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NONCONCORDANT LINKS WITH HOMOLOGY COBORDANT
ZERO-FRAMED SURGERY MANIFOLDS

JAE CHOON CHA AND MARK POWELL

We use topological surgery theory to give sufficient conditions for the zero-
framed surgery manifold of a 3-component link to be homology cobordant
to the zero-framed surgery on the Borromean rings (also known as the 3-
torus) via a topological homology cobordism preserving the free homotopy
classes of the meridians.

This enables us to give examples of 3-component links with unknotted
components and vanishing pairwise linking numbers, such that any two of
these links have homology cobordant zero-surgeries in the above sense, but
the zero-surgery manifolds are not homeomorphic. Moreover, the links are
not concordant to one another, and in fact they can be chosen to be height h
but not height h + 1 symmetric grope concordant, for each h which is at
least three.

1. Introduction

It is well known that the study of homology cobordism of 3-manifolds is essential
for understanding the concordance of knots and links: homology cobordism of the
exteriors of links in S3 is equivalent to concordance in a homology S3

× I , and
an additional mild normal generation condition for π1 is equivalent to topological
concordance in S3

× I (this also holds modulo the 4-dimensional Poincaré conjecture
in the smooth case).

We recall the definitions: two m-component links L0 and L1 in S3 are said to
be topologically (respectively smoothly) concordant if there exist m locally flat
(respectively smoothly embedded) disjoint annuli in S3

× [0, 1] cobounded by
components of L0×{0} and −L1×{1}. Two 3-manifolds M0 and M1 bordered by
a 2-manifold 6, that is, endowed with a marking µi :6

'
−→ ∂Mi , are topologically

(respectively smoothly) homology cobordant if there is a topological (respectively
smooth) 4-manifold W with

∂W = M0 t−M1 t6×[0, 1]/(µ0(x)∼ x ×{0}, µ1(x)∼ x ×{1}, x ∈6),

MSC2010: 57M25, 57N70.
Keywords: homology cobordism, zero-framed surgery, topological surgery, link concordance,

symmetric grope concordance.
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such that the inclusions Mi → W (i = 0, 1) induce isomorphisms on integral
homology groups. In this paper links are oriented, and link exteriors are always
bordered by

⊔
m S1
× S1 under the zero framing.

In high dimensions, concordance classification results were obtained by studying
homology surgery, with the aim of surgeries being to produce a homology cobordism
of the exteriors (for example, see [Cappell and Shaneson 1974; 1980; Le Dimet
1988]). On the other hand, for knots and links in dimension three, the zero-surgery
manifolds and their 4-dimensional homology cobordisms have been extensively
used in the literature in order to understand the structure peculiar to low dimensions,
especially in the topological category. Recall that performing zero-framed surgery
on a link in S3 yields a closed 3-manifold, called the zero-surgery manifold.

The classical invariants such as the knot signature and Levine’s algebraic knot
concordance class [Levine 1969a; 1969b] are obtained from the zero-surgery man-
ifold of a knot, via the Blanchfield form. Also, higher-order knot concordance
obstructions, such as Casson–Gordon invariants [Casson and Gordon 1978; 1986],
and Cochran–Orr–Teichner L2-signatures [Cochran et al. 2003] are obtained from
the zero-surgery manifold (often together with the homology class of the meridian).

A natural interesting question is whether the homology cobordism class of a
zero-surgery manifold determines the concordance class of a knot or link or if it
determines the homology cobordism class of the exterior.

In this paper we show, in a strong sense involving homotopy of meridians, that
the answer is negative for a large class of links satisfying a certain nonvanishing
condition on Milnor’s µ-invariants, even in the framework of symmetric grope and
Whitney tower generalisations of concordance and homology cobordism in the
sense of [Cochran et al. 2003; Cha 2014]. Also, we employ topological surgery in
dimension 4 to give a new construction of homology cobordisms of zero-surgery
manifolds. Next we state our main theorems, after which we will discuss these
aspects further.

Theorem 1.1. Suppose h ≥ 3. Then there are infinitely many 3-component links
L0, L1, . . . , with vanishing pairwise linking numbers and with unknotted compo-
nents, satisfying the following for any i 6= j :

(1) The zero-surgery manifolds ML i and ML j are not homeomorphic.

(2) There is a topological homology cobordism between ML i and ML j in which
the k-th meridians of L i and L j are freely homotopic for each k = 1, 2, 3.

(3) The links L i and L j are height h but not height h+ 1 symmetric grope concor-
dant. In particular, L i and L j are not concordant.

For a definition of height h symmetric grope concordance, see Definition 4.2. Our
links are obtained from the Borromean rings by performing a satellite construction
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along a curve lying in the kernel of the map π1(S3 r L)→ π1(ML) induced by
inclusion.

As a counterpoint to Theorem 1.1, we show that there are infinite families of
links with the same nonvanishing Milnor invariants, with homeomorphic zero-
surgery manifolds preserving the homotopy classes of the meridians, but which are
not concordant.

The Milnor invariant of an m-component link associated to a multi-index I =
i1i2 · · · ir with i j ∈ {1, . . . ,m}, as defined in [Milnor 1957], will be denoted by
µL(I ). We denote its length by |I | := r . Define k(m) := blog2(m− 1)c.

Theorem 1.2. Let I be a multi-index with nonrepeating indices with length m ≥ 2.
For any h ≥ k(m)+2 there are infinitely many m-component links L0, L1, . . . , with
unknotted components, satisfying the following:

(1) The L i have identical µ-invariants, µL i (I )= 1, and µL i (J )= 0 for |J |< |I |.

(2) There is a homeomorphism between the zero-surgery manifolds ML i and ML j

which preserves the homotopy classes of the meridians.

(3) The links L i and L j are height h but not height h+ 1 symmetric grope concor-
dant. In particular, L i and L j are not concordant.

The case when m ≥ 3 should be compared with Theorem 1.1 since then the
links L i have vanishing pairwise linking numbers. To construct such links we start
with certain iterated Bing doubles constructed using T. Cochran’s algorithm, which
realise the Milnor invariant required. We then perform satellite operations which
affect the concordance class of the link but do not change the homeomorphism type
of the zero-surgery manifold.

We remark that we could also phrase Theorems 1.1 and 1.2 in terms of symmetric
Whitney tower concordance instead of grope concordance.

In the three subsections below, we discuss some features of Theorem 1.1, re-
garding (i) the use of topological surgery in dimension 4, (ii) link concordance
versus zero-surgery homology cobordism, and (iii) link exteriors and the homology
surgery approach.

1A. Topological surgery for 4-dimensional homology cobordism. An interesting
aspect of the proof of Theorem 1.1 is that we employ topological surgery in
dimension 4 to give a sufficient condition for certain zero-surgery manifolds of
3-component links to be homology cobordant. It is well known that topological
surgery in dimension 4 is useful for obtaining homology cobordisms (and con-
sequently concordances), although the current state of the art in terms of “good”
groups, for which the π1-null disc lemma is known, is still insufficient for the
general case. M. Freedman showed that knots of Alexander polynomial one are
concordant to the unknot [Freedman and Quinn 1990, Theorem 11.7B]. J. Davis
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[2006] extended the program to show that 2-component links with Alexander
polynomial one are concordant to the Hopf link. These two cases use topological
surgery over fundamental groups Z and Z2, respectively. Due to the rarity of good
groups for 4-dimensional topological surgery, there are not many other situations
where such positive results on knot and link concordance can currently be proven. As
another case, S. Friedl and P. Teichner [2005] found sufficient conditions for a knot
to be homotopy ribbon, and in particular slice, with a certain ribbon group ZnZ

[ 1
2

]
.

We give another instance of the utility of topological surgery for constructing
homology cobordisms, using the group Z3, which is manageable from the point
of view of topological surgery in dimension 4. Indeed, our sufficient condition
for zero-surgery manifolds to be homology cobordant focuses on the Borromean
rings as a base link. The zero-surgery manifold MBor of the Borromean rings is the
3-torus T 3

= S1
× S1
× S1, whose fundamental group is Z3.

To state our result, we with the following notation: Let

3 := Z[Z3
] = Z[t±1

1 , t±1
2 , t±1

3 ].

Denote the zero-surgery manifold of a link L by ML as before. For a 3-component
link L with vanishing pairwise linking numbers, there is a canonical homotopy
class of maps fL : ML → MBor = T 3 which send the homotopy class of the i-th
meridian of L to that of the Borromean rings, namely the i-th circle factor of T 3.
After choosing an identification of π1(T 3)= Z3, we can use this to define the 3-
coefficient homology H1(ML;3). We say that a map f :ML→T 3 is a3-homology
equivalence if f is homotopic to fL and f induces isomorphisms on H∗(−;3).

Theorem 1.3. Suppose L is a 3-component link whose components have trivial
Arf invariants and there exists a 3-homology equivalence ML → T 3. Then there
is a homology cobordism W between ML and T 3

= MBor for which the inclusion-
induced maps π1(ML)→ π1(W )

'
←− π1(T 3) are such that the composition from left

to right takes meridians to meridians.

1B. Link concordance versus zero-surgery homology cobordism. We review the
general question of whether links with homology cobordant zero-surgery manifolds
are concordant. The answer to the basic question is easily seen to be no, once one
knows of a result of C. Livingston [1983] that there are knots not concordant to
their reverses. Note that a knot and its reverse have the same zero-surgery manifold.
This leads us to consider some additional conditions on the homology cobordism,
involving the meridians. In what follows, meridians are always positively oriented.

First, observe that the exteriors of two links are homology cobordant if and
only if the zero-framed meridians cobound framed annuli disjointly embedded in a
homology cobordism of the zero-surgery manifolds. (For the if direction, note that
the exterior of the framed annuli is a homology cobordism of the link exteriors.)
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In particular, it holds if two links (or knots) are concordant.
Regarding the knot case, in [Cochran et al. 2013], T. Cochran, B. Franklin,

M. Hedden and P. Horn considered homology cobordisms of zero-surgery manifolds
in which the meridians are homologous: in the smooth category, they showed that the
existence of such a homology cobordism is insufficient for knots to be concordant.
In the topological case this is still left unknown.

Concerning a stronger homotopy analogue, the following is unknown in both the
smooth and topological cases:

Question 1.4. If there is a homology cobordism of zero-surgery manifolds of
two knots in which the meridians are homotopic, are the knots concordant? Or
concordant in a homology S3

× I ?

