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The reduced norm-one group G of a central simple algebra is an inner form
of the special linear group, and an involution on the algebra induces an
automorphism of G . We study the action of such automorphisms in the
cohomology of arithmetic subgroups of G . The main result is a precise
formula for Lefschetz numbers of automorphisms induced by involutions
of symplectic type. Our approach is based on a careful study of the smooth-
ness properties of group schemes associated with orders in central simple
algebras. Along the way we also derive an adelic reformulation of Harder’s
Gauss–Bonnet theorem.

1. Introduction

Let G be a semisimple linear algebraic group defined over the field Q of rational
numbers. Given a torsion-free arithmetic subgroup � � G.Q/, it is in general a
very difficult task to compute the (cohomological) Betti numbers of � . However
Harder’s Gauss–Bonnet theorem [Harder 1971] makes it possible to determine the
Euler characteristic of arithmetic groups. If the Euler characteristic is nonzero,
one can extract information on the Betti numbers. Moreover, whether or not the
Euler characteristic vanishes only depends on the structure of the associated real
Lie group G.R/ (see the remark on page 384). If the Euler characteristic vanishes,
Lefschetz numbers of automorphisms of finite order of G are a suitable substitute
to gain insight into the cohomology of � . The idea to study Lefschetz numbers
in the cohomology of arithmetic groups goes back to Harder [1975]. A general
method was developed by J. Rohlfs, first for Galois automorphisms [1978] and
later in a general adelic setting [1990]. Lefschetz numbers were also studied in
[Lee and Schwermer 1983; Lai 1991]. However, only very few groups have been
considered in detail; most frequently Lefschetz numbers on Bianchi groups have
been studied (see [Krämer 1985; Rohlfs 1985; Sengün and Türkelli 2012; Kionke
and Schwermer 2012]). In this article we describe a method (based on Rohlfs’
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approach) to compute Lefschetz numbers of specific automorphisms on arithmetic
subgroups of inner forms of the special linear group.

More precisely, let F be an algebraic number field and let A be a central simple
F -algebra. The reduced norm nrdA=F is a polynomial function on A and the
associated reduced norm-one group G D SLA is a linear algebraic group defined
over F . Indeed, the algebraic group G is an inner form of the special linear group.
If A has an involution � of symplectic type (see the definition on page 377), then
the composition of � with the group inversion yields an automorphism �� of G.
We study the Lefschetz numbers of such automorphisms induced by involutions of
symplectic type.

1A. The main result. Let F be an algebraic number field and let O denote its ring
of integers. Let A be a central simple F -algebra. For our purposes we may assume
that ADMn.D/ for some quaternion F -algebra D (see Section 1C).

Let ƒD � D be a maximal O-order in D; then ƒ WD Mn.ƒD/ is a maximal
O-order in A. For a nontrivial ideal a� O we study the cohomology of the principal
congruence subgroups

�.a/ WD fg 2Mn.ƒD/ j nrdA.g/D 1 and g � 1 mod ag

of G. In fact, for n� 2 the groups �.a/ have vanishing Euler characteristic.
The quaternion algebra D is equipped with a unique involution of symplectic

type �c WD!D, called conjugation, which induces an involution of symplectic
type � WA!A by �.x/ WD �c.x/T; that is, apply �c to every entry of the matrix and
then transpose the matrix. We will call � the standard involution of symplectic type
on Mn.D/. Composition of � with the group inversion yields an automorphism ��

of order two on G. Note that the congruence groups �.a/ are stable under ��. Fix
a rational representation � WG �F F ! GL.W / of G (defined over the algebraic
closure of F ) on a finite dimensional vector space. If W is equipped with a
compatible ��-action (see the definition on page 389), then we can define the
Lefschetz number L.��; �.a/;W / of �� in the cohomology H

q
.�.a/;W /.

Main Theorem. Assume that �.a/ is torsion-free. If D is totally definite, we
assume further that n� 2. The Lefschetz number L.��; �.a/;W / is zero if F is not
totally real.

If F is totally real, the Lefschetz number is given by the formula

L.��; �.a/;W /D 2�r N.a/n.2nC1/�rd.D/
n.nC1/=2 Tr.��jW /

nY
jD1

M.j; a;D/:

Here �rd.D/ denotes the signed reduced discriminant of D (see the definition on
page 390), r denotes the number of real places of F ramified in D, and
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M.j; a;D/ WD �F .1� 2j /
Y
pja

�
1�N.p/�2j

� Y
p2Ramf .D/

p−a

�
1C .�N.p//�j

�
;

where Ramf .D/ denotes the set of finite places of F where D ramifies and �F
denotes the Dedekind zeta-function of F . If F is totally real, then the Lefschetz
number is zero if and only if Tr.��jW /D 0.

1B. Applications. We briefly give three applications of the above formula where
we always assume F to be a totally real number field.

1B1. Growth of the total Betti number. The analysis of the asymptotic behaviour
of Betti numbers of arithmetic groups is an important topic. Calegari and Emerton
[2009] have provided strong asymptotic upper bounds. We can use the main theorem
to obtain an asymptotic lower bound result.

Let G be the reduced norm-one group associated with the central simple F -
algebra Mn.D/. For a torsion-free arithmetic subgroup � �G.F / we define the
total Betti number B.�/ as

P1
iD0 dimH i .�;C/. Note that this is a finite sum

since torsion-free arithmetic groups are of type (FL) (see [Borel and Serre 1973,
Theorem 11.4.4]).

Corollary 1.1. Let �0 �G.F / be an arithmetic subgroup. For any ideal a� O we
define �0.a/ WD �0\�.a/. There is a positive real number � > 0, depending on F ,
D, �0, and n, such that

B.�0.a//� �Œ�0 W �0.a/�
n.2nC1/

4n2�1

for every ideal a such that �.a/ is torsion-free.

A proof of this corollary will be given in Section 5E.

1B2. Rationality of zeta values. Note that the Lefschetz number is an integer since
�� is of order two. We obtain a new proof of a classical theorem of Siegel [1969]
and Klingen [1962].

Corollary 1.2. If F is a totally real number field, then �F .1� 2m/ is a nonzero
rational number for all integers m� 1.

Proof. Apply the main theorem with D DM2.F /, ƒD DM2.O/ and choose W to
be the trivial one-dimensional representation. We see that for every n� 1 and all
sufficiently small ideals a� O, the number

N.a/n.2nC1/
nY

jD1

�
�F .1� 2j /

Y
pja

�
1�N.p/�2j

��
is a nonzero integer. The claim follows by induction on m. �
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1B3. Cohomology of cocompact Fuchsian groups. Let D be a division quaternion
algebra over F such that D is split at precisely one real place v0 of F . Therefore
r D ŒF WQ�� 1 is the number of real places ramified in D.

Let ƒD ƒD be a maximal O-order in D. We consider the reduced norm-one
group G D SLD defined over F . The associated real Lie group is

G1 Š SL2.R/�SL1.H/r:

Note that the group SL1.H/ is compact and so the projection p1 WG1! SL2.R/
onto the first factor is a proper and open homomorphism of Lie groups. In particular,
every discrete torsion-free subgroup � � G1 maps via p1 isomorphically to a
discrete subgroup in SL2.R/.

Let a� O be a proper ideal such that �.a/ is torsion-free. We will interpret �.a/
as a subgroup of SL2.R/. Note that since we assumed D to be a division algebra,
the group �.a/ is a cocompact Fuchsian group [Katok 1992, Theorem 5.4.1].

Let hD SL2.R/=SO.2/ be the Poincaré upper half-plane.

Corollary 1.3. The compact Riemann surface h=�.a/ has genus

g D 1C 2�ŒF WQ� N.a/3j�rd.D/�F .�1/j
Y
pja

�
1�N.p/�2

� Y
p2Ramf .D/

p−a

�
1�N.p/�1

�
:

This implies an explicit formula for the first Betti number b1.�.a// since

b1.�.a//D dimH 1.�.a/;C/D 2g:

Proof. Consider the main theorem for nD 1. Note that for nD 1 the automorphism
�� is actually the identity. This means that, using the main theorem with the trivial
representation,

L.��; �.a/;C/D �.�.a//D �.h=�.a//:

Note that the sign of the Lefschetz number is �1. Since �.h=�.a//D 2� 2g, the
claim follows immediately. �

In fact Corollary 1.3 yields a precise formula for the dimension of the space of
holomorphic weight-k modular forms for the group �.a/ [Shimura 1971, Theo-
rems 2.24 and 2.25].

1C. Reduction to quaternion algebras. Let A be a central simple F -algebra. If
A has an involution � of symplectic type (see the definition on page 377), then A is
isomorphic to the opposed F -algebra Aop. This means that the class of A has order
two in the Brauer group of F. Since the dimension of A is even, it follows from
[Reiner 2003, Theorem (32.19)] that A is isomorphic to a matrix algebra Mn.D/

over a quaternion algebra D. Therefore we always assume ADMn.D/.
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Let � be the standard involution of symplectic type on Mn.D/. Note that in
this case � D int.g/ ı � for an element g 2 GLn.D/ with �.g/ D g. Due to this
observation it is only a minor restriction if we focus on the standard symplectic
involution � .

1D. Structure of this article. In Section 2 we give a short general treatment of
smooth group schemes over Dedekind rings which are associated with orders in
central simple algebras. In particular we treat integral models of inner forms of
the special linear group. Further, we consider the fixed points groups attached to
involutions. An important tool in the proof of the main theorem will be the pfaffian
as a map in nonabelian Galois cohomology (Section 2D). In Section 3 we give
an adelic reformulation of Harder’s Gauss–Bonnet theorem which hinges on the
notion of smooth group scheme. The calculation of the Lefschetz number is based
on Rohlfs’ method which we summarise in Section 4. Finally the proof of the
main theorem is contained in Section 5. It consists of two major steps. The first is
the analysis of various nonabelian Galois cohomology sets which occur in Rohlfs’
decomposition. The second step is the calculation of the Euler characteristics of
the fixed point groups using Harder’s Gauss–Bonnet theorem.

Notation. Apart from Section 2, where we work in a more general setting, we use
the following notation: F is an algebraic number field and O denotes its ring of
integers. Let V denote the set of places of F . We have V D V1[Vf , where V1
and Vf denote the set of Archimedean and finite places of F , respectively. Let
v 2 V be a place of F ; we denote the completion of F at v by Fv. The valuation
ring of Fv is denoted by Ov and the prime ideal in Ov is denoted by pv. For a
nonzero ideal a� O the ideal norm is defined by N.a/ WD jO=aj. As usual A denotes
the ring of adeles of F and Af is the ring of finite adeles.

2. Group schemes associated with orders in central simple algebras

In this section we will investigate the smoothness properties of group schemes
attached to orders in central simple algebras. Throughout, R denotes a Dedekind
ring and k denotes its field of fractions. For simplicity we assume char.k/D 0. In
our applications R is usually the ring of integers of an algebraic number field or a
complete discrete valuation ring.

The term scheme always refers to an affine scheme of finite type; the same
holds for group schemes. Recall that a scheme X defined over R is smooth if for
every commutative R-algebra C and every nilpotent ideal I � C the induced map
X.C /! X.C=I / is surjective. Suppose R is a complete discrete valuation ring
and let p denote its prime ideal. We will frequently use the following property: if
X is a smooth R-scheme, then the induced map X.R/! X.R=pe/ is surjective
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for every integer e � 1 [Grothendieck 1964, Corollary 19.3.11]. If G is a group
scheme, then we denote the Lie algebra of G by Lie.G/.

2A. The general linear group over an order. Let A be a central simple k-algebra
and letƒ be an R-order in A. Sinceƒ is a finitely generated torsion-free R-module,
it is a finitely generated projective R-module [Reiner 2003, Theorem (4.13)]. The
functor ƒa from the category of commutative R-algebras to the category of rings
defined by C 7!ƒ˝R C is represented by the symmetric algebra SR.ƒ�/, where
ƒ� D HomR.ƒ;R/. In fact it defines a smooth R-scheme [Grothendieck 1964,
Proposition 19.3.2].

Recall that, since ƒ is finitely generated and projective, one can attach to every
R-linear endomorphism ' ofƒ its determinant det.'/2R. More precisely, here the
determinant of ' is just the determinant of the k-linear extension '˝ Idk W A! A.
As usual one defines the norm of an element x 2 ƒ to be the determinant of the
left multiplication with x. One can check that the norm defines a morphism of
schemes over R

Nƒ=R Wƒa! A1=R

to the affine line A1 defined overR. This can be seen, for instance, by observing that
the norm is a natural transformation of functors. Let C be a commutative R-algebra.
An element x 2ƒ˝R C is a unit if and only if Nƒ=R.x/ 2 C�. It follows from
the next lemma that the associated unit group functor GLƒ W C 7! .ƒ˝R C/

� is a
smooth group scheme over R.

