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We consider f -biharmonic maps, the extrema of the f -bienergy functional.
We prove that an f -biharmonic map from a compact Riemannian mani-
fold into a nonpositively curved manifold with constant f -bienergy density
is a harmonic map; that any f -biharmonic function on a compact mani-
fold is constant; and that the inversion in the sphere Sm−1 is a proper f -
biharmonic conformal diffeomorphism for m ≥ 3. We derive equations for
f -biharmonic submanifolds (that is, submanifolds whose defining isometric
immersions are f -biharmonic maps) and prove that a surface in a manifold
(Nn, h) is an f -biharmonic surface if and only if it can be biharmonically
conformally immersed into (Nn, h). We also give a complete classification of
f -biharmonic curves in three-dimensional Euclidean space. Examples are
given of proper f -biharmonic maps and f -biharmonic surfaces and curves.

1. Harmonic, biharmonic, f -harmonic, and f -biharmonic maps

All objects in this paper, including manifolds, tensor fields, and maps, are assumed
smooth unless stated otherwise.

We recall the key definitions, focusing on maps on compact Riemannian man-
ifolds M . (For noncompact M , the relevant functionals are integrals over fixed
compact domains K ⊂ M , and the criticality conditions must hold for all K .)

Harmonic maps. Harmonic maps are critical points of the energy functional for
maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E(φ)= 1
2

∫
M
|dφ|2vg.

The Euler–Lagrange equation gives the harmonic map equation [Eells and Sampson
1964]

τ(φ) := Traceg∇dφ = 0,
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where τ(φ)= Traceg∇dφ is called the tension field of the map φ.

Biharmonic maps. Biharmonic maps are critical points of the bienergy functional
for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E2(φ)=
1
2

∫
M
|τ(φ)|2vg.

The Euler–Lagrange equation of this functional gives the biharmonic map equation
[Jiang 1986b], namely the vanishing of the bitension field τ2(φ) of φ:

τ2(φ) := Traceg(∇
φ
∇
φ
−∇

φ

∇M )τ (φ)−Traceg RN (dφ, τ(φ))dφ = 0.

Here RN is the curvature operator of (N , h), defined by

RN (X, Y )Z = [∇N
X ,∇

N
Y ]Z −∇

N
[X,Y ]Z .

f -harmonic maps. f -harmonic maps are critical points of the f -energy functional
for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E f (φ)=
1
2

∫
M

f |dφ|2vg.

Here f is a fixed function M→ (0,∞). The Euler–Lagrange equation gives the
f -harmonic map equation [Course 2004; Ouakkas et al. 2010]

τ f (φ) := f τ(φ)+ dφ(grad f )= 0.

We call τ f (φ) the f -tension field of the map φ.

f -biharmonic maps. f -biharmonic maps are critical points of the f -bienergy func-
tional for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E2, f (φ)=
1
2

∫
M

f |τ(φ)|2vg.

The Euler–Lagrange equation gives the f -biharmonic map equation [Lu 2013]

τ2, f (φ) := f τ2(φ)+ (1 f )τ (φ)+ 2∇φgrad f τ(φ)= 0.

Bi-f -harmonic maps. Bi-f -harmonic maps are critical points of the bi-f -energy
functional for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

(1) E2
f (φ)=

1
2

∫
M
|τ f (φ)|

2vg.

The Euler–Lagrange equation gives the bi-f -harmonic map equation [Ouakkas et al.
2010]

τ 2
f (φ) := f Jφ(τ f (φ))−∇

φ

grad f τ f (φ)= 0,
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where Jφ is the Jacobi operator of the map, defined by

Jφ(X)=−(Traceg∇
φ
∇
φX −∇φ

∇M X − RN (dφ, X)dφ).

Remark. Ouakkas et al. [2010] used the name “ f -biharmonic maps” for the critical
points of the functional (1). We think that it is more reasonable to call them “bi-f -
harmonic maps” as parallel to “biharmonic maps”.

We have the following obvious inclusions among the various types of harmonic
maps:

{harmonic} ⊂ {biharmonic} ⊂ { f-biharmonic},

{harmonic} ⊂ { f-harmonic} ⊂ {bi-f-harmonic}.

From now on we will call an f -biharmonic map which is neither harmonic nor
biharmonic a proper f -biharmonic map.

Harmonic maps as a generalization of important concepts of geodesics, minimal
surfaces, and harmonic functions have been studied extensively with tremendous
progress in the past 40-plus years. There is voluminous literature about the beautiful
theory, important applications, and interesting links of harmonic maps to other
areas of mathematics and theoretical physics including nonlinear partial differential
equations, holomorphic maps in several complex variables, the theory of stochastic
processes, liquid crystals in materials science, and the nonlinear field theory.

