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EIGENVALUE ESTIMATE AND COMPACTNESS
FOR CLOSED f -MINIMAL SURFACES

XU CHENG, TITO MEJIA AND DETANG ZHOU

Let � be a bounded domain with convex boundary in a complete noncom-
pact Riemannian manifold with Bakry–Émery Ricci curvature bounded be-
low by a positive constant. We prove a lower bound on the first eigenvalue
of the weighted Laplacian for closed embedded f -minimal hypersurfaces
contained in�. Using this estimate, we prove a compactness theorem for the
space of closed embedded f -minimal surfaces with uniform upper bounds
on genus and diameter in a complete 3-manifold with Bakry–Émery Ricci
curvature bounded below by a positive constant and admitting an exhaus-
tion by bounded domains with convex boundary.

1. Introduction

A hypersurface † immersed in a Riemannian manifold .M; Ng/ is said to be
f -minimal if its mean curvature H satisfies, for any p 2†,

H D hrf; �i;

where � is the unit normal at p 2 †, f is a smooth function defined on M , and
rf denotes the gradient of f on M . When f is a constant function, an f -minimal
hypersurface is just a minimal hypersurface. One nontrivial class of f -minimal
hypersurfaces is that of self-shrinkers. Recall that a self-shrinker (for the mean
curvature flow in the Euclidean space .RnC1;gcan/) is a hypersurface immersed in
.RnC1;gcan/ satisfying

H D 1
2
hx; �i;

where x is the position vector in RnC1. Hence a self-shrinker is an f -minimal
hypersurface†with f Djxj2=4 (see more information on self-shrinkers in [Colding
and Minicozzi 2012a] and references therein).

In the study of f -minimal hypersurfaces, it is convenient to consider the ambient
space as a smooth metric measure space .M; Ng; e�f d�/, where d� is the volume
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form of Ng. For .M; Ng; e�f d�/, an important and natural tensor is the Bakry–Émery
Ricci curvature Ricf WDRicCr2f . There are many interesting examples of smooth
metric measure spaces .M; Ng; e�f d�/ with Ricf � k, for a positive constant k. A
nontrivial class of examples is the shrinking gradient Ricci solitons. It is known
that, after a normalization, a shrinking gradient Ricci soliton .M; Ng; f / satisfies the
equation RicCr2f D Ng=2 or, equivalently, Ricf D 1

2
. We refer to [Cao 2010], a

survey of this topic where some compact and noncompact examples are explained.
Even though the asymptotic growth of the potential function f of a noncompact
shrinking gradient Ricci soliton is the same as that of a Gaussian shrinking soliton
[Cao and Zhou 2010], both the geometry and topology can be quite different from
known examples. We may consider f -minimal hypersurfaces in a shrinking gradient
Ricci soliton. For instance, a self-shrinker in RnC1 can be viewed as an f -minimal
hypersurface in the Gaussian shrinking soliton .RnC1;gcan; jxj

2=4/.
There are other examples of f -minimal hypersurfaces. Let M be the hyperbolic

space HnC1.�1/. Let r denote the distance function from a fixed point p 2M and
f .x/Dnar2.x/, where a>0 is a constant. Then Ricf �n.2a�1/, and the geodesic
sphere of radius r centered at p in HnC1.�1/ is an f -minimal hypersurface if it
satisfies 2ar D coth r .

An f -minimal hypersurface † has two aspects to view. One is that † is
f -minimal if and only if † is a critical point of the weighted volume func-
tional e�f d� , where d� is the volume element of †. Another one is that † is
f -minimal if and only if† is minimal in the new conformal metric QgDe�2f=n Ng (see
Section 2). f -minimal hypersurfaces, even more general stationary hypersurfaces
for parametric elliptic functionals, have been studied before. See, for instance, the
work of White [1987] and Colding and Minicozzi [2002].

In this paper, we will first estimate the lower bound on the first eigenvalue of
the weighted Laplacian �f D�� hrf;r � i for closed (i.e., compact and without
boundary) embedded f -minimal hypersurfaces in a complete metric measure space
.M; Ng; e�f d�/. Subsequently using the eigenvalue estimate, we study compactness
for the space of closed embedded f -minimal surfaces in a complete noncompact
3-manifold. To explain our result, we give some background.

Choi and Wang [1983] estimated the lower bound for the first eigenvalue of closed
minimal hypersurfaces in a complete Riemannian manifold with Ricci curvature
bounded below by a positive constant and proved the following:

Theorem 1. If M is a simply connected complete Riemannian manifold with Ricci
curvature bounded below by a constant k > 0 and † is a closed embedded minimal
hypersurface, then the first eigenvalue of the Laplacian � on † is at least k=2.

Later, using a covering argument, Choi and Schoen [1985] proved that the
assumption that M is simply connected is not needed. Recently Ma and Du [2010]
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extended Theorem 1 to the first eigenvalue of the weighted Laplacian �f on a
closed embedded f -minimal hypersurface in a simply connected compact manifold
with positive Bakry–Émery Ricci curvature Ricf . Very recently Li and Wei [2012]
also used the covering argument to delete the assumption that the ambient space is
simply connected in the result of Ma and Du.