Lemma 2.1. Let A1 denote the affine line overR. Let X be an affine scheme overR
with a morphism f WX!A1. The subfunctor Y (from the category of commutative
R-algebras to the category of sets) defined by

C 7! fy 2 X.C / j f .y/ 2 C�g

is an affine scheme and the natural transformation Y!X is a morphism of schemes.
If X is smooth, then Y has the same property.

Proof. Let RŒX� be the coordinate ring of X and let P 2 RŒX� be the polynomial
defining f. Note that Y is canonically isomorphic to the functor given by

C 7! f.y; z/ 2 X.C /�C j f .y/z D 1g:

Using this it is easily checked that the R-algebra S WDRŒX�˝RRŒT �=.P ˝T �1/
represents Y. Clearly, S is of finite type since RŒX� is of finite type.

It remains to show that Y is smooth whenever X is smooth. Assume that X is
smooth and take a commutative R-algebra C with an ideal J such that J 2 D 0.
By assumption X.C / ! X.C=J / is surjective, so given y 2 Y.C=J / we find
x 2X.C / projecting to y. By assumption f .x/CJ is a unit in C=J . In particular,
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we can find z 2 C with f .x/z 2 1CJ . However, 1CJ consists entirely of units
and thus f .x/ 2 C�. We deduce that Y is smooth. �

We stress this once more: in this article GLƒ is always a functor and not a group.
If we take ƒ D R then we call GLƒ the multiplicative group (or multiplicative
group scheme) defined over R, and we denote it by Gm. Note that the norm defines
a homomorphism of R-group schemes

Nƒ=R W GLƒ! Gm:

We also point out that the Lie algebra of GLƒ can be (and will be) identified with
ƒa in a natural way.

2B. The special linear group over an order.

2B1. Reduced norm and trace. Let A be a central simple k-algebra. We consider
the reduced norm and trace (for definitions see [Reiner 2003, Section 9] or [Weil
1995, Chapter IX, §2]). It was observed by Weil that the reduced norm and trace
are polynomial functions. We reformulate this in schematic language: there is a
unique element nrdA=k in the symmetric algebra Sk.A�/ (here A� DHomk.A; k/)
such that for every splitting field ` of A and every splitting ' W A˝k `

'
�!Mn.`/

the induced map
S.'�/ W S`.Mn.`/

�/! Sk.A
�/˝k `

maps the determinant to nrdA=k˝1. Similarly there is the reduced trace trdA=k 2A�

with an analogous property.
Let ƒ� A be an R-order. We show that the reduced norm and trace are defined

over R in the appropriate sense. For the reduced trace this is easy: elements in ƒ
are integral over R, hence the reduced trace takes values in R on the order ƒ and
defines an R-linear map ƒ!R. In particular we obtain a morphism of schemes
over R:

trdƒ=R Wƒa! A1=R:

Consider the reduced norm. From [Reiner 2003, (9.7)] one can deduce that nrdnA=k
and Nƒ=R agree as elements in the coordinate ring Sk.A�/. However, the coordinate
ring SR.ƒ�/ of ƒa is integrally closed in Sk.A�/ and we conclude that the reduced
norm is defined over R. This means that there is a polynomial nrdƒ=R 2 SR.ƒ�/
that defines the reduced norm as a morphism of R-schemes:

nrdƒ=R Wƒa! A1:

We can also restrict the reduced norm to the unit group and obtain a homomorphism
of group schemes:

nrdƒ=R W GLƒ! Gm=R:
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Definition. The special linear group SLƒ over the order ƒ is the group scheme
over R defined by the kernel of the reduced norm:

SLƒ D ker.nrdƒ=R W GLƒ! Gm/:

2B2. Smoothness of the special linear group. Whereas the general linear group
is always smooth, independent of the chosen order, the smoothness of the special
linear group depends on the underlying order. Recall the following useful result.

Proposition 2.2 (smoothness of kernels). Let f W G ! H be a morphism be-
tween two smooth group schemes over R. If the derivative d.f / W Lie.G/.R/!
Lie.H/.R/ is surjective, then the group scheme K WD ker.f / is smooth over R.

Proof. This follows from the theorem of infinitesimal points (see [Demazure and
Gabriel 1970, p. 208]) and some easy diagram chasing. �

As a matter of fact the derivative of the reduced norm d.nrdƒ=R/ Wƒa! A1 is
the reduced trace. Having this in mind we make the following definition.

Definition. An R-order ƒ in a central simple k-algebra is called smooth if the
reduced trace trdƒ=R Wƒ!R is surjective.

Note that smoothness of orders is a local property.

Corollary 2.3. If the order ƒ is smooth then the scheme SLƒ is smooth.

Proof. This follows immediately from Proposition 2.2 using the fact that the
derivative of the reduced norm is the reduced trace. �

In fact, the converse statement also holds under the assumption char.R/ D 0.
However, we shall not need this result. The next proposition shows that smooth
orders exist.

Proposition 2.4. Assume that R=p is finite for every prime ideal p. Then every
maximal R-order in a central simple k-algebra is smooth.

Proof. Let A be a central simple k-algebra and let ƒ� A be a maximal R-order.
Since ƒ is maximal in A if and only if all p-adic completions are maximal orders
[Reiner 2003, Corollary (11.6)], and since smoothness of ƒ is a local property, we
may assume thatR is a complete discrete valuation ring. Recall thatA is isomorphic
to a matrix algebra Mr.D/ over a central division algebra D. Moreover, D has a
unique maximal R-order ��D and ƒ is (up to conjugation) the maximal order
Mr.�/ in A [Reiner 2003, Theorem (17.3)]. It is known that the reduced trace of a
matrix x D .xij /ri;jD1 2Mr.D/ is given by

trdA=k.x/D
rX
iD1

trdD=k.xi i /



LEFSCHETZ NUMBERS OF SYMPLECTIC INVOLUTIONS 377

[Weil 1995, Corollary 2, Chapter IX, §2]. Hence we may assume that ADD is a
division algebra and ƒD� is the unique maximal order. Let dimkD D n2 and
let `=k be the unique unramified extension of k of degree Œ` W k�D n. The field `
embeds into D as a maximal subfield and the reduced trace trdD=k on the elements
of ` agrees with the field trace Tr`=k [Reiner 2003, proof of Theorem (14.9)]. Let
o` denote the valuation ring of `. The image of o` under the embedding `!D

lies in the maximal order �. Finally the surjectivity of trdD=k W �! R follows
from the well-known surjectivity of the field trace Tr`=k W o`!R. �

2C. Involutions and fixed point groups. Let A be a central simple k-algebra. An
involution � on A is an additive mapping � W A ! A of order two such that
�.xy/D �.y/�.x/ for all x; y 2A. We say that � is of the first kind if � is k-linear.
Otherwise, we say that � is of the second kind. In this article all involutions are
of the first kind unless the contrary is explicitly stated. We will mostly focus on
involutions of symplectic type.

Definition. We say that an involution � on A is of symplectic type if there is a
splitting field ` of the algebra A, a splitting

' W A˝k `
'
�!M2n.`/;

and a skew-symmetric matrix a 2M2n.`/ satisfying '.�.x//D a'.x/T a�1 for all
elements x 2 A˝k `. If this is the case, then every splitting (over any splitting
field) admits such a matrix.

Let � W A! A be an involution of the first kind. Let ƒ be an R-order in A and
assume that ƒ is �-stable. Since � Wƒ!ƒ is R-linear, we obtain a morphism of
R-schemes

� Wƒa!ƒa:

We restrict � to the unit group GLƒ and compose it with the group inversion to
obtain a homomorphism of group schemes

�� W GLƒ! GLƒ:

We define G.ƒ; �/ to be the group of fixed points of ��, that is, for every commuta-
tive R-algebra C we obtain

G.ƒ; �/.C /D fx 2 .ƒ˝R C/
�
j �.x/x D 1g:

We analyse the smoothness properties of group schemes constructed in this way.
Define the R-submodule Sym.ƒ; �/D fx 2ƒ j �.x/D xg of ƒ and note that it is
a direct summand.

Lemma 2.5. For every commutative R-algebra C , every y 2ƒ˝R C and every
x 2 Sym.ƒ; �/˝R C we have �.y/xy 2 Sym.ƒ; �/˝R C .
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Proof. We can write y D
P
i ui ˝ ci for certain ui 2ƒ and ci 2 C . The claim is

linear in x, hence we may assume x D e˝ c with e 2 Sym.ƒ; �/ and c 2 C . We
calculate

�.y/xy D
X
i;j

�.ui /euj ˝ ccicj

D

X
i

�.ui /eui ˝ cc
2
i C

X
i<j

.�.ui /euj C �.uj /eui /˝ ccicj ;

and see that �.y/xy 2 Sym.ƒ; �/˝R C since �.ui /eui and �.ui /euj C �.uj /eui
are elements of Sym.ƒ; �/. �

Definition. The order ƒ is called � -smooth if the map s Wƒ! Sym.ƒ; �/ defined
by x 7! xC �.x/ is surjective. Clearly � -smoothness is a local property.

Proposition 2.6. If an R-order ƒ is � -smooth, then the scheme G.ƒ; �/ is smooth.

Proof. We set G WD G.ƒ; �/. Let C be a commutative R-algebra with an ideal
I �C such that I 2D 0. We have to show that the canonical map G.C/!G.C=I /

is surjective. Take y 2G.C=I /. Since the unit group scheme GLƒ is smooth (see
Section 2A), we can find y 2GLƒ.C /D .ƒ˝C/� mapping to y modulo I . Since
y is in the fixed point group of ��, this implies that

�.y/y D 1C �

with some � 2ƒ˝ I .
We consider E WD Sym.ƒ; �/ and we obtain �.y/y 2 E˝R C by Lemma 2.5.

Consequently, there is u 2ƒ˝RC such that �.u/CuD y. Moreover, 1 2E; thus
there is some v 2ƒ˝RC with �.v/CvD 1. We deduce that �D �.u�v/C.u�v/
is an element in E˝R C , and thus

� 2 .E˝R C/\ .ƒ˝R I /DE˝R I:

As a last step we use once again that ƒ is � -smooth and deduce that there is some
w 2ƒ˝ I with �D �.w/Cw. We put y0 WD y.1�w/, which is congruent to y
modulo I and satisfies

�.y0/y0 D .1� �.w//�.y/y.1�w/D .1� �.w//.1C �/.1�w/

D 1C �� �.w/�w D 1:

Therefore y0 2G.C/ and y0 maps to y 2G.C=I / under the canonical map. �

2D. Involutions of symplectic type and the pfaffian. Let A be a central simple
k-algebra with an involution of symplectic type � . Let ƒ be a �-stable R-order
in A.
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2D1. The pfaffian. SetE WDSym.ƒ; �/ in the notation of Section 2C. The inclusion
� WE!ƒ induces a morphism of R-algebras

S.��/ W SR.ƒ
�/! SR.E

�/:

Recall that the reduced norm is given by a polynomial function nrdƒ=R 2 SR.ƒ�/
(see Section 2B1). We define nrdjE WDS.��/.nrdƒ=R/2SR.E�/. We will construct
a pfaffian, that is, a polynomial pf� 2 SR.E

�/ such that nrdjE D pf2� .
LetL=k be any field extension. It follows from [Knus et al. 1998, Proposition 2.9]

that for every x 2E˝R L the reduced norm nrdjE .x/ is a square in L. Therefore,
we may deduce that there is a polynomial f 2 SR.E�/ such that

f 2 D nrdjE :

We normalise this polynomial pf� WD ˙f such that pf� .1/D 1 and we call pf� the
pfaffian with respect to � .

Lemma 2.7. Let S.��/ denote the automorphism of the symmetric R-algebra
SR.ƒ

�/ which is induced by � . The following assertions hold:

(i) S.��/.nrdƒ=R/D nrdƒ=R.

(ii) For all y 2ƒ˝R C and all x 2 Sym.ƒ; �/˝R C , we have

pf� .�.y/xy/D nrdƒ=R.y/ pf� .x/;

where C is any commutative R-algebra.

Proof. To prove the first claim we may work over fields. However, over fields this
is the well-known statement [Knus et al. 1998, Corollary 2.2].

The same proof works for the second statement. Note that �.y/xy lies in
Sym.ƒ; �/˝R C by Lemma 2.5. Both are polynomial functions onƒ�Sym.ƒ; �/.
If they agree over all fields then they agree as polynomials. However, over fields
this is the result [Knus et al. 1998, Proposition 2.13]. �

Remark. Consider the fixed point group scheme G DG.ƒ; �/ associated with � .
Let x 2 G.C/ for some commutative R-algebra C . We see from �.x/x D 1 and
Lemma 2.7 that

nrdƒ=R.x/D pf� .�.x/x/D pf� .1/D 1:

Hence the reduced norm restricts to the trivial character on G.ƒ; �/.