The study of biharmonic maps was proposed in [Eells and Lemaire 1983] and
Jiang [1986a; 1986b; 1987] made the first serious study on these maps by using the
first and second variational formulas of the bienergy functional and specializing
on the biharmonic isometric immersions which nowadays are called biharmonic
submanifolds. Very interestingly, the concept of biharmonic submanifolds was also
introduced in a different way by B. Y. Chen [1991] in his program of understanding
the finite-type submanifolds in Euclidean spaces. Since 2000, biharmonic maps
have been receiving a growing attention and have become a popular subject of study
with great progress. For some recent geometric study of general biharmonic maps
see [Baird and Kamissoko 2003; Montaldo and Oniciuc 2006; Ou 2006; 2012b;
Balmuş et al. 2007; Ouakkas 2008; Baird et al. 2010; Ou and Lu 2013; Nakauchi
et al. 2014; Wang et al. 2014] and the references therein. For some recent study
of biharmonic submanifolds see [Jiang 1986a; 1987; Dimitrić 1992; Chen and
Ishikawa 1998; Caddeo et al. 2001; 2002; Balmuş et al. 2008; 2013; Ou 2010; Ou
and Wang 2011; Ou and Tang 2012; Alías et al. 2013; Chen and Munteanu 2013;
Liang and Ou 2013; Nakauchi and Urakawa 2013] and the references therein. For
biharmonic conformal immersions and submersions see [Baird et al. 2008; Ou 2009;
2012a; Loubeau and Ou 2010; Wang and Ou 2011] and the references therein.

Lu [2013] introduced f -biharmonic maps and calculated the first variation to
obtain the f -biharmonic map equation and the equation for the f -biharmonic
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conformal maps between the same dimensional manifolds. In this paper, we
study some basic properties of f -biharmonic maps and introduce the concept of
f -biharmonic submanifolds. We prove that an f -biharmonic map from a compact
Riemannian manifold into a nonpositively curved manifold with constant f -bienergy
density is a harmonic map (Theorem 2.4); any f -biharmonic function on a compact
manifold is constant (Corollary 2.6); and that the inversion in sphere Sm−1 is a
proper f -biharmonic conformal diffeomorphism for m ≥ 3 (Proposition 2.9). We
derive f -biharmonic submanifolds equations (Theorem 3.2 and Corollary 3.4) and
prove that a surface in a manifold (N n, h) is an f -biharmonic surface if and only if
it can be biharmonically conformally immersed into (N n, h) (Corollary 3.6). We
also give a complete classification of f -biharmonic curves in three-dimensional
Euclidean spaces (Theorem 4.4) according to which proper f -biharmonic curves are
some special subclasses of planar curves or general helices in R3. Many examples
of proper f -biharmonic maps and f -biharmonic surfaces and curves are given.

2. Some properties and examples of f -biharmonic maps

As mentioned, f -biharmonic maps are critical points of the f -bienergy functional
for maps φ : (M, g)→ (N , h) between Riemannian manifolds:

E2, f (φ)=
1
2

∫
M

f |τ(φ)|2vg.

The following theorem was proved in [Lu 2013]. We give a brief outline of the
proof for completeness, but note that our notation is different from Lu’s.

Theorem 2.1. A map φ : (M, g)→ (N , h) between Riemannian manifolds is an
f -biharmonic map if and only if

(2) τ2, f (φ) := f τ2(φ)+ (1 f )τ (φ)+ 2∇φgrad f τ(φ)= 0,

where τ(φ) and τ2(φ) are the tension and the bitension fields of φ respectively.

Proof. Since f is fixed, we can use the standard method (see, e.g., [Baird and
Kamissoko 2003; Jiang 1986b]) of calculating the first variation of the bienergy
functional to obtain

∂

∂t
E2, f (φt)

∣∣∣
t=0
=

1
2

∫
M

f
{
∂

∂t
〈τ(φt), τ (φt)〉

}
t=0
vg

=−

∫
M

f 〈τ(φ), Jφ(V )〉vg

=

∫
M
〈 f τ(φ),Traceg∇

φ
∇
φV −∇φ

∇M V − RN (dφ, V )dφ〉vg.

Using the symmetry property of the curvature tensor and the divergence theorem
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we can switch the positions of V and f τ(φ) to have

∂

∂t
E2, f (φt)

∣∣∣
t=0
=−

∫
M
〈V, Jφ( f τ(φ))〉vg.