For the link case, results in the literature give nonconcordant examples whose
zero-surgery manifolds admit a homology cobordism with homotopic meridians.
As a generic example in the topological category, consider a 2-component link
with linking number one. The zero-surgery manifold is a homology 3-sphere,
which bounds a contractible topological 4-manifold by [Freedman and Quinn 1990,
Corollary 9.3C]. Taking the connected sum of such 4-manifolds, one obtains the
following: the zero-surgery manifolds of any two linking number one 2-component
links cobound a simply connected topological homology cobordism. Note that
in this case the meridians are automatically homotopic. There are many linking
number one 2-component links which are not concordant, as can be detected, for
example, by the multivariable Alexander polynomial [Kawauchi 1978; Nakagawa
1978]. For related in-depth study, the reader is referred to, for instance, [Cha and
Ko 1999; Friedl and Powell 2011; Cha 2014]. With our respective coauthors, we
gave nonconcordant linking number one links with two unknotted components, for
which abelian invariants such as the multivariable Alexander polynomial are unable
to obstruct them from being concordant.

There are other examples which have knotted components: in [Cochran et al.
2013, end of Section 1], the authors discuss 2-component linking number zero links
with homeomorphic zero-surgery manifolds which have nonconcordant (knotted)
components. These links are obviously not concordant, and it can be seen that the
homeomorphisms preserve meridians up to homotopy.

By contrast with the above examples, our links have unknotted components
and vanishing pairwise linking numbers. Another feature exhibited by the links of
Theorems 1.1 and 1.2 is that the entire subtlety of symmetric grope concordance of
links can occur, within a single homology cobordism/homeomorphism class of the
zero-surgeries, even modulo local knot tying.

We remark that all the links of Theorems 1.1 and 1.2 lie in the same “k-solv-
equivalence class” for all k in the sense of [Cochran and Kim 2008, Definition 2.5].
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1C. Link exteriors and the homology surgery approach. Our results serve to un-
derline the philosophy that when investigating the relative problem of whether
two links are concordant, and neither of them are the unlink, one should consider
obstructions to homology cobordism of the link exteriors viewed as bordered mani-
folds, rather than to homology cobordism of the zero-surgery manifolds, even in low
dimensions. This was implemented in, for example, [Kawauchi 1978; Nakagawa
1978; Cha 2014] (see also [Friedl and Powell 2011] for a related approach).

Although we stated our results in terms of grope concordance of links in The-
orems 1.1 and 1.2 given above, in fact we show more: the link exteriors are far
from being homology cobordant, as measured in terms of Whitney towers. A more
detailed discussion is given in Section 5. For the purpose of distinguishing exteriors,
we use the amenable Cheeger–Gromov ρ-invariant technology for bordered 3-
manifolds (particularly for link exteriors) developed in [Cha 2014], generalising
applications of ρ-invariants to concordance and homology cobordism in [Cochran
et al. 2003; 2009; Cha and Orr 2012].

We will now discuss our results from the viewpoint of the homology surgery
approach to link concordance classification, initiated by S. Cappell and J. Shaneson
[1974; 1980] and implemented in high dimensions by J. Le Dimet [1988] using
P. Vogel’s homology localisation of spaces [1978]. The strategy consists of two
parts. Consider the problem of comparing two given link exteriors. First we decide
whether the exteriors have the same “Poincaré type”, which roughly means that
they have homotopy-equivalent Vogel homology localisations. If so, there is a
common finite target space, into which the exteriors are mapped by homology
equivalences rel. boundary. Once this is the case, a surgery problem is defined,
and one can try to decide whether homology surgery gives a homology cobordism
of the exteriors. The first step is obstructed by homotopy invariants (including
Milnor µ-invariants in low dimension). The failure of the second step is measured
by surgery obstructions, which are not yet fully formulated in low dimension (even
modulo the fact that 4-dimensional surgery might not work), since the fundamental
group plays a more sophisticated central rôle; see [Powell 2012] for the beginning
of an algebraic surgery approach to this problem in the context of knot slicing.

Our examples illustrate that for many Poincaré types, namely those in Theorems
1.1 and 1.2, we get a rich theory of surgery obstructions within each Poincaré
type, which is invisible via zero-surgery manifolds. We remark that for our links
L i in Theorems 1.1 and 1.2, there is a homology equivalence of the exterior of
each L i into that of a fixed one, say L1, since we use satellite constructions (see
Section 4). It follows that the exteriors have the same Poincaré type in the above
sense. In this paper, (parts of the not yet fully formulated) homology surgery
obstructions in dimension 4 have their incarnation in Theorem 5.2, the Amenable
Signature Theorem.
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Organisation of the paper. In Section 2, we explore the implications of the hy-
pothesis that a homology equivalence f : ML → T 3 as in Theorem 1.3 exists, and
we prove Theorem 1.3 in Section 3. In Section 4, we construct links with a given
Milnor invariant with nonrepeating indices, and perform satellite operations on the
links to construct the links of Theorems 1.1 and 1.2, which are height h symmetric
grope concordant. In Section 5, we show that none of these links are height h+ 1
grope concordant to one another.

2. Homology type of zero-surgery manifolds and the 3-torus

This section discusses the hypotheses of Theorem 1.3. We begin the section by
briefly reminding the reader who is familiar with Kirby calculus of a nice way to
see the following fact.

Lemma 2.1. The zero-surgery manifold of the Borromean rings is homeomorphic
to the 3-torus.

Proof. Place dots on two components of the Borromean rings and a zero near the
other. Each component of the Borromean rings is a commutator in the meridians of
the other two components, so this is a Kirby diagram for T 2

×D2, whose boundary
is T 3. The 1-handles (dotted circles) can be replaced with zero-framed 2-handles
without changing the boundary. �

In the following proposition we expand on the meaning and implications of
the condition in Theorem 1.3. Denote the exterior of a link L by X L := S3 r νL
as before.

Proposition 2.2. Suppose that L is a 3-component link. Then the following are
equivalent:

(1) There is a 3-homology equivalence f : ML → T 3.

(2) The preferred longitudes generate the link module H1(X L;3).

(3) The pairwise linking numbers of L vanish and H1(ML;3)= 0.

Furthermore, (any of ) the above conditions imply that L has multivariable Alexan-
der polynomial 1L = (t1 − 1)(t2 − 1)(t3 − 1), and this implies that the Milnor
invariant µL(123) is equal to ±1.

Proof. First we will observe that (2) and (3) are equivalent. Longitudes of L
represent elements in H1(X L;3) ∼= π1(X L)

(1)/π1(X L)
(2) if and only if they are

zero in H1(X L;Z)∼=Z3; that is, the pairwise linking numbers are zero. If this is the
case, H1(ML;3) is isomorphic to H1(X L;3)/〈longitudes〉, since ML is obtained
by attaching three 2-handles to EL along the longitudes and then attaching three
3-handles along the boundary. It follows that longitudes generate H1(X L;3) if and
only if H1(ML;3)= 0.
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Suppose (1) holds. Denote the meridians of L by µi (i = 1, 2, 3) and the linking
number of the i-th and j-th components by `i j . The i-th longitude λi , which is
homologous to

∑
j 6=i `i jµi , is zero in H1(ML;Z)∼= H1(T 3

;Z). Since { f∗([µi ])}

forms a basis of H1(T 3
;Z)∼= Z3, it follows by linear independence that `i j = 0 for

any i and j . Also, H1(ML;3)∼= H1(T 3
;3)= 0. This shows that (3) holds.

Suppose (3) holds. Start with a map g : ∂X L =
⊔

3 S1
× S1
→ T 3 that sends µi

to the i-th S1 factor and λi to a point. Observe that g∗ : H1(∂X L;Z)→ H1(T 3
;Z)

factors through the inclusion-induced map i∗ : H1(∂X L;Z)→ H1(ML;Z) and the
identifications H1(ML;Z)

'
−→ Z3 '

←− H1(T 3
;Z); this follows from the fact that

H1(∂X L;Z)∼= Z6 is generated by the µi and λi and that both g∗ and i∗ are quotient
maps, with their kernels generated by the λi . Since T 3 is a K (Z3, 1), elementary
obstruction theory shows that g extends to a map f : ML → T 3.

Consider the universal coefficient spectral sequence (see, e.g., [Levine 1977,
Theorem 2.3]) E2

p,q = Extp
3(Hq(ML;3),3)⇒ H n(ML;3). We have E2

0,1 = 0
since H1(ML;3) = 0, and E2

1,0 = Ext13(Z,3) = H 1(T 3
;3) = 0. It follows

that H 1(ML;3) = 0. By duality, H2(ML;3) = 0. Also, H3(ML;3) = 0 since
the Z3-cover of ML is noncompact. Since H0(ML;3) ∼= Z ∼= H0(T 3

;3) and
Hi (T 3

;3) = 0 for i > 0, it follows that f is a 3-homology equivalence. This
completes the proof of the equivalence of (1), (2) and (3).

Suppose (1), (2) and (3) hold. Recall that the scalar multiplication of a loop
by ti in the module H1(X L;3) is defined to be conjugation by µi . Since λi and µi

commute, we have (ti − 1)λi = 0 in H1(X L;3). From this and (2), it follows that
there is an epimorphism of A :=

⊕3
i=13/〈ti −1〉 onto H1(X L;3). Since the zero-

th elementary ideal of A is the principal ideal generated by (t1− 1)(t2− 1)(t3− 1),
it follows that 1L is a factor of (t1− 1)(t2− 1)(t3− 1). We now invoke the Torres
condition (see, e.g., [Kawauchi 1996, Theorem 7.4.1]):

1L(1, t2, t3)= (t
`12
2 t`13

3 − 1)1L ′(t2, t3),

where L ′ is the sublink of L with the first component deleted and `i j is the pairwise
linking number. Since `i j = 0 by (3), we have 1L(1, t2, t3) = 0. It follows
that t1 − 1 is a factor of 1L . Similarly t2 − 1 and t3 − 1 are factors. Therefore
1L(t1, t2, t3)= (t1− 1)(t2− 1)(t3− 1).

To show the last part, suppose that 1L(t1, t2, t3)= (t1− 1)(t2− 1)(t3− 1). By
[Kawauchi 1996, Proposition 7.3.14], the single-variable Alexander polynomial
1L(t) of L is given by

1L(t)= (t − 1)1L(t, t, t)= (t − 1)4 .= ((
√

t)−1
−
√

t)4.

