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Let F be a p-adic field and K a quadratic extension of F . Using Tadić’s
classification of the unitary dual of GL.n;K /, we give the list of irreducible
unitary representations of this group distinguished by GL.n;F / in terms of
distinguished discrete series. It is known that a generalised Steinberg repre-
sentation St.�;k/ is distinguished if and only if the cuspidal representation
� is �k�1-distinguished for �, the character of F � with kernel consisting of
the norms of K �. This actually gives a classification of distinguished unitary
representations in terms of distinguished cuspidal representations.

Introduction

In the present work, for F a p-adic field and K a quadratic extension of F , smooth
and complex unitary (which will be synonymous with unitarisable for us), we
study representations of GL.n;K/ which admit on their space a nonzero invariant
linear form under GL.n;F /. These unitary representations are called GL.n;F /-
distinguished (or simply distinguished) and are conjectured to be the unitary part
of the image of a functorial lift, in the Langlands’ program, from U.n;K=F / to
GL.n;K/.

Distinguished generic representations of GL.n;K/ have been classified in [Ma-
tringe 2011b], in terms of distinguished quasi-discrete series, using Zelevinsky’s
classification of generic representations. Here we do the same for distinguished
irreducible unitary representations using Tadić’s classification of irreducible unitary
representations. Our main result (Theorem 2.13) is similar to the main result of
[Matringe 2011b]. However, to extend the result from generic unitary to irre-
ducible unitary representations, we use different techniques. Our main tools are
the Bernstein–Zelevinksy derivative functors, and we apply ideas from [Bernstein
1984]. For instance, the building blocks for unitary representations (the so-called
Speh representations) are not parabolically induced; hence one needs new methods
to deal with these representations. That is what we do in the second part of Section 2
to obtain a definitive statement in Corollary 2.9, which we state here as a theorem.
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Theorem. Let k and m be two positive integers, and let n be equal to km. If� is a
discrete series of GL.m;K/ and u.�; k/ is the corresponding Speh representation
of GL.n;K/ (see Definition 1.3), then u.�; k/ is distinguished if and only if � is.

One direction is given by the fact that if � is a distinguished irreducible uni-
tary representation, then it is also the case of its highest shifted derivative (see
Proposition 2.4). The other direction is a nontrivial generalisation of the following
simple observation: if � is a distinguished cuspidal representation of GL.n;K/,
then it is known that the parabolically induced representation �1=2�� ��1=2� is
distinguished, and it is also known that its irreducible submodule St.�; 2/ is not dis-
tinguished. Hence its quotient u.�; 2/, which is a Speh representation of GL.2n;K/,
is distinguished. The case of general irreducible unitary representations of GL.n;K/
distinguished by GL.n;F / is treated in the third part of Section 2.We obtain the main
result of the paper in Theorem 2.13. Denoting by � the nontrivial element of the
Galois group of K over F , by �_ the smooth contragredient of a representation �
of GL.n;K/, and by �� the representation � ı � , its statement is as follows.

Theorem. Let n be a positive integer and � an irreducible unitary representation
of GL.n;K/. By Tadić’s classification (see Theorem 1.9), the representation � is a
commutative product (in the sense of normalised parabolic induction) of represen-
tations of the form u.�; k/ for k > 0 and � a discrete series, and representations
of the form �.u.�; k/; ˛/ (see Definition 1.8) for � and k as before and ˛ an
element of .0; 1=2/. Then the representation � is distinguished if and only if �_ is
isomorphic to �� and the Speh representations u.�; k/ occurring in the product �
with odd multiplicity are distinguished.

1. Preliminaries

Basic facts and notations. First, in the following, we fix a nonarchimedean local
field F of characteristic 0 and an algebraic closure F of F . We denote by K a
quadratic extension of F in F . We denote by OF and PF the ring of integers
of F and the unique maximal ideal of F respectively. We similarly define OK

and PK . We denote by j � jF and j � jK the normalised absolute values, which
satisfy jxjK D jxj2F for x in F . We fix a nontrivial smooth character � of K

which is trivial on F . We denote by � the nontrivial element of the Galois group
GalF .K/ of K over F and by � the quadratic character of F�, whose kernel is the
set of norms of K�. For n and m � 1, we denote by Mn;m the space of matrices
M.n;m;K/, by Mn the algebra Mn;n, and by Gn the group of invertible elements
in Mn. We will denote by G0 the trivial group. If m belongs to Mn, we denote
by m� the matrix obtained from m by applying � to each entry. If S is a subset
of Mn, we denote by S� the subset of S consisting of elements fixed by � . For
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m 2Mn, we denote by jmjK or �K .m/ the real number j det mjK , and we define
similarly jmjF or �F .m/ for m in M�

n .
When G is a closed subgroup of Gn, we denote by Alg.G/ the category of

smooth complex G-modules. If .�;V / belongs to Alg.G/, H is a closed subgroup
of G, and � is a character of H , we denote by V .H; �/ the subspace of V generated
by vectors of the form �.h/v � �.h/v for h in H and v in V . This space is
stable under the action of the subgroup NG.�/ of the normalizer NG.H / of H

in G, which fixes �. We denote by ıH the positive character of NG.H / such that
if � is a right Haar measure on H and int is the action of NG.H / on smooth
functions f with compact support in H , given by .int.n/f /.h/ D f .n�1hn/,
then � ı int.n/ D ıH .n/� for n in NG.H /. The space V .H; �/ is NG.�/-stable.
Thus, if L is a closed subgroup of NG.�/ and ı0 is a (smooth) character of L