It follows that φ is an f -biharmonic map if and only if the f -bitension field vanishes
identically, i.e., τ2, f (φ)=−Jφ( f τ(φ))≡ 0. Finally, using [Ou 2006, (7)], we have

τ2, f (φ)=−Jφ( f τ(φ))=−{ f Jφ(τ (φ))− (1 f )τ (φ)− 2∇φgrad f τ(φ)}

= f τ2(φ)+ (1 f )τ (φ)+ 2∇φgrad f τ(φ),

from which the f -biharmonic map equation (2) follows. �

It is well known that for m 6= 2, the harmonicity and f -harmonicity of a map
φ : (Mm, g)→ (N n, h) are related via a conformal change of the domain metric.
More precisely:

Proposition 2.2 [Lichnerowicz 1969]. A map φ : (Mm, g)→ (N n, h) with m 6= 2
is f -harmonic if and only if φ : (Mm, f

2
m−2 g)→ (N n, h) is a harmonic map.

In general, this does not generalize to the case of the relationship between
biharmonicity and f -biharmonicity, but very interestingly, we have:

Theorem 2.3. A map φ : (M2, g)→ (N n, h) is an f -biharmonic map if and only
if φ : (M2, f −1g)→ (N n, h) is a biharmonic map.

Proof. On the one hand, we notice that the map φ : (M2, g) → (N n, h) is an
f -biharmonic map if and only if

(3) f τ2(φ, g)+ (1 f )τ (φ, g)+ 2∇φgrad f τ(φ, g)= 0,

which is equivalent to

(4) τ2(φ, g)+ (1 ln f + |grad ln f |2)τ (φ, g)+ 2∇φgrad ln f τ(φ, g)= 0.

On the other hand, by [Ou 2009, Corollary 1], the relationship between the bitension
field τ2(φ, g) and that of the map φ : (M2, ḡ = F−2g)→ (N n, h) is given by

τ2(φ, ḡ)= F4{τ 2(φ, g)+2(1 ln F+2 |grad ln F |2)τ (φ, g)+4∇φgrad ln F τ(φ, g)
}
,

which is equivalent to

τ2(φ, ḡ)= F4{τ 2(φ, g)+ (1 ln F2
+|grad ln F2

|
2)τ (φ, g)+2∇φgrad ln F2 τ(φ, g)

}
.

It follows that the map φ : (M2, ḡ= F−2g)→ (N n, h) is biharmonic if and only if

(5) τ2(φ, g)+ (1lnF2
+ |grad ln F2

|
2)τ (φ, g)+ 2∇φgrad ln F2τ(φ, g)= 0.

Substituting F2
= f into (5) yields (4). Hence the map φ : (M2, g)→ (N n, h) is

f -biharmonic if and only if φ : (Mm, f −1g)→ (N n, h) is biharmonic. �
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Theorem 2.4. Any f -biharmonic map φ : (Mm, g)→ (N n, h) from a compact
Riemannian manifold into a nonpositively curved manifold with constant f -bienergy
density (i.e., f |τ(φ)|2 = C) is a harmonic map.

Proof. A straightforward computation gives

(6) 1
( 1

2 f |τ(φ)|2
)

=
1
21〈 f

1
2 τ(φ), f

1
2 τ(φ)〉

= (∇φei
∇
φ
ei
−∇

φ

∇M
ei

ei
)〈 f

1
2 τ(φ), f

1
2 τ(φ)〉

= 〈∇
φ
ei

f
1
2 τ(φ),∇φei

f
1
2 τ(φ)〉+ 〈(∇φei

∇
φ
ei
−∇

φ

∇M
ei

ei
) f

1
2 τ(φ), f

1
2 τ(φ)〉

= 〈∇
φ
ei

f
1
2 τ(φ),∇φei

f
1
2 τ(φ)〉+ f 〈(∇φei

∇
φ
ei
−∇

φ

∇M
ei

ei
)τ (φ), τ (φ)〉

+ f
1
2 (1 f

1
2 )|τ(φ)|2+ 2 f

1
2 〈∇

φ

grad f 1
2
τ(φ), τ (φ)〉.

Since φ is assumed to be f -biharmonic we have

(7) f 〈(∇φei
∇
φ
ei
−∇

φ

∇M
ei

ei
)τ (φ), τ (φ)〉

= 〈 f RN (dφ(ei ), τ (φ))dφ(ei )− (1 f )τ (φ)− 2∇φgrad f τ(φ), τ (φ)〉

= f 〈RN (dφ(ei ),τ (φ))dφ(ei ),τ (φ)〉−(1 f )|τ(φ)|2−2〈∇φgrad f τ(φ), τ (φ)〉.

Substituting (7) into (6) and simplifying the result gives

1
( 1

2 f |τ(φ)|2
)
= f |∇φei

τ(φ)|2− f RN (dφ(ei ), τ (φ), dφ(ei ), τ (φ))−
1
2(1 f )|τ(φ)|2.

