I (M)[x] −→ I (N )[x],

(αi1 · · ·αir )m 7−→ (αi1 · · ·αir ) f[x](m).

It is clear that if 0→ L [x] → M[x] → N[x] → 0 is a short exact sequence of
S-modules, then 0→ (I L)[x]→ (I M)[x]→ (I N )[x]→ 0 is also exact. �

Commutativity of the diagram. The last step missing is the commutativity of Dia-
gram 7. Before proving it, we need the following preliminary lemma:

Lemma 7.6. Let w ∈ WJ and let wJ be the longest element of WJ . There is
an isomorphism B∅(wwJ )[x] ∼= B J (w)[x J ]〈2`(x)− 2`(x J )− 2`(wJ )〉 of graded
S-modules.

Proof. By Theorem 7.2, B∅(wwJ ) ∼= p J,∗BJ (wJ ) as sheaves on G = G(W,∅).
It follows that for any x ∈ W, B∅(wwJ )[x] ∼= (0 ◦ p J,∗BJ (wJ ))[x] as graded
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S-modules and then, by Lemma 7.4, we obtain

B∅(wwJ )[x] ∼=

( ∏
y∈Vδx ,
y∈xWJ

αy

)
B J (w)[x J ]

∼= B J (w)[x J ]

〈
2 · # {y ∈ Vδx , y ∈ xWJ }

〉
.

Let x ′ = (x J )−1x ∈WJ . Now if TJ is the set of reflections of WJ ,

# {y ∈ Vδx , y ∈ xWJ } = # {z ∈WJ | there exists t ∈ TJ s.t. z = x ′t and x ′ < z}

= `(wJ )− `(x ′)= `(wJ )− `(x)+ `(x J ). �

Finally we are able to prove the following proposition, which enables us to
embed HJ in H.

Proposition 7.7. The following diagram is commutative:

[HJ
]

h J
��

� � [I ] // [H∅
]

h∅
��

M J � �

i
// H

Proof. As I
(⊕

i∈I B J (wi )
)
=
⊕

I
(
B J (wi )

)
, it is enough to prove the statement

for the module B J (w). In this case, we have:

I (B J (w))= 〈−`(wJ )〉 ◦0 ◦ p J,∗
◦L(B J (w))

= 〈−`(wJ )〉 ◦0 ◦ p J,∗(BJ (w))

∼= 〈−`(wJ )〉 ◦0(B
∅(wwJ ))

= B(wwJ )〈−`(wJ )〉.

Thus if B J (w)[x J ] =
⊕

i∈Ix J

S〈ki 〉, we get

h∅
◦ [I ]([B J (w)])= h∅(B∅(wwJ )〈`(wJ )〉)

=

∑
x∈W

v−`(wJ )+`(x) rk B∅(wwJ )[x]Hx

(by Lemma 7.6) =
∑
x∈W

v`(wJ )+`(x) rk
(
B J (w)[x J ]〈2`(x J )− 2`(wJ )〉

)
Hx

=

∑
x∈W

v−`(wJ )+`(x)
( ∑

i∈Ix J

v−2`(xJ )+2`(wJ )−ki

)
Hx

=

∑
x∈W

v`(wJ )+`(x)
( ∑

i∈Ix J

v−2`(xJ )−ki

)
Hx ,
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where Hx = H∅,v−1

x . On the other hand, we have

i ◦ h J ([B J (w)])= i
( ∑

x J∈WJ

v`(x
J ) rk B J (w)[x J ]H

J,v−1

x J

)
=

∑
x J∈WJ

[
v`(x

J )

( ∑
i∈Ix J

v−ki

)
i(H J,v−1

x J )

]

=

∑
x J∈WJ

[
v`(x

J )

( ∑
i∈Ix J

v−ki

)( ∑
xJ∈WJ

v`(wJ )−l(xJ )Hx J xJ

)]

=

∑
x J∈WJ

∑
xJ∈WJ

( ∑
i∈Ix J

v`(x
J )−ki+`(wJ )−`(xJ )

)
Hx J xJ

=

∑
x∈W

v`(wJ )+`(x)
( ∑

i∈Ix J

v−2`(xJ )−ki

)
Hx . �

8. Connection with the equivariant category O

In this section, we briefly discuss the connection of our results with noncritical
blocks in an equivariant version of category O.

Let g be a complex symmetrisable Kac–Moody algebra and b ⊇ h its Borel
and Cartan subalgebras. The Weyl group W of g naturally acts on h?, and we
can consider equivalence classes 3 ∈ h?/∼. An element λ ∈ h? is noncritical if
2(λ+ρ, β) 6∈ Z(β, β) for any imaginary root β, and an orbit 3 is noncritical if any
λ ∈3 is noncritical.

Fix a noncritical orbit 3 and a weight λ0 ∈3. As in Definition 3.3, we can look
at the W-orbit of λ0, which gives us a Bruhat moment graph on h?. We want to
discuss the representation theoretic content of HJ , where J is in this case given by
the set of simple reflections generating StabW λ0. Denote by G(3) such a graph.

Let S = S(h) be the symmetric algebra of h, R = S(h) be its localisation at 0 ∈ h?

and τ : S→ R be the canonical map. For any µ ∈ h? and any (g-R)-bimodule M ,
we define its µ-weight space as

Mµ = {m ∈ M | H .m = (λ(H)+ τ(H))m for any H ∈ h} .

If g-mod-R denotes the category of (g-R)-bimodules, then the equivariant version
of category O we want to study is

OR =

{
M ∈ g-mod-R

∣∣∣∣ M is locally finite as a (b-R)-bimodule,
M =

⊕
µ∈h? Mµ

}
.

For any µ∈ h? let us consider the (h-R)-bimodule Rµ free of rank one over R on
which h acts via the character µ+τ . The projection b→ h allows us to consider Rµ
as a (b-R)-bimodule and we can now induce to obtain the equivariant Verma module
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of weight µ: MR(µ)=U (g)⊗U (b) Rµ, where U (g) and U (b) are the enveloping
algebras of g and b, respectively.

Let MR be the full subcategory of OR whose objects admit a finite filtration with
subquotients isomorphic to equivariant Verma modules. Since OR is abelian and
MR is closed under extensions in OR , the category MR inherits an exact structure.

For an equivalence class 3 ∈ h?/∼, let OR,3, respectively, MR,3, be the full
subcategory of OR , respectively, MR , consisting of all objects M such that the
highest weight of every simple subquotient of M lies in 3. Then there are block
decompositions, according to the following two results.

Proposition 8.1 [Fiebig 2003, Proposition 2.8; Fiebig 2008a, Theorem 6.1]. The
functors ∏

3∈h?/∼

OR,3→ OR, {M3} 7→

⊕
3∈h?/∼

M3

and ∏
3∈h?/∼

MR,3→MR, {M3} 7→

⊕
3∈h?/∼

M3

are equivalences of categories.

Now it is important to notice that we could have substituted S by the local
algebra R in the constructions and definitions we have considered, and all the
results of this paper would have still worked. Let us denote by ZR the R-version of
the structure algebra of G(3) and by VR,3 the category of ZR-modules admitting
a Verma flag. The main result of [Fiebig 2008a] is the following one:

Theorem 8.2 [Fiebig 2008a, Theorem 7.1]. There is an equivalence of exact cate-
gories

V :MR,3→ VR,3.

Projective objects. For ν ∈3, let 3≤ν := {λ ∈3 | λ≤ ν}. We want to consider a
truncated version of MR,3:

MR,3≤ν =
{

M ∈MR,3
∣∣ (M : MR(µ)

)
6= 0 only if µ ∈3≤ν

}
.

As a reference for the truncated category O, we address the reader to [Rocha-Caridi
and Wallach 1982], where it was introduced.

Denote by VR,3≤ν the category of sheaves on the moment graph G(3)≤ν , obtained
by restricting the set of vertices of G(3) to 3≤ν . By [Fiebig 2006, Proposition
3.11], the functor V restricts to a functor V≤ν :MR,3≤ν →VR,3≤ν , which is also an
equivalence of categories.

Let HJ
R denote the R-version of the category of special modules, and let HJ

R,3≤ν

be the subcategory of HJ
R consisting of modules having support on G(3)≤ν . From

Theorem 6.4, a module M ∈VR,3≤ν is indecomposable and projective if and only if
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there exist a w ∈3≤ν and a k ∈Z such that M ∼= B J (w)〈k〉 and, by Proposition 6.5,
there exists one and only one indecomposable M ∈HJ

R,3≤ν isomorphic to B J (w).
In summary:

Proposition 8.3. Let P ∈ MR,3≤ν . Then P is indecomposable, projective if and
only if VP is an indecomposable special module.

For λ0 regular, that is, StabW λ0 = {e}, this was already proven in [Fiebig 2008b]
and used in [Fiebig 2011], where the interchange between local and global descrip-
tions of the image of the projective modules under V played a fundamental role.
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UNITARY REPRESENTATIONS OF GL.n;K / DISTINGUISHED
BY A GALOIS INVOLUTION FOR A p-ADIC FIELD K

NADIR MATRINGE

Let F be a p-adic field and K a quadratic extension of F . Using Tadić’s
classification of the unitary dual of GL.n;K /, we give the list of irreducible
unitary representations of this group distinguished by GL.n;F / in terms of
distinguished discrete series. It is known that a generalised Steinberg repre-
sentation St.�;k/ is distinguished if and only if the cuspidal representation
� is �k�1-distinguished for �, the character of F � with kernel consisting of
the norms of K �. This actually gives a classification of distinguished unitary
representations in terms of distinguished cuspidal representations.

Introduction

In the present work, for F a p-adic field and K a quadratic extension of F , smooth
and complex unitary (which will be synonymous with unitarisable for us), we
study representations of GL.n;K/ which admit on their space a nonzero invariant
linear form under GL.n;F /. These unitary representations are called GL.n;F /-
distinguished (or simply distinguished) and are conjectured to be the unitary part
of the image of a functorial lift, in the Langlands’ program, from U.n;K=F / to
GL.n;K/.

Distinguished generic representations of GL.n;K/ have been classified in [Ma-
tringe 2011b], in terms of distinguished quasi-discrete series, using Zelevinsky’s
classification of generic representations. Here we do the same for distinguished
irreducible unitary representations using Tadić’s classification of irreducible unitary
representations. Our main result (Theorem 2.13) is similar to the main result of
[Matringe 2011b]. However, to extend the result from generic unitary to irre-
ducible unitary representations, we use different techniques. Our main tools are
the Bernstein–Zelevinksy derivative functors, and we apply ideas from [Bernstein
1984]. For instance, the building blocks for unitary representations (the so-called
Speh representations) are not parabolically induced; hence one needs new methods
to deal with these representations. That is what we do in the second part of Section 2
to obtain a definitive statement in Corollary 2.9, which we state here as a theorem.
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Theorem. Let k and m be two positive integers, and let n be equal to km. If� is a
discrete series of GL.m;K/ and u.�; k/ is the corresponding Speh representation
of GL.n;K/ (see Definition 1.3), then u.�; k/ is distinguished if and only if � is.

One direction is given by the fact that if � is a distinguished irreducible uni-
tary representation, then it is also the case of its highest shifted derivative (see
Proposition 2.4). The other direction is a nontrivial generalisation of the following
simple observation: if � is a distinguished cuspidal representation of GL.n;K/,
then it is known that the parabolically induced representation �1=2�� ��1=2� is
distinguished, and it is also known that its irreducible submodule St.�; 2/ is not dis-
tinguished. Hence its quotient u.�; 2/, which is a Speh representation of GL.2n;K/,
is distinguished. The case of general irreducible unitary representations of GL.n;K/
distinguished by GL.n;F / is treated in the third part of Section 2.We obtain the main
result of the paper in Theorem 2.13. Denoting by � the nontrivial element of the
Galois group of K over F , by �_ the smooth contragredient of a representation �
of GL.n;K/, and by �� the representation � ı � , its statement is as follows.

Theorem. Let n be a positive integer and � an irreducible unitary representation
of GL.n;K/. By Tadić’s classification (see Theorem 1.9), the representation � is a
commutative product (in the sense of normalised parabolic induction) of represen-
tations of the form u.�; k/ for k > 0 and � a discrete series, and representations
of the form �.u.�; k/; ˛/ (see Definition 1.8) for � and k as before and ˛ an
element of .0; 1=2/. Then the representation � is distinguished if and only if �_ is
isomorphic to �� and the Speh representations u.�; k/ occurring in the product �
with odd multiplicity are distinguished.

1. Preliminaries

Basic facts and notations. First, in the following, we fix a nonarchimedean local
field F of characteristic 0 and an algebraic closure F of F . We denote by K a
quadratic extension of F in F . We denote by OF and PF the ring of integers
of F and the unique maximal ideal of F respectively. We similarly define OK

and PK . We denote by j � jF and j � jK the normalised absolute values, which
satisfy jxjK D jxj2F for x in F . We fix a nontrivial smooth character � of K

which is trivial on F . We denote by � the nontrivial element of the Galois group
GalF .K/ of K over F and by � the quadratic character of F�, whose kernel is the
set of norms of K�. For n and m � 1, we denote by Mn;m the space of matrices
M.n;m;K/, by Mn the algebra Mn;n, and by Gn the group of invertible elements
in Mn. We will denote by G0 the trivial group. If m belongs to Mn, we denote
by m� the matrix obtained from m by applying � to each entry. If S is a subset
of Mn, we denote by S� the subset of S consisting of elements fixed by � . For
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m 2Mn, we denote by jmjK or �K .m/ the real number j det mjK , and we define
similarly jmjF or �F .m/ for m in M�

n .
When G is a closed subgroup of Gn, we denote by Alg.G/ the category of

smooth complex G-modules. If .�;V / belongs to Alg.G/, H is a closed subgroup
of G, and � is a character of H , we denote by V .H; �/ the subspace of V generated
by vectors of the form �.h/v � �.h/v for h in H and v in V . This space is
stable under the action of the subgroup NG.�/ of the normalizer NG.H / of H

in G, which fixes �. We denote by ıH the positive character of NG.H / such that
if � is a right Haar measure on H and int is the action of NG.H / on smooth
functions f with compact support in H , given by .int.n/f /.h/ D f .n�1hn/,
then � ı int.n/ D ıH .n/� for n in NG.H /. The space V .H; �/ is NG.�/-stable.
Thus, if L is a closed subgroup of NG.�/ and ı0 is a (smooth) character of L

(which will be a normalising character dual to that of normalised induction later),
the quotient VH ;� D V =V .H; �/ (which we simply denote by VH when � is
trivial) becomes a smooth L-module for the (normalised) action l:.vCV .H; �//D

ı0.l/�.l/vCV .H; �/ of L on VH ;�. If .�;W / belongs to Alg.H /, we define the
objects

.indG
H .�/;Vc D indG

H .W // and .IndG
H .�/;V D IndG

H .W //

of Alg.G/ as follows. The space V is the space C1.HnG; �/ of smooth functions
from G to W fixed under right translation by the elements of a compact open
subgroup Uf of G, and satisfying f .hg/ D �.h/f .g/ for all h in H and g in
G. The space Vc is the subspace C1c .HnG; �/ of V consisting of functions with
support compact mod H . In both cases, the action of G is by right translation on
the functions. By definition, the real part Re.�/ of a character � of F� is the real
number r such that j�.t/jC D jt jr , where jzjC D

p
z Nz for z in C.

Irreducible representations of GL.n/. We will only consider smooth represen-
tations of Gn and its closed subgroups. We denote by An the maximal torus of
diagonal matrices in Gn. It will sometimes be useful to parametrise An with simple
roots, that is, to write an element t D diag.t1; : : : ; tn/ of An as t D z1 � � � zn, where
zn D tnIn and zi D diag..ti=tiC1/Ii ; In�i/ belongs to the centre of Gi embedded
in Gn, which we denote Zi . For zi D diag.tiIi ; In�i/ in Zi , we denote ti by t.zi/.
If n� 1, let NnD .n1; : : : ; nt / be a partition of n of length t (i.e., an ordered set of t

positive integers whose sum is n). We denote by M Nn the Levi subgroup of Gn of
matrices of the form diag.g1; : : : ;gt / with each gi in Gni

, by N Nn the unipotent
subgroup of matrices of the form0B@In1

? ?
: : : ?

Int

1CA ;
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and by P Nn the standard parabolic subgroup M NnN Nn (where M Nn normalises N Nn).
Note that M.1;:::;1/ is equal to An, and we set N.1;:::;1/ D Nn. For each i , let �i

be a smooth representation of Gni
. Then the tensor product �1 ˝ � � � ˝ �t is a

representation of M Nn, which can be considered as a representation of P Nn that is
trivial on N Nn. We will use the product notation

�1 � � � � ��t D IndGn

P Nn
.ı

1=2
P Nn
�1˝ � � �˝�t /

for the normalised parabolic induction.
We say that an irreducible representation .�;V / of Gn is cuspidal if the Jacquet

module VN Nn is zero when Nn is a proper partition of n. Suppose that NnD .m; : : : ;m/
is a partition of n of length l and that � is a cuspidal representation of Gm. Let a

and b be two integers with a� b such that b� aC 1D l . Then [Zelevinsky 1980,
Theorem 9.3] implies that the Gn-module �a

K
��� � ���b

K
� has a unique irreducible

quotient, which we denote by �.�; b; a/. We call it a segment or a quasi-discrete
series of Gn. If, in addition, a quasi-discrete series is unitary (which amounts to
saying that its central character is unitary), we will call it a discrete series or a
unitary segment. We will sometimes write St.�; l/D�.�; .l � 1/=2;�.l � 1/=2/.

We end this section with a word about induced representations of Langlands’
type and their quotients.

Definition 1.1. Let �1; : : : ; �t be segments of Gn1
; : : : ;Gnt

respectively, and
suppose that the central characters satisfy the relation Re.c�i

/� Re.c�iC1
/. Let

nD n1C� � �Cnt . Then the representation�1�� � ���t of Gn is said to be induced
of Langlands’ type.

The following result is well known and can be found in [Rodier 1982].

Proposition 1.2. Let � D�1�� � ���t be an induced representation of Langlands’
type as above. Then � has a unique irreducible quotient, which we denote by
L.�1; : : : ; �t /. If �0

1
; : : : ; �0s are other segments with Re.c�0

j
/� Re.c�0

jC1
/ such

that L.�1; : : : ; �t / D L.�0
1
; : : : ; �0s/, then we have the equality of nonordered

sets f�1; : : : ; �tg D f�
0
1
; : : : ; �0sg.

A particular class of Langlands’ quotients is the class of Speh representations,
which are the building blocks of the unitary dual of Gn in Tadić’s classification.

Definition 1.3. Let k and m be two positive integers, and set nD km. If� is a seg-
ment of Gm, we denote by u.�; k/ the representation L.�

.k�1/=2
K

�;: : : ;�
.1�k/=2
K

�/

of Gn.

We now recall some basic facts about Bernstein–Zelevinksy derivatives.
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Derivatives. We define a character of Nn, denoted again by � , by the formula
�.m/D �.

Pn�1
iD1 mi;iC1/. For n� 2, we denote by Un the group of matrices of the

form
�

In�1 v
1

�
. For n> k � 1, the group Gk embeds naturally in Gn and is given

by matrices of the form diag.g; In�k/. We denote by Pn the mirabolic subgroup
Gn�1Un of Gn for n� 2, and we set P1 D f1G1

g. If one sees Pn�1 as a subgroup
of Gn�1 itself embedded in Gn, then Pn�1 is the normaliser of �jUn

in Gn�1 (i.e.,
if g 2Gn�1, then �.g�1ug/ for all u 2Un if and only if g 2 Pn�1). We define the
following functors:

� The functor ˆC from Alg.Pk�1/ to Alg.Pk/ such that for � in Alg.Pk�1/,
one has ˆC� D indPk

Pk�1Uk
.ı

1=2
Uk
� ˝ �/.

� The functor Ô C from Alg.Pk�1/ to Alg.Pk/ such that for � in Alg.Pk�1/,
one has Ô C� D IndPk

Pk�1Uk
.ı

1=2
Uk
� ˝ �/.

� The functorˆ� from Alg.Pk/ to Alg.Pk�1/ such that if .�;V / is a smooth Pk-
module,ˆ�V DVUk ;� , and Pk�1 acts onˆ�.V / byˆ��.p/.vCV .Uk ; �//D

ıUk
.p/�1=2�.p/.vCV .Uk ; �//.