(which will be a normalising character dual to that of normalised induction later),
the quotient VH ;� D V =V .H; �/ (which we simply denote by VH when � is
trivial) becomes a smooth L-module for the (normalised) action l:.vCV .H; �//D

ı0.l/�.l/vCV .H; �/ of L on VH ;�. If .�;W / belongs to Alg.H /, we define the
objects

.indG
H .�/;Vc D indG

H .W // and .IndG
H .�/;V D IndG

H .W //

of Alg.G/ as follows. The space V is the space C1.HnG; �/ of smooth functions
from G to W fixed under right translation by the elements of a compact open
subgroup Uf of G, and satisfying f .hg/ D �.h/f .g/ for all h in H and g in
G. The space Vc is the subspace C1c .HnG; �/ of V consisting of functions with
support compact mod H . In both cases, the action of G is by right translation on
the functions. By definition, the real part Re.�/ of a character � of F� is the real
number r such that j�.t/jC D jt jr , where jzjC D

p
z Nz for z in C.

Irreducible representations of GL.n/. We will only consider smooth represen-
tations of Gn and its closed subgroups. We denote by An the maximal torus of
diagonal matrices in Gn. It will sometimes be useful to parametrise An with simple
roots, that is, to write an element t D diag.t1; : : : ; tn/ of An as t D z1 � � � zn, where
zn D tnIn and zi D diag..ti=tiC1/Ii ; In�i/ belongs to the centre of Gi embedded
in Gn, which we denote Zi . For zi D diag.tiIi ; In�i/ in Zi , we denote ti by t.zi/.
If n� 1, let NnD .n1; : : : ; nt / be a partition of n of length t (i.e., an ordered set of t

positive integers whose sum is n). We denote by M Nn the Levi subgroup of Gn of
matrices of the form diag.g1; : : : ;gt / with each gi in Gni

, by N Nn the unipotent
subgroup of matrices of the form0B@In1

? ?
: : : ?

Int

1CA ;
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and by P Nn the standard parabolic subgroup M NnN Nn (where M Nn normalises N Nn).
Note that M.1;:::;1/ is equal to An, and we set N.1;:::;1/ D Nn. For each i , let �i

be a smooth representation of Gni
. Then the tensor product �1 ˝ � � � ˝ �t is a

representation of M Nn, which can be considered as a representation of P Nn that is
trivial on N Nn. We will use the product notation

�1 � � � � ��t D IndGn

P Nn
.ı

1=2
P Nn
�1˝ � � �˝�t /

for the normalised parabolic induction.
We say that an irreducible representation .�;V / of Gn is cuspidal if the Jacquet

module VN Nn is zero when Nn is a proper partition of n. Suppose that NnD .m; : : : ;m/
is a partition of n of length l and that � is a cuspidal representation of Gm. Let a

and b be two integers with a� b such that b� aC 1D l . Then [Zelevinsky 1980,
Theorem 9.3] implies that the Gn-module �a

K
��� � ���b

K
� has a unique irreducible

quotient, which we denote by �.�; b; a/. We call it a segment or a quasi-discrete
series of Gn. If, in addition, a quasi-discrete series is unitary (which amounts to
saying that its central character is unitary), we will call it a discrete series or a
unitary segment. We will sometimes write St.�; l/D�.�; .l � 1/=2;�.l � 1/=2/.

We end this section with a word about induced representations of Langlands’
type and their quotients.

Definition 1.1. Let �1; : : : ; �t be segments of Gn1
; : : : ;Gnt

respectively, and
suppose that the central characters satisfy the relation Re.c�i

/� Re.c�iC1
/. Let

nD n1C� � �Cnt . Then the representation�1�� � ���t of Gn is said to be induced
of Langlands’ type.

The following result is well known and can be found in [Rodier 1982].

Proposition 1.2. Let � D�1�� � ���t be an induced representation of Langlands’
type as above. Then � has a unique irreducible quotient, which we denote by
L.�1; : : : ; �t /. If �0

1
; : : : ; �0s are other segments with Re.c�0

j
/� Re.c�0

jC1
/ such

that L.�1; : : : ; �t / D L.�0
1
; : : : ; �0s/, then we have the equality of nonordered

sets f�1; : : : ; �tg D f�
0
1
; : : : ; �0sg.

A particular class of Langlands’ quotients is the class of Speh representations,
which are the building blocks of the unitary dual of Gn in Tadić’s classification.

Definition 1.3. Let k and m be two positive integers, and set nD km. If� is a seg-
ment of Gm, we denote by u.�; k/ the representation L.�

.k�1/=2
K

�;: : : ;�
.1�k/=2
K

�/

of Gn.