The Bonnet–Myers theorem says that a complete manifold with Ricci curvature
bounded below by a positive constant must be compact. But the corresponding
result is not true for complete manifolds with Bakry–Émery Ricci curvature Ricf
bounded below by a positive constant. One example is the Gaussian shrinking
soliton .RnC1;gcan; e

�jxj2=4d�/, with Ricf D 1
2

. Hence the theorems of Ma and
Du and Li and Wei cannot be applied to self-shrinkers.

For self-shrinkers, Ding and Xin [2013] recently obtained a lower bound on the
first eigenvalue �1.L/ of the weighted Laplacian LD��hx;r � i=2 (i.e., �f ) on
a closed n-dimensional embedded self-shrinker in the Euclidean space RnC1, that
is, �1.L/�

1
4

.
We will discuss a lower bound for the first eigenvalue of �f of a closed embed-

ded f -minimal hypersurface in the case that the ambient space is complete and
noncompact. Precisely, we prove the following:

Theorem 2. Let .M nC1; Ng; e�f d�/ be a complete noncompact smooth metric
measure space with Bakry–Émery Ricci curvature Ricf � k, where k is a positive
constant. Let † be a closed embedded f -minimal hypersurface in M . If there is a
bounded domain D in M with convex boundary @D so that † is contained in D,
then the first eigenvalue �1.�f / of the weighted Laplacian �f on † satisfies

(1) �1.�f /�
k

2
:

Here and below the boundary @D is called convex if, for any p 2 @D, the second
fundamental form A of @D at p is nonnegative with respect to the outer unit normal
of @D.

A closed self-shrinker †n in RnC1 satisfies the assumption of Theorem 2 since
there always exists a ball D of RnC1containing †. Therefore Theorem 2 implies
the result of Ding and Xin for self-shrinkers mentioned before. Also we give a
different and hence alternative proof of their result.

Remark. If M is a Cartan–Hadamard manifold, all geodesic balls are convex. If
M is a complete noncompact Riemannian manifold with nonnegative sectional
curvature, the work of Cheeger and Gromoll [1972] asserts that M admits an
exhaustion by convex domains.

Choi and Wang [1983] used the lower bound estimate of the first eigenvalue
in Theorem 1 to obtain an upper bound on the area of a simply connected closed
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embedded minimal surface † in a 3-manifold, depending on the genus g of †
and the positive lower bound k of Ricci curvature of M . Further the lower bound
on the first eigenvalue and the upper bound on the area were used in [Choi and
Schoen 1985] to prove a smooth compactness theorem for the space of closed
embedded minimal surfaces of genus g in a closed 3-manifold M 3 with positive
Ricci curvature. Very recently Li and Wei [2012] proved a compactness theorem for
closed embedded f -minimal surfaces in a compact 3-manifold with Bakry–Émery
Ricci curvature Ricf � k, for a constant k > 0.

On the other hand, Ding and Xin [2013] recently applied the lower bound
estimate of the first eigenvalue of the weighted Laplacian on a self-shrinker to prove
a compactness theorem for closed self-shrinkers in R3 with uniform bounds on
genus and diameter. As was mentioned before, a self-shrinker in R3 is an f -minimal
surface in a complete noncompact R3 with Ricf � 1

2
. Motivated by this example, we

consider compactness for f -minimal surfaces in a complete noncompact manifold.
We prove:

Theorem 3. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that M admits
an exhaustion by bounded domains with convex boundary. Then the space, denoted
by SD;g, of closed embedded f -minimal surfaces in M with genus at most g and
diameter at most D is compact in the C m topology, for any m � 2. Namely any
sequence in SD;g has a subsequence that converges in the C m topology on compact
subsets to a surface in SD;g, for any m� 2.

Theorem 3 implies especially the compactness theorem of Ding and Xin for
self-shrinkers. We also prove the following compactness theorem, which implies
Theorem 3.

Theorem 4. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Given a bounded domain
��M , let S be the space of closed embedded f -minimal surfaces in M with genus
at most g and contained in the closure �. If there is a bounded domain U �M

with convex boundary so that �� U , then S is compact in the C m topology, for
any m� 2. Namely any sequence in S has a subsequence that converges in the C m

topology on compact subsets to a surface in S , for any m� 2.

If M admits an exhaustion by bounded domains with convex boundary, such
U as in Theorem 4 always exists. Also the assumption that f -minimal surfaces
are contained in the closure of a bounded domain � in Theorem 4 is equivalent to
there being a uniform upper bound on the extrinsic diameter of f -minimal surfaces
(see remark on page 361).

We mention that, for self-shrinkers in R3, Colding and Minicozzi [2012b] proved
a smooth compactness theorem for complete embedded self-shrinkers with uniform
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upper bound on genus and uniform scale-invariant area growth. In [Cheng et al.
2012], we generalized their result to the complete embedded f -minimal surfaces in
a complete noncompact smooth metric measure space with Ricf � k, for a constant
k > 0.