� The functor‰� from Alg.Pk/ to Alg.Gk�1/ such that if .�;V / is a smooth Pk-
module,‰�V DVUk ;1, and Gk�1 acts on‰�.V / by‰��.g/.vCV .Uk ; 1//D

ıUk
.g/�1=2�.g/.vCV .Uk ; 1//.

� The functor ‰C from Alg.Gk�1/ to Alg.Pk/ such that for � in Alg.Gk�1/,
one has ‰C� D indPk

Gk�1Uk
.ı

1=2
Uk
� ˝ 1/D ı

1=2
Uk
� ˝ 1.

If � is a representation of Pn (or a representation of Gn, which we consider as
a Pn-module by restriction), the representation � .k/ of Gn�k will be defined as
‰�.ˆ�/k�1� and will be called the k-th derivative of � . It is shown in [Bernstein
and Zelevinsky 1977, Section 3.5] that these representations give a natural filtration
of any Pn-module.

Lemma 1.4. If � is an object of Alg.Pn/, then � has a natural filtration of Pn-
modules 0 � �n � � � � � �1 D � , where �k D ˆC

k�1
ˆ�k�1� . Moreover, the

quotient �k=�kC1 is isomorphic to .ˆC/k�1‰C� .k/ as a Pn-module.

It is shown in [Zelevinsky 1980, Section 8] that if � is an irreducible representa-
tion of Gn, then its highest derivative ��, which is the derivative �.k/ for k � n

that is maximal for the condition �.k/¤ 0, is an irreducible representation of Gn�k .
The following lemma is an immediate consequence of [Bernstein and Zelevinsky
1977, Lemma 4.5].

Lemma 1.5. Let �i be an irreducible representation of Gni
for positive integers

n1; : : : ; nt . Then the highest derivative of �1 � � � � � �t is the representation
��

1
� � � � ���t .
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As we study unitary representations, we will need some further properties of these
derivatives, which are extracted from [Bernstein 1984]. First, as in this reference,
we introduce the following definition.

Definition 1.6. Let � be a Pn-module. We denote by � Œk� the representation
�

1=2
K
� .k/ of Gn�k and call it the k-th shifted derivative of � . We denote by � Œ�� the

highest shifted derivative of � .

We then recall the following consequence of the unitarisability criterion given in
[ibid., Section 7.3].

Proposition 1.7. If � is an irreducible unitary representation of Gn with highest
derivative �.h/, then � Œh� is unitary and the central characters of the irreducible
subquotients of � Œk� all have positive real parts for 0< k < h.

Unitary representations of GL.n/. We now recall results from [Tadić 1986] about
the classification of irreducible unitary representations of Gn.

Definition 1.8. For ˛ 2 R, m > 0, k > 0, and � a segment of Gm, we denote
by �.u.�; k/; ˛/ the representation �˛

K
u.�; k/���˛

K
u.�; k/ of Gn for nD 2mk.

Theorem 1.9 [Tadić 1986, Theorem D]. Let � be an irreducible unitary repre-
sentation of Gn. Then there is a partition .n1; : : : ; nt / of n and representations
�i of Gni

, each of which is either of the form �.u.�i ; ki/; ˛i/ for �i a unitary
segment, ki � 1, and 0<˛i < 1=2 or of the form u.�i ; ki/ for�i a unitary segment
and ki � 1, such that � D �1� � � ���t . Moreover, the representation � is equal to
� 0

1
� � � � �� 0s for representations � 0j of the same type as the representations �i if

and only if f�1; : : : ; �tg D f�
0
1
; : : : ; � 0sg as nonordered sets.

If all the representations �i in the above theorem are such that ki D 1, we say
that � is a generic unitary representation of Gn.

We will also need the description of the composition series of the so-called end
of complementary series, which is proved in [Tadić 1987a] (see [Badulescu 2011,
Theorem 2] for a quick proof). If � is the segment St.�; l/ for l � 1, we write
�C D St.�; l C 1/ and �� D St.�; l � 1/, where St.�; 0/ is 1G0

by convention.

Theorem 1.10. Let m be a positive integer, � a segment of Gm, k � 2 an integer,
and n D 2mk. The representation �.u.�; k/; 1=2/ of Gn is of length 2, and its
irreducible subquotients are u.��; k/�u.�C; k/ and u.�; k � 1/�u.�; kC 1/.

Finally, we recall the formula which gives the highest shifted derivative of a
Speh representation, from [Tadić 1987b, Section 6.1] (see [Offen and Sayag 2008,
(3.3)] for the proof).

Proposition 1.11. Let m > 0 and k > 1 be two integers, and let � be a segment
of Gm. The highest shifted derivative of the representation u.�; k/ is equal to
u.�; k/Œm� D u.�; k � 1/. The highest (shifted) derivative of � is equal to 1G0

.
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Distinguished representations of GL.n/. In this paragraph, we recall results from
[Matringe 2011b]. First, we introduce some notations and definitions.

Definition 1.12. Let G be a closed subgroup of Gn, H a closed subgroup of G, and
� a character of H . We say that a representation � in Alg.G/ is .H; �/-distinguished
if the space HomH .�; �/ is nonzero. If H is clear, we say �-distinguished instead of
.H; �/-distinguished, and if � is trivial, we say H -distinguished (or distinguished if
H is clear). If GDGn and H DG�

n , we will sometimes say .�; �/-distinguished in-
stead of .H; �/-distinguished, and if � is trivial, we will simply say � -distinguished.

We recall the following general facts from [Flicker 1991] about � -distinguished
representations of Gn. We denote by �� the representation g 7! �.g� / for � a
representation of Gn.

Proposition 1.13. Let n� 1 be an integer and � be an irreducible representation
of Gn. If � is � -distinguished, then �_ D �� and HomG�n .�; 1/ is of dimension 1.

We now introduce the class of � -induced irreducible unitary representations of Gn.
They will turn out to be the �-distinguished irreducible unitary representations
of Gn.

Definition 1.14. For n� 1, let � be an irreducible unitary representation

�Du.�1; k1/�� � ��u.�s; ks/��
�
u.�sC1; ksC1/; ˛sC1

�
�� � ���

�
u.�t ; kt /; ˛t

�
of Gn with unitary segments �i , positive integers ki , and ˛i 2 .0; 1=2/. The
representation � is said to be � -induced if it satisfies �_D�� and if for every i � s

such that u.�i ; ki/ occurs with odd multiplicity in the product � , the segment �i

is � -distinguished.

Remark 1.15. Maybe the preceding definition is not completely transparent to the
reader. Let us try to explain what �-induced irreducible unitary representations
look like. Let

�Du.�1;k1/�� � ��u.�t ;ks/��
�
u.�sC1;ksC1/;˛ksC1

�
�� � ���

�
u.�t ;kt /;˛kt

�
be an irreducible unitary representation of Gn. First, if one has �_ D �� (call this
relation � -self-duality), then it means the two following things:

(a) For i between 1 and s, either u.�i ; ki/ is � -self-dual or, if this relation is not
satisfied, there exists j ¤ i between 1 and s such that u.�j ; kj /

_Du.�i ; ki/
� .

(b) For i between s C 1 and t , either �.u.�i ; ki/; ˛i/ is �-self-dual or, if this
relation is not satisfied, there exists j ¤ i between s C 1 and t such that
�.u.�j ; kj /; j̨ /

_ D �.u.�i ; ki/; ˛i/
� .

In (a) above, if you have u.�i ; ki/
_ D u.�i ; ki/

� which occurs with multiplicity
at least 2, that is, if there is j ¤ i between 1 and s such that u.�j ; kj /D u.�i ; ki/,
then one has u.�j ; kj /

_ D u.�i ; ki/
� . Hence (a) can also be stated as:
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(a0) u.�1;k1/�� � ��u.�s;ks/ is a product of representations of the form u.�i ;ki/�

.u.�i ;ki/
_/� and of � -self dual representations u.�j ; kj / which occur with

odd multiplicity.

Now in (b), if �.u.�i ; ki/; ˛i/ is � -self dual, it is equal to

�
˛i

K
u.�i ; ki/�

�
.�
˛i

K
u.�i ; ki//

_
��

(because �_i must be equal to ��i ). All in all, � is � -self dual if and only if it is a
product of representations of the form

�˛K u.�; k/�
�
.�˛K u.�; k//_

��
for 0� ˛ < 1=2, � a discrete series, and k a positive integer (we allow here ˛ to be
equal to zero in order to take in account representations u.�i ; ki/� .u.�i ; ki/

_/�

occurring in (a0)), of representations of the form

�.u.�; k/; ˛/�
�
�.u.�; k/; ˛/_

��
for ˛ in .0; 1=2/ and� and k as above, and of representations of the form u.�0; k 0/

(�0 unitary and k 0 > 0) occurring with odd multiplicity and which are � -self dual.
In this situation, � is �-induced if and only if these representations u.�0; k 0/ are
such that �0 is � -distinguished.

Theorem 5.2 of [Matringe 2011b] then classifies distinguished generic represen-
tations.

Theorem 1.16. For n� 1, a generic unitary representation of Gn is � -distinguished
if and only if it is � -induced.

We also recall [Matringe 2009, Corollary 3.1] about distinction of discrete series.

Proposition 1.17. Let � be a cuspidal representation of Gr for r � 1 and � D
St.�; l/ for l � 1. The segment � of Glr is �-distinguished if and only if � is
.�; �l�1/-distinguished.

Finally, [Anandavardhanan et al. 2004, Corollary 1.6] says that the segment �
above cannot be �-distinguished and .�; �/-distinguished at the same time. This
has the following immediate corollary.

Corollary 1.18. Let � be a segment of Gn for n� 2. Then � is � -distinguished if
and only if �C is .�; �/-distinguished. In particular, if � is distinguished,then �C
is not.

2. Distinguished unitary representations

We will first prove the convergence of integrals defining invariant linear forms.
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Asymptotics in the degenerate Kirillov model. We denote by Nn;h the group of
matrices h.a; n/D

�
a
0

x
n

�
with a in Gn�h, n in Nh, and x in Mn�h;h. It is proved

in [Zelevinsky 1980, Section 5] that any irreducible representation � of Gn has
a “degenerate Kirillov model” (which is just the standard Kirillov model in the
nondegenerate case). This means that the restriction of � to Pn embeds as a
unique Pn-submodule K.�; �/ of . Ô C/h�1‰C.�.h//, where �.h/ D ��. The
space K.�; �/ consists of smooth functions W from Pn to V�.h/ which are fixed
under right translation by an open subgroup UW and satisfy the relation

W .h.a; n/p/D jaj
h=2
K
�.n/�.h/.a/W .p/

for h.a; n/ in Nn;h and p in Pn. It can be handy to identify such a function with a
map from Pn to V� Œh� which satisfies the relation

(1) W .h.a; n/p/D jaj
.h�1/=2
K

�.n/� Œh�.a/W .p/

for h.a; n/ in Nn;h and p in Pn.
We now give an asymptotic expansion of the elements of K.�; �/ in terms of

the exponents of � . The proof, which is omitted, is an easy adaptation of the proof
of [Matringe 2011a, Theorem 2.1]. We write C1c .F;V / for the space of smooth
functions with compact support from F to a complex vector space V .

Theorem 2.1. Let � be an irreducible representation of Gn for n� 2. Let �.h/ be
the highest derivative of � , and let W belong to K.�; �/. We suppose that we have
h� 2, and we denote by .ck;ik

/1�k�rk
the family of central characters of the irre-

ducible subquotients of �.k/. In this situation, the restriction W .zn�hC1 : : : zn�1/

of W to the torus Zn�hC1 � � �Zn�1 is a linear combination of functions of the form

n�1Y
kDn�hC1

Œcik ;kı
1=2
UkC1

: : : ı
1=2
Un
�.zk/vF .zk/

mk�k.t.zk//

for ik between 1 and rk , nonnegative integers mk , and functions �k in C1c .F;V�.h//.

From this, we deduce the convergence of the following integrals, which we will
need later.

Proposition 2.2. Let � be an irreducible unitary representation of Gn for n � 1.
Let �.h/ be the highest derivative of � , and let W belong to K.�; �/. We suppose
that there is a nonzero G�

n�h
-invariant linear form L on the space of � Œh�, and for

every element W of K.�; �/, we define the map fL;W DL ıW . Then for all W in
K.�; �/, the integral

ƒ.W /D

Z
N�

n;h
nP�n

fL;W .p/ dp

is absolutely convergent and ƒ defines a nonzero P�
n -invariant linear form on V� .
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Proof. If h equals 1, then ƒ.W / is equal to L.W .In// up to normalisation, and
the result is obvious. For h� 2, first, thanks to Relation (1), the restriction of the
map fL;W to P�

n satisfies the relation

fL;W .h.a; n/p/D jaj
h�1
F fL;W .p/

for p in P�
n and h.a; n/ in N �

n;h
. We notice that jajh�1

F
is indeed equal to

ıN�
n;h

ıP�n
.h.a; n//D

jajh
F

jajF
:

Actually, the integral ƒ.W / is equal toZ
N�

n�1;h
nG�

n�1

fL;W .p/ dp:

Hence, thanks to the Iwasawa decomposition, the integralƒwill converge absolutely
for any W in K.�; �/ if and only if the following integral does as well:Z

Zn�hC1:::Zn�1

fL;W .zn�hC1 : : :zn/ı
�1
N�

n�1;h
.zn�hC1 : : :zn�1/d

�zn�hC1 : : :d
�zn�1

for any W in K.�; �/. As ıN�
n�1;h

.zn�hC1 : : : zn�1/ is equal to the product

n�1Y
kDn�hC1

ıU�
kC1

: : : ıU�
n�1
.zk/D

n�1Y
kDn�hC1

ı
1=2
UkC1

: : : ı
1=2
Un�1

.zk/

for the zi in Z�
i , we obtain that the integralZ

Zn�hC1:::Zn�1

jfL;W .zn�hC1 : : :zn/jı
�1
N�

n�1;h
.zn�hC1 : : :zn�1/d

�zn�hC1 : : :d
�zn�1

is majorized by a sum of integrals of the form
n�1Y

kDn�hC1

Z
Zk

cik ;k ı
1=2
Un
.zk/vF .zk/

mkfk.t.zk// d�zk

D

n�1Y
kDn�hC1

Z
Zk

cik ;k ı
1=2
UkC1

.zk/vF .zk/
mkfk.t.zk// d�zk

for functions fkDLı�k in C1c .F /, thanks to Theorem 2.1. These last integrals are
convergent, as, according to Proposition 1.7, the real part Re.cik ;kı

1=2
UkC1

/ is positive.
This concludes the proof of the convergence. To show thatƒ is nonzero, we just need
to remember that � contains as a Pn-submodule the space .ˆC/h�1.‰C.�.h///

and the restriction to P�
n of elements of .ˆC/h�1.‰C.�.h/// is surjective on the

space

C1c

�
N �

n;hnP
�
n ;
ıN�

n;h

ıP�n
� Œk�˝ 1

�
: �
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The case of Speh representations. The aim of this section is to prove that a repre-
sentation u.�; k/ is � -distinguished if and only if � is, independently of k. Oddly
enough, the trickiest part is to prove that when � is � -distinguished, so is u.�; k/.
We first recall, as a lemma, [Kable 2004, Proposition 1], which is the key ingredient
of the proof of the functional equation of the local Asai L-function.

Lemma 2.3. Let � be a representation of Pn for n�1. Then the space HomP�n .�; 1/
is isomorphic to HomP�

nC1
.ˆC.�/; 1/.

This implies the following generalisation of [Anandavardhanan et al. 2004,
Theorem 1.1]:

Proposition 2.4. Let � be an irreducible unitary representation of Gn for n � 1.
The representation � is P�

n -distinguished if and only if its highest shifted derivative
� Œ�� is � -distinguished.

Proof. One implication follows from Proposition 2.2. For the other one, we first
notice that by the definition of ‰C, if � 0 is a representation of Gk for k � 0,
then the space HomP�

kC1
.‰C.� 0/; 1/ is isomorphic to HomG�

k
.�1=2� 0; 1/. Hence,

thanks to Lemma 2.3, the space HomP�
kCl
..ˆC/l�1‰C.�/; 1/ is isomorphic to

HomG�
k
.�1=2� 0; 1/. Now, if � is an irreducible unitary representation of Gn, let h

be the integer such that �� D �.h/. The restriction of � to Pn has a filtration with
factors .ˆC/k�1‰C.�.k// for k between 1 and h, according to Lemma 1.4. If L

is a nonzero P�
n -invariant linear form on � , it must induce a nonzero element of

HomP�n ..ˆ
C/k�1‰C�.k/; 1/' HomG�

n�k
.� Œk�; 1/ for some k in f1; : : : ; hg. But

if the space HomG�
n�k

.� Œk�; 1/ is nonzero, it implies that the central character of one
of the irreducible subquotients of � Œk� has real part equal to zero because F� must
act trivially on at least one irreducible subquotient of � Œk�. Hence, according to
Proposition 1.7, this means that the space HomP�n ..ˆ

C/k�1‰C�.k/; 1/ is reduced
to zero for k between 1 and h� 1 and that the space

HomP�n ..ˆ
C/h�1‰C�.h/; 1/' HomG�

n�h
.� Œh�; 1/

is nonzero. The result is thus proved. �
The proof of the preceding proposition implicitly contains the following state-

ment.

Proposition 2.5. Let � be an irreducible unitary representation of Gn which is P�
n -

distinguished. Then its highest shifted derivative � Œ�� is �-distinguished, and the
space HomP�n .�; 1/ is of dimension 1 with basis equal to a certain linear form L.
Moreover, the restriction of L to �0 D .ˆ

C/h�1‰C.��/ is nonzero, and if � is any
Pn-submodule of � which is P�

n -distinguished, then � contains �0 and the space
HomP�n .�; 1/ is spanned by the restriction Lj� .

From this, we deduce a statement which will be used twice in a crucial way.
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Proposition 2.6. Let n1 and n2 be two positive integers and �1 and �2 be two
irreducible unitary representations of Gn1

and Gn2
respectively. Suppose that �1 is

G�
n1

-distinguished and that �2 is P�
n2

-distinguished. In this situation, if �D�1��2

is G�
n -distinguished, then �2 is G�

n2
-distinguished.

Proof. We write�1��2 as induced from the lower parabolic subgroup P�D P�
.n1;n2/

obtained by transposing P.n1;n2/. It is thus the space C1c .P
�nGn; ı

1=2
P�
�1˝�2/.

The double class P�Pn, being open in Gn, contains

� D C1c .P
�
nP�Pn; ı

1=2
P�
�1˝�2/;

which is a Pn-submodule of � . Let L1 be a basis of HomG�n1
.�1; 1/, L2 be a basis

of HomP�n2
.�2; 1/, and denote by � the linear form L1˝L2 on �1˝�2. We now

introduce the following linear form on � :

L W f 7!

Z
P�\P�n nP

�
n

�.f .p// dp:

It is well-defined because the restriction of f to P�
n has compact support modulo

P�\P�
n because it satisfies f .hp/D jaj

�n2

F
jbj

n1

F
f .p/ for

hD

0@a 0 0

x b y

0 0 1

1A 2 P�\P�
n

written in blocks according to the partition .n1; n2� 1; 1/ of n and because of the
relation

ıP�\P�n

ıP�n
.h/D

jaj
1�n2

F
jbj

1Cn1

F

jajF jbjF
D jaj

�n2

F
jbj

n1

F
:

Let’s now show that L is nonzero. For v1 in V�1
and v2 in V�2

, let U be a congruence
subgroup of Gn such that U \Gn1

fixes v1 and U \Gn2
fixes v2. As U has an

Iwahori decomposition with respect to P�, the map defined by fU;v1;v2
.p�u/D

ı
1=2
P�
�1˝�2.p

�/.v1˝v2/ for u in U , p� in P� and by zero outside P�U belongs
to V� . Moreover, L.fU;v1;v2

/ is a positive multiple of L1.v1/L2.v2/. In particular,
L is nonzero. This implies that L belongs to HomP�n .�; 1/�f0g. It remains to prove
that �2 is G�

n2
-distinguished. We are going to prove that L2 is actually G�

n2
-invariant.