We now recall some basic facts about Bernstein–Zelevinksy derivatives.
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Derivatives. We define a character of Nn, denoted again by � , by the formula
�.m/D �.

Pn�1
iD1 mi;iC1/. For n� 2, we denote by Un the group of matrices of the

form
�

In�1 v
1

�
. For n> k � 1, the group Gk embeds naturally in Gn and is given

by matrices of the form diag.g; In�k/. We denote by Pn the mirabolic subgroup
Gn�1Un of Gn for n� 2, and we set P1 D f1G1

g. If one sees Pn�1 as a subgroup
of Gn�1 itself embedded in Gn, then Pn�1 is the normaliser of �jUn

in Gn�1 (i.e.,
if g 2Gn�1, then �.g�1ug/ for all u 2Un if and only if g 2 Pn�1). We define the
following functors:

� The functor ˆC from Alg.Pk�1/ to Alg.Pk/ such that for � in Alg.Pk�1/,
one has ˆC� D indPk

Pk�1Uk
.ı

1=2
Uk
� ˝ �/.

� The functor Ô C from Alg.Pk�1/ to Alg.Pk/ such that for � in Alg.Pk�1/,
one has Ô C� D IndPk

Pk�1Uk
.ı

1=2
Uk
� ˝ �/.

� The functorˆ� from Alg.Pk/ to Alg.Pk�1/ such that if .�;V / is a smooth Pk-
module,ˆ�V DVUk ;� , and Pk�1 acts onˆ�.V / byˆ��.p/.vCV .Uk ; �//D

ıUk
.p/�1=2�.p/.vCV .Uk ; �//.

� The functor‰� from Alg.Pk/ to Alg.Gk�1/ such that if .�;V / is a smooth Pk-
module,‰�V DVUk ;1, and Gk�1 acts on‰�.V / by‰��.g/.vCV .Uk ; 1//D

ıUk
.g/�1=2�.g/.vCV .Uk ; 1//.

� The functor ‰C from Alg.Gk�1/ to Alg.Pk/ such that for � in Alg.Gk�1/,
one has ‰C� D indPk

Gk�1Uk
.ı

1=2
Uk
� ˝ 1/D ı

1=2
Uk
� ˝ 1.

If � is a representation of Pn (or a representation of Gn, which we consider as
a Pn-module by restriction), the representation � .k/ of Gn�k will be defined as
‰�.ˆ�/k�1� and will be called the k-th derivative of � . It is shown in [Bernstein
and Zelevinsky 1977, Section 3.5] that these representations give a natural filtration
of any Pn-module.

Lemma 1.4. If � is an object of Alg.Pn/, then � has a natural filtration of Pn-
modules 0 � �n � � � � � �1 D � , where �k D ˆC

k�1
ˆ�k�1� . Moreover, the

quotient �k=�kC1 is isomorphic to .ˆC/k�1‰C� .k/ as a Pn-module.

It is shown in [Zelevinsky 1980, Section 8] that if � is an irreducible representa-
tion of Gn, then its highest derivative ��, which is the derivative �.k/ for k � n

that is maximal for the condition �.k/¤ 0, is an irreducible representation of Gn�k .
The following lemma is an immediate consequence of [Bernstein and Zelevinsky
1977, Lemma 4.5].

Lemma 1.5. Let �i be an irreducible representation of Gni
for positive integers

n1; : : : ; nt . Then the highest derivative of �1 � � � � � �t is the representation
��

1
� � � � ���t .
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As we study unitary representations, we will need some further properties of these
derivatives, which are extracted from [Bernstein 1984]. First, as in this reference,
we introduce the following definition.

Definition 1.6. Let � be a Pn-module. We denote by � Œk� the representation
�

1=2
K
� .k/ of Gn�k and call it the k-th shifted derivative of � . We denote by � Œ�� the

highest shifted derivative of � .

We then recall the following consequence of the unitarisability criterion given in
[ibid., Section 7.3].

Proposition 1.7. If � is an irreducible unitary representation of Gn with highest
derivative �.h/, then � Œh� is unitary and the central characters of the irreducible
subquotients of � Œk� all have positive real parts for 0< k < h.

Unitary representations of GL.n/. We now recall results from [Tadić 1986] about
the classification of irreducible unitary representations of Gn.

Definition 1.8. For ˛ 2 R, m > 0, k > 0, and � a segment of Gm, we denote
by �.u.�; k/; ˛/ the representation �˛

K
u.�; k/���˛

K
u.�; k/ of Gn for nD 2mk.

Theorem 1.9 [Tadić 1986, Theorem D]. Let � be an irreducible unitary repre-
sentation of Gn. Then there is a partition .n1; : : : ; nt / of n and representations
�i of Gni

, each of which is either of the form �.u.�i ; ki/; ˛i/ for �i a unitary
segment, ki � 1, and 0<˛i < 1=2 or of the form u.�i ; ki/ for�i a unitary segment
and ki � 1, such that � D �1� � � ���t . Moreover, the representation � is equal to
� 0

1
� � � � �� 0s for representations � 0j of the same type as the representations �i if

and only if f�1; : : : ; �tg D f�
0
1
; : : : ; � 0sg as nonordered sets.