Theorems 3 and 4 have some immediate corollaries. First they imply the corre-
sponding compactness theorems for embedded closed f -minimal surfaces of fixed
topological type and bounded diameter; see Theorems 7 and 8. Second, by using an
argument as in [Choi and Schoen 1985], we have the following uniform curvature
estimates:

Corollary of Theorem 3. Let .M 3; Ng; e�f d�/ be a complete smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that M admits
an exhaustion by bounded domains with convex boundary. Then, for any integer g

and a positive constant D, there exists a constant C depending only on M , g and
D such that if † is a closed embedded f-minimal surface of genus g and diameter
at most D in M , the norm jAj of the second fundamental form of † satisfies

max
x2†
jAj � C:

Corollary of Theorem 4. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth
metric measure space with Ricf � k, where k is a positive constant. Let � be a
bounded domain whose closure is contained in a bounded domain U with convex
boundary. Then, for any integer g, there exists a constant C depending only on U ,
g such that if † is a closed embedded f-minimal surface of genus g contained in �,
the norm jAj of the second fundamental form of † satisfies

max
x2†
jAj � C:

An argument similar to the proof of Theorem 2 also works for the case where
the ambient space is a compact manifold with convex boundary. Hence we have
the following estimate:

Theorem 5. Let .M nC1; Ng/ be a simply connected compact manifold with convex
boundary @M and f a nonconstant smooth function on M . Assume that Ricf � k,
where k is a positive constant. If † is a closed f -minimal hypersurface embedded
in M and does not intersect the boundary @M , then the first eigenvalue of the
weighted Laplacian on † satisfies

(2) �1.�f /�
k

2
:

Here we give a remark: the assumption in Theorem 5 that f is a nonconstant
smooth function on M is necessary. The reason is that under the assumption
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Ric� k > 0, any closed minimal hypersurface † must intersect the convex bound-
ary @M by a standard argument similar to the one in Frankel’s intersection theorem.

The rest of this paper is organized as follows: In Section 2, some definitions and
notation are given. In Section 3, we give some facts which will be used later. In
Section 4, we prove Theorems 2 and 5. In Section 6, we prove Theorems 3 and 4.
For completeness, we give in an appendix the proof of the known Reilly formula
for a weighted metric measure space.

2. Definitions and notation

In general, a smooth metric measure space, denoted by .N;g; e�wdvol/, is a
Riemannian manifold .N;g/ together with a weighted volume form e�wdvol
on N , where w is a smooth function on N and dvol the volume element induced
by the Riemannian metric g. The associated weighted Laplacian �w is defined by

�wu WD�u� hrw;rui;

where � and r are the Laplacian and gradient on .N;g/, respectively.
The second-order operator �w is a self-adjoint operator on the space of square

integrable functions on N with respect to the measure e�wdvol. For a closed
manifold N , the first eigenvalue of �w , denoted by �1.�w/, is the lowest nonzero
real number �1 satisfying

�wuD��1u; on N:

It is well known that the definition of �1.�w/ is equivalent to

�1.�w/D infR
N ue�w dvolD0

u 6�0

R
N jruj2e�w dvolR

N u2e�w dvol
:

The1-Bakry–Émery Ricci curvature tensor Ricw (for simplicity, Bakry–Émery
Ricci curvature) on .N;g; e�wdvol/ is defined by

Ricw WD RicCr2w;

where Ric denotes the Ricci curvature of .N;g/ and r2w is the Hessian of w on N .
If w is constant, �w and Ricw are the Laplacian � and Ricci curvature Ric on N ,
respectively.

Now let .M nC1; Ng/ be an .nC 1/-dimensional Riemannian manifold. Assume
that f is a smooth function on M so that .M nC1; Ng; e�f d�/ is a smooth metric
measure space, where d� is the volume element induced by Ng.

Let i W†n!M nC1 be an n-dimensional smooth immersion. Then

i W .†n; i� Ng/! .M nC1; Ng/
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is an isometric immersion with the induced metric i� Ng. For simplicity, we still
denote i� Ng by Ng whenever there is no confusion. Let d� denote the volume element
of .†; Ng/. Then the function f induces a weighted measure e�f d� on †. Thus
we have an induced smooth metric measure space .†n; Ng; e�f d�/.

In this paper, unless otherwise specified, we denote by a bar all quantities
on .M; Ng/, for instance by r and Ric, the Levi-Civita connection and the Ricci
curvature tensor of .M; Ng/, respectively. Also we denote, for example, by r, Ric,�
and �f , the Levi-Civita connection, the Ricci curvature tensor, the Laplacian, and
the weighted Laplacian on .†; Ng/, respectively. Let p 2† and � a unit normal at p.
The second fundamental form A, the mean curvature H , and the mean curvature
vector H of hypersurface .†; Ng/ are defined, respectively, by

A W Tp†! Tp†; A.X / WD rX �; X 2 Tp†;

H WD tr AD�

nX
iD1

hrei
ei ; �i; H WD �H�:

Define the weighted mean curvature vector Hf and the weighted mean curvature Hf
of .†; Ng/ by

Hf WDH � .rf /? and Hf D�Hf �;

where ? denotes the projection to the normal bundle of †. It follows that

Hf DH � hrf; �i:

Definition. A hypersurface † immersed in .M nC1; Ng; e�f d�/ with the induced
metric Ng is called f -minimal if its weighted mean curvature Hf vanishes identically
or, equivalently, if it satisfies

(3) H D hrf; �i:

Definition. The weighted volume of .†; Ng/ is defined by

(4) Vf .†/ WD

Z
†

e�f d�:

It is well known that † is f -minimal if and only if † is a critical point of the
weighted volume functional. Namely it holds that