By Proposition 2.5, as � is irreducible, unitary, and � -distinguished, we know that
HomP�n .�; 1/ is one-dimensional, spanned by a linear form L0. Moreover, by the
same proposition, up to multiplying L0 by a scalar, the restriction of L0 to � is equal
to L. Hence we denote L0 by L. The fact that HomP�n .�; 1/ is one-dimensional
also implies that L is in fact G�

n -invariant. Now take h of the form diag.In1
; b/

with b in Gn2
.OK /. We have �.h/fU;v1;v2

D fU;v1;�.b/v2
. Moreover, if b belongs

to Gn2
.OK /

� , the relation L.�.h/fU;v1;v2
/ D L.fU;v1;v2

/ implies the equality
L1.v1/L2.�.b/v2/DL1.v1/L2.v2/. This implies that L2 is Gn2

.OK /
� -invariant.
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In particular, it is wn2
-invariant, where wn2

is the antidiagonal matrix with ones
on the second diagonal. As L2 is P�

n2
-invariant by hypothesis, it is G�

n2
-invariant

because wn2
and P�

n2
span the group G�

n2
, and this concludes the proof. �

For Speh representations, we first obtain the following criterion of P�
n -distinction.

Proposition 2.7. Let r be a positive integer, k be an integer� 2, and nDkr . Let�
be a discrete series of Gr . Then the representation u.�; k/ is P�

n -distinguished if
and only if u.�; k � 1/ is � -distinguished.

Proof. We recall from Proposition 1.11 that u.�; k/Œ�� is equal to u.�; k �1/. We
then apply Proposition 2.4. �

Proposition 2.4 also has the following corollary.

Corollary 2.8. Let n1; : : : ; nt and k be positive integers and �i be a unitary
segment of Gni

for each i . If the product u.�1; k/�� � ��u.�t ; k/ is � -distinguished,
then the product �1 � � � � ��t is � -distinguished as well.

Proof. First, according to Theorem 1.9, the product u.�1; k/� � � � � u.�t ; k/ is
unitary. According to Lemma 1.5 and Proposition 1.11, the highest shifted derivative
of this product is u.�1; k�1/�� � ��u.�t ; k�1/. It is � -distinguished according to
Proposition 2.4. Hence, by induction, the product �1 � � � � ��t is � -distinguished
as well. �

In particular, if u.�; k/ is �-distinguished, then � is �-distinguished. We are
now able to prove the main result of this section.

Corollary 2.9. Let k and m be two positive integers and � be a discrete se-
ries of Gm. The representation u.�; k/ is �-distinguished if and only if � is
� -distinguished.

Proof. If u.�; k/ is � -distinguished, we already noticed that � is � -distinguished
as a consequence of Corollary 2.8. For the converse, we do an induction on k.

The case k D 1 is clear, so let’s suppose that u.�; l/ is � -distinguished for l � k

with k � 1. We recall from Theorem 1.10 that �1=2u.�; k/� ��1=2u.�; k/ is of
length two and has u.��; k/�u.�C; k/ and u.�; k�1/�u.�; kC1/ as irreducible
subquotients. Now, as u.�; k/_ D u.�; k/� , according to the main theorem of
[Blanc and Delorme 2008], the representation �1=2u.�; k/� ��1=2u.�; k/ is �-
distinguished. But u.��; k/�u.�C; k/ can’t be distinguished, otherwise����C
would be distinguished thanks to Corollary 2.8, and this would in turn imply that both
�� and �C are also distinguished according to Theorem 1.16, which contradicts
Corollary 1.18. Hence, the representation u.�; k � 1/ � u.�; k C 1/ must be
�-distinguished. We recall that the representation u.�; k � 1/ is �-distinguished
by the induction hypothesis. As u.�; k/ is �-distinguished by hypothesis as well,
the representation u.�; kC 1/ is P�

.kC1/m
-distinguished by Proposition 2.7. Then,
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the representation u.�; kC 1/ is � -distinguished according to Proposition 2.6, and
this provides the induction step. �

As a corollary, we obtain the following result.

Corollary 2.10. Let k and m be positive integers. If � is a segment of Gm and
u.�; k/_ is isomorphic to u.�; k/� , then u.�; k/ is either �-distinguished or
.�; �/-distinguished and not both at the same time.

Proof. The representation u.�; k/_ is isomorphic to u.�; k/� if and only if �_ is
isomorphic to �� . The result is then a consequence of [Kable 2004, Theorem 7]
and of [Anandavardhanan et al. 2004, Corollary 1.6]. �

The general case. First, we notice that the class of �-induced unitary irreducible
representations of Gn is contained in the class of � -distinguished representations.

Proposition 2.11. For n� 1, let � be an irreducible unitary representation of Gn

which is � -induced. Then it is � -distinguished.

Proof. Let � be a discrete series of Gm with m� 1, let k be a positive integer, and
let ˛ be a real number. Then the representations �˛

K
u.�; k/� ..�˛

K
u.�; k//_/�

and �.u.�; k/; ˛/� .�.u.�; k/; ˛/_/� are � -distinguished according to the main
theorem of [Blanc and Delorme 2008]. But as a product of �-distinguished repre-
sentations is � -distinguished according to [Flicker 1992, Proposition 26], it follows
from Remark 1.15 that if � is � -induced, then it is indeed � -distinguished. �

It remains to prove the converse to obtain the main result of this paper. First, we
make the following obvious but useful observation.

Lemma 2.12. Let � D u.�1; k1/� � � � �u.�r ; kr /��.u.�rC1; krC1/; ˛rC1/�

� � � � �.u.�t ; kt /; ˛t / be an irreducible unitary representation of Gn with �i

discrete series and real numbers ˛i in .0; 1=2/. If the integers ki satisfy ki � 2,
then � is � -induced if and only if its highest shifted derivative � Œ�� is � -induced.

Proof. With the notations of the statement, according to Lemma 1.5 and Proposi-
tion 1.11, the representation � Œ�� is equal to the product

u.�1; k1� 1/� � � � �u.�r ; kr � 1/

��.u.�rC1; krC1� 1/; ˛rC1/� � � � ��.u.�t ; kt � 1/; ˛t /:

Now it is clear that � is � -self-dual if and only if � Œ�� is and that a representation
u.�; k/ (with� unitary) occurs with odd multiplicity in � if and only if u.�; k�1/

occurs with odd multiplicity in � Œ��. The result now follows from the fact that a
Speh representation u.�; k/ with k � 2 is � -distinguished if and only if u.�; k�1/

is � -distinguished, thanks to Corollary 2.9. �
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Theorem 2.13. If � is an irreducible unitary representation of Gn for n� 1, then �
is � -distinguished if and only it is � -induced.

Proof. One direction is Proposition 2.11. Hence, it remains to show that when
� is �-distinguished, it is �-induced. To do this, we first write � under the form
�1 ��2, where �1 is an irreducible unitary representation of Gn1

for some n1 � 0

which is a product of the form described in the statement of Lemma 2.12 (i.e., the
ki are � 2) and �2 is generic unitary of Gn2

for n2 � 0 (i.e., if you write it as a
standard product in Tadić’s classification, all the ki are equal to 1). Notice that �1

and �2, and hence n1 and n2, are uniquely determined by � . We now prove the
statement by induction on n1.

The case n1 D 0 is true thanks to Theorem 1.16. We thus suppose that n1 is
positive, in which case it is necessarily at least 2 by definition of the representation�1

(the integers ki occurring in its definition being at least 2), and we suppose that the
statement to prove is true for any irreducible unitary representation � 0 D � 0

1
�� 0

2

with n0
1
< n1. By hypothesis, the representation � is �-distinguished, and hence

the representation � Œ�� D � Œ��
1

is � -distinguished as well thanks to Proposition 2.4.
Then, by induction hypothesis, the representation � Œ��

1
must be � -induced (because

if one writes � 0 D � Œ��
1

under the form � 0
1
� � 0

2
, then we have n0

1
< n1). This

implies that the representation �1 is �-induced as well according to Lemma 2.12.
In particular, it is �-distinguished by Proposition 2.11. Then, we notice that the
representation �2 is P�

n2
-distinguished according to Proposition 2.4, as � Œ��

2
is the

trivial character of G0. We can now apply Proposition 2.6 and conclude that �2

is �-distinguished, thus �-induced thanks to Theorem 1.16. This finally implies
that � is � -induced as well. �
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ON f -BIHARMONIC MAPS
AND f -BIHARMONIC SUBMANIFOLDS

YE-LIN OU

We consider f -biharmonic maps, the extrema of the f -bienergy functional.
We prove that an f -biharmonic map from a compact Riemannian mani-
fold into a nonpositively curved manifold with constant f -bienergy density
is a harmonic map; that any f -biharmonic function on a compact mani-
fold is constant; and that the inversion in the sphere Sm−1 is a proper f -
biharmonic conformal diffeomorphism for m ≥ 3. We derive equations for
f -biharmonic submanifolds (that is, submanifolds whose defining isometric
immersions are f -biharmonic maps) and prove that a surface in a manifold
(Nn, h) is an f -biharmonic surface if and only if it can be biharmonically
conformally immersed into (Nn, h). We also give a complete classification of
f -biharmonic curves in three-dimensional Euclidean space. Examples are
given of proper f -biharmonic maps and f -biharmonic surfaces and curves.

1. Harmonic, biharmonic, f -harmonic, and f -biharmonic maps

All objects in this paper, including manifolds, tensor fields, and maps, are assumed
smooth unless stated otherwise.

We recall the key definitions, focusing on maps on compact Riemannian man-
ifolds M . (For noncompact M , the relevant functionals are integrals over fixed
compact domains K ⊂ M , and the criticality conditions must hold for all K .)

Harmonic maps. Harmonic maps are critical points of the energy functional for
maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E(φ)= 1
2

∫
M
|dφ|2vg.

The Euler–Lagrange equation gives the harmonic map equation [Eells and Sampson
1964]

τ(φ) := Traceg∇dφ = 0,
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where τ(φ)= Traceg∇dφ is called the tension field of the map φ.

Biharmonic maps. Biharmonic maps are critical points of the bienergy functional
for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E2(φ)=
1
2

∫
M
|τ(φ)|2vg.

The Euler–Lagrange equation of this functional gives the biharmonic map equation
[Jiang 1986b], namely the vanishing of the bitension field τ2(φ) of φ:

τ2(φ) := Traceg(∇
φ
∇
φ
−∇

φ

∇M )τ (φ)−Traceg RN (dφ, τ(φ))dφ = 0.

Here RN is the curvature operator of (N , h), defined by

RN (X, Y )Z = [∇N
X ,∇

N
Y ]Z −∇

N
[X,Y ]Z .

f -harmonic maps. f -harmonic maps are critical points of the f -energy functional
for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E f (φ)=
1
2

∫
M

f |dφ|2vg.

Here f is a fixed function M→ (0,∞). The Euler–Lagrange equation gives the
f -harmonic map equation [Course 2004; Ouakkas et al. 2010]

τ f (φ) := f τ(φ)+ dφ(grad f )= 0.

We call τ f (φ) the f -tension field of the map φ.

f -biharmonic maps. f -biharmonic maps are critical points of the f -bienergy func-
tional for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E2, f (φ)=
1
2

∫
M

f |τ(φ)|2vg.

The Euler–Lagrange equation gives the f -biharmonic map equation [Lu 2013]

τ2, f (φ) := f τ2(φ)+ (1 f )τ (φ)+ 2∇φgrad f τ(φ)= 0.

Bi-f -harmonic maps. Bi-f -harmonic maps are critical points of the bi-f -energy
functional for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

(1) E2
f (φ)=

1
2

∫
M
|τ f (φ)|

2vg.

The Euler–Lagrange equation gives the bi-f -harmonic map equation [Ouakkas et al.
2010]

τ 2
f (φ) := f Jφ(τ f (φ))−∇

φ

grad f τ f (φ)= 0,
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where Jφ is the Jacobi operator of the map, defined by

Jφ(X)=−(Traceg∇
φ
∇
φX −∇φ

∇M X − RN (dφ, X)dφ).

Remark. Ouakkas et al. [2010] used the name “ f -biharmonic maps” for the critical
points of the functional (1). We think that it is more reasonable to call them “bi-f -
harmonic maps” as parallel to “biharmonic maps”.

We have the following obvious inclusions among the various types of harmonic
maps:

{harmonic} ⊂ {biharmonic} ⊂ { f-biharmonic},

{harmonic} ⊂ { f-harmonic} ⊂ {bi-f-harmonic}.

From now on we will call an f -biharmonic map which is neither harmonic nor
biharmonic a proper f -biharmonic map.

Harmonic maps as a generalization of important concepts of geodesics, minimal
surfaces, and harmonic functions have been studied extensively with tremendous
progress in the past 40-plus years. There is voluminous literature about the beautiful
theory, important applications, and interesting links of harmonic maps to other
areas of mathematics and theoretical physics including nonlinear partial differential
equations, holomorphic maps in several complex variables, the theory of stochastic
processes, liquid crystals in materials science, and the nonlinear field theory.

The study of biharmonic maps was proposed in [Eells and Lemaire 1983] and
Jiang [1986a; 1986b; 1987] made the first serious study on these maps by using the
first and second variational formulas of the bienergy functional and specializing
on the biharmonic isometric immersions which nowadays are called biharmonic
submanifolds. Very interestingly, the concept of biharmonic submanifolds was also
introduced in a different way by B. Y. Chen [1991] in his program of understanding
the finite-type submanifolds in Euclidean spaces. Since 2000, biharmonic maps
have been receiving a growing attention and have become a popular subject of study
with great progress. For some recent geometric study of general biharmonic maps
see [Baird and Kamissoko 2003; Montaldo and Oniciuc 2006; Ou 2006; 2012b;
Balmuş et al. 2007; Ouakkas 2008; Baird et al. 2010; Ou and Lu 2013; Nakauchi
et al. 2014; Wang et al. 2014] and the references therein. For some recent study
of biharmonic submanifolds see [Jiang 1986a; 1987; Dimitrić 1992; Chen and
Ishikawa 1998; Caddeo et al. 2001; 2002; Balmuş et al. 2008; 2013; Ou 2010; Ou
and Wang 2011; Ou and Tang 2012; Alías et al. 2013; Chen and Munteanu 2013;
Liang and Ou 2013; Nakauchi and Urakawa 2013] and the references therein. For
biharmonic conformal immersions and submersions see [Baird et al. 2008; Ou 2009;
2012a; Loubeau and Ou 2010; Wang and Ou 2011] and the references therein.

Lu [2013] introduced f -biharmonic maps and calculated the first variation to
obtain the f -biharmonic map equation and the equation for the f -biharmonic
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conformal maps between the same dimensional manifolds. In this paper, we
study some basic properties of f -biharmonic maps and introduce the concept of
f -biharmonic submanifolds. We prove that an f -biharmonic map from a compact
Riemannian manifold into a nonpositively curved manifold with constant f -bienergy
density is a harmonic map (Theorem 2.4); any f -biharmonic function on a compact
manifold is constant (Corollary 2.6); and that the inversion in sphere Sm−1 is a
proper f -biharmonic conformal diffeomorphism for m ≥ 3 (Proposition 2.9). We
derive f -biharmonic submanifolds equations (Theorem 3.2 and Corollary 3.4) and
prove that a surface in a manifold (N n, h) is an f -biharmonic surface if and only if
it can be biharmonically conformally immersed into (N n, h) (Corollary 3.6). We
also give a complete classification of f -biharmonic curves in three-dimensional
Euclidean spaces (Theorem 4.4) according to which proper f -biharmonic curves are
some special subclasses of planar curves or general helices in R3. Many examples
of proper f -biharmonic maps and f -biharmonic surfaces and curves are given.

2. Some properties and examples of f -biharmonic maps

As mentioned, f -biharmonic maps are critical points of the f -bienergy functional
for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E2, f (φ)=
1
2

∫
M

f |τ(φ)|2vg.

The following theorem was proved in [Lu 2013]. We give a brief outline of the
proof for completeness, but note that our notation is different from Lu’s.

Theorem 2.1. A map φ : (M, g)→ (N , h) between Riemannian manifolds is an
f -biharmonic map if and only if

(2) τ2, f (φ) := f τ2(φ)+ (1 f )τ (φ)+ 2∇φgrad f τ(φ)= 0,

where τ(φ) and τ2(φ) are the tension and the bitension fields of φ respectively.

Proof. Since f is fixed, we can use the standard method (see, e.g., [Baird and
Kamissoko 2003; Jiang 1986b]) of calculating the first variation of the bienergy
functional to obtain

∂

∂t
E2, f (φt)

∣∣∣
t=0
=

1
2

∫
M

f
{
∂

∂t
〈τ(φt), τ (φt)〉

}
t=0
vg

=−

∫
M

f 〈τ(φ), Jφ(V )〉vg

=

∫
M
〈 f τ(φ),Traceg∇

φ
∇
φV −∇φ

∇M V − RN (dφ, V )dφ〉vg.

Using the symmetry property of the curvature tensor and the divergence theorem
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we can switch the positions of V and f τ(φ) to have

∂

∂t
E2, f (φt)

∣∣∣
t=0
=−

∫
M
〈V, Jφ( f τ(φ))〉vg.

It follows that φ is an f -biharmonic map if and only if the f -bitension field vanishes
identically, i.e., τ2, f (φ)=−Jφ( f τ(φ))≡ 0. Finally, using [Ou 2006, (7)], we have

τ2, f (φ)=−Jφ( f τ(φ))=−{ f Jφ(τ (φ))− (1 f )τ (φ)− 2∇φgrad f τ(φ)}

= f τ2(φ)+ (1 f )τ (φ)+ 2∇φgrad f τ(φ),

from which the f -biharmonic map equation (2) follows. �

It is well known that for m 6= 2, the harmonicity and f -harmonicity of a map
φ : (Mm, g)→ (N n, h) are related via a conformal change of the domain metric.
More precisely:

Proposition 2.2 [Lichnerowicz 1969]. A map φ : (Mm, g)→ (N n, h) with m 6= 2
is f -harmonic if and only if φ : (Mm, f

2
m−2 g)→ (N n, h) is a harmonic map.

In general, this does not generalize to the case of the relationship between
biharmonicity and f -biharmonicity, but very interestingly, we have:

Theorem 2.3. A map φ : (M2, g)→ (N n, h) is an f -biharmonic map if and only
if φ : (M2, f −1g)→ (N n, h) is a biharmonic map.

Proof. On the one hand, we notice that the map φ : (M2, g) → (N n, h) is an
f -biharmonic map if and only if

(3) f τ2(φ, g)+ (1 f )τ (φ, g)+ 2∇φgrad f τ(φ, g)= 0,

which is equivalent to

(4) τ2(φ, g)+ (1 ln f + |grad ln f |2)τ (φ, g)+ 2∇φgrad ln f τ(φ, g)= 0.

On the other hand, by [Ou 2009, Corollary 1], the relationship between the bitension
field τ2(φ, g) and that of the map φ : (M2, ḡ = F−2g)→ (N n, h) is given by

τ2(φ, ḡ)= F4{τ 2(φ, g)+2(1 ln F+2 |grad ln F |2)τ (φ, g)+4∇φgrad ln F τ(φ, g)
}
,

which is equivalent to

τ2(φ, ḡ)= F4{τ 2(φ, g)+ (1 ln F2
+|grad ln F2

|
2)τ (φ, g)+2∇φgrad ln F2 τ(φ, g)

}
.

It follows that the map φ : (M2, ḡ= F−2g)→ (N n, h) is biharmonic if and only if

(5) τ2(φ, g)+ (1lnF2
+ |grad ln F2

|
2)τ (φ, g)+ 2∇φgrad ln F2τ(φ, g)= 0.

Substituting F2
= f into (5) yields (4). Hence the map φ : (M2, g)→ (N n, h) is

f -biharmonic if and only if φ : (Mm, f −1g)→ (N n, h) is biharmonic. �
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Theorem 2.4. Any f -biharmonic map φ : (Mm, g)→ (N n, h) from a compact
Riemannian manifold into a nonpositively curved manifold with constant f -bienergy
density (i.e., f |τ(φ)|2 = C) is a harmonic map.