This, together with the assumptions that f |τ(φ)|2 = C , f > 0, and

(8) RN (dφ(ei ), τ (φ), dφ(ei ), τ (φ))≤ 0,

allows us to conclude that f is a subharmonic function on the compact manifold
(M, g) and hence f is a constant function. It follows that the f -biharmonic map φ
is actually a biharmonic map from a compact manifold into a nonpositively curved
manifold, and thus a harmonic map by a theorem in [Jiang 1986b]. �

Remark. There are many harmonic maps between spheres with constant energy
density (called eigenmaps). As our Theorem 2.4 implies that there is no proper
f -biharmonic maps from a compact manifold into a nonpositively curved manifold

with constant f -bienergy density, it would be interesting to know if there is any
proper f -biharmonic map between spheres with constant f -bienergy density.

Proposition 2.5. A function u : (M, g)→ R is f -biharmonic if and only if

f12u+ (1 f )1u+ 2g(grad f, grad1u)= 0, or, equivalently,(9)

1( f1u)= 0,(10)
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where 12u =1(1u) denotes the bi-Laplacian of u. In other words, a function u is
an f -biharmonic function if and only if the product f1u is a harmonic function.
In particular, a quasiharmonic function u (i.e., a function u : (M, g)→ R with
1u = constant 6= 0) is an f -biharmonic function if and only if f : (M, g)→ R is a
harmonic function.

Proof. A straightforward computation gives the tension and the bitension fields of
u : (M, g)→ R as

(11) τ(u)= (1u) ∂
∂t

and τ2(u)= (12u) ∂
∂t
.

Substituting these into f -biharmonic map equation (2) and performing a further
computation we obtain the f -biharmonic function equation (9). The last statement
thus follows. �

Corollary 2.6. Any f -biharmonic function on a compact manifold (M, g) is a
constant function.

Proof. By Proposition 2.5, u is an f -biharmonic function if and only if f1u is
a harmonic function. By the well-known fact that any harmonic function on a
compact manifold is constant we have f1u = C , and hence

(12) 1u = C
f

since f > 0 by our assumption. If C = 0, then we have 1u = 0 and hence u
is a harmonic function, so u is a constant function in this case. If C 6= 0, then
(12) implies that u is either a subharmonic or a superharmonic function since f
has a fixed sign with f > 0. Again, the well-known fact that a subharmonic or
superharmonic function on a compact manifold is constant implies that u is constant.
This completes the proof of the corollary. �

Example 1. Let f : R3
\ {0} → R be the function f (x, y, z) = 1/

√
x2+ y2+ z2

and let u : R3
\ {0} → R be the function given by u(x, y, z) = x2

+ y2
+ z2. It is

easily checked that 1 f = 0, 1u = 6 and 12u = 0 and hence f and u satisfy (9).
So, u(x, y, z) is an f -biharmonic function on R3

\ {0} for f (x, y, z). Clearly, this
f -biharmonic function u is not a harmonic function.

Example 2. Let f, u : R3
\ {0} → R be the functions defined by f (x, y, z) =√

x2+ y2+ z2 and u(x, y, z) = x/(x2
+ y2
+ z2). Then we can check (see also

Proposition 2.9) that u is a proper f -biharmonic function which is neither harmonic
nor biharmonic.

Corollary 2.7. Let f, u :R→R be two functions with f (x) > 0 for all x ∈R. Then
u is an f -biharmonic function if and only if

(13) u(x)=
∫∫

Ax+B
f

dx dx +Cx + D,
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where A, B, C , D are arbitrary constants. In particular:

(I) For f (x) = 1 + x2, a function u : R → R is f -biharmonic if and only if
u(x)= 1

2(Ax − B) ln(1+ x2)+ (Bx + A) arctan x + (C − A)x + D, where A,
B, C , D are constants.

(II) For f (x)= e−x , a function u : R→ R is f -biharmonic if and only if u(x)=
(Ax − 2A+ B)ex

+Cx + D, where A, B, C , D are constants.

Proof. In this case, the f -biharmonic equation (10) reduces to ( f u′′)′′ = 0 which
has solution (13). Finally, statements (I) and (II) are obtained by elementary
integrations. �

Remark. It is easily checked that for A 6= 0, B 6= 0 the function

u(x)= (Ax − 2A+ B)ex
+Cx + D

is neither a harmonic nor a biharmonic function, so it provides many examples of
proper f -biharmonic functions.

Theorem 2.8. Any f -biharmonic map φ : (Mm, g)→Rn from a compact manifold
into a Euclidean space is a constant map.

Proof. Since the target manifold is a Euclidean space, the curvature is zero. If we
write φ : (Mm, g)→ Rn as φ(p)= (φ1(p), φ2(p), . . . , φn(p)), then we can easily
check that

τ(φ)= (1φ1,1φ2, . . . ,1φn),

τ2(φ)= (1
2φ1,12φ2, . . . ,12φn),

∇
φ

grad f τ(φ)= (∇
φ

grad f1φ
1,∇

φ

grad f1φ
2, . . . ,∇

φ

grad f1φ
n).