Proposition 1. If T is a compactly supported normal variational vector field on †
(i.e., T D T?), then the first variation formula of the weighted volume of .†; Ng/ is
given by

(5)
d

dt
Vf .†t /

ˇ̌̌
tD0
D�

Z
†

hT;Hf i Nge�f d�:
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On the other hand, an f -minimal hypersurface can be viewed as a minimal
hypersurface under a conformal metric. More precisely, define the new metric
Qg D e�2f=n Ng on M , which is conformal to Ng. Then the immersion i W †!M

induces a metric i� Qg on † from .M; Qg/. In the following, i� Qg is still denoted by Qg
for simplicity of notation. The volume of .†; Qg/ is

(6) zV .†/ WD

Z
†

d Q� D

Z
†

e�f d� D Vf .†/:

Hence Proposition 1 and (6) imply that

(7)
Z
†

hT; zH i Qg d Q� D

Z
†

hT;Hf i Nge�f d�;

where d Q� D e�f d� and zH denote the volume element and the mean curvature
vector of † with respect to the conformal metric Qg, respectively.

Equation (7) implies that zH D e2f=nHf . Therefore .†; Ng/ is f -minimal
in .M; Ng/ if and only if .†; Qg/ is minimal in .M; Qg/.

In this paper, for a closed hypersurface, we choose � to be the outer unit normal.

3. Some facts on the weighted Laplacian and f -minimal hypersurfaces

In this section, we give some known results which will be used later in this paper.
Recall that Reilly [1977] proved an integral version of the Bochner formula for
compact domains of a Riemannian manifold, which is called the Reilly formula.
Ma and Du [2010] obtained a Reilly formula for metric measure spaces, which
is the following proposition. We include its proof in an appendix for the sake of
completeness.

Proposition 2. Let � be a compact Riemannian manifold with boundary @� and
.�; Ng; e�f d�/ a smooth metric measure space. Then

(8)
Z
�

.�f u/2e�f D

Z
�

jr
2uj2e�f C

Z
�

Ricf .ru;ru/e�f

C 2

Z
@�

u�.�f u/e�f C

Z
@�

A.ru;ru/e�f C

Z
@�

u2
�Hf e�f ;

where � is the outward pointing unit normal to @� and A is the second fundamental
form of @� with respect to the normal �, the quantities with bars denote the ones
on .�; Ng/ ( for instance, Ricf denotes the Bakry–Émery Ricci curvature on .�; Ng/),
and �f and Hf denote the weighted Laplacian on @� and the weighted mean
curvature of @�, respectively.

A Riemannian manifold with Bakry–Émery Ricci curvature bounded below by a
positive constant has some properties similar to a Riemannian manifold with Ricci
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curvature bounded below by a positive constant. We refer to [Wei and Wylie 2009;
Munteanu and Wang 2014; 2012] and the references therein.

Proposition 3 [Morgan 2005] (see also [Wei and Wylie 2009, Corollary 5.1]). If a
complete smooth metric measure space .N;g; e�!d�/ has Ricw � k, where k is a
positive constant, then N has finite weighted volume and finite fundamental group.

For f -minimal hypersurfaces, the following intersection theorem holds.

Proposition 4 [Wei and Wylie 2009, Theorem 7.4]. Any two closed f -minimal hy-
persurfaces immersed in a complete smooth metric measure space .M; Ng; e�f d�/

with Ricf > 0 must intersect. Thus a closed f -minimal hypersurface in M must be
connected.

In [Cheng and Zhou 2013] it was proved that the weighted volume of a self-
shrinker †n immersed in Rm being finite implies it is properly immersed. This
result extends to f -minimal submanifolds:

Proposition 5 [Cheng et al. 2012]. Let†n be an n-dimensional completef -minimal
submanifold immersed in an m-dimensional Riemannian manifold M m, n < m.
If † has finite weighted volume, then † is properly immersed in M .

An f -minimal hypersurface is an f -minimal submanifold with codimension 1.
See more properties of f -minimal submanifolds in [Cheng et al. 2012].

4. Lower bound for �1.�f /

In this section, we apply the Reilly formula for metric measure spaces to prove
Theorems 2 and 5.

Proof of Theorem 2. Since Ricf � k, where k > 0 is constant, Proposition 3 implies
that M has finite fundamental group. We first assume that M is simply connected.
Since † is connected (Proposition 4) and embedded in M , † is orientable and
divides M into two components (see its proof in [Choi and Schoen 1985]). Thus †
divides D into two bounded components �1 and �2. That is Dn† D �1 [�2

with @�1 D† and @�2 D @D[†.
For simplicity, we denote by �1 the first eigenvalue �1.�f / of the weighted

Laplacian �f on †. Let h be a corresponding eigenfunction so that on †

�f hC�1hD 0 with
Z
†

h2e�f D 1:

Consider the solution of the Dirichlet problem on �1 so that

(9)
�
�f uD 0 in �1;

uD h on @�1 D†.