Proof. A straightforward computation gives

(6) 1
( 1

2 f |τ(φ)|2
)

=
1
21〈 f

1
2 τ(φ), f

1
2 τ(φ)〉

= (∇φei
∇
φ
ei
−∇

φ

∇M
ei

ei
)〈 f

1
2 τ(φ), f

1
2 τ(φ)〉

= 〈∇
φ
ei

f
1
2 τ(φ),∇φei

f
1
2 τ(φ)〉+ 〈(∇φei

∇
φ
ei
−∇

φ

∇M
ei

ei
) f

1
2 τ(φ), f

1
2 τ(φ)〉

= 〈∇
φ
ei

f
1
2 τ(φ),∇φei

f
1
2 τ(φ)〉+ f 〈(∇φei

∇
φ
ei
−∇

φ

∇M
ei

ei
)τ (φ), τ (φ)〉

+ f
1
2 (1 f

1
2 )|τ(φ)|2+ 2 f

1
2 〈∇

φ

grad f 1
2
τ(φ), τ (φ)〉.

Since φ is assumed to be f -biharmonic we have

(7) f 〈(∇φei
∇
φ
ei
−∇

φ

∇M
ei

ei
)τ (φ), τ (φ)〉

= 〈 f RN (dφ(ei ), τ (φ))dφ(ei )− (1 f )τ (φ)− 2∇φgrad f τ(φ), τ (φ)〉

= f 〈RN (dφ(ei ),τ (φ))dφ(ei ),τ (φ)〉−(1 f )|τ(φ)|2−2〈∇φgrad f τ(φ), τ (φ)〉.

Substituting (7) into (6) and simplifying the result gives

1
( 1

2 f |τ(φ)|2
)
= f |∇φei

τ(φ)|2− f RN (dφ(ei ), τ (φ), dφ(ei ), τ (φ))−
1
2(1 f )|τ(φ)|2.

This, together with the assumptions that f |τ(φ)|2 = C , f > 0, and

(8) RN (dφ(ei ), τ (φ), dφ(ei ), τ (φ))≤ 0,

allows us to conclude that f is a subharmonic function on the compact manifold
(M, g) and hence f is a constant function. It follows that the f -biharmonic map φ
is actually a biharmonic map from a compact manifold into a nonpositively curved
manifold, and thus a harmonic map by a theorem in [Jiang 1986b]. �

Remark. There are many harmonic maps between spheres with constant energy
density (called eigenmaps). As our Theorem 2.4 implies that there is no proper
f -biharmonic maps from a compact manifold into a nonpositively curved manifold

with constant f -bienergy density, it would be interesting to know if there is any
proper f -biharmonic map between spheres with constant f -bienergy density.

Proposition 2.5. A function u : (M, g)→ R is f -biharmonic if and only if

f12u+ (1 f )1u+ 2g(grad f, grad1u)= 0, or, equivalently,(9)

1( f1u)= 0,(10)
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where 12u =1(1u) denotes the bi-Laplacian of u. In other words, a function u is
an f -biharmonic function if and only if the product f1u is a harmonic function.
In particular, a quasiharmonic function u (i.e., a function u : (M, g)→ R with
1u = constant 6= 0) is an f -biharmonic function if and only if f : (M, g)→ R is a
harmonic function.

Proof. A straightforward computation gives the tension and the bitension fields of
u : (M, g)→ R as

(11) τ(u)= (1u) ∂
∂t

and τ2(u)= (12u) ∂
∂t
.

Substituting these into f -biharmonic map equation (2) and performing a further
computation we obtain the f -biharmonic function equation (9). The last statement
thus follows. �

Corollary 2.6. Any f -biharmonic function on a compact manifold (M, g) is a
constant function.

Proof. By Proposition 2.5, u is an f -biharmonic function if and only if f1u is
a harmonic function. By the well-known fact that any harmonic function on a
compact manifold is constant we have f1u = C , and hence

(12) 1u = C
f

since f > 0 by our assumption. If C = 0, then we have 1u = 0 and hence u
is a harmonic function, so u is a constant function in this case. If C 6= 0, then
(12) implies that u is either a subharmonic or a superharmonic function since f
has a fixed sign with f > 0. Again, the well-known fact that a subharmonic or
superharmonic function on a compact manifold is constant implies that u is constant.
This completes the proof of the corollary. �

Example 1. Let f : R3
\ {0} → R be the function f (x, y, z) = 1/

√
x2+ y2+ z2

and let u : R3
\ {0} → R be the function given by u(x, y, z) = x2

+ y2
+ z2. It is

easily checked that 1 f = 0, 1u = 6 and 12u = 0 and hence f and u satisfy (9).
So, u(x, y, z) is an f -biharmonic function on R3

\ {0} for f (x, y, z). Clearly, this
f -biharmonic function u is not a harmonic function.

Example 2. Let f, u : R3
\ {0} → R be the functions defined by f (x, y, z) =√

x2+ y2+ z2 and u(x, y, z) = x/(x2
+ y2
+ z2). Then we can check (see also

Proposition 2.9) that u is a proper f -biharmonic function which is neither harmonic
nor biharmonic.

Corollary 2.7. Let f, u :R→R be two functions with f (x) > 0 for all x ∈R. Then
u is an f -biharmonic function if and only if

(13) u(x)=
∫∫

Ax+B
f

dx dx +Cx + D,
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where A, B, C , D are arbitrary constants. In particular:

(I) For f (x) = 1 + x2, a function u : R → R is f -biharmonic if and only if
u(x)= 1

2(Ax − B) ln(1+ x2)+ (Bx + A) arctan x + (C − A)x + D, where A,
B, C , D are constants.

(II) For f (x)= e−x , a function u : R→ R is f -biharmonic if and only if u(x)=
(Ax − 2A+ B)ex

+Cx + D, where A, B, C , D are constants.

Proof. In this case, the f -biharmonic equation (10) reduces to ( f u′′)′′ = 0 which
has solution (13). Finally, statements (I) and (II) are obtained by elementary
integrations. �

Remark. It is easily checked that for A 6= 0, B 6= 0 the function

u(x)= (Ax − 2A+ B)ex
+Cx + D

is neither a harmonic nor a biharmonic function, so it provides many examples of
proper f -biharmonic functions.

Theorem 2.8. Any f -biharmonic map φ : (Mm, g)→Rn from a compact manifold
into a Euclidean space is a constant map.

Proof. Since the target manifold is a Euclidean space, the curvature is zero. If we
write φ : (Mm, g)→ Rn as φ(p)= (φ1(p), φ2(p), . . . , φn(p)), then we can easily
check that

τ(φ)= (1φ1,1φ2, . . . ,1φn),

τ2(φ)= (1
2φ1,12φ2, . . . ,12φn),

∇
φ

grad f τ(φ)= (∇
φ

grad f1φ
1,∇

φ

grad f1φ
2, . . . ,∇

φ

grad f1φ
n).

It follows that the f -biharmonic map equation for φ becomes

f12φα + (1 f )1φα + 2g(grad f, grad1φα)= 0, α = 1, 2, . . . , n.

In other words, a map φ : (Mm, g)→Rn from a manifold into a Euclidean space is an
f -biharmonic map if and only if each of its component functions is an f -biharmonic
function. From this and Corollary 2.6, which states that any f -biharmonic function
on a compact manifold is constant, we obtain the theorem. �

Proposition 2.9. The map φ : Rm
\ {0} → Rm

\ {0} with φ(x) = x/|x |p is an
f -biharmonic map for f (x) = |x |k if and only if (i) p = 0, or (ii) p = m, or
(iii) k = p+ 2, or (iv) k = p+ 2−m. In particular, for m ≥ 3, the inversion in
sphere Sm−1, φ :Rm

\ {0}→Rm
\ {0} with φ(x)= x/|x |2 is a proper f -biharmonic

map for f (x) = |x |4. When m 6= 4, this inversion is also a proper f -biharmonic
map for f (x)= |x |4−m .
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Proof. As we have seen in the proof of Theorem 2.8, a map into a Euclidean
space is an f -biharmonic map if and only if each of its component functions is
an f -biharmonic function. So, φ : Rm

\ {0} → Rm
\ {0} with φ(x) = x/|x |p is

f -biharmonic if and only if the function u : Rm
\ {0} → R with u(x) = x i

|x |−p

is an f -biharmonic function for any i = 1, 2, . . . ,m. This, by Proposition 2.5,
is equivalent to the product f1u being a harmonic function. Using the formula
4

Rm
(|x |α)= α(α− 2+m)|x |α−2 and a straightforward computation we have

4
Rm

u =4Rm
(x i
|x |−p)= x i

4
Rm
|x |−p

+ 2〈grad x i , grad |x |−p
〉

= p(p−m)x i
|x |−p−2.

For f (x)= |x |k , we have

4
Rm
( f4Rm

u)= p(p−m)4Rm
(x i
|x |k−p−2)

= p(p−m)[x i
4

Rm
|x |k−p−2

+ 2〈grad x i , grad |x |k−p−2
〉]

= p(p−m)(k− p− 2)(k− p+m− 2)x i
|x |k−p−4.

It follows that u(x) = x i
|x |−p is an f -biharmonic function with f = |x |k if and

only if p(p−m)(k− p− 2)(k− p+m− 2)= 0. Solving this equation we have
(i) p = 0, or (ii) p = m, or (iii) k = p+ 2, or (iv) k = p+ 2−m, from which the
proposition follows. �

Remark. (A) One can check (see also [Balmuş et al. 2007]) that for the cases
(i) p = 0 and (ii) p = m, the maps φ = x/|x |p are actually harmonic maps. We
know that in these cases these maps are f -biharmonic for any f . For k = 0 we have
f (x) = 1 and hence f -biharmonicity reduces to biharmonicity. In this case, (iii)
and (iv) imply that φ= x/|x |p is a proper biharmonic map if and only if p=−2, or
p =m− 2. Note that the case p =−2 was missed in the list of [ibid., Remark 5.8].

(B) For p 6= 0, m, and k 6= 0, the maps in cases (iii) and (iv) provide infinitely
many examples of proper f -biharmonic maps (i.e., which are neither harmonic nor
biharmonic maps).

(C) It is well known that the inversion in sphere Sm−1, φ : Rm
\ {0} → Rm

\ {0},
φ(x)= x/|x |2 is a conformal map between the same dimensional Euclidean spaces.
Note that the f -biharmonic map equation for conformal maps between the same
dimensional spaces was derived in [Lu 2013], however, not a single example of
such maps was found. Our Proposition 2.9 shows that there are infinitely many
proper f -biharmonic conformal diffeomorphisms and all but one of which are
proper f -biharmonic for at least two different choices of f functions. For a study
of biharmonic diffeomorphisms see [Baird et al. 2008].
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3. f -biharmonic submanifolds

Definition 3.1. A submanifold in a Riemannian manifold is called an f -biharmonic
submanifold if the isometric immersion defining the submanifold is an f -bihar-
monic map.

From the definition and the relationships among harmonic, biharmonic and
f -biharmonic maps we have the inclusions

{minimal} ⊂ {biharmonic} ⊂ { f-biharmonic}.

From now on we will call an f -biharmonic submanifold a proper f -biharmonic
submanifold if it is neither a minimal nor a biharmonic submanifold.

Theorem 3.2. Let φ : Mm
→ N m+1 be an isometric immersion of codimension one

with mean curvature vector η = Hξ . Then ϕ is an f -biharmonic if and only if

(14)
{
1H − H |A|2+ H RicN (ξ, ξ)+ H(1 f )/ f + 2(grad ln f )H = 0,
2A(grad H)+ m

2 grad H 2
− 2H(RicN (ξ))>+ 2H A(grad ln f )= 0,

where RicN
: Tq N → Tq N denotes the Ricci operator of the ambient space defined

by 〈RicN (Z),W 〉 = RicN (Z ,W ); A is the shape operator of the hypersurface with
respect to the unit normal vector ξ ; and 1, grad are the Laplace and the gradient
operator of the hypersurface respectively.

Proof. It is well known that the tension field of the hypersurface is given by

(15) τ(φ)= m Hξ.

From [Ou 2010, Theorem 2.1] we have the bitension field of the hypersurface:

(16) τ2(φ)= m(1H − H |A|2+ H RicN (ξ, ξ))ξ

−m
(
2A(grad H)+ m

2 (grad H 2)− 2H(Ric(ξ))>
)
.

To compute the term ∇φgrad f τ(φ), we choose a local orthonormal frame {ei }i=1,...,m

on M so that {dφ(e1), . . . , dφ(em), ξ} forms an adapted orthonormal frame of the
ambient space defined on the hypersurface. Identifying dφ(X)= X , ∇φX W =∇N

X W
we have

∇
φ

grad f τ(φ)= m∇N
grad f Hξ = m{[(grad f )H ]ξ − A(grad f )}.(17)

Substituting (15), (16) and (17) into the f -biharmonic map equation (2) and simpli-
fying the result we obtain the theorem. �

Corollary 3.3. A hypersurface φ : Mm
→ N m+1(C) in a space form of constant

sectional curvature C is f -biharmonic if and only if its mean curvature function H
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satisfies the equation

(18)
{
1H − H |A|2+mC H + H(1 f )/ f + 2(grad ln f )H = 0,
2A(grad H)+ 1

2 m grad H 2
+ 2H A(grad ln f )= 0.

Similarly:

Corollary 3.4. A submanifold φ : Mm
→ N n(C) in a space form of constant

sectional curvature C is f -biharmonic if and only if its mean curvature vector H
satisfies the equation{

1⊥H − (1 f/ f )H − 2∇⊥grad ln f H +TraceB(−, AH−)+Cm H = 0,
2 Trace A

∇
⊥

(−)H
(−)+ 1

2 m grad(|H |2)+ 2AH (grad ln f )= 0,

where 1⊥H =−Trace(∇⊥)2 H.

Corollary 3.5. A compact nonzero constant mean curvature f -biharmonic hyper-
surface φ : Mm

→ Sm+1 in a sphere with |A|2 = constant is biharmonic.

Proof. Substituting H = constant 6= 0 into the f -biharmonic hypersurface equation
(18) we have

(19)
{
1 f = (|A|2−m) f,
A(grad ln f )= 0.

If |A|2 is constant, we have either |A|2−m = 0, in which case the first equation
of (19) implies that f is a harmonic function, or |A|2−m 6= 0. In the latter case,
the first line of (19) implies that f is either subharmonic or superharmonic since
f > 0. Since M is compact, the well-known fact that any harmonic (subharmonic
or superharmonic) function on a compact manifold is constant implies that f is a
constant function. Thus, an f -biharmonic hypersurface is actually biharmonic. �

For classification of biharmonic submanifolds with parallel mean curvature vector
and |A|2 = constant in sphere see [Balmuş et al. 2013].

In Euclidean space R3, any biharmonic surface is minimal (see, e.g., [Jiang 1987;
Chen and Ishikawa 1998]), so there are no proper biharmonic surfaces. The first
question we ask is: Are there proper f -biharmonic surfaces in R3? We will show
that there are infinitely many. We achieve this by using a link between f -biharmonic
surfaces and biharmonic conformal immersions of surfaces in a three-manifold. For
the study of biharmonic conformal immersions of surfaces in three-manifolds we
refer the reader to [Ou 2009; 2012a]. We recall that a surface (i.e., an isometric
immersion) φ : M2

→ (N 3, h) is said to admit a biharmonic conformal immersion
into a three-manifold (N 3, h) if there exists a function λ : M2

→ (0,∞) such that
the conformal immersion φ : (M2, λ−2φ∗h)→ (N 3, h) is biharmonic map. In
this case, we also say that the surface φ : M2

→ (N 3, h) can be biharmonically
conformally immersed into the three-manifold (N 3, h) with conformal factor λ.
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Corollary 3.6. (i) A surface φ :M2
→(N 3, h) in a three-manifold is f -biharmonic

if and only if the conformal immersion

φ : (M2, f −1φ∗h)→ (N 3, h)

is a biharmonic map, i.e., the surface can be biharmonically conformally
immersed into (N 3, h) with conformal factor λ= f

1
2 .

(ii) The circular cylinder φ : D = {(θ, z) ∈ (0, 2π)×R}→ (R3, δ0) with φ(θ, z)=
(R cos θ, R sin θ, z) is an f -biharmonic surface for any function f from the
family f =

(
C2e±z/R

−C1C−1
2 R2e∓z/R

)
/2, where C1, C2 are constants.

Proof. Statement (i) follows from the definition of an f -biharmonic surface and
Theorem 2.3, whilst (ii) is obtained by using (i) and [Ou 2009, Proposition 2]. �

4. f -biharmonic curves

Another special case of f -biharmonic maps is an f -biharmonic curve.

Lemma 4.1. A curve γ : (a, b)→ (N m, g) parametrized by arclength is an f -
biharmonic curve with a function f : (a, b)→ (0,∞) if and only if

(20) f
(
∇

N
γ ′∇

N
γ ′∇

N
γ ′γ
′
− RN (γ ′,∇N

γ ′γ
′)γ ′

)
+ 2 f ′∇N

γ ′∇
N
γ ′γ
′
+ f ′′∇N

γ ′γ
′
= 0.

Proof. Let γ =γ (s) be parametrized by arclength. Then e1=∂/∂s is an orthonormal
frame on ((a, b), ds2) and dγ (e1)= dγ (∂/∂s)= γ ′. Thus, the tension field of the
curve is given by τ(γ )=∇γe1dγ (e1)=∇

N
γ ′γ
′. It is also easy to see that for a function

f : (a, b)→ (0,∞), 1 f = f ′′ and ∇γgrad f τ(γ )= f ′∇N
γ ′∇

N
γ ′γ
′. Substituting these

into the f -biharmonic map equation gives the lemma. �

Theorem 4.2. A curve γ : (a, b)→ N n(C) parametrized by arclength in an n-
dimensional space form is a proper f -biharmonic curve if and only if one of the
following cases happens:

(i) κ2 = 0, f = c1κ
−

3
2

1 and the curvature κ1 solves the ODE

3κ ′21 − 2κ1κ
′′

1 = 4κ2
1 (κ

2
1 −C);

(ii) κ2 6= 0, κ3 = 0, κ2/κ1 = c3, f = c1κ
−

3
2

1 , and the curvature κ1 solves the ODE

3κ ′21 − 2κ1κ
′′

1 = 4κ2
1 [(1+ c2

3)κ
2
1 −C].

Proof. Let γ : (a, b)→ N n(C) be a curve with arclength parametrization. Let
{Fi , i = 1, 2, . . . , n} be the Frenet frame along the curve γ (s), which is obtained as
the orthonormalization of the n-tuple

{
∇
(k)
∂/∂sdγ (∂/∂s) | k = 1, 2, . . . , n

}
. Then we
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have the following Frenet formula (see, e.g., [Laugwitz 1965]) along the curve:
∇
γ

∂/∂s F1 = κ1 F2,

∇
γ

∂/∂s Fi =−κi−1 Fi−1+ κi Fi+1 for i = 2, 3, . . . , n− 1,
∇
γ

∂/∂s Fn =−κn−1 Fn−1,

where {κ1, κ2, . . . , κn−1} are the curvatures of the curve γ .
Using this formula and a straightforward computation one finds the tension and

the bitension fields of the curve given by

τ(γ )=∇N
γ ′γ
′
= κ1 F2,

∇
N
γ ′∇

N
γ ′γ
′
=−κ2

1 F1+ κ
′

1 F2+ κ1κ2 F3,

τ2(γ )=−3κ1κ
′

1 F1+ (κ
′′

1 − κ1κ
2
2 − κ

3
1 + κ1C)F2+ (2κ ′1κ2+ κ1κ

′

2)F3+ κ1κ2κ3 F4.

Substituting these into the f -biharmonic curve equation (20) and comparing the
coefficients of both sides we have

(21)


−3κ1κ

′

1− 2κ2
1 f ′/ f = 0,

κ ′′1 − κ1κ
2
2 − κ

3
1 + κ1C + κ1 f ′′/ f + 2κ ′1 f ′/ f = 0,

2κ ′1κ2+ κ1κ
′

2+ 2κ1κ2 f ′/ f = 0,
κ1κ2κ3 = 0.

It is easy to see that if κ1 = constant 6= 0, then the first equation of (21) implies
that f is constant and the curve γ is biharmonic. Also, if κ2 = constant 6= 0, then
the first and the third equations imply that f is constant and hence the curve γ is
biharmonic again.