2D2. The cohomological pfaffian. We study nonabelian Galois cohomology of ��

with values in the groups GLƒ.C / and SLƒ.C /. For the definition of nonabelian
cohomology we refer the reader to [Serre 1994; 1979, pages 123–126] or [Knus
et al. 1998, Chapter VII]. We shall in this context often denote � and �� by left
exponents, that is, we write ��x for ��.x/.
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Let C be a commutative R-algebra and assume that C is flat as an R-module.
A cocycle b inZ1.��;GLƒ.C // is an element of .ƒ˝C/� which satisfies b �

�

bD1,
or equivalently b D �b. In other words

Z1.��;GLƒ.C //D Sym.ƒ˝R C; �/\GLƒ.C /:

The assumption thatC is flat yields that Sym.ƒ˝RC; �/DSym.ƒ; �/˝RC . There-
fore we can apply the pfaffian associated with � to cocycles in Z1.��;GLƒ.C //.
Two cocycles b and c are cohomologous if there is y 2GLƒ.C / such that bD �ycy.
In this case it follows from Lemma 2.7 that pf� .b/D nrdƒ=R.y/ pf� .c/. Therefore
the pfaffian defines a morphism of pointed sets

pf� WH
1.��;GLƒ.C //! C�= nrdƒ=R.GLƒ.C //:

By the same reasoning we obtain a morphism of pointed sets

pf� WH
1.��;SLƒ.C //! fx 2 C� j x2 D 1g:

For simplicity we define C .2/ WD fx 2C� j x2D 1g and C�ƒ WD nrdƒ=R.GLƒ.C //.

Proposition 2.8 (cohomological diagram for symplectic involutions). Let � be an
involution of symplectic type on A and let ƒ be a �-stable R-order. For every
commutative R-algebra C which is flat as an R-module, there is a commutative
diagram of pointed sets with exact rows:

C .2/\C�ƒ
ı
���! H 1.��;SLƒ.C //

j�
���! H 1.��;GLƒ.C //

nrd
���! C�=.C�ƒ/

2 pf�

??y pf�

??y 
C .2/\C�ƒ ���! C .2/ ���! C�=C�ƒ

�2

���! C�=.C�ƒ/
2:

The map ı is injective and the lower row is an exact sequence of groups. Here j�
denotes the map induced by the inclusion j W SLƒ.C /! GLƒ.C /.

Proof. The short exact sequence of groups

1 �! SLƒ.C /
j
�! GLƒ.C /

nrd
�! C�ƒ �! 1

is an exact sequence of groups with ��-action, where �� acts on C�ƒ by inversion.
Consider the initial segment of the associated long exact sequence in the cohomology
(see [Serre 1994, Proposition I.38]):

1 �! SLƒ.C /�
� j
�! GLƒ.C /�

� nrd
�! C�ƒ \C

.2/
�! � � � :
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It follows from the remark on page 379 that SLƒ.C /�
� j
�!GLƒ.C /�

�

is bijective.
Thus the long exact sequence takes the form

1 �! C�ƒ \C
.2/ ı
�!H 1.��;SLƒ.C // �!H 1.��;GLƒ.C // �!H 1.��; C�ƒ/:

It is easy to see that H 1.��; C�ƒ/DC
�
ƒ=.C

�
ƒ/
2, which is a subgroup of C�=.C�ƒ/

2.
Hence we simply replace the last term by C�=.C�ƒ/

2. This yields the upper row of
the diagram. It is an easy exercise to verify that the lower row is an exact sequence
of groups.

It remains to verify the commutativity of the rectangles. The middle one is
obviously commutative by definition of the pfaffian in the cohomology. For the last
rectangle we simply use that pf� .g/

2 D nrd.g/ for all g 2Z1.��;GLƒ.C // by the
construction of the pfaffian.

Consider the first rectangle. We recall the definition of the connecting morphism ı:
given c 2C�ƒ\C

.2/, we can find an element g 2GLƒ.C / such that nrdƒ=R.g/D c;
then ı.c/ is defined to be the class of g�1 �

�

g. The pfaffian of g�1 �
�

g is

pf� .g
�1 ��g/D nrd.g/�1 D c�1 D c

(see Lemma 2.7). This proves the commutativity of the first rectangle.
Finally, note that ı is injective since pf� ı ı is injective. �

Corollary 2.9. An element x 2H 1.��;GLƒ.C // lies in the image of j� if and only
if pf� .x/ lies in the image of the canonical map C .2/! C�=C�ƒ .

Proof. Let ˛ W C .2/ ! C�=C�ƒ denote the canonical map. Suppose the class
x 2H 1.��;GLƒ.C // is in the image of j�, then we obtain immediately that pf� .x/
lies in the image of ˛.

Conversely, suppose pf� .x/D ˛.u/ for some u 2C .2/. Then the diagram shows
that nrdƒ=R.x/ is 1 in C�=.C�ƒ/

2 and therefore x lies in the image of j�. �
Remark (twisting involutions). Let A be a central simple k-algebra with an in-
volution � of symplectic type and let ƒ be a �-stable R-order. Given an element
b 2 Sym.ƒ; �/\ƒ�, we can twist the involution � with b. More precisely, we
define � jb W A ! A by x 7! b �xb�1. It is easily verified that this is again an
involution on A, and since b 2ƒ�, the order ƒ is � jb-stable. Note that � jb is again
an involution of symplectic type.

Suppose ƒ is �-smooth, we claim that ƒ is � jb-smooth as well. Take some
element y in Sym.ƒ; � jb/; this is y D b �yb�1. Consequently, yb 2 Sym.ƒ; �/
and by � -smoothness there is an element z 2ƒ which satisfies �zC z D yb. The
element b is a unit in ƒ, hence we may write z D wb for w D zb�1 2 ƒ and it
follows that � jbwCw D y. We have shown that ƒ is � jb-smooth.

Finally, for all b 2 Sym.ƒ; �/\ƒ� we have .� jb/� D int.b/ ı �� on the group
scheme GLƒ. Since b D �b is equivalent to b �

�

b D 1, such an element b is a
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cocycle for H 1.��; ƒ�/. If we now twist �� with the cocycle b (see Section 4), we
obtain

��jb WD int.b/ ı �� D .� jb/�:

2E. Hermitian forms and nonabelian Galois cohomology. We shall also need a
result due to Fainsilber and Morales from the theory of hermitian forms. Let A be
a central simple k-algebra and let � be an involution on A. In this short section it is
not important whether or not � is of the first or of the second kind.

The notion of � -smoothness is related to the theory of even hermitian forms. Let
ƒ be a � -stable R-order in A and let M be a finitely generated and projective right
ƒ-module. A hermitian form h (or more precisely a 1-hermitian form) with respect
to � on M is said to be even if there is a � -sesquilinear form s WM �M !ƒ such
that hD sC s�. Here s� is the sesquilinear form defined by

s�.x; y/ WD �s.y; x/:

It follows immediately that ƒ is �-smooth if and only if every hermitian form on
ƒ (considered as a right ƒ-module) is even. This is useful since even hermitian
forms can be handled more easily than arbitrary hermitian forms.

We consider the automorphism �� of ƒ� defined as the composition of � and the
group inversion. Similarly we obtain �� on A�. Here it is not necessary to consider
�� as a morphism of group schemes, which is a little bit more tedious if � is of the
second kind. We will need a theorem from [Fainsilber and Morales 1999] in the
following paraphrase:

Theorem 2.10. Let k be a field which is complete for a discrete valuation and let
R be its valuation ring. Let A be a central simple k-algebra with involution � .
Supposeƒ is a � -stable maximalR-order in A. Ifƒ is � -smooth, the canonical map

j� WH
1.��; ƒ�/!H 1.��; A�/

is injective.

Compared with [Fainsilber and Morales 1999] we have added the assumption of
�-smoothness to eliminate the restriction on the residual characteristic. The proof
is almost identical.

3. An adelic reformulation of Harder’s Gauss–Bonnet theorem

We briefly describe an adelic reformulation of Harder’s Gauss–Bonnet theorem
[Harder 1971] that hinges on the notion of a smooth group scheme. In fact, the
Euler characteristic of an arithmetic group can also be computed using G. Prasad’s
[1989] general volume formula. Since we have explicit underlying smooth integral
models of the algebraic groups, we think that the adelic volume formula derived in
this section is adapted much better to the applications given in this article.
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Let F be an algebraic number field and let O denote its ring of integers. Let G
be a connected semisimple algebraic group defined over F . We denote by G1 the
associated real semisimple Lie group

G1 DG.F ˝Q R/D
Y
v2V1

G.Fv/:

3A. The Euler–Poincaré measure. We define what we mean by the compact dual
group of G1, since the definition differs from author to author. Let g1 be the
real Lie algebra of G1 and let g1;C denote its complexification. Moreover, let
K1 be a maximal compact subgroup of G1 and consider the associated Cartan
decomposition

g1 D k1˚ p:

The real vector space u WD k1˚ ip� g1;C is a real Lie subalgebra of g1;C and is
even a compact real form of g1;C [Knapp 2002, page 360]. Let Gu be the unique
connected (a priori virtual) Lie subgroup of G.F ˝Q C/ with Lie algebra u. Since
the real semisimple Lie algebra u is a compact form, the Lie group Gu is compact
and thus closed in G.F ˝Q C/ [Knapp 2002, Chapter IV, Theorem 4.69]. Further
we see that the connected component K01 is a subgroup of Gu. We say that Gu is
the compact dual group of G1 containing K01. Note that the dual group depends
on the algebraic group G.

Let B W g1 � g1! R be a nondegenerate R-bilinear form such that k1 and p

are orthogonal. We extend B to a C-bilinear form (again denoted by B) on g1;C.
Note that B restricted to u is a nondegenerate R-bilinear form u�u!R. We obtain
corresponding right-invariant volume densities on G1 and on Gu which will be
denoted by jvolB j.

We define X WD K1nG1. Let � � G.F / be a torsion-free arithmetic group.
Harder’s Gauss–Bonnet theorem shows that integration over G1=� with the Euler–
Poincaré measure �� [Serre 1971, §3] yields the Euler characteristic of � — even
if � is not cocompact. Via Hirzebruch’s proportionality principle one has the
following formula for the Euler–Poincaré measure on G1 [Harder 1971; Serre
1971].

Theorem 3.1. If dim.X/ is odd or if rk.k1;C/ < rk.g1;C/, then �� D 0 is the
Euler–Poincaré measure. Otherwise, if rk.g1;C/D rk.k1;C/ and dim.X/D 2p is
even, then

�� WD
.�1/pjW.g1;C/j

j�0.G1/j jW.k1;C/j
volB.Gu/�1jvolB j:

Here �0.G1/DG1=G01 and W.g1;C/, W.k1;C/ denote the Weyl groups of the
complexified Lie algebras g1;C, k1;C.
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3B. The adelic reformulation. Let A denote the ring of adeles of F and Af the
ring of finite adeles. Let G be a connected semisimple algebraic group defined
over F . Let Kf � G.Af / be an open compact subgroup of the locally compact
group G.Af /. Borel showed that G.A/ is the disjoint union of a finite number m
of double cosets, that is,

G.A/D

mG
iD1

G1Kf xiG.F /

for some representatives x1; : : : ; xm 2G.Af / [Borel 1963, Theorem 5.1]. For every
i D 1; : : : ; m we obtain an arithmetic subgroup �i �G.F / defined by

�i WDG.F /\ x
�1
i Kf xi :

There is a G1-equivariant homeomorphism

(1) KfnG.A/=G.F /
'
�!

mG
iD1

G1=�i :

Here the right-hand side denotes the topologically disjoint union.

Remark. DefineXDK1nG1. SupposeG.F / acts freely onK1KfnG.A/. This
is the case if and only if the groups �i are torsion-free for all i D 1; : : : ; m. If
dim.X/ is odd or if rk.k1;C/ < rk.g1;C/, then

�.K1KfnG.A/=G.F //D 0:

This follows immediately from Harder’s Gauss–Bonnet theorem and the homeo-
morphism in (1).

Note further that if F has a complex place, then rk.k1;C/ < rk.g1;C/ is always
satisfied. Therefore we may restrict to the case where F is totally real.

3B1. The Tamagawa measure. We derive a description of the Tamagawa measure
in terms of the local volume densities. For a thorough definition of the Tamagawa
measure we refer the reader to [Oesterlé 1984]. Let G be a connected semisimple
linear algebraic F -group of dimension d . Let gD Lie.G/.F / be the Lie algebra
of G over F .

Fix a nondegenerate F -bilinear form B W g� g! F on the Lie algebra. For
every place v 2 V we have the left invariant volume density jvolB jv attached to B
on the Fv-analytic manifold G.Fv/. The volume density is uniquely determined
by jvolB j.e1 ^ � � � ^ ed /D j det.B.ei ; ej //j1=2 for all e1; : : : ; ed 2 g. We fix Haar
measures �v on Fv for every place v such that

(i) �v.Ov/D 1 if v 2 Vf is a finite place,

(ii) �v.Œ0; 1�/D 1 if v is a real place, and

(iii) �v.Œ0; 1�C Œ0; 1�i/D 2 if v is a complex place.
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Using these choices of Haar measures, a density on G.Fv/ defines a measure on
the analytic manifold G.Fv/.