Substitute �1 for � and put the solution u of (9) in Proposition 2. Then the
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assumption on Ricf implies that

0� k

Z
�1

jruj2e�f � 2�1

Z
†

u�he�f C

Z
†

A.rh;rh/e�f ;

where � is the outer unit normal of † with respect to �1. By Stokes’ theorem
and (9), Z

†

u�he�f D

Z
�1

.jruj2Cu�f u/e�f D

Z
�1

jruj2e�f :

Thus
0� .k � 2�1/

Z
�1

jruj2e�f C

Z
†

A.rh;rh/e�f :

If
R
† A.rh;rh/e�f � 0, by u 6� C , we have

�1 �
k

2
:

If
R
† A.rh;rh/e�f < 0, we consider the compact domain �2 with the boundary

@�2 D†[ @D. Let u be the solution of the mixed problem

(10)

8<:
�f uD 0 in �2;

uD h on †;
uQ� D 0 on @D,

where Q� denotes the outer unit normal of @D with respect to �2.
Substituting �2 for � and putting the solution u of (10) in Proposition 2, we

have

0�

Z
�2

jr
2uj2e�f C k

Z
�2

jruj2e�f � 2�1

Z
†

huQ�e
�f

C

Z
†

zA.rh;rh/e�f C

Z
@D

zA.ru;ru/e�f ;

where Q� denotes the outer unit normal of † with respect to �2 and zA denotes the
second fundamental form of † with respect to the normal Q�.

On the other hand, Stokes’ theorem and (10) implyZ
�2

jruj2e�f D

Z
@�2

uuQ�e
�f
D

Z
†

huQ�e
�f :

Thus we have

(11) 0� .k � 2�1/

Z
�2

jruj2e�f C

Z
†

zA.rh;rh/e�f C

Z
@D

zA.ru;ru/e�f :

Since @D is assumed convex, the last term on the right side of (11) is nonnegative.
Observe that the orientations of † are opposite for �1 and �2. Namely Q� D��.
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Then zA.ru;ru/D�A.ru;ru/ on †. This implies that the second term on the
right side of (11) is nonnegative. Thus

0� .k � 2�1/

Z
�2

jruj2e�f :

Since u is not a constant function, we conclude that k � 2�1 � 0. Again we have

�1 �
k

2
:

Therefore we obtain that �1.�f /� k=2 if M is simply connected.
Second, if M is not simply connected, we consider its universal covering yM ,

which is a finite j�1j-fold covering. yM is simply connected and the covering map
� W yM !M is a locally isometry.

Take Of D f ı � . Obviously yM has yRic Of � k, and the lift y† of † is also Of -
minimal, embedded and closed. By Proposition 4, y† must be connected. Since
yM is simply connected, the closed embedded connected y† must be orientable and

thus divides yM into two components. Moreover the connectedness of y† implies
that the lift yD of D is also a connected domain. Also @ yD D y@D is smooth and
convex. Hence the assertion obtained for the simply connected ambient space can
be applied here. Thus the first eigenvalue of the weighted Laplacian y� Of on y†
satisfies �1.y� Of /� k=2.

Observing the lift of the first eigenfunction of † is also an eigenfunction of yM ,
we have

�1.�f /� �1.y� Of /�
k

2
: �

Remark. In Theorem 2, the boundary @D is not necessarily smooth. @D can be
assumed to be C 1, which is sufficient for the existence of the solution of the mixed
problem (10).

Theorem 5 holds by the same argument as that of Theorem 2.

5. Upper bound on area and total curvature of f -minimal surfaces

In this section, we study surfaces in a 3-manifold. First we estimate the correspond-
ing upper bounds on the area and weighted area of an embedded closed f -minimal
surface by applying the first eigenvalue estimate in Section 4. Next we discuss the
upper bound on the total curvature. We begin with a result of Yang and Yau [1980]:

Proposition 6. Let †2 be a closed orientable Riemannian surface with genus g.
Then the first eigenvalue �1.�/ of the Laplacian � on † satisfies

�1.�/Area.†/� 8�.1Cg/:
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Using Theorem 2 and Proposition 6, we obtain the following area estimates for
closed embedded f -minimal surfaces if the ambient space is simply connected.

Proposition 7. Let .M 3; Ng; e�f d�/ be a simply connected complete smooth metric
measure space with Ricf � k, where k is a positive constant. Let †2 �M be a
closed embedded f -minimal surface with genus g. If † is contained in a bounded
domain D with convex boundary @D, then its area and weighted area satisfy

(12) Area.†/�
16�.1Cg/

k
eosc† f

and

(13) Areaf .†/�
16�.1Cg/

k
e� inf† f ;

where osc† f D sup† f � inf† f .

Proof. Consider the conformal metric Qg D e�f Ng on M . Let �1.z�/ be the first
eigenvalue of the Laplacian z� on .†; Qg/, which satisfies

�1.z�/D infR
† u d Q�D0

u6�0

R
† j
Qruj2
Qg

d Q�R
† u2 d Q�

;

where z�, zr and d Q� are the Laplacian, gradient and area element of † with respect
to the metric Qg, respectively.