If all the representations �i in the above theorem are such that ki D 1, we say
that � is a generic unitary representation of Gn.

We will also need the description of the composition series of the so-called end
of complementary series, which is proved in [Tadić 1987a] (see [Badulescu 2011,
Theorem 2] for a quick proof). If � is the segment St.�; l/ for l � 1, we write
�C D St.�; l C 1/ and �� D St.�; l � 1/, where St.�; 0/ is 1G0

by convention.

Theorem 1.10. Let m be a positive integer, � a segment of Gm, k � 2 an integer,
and n D 2mk. The representation �.u.�; k/; 1=2/ of Gn is of length 2, and its
irreducible subquotients are u.��; k/�u.�C; k/ and u.�; k � 1/�u.�; kC 1/.

Finally, we recall the formula which gives the highest shifted derivative of a
Speh representation, from [Tadić 1987b, Section 6.1] (see [Offen and Sayag 2008,
(3.3)] for the proof).

Proposition 1.11. Let m > 0 and k > 1 be two integers, and let � be a segment
of Gm. The highest shifted derivative of the representation u.�; k/ is equal to
u.�; k/Œm� D u.�; k � 1/. The highest (shifted) derivative of � is equal to 1G0

.
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Distinguished representations of GL.n/. In this paragraph, we recall results from
[Matringe 2011b]. First, we introduce some notations and definitions.

Definition 1.12. Let G be a closed subgroup of Gn, H a closed subgroup of G, and
� a character of H . We say that a representation � in Alg.G/ is .H; �/-distinguished
if the space HomH .�; �/ is nonzero. If H is clear, we say �-distinguished instead of
.H; �/-distinguished, and if � is trivial, we say H -distinguished (or distinguished if
H is clear). If GDGn and H DG�

n , we will sometimes say .�; �/-distinguished in-
stead of .H; �/-distinguished, and if � is trivial, we will simply say � -distinguished.

We recall the following general facts from [Flicker 1991] about � -distinguished
representations of Gn. We denote by �� the representation g 7! �.g� / for � a
representation of Gn.

Proposition 1.13. Let n� 1 be an integer and � be an irreducible representation
of Gn. If � is � -distinguished, then �_ D �� and HomG�n .�; 1/ is of dimension 1.

We now introduce the class of � -induced irreducible unitary representations of Gn.
They will turn out to be the �-distinguished irreducible unitary representations
of Gn.

Definition 1.14. For n� 1, let � be an irreducible unitary representation

�Du.�1; k1/�� � ��u.�s; ks/��
�
u.�sC1; ksC1/; ˛sC1

�
�� � ���

�
u.�t ; kt /; ˛t

�
of Gn with unitary segments �i , positive integers ki , and ˛i 2 .0; 1=2/. The
representation � is said to be � -induced if it satisfies �_D�� and if for every i � s

such that u.�i ; ki/ occurs with odd multiplicity in the product � , the segment �i

is � -distinguished.

Remark 1.15. Maybe the preceding definition is not completely transparent to the
reader. Let us try to explain what �-induced irreducible unitary representations
look like. Let

�Du.�1;k1/�� � ��u.�t ;ks/��
�
u.�sC1;ksC1/;˛ksC1

�
�� � ���

�
u.�t ;kt /;˛kt

�
be an irreducible unitary representation of Gn. First, if one has �_ D �� (call this
relation � -self-duality), then it means the two following things:

(a) For i between 1 and s, either u.�i ; ki/ is � -self-dual or, if this relation is not
satisfied, there exists j ¤ i between 1 and s such that u.�j ; kj /

_Du.�i ; ki/
� .

(b) For i between s C 1 and t , either �.u.�i ; ki/; ˛i/ is �-self-dual or, if this
relation is not satisfied, there exists j ¤ i between s C 1 and t such that
�.u.�j ; kj /; j̨ /

_ D �.u.�i ; ki/; ˛i/
� .

In (a) above, if you have u.�i ; ki/
_ D u.�i ; ki/

� which occurs with multiplicity
at least 2, that is, if there is j ¤ i between 1 and s such that u.�j ; kj /D u.�i ; ki/,
then one has u.�j ; kj /

_ D u.�i ; ki/
� . Hence (a) can also be stated as:
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(a0) u.�1;k1/�� � ��u.�s;ks/ is a product of representations of the form u.�i ;ki/�

.u.�i ;ki/
_/� and of � -self dual representations u.�j ; kj / which occur with

odd multiplicity.

Now in (b), if �.u.�i ; ki/; ˛i/ is � -self dual, it is equal to

�
˛i

K
u.�i ; ki/�

�
.�
˛i

K
u.�i ; ki//

_
��

(because �_i must be equal to ��i ). All in all, � is � -self dual if and only if it is a
product of representations of the form

�˛K u.�; k/�
�
.�˛K u.�; k//_

��
for 0� ˛ < 1=2, � a discrete series, and k a positive integer (we allow here ˛ to be
equal to zero in order to take in account representations u.�i ; ki/� .u.�i ; ki/

_/�

occurring in (a0)), of representations of the form

�.u.�; k/; ˛/�
�
�.u.�; k/; ˛/_

��
for ˛ in .0; 1=2/ and� and k as above, and of representations of the form u.�0; k 0/

(�0 unitary and k 0 > 0) occurring with odd multiplicity and which are � -self dual.
In this situation, � is �-induced if and only if these representations u.�0; k 0/ are
such that �0 is � -distinguished.