It follows that L has Conway polynomial ∇L(z)= z4, by the standard substitution
z = (
√

t)−1
−
√

t . Cochran [1985, Theorem 5.1] identified the coefficient of z4
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in ∇L(z) with (µL(123))2 for 3-component links with pairwise linking number
zero. Applying this to our case, it follows that µL(123)=±1. �

3. Construction of homology cobordisms using topological surgery

This section gives the proof of Theorem 1.3. The proof will use surgery theory, and
will parallel the proof given by Davis [2006] (see also [Hillman 2002, Section 7.6]).
We will provide some details in order to fill in where the treatment in [Davis 2006]
was terse, and to convince ourselves that the analogous arguments work in the case
of interest.

For the convenience of the reader we restate Theorem 1.3 here.

Theorem 1.3. Suppose L is a 3-component link whose components have trivial
Arf invariants and there exists a 3-homology equivalence ML → T 3. Then there
is a homology cobordism W between ML and T 3

= MBor for which the inclusion-
induced maps π1(ML)→ π1(W )

'
←− π1(T 3) are such that the composition from left

to right takes meridians to meridians.

Remark 3.2. It is an interesting question to determine whether there are extra
conditions which can be imposed in order to see that the Arf invariants of the
components are forced to vanish by the homological assumptions. In the cases of
knots and 2-component links with Alexander polynomial one, the Arf invariants
of the components are automatically trivial. For knots, 1K (−1) computes the Arf
invariant, by [Levine 1966]. For 2-component links one observes that 1L(t, 1)
and 1L(1, t) give the Alexander polynomials of the components, by the Torres
condition, and then applies Levine’s theorem. These arguments do not seem to
extend to the 3-component case of current interest.

The proof of Theorem 1.3 will occupy the rest of this section. In order to produce
a homology cobordism, we will first show that there is a normal cobordism between
normal maps f : ML → T 3 and Id : T 3

→ T 3. Interestingly, we can work with
smooth manifolds in order to establish the existence of a normal cobordism. This
will make arguments which invoke tangent bundles and transversality easier to
digest. Only at the end of the proof of Theorem 1.3, where we take connected
sums with the E8-manifold, and where we claim that the vanishing of a surgery
obstruction implies that surgery can be done, do we need to leave the realm of
smooth manifolds.

Definition 3.3. Let X be an n-dimensional manifold with a vector bundle ν→ X .
A degree-one normal map (F, b) over X is an n-manifold M with a map F :M→ X
which induces an isomorphism F∗ : Hn(M;Z)

'
−→ Hn(X;Z), together with a stable

trivialisation b : TM ⊕ F∗ν⊕ εl ∼= εk .
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A degree-one normal cobordism (J, e) between normal maps (F : M→ X, b)
and (G : N → X, c) is an (n+ 1)-dimensional cobordism between M and N with
a map J :W → X × I extending F : M→ X ×{0} and G : M→ X ×{1}, which
induces an isomorphism

J∗ : Hn+1(W, ∂W ;Z)
'
−−→ Hn+1(X × I, X ×{0, 1};Z),

together with a stable trivialisation e : TW ⊕ J ∗(ν× I )⊕ εl ′ ∼= εk′ .

For us, let X = T 3, and let ν be its tangent bundle. We fix a framing on the stable
tangent bundle of the target torus T 3 once and for all. Note that this canonically
determines a trivialisation of the tangent bundle of F∗ν, for any map F : M→ X ,
by the following diagram, in which the bottom composition is the constant map,
denoted ∗, and the top composition is the pull back F∗ν. The middle composition
is the induced framing.

M ×{0}

��

F×Id // T 3
×{0} ν //

��

BO(n)

��
M × I

F×Id // T 3
× I // BO

M ×{1}

OO

F×Id // T 3
×{1} ∗ //

OO

BO(n)

OO

A framing of the tangent bundle of the domain therefore determines a normal map.

Lemma 3.4. Let L be a link whose components have trivial Arf invariants, and
let f : ML → T 3 be a degree-one normal map which induces a Z-homology
isomorphism and which maps a chosen meridian µi to the i-th S1 factor of T 3 for
i = 1, 2, 3. We can make a homotopy of f and choose a framing on ML so that
f : ML → T 3 and Id : T 3

→ T 3 are degree-one normal cobordant.

Proof. We need to show that we can choose a framing on ML such that the
disjoint union ML t−T 3 represent the trivial element of �fr

3 (T
3). We compute this

bordism group:

�̃fr
3 (T

3)∼= �̃
fr
4 (6T 3)∼= �̃

fr
4 (S

2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3
∨ S4),

with this last isomorphism induced by a homotopy equivalence of spaces. There
is a copy of Si+1 for each i-cell of T 3, for i = 1, 2, 3. To see this homotopy
equivalence, we need to see that the attaching maps of the cells are null-homotopic.
The suspension of the 1-skeleton of T 3 is S2

∨ S2
∨ S2. The Hilton–Milnor theorem

[Hilton 1955, Theorem A] computes the homotopy groups of a wedge of spheres.
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The attaching maps for the 2-cells of T 3 become the attaching maps for the 3-cells
of 6T 3, namely maps in

π2(S2
∨ S2
∨ S2)∼=

⊕
3

π2(S2)∼=
⊕

3

Z,

where the first isomorphism is by the Hilton–Milnor theorem. The commutator
attaching maps become trivial in the abelian π2(S2). Therefore the 3-skeleton
of 6T 3 is a wedge S2

∨ S2
∨ S2
∨ S3
∨ S3
∨ S3. The attaching map for the 3-cell

of T 3 becomes the attaching map for the 4-cell of 6T 3, a map in

π3(S2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3)∼=

⊕
1≤i≤3

π3(S3)⊕
⊕

3

π3(S2)⊕
⊕

1≤i< j≤3

π3(S3),

again by the Hilton–Milnor theorem, where the last three π3(S3) summands include
into π3(S2

∨ S2
∨ S2
∨ S3
∨ S3
∨ S3) via composition with the Whitehead product:

let fi : S2
→ S2

i be a generator of π2(S2
i ), where S2

i is the i-th S2 component
in the wedge. Then the Whitehead product is the homotopy class of the map
[ fi , f j ] ∈ π3(S2

i ∨ S2
j ), which is the attaching map for the 4-cell in a standard

cellular decomposition of S2
× S2. Since π2(S1)∼= π2(S1

∨ S1)∼= 0, the summands
associated to the S2 components of the wedge do not arise from a suspension. The
summands associated to the S3 components are null-homotopic since the 3-cell
of T 3 is attached to each 2-cell twice, once on either side. This completes the
explanation of the claimed homotopy equivalence:

6T 3
' S2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3
∨ S4.

By Mayer–Vietoris, the bordism group �̃fr
4 (S

2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3
∨ S4) is

a direct sum⊕
3

�̃fr
4 (S

2)⊕
⊕

3

�̃fr
4 (S

3)⊕ �̃fr
4 (S

4)∼=
⊕

3

�̃fr
2 (S

0)⊕
⊕

3

�̃fr
1 (S

0)⊕ �̃fr
0 (S

0)

∼=

⊕
3

�fr
2 ⊕

⊕
3

�fr
1 ⊕�

fr
0

∼=

⊕
3

Z2⊕
⊕

3

Z2⊕Z.

Therefore

�fr
3 (T

3)∼=�
fr
3 ⊕

⊕
3

Z2⊕
⊕

3

Z2⊕Z∼= Z24⊕
⊕

3

Z2⊕
⊕

3

Z2⊕Z.

The isomorphism is given as follows. Let

pri : T
3
= S1
× S1
× S1
−→ S1
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be given by projection onto the i-th factor. Similarly, let

qri : T
3
= S1
× S1
× S1
−→ S1

× S1

be given by forgetting the i-th factor. Let F : M→ T 3 be an element of �fr
3 (T

3).
Making all maps transverse to a point, we obtain an 8-tuple(
[M], (pr1 ◦F)

−1(∗), (pr2 ◦F)
−1(∗), (pr3 ◦F)

−1(∗),

(qr1 ◦F)
−1(∗), (qr2 ◦F)

−1(∗), (qr3 ◦F)
−1(∗), F−1(∗)

)
∈�fr

3 ⊕
⊕

3

�fr
2 ⊕

⊕
3

�fr
1 ⊕�

fr
0
∼= Z24⊕

⊕
3

Z2⊕
⊕

3

Z2⊕Z.

We consider each of the summands in turn.
By choosing the appropriate orientation on ML and making the degree-one normal

maps transverse to a point, one can arrange for the disjoint union f −1(∗)t− Id−1(∗)

to be equal to {pt} t−{pt} = 0 ∈�fr
0 .

As observed in [Davis 2006, proof of the lemma], we can change the framing
so that the elements of �fr

1 agree. First, we change the framing on each of three
chosen meridians µi to the link components L i .

Orientable k-plane vector bundles over S1 are classified by homotopy classes of
maps [S1,BSO(k)]. Consider the exact sequence

π2(BSO)−→ π2(BSO,BSO(k))−→ π1(BSO(k))
γ
−−→ π1(BSO).

A stably trivial vector bundle over S1 gives us an element of ker(γ ). A choice of
trivialisation of the vector bundle gives us a null homotopy and therefore an element
of π2(BSO,BSO(k)). The possible choices of stable trivialisations, or framings,
are indexed by π2(BSO)∼= π1(SO)∼= Z2.

We can therefore, if necessary, change the framing on each µi to be the bounding
framing using an element of π1(SO(2)) which maps to the nontrivial element of
π1(SO). Use the element of π1(SO(2)) to change the framing on the normal bundle
of µi in ML . We claim that these changes in the framing can be extended to the
whole of ML . To see this, we argue as follows. The dual of the inclusion map
H 1(ML;Z)→ H 1(µi ;Z) is surjective, since each [µi ] is a generator of H1(ML;Z).
The change of framing map µi → SO(2) represents a homotopy class of maps in
[µi , S1

] and therefore an element of H 1(µi ;Z). Since this pulls back to an element
of H 1(ML;Z), which can in turn produce a map ML → SO(2), the change of
framing map can be extended as claimed.