Now, if κ2 = 0, then the f -biharmonic curve equation (21) is equivalent to

(22)
{

3κ ′1/κ1+ 2 f ′/ f = 0,
κ ′′1 /κ1− κ

2
1 +C + f ′′/ f + 2(κ ′1/κ1)( f ′/ f )= 0.

Integrating the first equation of (22) and substituting the result in to the second we
obtain the statements in case (i).

Finally, if κ1 6= constant and κ2 6= constant, then the system (21) is equivalent to

(23)


f 2κ3

1 = c2
1,

( f κ1)
′′
= f κ1(κ

2
2 + κ

2
1 −C),

f 2κ2κ2 = c2,

κ3 = 0.

Solving the first equation of (23) we obtain f = c1κ
−

3
2

1 . Substituting the first
equation into the third one we obtain κ2/κ1 = c3. Finally, substituting κ2/κ1 = c3

and f κ1 = c1κ
−

1
2

1 into the second equation we obtain the results stated in case (ii).
This completes the proof of the theorem. �
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From the proof of Theorem 4.2 we have:

Corollary 4.3. A curve γ : (a, b)→ N n(C) parametrized by arclength in an n-
dimensional space form with constant geodesic curvature is biharmonic.

It is known [Dimitrić 1992] that any biharmonic curve in a Euclidean space is
a geodesic. It would be interesting to know if there is any proper f -biharmonic
curve in a Euclidean space. Our next theorem gives a complete classification of
proper f -biharmonic curves in R3 which, together with the fundamental theorem
for curves in R3, can be used to produce many examples of proper f -biharmonic
curves in a three-dimensional Euclidean space.

Theorem 4.4. A curve γ : (a, b)→R3 parametrized by arclength in a three-dimen-
sional Euclidean space is a proper f -biharmonic curve if and only if

(i) γ is a planar curve with τ(s)=0, κ(s)=4c2/(16+(c2s+c3)
2), and f =c1κ

−
3
2 ,

where c1 > 0, c2 > 0, and c3 are constants, or

(ii) γ is a general helix with κ(s)= 4c2/(16(1+ c2)+ (c2s+ c3)
2), τ/κ = c, and

f = c1κ
−

3
2 , where c 6= 0, c1 > 0, c2 > 0, and c3 are constants.

Proof. For the arclength-parametrized curve γ : (a, b)→R3, we have the curvature
κ = κ1 and the torsion τ = κ2. Applying Theorem 4.2 with C = 0 we conclude that
the curve γ is a proper f -biharmonic curve if and only if

(i) τ = 0, f = c1κ
−

3
2 and the curvature κ solves the ODE

3κ ′2− 2κκ ′′ = 4κ4, or

(ii) τ 6= 0, τ/κ = c, f = c1κ
−

3
2

1 , and the curvature κ solves the ODE

3κ ′2− 2κκ ′′ = 4(1+ c2)κ4.

Solving the ODEs in each case and noting that τ = 0 means the curve is planar and
τ/κ = c means the curve is a general helix (Lancret’s theorem; see, e.g., [Barros
1997]) we obtain the theorem. �

Remark. (A) Recall that the fundamental theorem for curves in R3 states that for
any given functions p, q : [s0, s1]→R with p(s) > 0 for all s ∈ [s0, s1], there exists
a unique (up to a rigid motion) curve in R3 whose curvature and torsion take on the
prescribed functions κ(s)= p(s), τ(s)= q(s). This, together with our Theorem 4.4,
implies that there are many examples of proper f -biharmonic curves in R3.

(B) Our classification theorem also implies that proper f -biharmonic curves in R3

must be special subclasses of planar curves or general helices in R3. As the following
example shows that there are general helices which are not proper f -biharmonic
curves.
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Example 3. The general helix γ : I →R3 with γ (s)=
( 2

3(1+
s
2)

3
2 , 2

3(1−
s
2)

3
2 , s
√

2

)
is never an f -biharmonic curve for any function f .

In fact, one can easily check that |γ ′(s)| = 1 so s is an arclength parameter for
the curve. A straightforward computation gives κ(s) = τ(s) = 1/(2

√
2
√

4− s2).
So, the curve is indeed a general helix with τ/κ = 1. Since the curvature is not of
the form given in case (ii) of Theorem 4.4 we conclude that the helix is never an
f -biharmonic curve for any f .

Finally, we give an example of a proper f -biharmonic planar curve to close this
section.

Example 4. The planar curve γ (s)= (4 ln |
√

16+ s2+ s|,
√

16+ s2 ) is a proper
f -biharmonic curve.

In fact, we can check that

γ ′(s)=
(

4
√

16+s2
,

s
√

16+s2

)
and |γ ′(s)| = 1.

So s is the arclength parameter of the curve. In this case, we have the curvature
κ(s) = |γ ′′(s)| = 4/(16+ s2) and, by case (i) of Theorem 4.4, the curve γ is a
proper f -biharmonic curve with f = 8c1(16+ s2)

3
2 for some constant c1 > 0.
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[Balmuş et al. 2007] A. Balmuş, S. Montaldo, and C. Oniciuc, “Biharmonic maps between warped
product manifolds”, J. Geom. Phys. 57:2 (2007), 449–466. MR 2007j:53066 Zbl 1108.58011
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UNITARY PRINCIPAL SERIES
OF SPLIT ORTHOGONAL GROUPS

ALESSANDRA PANTANO, ANNEGRET PAUL AND SUSANA SALAMANCA RIBA

We prove the nonunitarity of a large set of parameters for Langlands quo-
tients of minimal principal series of the orthogonal group SO(n+1, n), by
showing that the set of unitary principal series parameters of SO(n+1, n)
embeds into a (known) union of spherical unitary parameters for certain
split orthogonal groups. In an earlier paper, we proved the nonunitarity
of the genuine principal series of the metaplectic group Mp(2n) attached
to the same set of parameters. We conjecture that the set of parameters is
complete in both cases and prove the conjecture for small rank groups and
in the case of unipotent parameters.

1. Introduction

For G = SO(n+1, n) or the real metaplectic group Mp(2n), let M A be the Levi
factor of a minimal parabolic subgroup of G. For every irreducible representation δ
of M and every real character ν of A, we choose a minimal parabolic subgroup
P = M AN of G making ν weakly dominant, and we denote by

(1-1) IG(δ, ν) := IndG
P (δ⊗ ν)

the (minimal) principal series representation of G induced from the representation
δ ⊗ ν ⊗ triv of P . In the case of the metaplectic group, we assume that the
representation is genuine, that is, does not factor to the symplectic group. Let
JG(δ, ν) be the Langlands quotient of IG(δ, ν), that is, the distinguished irreducible
composition factor containing the minimal K -type. We are interested in determining
for which pairs (δ, ν) the irreducible representation JG(δ, ν) is unitarizable. We
call this set the complementary series CS(G) of G. The spherical complementary
series of SO(n+1, n)0 (with δ trivial) is denoted CS(SO(n+1, n)0, δ0). Our work
is motivated by the following conjecture.

This material is based on work supported by NSF Grants DMS-0554278, DMS-0967583, and DMS-
0967168.
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Conjecture 1. There is a natural, well-defined bijection

CS(G) ←→
⋃

p+q=n

CS(SO(p+1, p)0, δ0)×CS(SO(q+1, q)0, δ0).

Because the spherical unitary dual of every split orthogonal group is known, by
[Barbasch 2010], this would give a complete description of the unitary principal
series for these two families of groups G.

For the two groups under consideration, A is isomorphic to Rn , and M is
isomorphic to (Z/2Z)n , in the case of SO(n+1, n), and to Z/4Z × (Z/2Z)n−1

for Mp(2n); moreover there is a natural one-to-one correspondence between M-
types (i.e., irreducible representations of M) of SO(n+1, n) and genuine M-types
of Mp(2n). Every M-type of SO(n+1, n) and every genuine M-type of Mp(2n) is
contained in a unique fine K -type for G. Fix an M-type δ. We call the set of real
parameters ν for which JG(δ, ν) is unitary the δ-complementary series of G:

(1-2) CS(G, δ) := {ν ∈ a∗R | JG(δ, ν) is unitary}.

For all w ∈W , JG(δ, ν)' JG(wδ,wν); hence

(1-3) CS(G, w · δ)= w−1
·CS(G, δ).

It follows that CS(G, δ) is invariant under the action of the stabilizer W δ of δ in W
and depends only on the orbit of the M-type δ under the action of W . Here W is
the Weyl group of A in G, which may be identified with the Weyl group of the root
system of G.

The Weyl groups of SO(n+1, n) and of Mp(2n) are isomorphic. Moreover if
an M-type of SO(n+1, n) and a genuine M-type of Mp(2n) correspond to each
other in the above mentioned bijection, then their stabilizers are also isomorphic.
The W -orbits of M-types of SO(n+1, n) and of genuine M-types of Mp(2n) are
parametrized by pairs of nonnegative integers (p, q) with p+ q = n; we choose
a representative δ p,q in each orbit (see (2-15)). Then the W δ p,q

-action leads to
a natural splitting of each real parameter ν into a pair (ν p, νq) ∈ Rp

× Rq (see
Section 3).

In [Pantano et al. 2010], we proved that the δ p,q -complementary series of Mp(2n)
embeds into the product of the spherical complementary series of SO(p+1, p)0 with
that of SO(q+1, q)0. In this paper, we show the analogous result for SO(n+1, n).
In particular, the following theorem and the corresponding result for Mp(2n) make
Conjecture 1 more precise.

Theorem 2. Let G = SO(n+1, n), and let ν = (ν1, . . . , νn) be a real character
of A. For each pair of nonnegative integers (p,q) such that p + q = n, write
ν = (ν p

|νq) with
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(1-4) ν p
:= (ν1, . . . , νp) and νq

:= (νp+1, . . . , νn).

The map

(1-5) CS(G, δ p,q)→ CS(SO(p+1, p)0, δ0)×CS(SO(q+1, q)0, δ0)

taking ν to (ν p, νq) is a well-defined injection. Here δ0 denotes the trivial M-type.

The theorem asserts that if the (Hermitian) Langlands quotient J (δ p,q , (ν p
|νq))

of G is unitary, then the spherical (Hermitian) Langlands quotients J (δ0, ν
p) of

SO(p+1, p)0 and J (δ0, ν
q) of SO(q+1, q)0 must both be unitary. Due to [Barbasch

2010], these conditions can be explicitly checked. We give a description of the
spherical unitary parameters for SO(p+1, p)0 in Section 8.

Corollary 3. Let G = SO(n+1, n) and let ν = (ν p
|νq) be a real character of A,

as in (1-4). If the spherical Langlands quotient J (δ0, ν
p) of SO(p+1, p)0 or the

spherical Langlands quotient J (δ0, ν
q) of SO(q+1, q)0 is not unitary, then the

Langlands quotient J (δ p,q , (ν p
|νq)) of SO(n+1, n) is also not unitary.

The theorem gives nonunitarity certificates for SO(n+1, n). In general, proving
the unitarity of a representation is much harder than showing that it is not unitary. We
conjecture that the spherical complementary series of SO(p+1, p)0×SO(q+1, q)0
gives an exhaustive parametrization of unitary parameters for the Langlands quo-
tients of the δ p,q -principal series of both G =Mp(2n) and SO(n+1, n). To prove
this we must show that, for each pair of parameters

ν p
∈ CS(SO(p+1, p)0, δ0) and νq

∈ CS(SO(q+1, q)0, δ0),

the Langlands quotient JG(δ
p,q , (ν p

|νq)) of G is unitary for both G =Mp(2n) and
SO(n+1, n). In this paper, we show that it is sufficient to prove this for one of the
two families of groups.

Theorem 4. Suppose the Langlands quotient JG(δ
p,q , (ν p

|νq)) is unitary for all
ν p
∈ CS(SO(p+1, p)0, δ0) and νq

∈ CS(SO(q+1, q)0, δ0), and all p+ q = n, for
G =Mp(2n). Then the same is true for G = SO(n+1, n); and vice versa.

In [Pantano et al. 2010], we proved the unitarity of the principal series of Mp(2n)
attached to our list of parameters for some small rank cases; for the general case,
we exhibited two large families of spherical unitary parameters for the product
SO(p+1, p)0 × SO(q+1, q)0, which give rise to δ p,q-complementary series of
Mp(2n). In this paper, we show some of the SO(n+1, n) analogues of these results.
In particular, we obtain:

Theorem 5. Let n = p + q ≤ 4 and take elements ν p
∈ CS(SO(p+1, p)0, δ0)

and νq
∈ CS(SO(q+1, q)0, δ0). Then JG(δ

p,q , (ν p
|νq)) of G is unitary for both

G =Mp(2n) and SO(n+1, n).
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Proving the unitarity of the δ-principal series for our collection of parameters
might use the ideas for Barbasch’s proof [2010] in the spherical case. First using
normalized parabolic induction and deformation of parameters, Barbasch reduces the
question of unitarity to unipotent parameters. These are parameters that correspond
to special unipotent representations, that is, those that are attached to unipotent
Arthur parameters [1989]. Then he proves the unitarity of these special unipotent
representations.

Arthur packets and “unipotent” parameters are defined for linear groups only;
for genuine (p, q)-principal series representations of the metaplectic group, we call
a parameter ν = (ν p

|νq) unipotent if it is a unipotent parameter for SO(n+1, n).
In his recent book [Arthur 2013], the author proves that for split classical groups,

all special unipotent representations are unitary. We check that JSO(n+1,n)(δ
p,q , ν)

is special unipotent if and only if ν p and νq are spherical unipotent parameters for
SO(p+1, p)0 and SO(q+1, q)0, respectively. Using the theta correspondence for
dual pairs of the form (O(r, s),Sp(2m,R)), we prove that the unitarity of the special
unipotent principal series of SO(n+1, n) implies the unitarity of the corresponding
representation of Mp(2n). We obtain the following result.

Theorem 6. If ν p, νq are spherical unipotent parameters for SO(p+1, p)0 and
SO(q+1, q)0, respectively, then ν = (ν p

|νq) ∈ CS(G, δ p,q) for G =Mp(2n) and
SO(n+1, n).

Sections 2 through 4 of this paper contain the proof of Theorem 2. In Section 2,
we collect some structural facts about our groups and the K -types. Section 3
contains a careful outline of the main argument. Here we reduce the proof of our
main theorem to an explicit matching of W -types (Theorem 9). The heart of the
calculations is in Section 4, with the proof of Theorem 9. In Sections 5 through 7,
we address what we know about the unitarity of the δ-principal series. Section 5 is
devoted to proving Theorem 5. In Section 6, we use the theta correspondence to
relate the complementary series of SO(n+1, n) and Mp(2n) to each other. Unipotent
parameters and their unitarity are discussed in Section 7, and in Section 8, we give
a description of the spherical unitary parameters for SO(n+1, n).

2. The structure of SO(n+1, n)

Let G = SO(n+1, n) be defined by

(2-1) G = SO(n+ 1, n) := {g ∈ SL(2n+ 1,R) : (gt)Jg = J },

with J = diag(−In+1, In). Here Is denotes the identity matrix of size s × s. We
denote by g0 the Lie algebra of G, and by g its complexification. Let k0 be the
maximal compact Cartan subalgebra of g0 corresponding to the Cartan involution
θ(X) = −X t , and let K = S(O(n + 1)× O(n)) be the corresponding compact
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subgroup of G. Write g0 = k0⊕ p0 for the Cartan decomposition of g0, and let a0

be the maximal abelian subspace

(2-2) a0 =


X (B) :=

(
0 B
B t 0

)
: B =



0 0 . . . 0 0
0 0 . . . 0 sn

0 0 . . . sn−1 0
...
...
. . .

...
...

0 s2 . . . 0 0
s1 0 . . . 0 0


, s1, . . . , sn ∈ R


of p0. For all i = 1, . . . , n, let εi ∈ a∗0 be defined by εi (X (B)) = si . Then the
restricted roots are

(2-3) 1(g0, a0)= {±εi ± ε j }1≤i< j≤n ∪ {±εk}k=1,...,n.

They form a root system 1 of type Bn . The corresponding Weyl group W =W (1)

is isomorphic to Sn n (Z/2Z)n , and consists of all permutations and sign changes
on n coordinates. Note that W can be realized as NK (A)/Z K (A), where A is the
vector group exp(a0).

For each root α ∈1 we choose a Lie algebra homomorphism

(2-4) φα : sl(2,R)→ g0 = so(n+1, n),

as in [Vogan 1981, (4.3.6)], and we let Gα be the corresponding connected subgroup
of SO(n+1, n). Moreover we define

Zα := φα

(
0 1

–1 0

)
,(2-5)

σα := exp
(
π

2
Zα
)
,(2-6)

mα := exp(π Zα)= σ 2
α .(2-7)

We make the following choices:

Zεi+ε j=(En+2− j,n+2−i−En+2−i,n+2− j )+(En+1+i,n+1+ j−En+1+ j,n+1+i ),

Zεi−ε j = (En+2− j,n+2−i − En+2−i,n+2− j )−(En+1+i,n+1+ j − En+1+ j,n+1+i )

Zεk = 2E1,n+2−k − 2En+2−k,1.

Then
σεk = I − 2(E1,1+ En+2−k,n+2−k), mεk = I,

and for α = εi ± ε j ,

σα = I − (En+2−i,n+2−i + En+2− j,n+2− j + En+1+i,n+1+i + En+1+ j,n+1+ j )+ Zα,

mα = I − 2(En+2−i,n+2−i + En+2− j,n+2− j + En+1+i,n+1+i + En+1+ j,n+1+ j ).
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As usual, the symbol Ei, j denotes the (i, j)-elementary matrix.
The centralizer of A in K is denoted by M , and consists of all elements

(2-8) T (t1, . . . , tn)= diag(1; tn, tn−1, . . . , t1; t1, t2, . . . , tn),

with t1, . . . , tn = ±1. It is an abelian group of order 2n , isomorphic to (Z/2Z)n .
The dual group M̂ is generated by the M-types {δi : 1≤ i ≤ n}, where

(2-9) δi (T (t1, . . . , tn)) := ti .

For every subset S of {1, 2, . . . , n}, we denote by δS the irreducible representation
of M satisfying

(2-10) δS(T (t1, . . . , tn))=
∏
i∈S

ti .

The Weyl group W acts on the set of irreducible representations of M by

(2-11) (sα · δ)(m) := δ(σ−1
α mσα) for all m ∈ M and α ∈1.

The stabilizer of δ in W is the subgroup

(2-12) W δ
:= {w ∈W : w · δ ' δ}

of W . It is easy to check that

(2-13) sεk · δS = δS and sεi±ε j · δS =

{
δS if i, j ∈ S or i, j ∈ SC ,
δSM{i, j} otherwise,

for all 1≤ i < j ≤ n and all k = 1, . . . , n. Here SC denotes the complement of S
in {1, 2, . . . , n}, and the symbol (S M T ) denotes the symmetric difference of the
two subsets. If q = #S (the cardinality of S) and p = #(SC), this is the Weyl group
of a root system of type Bp× Bq .

Equation (2-13) also shows that

(2-14) W · δS = {δT : #S = #T }.

This implies that the Weyl group orbits of M̂ can be parametrized by pairs of
nonnegative integers (p, q) with p + q = n; for each such pair, we choose a
representative

(2-15) δ p,q
:= δ{p+1,p+2,...,n} = δp+1 · δp+2 · · · δn.

With this notation, W δ p,q
=W (Bp)×W (Bq), and the trivial M-type is δn,0.

Let δ be an irreducible representation of M . A root α ∈1 is called “good” for δ
if δ(mα) 6= −1. Otherwise we say that α is a “bad root” for δ. The set of good
roots for δ = δS is

(2-16) 1δS = {±εi ± ε j : i, j ∈ S or i, j ∈ SC
} ∪ {±εk : 1≤ k ≤ n}.
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If q = #S and p = #(SC), this is a root system of type Bp× Bq .

Remark 7. For every M-type δ, the Weyl group of the root system 1δ coincides
with the stabilizer W δ of δ in W .

Recall the definition of fine K -types given in [Vogan 1981, Section 4] (see also
[Adams et al. 2007, Definition 4.9]). The fine K -types of SO(n+1, n) are given by

(2-17) µp,q = triv⊗3q(Cn)

for each value of 0≤ q ≤ n. The restriction of µp,q to M is

W · δ p,q

(see (2-15)), and its highest weight is
(0, . . . , 0; 1, . . . , 1︸ ︷︷ ︸

q

, 0, . . . , 0;+) if q ≤ n/2,

(0, . . . , 0; 1, . . . , 1︸ ︷︷ ︸
n−q

, 0, . . . , 0;−) otherwise.