Theorem 5.2 of [Matringe 2011b] then classifies distinguished generic represen-
tations.

Theorem 1.16. For n� 1, a generic unitary representation of Gn is � -distinguished
if and only if it is � -induced.

We also recall [Matringe 2009, Corollary 3.1] about distinction of discrete series.

Proposition 1.17. Let � be a cuspidal representation of Gr for r � 1 and � D
St.�; l/ for l � 1. The segment � of Glr is �-distinguished if and only if � is
.�; �l�1/-distinguished.

Finally, [Anandavardhanan et al. 2004, Corollary 1.6] says that the segment �
above cannot be �-distinguished and .�; �/-distinguished at the same time. This
has the following immediate corollary.

Corollary 1.18. Let � be a segment of Gn for n� 2. Then � is � -distinguished if
and only if �C is .�; �/-distinguished. In particular, if � is distinguished,then �C
is not.

2. Distinguished unitary representations

We will first prove the convergence of integrals defining invariant linear forms.
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Asymptotics in the degenerate Kirillov model. We denote by Nn;h the group of
matrices h.a; n/D

�
a
0

x
n

�
with a in Gn�h, n in Nh, and x in Mn�h;h. It is proved

in [Zelevinsky 1980, Section 5] that any irreducible representation � of Gn has
a “degenerate Kirillov model” (which is just the standard Kirillov model in the
nondegenerate case). This means that the restriction of � to Pn embeds as a
unique Pn-submodule K.�; �/ of . Ô C/h�1‰C.�.h//, where �.h/ D ��. The
space K.�; �/ consists of smooth functions W from Pn to V�.h/ which are fixed
under right translation by an open subgroup UW and satisfy the relation

W .h.a; n/p/D jaj
h=2
K
�.n/�.h/.a/W .p/

for h.a; n/ in Nn;h and p in Pn. It can be handy to identify such a function with a
map from Pn to V� Œh� which satisfies the relation

(1) W .h.a; n/p/D jaj
.h�1/=2
K

�.n/� Œh�.a/W .p/

for h.a; n/ in Nn;h and p in Pn.
We now give an asymptotic expansion of the elements of K.�; �/ in terms of

the exponents of � . The proof, which is omitted, is an easy adaptation of the proof
of [Matringe 2011a, Theorem 2.1]. We write C1c .F;V / for the space of smooth
functions with compact support from F to a complex vector space V .

Theorem 2.1. Let � be an irreducible representation of Gn for n� 2. Let �.h/ be
the highest derivative of � , and let W belong to K.�; �/. We suppose that we have
h� 2, and we denote by .ck;ik

/1�k�rk
the family of central characters of the irre-

ducible subquotients of �.k/. In this situation, the restriction W .zn�hC1 : : : zn�1/

of W to the torus Zn�hC1 � � �Zn�1 is a linear combination of functions of the form

n�1Y
kDn�hC1

Œcik ;kı
1=2
UkC1

: : : ı
1=2
Un
�.zk/vF .zk/

mk�k.t.zk//

for ik between 1 and rk , nonnegative integers mk , and functions �k in C1c .F;V�.h//.

From this, we deduce the convergence of the following integrals, which we will
need later.

Proposition 2.2. Let � be an irreducible unitary representation of Gn for n � 1.
Let �.h/ be the highest derivative of � , and let W belong to K.�; �/. We suppose
that there is a nonzero G�

n�h
-invariant linear form L on the space of � Œh�, and for

every element W of K.�; �/, we define the map fL;W DL ıW . Then for all W in
K.�; �/, the integral

ƒ.W /D

Z
N�

n;h
nP�n

fL;W .p/ dp

is absolutely convergent and ƒ defines a nonzero P�
n -invariant linear form on V� .
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Proof. If h equals 1, then ƒ.W / is equal to L.W .In// up to normalisation, and
the result is obvious. For h� 2, first, thanks to Relation (1), the restriction of the
map fL;W to P�

n satisfies the relation

fL;W .h.a; n/p/D jaj
h�1
F fL;W .p/

for p in P�
n and h.a; n/ in N �

n;h
. We notice that jajh�1

F
is indeed equal to

ıN�
n;h

ıP�n
.h.a; n//D

jajh
F

jajF
:

Actually, the integral ƒ.W / is equal toZ
N�

n�1;h
nG�

n�1

fL;W .p/ dp:

Hence, thanks to the Iwasawa decomposition, the integralƒwill converge absolutely
for any W in K.�; �/ if and only if the following integral does as well:Z