It follows that the f -biharmonic map equation for φ becomes

f12φα + (1 f )1φα + 2g(grad f, grad1φα)= 0, α = 1, 2, . . . , n.

In other words, a map φ : (Mm, g)→Rn from a manifold into a Euclidean space is an
f -biharmonic map if and only if each of its component functions is an f -biharmonic
function. From this and Corollary 2.6, which states that any f -biharmonic function
on a compact manifold is constant, we obtain the theorem. �

Proposition 2.9. The map φ : Rm
\ {0} → Rm

\ {0} with φ(x) = x/|x |p is an
f -biharmonic map for f (x) = |x |k if and only if (i) p = 0, or (ii) p = m, or
(iii) k = p+ 2, or (iv) k = p+ 2−m. In particular, for m ≥ 3, the inversion in
sphere Sm−1, φ :Rm

\ {0}→Rm
\ {0} with φ(x)= x/|x |2 is a proper f -biharmonic

map for f (x) = |x |4. When m 6= 4, this inversion is also a proper f -biharmonic
map for f (x)= |x |4−m .
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Proof. As we have seen in the proof of Theorem 2.8, a map into a Euclidean
space is an f -biharmonic map if and only if each of its component functions is
an f -biharmonic function. So, φ : Rm

\ {0} → Rm
\ {0} with φ(x) = x/|x |p is

f -biharmonic if and only if the function u : Rm
\ {0} → R with u(x) = x i

|x |−p

is an f -biharmonic function for any i = 1, 2, . . . ,m. This, by Proposition 2.5,
is equivalent to the product f1u being a harmonic function. Using the formula
4

Rm
(|x |α)= α(α− 2+m)|x |α−2 and a straightforward computation we have

4
Rm

u =4Rm
(x i
|x |−p)= x i

4
Rm
|x |−p

+ 2〈grad x i , grad |x |−p
〉

= p(p−m)x i
|x |−p−2.

For f (x)= |x |k , we have

4
Rm
( f4Rm

u)= p(p−m)4Rm
(x i
|x |k−p−2)

= p(p−m)[x i
4

Rm
|x |k−p−2

+ 2〈grad x i , grad |x |k−p−2
〉]

= p(p−m)(k− p− 2)(k− p+m− 2)x i
|x |k−p−4.

It follows that u(x) = x i
|x |−p is an f -biharmonic function with f = |x |k if and

only if p(p−m)(k− p− 2)(k− p+m− 2)= 0. Solving this equation we have
(i) p = 0, or (ii) p = m, or (iii) k = p+ 2, or (iv) k = p+ 2−m, from which the
proposition follows. �

Remark. (A) One can check (see also [Balmuş et al. 2007]) that for the cases
(i) p = 0 and (ii) p = m, the maps φ = x/|x |p are actually harmonic maps. We
know that in these cases these maps are f -biharmonic for any f . For k = 0 we have
f (x) = 1 and hence f -biharmonicity reduces to biharmonicity. In this case, (iii)
and (iv) imply that φ= x/|x |p is a proper biharmonic map if and only if p=−2, or
p =m− 2. Note that the case p =−2 was missed in the list of [ibid., Remark 5.8].

(B) For p 6= 0, m, and k 6= 0, the maps in cases (iii) and (iv) provide infinitely
many examples of proper f -biharmonic maps (i.e., which are neither harmonic nor
biharmonic maps).

(C) It is well known that the inversion in sphere Sm−1, φ : Rm
\ {0} → Rm

\ {0},
φ(x)= x/|x |2 is a conformal map between the same dimensional Euclidean spaces.
Note that the f -biharmonic map equation for conformal maps between the same
dimensional spaces was derived in [Lu 2013], however, not a single example of
such maps was found. Our Proposition 2.9 shows that there are infinitely many
proper f -biharmonic conformal diffeomorphisms and all but one of which are
proper f -biharmonic for at least two different choices of f functions. For a study
of biharmonic diffeomorphisms see [Baird et al. 2008].
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3. f -biharmonic submanifolds

Definition 3.1. A submanifold in a Riemannian manifold is called an f -biharmonic
submanifold if the isometric immersion defining the submanifold is an f -bihar-
monic map.

From the definition and the relationships among harmonic, biharmonic and
f -biharmonic maps we have the inclusions

{minimal} ⊂ {biharmonic} ⊂ { f-biharmonic}.

From now on we will call an f -biharmonic submanifold a proper f -biharmonic
submanifold if it is neither a minimal nor a biharmonic submanifold.