Recall that since K = S(O(n+1)×O(n)) is disconnected, the highest weight does
not necessarily determine the K -type uniquely, so we use a sign to distinguish two
representations with the same highest weight.

Remark 8. (a) The restriction of a fine K -type to M consists of the W -orbit of
a single M-type.

(b) Every M-type δ is contained in the restriction to M of a unique fine K -type µδ .

3. Nonunitarity certificates for complementary series of SO(n+1, n)

For G = SO(n+1, n), recall the definition of the δ-complementary series CS(G, δ)
in (1-2). This is a closed set because unitarity is a closed condition. As seen in
Section 2, it suffices to consider the complementary series attached to a single
M-type in each W -orbit for the action of the Weyl group on M̂ . Such orbits are
parametrized by pairs of nonnegative integers (p, q) with p + q = n. In each
orbit, we choose the representative δ p,q introduced in (2-15); the corresponding
fine K -type is µδ p,q (see (2-17)). The stabilizer W δ p,q ∼=W (Bp)×W (Bq) acts on
a (real) continuous parameter ν ∈ a∗R by sign changes and separate permutations
of the first p and the last q coordinates. This leads to a natural splitting of each
parameter ν into a pair (ν p

|νq) as in Theorem 2.
Theorem 2 gives a comparison between the set of (real) unitary parameters for

principal series representations of different groups. On the one hand, we have a
δ p,q-principal series of the group G = SO(n+1, n); on the other hand, we have a
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spherical principal series for the group

Gδ p,q
= SO(p+1, p)0×SO(q+1, q)0.

This group is intrinsically related to the M-type δ p,q of G, and only depends on
the system of good roots 1δ p,q (see (2-16)) associated to this M-type. Precisely,
Gδ p,q

is the connected real split group corresponding to the root system

1(Gδ p,q
) :=1δ p,q .

Consider a parameter ν = (ν p
|νq) as in Theorem 2. Write IGδ p,q (δ0, ν) for the

spherical principal series of Gδ p,q
with parameter ν, and consider the possibly

nonspherical representation I (δ p,q , ν) of SO(n+1, n) with the same parameter.
The long Weyl group element of both G and Gδ p,q

is equal to −Id, hence

(3-1) w0 · ν =−ν, w0 · δ0 = δ0, w0 · δ
p,q
= δ p,q .

These are exactly the conditions that ν, δ0 and δ p,q must satisfy so that the above
mentioned principal series representations admit an invariant Hermitian form. If
ν is (weakly) dominant, then the Langlands quotients JGδ p,q (δ0, ν) and J (δ p,q , ν)

are the quotients of the appropriate principal series by the radical of the Hermitian
form. Hence they inherit a nondegenerate Hermitian form, and they are unitary if
and only if the original form on the principal series is (positive) semidefinite.

To study the unitarity of a Langlands quotient, one needs to look at the signature
of the Hermitian intertwining operators on the principal series which induce the
form. Luckily these intertwining operators are very well understood. A thorough
description can be found in [Barbasch et al. 2008] for split linear groups (such as
SO(n+1, n) and Gδ p,q

). We will not review the theory here but only recall the main
results. The interested reader may consult the reference above for details.

First consider the spherical Langlands quotient JGδ p,q (δ0, ν) of the group Gδ p,q
.

Hecke algebra considerations reduce the study of the unitarity of JGδ p,q (δ0, ν) to
the analysis of the signature of certain (relatively simple) “algebraic” operators.
Precisely there is one operator A(w0, ψ, ν) for every representation ψ of the Weyl
group of Gδ p,q

; the representation JGδ p,q (δ0, ν) is unitary if and only if

A(w0, ψ, ν) is positive semidefinite, for all ψ ∈ ̂W (Gδ p,q
).

Barbasch [2010] has identified a small set of W (Gδ p,q
)-types (called “relevant”)

that detect unitarity, in the sense that JGδ p,q (δ0, ν) is unitary if and only if

(3-2) A(w0, ψ, ν) is positive semidefinite, for all relevant ψ ∈ ̂W (Gδ p,q
).
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Next we consider the Langlands quotient J (δ p,q , ν) of SO(n+1, n). For every
K -type µ, there is a family of (much harder) “analytic” intertwining operators

(3-3) T (w0, µ, δ
p,q , ν),

with the property that the Langlands quotient J (δ p,q , ν) is unitary if and only if

T (w0, µ, δ
p,q , ν) is positive semidefinite, for all µ ∈ K̂ .

The operator T (w0, µ, δ
p,q , ν) is defined on the space HomK (µ, IG(δ

p,q , ν)),
which is isomorphic to

Vµ[δ p,q
] := HomM(µ, δ

p,q)

by Frobenius reciprocity. The stabilizer W δ p,q
of the M-type δ p,q acts naturally on

this space. Note that the group W δ p,q
coincides with the Weyl group of the system

1δ p,q of good roots for δ p,q :

W (1δ p,q )'W (Bp)×W (Bq)'W (Gδ p,q
).

Hence, for every K -type µ, we obtain a representation ψµ of the Weyl group
of Gδ p,q

on the domain Vµ[δ p,q
] of the intertwining operator T (w0, µ, δ

p,q , ν).
The operator T (w0, µ, δ

p,q , ν) is in general hard to compute, but if the K -
type µ is sufficiently small (more precisely, “petite”; see [Barbasch et al. 2008,
Sections 4.5 and 4.6] for a precise definition), then T (w0, µ, δ

p,q , ν) depends only
on the W (1δ p,q )-structure of Vµ[δ p,q

]. One measure of the size of a K -type is its
level (see Definition 11).

The following facts are crucial:

(1) Every K -type of level at most 2 is automatically petite.

(2) If µ is petite, then the “analytic” operator on µ coincides with the “algebraic”
operator on the W (1δ p,q )-type Vµ[δ p,q

]:

T (w0, µ, δ
p,q , ν)= A(w0, Vµ[δ p,q

], δ0, ν).

(3) For G = SO(n+1, n), every relevant W (1δ p,q )-type ψ occurs in the represen-
tation of W (1δ p,q ) on the space Vµ[δ p,q

] for some petite K -type µ (of level 2).

The first two claims are well known; the proof already appears in [Barbasch
et al. 2008] (see also [Pantano et al. 2010] for the corresponding results for double
covers of split groups such as Mp(2n)). The third claim is Theorem 9 below.

Theorem 9. For every relevant W δ p,q
-type ψ , there exists a K -type µ of level at

most 2 such that

(3-4) ψµ ∼= ψ.
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The proof of Theorem 9 is given in Section 4. This concludes the proof of
Theorem 2.

Because the spherical unitary dual of split groups of type B is known, Theorem 2
and Corollary 3 provide a set of nonunitarity certificates for (Langlands quotients
of) minimal principal series of SO(n+1, n). We give an example.

By [Adams et al. 2007, Lemma 14.6], the spherical Langlands quotient of
O(k+1, k), with parameter, (a1 ≥ a2 ≥ · · · ≥ ak) is not unitary if the last coordi-
nate ak is strictly greater than 1

2 , or if there is a jump strictly greater than 1 between
two consecutive coordinates. Because O(k+1, k) and SO(k+1, k)0 have the same
spherical complementary series, Corollary 3 implies that an analogous result must
be true for SO(n+1, n).

Proposition 10. Let G = SO(n+1, n) and let ν = (ν1, . . . , νn) be a real character
of A. We may assume that

ν1 ≥ · · · ≥ νp ≥ 0 and νp+1 ≥ · · · ≥ νn ≥ 0.

Suppose that any of the following conditions holds:

(1) νp >
1
2 or νn >

1
2 , or

(2) νi − νi+1 > 1, for some i with 1≤ i ≤ p− 1, or p+ 1≤ i ≤ n− 1.

Then the Langlands quotient J (δ p,q , ν) of SO(n+1, n) is not unitary.

4. A matching of petite K -types with relevant W δ-types

Given δ p,q as in the previous section, recall the stabilizer of δ p,q in W

W δ p,q
'W (Bp)×W (Bq)⊆W (Bn).

We let W (Bp) act on the first p coordinates, and W (Bq) on the last q coordinates.
The M-type δ p,q is contained in the (unique) fine K -type

µδ p,q = triv⊗3q(Cn).

Here Cn represents the standard representation of O(n) with (standard) basis
{v1, v2, . . . , vn}. For every K -type µ whose restriction to M contains δ p,q , we
denote by Eµ the vector space carrying the K -type µ and by Eµ(δ p,q) the isotypic
component of the M-type δ p,q inside Eµ. In particular, when µ is the fine K -type
µδ p,q , we set

Eµδ p,q =3
q(Cn),

and we let Eµδ p,q (δ
p,q) be the one-dimensional space of 3q(Cn) spanned by the

vector

(4-1) u = vp+1 ∧ vp+2 ∧ · · · ∧ vn.
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Given the M-type δ p,q and a K -type µ containing δ p,q , one can look at the repre-
sentation ψµ of W δ p,q

on HomM(µ, δ
p,q), or, equivalently, on

Vµ[δ p,q
] := HomC(Eµ(δ p,q), Eµδ p,q (δ

p,q)).

For each [σ ] ∈W δ p,q
we choose a representative σ in K . Then, for T ∈ Vµ[δ p,q

],
we define ψµ([σ ])(T ) to be the map from Eµ(δ p,q) to Eµδ p,q (δ

p,q) given by

(4-2)
(
ψµ([σ ])(T )

)
(w)= µδ p,q (σ )

(
T (µ(σ−1)w)

)
for all w ∈ Eµ(δ p,q).

We are interested in computing the set of representations ψµ associated to petite
K -types µ.

The notion of “petite” K -type for real split groups is carefully explained in
[Barbasch et al. 2008, Sections 4.5 and 4.6]. For the purpose of this paper, it
is sufficient to consider K -types of level at most 2, which are necessarily petite.
We recall the definition of the “level” of a K -type. Recall the elements Zα from
Section 2.

Definition 11 [Adams et al. 2007, Section 4]. An irreducible representation µ of K
is said to be level k if |γ | ≤ k for every root α and every eigenvalue γ of dµ(i Zα).

Recall that W δ p,q
is isomorphic to the Weyl group of the group

Gδ p,q
= SO(p+1, p)0×SO(q+1, q)0.

The relevant W δ p,q
-types are a minimal set of irreducible representations of W δ p,q

that detect nonunitarity for spherical Langlands quotients of Gδ p,q
(see (3-2)).

Theorem 12 [Barbasch 2004]. The following is a set of relevant W (Bk)-types for
the group SO(k+1, k)0:

(4-3) {(k−m,m)× (0) : 0≤ m ≤ [k/2]} ∪ {(k−m)× (m) : 0≤ m ≤ k}.

Relevant W (Bp)×W (Bq)-types of SO(p+1, p)0×SO(q+1, q)0 are of the form

(4-4) ψ ⊗ triv or triv⊗τ,

with ψ and τ a relevant W -type for SO(p+1, p)0 and SO(q+1, q)0, respectively.

The parametrization of W (Bk)-types in terms of pairs of partitions can be found,
for example, in [Pantano et al. 2010, Section 9]. We give here just a short description
of the W (Bk)-types we need. Recall that W (Bk) is a semidirect product of the
symmetric group Sk by the abelian normal subgroup (Z/2Z)k . The irreducible
representations of Sk are parametrized by partitions of k, with the trivial partition (k)
corresponding to the trivial representation of Sk . If c+ d = k, with d ≤ c, then
the symbol (c, d)× (0) (or simply (c, d)) denotes the pullback to W (Bk) of the
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irreducible representation of Sk corresponding to the partition (c, d). This represen-
tation is a summand of dimension

(k
c

)
(k− 2c+ 1)/(k− c+ 1) of the permutation

module M (c,d)
= IndSk

Sc×Sd
(triv), with (Z/2Z)k acting trivially.

If a and b are nonnegative integers with a + b = k then the symbol (a)× (b)
denotes the irreducible representation of W (Bk) of dimension

(k
a

)
induced from

the one-dimensional representation of (Sa × Sb)n (Z/2Z)k in which Sa , Sb, and
(Z/2Z)a act trivially, and (Z/2Z)b acts by sign. Here (Sa × Sb) is the stabilizer
in Sk of the character (triv)a ⊗ (sign)b of (Z/2Z)k .

Theorem 9 asserts that, for every M-type δ p,q of SO(n+1, n) and every relevant
W δ p,q

-type ψ , there exists a K -type µ of level at most 2 such that

ψµ ∼= ψ.

We now describe the matching explicitly. We may restrict our attention to the
case p ≥ q . Indeed, for all choices of the parameters, we have

(4-5) J (δq,p, (νq
|ν p))' J (δ p,q , (ν p

|νq))⊗χ,

with χ the nontrivial unitary character of SO(n+1, n).
The matching is presented in Table 1 (and will be proved in the next few sections).
Here we use partitions to parametrize some of the representations of O(n) (and

later of O(n,C) and GL(n,C)). See, for example, [Fulton and Harris 1991, Lec-
tures 6 and 19]. For example, if the partition λ= (λ1, . . . λk) has at most n/2 parts,
it parametrizes a representation of O(n) with highest weight (λ1, . . . , λk, 0, . . . , 0).

Remark 13. All K -types recorded in this table are level at most 2.

Proof. By definition, fine K -types have level at most 1; hence every irreducible
constituent of the tensor product of two fine K -types is of level at most two. This

The relevant W δ p,q
-type ψ A petite K -type µ such that ψµ = ψ

((p− k)× (k))⊗ triv 3k(Cn+1)⊗3q+k(Cn)

(p− k, k)⊗ triv ResO(n+1,C)×O(n,C)
S(O(n+1)×O(n))

[
triv⊗

(
V O(n)
(2k ,1q )

)]
triv⊗((q − k)× (k)) 3k(Cn+1)⊗3q−k(Cn)

triv⊗(q − k, k) ResO(n+1,C)×O(n,C)
S(O(n+1)×O(n))

[
triv⊗

(
V O(n)
(2k ,1q−2k)

)]
Table 1. Matching.
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implies, for example, that the K -types

ResO(n+1,C)×O(n,C)
S(O(n+1)×O(n))

[
triv⊗

(
V O(n)
(2k ,1q−2k)

)]
⊆
[
triv⊗3k(Cn)

]
⊗
[
triv⊗3q−k(Cn)

]
and

ResO(n+1,C)×O(n,C)
S(O(n+1)×O(n))

[
triv⊗

(
V O(n)
(2k ,1q )

)]
⊆
[
triv⊗3k(Cn)

]
⊗
[
triv⊗3q+k(Cn)

]
are level at most 2. Every K -type of the form

3a(Cn+1)⊗3b(Cn)

is also level at most 2, since Zεk acts trivially on 3b(Cn) and it acts on 3a(Cn+1)

with eigenvalues 0,±2i and Zεi±ε j acts on both 3b(Cn) and 3a(Cn+1) with eigen-
values 0,±i . �

4.1. The W(Bq)-type (q− k)× (k). Consider the K -type

(4-6) µ :=3k(Cn+1)⊗3q−k(Cn),

where Cn+1 and Cn are the standard representations of O(n+ 1) and O(n), respec-
tively, with bases {e1, e2, . . . , en+1} and {v1, v2, . . . , vn}.

The restriction of µ to M contains the M-type δ p,q with multiplicity
(q

k

)
. The

δ p,q -isotypic component inside µ is spanned by the vectors:

(4-7) wJ := eq+2−ik ∧ eq+2−ik−1 ∧ · · · ∧ eq+2−i1 ⊗ vp+ j1 ∧ vp+ j2 ∧ · · · ∧ vp+ jq−k ,

where J = {1≤ j1 < j2 < · · ·< jq−k ≤ q} is a subset of {1, 2, . . . , q} of cardinality
q− k, and I = {1≤ i1 < i2 < · · ·< ik ≤ q} is the complement of J in the same set.
Indeed one can check that

(4-8) T (t1, t2, . . . , tn) ·wJ = δ
p,q(T (t1, t2, . . . , tn)) ·wJ

for all T (t1, t2, . . . , tn) in M , and that this is the entire δ p,q -isotypic subspace of µ.
We study the representation ψµ of W δ p,q

on the
(q

k

)
-dimensional space

Vµ[δ p,q
] = HomM(µ, δ

p,q).

For each L = {l1 < l2 < · · ·< lq−k} ⊂ {1, 2, . . . , q}, set

(4-9) TL(wJ )=

{
u if J = L ,
0 otherwise.

Recall that the vector u = vp+1 ∧ vp+2 ∧ · · · ∧ vn is a basis for the δ p,q-isotypic
inside µδ p,q . The maps {TL} form a basis of Vµ[δ p,q

]. Note that

(4-10) σεl · vs =+vs and σεl · et =

{
−et if t = 1 or t = n+ 2− l,
+et otherwise,
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for all l, s = 1, . . . , n and t = 1, . . . , n+ 1. Hence:

• µδ p,q (σεl )u = u.

• µ(σεl )wJ = µ(σ
−1
εl
)wJ =

{
−wJ if l ∈ p+{1, 2, . . . , q} \ J ,
+wJ otherwise,

and consequently

(4-11) ψµ(sεl )TJ =

{
−TJ if l ∈ p+{1, 2, . . . , q} \ J ,
+TJ otherwise.

Similarly we observe that

(4-12) σεl−εl+1 · vs =


vs+1 if s = l,
−vs−1 if s = l + 1,
vs if s 6= l, l + 1,

and

(4-13) σεl−εl+1 · et =


+et−1 if t = n+ 2− l,
−et+1 if t = n+ 2− (l + 1),
+et if t 6= n+ 2− l, n+ 2− (l + 1)

for s = 1, . . . , n, t = 1, . . . , n + 1 and l = 1, . . . , p− 1 or l = p+ 1, . . . , n − 1.
Hence:

• µδ p,q (σεl−εl+1)u = u.

• µ(σεl−εl+1)wJ =


+wJ if l < p,
+wJ if l > p and either l, l+1 ∈ p+J

or l, l+1∈ p+{1, 2, . . . , q} \ J ,
−wJ4{l−p,l+1−p} otherwise,

and since µ(σεl−εl+1)wJ = µ(σ
−1
εl−εl+1

)wJ ,

(4-14) ψµ(σεl−εl+1)TJ =


+TJ if l < p,
+TJ if l > p and either l, l+1 ∈ p+J

or l, l+1∈ p+{1, 2, . . . , q} \ J ,
−TJ4{l−p,l+1−p} otherwise.

This information is enough to characterize the representation ψµ of W δ p,q

on Vµ[δ p,q
]. Recall that W (Bp) and W (Bq) are realized as the (appropriate)

subgroups of W (Bn) acting on the coordinates {1, . . . , p} and {p + 1, . . . , n},
respectively. Let Sq−k and (Z/2Z)q−k be the subgroups of W (Bq) acting on the
first q − k coordinates {p+ 1, p+ 2, . . . , n− k}, and let Sk , (Z/2Z)k be the ones
acting on the last k coordinates {n−k+1, n−k+2, . . . , n}. Here the Z/2Z factors
are generated by the σεl , and the symmetric groups by the σεl−εl+1 . Note that:
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• The restriction of ψµ to W (Bp) is trivial, hence ψµ is of the form triv⊗ψ ′ for
some representation ψ ′ of W (Bq).

• The groups Sq−k , Sk and (Z/2Z)q−k act trivially on the vector T{1,...,q−k},
and (Z/2Z)k acts on it by sign. Hence the restriction of ψ ′ to the group
(Sq−k × Sk)n (Z/2Z)q contains the one-dimensional representation

(4-15) [(q − k)⊗ (k)] · [(triv)q−k
⊗ (sign)k].

By Frobenius reciprocity, ψ ′ contains the irreducible representation

(4-16) (q− k)× (k) := IndW (Bq )

(Sq−k×Sk)n(Z/2Z)q [(q− k)⊗ (k)] · [(triv)q−k
⊗ (sign)k].

Actually ψ ′ = (q − k)× (k) for dimensional reasons.

We conclude that ψµ = triv⊗((q − k)× (k)), as claimed.