Lemma 3.2. Let G be a d -dimensional semisimple connected linear algebraic
group defined over F . Fix a nondegenerate F -bilinear form B W g� g! F on the
Lie algebra. Then the Tamagawa measure on G.A/ is given by

� D jdF j
�d=2

Y
v2V

jvolB jv:

Proof. Let e1; : : : ; ed be a basis of g over F and take the dual basis "1; : : : ; "d of
HomF .g; F /. We define a nontrivial form of highest degree ! D "1^� � �^"d on g.
By definition of the volume density we have

jvolB jv D j det.B.ei ; ej //j1=2v j!jv:

By the product formula we know that j det.B.ei ; ej //jv D 1 for almost all places v
and further that

Q
v2V j det.B.ei ; ej //jv D 1. �

3B2. The modulus factor. We focus on the case where the algebraic group has
a smooth O-model. Let G be a smooth group scheme defined over O. For any
commutative O-algebra R we write gR WD Lie.G/.R/ to denote the R-points of the
Lie algebra of G. Let B W gF � gF ! F be a nondegenerate F -bilinear form. For
every finite place v 2 Vf we define the modulus factor m.B/v as follows: take an
Ov-basis e1; : : : ; en of the free Ov-module gv WD gOv , and define

m.B/v WD
ˇ̌
det.B.ei ; ej //

ˇ̌1=2
v
:

For almost all finite places v 2 Vf we have m.B/v D 1. To see this, take an F -basis
of gF and note that it is an Ov-basis of gv for almost all finite places v. This allows
us to define the global modulus factor m.B/ WD

Q
v2Vf

m.B/v.

3B3. Congruence groups. In the adelic formulation of Harder’s Gauss–Bonnet
theorem we focus on congruence groups which are given by local data. Let G be
a smooth O-group scheme. For every finite place v 2 Vf , let ˛v � 1 be a natural
number and we assume that ˛v D 1 for almost all v 2 Vf . Let v be a finite place
and let pv � Ov be the unique prime ideal in Ov . We define �v to be the reduction
morphism

�v WG.Ov/!G.Ov=p
˛v
v /:

Further, we assume that we are given a subgroup Uv of the finite group G.Ov=p
˛v
v /

for every place v 2 Vf . For a place v 2 Vf the group Kv.U / WD ��1v .Uv/ is an
open compact subgroup of G.Ov/. If we additionally impose the assumption that
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Uv DG.Ov=p
˛v
v / for almost all v, then the group

K.U / WD
Y
v2Vf

Kv.U /

is an open compact subgroup of the locally compact group G.Af /. We say that
K.U / is the congruence group associated with the local datum

U D .Uv/v D .Uv; ˛v/v

(usually the numbers ˛v are considered to be implicitly a part of the datum U ).

3B4. The adelic Euler characteristic formula. Let F be a totally real number field.
LetG be a smooth group scheme over O such thatG�OF is a connected semisimple
group. For every real place v we choose a maximal compact subgroupKv �G.Fv/.
The real Lie algebra of Kv will be denoted kv . The product K1 D

Q
v2V1

Kv is a
maximal compact subgroup of the associated real Lie group G1. We denote the
Lie algebra of K1 by k.

Let B W gF � gF ! F be an F -bilinear form. We say that B is nice with
respect to K1 if B is nondegenerate and for every real place v 2 V1 the Cartan
decomposition with respect to kv is orthogonal with respect to B . A nice form
induces a nondegenerate bilinear form B W g1 � g1 ! R by defining the Lie
subalgebras gv D Lie.G.Fv// to be orthogonal. Note that the form B satisfies the
requirements of Theorem 3.1.

Theorem 3.3. Let G be a smooth group scheme over O such that G �O F is a
connected semisimple group of dimension d . We fix any nice form B W gF �gF !F .
Furthermore, let Kf DK.U / be a congruence subgroup of G.Af / given by a local
datum .U; ˛/ such that G.F / acts freely on K1KfnG.A/.

If dim.X/D 2p is even and rk.kC/D rk.g1;C/, then the Euler characteristic of
the double coset space K1KfnG.A/=G.F / is given by

�.K1KfnG.A/=G.F //

D .�1/pjdF j
d=2 jW.g1;C/j�.G/

j�0.G1/jjW.kC/j
volB.Gu/�1m.B/�1

Y
v2Vf

N.pv/d˛v

jUvj
:

Here �.G/ is the Tamagawa number of G, N.pv/ denotes the cardinality of the
residue class field Ov=pv , andGu denotes the compact dual group ofG01 (remaining
notation is as in Theorem 3.1).

Proof. Let x1; : : : ; xm 2 G.Af / be a collection of representatives of the finitely
many elements of G1KfnG.A/=G.F /. We consider the torsion-free arithmetic
groups �i defined as �i WD G.F / \ x�1i Kf xi . Let Fi be a Borel measurable
fundamental domain for the right action of �i onG1. Here we mean a fundamental
domain in the strict sense, that is, Fi is a set of representatives for G1=�i (for the
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existence of measurable fundamental domains see [Bourbaki 1963, Chapter VII §2,
Example 12]). The set F defined as the union

Fm
iD1 FiKf xi � G.A/ is a Borel

measurable fundamental domain for the right action of G.F / on G.A/. We write
jvolB j1 D

Q
v2V1

jvolB jv and further jvolB jf WD
Q
v2Vf

jvolB jv. Due to Theorem 3.1
we have

�.K1KfnG.A/=G.F //D

mX
iD1

�.X=�i /D �

mX
iD1

Z
Fi

jvolB j1;

where

�D .�1/p
jW.g1;C/j

j�0.G1/j jW.kC/j
volB.Gu/�1:

By multiplication with the volume ofKf , which is simply volB.Kf /D
R
Kf
jvolB jf ,

and by Lemma 3.2, we obtain

mX
iD1

Z
Fi

jvolB j1 volB.Kf /D
Z

F

Y
v2V

jvolB jv D jdF jd=2
Z

F
� D jdF j

d=2�.G/:

This means we have

�.K1KfnG.A/=G.F //D �jdF j
d=2�.G/ volB.Kf /

�1:

Finally we are left with the task of determining volB.Kf /. We shall exploit that Kf
is given by the local datum .U; ˛/. Since volB.Kf /D

Q
v2Vf

volB.Kv.U // and
the scheme G is smooth, we can apply a theorem of Weil (for a modern formulation
see [Oesterlé 1984, Section I.2.5] or [Batyrev 1999, Theorem 2.5]) in every finite
place to deduce

volB.Kf /D
Y
v2Vf

m.B/v
jUvj

N.pv/d˛v
:

Now the claim follows readily. �

4. Rohlfs’ method

In this section we give a short summary of Rohlfs’ method for the computation of
Lefschetz numbers.

Let F be an algebraic number field and let G be a linear algebraic group defined
over F . We assume thatG has strong approximation. For example, unipotent groups
and F -simple, simply connected groups with a noncompact associated Lie group
have strong approximation [Platonov and Rapinchuk 1994, page 427]. Choose a
maximal compact subgroup K1 � G1 and set X WD K1nG1. Furthermore,
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let Kf � G.Af / be an open compact subgroup and let � WD G.F /\Kf be the
arithmetic group defined by this open compact subgroup. There is a homeomorphism

X=� '
�!K1KfnG.A/=G.F /:

To see this, consider the inclusion G1!G.A/ and use strong approximation to
observe that it factors to such a homeomorphism. Recall that � is torsion-free if
and only if G.F / acts freely on K1KfnG.A/.

Let � be an automorphism of finite order of G. We can choose K1 such that
it is �-stable. We further assume that Kf � G.Af / is a �-stable open compact
subgroup. We obtain an action of � on the double coset space

S.Kf / WDK1KfnG.A/=G.F /:

We describe the set S.Kf /� of �-fixed points following [Rohlfs 1990] under the
assumption that G.F / acts freely on K1KfnG.A/.

Consider the finite set H1.�/ defined as the fibred product

H1.�/ WDH 1.�;K1Kf / �
H1.�;G.A//

H 1.�; G.F //

of nonabelian cohomology sets. Here we usually write � instead of the finite
group h�i generated by � . We consider H1.�/ as a topological space with the
discrete topology. Rohlfs [1990, Section 3.5] constructed a surjective and continuous
map

# W S.Kf /
�
!H1.�/:

In particular the fibres are open and closed in S.Kf /� and we get a decomposition

(2) S.Kf /
�
D

G
�2H1.�/

#�1.�/:

Let  2 Z1.�; G.F // be a cocycle. The -twisted �-action on G, defined by
� j.x/ D �

�x�1� , is an automorphism defined over F and the group of fixed
points is a linear algebraic group which will be denoted G./. Similarly, given
a cocycle k 2 Z1.�;K1Kf / we define the k-twisted action of � on K1Kf by
� jkg WD k�

�gk�1� . The corresponding group of fixed points under this action will be
written .K1Kf /� jk . Rohlfs obtained the following description of the fibres of # .

Lemma 4.1 [Rohlfs 1990, Section 3.5]. Let Kf � G.Af / be a �-stable open
compact subgroup such that G.F / acts freely on K1KfnG.A/.

Let � 2H1.�/ be a class represented by a pair of cocycles .k; / with .ks/s in
Z1.�;K1Kf / and .s/s 2 Z1.�; G.F //. Take a 2 G.A/ such that sa D k�1s as
for all s 2 h�i. There is a homeomorphism

a�1.K1Kf /
� jkanG./.A/=G./.F / '�! #�1.�/:
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Combined with Theorem 4.2 below this yields a method for the computation of
Lefschetz numbers which we simply call Rohlfs’ method.

Definition. Let � W G ! GL.W / be a rational representation defined over the
algebraic closure F of F . Here W is a finite dimensional F -vector space. Given an
action of the finite group h�i on W , we say that this action is compatible with � if

s.�.g/v/D �. sg/ sv

for all v 2 V , s 2 h�i and g 2G.F /. In other words W is a .G.F /Ì h�i/-module.

Let � WG! GL.W / be a rational representation and let � �G.F / be a torsion-
free arithmetic subgroup. If W is equipped with a compatible �-action then we
define the Lefschetz number of � with values in W as

L.�; �;W / WD

1X
iD0

.�1/i Tr
�
� i WH i .�;W /!H i .�;W /

�
:

Since torsion-free arithmetic groups are of type (FL), this is a finite sum.
Given a cocycle bD .bs/s 2H 1.�; G.F // one can define the b-twisted � -action

on W by
� jbw D b�

�w

for all w 2W . We write W.b/ to denote the space W with the b-twisted � -action.
We need the following slight paraphrase of a theorem of Rohlfs.

Theorem 4.2 [Rohlfs 1990]. LetG be an algebraic F -group with strong approxima-
tion and let � be an automorphism of finite order defined over F . Let Kf �G.Af /
be a �-stable open compact subgroup such that � WD G.F /\Kf is torsion-free.
Let � WG! GL.W / be a rational representation defined over F with a compatible
� -action. Then we have

L.�; �;W /D
X

�2H1.�/

�.#�1.�//Tr.� jW.b�//;

where b� 2G.F / is any representative of the H 1.�; G.F // component of �.

Proof. This follows from Rohlfs’ decomposition — see (2) — and a suitable Lef-
schetz fixed point principle — for instance [Rohlfs and Schwermer 1998, §2.3] or
[Kionke 2012]. �

5. Proof of the main theorem

5A. Introduction. In this section we compute the Lefschetz number of an invo-
lution of symplectic type on principal congruence subgroups of inner forms of
the special linear group. For this purpose we combine the tools developed in the
previous sections.
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One should keep in mind that the central result is the adelic Lefschetz number
formula in Theorem 4.2. Whenever we want to apply this theorem, there are two
important steps to do. First step: understand the involved first nonabelian Galois
cohomology sets. Second step: compute the Euler characteristics of the fixed point
components. In the second step we use the adelic formula in Theorem 3.3 obtained
from Harder’s Gauss–Bonnet theorem.

First we introduce some notation, then we begin to determine various nonabelian
cohomology sets. In the third subsection we describe the fixed point groups and we
compute their Euler characteristics. Finally we prove the main theorem.

As before F denotes an algebraic number field and O denotes its ring of integers.
Let D be a quaternion algebra over F , that is, a central simple F -algebra of
dimension four. Note that even though we use the symbol D, the quaternion
algebra D is in general not assumed to be a division algebra. Given a place v, we
define Dv WDD˝F Fv. If Dv is isomorphic to M2.Fv/, we say that D splits at
the place v. Otherwise Dv is a division algebra and we say that D is ramified at v.
Let Ram.D/� V be the finite set of places where D ramifies, and let Ramf .D/
(resp. Ram1.D/) denote the subset of finite (resp. Archimedean) places.