Let Ni ⊂ ML be the submanifolds given by (qri ◦ f )−1(∗), after perturbing f to
make qri ◦ f transverse to a point. As the inverse image of the i-th S1 factor of T 3

(e.g., f −1(S1
×{∗}× {∗})), Ni is a collection of circles. After a homotopy of f , it

can be arranged, by the assumption on f , that Ni is a single meridian µi , which has
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the bounding framing and therefore represents the zero element in �fr
1 . To make

this arrangement, it suffices to be able to remove circles Ni whose image in T 3

is null-homologous. But in T 3, a null-homologous curve is also null-homotopic.
Therefore we can make a homotopy of f so that Ni misses S1

×{∗}× {∗}.
After another homotopy, the inverse image (pri ◦ f )−1(∗) can be arranged to be

a capped-off Seifert surface Fi ∪ D2, where Fi is a Seifert surface for L i (possibly
with closed connected components). To see this, we again use our assumption
that f sends the i-th meridian µi to the i-th circle. This assumption enables us
to homotope f so that pri ◦ f sends a regular neighbourhood µi × D2 to S1 by
projection onto the first factor. Then the inverse image is as desired. A homotopy
of f preserves the framed bordism class of (pri ◦ f )−1(∗), and the class [Fi ∪D2

] ∈

�fr
2 is determined by the Arf invariant of L i . By hypothesis, this vanishes.
Finally, again following [Davis 2006] (see also [Freedman and Quinn 1990,

proof of Lemma 11.6B]), the framing can be altered in the neighbourhood of
a point to change the element [M] ∈ �fr

3 to the trivial element. We recall the
definition of the J -homomorphism J : π3(SO)→ π S

3
∼=�fr

3 , for the convenience of
the reader, where π S

k is the k-th stable homotopy group of spheres. (Incidentally,
π3(SO) ∼= Z and π S

3
∼= Z24.) Given θ : S3

→ SO, choose a k sufficiently large so
that we can represent θ by a map θ : S3

→ SO(k). We proceed to construct a map
(J (θ) : Sk+3

→ Sk) ∈ π S
3 . So:

Sk+3
= S3
× Dk

∪S3×Dk−1 D4
× Sk−1.

Define a map
j (θ) : S3

× Dk
→ S3

× Dk

(x, y) 7→ (x, θ(x)(y)),

since θ(x) ∈ SO(k) acts on Dk by identifying Dk with the unit ball in Rk . This
map extends to a homeomorphism j (θ) of S3

× Dk
∪S3×Dk−1 D4

× Sk−1. Form the
composition

Sk+3
= S3
× Dk

∪S3×Dk−1 D4
× Sk−1 j (θ)

−−→ S3
× Dk

∪S3×Dk−1 D4
× Sk−1

col
−−→ S3

× Sk proj1
−−→ Sk,

where col is the collapse map which squashes D4
× Sk−1 and proj1 is the projection

onto the first factor. This gives an element of π S
3 , which is the image of θ under

J : π3(SO)→ π S
3
∼=�fr

3 .
This J -homomorphism is onto [Adams 1966, Example 7.17], so that composing

the framing in a neighbourhood D3 of a point with the choice of map θ ∈ π3(SO)=
[(D3, ∂D3), (SO, ∗)] such that −J (θ) = [M] ∈ �fr

3 changes the class in �fr
3 as

desired.
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This shows the existence of a normal cobordism W ′. To see that this is of degree
one, note that the map to T 3 which extends over W ′ can be used to define a map
to T 3

× I , by defining a map g :W ′→ I such that g(ML)= {0} and g(T 3)= {1}.
Now consider the commutative diagram

H4(W ′, ∂W ′;Z) //

��

H3(∂W ′;Z)

��
H4(T 3

× I, T 3
×{0, 1};Z) // H3(T 3

×{0, 1};Z)

Going right, then down, the fundamental class [W ′, ∂W ′] maps to

(1,−1) ∈ H3(T 3
×{0, 1};Z)∼= Z⊕Z.

By commutativity, the relative fundamental class [W ′, ∂W ′]must map to a generator
of H4(T 3

× I, T 3
×{0, 1};Z). �

A 3-homology equivalence is also an integral homology equivalence, by the
following argument. By definition (see above the statement of Theorem 1.3), a
3-homology equivalence induces an isomorphism on H1(−;Z). By duality, we
also have an isomorphism on H2(−;Z). It remains to see that f : ML → T 3 is a
degree-one map. The assumption that

f∗ : H∗(ML;3)
'
−−→ H∗(T 3

;3)

is an isomorphism implies that the relative homology vanishes: H∗(T 3,ML;3)∼= 0.
The universal coefficient spectral sequence then implies that H∗(T 3,ML;Z)∼= 0
since all the E2 terms Tor3p (Hq(T 3,ML;3),Z) vanish. Therefore a 3-homology
equivalence as in Theorem 1.3 is a degree-one map.

Lemma 3.4 then establishes the existence of a choice of stable framing b on ML

such that there is a degree-one normal cobordism

(F ′ :W ′ −→ T 3
× I, e′)

between ( f : ML → T 3, b) and (Id : T 3
→ T 3, c). Choosing such a framing, we

proceed to apply surgery theory to alter W ′ into a homology cobordism. Davis’
observation [2006] was that the framing on W ′ is not an intrinsic part of the
concordance problem, but rather necessary additional data which is required in
order to be able to apply surgery theory. Without the information provided by the
self-intersection form, it is not possible to obtain algebraic sufficient conditions
which ensure that surgery can be performed. Nevertheless, as we shall see, there is
a certain amount of freedom in the choice of framing data.

Before giving the proof of Theorem 1.3, we first give the definition of the Wall
even-dimensional surgery obstruction groups, which we will use in the proof.
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Definition 3.5 [Wall 1999, Chapter 5]. Let A be a ring with involution. A (−1)k-
Hermitian sesquilinear quadratic form on a free based A-module M is a (−1)k-
Hermitian sesquilinear form λ :M×M→ A together with a quadratic enhancement.
A quadratic enhancement of a form λ : M × M → A is a function µ : M →
A/{a− (−1)ka | a ∈ A} such that

(1) λ(x, x)= µ(x)+µ(x),

(2) µ(x + y)−µ(x)−µ(y)= λ(x, y),

(3) µ(ax)= aµ(x)a,

for all x, y ∈ M and for all a ∈ A.
A hyperbolic quadratic form is a direct sum of standard hyperbolic forms, where

the standard hyperbolic form (H, χ, ν) is given by(
A⊕ A,

(
0 1

(−1)k 0

)
, ν((1, 0)T )= 0= ν((0, 1)T )

)
.

The even-dimensional surgery obstruction group L2k(A) is defined to be the Witt
group of nonsingular (−1)k-Hermitian sesquilinear quadratic forms on free based A-
modules, where addition in the Witt group is by direct sum, and the equivalence class
of the hyperbolic forms is the identity element, where the equivalence relation is as
follows. Quadratic forms (M, λ, µ) and (M ′, λ′, µ′) are said to be equivalent if there
are hyperbolic forms (H, χ, ν) and (H ′, χ ′, ν ′) such that there is an isomorphism
of forms (M⊕H, λ⊕χ,µ⊕ν)∼= (M ′⊕H ′, λ′⊕χ ′, µ′⊕ν ′). This completes the
definition of L2k(A).

For us, A will be the group ring Z[π ] of some group π ; initially π will be Z3,
so that we take A = Z[Z3

] = 3. We omit the definition of the odd-dimensional
L-groups since they will only play a peripheral rôle in the proof of Theorem 1.3.

Proof of Theorem 1.3. First, do surgery below the middle dimension [ibid., Chap-
ter 1] on (W ′, F ′, e′) to create a normal cobordism (F :W → T 3

× I, e) which is
2-connected, i.e., W is connected and π1(W ) ∼= π1(T 3) ∼= Z3. The induced map
F∗ : π2(W )→ π2(T 3

× I ) is automatically surjective since T 3 is aspherical.
The Wall surgery obstruction [ibid., Chapter 5] of the normal cobordism (F :

W → T 3
× I, e) is now defined in L4(Z[Z

3
]) to be given by the intersection form

λW ′ : H2(W ′;3)× H2(W ′;3)−→3,

together with the quadratic enhancement

µ : H2(W ;3)−→ Z[Z3
]/{a = a | a ∈ Z[Z3

]}

defined by counting the self-intersections of an immersion of a sphere S2 # W
representing an element of H2(W ;3)∼= π2(W ), where the regular homotopy class
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of the immersion is fixed by the framing e to be the unique class of immersions for
which the induced trivialisation of TS2 extends over the null-homotopy of S2 in T 3.

The fact that the homology of the boundary H j (ML;3)∼= H j (T 3
;3) vanishes

for j = 1, 2, is used crucially here to see that the intersection form λW is nonsingular,
as observed by the surgeon in the “dialogue” of [Davis 2006].

By [Wall 1999, Proposition 13B.8], which is based on Shaneson’s formula
Ln(Z[π × Z]) ∼= Ln(Z[π ])⊕ Ln−1(Z[π ]), when π has trivial Whitehead group
[Shaneson 1969] we have that

L4(Z[Z
3
])∼=

3⊕
i=0

(3
i

)
L4−i (Z)∼= L4(Z)⊕

⊕
3

L3(Z)⊕
⊕

3

L2(Z)⊕ L1(Z)

∼= L0(Z)⊕
⊕

3

L2(Z),

where the last isomorphism is by periodicity of the L-groups and the fact that
the odd-dimensional simply connected L-groups vanish. The even-dimensional
simply connected L-groups L2k(Z) are computed [Kervaire and Milnor 1963], when
k = 0 mod 2, as

L0(Z)
'
−→ Z

(M, λ, µ) 7→ σ(R⊗Z M, Id⊗λ)/8,

while for the dimensions where k = 1 mod 2 they are computed via

L2(Z)
'
−→ Z2

(M, λ, µ) 7→ Arf(Z2⊗Z M, Id⊗λ, Id⊗µ).

We need to see that we can make further alterations to W in order to make the
surgery obstruction vanish.