Theorem 3.2. Let φ : Mm
→ N m+1 be an isometric immersion of codimension one

with mean curvature vector η = Hξ . Then ϕ is an f -biharmonic if and only if

(14)
{
1H − H |A|2+ H RicN (ξ, ξ)+ H(1 f )/ f + 2(grad ln f )H = 0,
2A(grad H)+ m

2 grad H 2
− 2H(RicN (ξ))>+ 2H A(grad ln f )= 0,

where RicN
: Tq N → Tq N denotes the Ricci operator of the ambient space defined

by 〈RicN (Z),W 〉 = RicN (Z ,W ); A is the shape operator of the hypersurface with
respect to the unit normal vector ξ ; and 1, grad are the Laplace and the gradient
operator of the hypersurface respectively.

Proof. It is well known that the tension field of the hypersurface is given by

(15) τ(φ)= m Hξ.

From [Ou 2010, Theorem 2.1] we have the bitension field of the hypersurface:

(16) τ2(φ)= m(1H − H |A|2+ H RicN (ξ, ξ))ξ

−m
(
2A(grad H)+ m

2 (grad H 2)− 2H(Ric(ξ))>
)
.

To compute the term ∇φgrad f τ(φ), we choose a local orthonormal frame {ei }i=1,...,m

on M so that {dφ(e1), . . . , dφ(em), ξ} forms an adapted orthonormal frame of the
ambient space defined on the hypersurface. Identifying dφ(X)= X , ∇φX W =∇N

X W
we have

∇
φ

grad f τ(φ)= m∇N
grad f Hξ = m{[(grad f )H ]ξ − A(grad f )}.(17)

Substituting (15), (16) and (17) into the f -biharmonic map equation (2) and simpli-
fying the result we obtain the theorem. �

Corollary 3.3. A hypersurface φ : Mm
→ N m+1(C) in a space form of constant

sectional curvature C is f -biharmonic if and only if its mean curvature function H
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satisfies the equation

(18)
{
1H − H |A|2+mC H + H(1 f )/ f + 2(grad ln f )H = 0,
2A(grad H)+ 1

2 m grad H 2
+ 2H A(grad ln f )= 0.

Similarly:

Corollary 3.4. A submanifold φ : Mm
→ N n(C) in a space form of constant

sectional curvature C is f -biharmonic if and only if its mean curvature vector H
satisfies the equation{

1⊥H − (1 f/ f )H − 2∇⊥grad ln f H +TraceB(−, AH−)+Cm H = 0,
2 Trace A

∇
⊥

(−)H
(−)+ 1

2 m grad(|H |2)+ 2AH (grad ln f )= 0,

where 1⊥H =−Trace(∇⊥)2 H.

Corollary 3.5. A compact nonzero constant mean curvature f -biharmonic hyper-
surface φ : Mm

→ Sm+1 in a sphere with |A|2 = constant is biharmonic.

Proof. Substituting H = constant 6= 0 into the f -biharmonic hypersurface equation
(18) we have

(19)
{
1 f = (|A|2−m) f,
A(grad ln f )= 0.

If |A|2 is constant, we have either |A|2−m = 0, in which case the first equation
of (19) implies that f is a harmonic function, or |A|2−m 6= 0. In the latter case,
the first line of (19) implies that f is either subharmonic or superharmonic since
f > 0. Since M is compact, the well-known fact that any harmonic (subharmonic
or superharmonic) function on a compact manifold is constant implies that f is a
constant function. Thus, an f -biharmonic hypersurface is actually biharmonic. �

For classification of biharmonic submanifolds with parallel mean curvature vector
and |A|2 = constant in sphere see [Balmuş et al. 2013].

In Euclidean space R3, any biharmonic surface is minimal (see, e.g., [Jiang 1987;
Chen and Ishikawa 1998]), so there are no proper biharmonic surfaces. The first
question we ask is: Are there proper f -biharmonic surfaces in R3? We will show
that there are infinitely many. We achieve this by using a link between f -biharmonic
surfaces and biharmonic conformal immersions of surfaces in a three-manifold. For
the study of biharmonic conformal immersions of surfaces in three-manifolds we
refer the reader to [Ou 2009; 2012a]. We recall that a surface (i.e., an isometric
immersion) φ : M2

→ (N 3, h) is said to admit a biharmonic conformal immersion
into a three-manifold (N 3, h) if there exists a function λ : M2

→ (0,∞) such that
the conformal immersion φ : (M2, λ−2φ∗h)→ (N 3, h) is biharmonic map. In
this case, we also say that the surface φ : M2

→ (N 3, h) can be biharmonically
conformally immersed into the three-manifold (N 3, h) with conformal factor λ.
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Corollary 3.6. (i) A surface φ :M2
→(N 3, h) in a three-manifold is f -biharmonic

if and only if the conformal immersion

φ : (M2, f −1φ∗h)→ (N 3, h)

is a biharmonic map, i.e., the surface can be biharmonically conformally
immersed into (N 3, h) with conformal factor λ= f

1
2 .