Definition. The signed reduced discriminant �rd.D/ of D is the integer

�rd.D/ WD .�1/
r

Y
p2Ramf .D/

N.p/;

where r D jRam1.D/j.

5A1. The canonical involution. On the quaternion algebraD we have the canonical
involution

�c WD!D; �c.x/DW x;

sometimes called conjugation. Given a description D D Q.a; bjF / of D with
a; b 2 F �— meaning there is a basis 1; i; j; ij of D with i2 D a, j 2 D b and
ij D�j i — conjugation is defined by

�c W x0C x1i C x2j C x3ij 7! x0� x1i � x2j � x3ij:

Note that the conjugation is F -linear; that is, it is an involution of the first kind
on D. Moreover, �c is an involution of symplectic type.

The elements fixed by conjugation are precisely the elements of F . The reduced
norm and trace of D are related to conjugation by

trdD.x/D xC x; nrdD.x/D xx D xx

for all x 2D.
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5A2. Orders. Let ƒD be an O-order in D. We show that ƒD is �c-stable: let
x 2ƒD , then

x D xC x� x D trdD.x/� x:

Recall that trdD.x/ 2 O because x is integral. Since O�ƒD , we obtain x 2ƒD .
Moreover, it follows directly from the definitions that ƒD is smooth if and only if
ƒD is �c-smooth (see the second definition on page 376, and the one on page 378).

We will assume from now on that ƒD is a maximal O-order in D. In particular,
it is a smooth and �c-smooth order (see Proposition 2.4).

Let n be a positive integer. Consider the central simple F -algebra

A WDMn.D/

of n�n-matrices with entries in the quaternion algebraD. The canonical involution
on D induces an involution � on A defined by

�.x/ WD �x WD xTI

that is, conjugate every entry in the matrix x and then transpose the matrix. It is
easily checked that this defines an involution of symplectic type on A [Knus et al.
1998, Proposition 2.23].

Lemma 5.1. Let ƒD �D be a maximal O-order. The O-order ƒDMn.ƒD/ in A
is maximal, � -stable, smooth and � -smooth.

Proof. Since ƒD is stable under conjugation, it is obvious that ƒ is �-stable.
Moreover, it follows from [Reiner 2003, Theorem (21.6)] that ƒ is a maximal
O-order. In turn Proposition 2.4 shows that ƒ is also a smooth order.

Finally we need to check that ƒ is � -smooth. Let x 2 Sym.ƒ; �/ be an element
which is fixed by � . This means that x D .xij / satisfies

xij D xj i for all i ¤ j

and
xi i 2 O:

The order ƒD is smooth, therefore there is, for every i D 1; : : : ; n, an element
zi 2ƒD with trdD.zi /D ziCzi D xi i . Now we define the upper triangular element
y 2ƒ by

yij WD

8<:
0 if i > j ;
xij if i < j ;
zi if i D j ;

and it is easy to see that yC �y D x. We deduce that ƒ is � -smooth. �
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5A3. Setting and assumptions. We define G WD SLƒ to be the special linear group
over the order ƒ (see the first definition on page 376). From the previous lemma
and Corollary 2.3 we deduce that G is a smooth group scheme over O. Moreover,
the involution � induces an automorphism �� of GLƒ where �� D inv ı � (see
Section 2C). Clearly �� has order (at most) two and restricts to an automorphism
of G D SLƒ.

The real Lie group G1 associated with G is

G1 WD
Y
v2V1

G.Fv/Š SL2n.R/s �SLn.H/r �SL2n.C/t :

Here s denotes the number real places of F where D splits, r is the number of
real places where D ramifies, and t is the number of complex places of F . The
symbol H is used for Hamilton’s quaternion division algebra and SLn.H/ is the
group of elements with reduced norm one in the central simple R-algebra Mn.H/.
Note that ŒF W Q� D r C s C 2t . For every Archimedean place v we fix a ��-
stable maximal compact subgroup Kv �G.Fv/; then the group K1 WD

Q
v2V1

Kv is
a ��-stable maximal compact subgroup of G1.

We study the cohomology of congruence subgroups arising from the group SLƒ.
Let a� O be a proper ideal; we define the principal congruence subgroup

�.a/ WD ker.G.O/!G.O=a//

of level a. We shall always assume that �.a/ is torsion-free (which holds for almost
all ideals). Note that the groups �.a/ are always ��-stable.

These groups can be described by local data. Let p � O be a prime ideal of O

and let v be the associated finite place. Let �p.a/ be the maximal exponent e such
that pe divides a; then aOv D p�p.a/Ov. We obtain an open and compact subgroup
Kv �G.Ov/ defined as

Kv WD ker.G.Ov/ �!G.Ov=aOv//:

We form the direct product Kf WD
Q
v2Vf

Kv, which is an open and compact
subgroup of the locally compact group G.Af /. Clearly, �.a/DG.F /\Kf .

We keep the notation introduced in this section. We always assume that

(i) the order ƒD is a maximal order in D, and

(ii) the ideal a� O is nontrivial and chosen such that �.a/ is torsion-free.

5B. Hermitian forms and Galois cohomology. In this section we determine the
nonabelian Galois cohomology set H1.��/. Recall that H1.��/ is the fibred product

H1.��/ WDH 1.��; K1Kf / �
H1.��;G.A//

H 1.��; G.F //:
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In order to determine this set we need to calculate local and global cohomology
sets. The global problem is to determineH 1.��; G.F //, whereas locally we have to
calculateH 1.��; G.Fv// andH 1.��; Kv/ for every place v. We start by determining
the corresponding cohomology sets for GLƒ. This task amounts to the classification
of certain hermitian forms over quaternion algebras, which is well known (see
for instance [Shimura 1963, §2] or [Scharlau 1985, Chapter 10]). Afterwards we
use the pfaffian to obtain results for the special linear group.

5B1. Local results for GLƒ. We introduce the following notation: given two
integers p; q � 0, we define the diagonal matrix

Ip;q D diag.1; : : : ; 1„ƒ‚…
p

;�1; : : : ;�1„ ƒ‚ …
q

/:

Proposition 5.2. Let v 2V be a place of F . If v is a real place whereD is ramified,
then

H 1.��;GLƒ.Fv//Š fIp;q j p; q � 0 with pC q D ng:

This means that the matrices Ip;q are a system of representatives for the cohomology
classes. The cohomology is trivial for all places v 2 V nRam1.D/, that is,

H 1.��;GLƒ.Fv//D f1g:

Proof. Let b 2 Z1.��;GLƒ.Fv// be a cocycle; b is an element of GLn.Dv/
satisfying b D �b. Such a matrix b defines a regular hermitian form on the free
right Dv-module Dnv .

If v 2 V nRam1.D/ (i.e., v is not a real ramified place), regular hermitian forms
over Dv are classified by their dimension over Fv; this follows from [Scharlau
1985, Chapter 10, Theorem 1.7 and Example 1.8]. Note that these results cover
the case where Dv is a division algebra. However it is easy to obtain an analogous
result if Dv ŠM2.Fv/ (at least for free regular hermitian spaces). Thus we find
g 2 GLn.Dv/ with gb �g D 1, and so the second assertion follows immediately.

Let v 2 Ram1.D/; then Dv Š H. In this case �c-hermitian forms are classi-
fied by dimension and signature. Translated to the setting of nonabelian Galois
cohomology, this means that the set fIp;q j p; q � 0 with pC q D ng is a system
of representatives for H 1.��;GLƒ.Fv//. �

Definition. Let v 2 Ram1.D/. For a cocycle b 2 Z1.��;GLƒ.Fv// which is
cohomologous to Ip;q we say that the signature of b is the pair .p; q/.

Corollary 5.3. Let v 2 Vf be a finite place; then H 1.��;GLƒ.Ov//D f1g.

Proof. The O-order ƒ is maximal and �-smooth (see Lemma 5.1) and the same
holds for the Ov-order ƒ˝Ov (see [Reiner 2003, Corollary (11.6)] and note that
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� -smoothness is a local property). By Theorem 2.10 (Fainsilber and Morales), the
canonical map

H 1.��;GLƒ.Ov//!H 1.��;GLƒ.Fv//

is injective, and hence the assertion follows immediately from Proposition 5.2. �
5B2. Global results for GLƒ. We analyse H 1.��;GLƒ.F //, again using the clas-
sification of �c-hermitian forms.

Proposition 5.4 (Hasse principle). The canonical map

H 1.��;GLƒ.F // �!
Y

v2Ram1.D/

H 1.��;GLƒ.Fv//

induced by the inclusions is bijective. This means a class in H 1.��;GLƒ.F // is
uniquely determined by its signatures at the real ramified places.

Proof. IfD is not a division algebra it is easily checked thatH 1.��;GLƒ.F //Df1g.
Thus there is nothing to show.

Assume that D is a division algebra. The regular hermitian forms over D (with
respect to �c) are classified by dimension and their signatures at the real places of
F where D ramifies [Scharlau 1985, Chapter 10, Example 1.8]. The claim follows
as in the local case. �
5B3. The pfaffian associated with � . We explain how to compute the pfaffian asso-
ciated with � (see Section 2D1) for diagonal matrices. Let k be any extension field
of F , for example a local completion. Given a diagonal matrix xDdiag.x1; : : : ; xn/
with entries in k, we can consider x as a � -fixed matrix in A˝F kDMn.D˝F k/.

Lemma 5.5. For x D diag.x1; : : : ; xn/ with entries in some extension field k of F ,
the pfaffian of x is the product of all entries:

pf� .x/D x1x2 � � � xn:

Proof. We can assume without loss of generality that k is algebraically closed. In
this case D˝F k ŠM2.k/ and the reduced norm nrdD WD˝F k! k agrees with
the determinant, in particular it is surjective. This means, for given i 2 f1; : : : ; ng,
we can write xi D nrdD.yi /D yiyi for some yi 2D˝F k. Consider the matrix
y D diag.y1; : : : ; yn/ 2Mn.D˝F k/: it satisfies �.y/y D x. By Lemma 2.7 we
obtain

pf� .x/D nrdA.y/D
nY
iD1

nrdD.yi /D
nY
iD1

xi :

Here we used that the reduced norm of a diagonal matrix in Mn.D ˝F k/ is
the product of the reduced norms of the entries; see [Weil 1995, Chapter IX, §2,
Corollary 2]. �

Note in particular that the pfaffian pf� W Sym.ƒ; �/! O is surjective.
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5B4. Transfer of results to SLƒ. The final step in this section is to transfer the
results on nonabelian Galois cohomology with values in GLƒ to the groupGDSLƒ.
Our main tool is the cohomological diagram for symplectic involutions.

Lemma 5.6. Let v 2 V nRam1.D/ be a place of F . Then the pfaffian induces a
bijection

pf� WH
1.��;SLƒ.Fv// '�! f˙1g:

Proof. If follows from Proposition 5.2 that H 1.��;GLƒ.Fv// is trivial. The
cohomological diagram for symplectic involutions (see Proposition 2.8) collapses
to

f˙1g
ı

����! H 1.��;SLƒ.Fv// ����! 1 ??ypf�

f˙1g f˙1g:

Here we used that nrdƒ W GLƒ.Fv/! F �v is surjective, see [Reiner 2003, Theo-
rem (33.4)]. By Proposition 2.8 the morphism ı is injective, and thus bijective. �

Lemma 5.7. Let v 2 Ram1.D/. The canonical map

j� WH
1.��;SLƒ.Fv//!H 1.��;GLƒ.Fv//

is bijective.

Proof. In this case the reduced norm takes only positive values in FvŠR. Therefore
the cohomological diagram for symplectic involutions (Proposition 2.8) yields

1 ����! H 1.��;SLƒ.Fv//
j�
����! H 1.��;GLƒ.Fv//??ypf�

??ypf�

1 ����! f˙1g
'
����! R�=R�>0:

It follows directly from Corollary 2.9 that j� is surjective. Moreover, twisting the
upper row with cocycles for H 1.��;SLƒ.Fv// shows that j� is indeed injective.
For more details on twisting in nonabelian cohomology the reader may consult
[Serre 1994, Chapter I, §5.4]. Note that twisting an involution of symplectic type
gives an involution of symplectic type (see the remark on page 381). �

Lemma 5.8. Let v be a finite place and let pv � Ov be the prime ideal. For an
integer m � 0 we define Kv.m/ WD ker.G.Ov/! G.Ov=p

m
v //. Then the pfaffian

induces a bijection

pf� WH
1.��; Kv.m//

'
�!

�
f˙1g if � 1� 1 mod pmv ;

f1g otherwise.
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Proof. We start with the special case m D 0; here Kv.m/ D SLƒ.Ov/. Here the
claim follows just as in the proof of Lemma 5.6 from Proposition 2.8, Corollary 5.3,
and the fact that the reduced norm nrdƒ W GLƒ.Ov/! O�v is onto [Reiner 2003,
Theorem (14.1) and Exercise 5 on page 152].