First, we take the connected sum with −σ(W )/8 copies of the E8 manifold,
namely the simply connected 4-manifold which is constructed by plumbing disc
bundles D2

× D2 according to the E8 lattice. It turns out that the boundary of
the resulting 4-manifold is the Poincaré homology sphere. One then caps off with
the contractible topological 4-manifold whose boundary is the Poincaré homology
sphere [Freedman and Quinn 1990, Corollary 9.3C]. This produces the E8 manifold,
a closed topological 4-manifold. It has a nonsingular intersection form, with a
quadratic enhancement induced from a normal map to S4, and its signature is 8.
By a negative copy of this 4-manifold we of course mean the same manifold but
with the opposite choice of orientation. By making such a modification to W , we
obtain a new normal map, which by abuse of notation we again denote by (W, F, e),
for which the obstruction in L0(Z) is trivial. Note that W still has fundamental
group Z3 since π1(E8 manifold)∼= {1}, and moreover ∂W is unchanged.
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Next, we may need to alter W again, so that the three Arf invariant obstructions
in L2(Z) vanish. For i = 1, 2, 3, define maps

qri : T
3
× I = S1

× S1
× S1
× I −→ S1

× S1

which forget the i-th S1 factor and the I factor. Perform a homotopy of F to ensure
that qri ◦F is transverse to ∗ ∈ S1

× S1, and such that

F−1(S1
×{∗}× {∗}× {∂I })−→ S1

×{∗}× {∗}× {∂I }

is a homotopy equivalence (and similarly with the ∗ terms moved appropriately
for i = 2, 3). This homotopy equivalence was already arranged in the proof of
Lemma 3.4, when we saw that the elements of �fr

1 can be removed. Let Si be the
surfaces (qri ◦F)

−1(∗); each surface has boundary ∂Si given by the meridian µi

and the corresponding S1 factor of T 3.
Let pri : T

3
× I = S1

× S1
× S1
× I → S1

× I be the map which remembers the
i-th S1 factor and the I factor. Making F transverse to a point, (pri ◦F)

−1(∗) is a
surface 6i ⊂W . Since F(Si ∩6i ) is a single point and F is of degree one, we can
assume that Si and 6i intersect in a single point. By choosing different points in
the I factor, we can ensure that the 6i are all distinct.

Now, as in [Davis 2006], for each i with nonzero-surgery obstruction in the
corresponding L2(Z) summand of L4(Z[Z

3
]), remove a neighbourhood 6i × D2

of 6i and replace it with 6i × cl(S1
× S1 r D2). That is, replace the D2 factor

with a punctured torus, but define the framing on the torus to be the framing which
yields Arf invariant one, that is, the Lie framing on both S1 factors. Since 6i is
dual to Si , this adds one to the Arf invariant of the element of L2(Z) represented
by Si , and so changes the Arf invariant one summands to having Arf invariant zero.

After these alterations we have a normal map (G ′ : V ′ → T 3
× I, k ′), with

vanishing surgery obstruction. Since the fundamental group Z3 is good in the
sense of Freedman (polycyclic groups are good [Freedman and Quinn 1990, Theo-
rem 5.1A]), the surgery sequence is exact in the topological category — see [ibid.,
Theorem 11.3A]. We can therefore find embedded two-spheres representing a
half-basis for π2(G ′), perform surgery, and obtain a topological 4-manifold V
which is homotopy equivalent to T 3

× I ; in particular, V is a homology cobordism
between ML and T 3.

Moreover, the following diagram commutes:

π1(ML) //

f∗
��

π1(V )

∼=

��

π1(T 3)oo

∼=Id
��

π1(T 3)
∼= // π1(T 3

× I ) π1(T 3)
∼=oo
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Since the meridians µi of L are mapped to standard generators of π1(T 3), an easy
diagram chase shows that the homotopy classes of the meridians are preserved in
the homology cobordism V . �

4. Construction of links and grope concordance

In this section we give constructions of certain links with a given Milnor invariant,
and construct grope concordances, using the methods of [Cochran 1990] and [Cha
2014].

4A. Iterated Bing doubles with a prescribed Milnor invariant. Let I be a multi-
index with nonrepeating indices with length m := |I | ≥ 2. We describe a rooted
binary tree T (m) associated to m ≥ 2, which has m leaves: the right subtree of
the root just consists of a single vertex, and the left subtree T †(m) is the complete
binary tree of height h(m) := dlog2(m− 1)e with the rightmost 2(m− h(m)− 1)
pairs of leaves (and edges ending at these) removed. (By convention, a binary tree is
always embedded in a plane with the root on the top.) That is, T †(m) is a minimal
height binary tree with m − 1 leaves. For example, T (m) for m = 7 is shown in
Figure 1.

•

• •
7

• •

• • •
5

•
6

•
1

•
2

•
3

•
4

Figure 1. The tree T (m) for m = 7, labelled with I = 1234567.

Following the proof of [Cochran 1990, Theorem 7.2], a rooted binary tree T
describes a link with components corresponding to the leaves of T . First, a complete
binary tree of height one is associated to a Hopf link. If T is obtained from T ′ by
attaching two new leaves to a leaf v of T ′, then the link associated to T is obtained
from that of T by Bing doubling the component corresponding to v.

Consider the link described by the tree T (m). Labelling the leaves of T (m) from
left to right with the multi-index I (see Figure 1 for I = 1234567), the components
of the link are ordered. We denote this ordered link by L I . Then, by [Cochran
1990, Theorem 8.1], the link L I has µL I (I )=±1 and µL I (I

′)= 0 for |I ′|< |I |.

4B. Satellite construction and grope concordance of links. To construct links
which are grope concordant, we employ the method of [Cha 2014, Section 4]. We
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begin by giving the definition of grope concordance. The use of gropes in this
context first appeared in [Cochran et al. 2003].

Definition 4.1 [Freedman and Teichner 1995]. A grope is a pair (2-complex, base
circle) of a certain type described below. A grope has a height h ∈ N. For h = 1 a
grope is precisely a compact oriented surface 6 with a single boundary component
which is the base circle. A grope of height h+ 1 is defined inductively as follows:
let {αi | i = 1, . . . , 2 · genus} be a standard symplectic basis of circles for 6. Then
a grope of height h+ 1 is formed by attaching gropes of height h to each αi along
the base circles.

An annular grope is defined by replacing the bottom stage surface by a surface
with two boundary components.

Definition 4.2 [Cha 2014, Definition 2.16]. Two m-component links L and L ′ in
S3 are height n grope concordant if there are m framed annular gropes Gi of height
n, i = 1, . . . ,m, disjointly embedded in S3

× [0, 1], with the boundary of Gi the
zero-framed i-th component of L i ⊂ S3

×{0} and −L ′i ⊂ S3
×{1}.

As mentioned in the introduction, we could also phrase our theorems in terms
of Whitney towers, but for simplicity of exposition we stick to gropes. See [ibid.,
Section 2] for an exposition on gropes, Whitney towers, and n-solvable cobordisms
(our Section 5 also contains a limited discussion of n-solvable cobordisms).

We recall that a capped grope of height k is a grope of height k together with
2-discs attached along each of the standard symplectic basis curves of the top-layer
surfaces. The attached 2-discs are called caps, and the grope itself is called the
body. We always assume that a capped grope embedded in a 4-manifold is framed.

We denote the exterior of a link L by X L . If L is a link in S3, η is an unknotted
circle in S3 disjoint from L , and K is a knot, then we denote the satellite link
of L with axis η and companion K by L(η, K ); this is the image of L under the
homeomorphism Xη ∪∂ X K

≈
−→ S3, where the gluing identifies the longitude of η

with the meridian of K , and vice versa.
Following [ibid., Definition 4.2], we call (L , η) a satellite configuration of

height k if L is a link in S3, η is an unknotted circle in S3 disjoint from L , and
the 0-linking parallel of η in Xη = Xη × {0} bounds a capped grope of height k
embedded in Xη× [0, 1] with body disjoint from L × [0, 1]. The caps should be
embedded in Xη×[0, 1] but may intersect L ×[0, 1].

Lemma 4.3, stated below, describes how iterated satellite constructions using
satellite configurations give us grope concordant links. The setup is as follows.
Fix n. (To obtain Theorems 1.1 and 1.2, set h = n+ 2.) Suppose that (L0, η) is a
satellite configuration of height k ≤ n. (Later we will use the link L I described
above as L0.) Suppose that (Ki , αi ) is a satellite configuration of height one,
with Ki a slice knot, for i = 0, . . . , n − k − 1. Let J j

0 be the connected sum
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of N j copies of the knot described in [Cochran and Teichner 2007, Figure 3.6],
where {N j } is an increasing sequence of integers which will be specified later.
(Indeed, these will be given in terms of the Cheeger–Gromov bound on the ρ-
invariants and, for the links of Theorem 1.1, in terms of the Kneser–Haken bound
on the number of disjoint nonparallel incompressible surfaces. See Section 5,
just before the proof of Theorem 5.3, and Section 4D, just before Lemma 4.7.)
Define J j

i := Ki−1(αi−1, J j
i−1) inductively for i = 1, . . . , n − k. Finally define

L j := L0(η, J j
n−k).

Lemma 4.3 [Cha 2014, Proposition 4.7]. The link L j is height n+ 2 grope concor-
dant to L0 for all j .

Proof. The same as the proof of [loc. cit.], except that L0 replaces the Hopf link in
the last sentence. �

The following observation on the satellite construction is useful.

Lemma 4.4. If L ′ = L(η, K ) is obtained from L by a satellite construction, then L
and L ′ have the same Milnor µ-invariants.

Proof. It is well known that a satellite construction L ′ = L(η, K ) comes with
an integral homology equivalence f : (X L ′, ∂X L ′)→ (X L , ∂X L) which restricts
to a homeomorphism on the boundary preserving longitudes and meridians (see,
e.g., [Cha 2010, proof of Proposition 4.8; Cha and Orr 2013, Lemma 5.3]). As
in [Cha et al. 2012, Lemma 2.1], by [Stallings 1965] it follows that f induces
an isomorphism π1(X L)/π1(X L)q ∼= π1(X L ′)/π1(X L ′)q that preserves the classes
of meridians and longitudes for any q, and consequently L and L ′ have identical
µ-invariants. �

4C. Satellite configuration of iterated Bing doubles. Now we consider again the
link L I described in Section 4A. Recall that k(m) := blog2(m−1)c, where m = |I |.
Let η be the zero-framed longitude of the component of L I labelled with m, namely
the component of the original Hopf link that is never Bing doubled in the construction
of L I .

Lemma 4.5. (1) The pair (L I , η) is a satellite configuration of height k(m).

(2) The curve η is nonzero in π1(L I )/π1(L I )m .

(3) For any knot K , the link L I (η, K ) has zero-surgery manifold homeomorphic
to the zero-surgery manifold of L I .

We remark that Lemma 4.5(2) will be used in Section 5.

Proof. Denote L := L I for this proof.