On the other hand, the first eigenvalue of the weighted Laplacian �1.�f /

on .†; Ng/ satisfies

�1.�f /D infR
† ue�f d�D0

u 6�0

R
† jruj2

Nge�f d�R
† u2e�f d�

:

Since zruD efru, d Q� D e�f d� and Qg D e�f Ng,

�1.z�/D infR
† ue�f d�D0

u 6�0

R
† jruj2

Ng d�R
† u2e�f d�

� infR
† ue�f d�D0

u 6�0

R
† jruj2

Nge�fCinf†.f / d�R
† u2e�f d�

D einf† f �1.�f /:

By this inequality, Theorem 2 and Proposition 6, we have the estimate

(14) Area.†; Qg/�
16�.1Cg/

k
e� inf†.f /:
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Since Areaf .†/D
R
† e�f d� D Area.†; Qg/,

Areaf .†/�
16�.1Cg/

k
e� inf†.f /;

which is (13). Thus

Area.†/�
16�.1Cg/

k
esup†.f /�inf†.f / D

16�.1Cg/

k
eosc†.f /:

That is, (12) holds. �
Now, suppose that M is not simply connected. We use a covering argument as

in [Choi and Schoen 1985].

Proposition 8. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space
with Ricf � k, where k is a positive constant. Let †2 be a closed embedded
f-minimal surface. If † is contained in a bounded domain D of M with convex
boundary @D, then

(15) Areaf .†/�
16�

k

�
2

j�1j
�

1

2
�.†/

�
e� inf† f

and

(16) Area.†/�
16�

k

�
2

j�1j
�

1

2
�.†/

�
eosc† f ;

where j�1j is the order of the fundamental group of M , and �.†/ is the Euler
characteristic of †.

Proof. Let yM be the universal covering manifold of M . By Proposition 3, the
covering is a finite j�1j-fold covering. Let y† be the lifting of †. In the proof of
Theorem 2, we have shown that y† is orientable and satisfies the assumption of
Theorem 2. Hence Theorem 2 implies that the first eigenvalue of the weighted
Laplacian of y† satisfies �1.y� Of /� k=2, where Of is the lift of f . By Proposition 7,
we conclude that

Area.y†/�
16�

k

�
2� 1

2
�.y†/

�
eoscy†.

Qf /

and

Area Of .
y†/D

Z
y†

e�
Of d� �

16�

k

�
2� 1

2
�.y†/

�
e� infy†.

Of /:

Thus (15) and (16) follow from the equalities

�.y†/D j�1j ��.†/; infy†.
Of /D inf†.f /; oscy†.

Of /D osc†.f /;

Area.y†/D j�1j �Area.†/ and Area Of .
y†/D j�1j �Areaf .†/: �

In the following, we will give the upper bound for the total curvature of f -minimal
surfaces. Here the term the total curvature of † means

R
† jAj

2 d� not
R
† K d� .
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Proposition 9. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space
with Ricf � k, where k is a positive constant. Let †2 �M be a closed embedded
f -minimal surface with genus g. If † is contained in a bounded domain D of M

with convex boundary @D, then † satisfies

(17)
Z
†

jAj2 d� � C;

where A is the second fundamental form of .†; Ng/ and C is a constant depending
on the genus g of †, the order j�1j of the fundamental group of M , the maxi-
mum sup† NK of the sectional curvature of M on†, the lower bound k of the Bakry–
Émery Ricci curvature of M , the oscillation osc†.f / and the maximum sup† j Nrf j
on †.

Proof. By the Gauss equation and Gauss–Bonnet formula,Z
†

jAj2 d� D

Z
†

H 2
� 2

Z
†

.K�K/D

Z
†

h Nrf;ni2� 4��.†/C 2

Z
†

K

� .sup† j Nrf j/
2 Area.†/C 8�.g� 1/C 2.sup† NK/Area.†/:

Using (16), we have the conclusion of the theorem. �

To prove the compactness theorem in Section 6, we need the following total
curvature estimate for .†; Qg/, which is a minimal surface in .M; Qg/.

Proposition 10. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space
with Ricf � k, where k is a positive constant. Let †2 �M be a closed embedded
f -minimal surface with genus g. If † is contained in a bounded domain D of M

with convex boundary @�, then † satisfies

(18)
Z
†

j zAj2
Qg d Q� � C;

where zA is the second fundamental form of .†; Qg/ with respect to the conformal
metric Qg D e�f Ng of M and C is a constant depending on the genus g of †, the
order j�1j of the fundamental group of M , the maximum sup† zK of the sectional
curvature of .M; Qg/ on †, the lower bound k of the Bakry–Émery Ricci curvature
of M and the oscillation osc†.f / on †.

Proof. By the Gauss equation and the Gauss–Bonnet formula, we haveZ
†

j zAj2
Qg d Q� D

Z
†

zH 2
� 2

Z
†

. zK†
� zKM / d Q� D�4��.†/C 2

Z
†

zK d Q�

� 8�.g� 1/C 2.sup† zK/Area..†; Qg//

D 8�.g� 1/C 2.sup† zK/Areaf .†/:
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We have used zH D efHf D 0 and Area..†; Qg//D Areaf .†/. Now (18) follows
from (15). �

6. Compactness of compact f -minimal surfaces

We will prove some compactness theorems for closed embedded f -minimal surfaces
in a 3-manifold. We have two ways to prove Theorem 4.

The first proof roughly follows the one in [Colding and Minicozzi 2011] (cf.
[Choi and Schoen 1985]) with some modifications. The modifications can be made
because we have the assumptions that f -minimal surfaces are contained in the
closure of a bounded domain � of M and � is contained in a bounded domain U

with convex boundary. The second proof will need a compactness theorem of
complete embedded f -minimal surfaces that was proved in [Cheng et al. 2012].