For m� 1 consider the short exact sequence of groups

1 �!Kv.m/ �! SLƒ.Ov/ �! SLƒ.Ov=pmv / �! 1:

Note that this sequence uses that the order ƒ, and hence the group scheme SLƒ, is
smooth by Lemma 5.1. We obtain a long exact sequence of pointed sets

G�
�

.Ov/
�
�!G�

�

.Ov=p
m
v /

ı
�!H 1.��; Kv.m//

jm
�!H 1.��; G.Ov//:

It follows from the remark on page 379 that the fixed point group G�
�

is just the
group scheme G.ƒ; �/ defined in Section 2C. Since the group scheme G.ƒ; �/ is
smooth (Proposition 2.6), the canonical map � is surjective, and so ı is trivial. Via
twisting (see the remark on page 381) we obtain that jm is injective.

We use that the pfaffian is a morphism of schemes defined over O (as explained in
Section 2D1). Given a cocycle b 2Z1.��; Kv.m//, we have pf� .b/� 1 mod pmv .
Consequently, if 1 and�1 are not congruent modulo pmv , thenH 1.��; Kv.m//Df1g

and the claim follows.
Assume now that �1� 1 mod pmv . Then the matrix diag.�1; 1; : : : ; 1/ lies in

Kv.m/ and has pfaffian �1 (see Section 5B3). �

For a real place v 2 V1 we denote the associated embedding F ! R by �v.
Define

F �D D fx 2 F
�
j �v.x/ > 0 for all v 2 Ram1.D/g:

By the Hasse–Schilling–Maass theorem [Reiner 2003, Theorem (33.15)] the image
of the reduced norm nrdA W A�! F � is F �D .

Lemma 5.9. Assume that Ram1.D/ is not empty. Then the canonical morphism
of pointed sets

j� WH
1.��;SLƒ.F // �!H 1.��;GLƒ.F //

is injective. The image consists of precisely those classes x 2 H 1.��;GLƒ.F //
which satisfy pf� .x/D˙1 �F

�
D .

If otherwise D splits at every real place, then the pfaffian induces a bijection

pf� WH
1.��;SLƒ.F // '�! f˙1g:

Proof. Assume that Ram1.D/ is empty. By the Hasse–Schilling–Maass theorem
the reduced norm GLƒ.F /! F � is surjective and the second assertion follows as
in Lemma 5.6.
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Now we assume that Ram1.D/ is not empty. The image of the reduced norm
nrdA W A�! F � is F �D . Note that F �D cannot contain the element �1 since
Ram1.D/ is not empty. Consider the cohomological diagram for symplectic
involutions (Proposition 2.8)

1 ����! H 1.��;SLƒ.F //
j�
����! H 1.��;GLƒ.F //??ypf�

??ypf�

1 ����! f˙1g ����! F �=F �D :

Twisting shows that the map j� is injective. The assertion about the image of j�
follows immediately from Corollary 2.9. �

Remark. Assume that Ram1.D/ is not empty. Let x 2 H 1.��;GLƒ.F // be a
cohomology class. For every place v 2 Ram1.D/ the class x considered as a class
in H 1.��;GLƒ.Fv// has a local signature .pv; qv/. Then according to Lemma 5.9
the class x lies in the image of j� if and only if

qv � qw mod 2

for every pair of places v;w 2 Ram1.D/. This means that either all qv are even
or all qv are odd.

Theorem 5.10. Let Kf D
Q
v2Vf

Kv � G.Af / be the open compact subgroup
associated with the congruence subgroup �.a/ (see Section 5A3). Consider the
set H1.��/ (see the beginning of Section 5B). The projection � W H1.��/ !

H 1.��; G.F // is injective and there is a short exact sequence of pointed sets

1 �!H1.��/
�
�!H 1.��; G.F //

pf�
�! f˙1g �! 1:

Proof. Consider the nonabelian cohomology set H 1.��; K1Kf /, which agrees
with the direct product H 1.��; K1/�H

1.��; Kf /. The canonical map

H 1.��; K1/!H 1.��; G1/

is bijective (see [An and Wang 2008] or [Rohlfs 1981, Lemma 1.4]). Moreover, for
every finite place v 2 Vf the group Kv is of the form

Kv.m/D ker.G.Ov/!G.Ov=p
m
v //

for some integer m. It follows from Lemma 5.8 that the inclusion Kv ! G.Fv/

induces an injection H 1.��; Kv/!H 1.��; G.Fv//. Therefore the canonical map
H 1.��; K1Kf /!H 1.��; G.A// is injective and we conclude that the projection
� WH1.��/!H 1.��; G.F // is injective.

Moreover, it follows from the considerations on diagonal matrices in Section 5B3
that the pfaffian pf� WH

1.��; G.F //! f˙1g is surjective.
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It remains to understand the image of � . Since �.a/ is (by assumption) torsion-
free, we know that �1 is not congruent to 1 modulo a. In particular there is a
prime ideal p which divides a, say e D �p.a/, such that 1 and �1 are not congruent
modulo pe . Let v 2 Vf be the finite place associated with p, then Kv DKv.e/ and
H 1.��; Kv/ D f1g by Lemma 5.8. Let  2 H 1.��; G.F // be in the image of � ,
say .x; / is the inverse image in H1.��/. Let xv be the projection of the class x to
H 1.��; Kv/. Since x and  have the same image in H 1.��; G.A//, we can deduce
that pf� ./D pf� .xv/D 1.

Conversely, given  2H 1.��; G.F // in the kernel of the pfaffian, then  lies in
the image of � . Let c1 2H 1.��; K1/ be a cohomology class such that c1 and 
define the same class inH 1.��; G1/. Let 1f denote the trivial class inH 1.��; Kf /,
then the triple .c1; 1f ; / is a class in H1.��/ which is mapped to  by � . �

5C. The fixed point groups. Up to Section 5C6 the number field F is assumed to
be totally real.

Definition. Let R be a commutative O-algebra (for example Ov or Fv). For every
cocycle  inZ1.��; G.R// theR-group schemeG./ of ��j -fixed points is defined
by

G./.C / WD fg 2G.C/ j g D ��jgg

for any commutative R-algebra C . Recall that the -twisted ��-action is given
by ��jg D  �

�

g�1.

We define the symplectic group Spn over Z by

Spn.R/ WD fg 2 GL2n.R/ j gTJg D J g;

for every commutative ring R, where J is the standard symplectic matrix

J D

�
0n 1n
�1n 0n

�
:

Note that in this notation Spn is of rank n, but consists of matrices of size 2n� 2n.
Given a cocycle  2Z1.��; G.O//, we want to understand the associated group

scheme G./. In particular we want to calculate the Euler characteristic of con-
gruence subgroups of this group. We start with some basic observations and
afterwards we collect all the ingredients necessary for an application of the adelic
Euler characteristic formula (Theorem 3.3).

Remark. If  2Z1.��; G.O// then G./DG.ƒ; � j/ in the notation of Section
2C. The reason for this identity is that G.ƒ; � j/ is always a closed subscheme of
SLƒ, that is, all elements have reduced norm one (see the remark on page 379).
Here � j is the  -twisted involution on A (see the remark on page 381). Recall that
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� j is of symplectic type, and that twisting and the operation � commute, that is
.� j/� D ��j .

Lemma 5.11. For every  2Z1.��; G.O// the group scheme G./ is smooth.

Proof. By Lemma 5.1 the order ƒ is �-smooth. The remark on page 381 im-
plies further that ƒ is .� j/-smooth as well, and thus Proposition 2.6 yields that
G./DG.ƒ; � j/ is smooth. �

Lemma 5.12. Let R be a commutative O-algebra. Suppose the two cocycles ;  0 2
Z1.��; G.R// define the same class in H 1.��;GLƒ.R//. Then G./ and G. 0/
are isomorphic as group schemes over R.

Proof. There is c 2GLƒ.R/ satisfying  0 D c �c. We define a morphism of group
schemes f WG./!G. 0/ by

fC W g 7! cgc�1

for every commutative R-algebra C and all g 2G./.C /. This map is well-defined:

��j 0.cgc�1/D  0 �
�

c �
�

g �
�

c�1 0�1 D c �
�

g�1c�1 D cgc�1:

Obviously the inverse map of f is given by g 7! c�1gc, so f is an isomorphism. �

Corollary 5.13. Let  2 Z1.��; G.O// be a cocycle, and let R be a commutative
O-algebra with H 1.��;GLƒ.R// D f1g. There is an isomorphism of R-group
schemes

G./�OR
'
�!G.1/�OR:

In particular, this holds if RD Ov for v 2 Vf (see Corollary 5.3).
Moreover, if k is a splitting field of D, then G./ �O k is isomorphic to the

symplectic group Spn �Zk defined over k.

Proof. The first part follows immediately from Lemma 5.12. For the second
assertion note that we can choose a splitting ' WA˝k!M2n.k/ such that '.�.x//
equals J'.x/T J�1, where J denotes the standard symplectic matrix. �

5C1. The associated real Lie groups. Let  2Z1.��; G.O// be a cocycle. Consider
the real Lie group

G./1 D
Y
v2V1

G./.Fv/

associated with the group G./.

Lemma 5.14. Let  2Z1.��; G.O// be a cocycle and let v 2 Ram1.D/ be a real
ramified place. If the class of  in H 1.��; G.Fv// has signature .p; q/, then there
is an isomorphism of real Lie groups

G./.Fv/
'
�! Sp.p; q/:
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Here Sp.p; q/ is the real Lie group defined by

Sp.p; q/ WD fg 2 GLn.H/ j gT Ip;qg D Ip;qg:

Proof. This follows from Lemma 5.12 and the description of the cohomology set
H 1.��;GLƒ.Fv// in Proposition 5.2. �

For a real ramified place v 2 Ram1.D/, let .pv; qv/ denote the local signature
of the cohomology class of  in H 1.��; G.Fv//. It follows from Corollary 5.13
and Lemma 5.14 that there is an isomorphism of real Lie groups

G./1
'
�! Spn.R/

s
�

Y
v2Ram1.D/

Sp.pv; qv/:

Here s denotes the number of real places of F which split D. Note that G./1 is
connected and semisimple. The real Lie algebra g./1 of G./1 is isomorphic to

g./1 Š sp.n;R/s˚
M

v2Ram1.D/

sp.pv; qv/:

Recall that every maximal compact subgroup of the real Lie group Spn.R/ is
isomorphic to the unitary group U.n/.

Consider the group Sp.n/ WD Sp.n; 0/. One can check that this is a compact
connected semisimple real Lie group [Knapp 2002, page 111]. Moreover, it is a
maximal compact subgroup of the special linear group SLn.H/.

Let p; q � 0 be integers with pC q D n. The Lie group Sp.p; q/ is connected
and semisimple [Knapp 2002, Proposition 1.145], and the compact subgroup
Sp.p/�Sp.q/ is a maximal compact subgroup. Given any maximal compact
subgroup K./1 �G./1, we obtain an isomorphism of Lie groups

K./1
'
�! U.n/s �

Y
v2Ram1.D/

Sp.pv/�Sp.qv/:

5C2. The symmetric space. Consider the associated Riemannian symmetric space
X./ defined as X./ WDK./1nG./1. We have dimG./D n.2nC 1/, thus

dimG./1 D n.2nC 1/ŒF WQ�:

The dimension of the unitary group U.n/ is n2 and consequently

dimK./1 D sn
2
C

X
v2Ram1.D/

pv.2pvC 1/C qv.2qvC 1/:

Subtraction of both dimensions yields an obviously even number:

dimX./D sn.nC 1/C
X

v2Ram1.D/

4pvqv:
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5C3. Lie algebras and complexifications. We complexify the Lie algebra g./1
and we obtain an isomorphism

g./1˝R CŠ sp.n;C/ŒF WQ�:

The rank of this complex semisimple Lie algebra is rk.g./1;C/D nŒF WQ�. Let
k./1 denote the Lie algebra of the maximal compact subgroup K./1. The
complexification of this Lie algebra is isomorphic to

k./1˝R CŠ gl.n;C/s˚
M

v2Ram1.D/

sp.pv;C/˚ sp.qv;C/:

The rank of k./1;C is snC
P
v2Ram1.D/ pv C qv D nŒF W Q�. Thus the com-

plexified Lie algebras g./1;C and k./1;C have equal rank. The Weyl groups of
these complex reductive Lie algebras are well known; in particular,

and

jW.g./1;C/j D .2
nnŠ/ŒF WQ�

jW.k./1;C/j D .nŠ/
s

Y
v2Ram1.D/

2pvpvŠ � 2
qvqvŠ;

as can be found in [Humphreys 1972, page 66]. The quotient of the cardinalities of
the two Weyl groups is given by

jW.g./1;C/j

jW.k./1;C/j
D 2ns

Y
v2Ram1.D/

�
n
pv

�
:

Remark. The linear algebraicF -groupG./�OF is an inner form of the symplectic
group Spn; in particular it is a semisimple and simply connected group. Further
this implies that the Tamagawa number �.G.// is equal to one [Kottwitz 1988].