(1) We go back to the construction of L , and construct the grope as we construct L .
We begin with the Hopf link (i.e., m = 2), and the curve η as a longitude of L2.
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We also begin with a thickened cap D2
× [−1, 1], such that ∂D2

×{0} = η. This
intersects the other component of the Hopf link in a single point.

Every time a component K is Bing doubled in the construction of L , we arrange
that one of the clasps lies in D2

×[−1, 1], and then replace the thickened cap that
intersected K with a genus-one capped surface with a single boundary component,
whose body surface misses the new Bing doubled components, and such that each
cap intersects one of the two new components. See Figure 2, which is somewhat
reminiscent of a figure in [Freedman and Quinn 1990, Chapter 2.1].

Figure 2. Replacing a cap with a capped surface.

Since a complete binary tree of height k(m) can be embedded in T (m), we obtain
a symmetric embedded capped grope of the required height, with the body lying in
the link exterior X L and the caps intersecting the link transversely.

(2) The nonvanishing of the Milnor invariant µL(I ) implies that all of the longitudes
of L are nontrivial in π1(X L)/π1(X L)|I |.

(3) A Kirby diagram for the 3-manifold ML given by zero-framed surgery on L can
be produced by putting a 0 next to every component of L . If we perform a satellite
construction with pattern K and with η as axis, this is equivalent to tying all the
strands of L which intersect a disc D, whose boundary is η, in the knot K , with
framing zero. In other words, replace the trivial string link in D×[0, 1] with the
string link obtained by taking suitably many parallel copies of K .

But we can make a crossing change of these parallel copies of K at will, by
performing handle slides, sliding the parallel strands over the zero-framed 2-handle
attached along the component parallel to η. This gives a Kirby presentation of a
homeomorphic 3-manifold.

By making sufficiently many such crossing changes/handle slides, all the par-
allel strands which the satellite construction ties in the knot K can be unknotted,
recovering the link L . Thus the zero-surgery manifolds of the satellite link and the
original link are homeomorphic. It is easy to see that the homotopy classes of the
meridians of L are preserved under such homeomorphisms. �
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Now, let n ≥ k(|I |)= k(m). Let L j be the links obtained by the construction just
before Lemma 4.3, using our (L I , η) as (L0, η), and using the Stevedore satellite
configuration described in [Cha 2014, Figure 6], which for the reader’s convenience
is shown in Figure 3, as the (Ki , αi ). Then by Lemma 4.3 and Lemma 4.5(1), the
links L j are height n+ 2 grope concordant to the link L0 = L I .

Ki αi

Figure 3. Stevedore satellite configuration (Ki , αi ).

Lemma 4.4 shows that the links L j satisfy Theorem 1.2(1). They also satisfy
Theorem 1.2(2) by Lemma 4.5(3). We have also proved, in Lemma 4.3, the first
part of Theorem 1.2(3): the links L j are mutually height n+ 2 grope concordant.
The second part of Theorem 1.2(3), namely the failure of the links to be pairwise
height n+ 3 grope concordant, will be shown in Section 5.

4D. Examples with nonhomeomorphic zero-surgery manifolds. In order to pro-
duce examples satisfying Theorem 1.1(1), we alter the construction of Sections 4B
and 4C to give examples with nonhomeomorphic zero-surgery manifolds. We
consider the case of m = 3 and I = 123 only. Then the link L := L I described in
Section 4A is the Borromean rings. Let η be the simple closed curve in S3 r L
shown in Figure 4; x , y, and z denote the components of L .

The pair (L , η) also has two of the properties stated in Lemma 4.5, for m = 3:

Lemma 4.6. (1) The pair (L , η) is a satellite configuration of height one.

(2) In π1(X L), η = [x, y][[x, y], x], where x , y, and z are the Wirtinger gener-
ators corresponding to the dotted arcs in Figure 4. Also, η is nontrivial in
π1(X L)/π1(X L)3.

Here [a, b] denotes the commutator aba−1b−1.

Proof. (1) Tubing the obvious disc bounded by η along the components of L that
intersect it, we obtain a genus-two surface V with boundary η which is shown in
Figure 5. This is the body of the desired capped grope. The whole capped grope is
the body taken together with the four caps shown in Figure 5 as shaded discs.

(2) The claim that η= [x, y][[x, y], x] follows from a straightforward computation
in terms of the Wirtinger generators, reading undercrossings of η starting from the
dot on η in Figure 4. Since L has vanishing linking number, due to Milnor [1957]
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x

y

z

η

Figure 4. A satellite configuration on the Borromean rings.

(see also [Stallings 1965]), π1(X L)/π1(X L)3 is isomorphic to F/F3, where F is
the free group generated by x , y, and z. Consequently, [[x, y], x] ∈ π1(X L)3 and
[x, y] /∈ π1(X L)3. From this the second conclusion follows. �

As in Section 4C, we apply the construction described just before Lemma 4.3, us-
ing our (L , η) as the seed link (L0, η) and using the Stevedore satellite configuration
described in [Cha 2014, Figure 6] (see our Figure 3) as (Ki , αi ) for i = 0, . . . , n−2
as above. Let the resulting links be the L j . Then by Lemma 4.3, the L j are height

Figure 5. The capped grope bounded by η.
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n+ 2 grope concordant to the Borromean rings L , so these satisfy the first part of
Theorem 1.1(3). The second part of Theorem 1.1(3), on the failure of the links to
be pairwise height n+ 3 grope concordant, will be shown in Section 5.

Furthermore, the links L j satisfies the hypothesis of Theorem 1.3. First note that
since our satellite operation does not change the knot type of the components, L j has
unknotted components. In particular, the Arf invariants of the components vanish.
Recall from the proof of Lemma 4.4 that there is a homology equivalence f : X L j→

X L0 obtained from the satellite construction L j = L0(η, J j
n−1); indeed, f is obtained

by gluing the identity map of X L0tη with the standard homology equivalence

(X J j
n−1
, ∂X J j

n−1
)−→ (S1

× D2, S1
× S1)

along S1
× S1. Since our curve η ⊂ S3

− L0 lies in the commutator subgroup of
π1(S3

− L0), f is indeed a 3-homology equivalence X L j → X L0 , by a Mayer–
Vietoris argument. Filling it in with 3 solid tori, we obtain a 3-homology equiva-
lence ML j → T 3

= ML0 as desired. Therefore, by applying Theorem 1.3, it follows
that the links L j satisfy Theorem 1.1(2). We need to confirm that the L j satisfy
Theorem 1.1(1), namely, that the ML j are not homeomorphic. The underlying idea
is as follows. Recall that L j is defined by a satellite construction, starting with
a knot J j

0 . In many cases, the JSJ pieces of the exterior of J j
0 become parts of

the JSJ decomposition of ML j , so that the ML j have distinct JSJ decompositions.
Since a complete proof of this seems to require complicated arguments (a technical
issue is that an essential torus might not be parallel to a JSJ torus, because of
Seifert fibred pieces), we will present a simpler argument using only the number of
incompressible tori; this is enough for our purpose.

We need the following. The Kneser–Haken finiteness theorem [Haken 1961]
states that for each 3-manifold M , there is a bound, say CK H (M), on the number of
disjoint pairwise nonparallel incompressible surfaces that can be embedded in M .
Recall that the knot J j

0 used in the construction of the link L j is a connected sum of
N j knots, where {N j } was an increasing sequence to be specified (see the paragraph
before Lemma 4.3). Here is the first requirement on the N j : we choose the N j

inductively in such a way that N j >max{CK H (MLk ) | k = 0, 1, . . . , j − 1}.

Lemma 4.7. The zero-surgery manifolds ML i and ML j are not homeomorphic
for i 6= j .

Proof. Recall that ML0 = ML is the 3-torus T 3. Consider Y := ML r ν(η), where
ν(η) is an open tubular neighbourhood of η. For notational convenience, denote the
exterior of J j

n−1 by X := X J j
n−1

. The 3-manifold ML j is obtained by glueing Y and
X along their boundaries. Let T = ∂Y = ∂X be the common boundary torus. Note
that ML0 can also be described in the same way, using J 0

n−1 := unknot; in this case,
the torus T is compressible in ML0 since X is a solid torus.
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Claim. For j ≥ 1, the torus T is incompressible in Y .

Using the claim, we will show that the 3-manifolds ML j are not pairwise home-
omorphic. Suppose j ≥ 1. Since the knot J j

n−1 is obtained from an iterated satellite
construction with the first-stage knot J j

0 a connected sum of N j nontrivial knots, the
exterior X of J j

n−1 has at least N j incompressible tori, including the boundary T .
Since ML j = Y ∪T X and T is incompressible in Y , it follows that there are N j

nonparallel incompressible tori in ML j . For any k < j , since N j > CK H (MLk ), it
follows that ML j is not homeomorphic to MLk .

Now, to complete the proof, we will verify the claim. If there is an essential
curve on T which bounds a disc in Y , then it must be a zero-linking longitude,
say η′, of η, since the meridian of η is a generator of H1(Y r η) = Z4. By the
following lemma, we have a contradiction. �

Lemma 4.8. The class of η′ is nontrivial in the fundamental group π1(Y r η).

Proof. We consider a Wirtinger presentation of π1(Y r η) given as follows: it
has 24 generators, denoted by x1, . . . , x24, associated to arcs in Figure 4. Here
(x1, . . . , x10), (x11, x12), (x13, . . . , x16), and (x17, . . . , x24) are those associated to
the arcs of the components x , y, z, and η, respectively. In each component, the arc
with a dot on it is the first one, and other arcs are ordered along the orientation.
There are 27 relators:

x1x11x1x12, x11x1x11x2, x2x18x2x19, x19x2x19x3, x3x20x3x21,

x3x23x3x22, x22x4x22x3, x21x4x21x5, x5x16x5x13, x13x5x13x6,

x11x7x11x6, x7x11x7x12, x13x8x13x7, x8x16x8x15, x21x9x21x8,

x22x9x22x10, x10x23x10x24, x10x20x10x19, x19x1x19x10, x1x18x1x17,

x15x22x15x21, x22x15x22x14, x24x13x24x14, x13x24x13x17,

x11x19x22x21x13x11x13x21x22x19, x1x7, x24x22x8x5.

Indeed, the first 24 are the standard Wirtinger relators for the 4-component link
L t η (thus one of these may be omitted), and the last 3 relators arise from the
zero-surgery performed along L . It is straightforward to read off the curve η′:

η′ = x1x2x10x3x15x3x10x13.