4.2. The W(Bq)-type (q− k, k). Consider the (possibly reducible) representation

(4-17) µ := triv⊗[3k(Cn)⊗3q−k(Cn)]

of K , where triv denotes the trivial representation of O(n+ 1) and Cn denotes the
standard representation of O(n) (with basis {v1, v2, . . . , vn}).

Note that µ contains the M-type δ p,q with multiplicity
(q

k

)
. For every subset

J = {1≤ j1 < j2 < · · ·< jq−k ≤ q}, let I = {i1 < i2 < · · ·< ik} be its complement
in the set {1, 2, . . . , q}, and let

(4-18) wJ := vp+i1 ∧ vp+i2 ∧ · · · ∧ vp+ik ⊗ vp+ j1 ∧ vp+ j2 ∧ · · · ∧ vp+ jq−k .

Then the vectors {wJ } span the δ p,q -isotypic component inside µ.
We study the representation ψµ of W δ p,q

on the
(q

k

)
-dimensional space Vµ[δ p,q

].
For all L = {1≤ l1 < l2 < · · ·< lq−k ≤ q}, set

(4-19) TL(wJ )=

{
u if J = L ,
0 otherwise.

Then the maps {TL} form a basis of Vµ[δ p,q
]. Note that

(4-20) σεl · vs =+vs for all l, s = 1, . . . , n;

hence

(4-21) µδ p,q (σεl )u = u and µ(σεl )wJ = wJ for all J.

This implies that

(4-22) ψµ(sεl )TJ = TJ for all J,

so ψµ is really a representation of Sp× Sq . Next we show that Sp acts trivially.
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Recall from (4-12) that for all s = 1, . . . , n and all l = 1, . . . , p−1 or l = p+1,
. . . , n− 1, we have

(4-23) σεl−εl+1 · vs =


vs+1 if s = l,
−vs−1 if s = l + 1,
vs if s 6= l, l + 1.

Hence:

• µδ p,q (σεl−εl+1)u = u.

• µ(σεl−εl+1)wJ =


+wJ if l < p,
+wJ if l > p and either l, l+1 ∈ p+J

or l, l+1∈ p+{1, 2, . . . , q} \ J ,
−wJ4{l−p,l+1−p} otherwise,

and since µ(σεl−εl+1)wJ = µ(σ
−1
εl−εl+1

)wJ ,

(4-24) ψµ(σεl−εl+1)TJ =


+TJ if l < p,
+TJ if l > p and either l, l+1 ∈ p+J

or l, l+1∈ p+{1, 2, . . . , q} \ J ,
−TJ4{l−p,l+1−p} otherwise.

Therefore Sp acts indeed trivially, so ψµ is of the form triv⊗ψ ′ for some rep-
resentation ψ ′ of Sq . Finally we prove that ψ ′ equals the permutation module
IndSq

Sq−k×Sk
triv= M (q−k,k). Write

(4-25) HomM(µ, δ
p,q)=

⊕
L⊆{1,...,q}
|L|=q−k

UL ,

with UL := CTL . The symmetric group Sq permutes the subspaces UL transitively.
Set L0 := {1, 2, . . . , q − k} and U0 :=UL0 , and let H be the stabilizer of U0 in Sq

(i.e., the set of all η in Sq such that ηU0 =U0). Note that

• H ' Sq−k × Sk . (We identify Sq−k and Sk with the subgroups of Sq acting on
the first q − k coordinates and the last k coordinates, respectively.)

• U0 is stable under H and carries the trivial representation of H .

• The Sq -module Vµ[δ p,q
] is induced from the H -module U0 (see [Serre 1977,

Proposition 19]).

Therefore

(4-26) ψ ′ = IndSq
Sq−k×Sk

triv= M (q−k,k),

and ψµ = triv⊗M (q−k,k).
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The representation triv⊗M (q−k,k) is clearly reducible because the permutation
module M (q−k,k) of Sq decomposes as a direct sum of Specht modules

(4-27) M (q−k,k)
=

⊕
λD(q−k,k)

Sλ =

k⊕
a=0

S(q−a,a).

HereD denotes the dominance (partial) ordering on partitions: If λ= (λ1, λ2, . . . )

and µ= (µ1, µ2, . . . ) are partitions of N then λDµ if
∑r

i=1 λi ≥
∑r

i=1 µi for all
r . With abuse of notation, we let (q − 0, 0) denote the trivial partition. Then

(4-28) triv⊗M (q−k,k)
=

k⊕
a=0

triv⊗(q − a, a).

The module ψµ = Vµ[δ p,q
] is also reducible because the representation µ of K

decomposes as a direct sum of K -types. We need to identify the irreducible
component of µ containing (q − k, k).

The first task is to compute the decomposition of the tensor product

3k(Cn)⊗3q−k(Cn)

into O(n)-types. We do this in three steps: First we decompose3k(Cn)⊗3q−k(Cn)

into irreducible representations of GL(n,C). Then we decompose each GL(n,C)-
type occurring in such a decomposition as a direct sum of O(n,C)-types. Finally
we restrict to O(n).

We will use Weyl’s construction of irreducible representations of GL(n,C) and
O(n,C) (see, for example, [Fulton and Harris 1991, Lectures 6 and 19]). By Pieri’s
formula,

(4-29) 3k(Cn)⊗3q−k(Cn)= V GL(n)
(1k)

⊗ V GL(n)
(1q−k)

=

k⊕
a=0

V GL(n)
(2a,1q−2a)

.

Note that the partitions (2a, 1q−2a) have at most

(4-30) a+ (q − 2a)= q − a ≤ q ≤ n/2

parts, so we can apply Littlewood’s restriction formula [1944]:

ResGL(n,C)
O(n,C) V GL(n)

(2a,1q−2a)
(4-31)

=

⊕
ν : #parts≤n/2

( ∑
ξ : even parts

Nν,ξ,(2a,1q−2a)

)
V O(n)
ν

=

a⊕
b=0

N(2b,1q−2a),(2a−b),(2a,1q−2a)︸ ︷︷ ︸
=1

V O(n)
(2b,1q−2a)

=

a⊕
b=0

V O(n)
(2b,1q−2a)

.
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Here the Nν,ξ,λ are the Littlewood–Richardson numbers. We deduce that

(4-32) 3k(Cn)⊗3q−k(Cn)=

k⊕
a=0

( a⊕
b=0

V O(n)
(2b,1q−2a)

)
(as a representation of O(n,C)), and

µ := triv⊗
[
3k(Cn)⊗3q−k(Cn)

]
(4-33)

=

k⊕
a=0

( a⊕
b=0

ResO(n+1,C)×O(n,C)
S(O(n+1)×O(n)) triv⊗V O(n)

(2b,1q−2a)

)
(as a representation of K = S(O(n+ 1)× O(n))). Note that the K -representation

(4-34) ResO(n+1,C)×O(n,C)
S(O(n+1)×O(n)) triv⊗V O(n)

(2b,1q−2a)

embeds in the tensor product

(4-35)
[
triv⊗3b(Cn)

]
⊗
[
triv⊗3q−2a+b(Cn)

]
.

Every M-type δr,s appearing in this tensor product satisfies

(4-36) s ≤ q − 2a+ 2b ≤ q

hence δr,s
6= δ p,q for all b 6= a, and

(4-37) HomM
(
ResO(n+1,C)×O(n,C)

S(O(n+1)×O(n)) triv⊗V O(n)
(2b,1q−2a)

, δ p,q)
= {0} for all b 6= a.

It follows that, as a representation of W δ p,q
,

ψµ = HomM(µ, δ
p,q)(4-38)

=

k⊕
a=0

( a⊕
b=0

HomM
(
ResO(n+1,C)×O(n,C)

S(O(n+1)×O(n)) triv⊗V O(n)
(2b,1q−2a)

, δ p,q))

=

k⊕
a=0

HomM
(
ResO(n+1,C)×O(n,C)

S(O(n+1)×O(n)) triv⊗V O(n)
(2a,1q−2a)

, δ p,q).
We also know that

(4-39) ψµ =

k⊕
a=0

triv⊗(q − a, a).

Equations (4-38) and (4-39) hold for all k = 0, . . . , [q/2]. A simple induction
argument shows that

(4-40) HomM
(
ResO(n+1,C)×O(n,C)

S(O(n+1)×O(n)) triv⊗V O(n)
(2a,1q−2a)

, δ p,q)
= triv⊗(q − a, a),
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for all a = 1 . . . k. In particular,

(4-41) HomM
(
ResO(n+1,C)×O(n,C)

S(O(n+1)×O(n)) triv⊗V O(n)
(2k ,1q−2k)

, δ p,q)
= triv⊗(q − k, k).

4.3. The W(Bp)-types ( p− k, k) and ( p− k)× (k). The calculations are similar
to the ones done in Sections 4.2 and 4.1, respectively. We leave the details to the
diligent reader.

5. Some small rank examples

In [Pantano et al. 2010], we proved Theorem 5 for metaplectic groups, except for
the case (p, q)= (2, 2) and ν p

= νq
= ( 3

2 ,
1
2). In this case, JMp(8)(δ

2,2, ν) coincides
with the lowest K -type constituent of a weakly fair Aq(λ) module with q= l+ u,
where L ∼= Ũ (2, 2) and λ = −ρ(u). As a constituent of an Aq(λ) module in the
weakly fair range, it is unitary by a result of Vogan [1993] (see [Knapp and Vogan
1995, Theorem 0.54]). The unitarity of this representation will also follow from
Theorem 6 since ν is a unipotent parameter (see Definition 27). This completes the
proof of Theorem 5 for metaplectic groups.

In this section, we prove Theorem 5 for orthogonal groups as well. The proof is
analogous to the one for the metaplectic groups.

For nonnegative integers (p, q) such that p+q ≤ 4, and parameters ν = (ν p
|νq)

with ν p
∈ CS(SO(p+1, p)0, δ0) and νq

∈ CS(SO(q+1, q)0, δ0), we need to show
that J (δ p,q , ν) is unitary.

The main tool for the proof is unitary induction with deformation of parameters.
In all cases except one, we think of J (δ p,q , ν) as an irreducible subquotient of an
induced representation

(5-1) I (νq)= IndG
PI

(
J (δ p,0, ν p)⊗ δ0,q

⊗ νq),
where PI = MI AI NI is a parabolic subgroup of G with Levi factor

MI AI ∼= SO(p+1, p)×GL(1,R)q .

Here δ0,q is the product of q sign characters on the Z/2Z parts of GL(1,R). The
idea is to irreducibly deform the parameter νq to 0. Since J (δ p,0, ν p) is unitary,
and the Hermitian form on the induced representation can change signature only at
reducibility points, this will prove that J (δ p,q , ν) is unitary. For this, we need to
know when an induced representation stays irreducible under deformation.

Let P = M AN be a minimal parabolic subgroup of SO(n+1, n), and let PI =

MI AI NI be a parabolic subgroup containing P . Then

(5-2) P ∩MI = M AM NM
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is a minimal parabolic subgroup of MI , and A = AM AI . For each pair of (real)
characters νM ∈ a∗M,R and νI ∈ a∗I,R, write ν = (νM |νI ) for the corresponding
character of A. Let δ be a character of M , and let JMI (δ, νM) be the Langlands
subquotient of the principal series

(5-3) IndMI
M AM NM

(δ⊗ νM).

Note that JMI (δ, νM) is always irreducible.
Recall the notion of good and bad roots from page 484 (see (2-16)).

Proposition 14. Consider the induced representation

(5-4) I (νI ) := IndSO(n+1,n)
MI AI NI

(
JMI (δ, νM)⊗ νI

)
of SO(n+1, n). Set ν = (νM |νI ), and assume that νI satisfies

(5-5)
{
〈ν, β∨〉 6∈ 2Z+ 1 for all β ∈1(nI ) that are good for δ,
〈ν, β∨〉 6∈ 2Z−{0} for all β ∈1(nI ) that are bad for δ.

Then I (νI ) is irreducible.

Proof. We claim that under the conditions (5-5), the operator T (w0, µ, δ
p,q , ν)

(see (3-3)) has no zero eigenvalues for any K -type µ containing δ p,q and hence
is invertible. This easily follows from [Barbasch et al. 2008, Theorem 2.10].
Then, as for the corresponding result for the metaplectic group [Pantano et al. 2010,
Proposition 8.9], the proposition follows from (the proof of) [Knapp and Zuckerman
1977, Theorem 8] and [Speh and Vogan 1980, Corollary 3.9]. �

As for Mp(2n) in [Pantano et al. 2010], we have the following consequence.

Corollary 15. In the setting of Proposition 14, let J (νI ) be the (irreducible) Lang-
lands subquotient of I (νI ). Let R⊂a∗I,R be any connected region in the complement
of the hyperplane arrangement defined in (5-5). If J (νI ) is unitary for some value
of νI in R, then J (ν) is unitary throughout the closure of R. In particular, for ν in
the unit cube (i.e., if 0≤ |νi | ≤

1
2 for i = 1 . . . n), J (ν) is unitary.

Theorem 16. Let G = SO(n+1, n). Choose (p, q) with p+ q = n, and let ν =
(ν p
|νq), with ν p

= (a1, . . . , ap) and νq
= (ap+1, . . . , an), be a character of A such

that

(5-6) ν p
∈ CS(SO(p+1, p)0, δ0) and νq

∈ CS(SO(q+1, q)0, δ0).

Suppose that

• For all j = 1, . . . , p, either 0≤ |a j | ≤ 3/2 or a j ∈ Z+ 1
2 .

• For all j = p+ 1, . . . , n, 0≤ |a j | ≤
1
2 (i.e., νq belongs to the unit cube).

Then the Langlands subquotient J (δ p,q , ν) of SO(n+1, n) is unitary.



UNITARY PRINCIPAL SERIES OF SPLIT ORTHOGONAL GROUPS 499

Proof. The proof is completely analogous to the proof of [Pantano et al. 2010,
Theorem 8.11]. If PI = MI AI NI and I (νq) are as given in (5-1), then up to sign,
the roots of NI are

εi for p+ 1≤ i ≤ n,
εi ± ε j for p+ 1≤ i < j ≤ n,
εi ± ε j for 1≤ i ≤ p and p+ 1≤ j ≤ n.

The roots in the first two rows are good for δ p,q , the remaining ones are bad. Under
our assumptions on ν p, if νq is in the interior of the unit cube, then the conditions
(5-5) are satisfied. By Proposition 14, I (νq) is irreducible. Moreover J (0)= I (0)
is unitary. By Corollary 15, J (δ p,q , ν) is unitary for all νq in the (closed) unit
cube. �

The spherical complementary series parameters for SO(p+1, p)0 for p= 1, 2, 3
are given at the end of Section 8. It is easily checked that they all satisfy the hypothe-
ses of the theorem, and for q = 1, 2, the spherical complementary series parameters
all belong to the unit cube, except for the isolated point (3

2 ,
1
2). Consequently

Theorem 16 now implies the unitarity of all representations under consideration
(for n ≤ 4) except J (δ2,2, ν), with ν p

= νq
= (3

2 ,
1
2). Just as for the corresponding

representation of Mp(8), we can realize it as a constituent of an Aq(λ)-module at the
edge of the weakly fair range, which proves that it is unitary. See [Knapp and Vogan
1995, Example 3, Chapter VIII, §5] for a detailed discussion of this (reducible)
module of SO(5, 4). Note that its unitarity also follows from Theorem 29.

Collecting all these results, we have now proved Theorem 5.

6. The theta correspondence

For the case p = n, q = 0, the authors of [Adams et al. 2007] use the theta corre-
spondence to prove that if ν is a spherical unitary parameter for SO(n+ 1, n) then
ν ∈CS(Mp(2n), δn,0). We will generalize the argument to relate the complementary
series of the two families of groups to each other in more generality.

First we collect the facts about the theta correspondence that we need (some of
them were already recalled in [Pantano et al. 2010]).

Let (G,G ′) be a reductive dual pair in Sp(2N ,R), that is, G and G ′ are reductive
subgroups of Sp(2N ,R) which are mutual centralizers. Write G̃ and G̃ ′ for the
preimages of G and G ′ in Mp(2N ) under the covering map. Howe [1989] defines a
correspondence between irreducible representations of G̃ and those of G̃ ′, and shows
that this correspondence is a bijection between subsets of the genuine admissible
duals of the two groups. Moreover subjugated to the correspondence is a bijection
between K - and K ′-types in the space of joint harmonics H. Here K and K ′ are
maximal compact subgroups of G̃ and G̃ ′, respectively. The K - and K ′-types are
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assigned a degree and the correspondence satisfies the following property: If π
corresponds to π ′ in the correspondence for the dual pair (G,G ′), and µ is a K -
type of minimal degree occurring in π , then µ occurs in H, and corresponds to a
K ′-type µ′ which occurs in and is of minimal degree in π ′.

In general, the theta correspondence does not preserve unitarity. However we
have preservation of unitarity in the stable range.

Definition 17. The dual pair (O(r, s),Sp(2n,R)) is said to be in the stable range
with O(r, s) the smaller member if n≥ r+s. It is in the stable range with Sp(2n,R)

the smaller member if min{r, s} ≥ 2n.

Theorem 18 [Li 1989c]. Suppose (G,G ′) is a dual pair in the stable range with
G the smaller member. If π is an irreducible genuine unitary representation of G̃,
then π occurs in the correspondence for the dual pair and corresponds to a unitary
representation of G̃ ′.

Theorem 19 [Li 1989a]. Let G ′ be a reductive group which is a member of some
Type I reductive dual pairs. Let π ′ be a unitary irreducible genuine representation of
G̃ ′, of low rank (in the sense of [Howe 1982]). Then there exist a unitary character ξ
of G̃ ′, a reductive group G such that (G,G ′) is a dual pair in the stable range with
G the smaller member, and a unitary genuine representation π of G̃ such that π
corresponds to π ′⊗ ξ .

As explained in [Pantano et al. 2010, Section 8.1], the correspondence for
dual pairs of the form (Sp(2n,R), O(r, s)) with r + s odd can be regarded as
a correspondence between genuine irreducible representations of Mp(2n) and
irreducible representations of O(r, s). This depends on some choices, which we
make the same way as we did in [Pantano et al. 2010].

For principal series representations of O(m+1,m), we use the following nota-
tion. For each pair of nonnegative integers (p, q) such that p+ q = m, we write
IO(m+1,m)(δ

p,q , ν) for the principal series representation of O(m+1,m)with lowest
(O(m+ 1)× O(m))-type

(0, . . . , 0;+)⊗ (1, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0; ε),

with ( j, ε)= (q,+) if p ≥ q, and (p,−) if p < q. The corresponding Langlands
subquotient will be denoted JO(m+1,m)(δ

p,q , ν). We say that a parameter ν be-
longs to the complementary series CS(O(m+1,m), δ p,q) if JO(m+1,m)(δ

p,q , ν) is
unitarizable (as a representation of O(m+1,m) or SO(m+1,m)).

For each positive integer m, write ρm for the infinitesimal character of the trivial
representation of SO(2m + 1). If ν ∈ Cn , then (ρm |ν) denotes the (m + n)-tuple
obtained by tacking the coordinates of ν onto ρm :
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(ρm |ν)=
(
m− 1

2 ,m− 3
2 , . . . ,

3
2 ,

1
2 , ν1, . . . , νn

)
.

For dual pairs of the form under consideration, the theta correspondence gives
rise to the following correspondence of infinitesimal characters.

Theorem 20 [Przebinda 1996]. Let (G,G ′) be a reductive dual pair with G an
odd orthogonal group, and G ′ a symplectic group, or vice versa. Let π and π ′ be
representations of G̃ and G̃ ′, with infinitesimal characters γ and γ ′, respectively,
which correspond to each other. Assume that the rank r of G is greater than or
equal to the rank r ′ of G ′. Then γ = (ρr−r ′ |γ

′).

We need two more results about the correspondence for symplectic-orthogonal
pairs.

Theorem 21 [Adams and Barbasch 1998]. Let n≤m, and write m= n+k. Let p+
q = n, and let ν = (ν p

|νq) ∈Rn . Let (G(m),G ′(n))= (Sp(2m,R), O(n+1, n)) or
(O(m+1,m),Sp(2n,R)). In the correspondence for the dual pair (G(m),G ′(n)),

JG(m)(δ
p+k,q , (ρk |ν))←→ JG ′(n)(δ

p,q , ν).