5C4. The metric formB . Recall that the Lie algebra ofG./ is a functor Lie.G.//
which assigns to a commutative O-algebra C the C -Lie algebra

Lie.G.//.C /D fx 2 .ƒ˝O C/
�
j .� j/.x/D�xg:

For simplicity we write g./C instead of Lie.G.//.C /.
Consider the nondegenerate form B W g./F �g./F !F defined by B.x; y/ WD

�
1
2

trdA.xy/. Let � WF!C be an embedding ofF into the field of complex numbers.
The central simple algebra ADMn.D/ splits over C and we can choose a splitting
A!M2n.C/ such that � j is the standard symplectic involution. Via this splitting
the Lie algebra g./C is isomorphic to the complex semisimple Lie algebra sp.n;C/.

Proposition 5.15. Consider the compact Lie group Sp.n/ and its Lie algebra

sp.n/ WD fx 2Mn.H/ j x
T
C x D 0g;
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and the positive definite R-bilinear form B.x; y/ WD �1
2

trd.xy/ on sp.n/. With
respect to the right-invariant Riemann metric induced by B , the group Sp.n/ has
the volume

volB.Sp.n//D
nY

jD1

.2�/2j

2 � .2j � 1/Š
:

Proof. The C-linear extension of B to sp.n;C/ is given by B.x; y/D�1
2

Tr.xy/.
Recall that the Killing form ˇ on sp.n;C/ is the form ˇ.x; y/D .2nC 2/Tr.xy/
[Helgason 1978, Chapter III, §8] and hence ˇ D�4.nC 1/B . We conclude

volˇ .Sp.n//D .4.nC 1//
n.2nC1/

2 volB.Sp.n//:

The assertion follows from Ono’s formula for the volume of a compact Lie group
with respect to the Killing form [Ono 1966, Equation 3.4.9], which yields

volˇ .Sp.n//D .4.nC 1//
n.2nC1/

2

nY
jD1

.2�/2j

2 � .2j � 1/Š
: �

5C5. The modulus factor. Consider the F -bilinear form B W g./F � g./F ! F

defined by B.x; y/ WD �1
2

trdA.xy/. In this paragraph we will calculate the global
modulus factorm.B/D

Q
v2Vf

m.B/v (see Section 3B2). Note thatƒ is in general
not a free O-module, therefore we have to work locally.

We start with the finite places v 2 Vf where D splits. The main observation
is this: we can assume that ƒ˝O Ov D M2n.Ov/ and that � j is the standard
symplectic involution. This follows from the next lemma.

Lemma 5.16. Let R be a complete discrete valuation ring with field of fractions k
of characteristic char.k/¤ 2. Let � be an involution of symplectic type on M2n.k/

and let ƒ�M2n.k/ be a maximal R-order which is � -stable.
There is an element g 2 GL2n.k/ such that

(i) gƒg�1 DM2n.R/, and

(ii) g�.x/g�1 D J.gxg�1/T J�1, where J is the standard symplectic matrix.

Proof. It follows from [Reiner 2003, Theorem (17.3)] that there is an invertible
matrix a 2 GL2n.k/ such that aƒa�1 DM2n.R/. Moreover, � is an involution
of symplectic type and we can consider int.a/ WM2n.k/!M2n.k/ as a splitting
of the central simple k-algebra M2n.k/. There is a matrix h 2 GL2n.k/ such that
hT D�h and int.a/.�.x//D h.int.a/.x//T h�1 for every x 2M2n.k/.

Becauseƒ is � -stable, hM2n.R/h
�1DM2n.R/. After multiplication with some

power of the prime element in R, we can assume h 2 GL2n.R/. On a free module
over a complete discrete valuation ring, there is only one regular symplectic form
up to isogeny (since char.k/¤ 2); this means that there is b 2 GL2n.R/ such that
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bhbT D J . Finally, we define g WD ba and observe that

g�.x/g�1Dbh.axa�1/Th�1b�1DJ.b�1/T .axa�1/T bTJ�1DJ.gxg�1/TJ�1

for every x 2M2n.k/. �

Corollary 5.17. Let  2Z1.��; G.O// be a cocycle and let v 2 Vf be a finite place
of F which splits D. There is an isomorphism of group schemes over Ov:

G./�O Ov
'
�! Spn �ZOv:

Proof. This follows directly from the previous lemma since � j is an involution of
symplectic type. �

Proposition 5.18. Let v 2Vf be a finite place which splitsD. Consider the bilinear
form B W g./F �g./F !F defined by B.x; y/D�1

2
trd.xy/. The local modulus

factor (see Section 3B2) is
m.B/v D j2j

�n
v :

Proof. By Corollary 5.17 we can assume G./D Spn over Ov. This means

g./Ov D sp.n;Ov/D fx 2M2n.Ov/ j x
TJ CJx D 0g:

Note that the form B is given by the analogous formula B.x; y/ D �1
2

Tr.xy/.
Recall that the elements of sp.n;Ov/ are matrices of the form�

a b

c �aT

�
with a; b; c 2Mn.Ov/, where b and c are symmetric matrices. Let Es;t denote the
elementary 2n� 2n matrix with exactly one entry 1 in position .s; t/. We choose
an Ov-basis of sp.n;Ov/ which is made up of the following elements:

(i) ai;j WDEi;j �EjCn;iCn for all i; j 2 f1; : : : ; ng,

(ii) bi;j WDEi;jCnCEj;iCn for all 1� i < j � n,

(iii) ci;j WDEiCn;j CEjCn;i for all 1� i < j � n, and

(iv) bi WDEi;iCn and ci WDEiCn;i for all i 2 f1; : : : ; ng.

We evaluate the form B on all the basis vectors.
It is easy to observe that

0D B.ai;j ; ck;l/D B.ai;j ; bk;l/D B.ai;j ; bk/D B.ai;j ; ck/

D B.ci;j ; ck;l/D B.bi;j ; bk;l/D B.ci ; cj /D B.bi ; bj /:

for all i; j; k; l . Moreover, one readily verifies that B.bi;j ; ck/D B.ci;j ; bk/D 0
for all i; j; k. The remaining cases yield

� B.ai;j ; ak;l/D�ıj;kıi;l for all i; j; k; l 2 f1; : : : ; ng,
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� B.bi;j ; ck;l/D�ıi;kıj;l for all i < j � n and k < l � n, and

� B.bi ; cj /D�
1
2
ıi;j for all i; j 2 f1; : : : ; ng.

Using these results, we are able to calculate the modulus factor and obtain

m.B/v D

ˇ̌̌̌
det

�
0 �1

2

�
1
2

0

�ˇ̌̌̌n=2
v

D j2j�nv : �

Proposition 5.19. Let v 2 Ramf .D/ be a finite ramified place and p � O be the
associated prime ideal. The local modulus factor for the groupG./ and the formB
defined in Section 5C4 is

m.B/v D j2j
�n
v N.p/�n.nC1/=2:

Proof. The Fv-algebra Dv WDD˝F Fv is the unique quaternion division algebra
over Fv and � WDƒD˝O Ov is the unique maximal order in Dv.

Set H WDG.1/�Ov. Due to Corollary 5.13 we can assume that  D 1, that is,
G./�Ov is isomorphic to H . We define

h WD Lie.H/.Ov/D fx 2Mn.�/ j �.x/D�xg:

Recall that �.x/D xT.
Take an Ov-basis v0; v1; v2; v3 of� such that trdD.v0/D 1 and trdD.vi /D 0 for

i D 1; 2; 3. Such a basis exists since trdD W�! Ov is surjective (maximal orders
are smooth; see Proposition 2.4). We construct an Ov-basis of the Lie algebra h,
consisting of the following elements:

(i) as;i WD vsEi;i for all s 2 f1; 2; 3g and i 2 f1; : : : ; ng, and

(ii) bs;i;j WD vsEi;j �vsEj;i for all s 2 f0; 1; 2; 3g and i; j 2 f1; : : : ; ng with i < j .

We calculate the form B on all basis vectors. Observe that B.as;i ; bt;k;l/D 0 for
all s; t; i; k; l . Moreover, for s; t 2 f1; 2; 3g and i; j 2 f1; : : : ; ng we find

B.as;i ; at;j /D�
1
2

trd.vsEi;ivtEj;j /D�12ıi;j trdD.vsvt /:

Finally, let s; t 2 f0; 1; 2; 3g and let i; j; k; l 2 f1; : : : ; ng with i < j and k < l . We
obtain

B.bs;i;j ; bt;k;l/D
1
2

trdD.vsvt C vsv t /ıi;kıj;l D trdD.vsv t /ıi;kıj;l :

Summing up we obtain a formula for the modulus factor

(3) m.B/2v D
ˇ̌
1
8

det.trd.vsvt //s;tD1;2;3
ˇ̌n
v
�
ˇ̌
det.trd.vsv t //s;tD0;1;2;3

ˇ̌n.n�1/=2
v

Since the elements v0; v1; v2; v3 form an Ov-basis of � as well, we see that the
second term j det.trd.vsv t //s;tD0;1;2;3jv is the valuation of the discriminant of �.
It is known that the discriminant of � is p2v [Reiner 2003, Theorem (14.9)].
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To calculate the first term in (3) we consider w0 WD 1 and we define ws D vs
for s D 1; 2; 3. Note that w0; w1; w2; w3 is in general not an Ov-basis of � since
trdD.1/D 2 need not be a unit in Ov. We can write

w0 D 1D r0v0C r1v1C r2v2C r3v3

for certain r0; r1; r2; r3 in Ov . Applying the reduced trace we get 2D trdD.1/D r0.
Furthermore, this implies that the matrix .trd.wswt //s;tD0;1;2;3 can be written as a
product of matrices0BB@

2 r1 r2 r3
0 1 0 0

0 0 1 0

0 0 0 1

1CCA .trd.vivj //i;jD0;1;2;3
0BB@
2 0 0 0

r1 1 0 0

r2 0 1 0

r3 0 0 1

1CCA :
Note that

.trd.wswt //s;tD0;1;2;3 D

0BB@
2 0 0 0

0 trd.v1v1/ trd.v1v2/ trd.v1v3/
0 trd.v2v1/ trd.v2v2/ trd.v2v3/
0 trd.v3v1/ trd.v3v2/ trd.v3v3/

1CCA :
We deduce that j det.trd.vsvt //s;tD1;2;3jv D j2jv N.p/�2. In total the local modulus
factor is

m.B/v D j2j
�n
v N.p/�n�n.n�1/=2 D j2j�nv N.p/�n.nC1/=2: �

Corollary 5.20. Let  2 Z1.��; G.O// be a cocycle. The global modulus factor
m.B/ for the group G./ with respect to the form B defined in Section 5C4 is

m.B/D 2nŒF WQ�.�1/rn.nC1/=2�rd.D/
�n.nC1/=2;

where �rd.D/ denotes the signed reduced discriminant of D (see the definition on
page 390).

Proof. By Proposition 5.18, Proposition 5.19, and an application of the product
formula we obtain

m.B/D
Y
v2Vf

j2j�nv

Y
p2Ramf .D/

N.p/�n.nC1/=2 D 2nŒF WQ�
Y

p2Ramf .D/

N.p/�n.nC1/=2:
�

5C6. The Euler characteristic of the fixed point groups. Let  2Z1.��; G.O// be
a cocycle. We are now able to compute the Euler characteristic of torsion-free arith-
metic subgroups of G./. In Theorem 5.21 we give a precise formula for principal
congruence subgroups. More general subgroups can be treated analogously.
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For Theorem 5.21 the number field F need not be totally real. Let a� O be a
proper ideal. For a finite place v 2 Vf we define Kv.; a/ to be the kernel of the
reduction morphism G./.Ov/!G./.Ov=aOv/. Note that Kv.; a/DG./.Ov/
for almost all places. The group

Kf .; a/ WD
Y
v2Vf

Kv.; a/

is an open compact subgroup of the locally compact groupG./.Af /. This subgroup
is given by a local datum .U; ˛/ (see Section 3B3). Let v 2 Vf be a finite place and
let p be the associated prime ideal. Let eD �p.a/ be the exponent of p in a. We have
˛vD1 andUvDG./.O=p/ if eD0, otherwise ˛vDe andUvDf1g�G./.O=pe/.

LetG./1D
Q
v2V1

G./.Fv/ and letK./1�G./1 be a maximal compact
subgroup. For every real ramified place v2Ram1.D/we denote the local signature
of the class of  in H 1.��; G.Fv// by .pv; qv/ (see the definition on page 393).