We define a representation ρ : π1(Y rη)→ SL(2,Z5) by mapping the above 24
generators, respectively, to:[

0 4
1 3

]
,
[

4 0
1 4

]
,
[

0 4
1 3

]
,
[

4 4
0 4

]
,
[

2 1
1 1

]
,
[

4 0
1 4

]
,
[

0 4
1 3

]
,
[

4 0
4 4

]
,[

1 1
1 2

]
,
[

1 1
1 2

]
,
[

4 1
4 0

]
,
[

3 1
2 1

]
,
[

4 3
2 3

]
,
[

1 3
0 1

]
,
[

2 2
2 0

]
,
[

4 2
3 3

]
,[

0 1
4 2

]
,
[

0 1
4 2

]
,
[

1 1
0 1

]
,
[

3 4
4 4

]
,
[

2 1
4 0

]
,
[

4 4
4 3

]
,
[

0 4
1 2

]
,
[

1 0
1 1

]
.



26 JAE CHOON CHA AND MARK POWELL

It can be verified that all the relators are sent to the identity, by a straightforward
computation. (We found the representation ρ using a computer program.) Also, we
have that

ρ(η′)=

[
3 1
4 0

]
is not the identity. This completes the proof. �

5. Grope concordance and amenable signatures

In this section we show that the links described in Sections 4C and 4D are not
height n+ 3 grope concordant by using amenable signature obstructions from [Cha
2014]. In fact, the amenable signatures we use are obstructions to being n-solvably
cobordant, which is a relative analogue for manifolds with boundary, or bordered
manifolds, of the notion of n-solvability of [Cochran et al. 2003]. For our purpose
it suffices to consider the case of link exteriors; an n-solvable cobordism between
the exteriors X and X ′ of two links with the same number of components is a
4-manifold W with ∂W = X ∪∂ −X ′ satisfying the conditions described in [Cha
2014, Definition 2.8], where the boundary tori of X and X ′ are identified along
the zero framing. Since we do not use the defining condition right now, instead
of spelling it out here, we begin with its relationship to grope concordance. The
following theorem originates from [Cochran et al. 2003, Theorem 8.11], and was
given in our context in [Cha 2014].

Theorem 5.1 [ibid., Theorems 2.16 and 2.13, and Remark 2.11]. If two links are
height n + 2 grope concordant, then their exteriors are n-solvably cobordant as
bordered 3-manifolds.

As our key ingredient to detect nonsolvably cobordant 3-manifolds and therefore
non-grope-concordant links, we will use the Amenable Signature Theorem, which
was first introduced in [Cha and Orr 2012] for homology cobordism of closed
3-manifolds and then generalised to n-solvable cobordisms of bordered 3-manifolds
in [Cha 2014]. We state a special case which will be sufficient for our purpose.
For a closed 3-manifold M and a homomorphism φ : π1(M)→ G, denote the von
Neumann–Cheeger–Gromov ρ-invariant by ρ(2)(M, φ) ∈ R. See, e.g., [Cochran
et al. 2003, Section 5] as well as [Chang and Weinberger 2003; Harvey 2008;
Cha 2008; Cha and Orr 2012] for definitions and useful properties of ρ(2)(M, φ).
Precise references for the properties that we need will be recalled as we go along.

Theorem 5.2 (A special case of [Cha 2014, Amenable Signature Theorem 3.2]).
Suppose W is an (n+ 1)-solvable cobordism between two bordered 3-manifolds X
and X ′, and G admits a subnormal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn ⊃ Gn+1 = {e}
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with each quotient Gi/Gi+1 torsion-free abelian. Then ρ(2)(X ∪∂ −X ′, φ)= 0 for
any φ : π1(X ∪∂ −X ′)→ G which factors through π1(W ).

Recall that in our construction of the links L j , the knot J j
0 was the connected sum

of N j copies of Cochran and Teichner’s knot, say J . Now we proceed to specify
the integers N j . Denote by ρ(2)(K ) :=

∫
S1 σK (ω) dω the integral of the Levine–

Tristram signature function over the circle normalised to length one. We have
ρ(2)(J j

0 )= N jρ
(2)(J )= 4N j/3 by additivity under connected sum and [Cochran

and Teichner 2007, Lemma 4.5]. Due to Cheeger and Gromov [1985], for any
closed 3-manifold Y there is a constant CY > 0 such that |ρ(2)(Y, ψ)| < CY for
any ψ . From now on we abbreviate ` := n− k(m). Define

R := CX L0∪∂−X L0
+ 2

`−1∑
i=0

CMKi
.

We choose the large integers N j inductively in such a way that

N j > 3R/4+max{Nk | k < j}.

Then we have
ρ(2)(J j

0 ) > R+ ρ(2)(J k
0 )

whenever j > k. For Theorem 1.1, we make these choices so that the condition in
the preamble to Lemma 4.7 relating to the Kneser–Haken bound is simultaneously
satisfied.

Now we start the proof that our links L j are not height n+ 3 grope concordant
to one another. Let X and X ′ be the exteriors of L j and Lk , respectively. To
distinguish them in the notation, we denote the axis curve η in X by η j , and we
denote the corresponding axis curve in X ′ by ηk .

Recall that m = |I | and that k(m)= blog2(m− 1)c. Also note that k(m)+ 1=
dlog2(m)e. By Theorem 5.1, it suffices to show the following:

Theorem 5.3. For n ≥ k(m), the bordered 3-manifolds X and X ′ are not (n+ 1)-
solvably cobordant when j 6= k.

By Theorem 5.1, it then follows that our links L j and Lk are not height n+ 3
grope concordant when j 6= k.

Proof. The proof proceeds almost identically to that of [Cha 2014, Theorem 4.8],
which combines the Amenable Signature Theorem of that reference with a higher-
order Blanchfield duality argument for a certain 4-dimensional cobordism introduced
in [Cochran et al. 2009] (see our W0 below). So we will give an outline for our
case and discuss differences from [Cha 2014, Theorem 4.8].

Suppose W is an (n+1)-solvable cobordism with ∂W = X ∪∂ −X ′. Similarly to
[ibid., Section 4.3] (see the paragraph entitled “Cobordism associated to an iterated
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satellite construction”), we consider a cobordism V with

∂V = MJ j
0
t−MJ k

0
tMK0 t−M ′K0

t · · · tMK`−1 t−M ′K`−1

t(X L0 ∪∂ −X L0)t−(X ∪∂ −X ′)

which is built by stacking cobordisms associated to satellite constructions [Cochran
et al. 2009, p. 1429], where M ′Ki

is a copy of MKi , and then construct a cobordism
W0 with

∂W0 = MJ j
0
t−MJ k

0
tMK0 t−M ′K0

t · · · tMK`−1 t−M ′K`−1
t (X L0 ∪∂ −X L0)

by attaching V to W along X ∪∂ −X ′. We omit the detailed construction of V
and W0 but state a couple of useful facts which can be verified as in [Cha 2014,
Section 4.3]. Let {Pr G} be the rational derived series of a group G, i.e., P0G := G
and Pr+1G is the kernel of Pr G → H1(P

r G;Q). Let φ0 be the quotient map
π1(W0)→G := π1(W0)/P

n+1π1(W0). Also we denote by φ0 the restrictions of φ0

to the components of ∂W0 and to W ⊂W0, as an abuse of notation. Then we have
the following facts:

(1) ρ(2)(MJ j
0
, φ0)− ρ

(2)(MJ k
0
, φ0)+ ρ

(2)(X L0 ∪∂ −X L0, φ0)

+

`−1∑
i=0

ρ(2)(MKi , φ0)−

`−1∑
i=0

ρ(2)(M ′Ki
, φ0)= ρ

(2)(X ∪∂ −X ′, φ0).

(2) The image of the meridian of J j
0 in MJ j

0
⊂ ∂W0 under φ0 is a nontrivial element

in the torsion-free abelian subgroup Pnπ1(W )/Pn+1π1(W ) of G. Similarly
for k instead of j .

The proof of (1) is completely identical to that given in [Cha 2014, Section 4.3] (see
the paragraphs entitled “Cobordism associated to an iterated satellite construction”
and “Applications of Amenable Signature Theorem”): briefly, the ρ(2)-invariant
of ∂W0, which is the left-hand side of (1), is equal to the L2-signature defect of
W0= V ∪X∪∂−X ′ W (this is a standard fact from index theory, or can be taken as the
definition of ρ(2)). It turns out that V has no contribution to the L2-signature defect,
by [Cochran et al. 2009, Lemma 2.4]. So the left-hand side of (1) is equal to the
L2-signature defect of W , which is the ρ(2)-invariant of ∂W , namely the right-hand
side of (1).

The proof of (2) is almost identical to that given in [Cha 2014, Theorem 4.10].
Only the following change is required: in the initial step of the inductive argument
in that result, it was shown that the image of (a parallel copy of) η ⊂ X ⊂ ∂W
is nontrivial under the quotient map π1(W )→ π1(W )/P2π1(W ) (see the fourth
paragraph of the proof) using a Blanchfield duality argument.
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In our case, instead we use Lemma 5.4 below, which is a generalisation of
[Cha et al. 2012, Lemma 3.5], to show that the image of η is nontrivial in the
quotient π1(W )/P(k(m)+1)π1(W ). The argument used in Lemma 5.4 is essentially
an application of Dwyer’s theorem.

Lemma 5.4. If W is an n-solvable cobordism between two link exteriors (or, more
generally, bordered 3-manifolds) X and X ′, then the inclusions induce isomorphisms

π1(X)/π1(X)q ∼= π1(W )/π1(W )q ∼= π1(X ′)/π1(X ′)q

for q ≤ 2n
+ 1.