(ii) The circular cylinder φ : D = {(θ, z) ∈ (0, 2π)×R}→ (R3, δ0) with φ(θ, z)=
(R cos θ, R sin θ, z) is an f -biharmonic surface for any function f from the
family f =

(
C2e±z/R

−C1C−1
2 R2e∓z/R

)
/2, where C1, C2 are constants.

Proof. Statement (i) follows from the definition of an f -biharmonic surface and
Theorem 2.3, whilst (ii) is obtained by using (i) and [Ou 2009, Proposition 2]. �

4. f -biharmonic curves

Another special case of f -biharmonic maps is an f -biharmonic curve.

Lemma 4.1. A curve γ : (a, b)→ (N m, g) parametrized by arclength is an f -
biharmonic curve with a function f : (a, b)→ (0,∞) if and only if

(20) f
(
∇

N
γ ′∇

N
γ ′∇

N
γ ′γ
′
− RN (γ ′,∇N

γ ′γ
′)γ ′

)
+ 2 f ′∇N

γ ′∇
N
γ ′γ
′
+ f ′′∇N

γ ′γ
′
= 0.

Proof. Let γ =γ (s) be parametrized by arclength. Then e1=∂/∂s is an orthonormal
frame on ((a, b), ds2) and dγ (e1)= dγ (∂/∂s)= γ ′. Thus, the tension field of the
curve is given by τ(γ )=∇γe1dγ (e1)=∇

N
γ ′γ
′. It is also easy to see that for a function

f : (a, b)→ (0,∞), 1 f = f ′′ and ∇γgrad f τ(γ )= f ′∇N
γ ′∇

N
γ ′γ
′. Substituting these

into the f -biharmonic map equation gives the lemma. �

Theorem 4.2. A curve γ : (a, b)→ N n(C) parametrized by arclength in an n-
dimensional space form is a proper f -biharmonic curve if and only if one of the
following cases happens:

(i) κ2 = 0, f = c1κ
−

3
2

1 and the curvature κ1 solves the ODE

3κ ′21 − 2κ1κ
′′

1 = 4κ2
1 (κ

2
1 −C);

(ii) κ2 6= 0, κ3 = 0, κ2/κ1 = c3, f = c1κ
−

3
2

1 , and the curvature κ1 solves the ODE

3κ ′21 − 2κ1κ
′′

1 = 4κ2
1 [(1+ c2

3)κ
2
1 −C].

Proof. Let γ : (a, b)→ N n(C) be a curve with arclength parametrization. Let
{Fi , i = 1, 2, . . . , n} be the Frenet frame along the curve γ (s), which is obtained as
the orthonormalization of the n-tuple

{
∇
(k)
∂/∂sdγ (∂/∂s) | k = 1, 2, . . . , n

}
. Then we
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have the following Frenet formula (see, e.g., [Laugwitz 1965]) along the curve:
∇
γ

∂/∂s F1 = κ1 F2,

∇
γ

∂/∂s Fi =−κi−1 Fi−1+ κi Fi+1 for i = 2, 3, . . . , n− 1,
∇
γ

∂/∂s Fn =−κn−1 Fn−1,

where {κ1, κ2, . . . , κn−1} are the curvatures of the curve γ .
Using this formula and a straightforward computation one finds the tension and

the bitension fields of the curve given by

τ(γ )=∇N
γ ′γ
′
= κ1 F2,

∇
N
γ ′∇

N
γ ′γ
′
=−κ2

1 F1+ κ
′

1 F2+ κ1κ2 F3,

τ2(γ )=−3κ1κ
′

1 F1+ (κ
′′

1 − κ1κ
2
2 − κ

3
1 + κ1C)F2+ (2κ ′1κ2+ κ1κ

′

2)F3+ κ1κ2κ3 F4.

Substituting these into the f -biharmonic curve equation (20) and comparing the
coefficients of both sides we have

(21)


−3κ1κ

′

1− 2κ2
1 f ′/ f = 0,

κ ′′1 − κ1κ
2
2 − κ

3
1 + κ1C + κ1 f ′′/ f + 2κ ′1 f ′/ f = 0,

2κ ′1κ2+ κ1κ
′

2+ 2κ1κ2 f ′/ f = 0,
κ1κ2κ3 = 0.

It is easy to see that if κ1 = constant 6= 0, then the first equation of (21) implies
that f is constant and the curve γ is biharmonic. Also, if κ2 = constant 6= 0, then
the first and the third equations imply that f is constant and hence the curve γ is
biharmonic again.

Now, if κ2 = 0, then the f -biharmonic curve equation (21) is equivalent to

(22)
{

3κ ′1/κ1+ 2 f ′/ f = 0,
κ ′′1 /κ1− κ

2
1 +C + f ′′/ f + 2(κ ′1/κ1)( f ′/ f )= 0.