Theorem 5.21. Assume that G./.F / acts freely on K./1Kf .; a/nG./.A/.
The Euler characteristic of the double quotient space

S.a/ WDK./1Kf .; a/nG./.A/=G./.F /

is nonzero if and only if F is totally real. In this case the following formula holds:

�.S.a//D 2�nr N.a/n.2nC1/�rd.D/
n.nC1/=2

Y
v2Ram1.D/

�
n
pv

� nY
jD1

M.j; a;D/;

where M.j; a;D/ is defined as

M.j; a;D/ WD �F .1� 2j /
Y
pja

�
1�N.p/�2j

� Y
p2Ramf .D/

p−a

�
1C .�N.p//�j

�
:

Here r is the number of real places of F where D is ramified. The sign of �.S.a//
is .�1/sn.nC1/=2, where s denotes the number of real places where D splits.

Proof. It follows from the remark on page 384 that the Euler characteristic vanishes
whenever F has a complex place. Therefore we may assume that F is totally real.
We want to apply the adelic Euler characteristic formula (Theorem 3.3). We know
thatG./ is a smooth group scheme over O (see Lemma 5.11). FurtherG�OF is an
inner form of the symplectic group, and is thus a semisimple and simply connected
algebraic group of dimension d D n.2nC 1/ (see the remark on page 401). Note
further that by assumption G./.F / acts freely on K./1Kf .; a/nG./.A/.

Moreover, we observe that dimX./ is even (see Section 5C2) and that the com-
plexified Lie algebras k./1˝C and g./1;C have equal rank (see Section 5C3).
We conclude that the Euler characteristic does not vanish and Theorem 3.3 applies.
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We fix the nondegenerate bilinear form B W g./F � g./F ! F defined, as
above, by B.x; y/ WD �1

2
trdA.xy/. It is easy to see that the compact dual group

G./u of G./1 is isomorphic to Sp.n/ŒF WQ�. Note further that B is given by the
same formula on each factor of the compact dual group. Therefore the volume is

volB.G./u/D
� nY
jD1

.2�/2j

2 � .2j � 1/Š

�ŒF WQ�
according to Proposition 5.15. Using the global modulus factor, calculated in
Corollary 5.20, and the quotient of the orders of the involved Weyl groups, derived
in Section 5C3, the adelic formula yields

(4) �.S.a//D .�1/ŒF WQ�n.nC1/=2jdF j
d=22ns

Y
v2Ram1.D/

�
n
pv

�

�

� nY
jD1

2 � .2j � 1/Š

.2�/2j

�ŒF WQ�
2�nŒF WQ��rd.D/

n.nC1/=2
Y
p2Vf

N.p/d˛p

jUpj
:

Here s denotes the number of real places of F which split D. The only terms
that can be negative are .�1/ŒF WQ�n.nC1/=2 and the signed reduced discriminant.
Consequently, the sign of the Euler characteristic is .�1/sn.nC1/=2.

Let v 2 Vf be a finite place with associated prime ideal p and consider N.p/d˛p
jUpj

.

Case (a): D splits at v and p does not divide a. In this case ˛p D 1 and Up D

G./.O=p/. Since G./ is isomorphic to Spn over Ov (see Corollary 5.17), there
is an isomorphism of finite groups G./.O=p/Š Spn.O=p/. From [Wilson 2009,
Section 3.5] we deduce that

ˇ̌
G./.O=p/

ˇ̌
D N.p/d

nY
jD1

�
1�N.p/�2j

�
:

Case (b): D is ramified at v and p does not divide a. In this situation we have ˛pD 1
and Up D G./.O=p/. Let k D O=p be the finite residue class field and let `=k
be the unique quadratic extension. It is an easy exercise to show that G./.O=p/
is isomorphic to a semidirect product U.`=k/ËSymn.`/, where U.`=k/ denotes
the unitary group of the quadratic extension `=k and Symn.`/ denotes the abelian
group of symmetric .n�n/-matrices with entries in `. Therefore (using [Wilson
2009, Section 3.6]) we get

jG./.O=p/j D N.p/d
nY

jD1

�
1� .�N.p//�j

�
:
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Case (c): p divides a. In this case ˛v D �p.a/ and jUpj D 1. Consequently,

N.p/d˛p

jUpj
DN.p/d�p.a/:

The product of these terms is

Y
p2Vf

N.p/d˛p

jUpj
DN.a/d

nY
jD1

�
�F .2j /

Y
pja

�
1�N.p/�2j

� Y
p2Ramf .D/

p−a

�
1C.�N.p//�j

��
:

Here �F denotes the zeta function of the number field F .
Note that d D n.2nC1/D

Pn
jD1 4j �1 and so jdF jd=2D

Qn
jD1 jdF j

.4j�1/=2.
The functional equation of the zeta function of the totally real number field F [Weil
1995, Chapter VII §6, Theorem 3] yields

�F .2j /jdF j
.4j�1/=2

�
2 � .2j � 1/Š

.2�/2j

�ŒF WQ�
D .�1/j ŒF WQ��F .1� 2j /

for every integer j � 1. Using this we see that

jdF j
d=2

� nY
jD1

2 � .2j � 1/Š

.2�/2j

�ŒF WQ� nY
jD1

�F .2j /D.�1/
ŒF WQ�n.nC1/=2

nY
jD1

�F .1�2j /:

Substitute this into (4); then a simple calculation proves the claim. �

5D. Proof of the main theorem. The notation and assumptions are those of the
introduction. As usual F denotes an algebraic number field and O denotes its ring
of integers. Let D be a quaternion algebra defined over F and let ƒD �D be a
maximal O-order. Let n� 1 be an integer; we consider the central simple F -algebra
A DMn.D/ and the maximal O-order ƒ DMn.ƒD/. Further G WD SLƒ is the
smooth O-group scheme defined as the kernel of the reduced norm over the order ƒ
(see the first definition on page 376).

We say that the quaternion algebra D over F is totally definite if F is totally
real and D ramifies at every real place of F .

The algebraic group G �O F has strong approximation since it is an F -simple,
simply connected group andG1ŠSL2n.R/s�SLn.H/r�SL2n.C/t is not compact.
Since the group SL1.H/ is compact, we need the assumption that n � 2 if D is
totally definite.

Let K1 �G1 be a ��-stable maximal compact subgroup. Further, let Kf be
the open compact subgroup of G.Af /, which satisfies �.a/DKf \G.F / (see
Section 5A3). Since �.a/ is torsion-free and ��-stable, we can apply Theorem 4.2
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and we obtain

(5) L.��; �.a/;W /D
X

�2H1.��/

�.#�1.�//Tr.��jW.�//:

Here � is any representative of the H 1.��; G.F // component of � and

# W
�
K1KfnG.A/=G.F /

���
!H1.��/

is the surjective continuous map defined in Section 4.
By Theorem 5.10 the projection � WH1.��/!H 1.��; G.F // is injective and

there is an exact sequence of pointed sets

(6) 1 �!H1.��/
�
�!H 1.��; G.F //

pf�
�! f˙1g �! 1:

We deduce that, given a class �2H1.��/, every representative � 2�.�/ has pfaffian
one, and hence they all describe the trivial class in H 1.��; G.F //. Thus there is
some g 2G.F / such that � D g�1 �

�

g. It follows that Tr.��jW.�//D Tr.��jW /
since ��j� D �.g/�1 ı ��ı �.g/ on W .

As a next step we describe the fixed point components. Let � 2H1.��/. Using
strong approximation we can choose representing cocycles k� in Z1.��; K1Kf /
and � in Z1.��; �.a//, and an element a1 2G1 such that

�D .Œk��; Œ��/ and ��a1 D k
�1
� a1�:

We write k� D k1k0 with k1 2K1 and k0 2Kf . Note that k0 D � considered
as elements in G.Af /. By Lemma 4.1 there is a homeomorphism

#�1.�/ '�! .a�11 K
��jk1
1 a1/Kf .�; a/nG.�/.A/=G.�/.F /:

In fact .a�11 K
��jk1
1 a1/ is a maximal compact subgroup of G.�/1.

Let v 2 Ram1.D/ and let .pv; qv/ denote the local signature of � at v. By
Theorem 5.21 the Euler characteristic of the fixed point component is zero if F has
a complex place. If F is totally real, which we assume from now on, then

�.#�1.�//D 2�nr N.a/n.2nC1/�rd.D/
n.nC1/=2

Y
v2Ram1.D/

�
n
pv

� nY
jD1

M.j; a;D/:

The short exact sequence (6), in combination with the Hasse principle and
Lemma 5.9, shows that the map which takes cocycles to their local signatures
induces a bijection

H1.��/ '�!
Y

v2Ram1.D/

f.pv; qv/ j pvC qv D n and qv is eveng:
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The following identity can be easily verified:

X
�2H1.��/

Y
v2Ram1.D/

�
n
qv

�
D

Œn
2
�X

u1;:::;urD0

rY
iD1

�
n
2ui

�
D 2r.n�1/:

As a final step we substitute all results in formula (5) and observe:

L.��; �.a/;W /D 2�r N.a/n.2nC1/�rd.D/
n.nC1/=2 Tr.��jW /

nY
jD1

M.j; a;D/:

Note that the Lefschetz number is nonzero precisely when F is totally real and
Tr.��jW / does not vanish.

5E. The growth of the total Betti number. There are many recent results on the
asymptotic behaviour of Betti numbers of arithmetic groups. Most of these results
are upper bound results — a strong asymptotic upper bound was obtained by Calegari
and Emerton [2009]. However, there are no strong lower bound results. It seems that
the only available lower bound results are nonvanishing results for certain degrees
in the cohomology. Indeed, there is a geometric method to construct cohomology
classes in a given degree for cocompact arithmetic groups. This method originated
from the work of Millson and Raghunathan [1981] and has been further elaborated
by Rohlfs and Schwermer [1993]. Another result that can be interpreted as a result
on lower bounds has been obtained by Venkataramana [2008]. In this last section
we prove Corollary 1.1 to show that Lefschetz numbers provide asymptotic lower
bounds for the total Betti number. The only remaining step is to relate the Lefschetz
number to the index of the congruence subgroup �.a/. Let F be a totally real
number field. If D is totally definite we assume n � 2 such that G D SLƒ has
strong approximation.

Lemma 5.22. The index ŒG.O/ W �.a/� of �.a/ in G.O/ is

N.a/4n
2�1

Y
p2Ramf .D/

p−a

� 2nY
jD2

�
1�N.p/�j

�� Y
p2Ramf .D/

pja

��
1CN.p/�1

� nY
jD2

�
1�N.p/�2j

��
:

In particular, the term ŒG.O/ W �.a/�N.a/�4n
2C1 is bounded from above and from

below independent of a,

2nY
jD2

�F .j /
�1
� ŒG.O/ W �.a/�N.a/�4n

2C1

�

Y
p2Ramf .D/

�
1CN.p/�1

�
:
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Proof. Using the smoothness of the group scheme combined with strong approxi-
mation, there is a short exact sequence of groups

1 �! �.a/ �!G.O/ �!G.O=a/ �! 1;

from which we deduce ŒG.O/ W �.a/�D
Q

pja jG.Op=aOp/j. Let p be a prime ideal
which divides a, say �p.a/D e � 1. Then Op=aOp Š Op=p

eOp and it follows from
the smoothness of G that

jG.Op=p
eOp/j D N.p/.e�1/d jG.Op=pOp/j;

where d is the dimension of the group G �O F (use [Oesterlé 1984, Section I.2.1]).
The dimension of G is d D 4n2� 1.

If p 2 Ramf .D/, then one can show that

jG.Op=pOp/j D N.p/4n
2�1

�
1CN.p/�1

� nY
jD2

�
1�N.p/�2j

�
:

If otherwise p … Ramf .D/, then G �O Op is isomorphic to the special linear
group SL2n. We deduce that

jG.Op=pOp/j D N.p/4n
2�1

2nY
jD2

�
1�N.p/�j

�
;

due to [Wilson 2009, Section 3.3.1]. Now the assertions can be readily verified. �

Proof of Corollary 1.1. Since �0.a/ is a subgroup of finite index in �.a/, we obtain
from [Serre 1979, Chapter VII, Proposition 6] that bi .�.a//� bi .�0.a//. It follows
directly from the main theorem that there is a positive real number b > 0, depending
on F , D and n, such that

bN.a/n.2nC1/ � jL.��; �.a/;C/j

for every ideal a�O that makes�.a/ torsion-free. SinceB.�.a//�jL.��; �.a/;C/j,
it follows from Lemma 5.22 that

B.�.a//� aŒG.O/ W �.a/�
n.2nC1/

4n2�1

for some a > 0 depending on F , D and n. We obtain

B.�0.a//� aŒG.O/ W �.a/�
n.2nC1/

4n2�1 � aŒG.O/\�0 W �0.a/�
n.2nC1/

4n2�1

D a
�
Œ�0 WG.O/\�0�

�1Œ�0 W �0.a/�
�n.2nC1/
4n2�1 :

We define � D aŒ�0 WG.O/\�0�
�
n.2nC1/

4n2�1 . �
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