Proposition 22 [Adams and Barbasch 1998]. Suppose that π and π ′ map to each
other in the theta correspondence for the dual pair (G,G ′)= (Sp(2n,R), O(r, s))
with r+s odd. If 2n> r+s, then the lowest Ũ (n)-types of π are of minimal degree
in π . Similarly, if 2n < r + s, then the lowest (O(r)× O(s))-types of π ′ are of
minimal degree in π ′.

Instead of recalling Howe’s definition of the rank of a representation (see [Howe
1982]), we give a theorem which leads to an alternative definition of “low rank”.

Theorem 23 [Li 1989b; 1997]. Let G be Mp(2n) or O(n+1, n), and let π be an
irreducible unitary representation of G. Set

(6-1) rG =

{
n if G =Mp(2n) or if G = O(n+1, n) with n even,
n− 1 if G = O(n+1, n) with n odd.

Let W F(π)⊆ g∗0 ' g0 denote the wave front set of π , and write rank(W F(π)) for
the maximal rank of the elements of W F(π) as matrices. Then π is of “low rank”
in the sense of Howe if and only if

rank(W F(π)) < rG .

Proposition 24. Let (p, q) be a pair of nonnegative integers such that p+ q = n,
and let k be any integer satisfying k ≥ n+ 2.

(1) For all parameters ν = (ν p
|νq), if(

(ρk |ν
p)|νq)

∈ CS(SO(n+ k+ 1, n+ k), δ p+k,q),

then JO(n+k+1,n+k)(δ
p+k,q , ((ρk |ν

p)|νq)) is of low rank.
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(2) For all parameters ν = (ν p
|νq), if(

(ρk |ν
p)|νq)

∈ CS(Mp(2(n+ k)), δ p+k,q),

then JMp(2(n+k))(δ
p+k,q , ((ρk |ν

p)|νq)) is of low rank.

Proof. For part (1), note that for q = 0 this result already appears in [Adams et al.
2007, Fact 2, Section 14]; the same argument applied there goes over word for
word if q > 0. The first step is to realize JO(n+k+1,n+k)(δ

p+k,q , ((ρk |ν
p)|νq)) as a

composition factor of an induced representation

IndO(n+k+1,n+k)
L (triv⊗ξ),

where L = O(k+1, k) × GL(1,R)n , and ξ is a one-dimensional character of
GL(1,R)n . The wave front set is then contained in the closure of the Richardson
orbit for L , hence its rank is bounded above by the rank of that orbit. The same
calculation done in [Adams et al. 2007] shows that this rank is strictly less than
n+ k− 1. By Theorem 23, the representation JO(n+k+1,n+k)(δ

p+k,q , ((ρk |ν
p)|νq))

of O(n+ k+ 1, n+ k) is of low rank.
For part (2), Theorem 21 implies that the Langlands quotient

JMp(2(n+k))(δ
p+k,q , ((ρk |ν

p)|νq)) corresponds to JO(n+1,n)(δ
p,q , ν) in the corre-

spondence for the pair (Sp(2(n+k),R), O(n+1, n)). By [Li 1989b, Proposition 1],
if π is any representation of Mp(2(n+k)) coming from the duality correspondence
with some representation of O(n+1, n), then the rank of the wave front set of π is
at most 2n+ 1. In particular,

rank
(
W F(JMp(2(n+k))(δ

p+k,q , ((ρk |ν
p)|νq)))

)
≤ 2n+ 1.

If k > n + 1 (as in our assumptions), then this is strictly less than the split rank
of Mp(2(n+k)), hence the representation JMp(2(n+k))(δ

p+k,q , (ρk |ν)) of Mp(2(n+
k)) is of low rank by Theorem 23. �

One consequence of Conjecture 1 would be that the (p, q)-complementary series
of SO(n+1, n) and the genuine (p, q)-complementary series of Mp(2n) coincide.
We would like to show that if ν is a unitary parameter for one of the groups (for
a given choice of p and q), then it is unitary for the other group as well. The
theta correspondence provides such an argument if we know that a closely related
parameter ν ′ for a larger group of the same type is also unitary.

Theorem 25. (1) Let ν = (ν p
|νq) ∈ CS(SO(n+1, n), δ p,q). If (ρn+2|ν) is in

CS(SO(2n+ 3, 2n+ 2), δ p+n+2,q) then ν ∈ CS(Mp(2n), δ p,q).

(2) Let ν = (ν p
|νq) ∈ CS(Mp(2n), δ p,q). If

(ρn+2|ν) ∈ CS(Mp(4n+ 4), δ p+n+2,q)

then ν ∈ CS(SO(n+1, n), δ p,q).
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Proof. For part (1), assume ν = (ν p
|νq) ∈ CS(SO(n+1, n), δ p,q), and (ρn+2|ν)

is in CS(SO(2n + 3, 2n + 2), δ p+n+2,q). We want to show that JMp(2n)(δ
p,q , ν)

is unitary. By our assumption, πs = JO(2n+3,2n+2)(δ
p+n+2,q , (ρn+2|ν)) is unitary.

By Proposition 24 (1), πs is of low rank. Theorem 19 implies that there are a
character ξ of O(2n+ 3, 2n+ 2), a group Mp(2m) with m ≤ n+ 1, and a unitary
representation π of Mp(2m) such that π ↔ πs ⊗ ξ in the theta correspondence for
the dual pair (Sp(2m,R), O(2n+3, 2n+2)). By Proposition 22, the lowest K -type
of πs ⊗ ξ is of minimal degree for the dual pair, and must therefore occur in H.
By the explicit correspondence in H (see [Adams and Barbasch 1998, Proposition
2.1]), ξ must be trivial. If we can show that m = n then we are done, since by
Theorem 21, πs corresponds to JMp(2n)(δ

p,q , ν) in the correspondence for the dual
pair (Sp(2n,R), O(2n+ 3, 2n+ 2)), so that JMp(2n)(δ

p,q , ν) must be unitary.
So suppose m > n. Then m = n+ 1. Theorem 21 tells us that πs corresponds to

JMp(2n+2)(δ
p+1,q , ν ′) for this dual pair, where ν ′ = (n+ 3

2 , ν1, . . . , νn) (since it is
obtained from (ρn+2|ν) by removing the coordinates of ρn+1). By [Pantano et al.
2010, Proposition 7.7] (the analog, for the metaplectic group, of Proposition 10),
this is not a unitary parameter for any principal series of Mp(2n+ 2). So m ≤ n.

Now suppose that m < n, say n = m + k. By Theorem 20, the infinitesimal
character of π is obtained from (ρn+2|ν) by removing the coordinates of ρ2n+2−m =

ρn+2+k . If k > 0 then this means that ν contains a coordinate n+ 5
2 . This implies

that one of the conditions of Proposition 10 holds, hence ν is not a unitary parameter.
This contradicts our assumption, so we must have m=n, and so π= JMp(2n)(δ

p,q , ν)

is unitary.
For part (2), let ν = (ν p

|νq) ∈ CS(Mp(2n), δ p,q), and assume (ρn+2|ν) is in
CS(Mp(4n + 4), δ p+n+2,q). We want to show that JO(n+1,n)(δ

p,q , ν), and hence
JSO(n+1,n)(δ

p,q , ν), is unitary. By our assumption,

πs = JMp(4n+4)(δ
n+p+2,q , (ρn+2|ν))

is unitary. By Proposition 24 (2), πs is of low rank. Theorem 19 implies that
there are a character ξ of Mp(4n + 4), a group O(r, s) with r + s ≤ 2n + 2 and
r + s odd, and a unitary representation π of O(r, s) such that πs ⊗ ξ ↔ π in the
correspondence for the pair (Sp(4n+ 4,R), O(r, s)). The group Mp(4n+ 4) has
no nontrivial characters, so ξ must be trivial. Also, by Proposition 22, the fine
K -type of πs occurs in H. By the correspondence in H, this can only happen when
r = s+ 1. We want to show that s = n; then π = JO(n+1,n)(δ

p,q , ν) is unitary.
The condition r+s≤2n+2 implies 2s+1≤2n+2. By integrality, s≤n. Assume

s < n. By Theorem 20 , the infinitesimal character of π is obtained from (ρn+2|ν)

by removing the coordinates of ρ2n+2−s . If s < n then this contains a coordinate
n+ 5

2 , which must come from ν. Then ν satisfies one of the conditions of [Pantano
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et al. 2010, Proposition 7.7], hence is not a unitary parameter. Consequently s = n,
and the theorem is proved. �

The following is a direct consequence of the description of the spherical unitary
parameters for the split groups of type B (see Section 8).

Proposition 26 [Barbasch 2010]. If ν ∈ CS(SO(n+1, n), δ0), then

(ρm |ν) ∈ CS(SO(n+m+ 1, n+m), δ0) for all m > 0.

Using this observation, Theorem 25 now immediately implies Theorem 4.

7. Unipotent representations

In this section, we identify the principal series parameters which are attached to
special unipotent representations of SO(n+1, n), and discuss the unitarity of these
modules.

Barbasch [2010] attaches parameters of spherical principal series representa-
tions of SO(n+1, n)0 to nilpotent orbits in sp(2n,C). Fix a Cartan subalgebra h∨

of sp(2n,C). This algebra is naturally isomorphic to a∗. Given a nilpotent orbit O∨,
let {e∨, h∨, f ∨} be an sl2 triple with f ∨ ∈ O∨ and h∨ ∈ h∨. Then the corresponding
spherical parameters are of the form

ν =
h∨

2
+ γ,

where γ ∈ z({e∨, h∨, f ∨}), the centralizer of the triple. A spherical parameter ν
is called unipotent if it is of the form ν = h∨/2 (see Definition 34). Since our
(p, q)-principal series parameters are given by pairs of spherical parameters (for
SO(p+1, p)0 and SO(q+1, q)0), we can attach them to pairs of nilpotent orbits
analogously.

Definition 27. Fix nonnegative integers p and q such that p+ q = n. A parameter
ν = (ν p

|νq) for a (p, q)-principal series of SO(n+1, n) (or Mp(2n)) is called
unipotent if both ν p and νq are spherical unipotent parameters for SO(p+1, p)0
and SO(q+1, q)0, respectively.

Proposition 28. Given p and q such that p + q = n, a parameter ν = (ν p
|νq)

is unipotent if and only if J (δ p,q , ν) is a special unipotent representation of
SO(n+ 1, n).

Proof. Recall first that a Langlands parameter [Langlands 1970] for G=SO(n+1, n)
is a conjugacy class by Sp(2n,C) of homomorphisms

ϕ :WR −→ Sp(2n,C)×0,
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satisfying certain conditions. Here 0 = {γ, 1} is the Galois group of C over R, and
WR is the Weil group of R, the group generated by C× and an element τ , subject to
the relations τ zτ−1

= z for z ∈C×, τ 2
=−1. To each such parameter ϕ is associated

an “L-packet”, which is a finite set 5ϕ of irreducible admissible representations of
G. The assignment is explained in detail in [Borel 1979].

For principal series representations of SO(n+1, n), the L-packets are in fact
singletons. Fix a maximal torus T of Sp(2n,C), and π = J (δ p,q , ν). Then the
Langlands parameter ϕ of π can be chosen to be

ϕ(τ)=
(
(1, . . . , 1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

), γ
)
∈ T ×0;(7-1a)

ϕ(reiθ )= r2ν
=
(
(r2ν1, . . . , r2νn ), 1

)
.(7-1b)

Now recall from [Arthur 1989, §4] (see also [Adams et al. 1992, Chapters 22
and 26]) that an Arthur parameter for G = SO(n+1, n) is a conjugacy class by
Sp(2n,C) of certain maps

ψ :WR×SL(2,C)−→ Sp(2n,C)×0,

whose restriction to SL(2,C)must be a holomorphic homomorphism into Sp(2n,C).
To each Arthur parameter is attached a finite set of irreducible admissible represen-
tations, called an Arthur packet. If ψ is an Arthur parameter, then

(7-2) ϕψ :WR −→ Sp(2n,C)×0,

defined by

(7-3) ϕψ(w)= ψ

(
w,

(
|w|

1
2 0

0 |w|−
1
2

))
for all w ∈ WR, is a Langlands parameter. Here, if w = zτ then |w| = |z|.

An Arthur parameter ψ is called unipotent if

(7-4) ψ(C×)= {(1, 1)}.

We call representations which are contained in an L-packet 5ϕψ for ψ a unipotent
parameter special unipotent. If the principal series representation π = J (δ p,q , ν) is
special unipotent, then the corresponding Arthur parameter ψ must satisfy (7-4)
and (7-1a), and the image of SL(2,C) must lie in the centralizer C of ψ(τ). This
centralizer is isomorphic to Sp(2p,C)× Sp(2q,C). It follows that our parameters
are in 1-1 correspondence with C-orbits of holomorphic maps of SL(2,C) into C .
The nontrivial orbits are given by C-conjugacy classes of embeddings of sl(2,C)

into sp(2p,C) ⊕ sp(2q,C), and such classes of embeddings are in turn in 1-1
correspondence with nonzero nilpotent C-orbits on sp(2p,C)⊕ sp(2q,C), so that
the set of Arthur parameters under consideration is indeed in 1-1 correspondence
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with pairs of nilpotent orbits as claimed. Unwinding the definitions, we see that given
such a pair of orbits (O∨p ,O∨q ), the corresponding Arthur parameter ψ determines
a Langlands parameter ϕψ which is the parameter of a (p, q)-principal series.
Moreover

(7-5) dψ
(( 1

2 0
0 − 1

2

))
,

which, in the case of principal series, is the continuous parameter of the repre-
sentations attached to ϕψ , is then (h∨p/2, h∨q /2), where h∨p and h∨q are the middle
elements of sl2 triples for O∨p and O∨q , respectively. This completes the proof of our
proposition. �

In his recent book, Arthur [2013] reformulates and proves several of the conjec-
tures of [Arthur 1989]. In particular, for certain quasisplit classical groups including
SO(n+1, n), he proves that all representations in certain Arthur packets are local
components of automorphic representations, and therefore unitary (see Theorem 1.5).
These include the Arthur packets attached to unipotent Arthur parameters. Moreover
he proves (see Proposition 7.4.1) that these Arthur packets contain the L-packets
that are attached to them. Consequently, we obtain the following result.

Theorem 29 [Arthur 2013]. Special unipotent representations of SO(n+1, n) are
unitary.

Theorem 29, Proposition 28, part (1) of Theorem 25, and the observation that if
ν is a unipotent parameter, then so is (ρn+2|ν), now easily imply Theorem 6.

8. The spherical unitary dual of SO(n+1, n)0.

In this section, we give an explicit description of the spherical unitary dual of split
groups of type B. All the results are known, and due to D. Barbasch [2010; 2008].
See also [Pantano et al. 2010, Section 11] for a more detailed account.

Let G = SO(n+1, n)0, and let ǧ= sp(2n,C) be the complex dual Lie algebra,
with Cartan subalgebra ȟ. The spherical unitary dual of G is a disjoint union of
sets, parametrized by nilpotent orbits in ǧ. Recall that nilpotent orbits in sp(2n,C)

are parametrized by partitions of 2n in which every odd part occurs with even
multiplicity.

Definition 30. Let ν be a real parameter in ȟ, and let O be a nilpotent orbit in ǧ.
Let ȟ ∈ ȟ be the middle element of an sl(2) triple associated to O. We say that ν is
attached to O if

(1) ν = ȟ/2+ κ , for some semisimple element κ in the centralizer Zǧ(O), and

(2) whenever O′ is another nilpotent orbit in ǧ such that ν = ȟ′/2+ κ ′, for some
κ ′ ∈ Zǧ(Ǒ′) semisimple, then O′ ⊂ Ō.
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If ν is a real parameter in ȟ, we can identify ν with an element of a∗R, and consider
the irreducible spherical representation J (δ0, ν) of G.

Definition 31. A parameter ν ∈ a∗R is in the O-complementary series if

(1) ν is attached to O, and

(2) J (δ0, ν) is unitary.

The zero-complementary series, that is, the complementary series attached to
the trivial nilpotent orbit plays a special role.

Theorem 32 [Barbasch 2010]. For every nilpotent orbit O in ǧ, let G0(O) be the
connected real split group whose complex dual Lie algebra is Zǧ(O). Let ν= ȟ/2+κ
be a parameter attached to the nilpotent orbit O. Then ν is in the O-complementary
series for the group G if and only if κ is in the zero-complementary series for the
group G0(O).

The zero-complementary series of all real split groups is known, thanks to D. Bar-
basch. We recall the result for the groups we need.

Theorem 33 [Barbasch 2010]. The zero-complementary series for split groups of
type Bk , Ck and Dk consists of the following dominant parameters:

Bk . The set of all ν = (κ1, . . . , κk) such that 0≤ κ1 ≤ κ2 ≤ · · · ≤ κk <
1
2 .

Ck . The set of all ν = (κ1, . . . , κk) such that there exists an index i = 2, . . . , k with
the property that

0≤ κ1 ≤ · · · ≤ κi < 1− κi−1 < κi+1 < · · ·< κk < 1,

and, for every i ≤ j < k, there is an odd number of κl with 1≤ l < i such that
κ j < 1− κl < κ j+1.

Dk . Similar to type Ck . If k is even, replace every occurrence of κ1 by |κ1|. If k is
odd, replace every occurrence of κ1 by 0.

Note that the choice of dominant parameters is not the standard one.
To compute Zǧ(O), let λ be the partition corresponding to O; denote the parts

of λ by al , and their multiplicity by rl (rl is even if al is odd):

λ= (a1, . . . , a1︸ ︷︷ ︸
r1

, . . . , am, . . . , am︸ ︷︷ ︸
rm

).

Then Zǧ(O) is a product of symplectic and orthogonal Lie algebras. There is a
factor sp(rl) for each odd part, and a factor so(rl) for each even part.

We describe the contribution of an odd part a of λ to ν; we refer the reader to the
appendix of [Pantano et al. 2010] for the other cases. If ra = 2na , the partition λ
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contains na pairs of the form (a, a). The j-th pair (a, a) contributes a string

−

(
a− 1

2

)
,−

(
a− 3

2

)
, . . . ,−1, 0,+1, . . . ,+

(
a− 3

2

)
,+

(
a− 1

2

)
(of length a) to ȟ/2, and a string

(
κ
(a)
j , κ

(a)
j , . . . , κ

(a)
j

)
(also of length a) to κ .

Moreover the part a contributes a factor sp(2na) to the stabilizer of the orbit, and
a factor SO(na + 1, na)0 to the group G0(Ǒ). For ν to be a unitary parameter,
we impose the condition that the parameter

(
κ
(a)
1 , . . . , κ

(a)
na

)
belongs to the zero-

complementary series for SO(na + 1, na)0 (see Theorem 33).

Definition 34 (Barbasch). A parameter ν = ȟ/2+ κ is called spherical unipotent
if κ = 0.

Finally we give an explicit list of the spherical unitary parameters (in the funda-
mental Weyl chamber, FWC) for SO(n+1, n)0 with n ≤ 3.

(1) For n = 1, the closed interval [0, 1
2 ].

(2) For n = 2,
• The intersection of the unit cube with the FWC: {0≤ ν2 ≤ ν1 ≤

1
2},

• The isolated point ( 3
2 ,

1
2).

(3) For n = 3,
• The intersection of the unit cube with the FWC: {0≤ ν3 ≤ ν2 ≤ ν1 ≤

1
2}.

• The segment from (1
2 ,

1
2 ,

1
2) to (1, 1

2 , 0):{
( 1

2 + t, 1
2 ,

1
2 − t), for 0≤ t ≤ 1

2

}
.

• The segment from (1, 1
2 , 0) to (3

2 ,
1
2 ,

1
2):{

(1+ t, 1
2 , t), for 0≤ t ≤ 1

2

}
.

• The segment from (1, 1, 0) to ( 3
2 ,

1
2 ,

1
2):{

(1+ t, 1− t, t), for 0≤ t ≤ 1
2

}
.

• The segment from (3
2 ,

1
2 , 0) to ( 3

2 ,
1
2 ,

1
2):{

( 3
2 ,

1
2 , t), for 0≤ t ≤ 1

2

}
.

• The isolated point ( 5
2 ,

3
2 ,

1
2).
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