We prefer to give two proofs here since the first one is independent of the
compactness theorem of complete embedded f -minimal surfaces. But the compact-
ness theorem of complete embedded f -minimal surfaces needs a theorem about
nonexistence of Lf -stable minimal surfaces (see [Cheng et al. 2012, Theorem 3]).

First proof. We first prove a singular compactness theorem, which is a variation
of a result from [Choi and Schoen 1985] (compare [Colding and Minicozzi 2011,
Proposition 7.14; Anderson 1985; White 1987]):

Proposition 11. Let .M 3; Ng/ be a 3-manifold. Assume that� is a bounded domain
in M . Let †i be a sequence of closed embedded minimal surfaces contained in �,
with genus g, and satisfying

(19) Area.†i/� C1

and

(20)
Z
†i

jA†i
j
2
� C2:

Then there exists a finite set of points S�� and a subsequence, still denoted by †i ,
that converges uniformly in the C m topology (m� 2) on compact subsets of M nS

to a complete minimal surface †�� (possibly with multiplicity).
The subsequence also converges to † in extrinsic Hausdorff distance. † is

smooth, embedded in M , has genus at most g and satisfies (19) and (20).

Proof. We may use the same argument as that of [Colding and Minicozzi 2011,
Proposition 7.14]. Moreover †i �� implies that the singular set S �� and the
smooth surface †��. Here we omit the details of proof. �

We can apply Proposition 11 to the f -minimal surfaces which are minimal in
the conformal metric.
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Lemma. Let .M 3; Ng; e�f d�/ be a smooth metric measure space. Assume that� is
a bounded domain in M . Let†i �� be a sequence of closed embedded f -minimal
surfaces of genus g. Suppose that Qg D e�f Ng on M and .†i ; Qg/ satisfy

(21) Area..†i ; Qg//D Areaf .†i/� C1

and

(22)
Z
†i

j zA†i
j
2
Qg d Q� � C2;

where zA†i
and d Q� denote the second fundamental form and the volume element

of .†i ; Qg/, respectively. Then there exists a finite set of points S � � and a
subsequence, still denoted by †i , that converges uniformly in the C m topology
(m � 2) on compact subsets of M nS to a complete f -minimal surface † � �
(possibly with multiplicity).

The subsequence also converges to † in extrinsic Hausdorff distance. † is
smooth, embedded in M , has genus at most g, and satisfies (21) and (22).

Proof. Since an f -minimal surface in the original metric Ng is equivalent to it
being minimal in the conformal metric Qg, we can apply Proposition 11 to get the
conclusion of the lemma. �

Proof of Theorem 4. First assume M is simply connected. Since †i ��� U , we
see from Proposition 7 and Proposition 10 that

Area..†i ; Qg//D Areaf .†i/� C1

and Z
†i

j zA†i
j
2
Qg d� Qg � C2;

where C1 and C2 depend on g, sup�j
f , sup�j

zK and k.
By the lemma, there exists a finite set of points S� z� and a subsequence †i0

that converges uniformly in the C m topology (any m � 2) on compact subsets
of M nS to a complete f -minimal surface †�� without boundary (possibly with
multiplicity). † is smooth, embedded in M and has genus at most g. Equivalently,
with respect to the conformal metric Qg, a subsequence †i0 of minimal surfaces
converges uniformly in the C m topology on compact subsets of M nS to a complete
minimal surface †, where †��.

Since complete embedded †�� satisfies (21), it must be properly embedded
(Proposition 5), thus closed and orientable.

We need to prove that the convergence is smooth across the points S. By Allard’s
regularity theorem, it suffices to prove that the convergence has multiplicity one. If
the multiplicity is not one, by a proof similar to that of [Choi and Schoen 1985]
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(see also [Colding and Minicozzi 2011, p. 249]), we can show that there is an i big
enough and a †i in the convergent subsequence, so that the first eigenvalue of the
Laplacian z�†i on †i with the conformal metric Qg satisfies �1.z�

†i / < keinf� f =2.
We have

�1.z�
†i /D inf

(R
†i
j zr�j2

Qg
d Q�R

†i
�2 d Q�

;

Z
†i

� d Q� D 0

)

D inf

( R
†i
jr�j2d�R

†i
�2e�f d�

;

Z
†i

�e�f d� D 0

)
� �1.�

†i

f
/einf� f :

By Theorem 2, †i ��� U implies �1.�
†i

f
/ � k=2. Thus we have a contra-

diction.
When M is not simply connected, we use a covering argument. The assumption

of Ricf � k, where k > 0 is constant, implies that M has finite fundamental
group �1 (Proposition 3). We consider the finite-fold universal covering yM . By the
proof of Theorem 2, we know that the corresponding lifts of †i , � and U satisfy
y†i �

y�� yU . Then Propositions 8 and 10 give uniform bounds on the area and total
curvature in the conformal metric OQg on yM . By the assertion on the simply connected
ambient manifold before, we have the smooth convergence of a subsequence of y†i .
This implies the smooth convergence of a subsequence of †i . �

Second Proof. In [Cheng et al. 2012], we proved the following:

Theorem 6. Let .M 3; Ng; e�f d�/ be a complete smooth metric measure space with
Ricf � k, where k is a positive constant. Given an integer g � 0 and a constant
V > 0, the space Sg;V of smooth complete embedded f -minimal surfaces †�M

with

� genus at most g,

� @†D∅, and

�
R
† e�f d� � V

is compact in the C m topology, for any m� 2. Namely any sequence of Sg;V has a
subsequence that converges in the C m topology on compact subsets to a surface
in SD;g, for any m� 2.