Zn�hC1:::Zn�1

fL;W .zn�hC1 : : :zn/ı
�1
N�

n�1;h
.zn�hC1 : : :zn�1/d

�zn�hC1 : : :d
�zn�1

for any W in K.�; �/. As ıN�
n�1;h

.zn�hC1 : : : zn�1/ is equal to the product

n�1Y
kDn�hC1

ıU�
kC1

: : : ıU�
n�1
.zk/D

n�1Y
kDn�hC1

ı
1=2
UkC1

: : : ı
1=2
Un�1

.zk/

for the zi in Z�
i , we obtain that the integralZ

Zn�hC1:::Zn�1

jfL;W .zn�hC1 : : :zn/jı
�1
N�

n�1;h
.zn�hC1 : : :zn�1/d

�zn�hC1 : : :d
�zn�1

is majorized by a sum of integrals of the form
n�1Y

kDn�hC1

Z
Zk

cik ;k ı
1=2
Un
.zk/vF .zk/

mkfk.t.zk// d�zk

D

n�1Y
kDn�hC1

Z
Zk

cik ;k ı
1=2
UkC1

.zk/vF .zk/
mkfk.t.zk// d�zk

for functions fkDLı�k in C1c .F /, thanks to Theorem 2.1. These last integrals are
convergent, as, according to Proposition 1.7, the real part Re.cik ;kı

1=2
UkC1

/ is positive.
This concludes the proof of the convergence. To show thatƒ is nonzero, we just need
to remember that � contains as a Pn-submodule the space .ˆC/h�1.‰C.�.h///

and the restriction to P�
n of elements of .ˆC/h�1.‰C.�.h/// is surjective on the

space

C1c

�
N �

n;hnP
�
n ;
ıN�

n;h

ıP�n
� Œk�˝ 1

�
: �
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The case of Speh representations. The aim of this section is to prove that a repre-
sentation u.�; k/ is � -distinguished if and only if � is, independently of k. Oddly
enough, the trickiest part is to prove that when � is � -distinguished, so is u.�; k/.
We first recall, as a lemma, [Kable 2004, Proposition 1], which is the key ingredient
of the proof of the functional equation of the local Asai L-function.

Lemma 2.3. Let � be a representation of Pn for n�1. Then the space HomP�n .�; 1/
is isomorphic to HomP�

nC1
.ˆC.�/; 1/.

This implies the following generalisation of [Anandavardhanan et al. 2004,
Theorem 1.1]:

Proposition 2.4. Let � be an irreducible unitary representation of Gn for n � 1.
The representation � is P�

n -distinguished if and only if its highest shifted derivative
� Œ�� is � -distinguished.

Proof. One implication follows from Proposition 2.2. For the other one, we first
notice that by the definition of ‰C, if � 0 is a representation of Gk for k � 0,
then the space HomP�

kC1
.‰C.� 0/; 1/ is isomorphic to HomG�

k
.�1=2� 0; 1/. Hence,

thanks to Lemma 2.3, the space HomP�
kCl
..ˆC/l�1‰C.�/; 1/ is isomorphic to

HomG�
k
.�1=2� 0; 1/. Now, if � is an irreducible unitary representation of Gn, let h

be the integer such that �� D �.h/. The restriction of � to Pn has a filtration with
factors .ˆC/k�1‰C.�.k// for k between 1 and h, according to Lemma 1.4. If L

is a nonzero P�
n -invariant linear form on � , it must induce a nonzero element of

HomP�n ..ˆ
C/k�1‰C�.k/; 1/' HomG�

n�k
.� Œk�; 1/ for some k in f1; : : : ; hg. But

if the space HomG�
n�k

.� Œk�; 1/ is nonzero, it implies that the central character of one
of the irreducible subquotients of � Œk� has real part equal to zero because F� must
act trivially on at least one irreducible subquotient of � Œk�. Hence, according to
Proposition 1.7, this means that the space HomP�n ..ˆ

C/k�1‰C�.k/; 1/ is reduced
to zero for k between 1 and h� 1 and that the space

HomP�n ..ˆ
C/h�1‰C�.h/; 1/' HomG�

n�h
.� Œh�; 1/

is nonzero. The result is thus proved. �
The proof of the preceding proposition implicitly contains the following state-

ment.

Proposition 2.5. Let � be an irreducible unitary representation of Gn which is P�
n -

distinguished. Then its highest shifted derivative � Œ�� is �-distinguished, and the
space HomP�n .�; 1/ is of dimension 1 with basis equal to a certain linear form L.
Moreover, the restriction of L to �0 D .ˆ

C/h�1‰C.��/ is nonzero, and if � is any
Pn-submodule of � which is P�

n -distinguished, then � contains �0 and the space
HomP�n .�; 1/ is spanned by the restriction Lj� .

From this, we deduce a statement which will be used twice in a crucial way.
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Proposition 2.6. Let n1 and n2 be two positive integers and �1 and �2 be two
irreducible unitary representations of Gn1

and Gn2
respectively. Suppose that �1 is

G�
n1

-distinguished and that �2 is P�
n2

-distinguished. In this situation, if �D�1��2

is G�
n -distinguished, then �2 is G�

n2
-distinguished.

Proof. We write�1��2 as induced from the lower parabolic subgroup P�D P�
.n1;n2/

obtained by transposing P.n1;n2/. It is thus the space C1c .P
�nGn; ı

1=2
P�
�1˝�2/.