Integrating the first equation of (22) and substituting the result in to the second we
obtain the statements in case (i).

Finally, if κ1 6= constant and κ2 6= constant, then the system (21) is equivalent to

(23)


f 2κ3

1 = c2
1,

( f κ1)
′′
= f κ1(κ

2
2 + κ

2
1 −C),

f 2κ2κ2 = c2,

κ3 = 0.

Solving the first equation of (23) we obtain f = c1κ
−

3
2

1 . Substituting the first
equation into the third one we obtain κ2/κ1 = c3. Finally, substituting κ2/κ1 = c3

and f κ1 = c1κ
−

1
2

1 into the second equation we obtain the results stated in case (ii).
This completes the proof of the theorem. �
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From the proof of Theorem 4.2 we have:

Corollary 4.3. A curve γ : (a, b)→ N n(C) parametrized by arclength in an n-
dimensional space form with constant geodesic curvature is biharmonic.

It is known [Dimitrić 1992] that any biharmonic curve in a Euclidean space is
a geodesic. It would be interesting to know if there is any proper f -biharmonic
curve in a Euclidean space. Our next theorem gives a complete classification of
proper f -biharmonic curves in R3 which, together with the fundamental theorem
for curves in R3, can be used to produce many examples of proper f -biharmonic
curves in a three-dimensional Euclidean space.

Theorem 4.4. A curve γ : (a, b)→R3 parametrized by arclength in a three-dimen-
sional Euclidean space is a proper f -biharmonic curve if and only if

(i) γ is a planar curve with τ(s)=0, κ(s)=4c2/(16+(c2s+c3)
2), and f =c1κ

−
3
2 ,

where c1 > 0, c2 > 0, and c3 are constants, or

(ii) γ is a general helix with κ(s)= 4c2/(16(1+ c2)+ (c2s+ c3)
2), τ/κ = c, and

f = c1κ
−

3
2 , where c 6= 0, c1 > 0, c2 > 0, and c3 are constants.

Proof. For the arclength-parametrized curve γ : (a, b)→R3, we have the curvature
κ = κ1 and the torsion τ = κ2. Applying Theorem 4.2 with C = 0 we conclude that
the curve γ is a proper f -biharmonic curve if and only if

(i) τ = 0, f = c1κ
−

3
2 and the curvature κ solves the ODE

3κ ′2− 2κκ ′′ = 4κ4, or

(ii) τ 6= 0, τ/κ = c, f = c1κ
−

3
2

1 , and the curvature κ solves the ODE

3κ ′2− 2κκ ′′ = 4(1+ c2)κ4.

Solving the ODEs in each case and noting that τ = 0 means the curve is planar and
τ/κ = c means the curve is a general helix (Lancret’s theorem; see, e.g., [Barros
1997]) we obtain the theorem. �

Remark. (A) Recall that the fundamental theorem for curves in R3 states that for
any given functions p, q : [s0, s1]→R with p(s) > 0 for all s ∈ [s0, s1], there exists
a unique (up to a rigid motion) curve in R3 whose curvature and torsion take on the
prescribed functions κ(s)= p(s), τ(s)= q(s). This, together with our Theorem 4.4,
implies that there are many examples of proper f -biharmonic curves in R3.

(B) Our classification theorem also implies that proper f -biharmonic curves in R3

must be special subclasses of planar curves or general helices in R3. As the following
example shows that there are general helices which are not proper f -biharmonic
curves.
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Example 3. The general helix γ : I →R3 with γ (s)=
( 2

3(1+
s
2)

3
2 , 2

3(1−
s
2)

3
2 , s
√

2

)
is never an f -biharmonic curve for any function f .

In fact, one can easily check that |γ ′(s)| = 1 so s is an arclength parameter for
the curve. A straightforward computation gives κ(s) = τ(s) = 1/(2

√
2
√

4− s2).
So, the curve is indeed a general helix with τ/κ = 1. Since the curvature is not of
the form given in case (ii) of Theorem 4.4 we conclude that the helix is never an
f -biharmonic curve for any f .

Finally, we give an example of a proper f -biharmonic planar curve to close this
section.

Example 4. The planar curve γ (s)= (4 ln |
√

16+ s2+ s|,
√

16+ s2 ) is a proper
f -biharmonic curve.

In fact, we can check that

γ ′(s)=
(

4
√

16+s2
,

s
√

16+s2

)
and |γ ′(s)| = 1.

So s is the arclength parameter of the curve. In this case, we have the curvature
κ(s) = |γ ′′(s)| = 4/(16+ s2) and, by case (i) of Theorem 4.4, the curve γ is a
proper f -biharmonic curve with f = 8c1(16+ s2)

3
2 for some constant c1 > 0.
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