Proof of Theorem 4. Since a surface in S is contained in N��U , by Proposition 8, we
have the uniform bound V of the weighted volume of closed embedded f -minimal
surfaces in S . Hence Theorem 6 can be applied. Moreover †i �� implies that
the smooth limit surface †��. Otherwise, since the subsequence f†ig converges
uniformly in the C m topology (m� 2) on any compact subset of M to †, there is
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a surface †i (with index i big enough) in the subsequence that would not satisfy
†i ��.

By Proposition 5, † must be properly embedded. Thus † must be closed. �

To prove Theorem 3 we require a lemma.

Lemma. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric measure
space with Ricf � k > 0. If † is any closed f -minimal surface in M with genus
at most g and diameter at most D, then †� Br .p/ for some r > 0 (independent
of †), where Br .p/ is a ball in M with radius r centered at p 2M .

Proof. Fix a closed f -minimal surface †0. Obviously †0 � Br0
.p/ for some

r0 > 0. Proposition 4 says that † and †0 must intersect. Then, for x 2†,

d.p;x/� d.p;x0/C d.x0;x/� r0CD;x0 2†0:

Taking r D r0CD, we have †� Br0CD . �

Remark. In the lemma and hence in Theorem 3, D is a bound on the intrinsic
diameter of closed f -minimal surfaces or a bound on the extrinsic diameter of
closed f -minimal surfaces. Also, by Proposition 4, the assumption that f -minimal
surfaces are contained in the closure of a bounded domain � in Theorem 4 is
equivalent to that of a uniform upper bound on the extrinsic diameter of f -minimal
surfaces.

Proof of Theorem 3. By the lemma immediately above, we may apply Theorem 4 to
the space SD;g. Next the closed embedded limit † must have diameter at most D.
Otherwise, since the subsequence f†ig converges uniformly in the C m topology
(m� 2) on any compact subset of M to †, there is a surface †i (with the index i

big enough) in the subsequence that would have diameter greater than D. So †
must be in SD;g. �

As a corollary, Theorem 3 implies:

Theorem 7. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that M admits
an exhaustion by bounded domains with convex boundary. Then the space of closed
embedded f -minimal surface in M of fixed topological type and diameter at most D

is compact in the C m topology, for any m� 2.

Proof of Theorem 7. By Theorem 3, it suffices to prove that the limit f -minimal
surface of a convergent subsequence in the given space has the same topological
type, which holds by the Gauss–Bonnet formula and smooth convergence. �

Similar to the proof of Theorem 7, Theorem 4 implies:
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Theorem 8. Let .M 3; Ng; e�f d�/ be a complete noncompact smooth metric mea-
sure space with Ricf � k, where k is a positive constant. Assume that � is a
bounded domain and U is a bounded domain with convex boundary so that �� U .
Then the space of closed embedded f -minimal surface in M of fixed topological
type and contained in the closure � is compact in the C m topology, for any m� 2.

Appendix: Proof of Proposition 2

The Bochner formula implies that

1
2
�f jruj2� hru;r.�f u/i D jr2uj2CRicf .ru;ru/:

Integrating this equation on � with respect to the weighted measure e�f d�, we
obtainZ
�

�
1
2
�f jruj2� hru;r.�f u/i

�
e�f D

Z
�

jr
2uj2e�f C

Z
�

Ricf .ru;ru/e�f :

On the other hand, by the divergence formula, we have

1
2
�f jruj2� hru;r.�f u/i

D
1
2

div
�
e�frjruj2

�
ef � div

�
e�f�f .u/ru

�
ef C .�f u/2:

Integrating and applying Stokes’ theorem, we have

(23)
Z
�

�
1
2
�f jruj2� hru;r.�f u/i

�
e�f

D

Z
@�

�
1
2
jruj2� � .�f u/u�

�
e�f C

Z
�

.�f u/2e�f :

Then

(24) 1
2
jruj2� � .�f u/u�

D hr�ru;rui � .�f u/u� D hrruru; �i � .�f u/u�

D hr�ru; �iu� Chrruru; �i � .�f u/u�

D
�
hr�ru; �i ��uChrf;rui

�
u� Chru;ru�i � hru;rru�i

D
�
��u�Hu�Chrf;ruiChrf; �iu�

�
u�Chru;ru�i�hru;rru�i

D �.�f uCHf u�/u� Chru;ru�i �A.ru;ru/;
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where Hf DH � hrf; �i. By substituting (24) into (23), we obtainZ
�

�
1
2
�f jruj2� hru;r.�f u/i

�
e�f

D�

Z
@�

.�f u/u�e
�f
�

Z
@�

Hf u2
�e
�f
C

Z
@�

�
hru;ru�i �A.ru;ru/

�
e�f

C

Z
�

.�f u/2e�f

D�2

Z
@�

.�f u/u�e
�f
�

Z
@�

Hf u2
�e
�f
�

Z
@�

A.ru;ru/e�fC

Z
�

.�f u/2e�f :

This immediately implies (8).
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