The double class P�Pn, being open in Gn, contains

� D C1c .P
�
nP�Pn; ı

1=2
P�
�1˝�2/;

which is a Pn-submodule of � . Let L1 be a basis of HomG�n1
.�1; 1/, L2 be a basis

of HomP�n2
.�2; 1/, and denote by � the linear form L1˝L2 on �1˝�2. We now

introduce the following linear form on � :

L W f 7!

Z
P�\P�n nP

�
n

�.f .p// dp:

It is well-defined because the restriction of f to P�
n has compact support modulo

P�\P�
n because it satisfies f .hp/D jaj

�n2

F
jbj

n1

F
f .p/ for

hD

0@a 0 0

x b y

0 0 1

1A 2 P�\P�
n

written in blocks according to the partition .n1; n2� 1; 1/ of n and because of the
relation

ıP�\P�n

ıP�n
.h/D

jaj
1�n2

F
jbj

1Cn1

F

jajF jbjF
D jaj

�n2

F
jbj

n1

F
:

Let’s now show that L is nonzero. For v1 in V�1
and v2 in V�2

, let U be a congruence
subgroup of Gn such that U \Gn1

fixes v1 and U \Gn2
fixes v2. As U has an

Iwahori decomposition with respect to P�, the map defined by fU;v1;v2
.p�u/D

ı
1=2
P�
�1˝�2.p

�/.v1˝v2/ for u in U , p� in P� and by zero outside P�U belongs
to V� . Moreover, L.fU;v1;v2

/ is a positive multiple of L1.v1/L2.v2/. In particular,
L is nonzero. This implies that L belongs to HomP�n .�; 1/�f0g. It remains to prove
that �2 is G�

n2
-distinguished. We are going to prove that L2 is actually G�

n2
-invariant.

By Proposition 2.5, as � is irreducible, unitary, and � -distinguished, we know that
HomP�n .�; 1/ is one-dimensional, spanned by a linear form L0. Moreover, by the
same proposition, up to multiplying L0 by a scalar, the restriction of L0 to � is equal
to L. Hence we denote L0 by L. The fact that HomP�n .�; 1/ is one-dimensional
also implies that L is in fact G�

n -invariant. Now take h of the form diag.In1
; b/

with b in Gn2
.OK /. We have �.h/fU;v1;v2

D fU;v1;�.b/v2
. Moreover, if b belongs

to Gn2
.OK /

� , the relation L.�.h/fU;v1;v2
/ D L.fU;v1;v2

/ implies the equality
L1.v1/L2.�.b/v2/DL1.v1/L2.v2/. This implies that L2 is Gn2

.OK /
� -invariant.
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In particular, it is wn2
-invariant, where wn2

is the antidiagonal matrix with ones
on the second diagonal. As L2 is P�

n2
-invariant by hypothesis, it is G�

n2
-invariant

because wn2
and P�

n2
span the group G�

n2
, and this concludes the proof. �

For Speh representations, we first obtain the following criterion of P�
n -distinction.

Proposition 2.7. Let r be a positive integer, k be an integer� 2, and nDkr . Let�
be a discrete series of Gr . Then the representation u.�; k/ is P�

n -distinguished if
and only if u.�; k � 1/ is � -distinguished.

Proof. We recall from Proposition 1.11 that u.�; k/Œ�� is equal to u.�; k �1/. We
then apply Proposition 2.4. �

Proposition 2.4 also has the following corollary.

Corollary 2.8. Let n1; : : : ; nt and k be positive integers and �i be a unitary
segment of Gni

for each i . If the product u.�1; k/�� � ��u.�t ; k/ is � -distinguished,
then the product �1 � � � � ��t is � -distinguished as well.

Proof. First, according to Theorem 1.9, the product u.�1; k/� � � � � u.�t ; k/ is
unitary. According to Lemma 1.5 and Proposition 1.11, the highest shifted derivative
of this product is u.�1; k�1/�� � ��u.�t ; k�1/. It is � -distinguished according to
Proposition 2.4. Hence, by induction, the product �1 � � � � ��t is � -distinguished
as well. �

In particular, if u.�; k/ is �-distinguished, then � is �-distinguished. We are
now able to prove the main result of this section.

Corollary 2.9. Let k and m be two positive integers and � be a discrete se-
ries of Gm. The representation u.�; k/ is �-distinguished if and only if � is
� -distinguished.

Proof. If u.�; k/ is � -distinguished, we already noticed that � is � -distinguished
as a consequence of Corollary 2.8. For the converse, we do an induction on k.

The case k D 1 is clear, so let’s suppose that u.�; l/ is � -distinguished for l � k

with k � 1. We recall from Theorem 1.10 that �1=2u.�; k/� ��1=2u.�; k/ is of
length two and has u.��; k/�u.�C; k/ and u.�; k�1/�u.�; kC1/ as irreducible
subquotients. Now, as u.�; k/_ D u.�; k/� , according to the main theorem of
[Blanc and Delorme 2008], the representation �1=2u.�; k/� ��1=2u.�; k/ is �-
distinguished. But u.��; k/�u.�C; k/ can’t be distinguished, otherwise����C
would be distinguished thanks to Corollary 2.8, and this would in turn imply that both
�� and �C are also distinguished according to Theorem 1.16, which contradicts
Corollary 1.18. Hence, the representation u.�; k � 1/ � u.�; k C 1/ must be
�-distinguished. We recall that the representation u.�; k � 1/ is �-distinguished
by the induction hypothesis. As u.�; k/ is � -distinguished by hypothesis as well,
the representation u.�; kC 1/ is P�

.kC1/m
-distinguished by Proposition 2.7. Then,
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the representation u.�; kC 1/ is � -distinguished according to Proposition 2.6, and
this provides the induction step. �

As a corollary, we obtain the following result.

Corollary 2.10. Let k and m be positive integers. If � is a segment of Gm and
u.�; k/_ is isomorphic to u.�; k/� , then u.�; k/ is either �-distinguished or
.�; �/-distinguished and not both at the same time.

Proof. The representation u.�; k/_ is isomorphic to u.�; k/� if and only if �_ is
isomorphic to �� . The result is then a consequence of [Kable 2004, Theorem 7]
and of [Anandavardhanan et al. 2004, Corollary 1.6]. �

The general case. First, we notice that the class of �-induced unitary irreducible
representations of Gn is contained in the class of � -distinguished representations.

Proposition 2.11. For n� 1, let � be an irreducible unitary representation of Gn

which is � -induced. Then it is � -distinguished.

Proof. Let � be a discrete series of Gm with m� 1, let k be a positive integer, and
let ˛ be a real number. Then the representations �˛

K
u.�; k/� ..�˛

K
u.�; k//_/�

and �.u.�; k/; ˛/� .�.u.�; k/; ˛/_/� are � -distinguished according to the main
theorem of [Blanc and Delorme 2008]. But as a product of �-distinguished repre-
sentations is � -distinguished according to [Flicker 1992, Proposition 26], it follows
from Remark 1.15 that if � is � -induced, then it is indeed � -distinguished. �

It remains to prove the converse to obtain the main result of this paper. First, we
make the following obvious but useful observation.

Lemma 2.12. Let � D u.�1; k1/� � � � �u.�r ; kr /��.u.�rC1; krC1/; ˛rC1/�

� � � � �.u.�t ; kt /; ˛t / be an irreducible unitary representation of Gn with �i

discrete series and real numbers ˛i in .0; 1=2/. If the integers ki satisfy ki � 2,
then � is � -induced if and only if its highest shifted derivative � Œ�� is � -induced.

Proof. With the notations of the statement, according to Lemma 1.5 and Proposi-
tion 1.11, the representation � Œ�� is equal to the product

u.�1; k1� 1/� � � � �u.�r ; kr � 1/

��.u.�rC1; krC1� 1/; ˛rC1/� � � � ��.u.�t ; kt � 1/; ˛t /:

Now it is clear that � is � -self-dual if and only if � Œ�� is and that a representation
u.�; k/ (with� unitary) occurs with odd multiplicity in � if and only if u.�; k�1/

occurs with odd multiplicity in � Œ��. The result now follows from the fact that a
Speh representation u.�; k/ with k � 2 is � -distinguished if and only if u.�; k�1/

is � -distinguished, thanks to Corollary 2.9. �
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Theorem 2.13. If � is an irreducible unitary representation of Gn for n� 1, then �
is � -distinguished if and only it is � -induced.

Proof. One direction is Proposition 2.11. Hence, it remains to show that when
� is �-distinguished, it is �-induced. To do this, we first write � under the form
�1 ��2, where �1 is an irreducible unitary representation of Gn1

for some n1 � 0

which is a product of the form described in the statement of Lemma 2.12 (i.e., the
ki are � 2) and �2 is generic unitary of Gn2

for n2 � 0 (i.e., if you write it as a
standard product in Tadić’s classification, all the ki are equal to 1). Notice that �1

and �2, and hence n1 and n2, are uniquely determined by � . We now prove the
statement by induction on n1.

The case n1 D 0 is true thanks to Theorem 1.16. We thus suppose that n1 is
positive, in which case it is necessarily at least 2 by definition of the representation�1

(the integers ki occurring in its definition being at least 2), and we suppose that the
statement to prove is true for any irreducible unitary representation � 0 D � 0

1
�� 0

2

with n0
1
< n1. By hypothesis, the representation � is �-distinguished, and hence

the representation � Œ�� D � Œ��
1

is � -distinguished as well thanks to Proposition 2.4.
Then, by induction hypothesis, the representation � Œ��

1
must be � -induced (because

if one writes � 0 D � Œ��
1

under the form � 0
1
� � 0

2
, then we have n0

1
< n1). This

implies that the representation �1 is �-induced as well according to Lemma 2.12.
In particular, it is �-distinguished by Proposition 2.11. Then, we notice that the
representation �2 is P�

n2
-distinguished according to Proposition 2.4, as � Œ��

2
is the

trivial character of G0. We can now apply Proposition 2.6 and conclude that �2

is �-distinguished, thus �-induced thanks to Theorem 1.16. This finally implies
that � is � -induced as well. �
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