Proof. Recall Dwyer’s theorem [1975]: if f : X → Y induces an isomorphism
H1(X;Z)∼= H1(Y ;Z) and an epimorphism

H2(X;Z)−→ H2(Y ;Z)/ Im{H2(Y ;Z[π1(W )/π1(W )q ])→ H2(Y ;Z)},

then f induces an isomorphism π1(X)q/π1(X)q+1 ∼= π1(Y )q/π1(Y )q+1.
In our case, by the definition of an n-solvable cobordism [Cha 2014, Defini-

tion 2.8], we have H1(X;Z)∼=H1(W ;Z)∼=H1(X ′;Z). Also, by the same definition,
there are elements `1, . . . , `r , d1, . . . , dr lying in H2(W ;Z[π1(W )/π1(W )(n)]) such
that the images of `i and d j generate H2(W ;Z). Since π1(W )(n) is contained in
π1(W )2n , the H2 condition of Dwyer’s theorem is satisfied. Therefore, it follows that

π1(X)q/π1(X)q+1 ∼= π1(W )q/π1(W )q+1 ∼= π1(X ′)q/π1(X ′)q+1

for q ≤ 2n by Dwyer’s theorem. From this the desired conclusion follows by the
five lemma. �

Recall that Lemma 4.5(2) implies that η ⊂ X represents a nontrivial element in
π1(X)/π1(X)m . Since the above isomorphisms preserve longitudes (and meridians),
η j ⊂ X represents a nontrivial element in π1(W )/π1(W )m . Since L j has vanishing
Milnor invariants of length less than |I | = m, we have π1(X)/π1(X)m ∼= F/Fm ,
where F is the free group with rank m, by [Milnor 1957, Theorem 4]. Consequently
π1(W )/π1(W )m is torsion-free.

We note that for any group π , we have π (k(q)+1)
= π (dlog2(q)e) ⊆ πq . Therefore

there is a quotient map π1(W )/π1(W )(k(m)+1)
→ π1(W )/π1(W )m , and this map

factors through π1(W )/P(k(m)+1)π1(W ) by the definition of P(k(m)+1) and the fact
that the codomain is torsion-free. Since η j is nontrivial in π1(W )/π1(W )m , η j is
also nontrivial in π1(W )/P(k(m)+1)π1(W ). By replacing j with k and X with X ′

we obtain the corresponding fact for ηk in X ′.
To complete the proof of Theorem 5.3, we proceed as in [Cha 2014, Section 4.3].

Observe that for the normal subgroups Gi :=Piπ1(W0)/P
n+1π1(W0) of our G, the

quotient Gi/Gi+1 is torsion-free abelian. So by Amenable Signature Theorem 5.2
we have ρ(2)(X ∪∂ −X ′) = 0. Since the curve η j represents a nontrivial element
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in a torsion-free abelian normal subgroup of G, the image of π1(MJ j
0
) in G under

φ0 is the infinite cyclic group. By L2-induction (see, e.g., [Cheeger and Gromov
1985, page 8(2.3); Cochran et al. 2003, Proposition 5.13]) and [Cochran et al. 2004,
Proposition 5.1], we have ρ(2)(MJ j

0
, φ0) = ρ

(2)(J j
0 ), and similarly for J k

0 . Now,
combining these two facts with (1), we obtain

(3) ρ(2)(J j
0 )− ρ

(2)(J k
0 )+ ρ

(2)(X L0 ∪∂ −X L0, φ0)

+

`−1∑
i=0

ρ(2)(MKi , φ0)−

`−1∑
i=0

ρ(2)(M ′Ki
, φ0)= 0.

Recall that∣∣∣∣ρ(2)(X L0 ∪∂ −X L0, φ0)+

`−1∑
i=0

ρ(2)(MKi , φ0)−

`−1∑
i=0

ρ(2)(M ′Ki
, φ0)

∣∣∣∣
< R := CX L0∪∂−X L0

+ 2
`−1∑
i=0

CMKi
,

and in the preamble to Theorem 5.3, we chose N j so that
∣∣ρ(2)(J k

0 )−ρ
(2)(J j

0 )
∣∣> R

whenever k 6= j . Therefore (3) implies that j = k. Thus the existence of the
(n+ 1)-solvable cobordism W implies that j = k, which is the contrapositive of
the desired statement. �
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CERTAIN SELF-HOMOTOPY EQUIVALENCES
ON WEDGE PRODUCTS OF MOORE SPACES

HO WON CHOI AND KEE YOUNG LEE

For a based 1-connected finite CW-complex X , let E(X) denote the group
of homotopy classes of self-homotopy equivalences on X , and Edim+r

] (X) the
subgroup of E(X) of homotopy classes of self-homotopy equivalences on X
that induce the identity homomorphism on the homotopy groups of X in
dimensions ≤ dim X + r . For two given Moore spaces M1 = M(Zq, n+ 1)

and M2 = M(Zp, n) with n ≥ 5, we investigate the subsets of [M1, M2]

and [M2, M1] consisting of homotopy classes of maps that induce the trivial
homomorphism between the homotopy groups of M1 and those of M2 in di-
mensions ≤ dim X+ r . Using the results of this investigation, we completely
determine the subgroups Edim+r

]

(
M(Zq, n+1)∨M(Zp, n)

)
, where p and q

are positive integers, for n ≥ 5 and r = 0, 1.

1. Introduction

If X and Y are based topological spaces, let [X, Y ] denote the set of homotopy
classes of based maps from X to Y , let E(X) denote the subset of [X, X ] that consists
of homotopy classes of self-homotopy equivalences of X and let Edim+r

] (X) denote
the set of homotopy classes of self-homotopy equivalences that induce the identity
on the homotopy groups of X in dimensions at most dim X + r . Then, E(X) is a
group with a group operation given by the composition of homotopy classes, and
Edim+r
] (X) is a subgroup of E(X). The group E(X) and certain natural subgroups

including Edim+r
] (X) are fundamental objects in homotopy theory and have been

studied extensively. For a survey of the known results and applications of E(X),
see [Arkowitz 1990].

When G is an abelian group, we let M(G, n) denote the Moore space, that is,
the space with G as a single nonvanishing homology group at n-level. Also, in this
case, M(G, n) is a simply connected space. We note that if n ≥ 3, then M(G, n) is
characterized by

H̃i (M(G, n))∼=
{

G if i = n,
0 if i 6= n.
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Let C(G, n) denote the co-Moore space of type (G, n) defined by

H̃ i (C(G, n))∼=
{

G if i = n,
0 if i 6= n.

If G is a finitely generated abelian group and G = F ⊕ T , where F is a free
abelian group of rank r and T is a finite group, then M(G, n)=M(F, n)∨M(T, n)
and C(G, n)= M(F, n)∨M(T, n− 1) for n ≥ 3.

Arkowitz and Maruyama [1998] showed that Edim
] (M(G, n))∼=⊕(r+s)s Z2 and

Edim+1
] (M(G, n))= 1 for n > 3, where r is the rank of G and s is the number of

2-torsion summands in G. Moreover, they completely determined Edim
] (C(G, n))

for n ≥ 3 by means of 2×2 matrices, where G is a finitely generated abelian group.
Jeong [2010] computed the groups Edim

] (Y ) for Y = M(Z p, n+ 1)∨M(Z p, n),
n ≥ 5 as follows:

Edim
] (Y )∼=


Z p if p is odd,
Z2⊕ Z2 if p ≡ 2 (mod 4),
Z2⊕ Z2⊕ Z2 if p ≡ 0 (mod 4).

In this paper we study the self-homotopy equivalences on the wedge product
X=M(Zq , n+1)∨M(Z p, n) for n≥5, where p and q are positive integers. For two
given Moore spaces M1=M(Zq , n+1) and M2=M(Z p, n), we compute [M1,M2]

and [M2,M1] and find their generators. Moreover, we investigate the subset of
[M1,M2] or [M2,M1] that consists of elements whose induced homomorphisms
are trivial between the homotopy groups of M1 and those of M2 in dimensions at
most dim X + r with r = 0, 1. Using these results, we completely determine the
groups Edim+r

] (X) for r = 0, 1. As a result, we obtain Table 1 and the following:

Edim+1
] (X)∼=



1 if q is odd or p is odd (d = 1),
Zd if q is odd or p is odd (d 6= 1),
Zd/2⊕ Z2 if p ≡ 0 (mod 4) and (p, 24)= 4 or 12 (d 6= 1),
Zd/2 if p ≡ 0 (mod 4) and (p, 24)= 8 or 24 (d 6= 1),
Zd/2 if q ≡ 2, p ≡ 2 (mod 4),
Zd/2⊕ Z2 if q ≡ 0, p ≡ 2 (mod 4),

where d is the greatest common divisor of p and q.
The space X is neither a Moore space nor a co-Moore space but is characterized

by finite homology groups and cohomology groups. That is,

H̃i (X)∼=


Z p if i = n,
Zq if i = n+ 1,
0 otherwise,
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q is odd
d = 1 d 6= 1

q ≡ 2 (mod 4) q ≡ 0 (mod 4)

p is odd (d = 1) 1 · Z2 Z2

p is odd (d 6= 1) · Zd Z2⊕Zd Z2⊕Zd

p ≡ 2 (mod 4) 1 Zd Z2⊕Zd/2⊕Z2 Z2⊕Zd/2⊕Z4

p ≡ 0 (mod 4) 1 Zd Z2⊕Zd/2⊕Z2⊕Z2 Z2⊕Zd/2⊕Z2⊕Z2

Table 1. Isomorphism class of the groups Edim
] (X).

and

H̃ i (X, π)∼=


Hom(Z p, π) if i = n,
Ext(Z p, π)⊕Hom(Zq , π) if i = n+ 1,
Ext(Zq , π) if i = n+ 2,
0 otherwise.

From this perspective, X is an interesting space for studying self-homotopy
equivalences.

Throughout this paper, all topological spaces are based and have the based
homotopy type of a finite l-connected CW-complex. All maps and homotopies
will preserve base points. For the spaces X and Y , we denote by [X, Y ] the set
of homotopy classes of maps from X to Y . We do not distinguish between the
notation of a map X→ Y and that of its homotopy class in [X, Y ]. If a group G
is generated by a set {a1, . . . , an}, then we denote the group by G{a1, . . . , a2} or
G = 〈a1, . . . , an〉.

2. Preliminaries

Let X be a space. Then, we denote by SX the suspension of X and by Sn X the
iterated suspension defined by Sn X = S(Sn−1 X). Let f : A→ B be a map and
let C f = B ∪ f C A be the mapping cone of f . Then, we have a Puppe sequence
[1958] for f ,

A
f // B i // C f

π // S A
S f // SB Si // SC f

Sπ // S2 A
S2 f // S2 B // · · · ,

such that the following sequence is exact for any space X :

· · · // [SC f , X ] Sπ∗ // [SB, X ]
S f ∗ // [S A, X ] π

∗

// [C f , X ] i∗ // [B, X ]
f ∗ // [A, X ],

where Sn f is a suspension map induced by f .
If A is m-connected and B is n-connected, then we have the following exact

sequence for any CW-complex Y with dimension at most m+ n as a dual sequence
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of the above sequence [Blakers and Massey 1952]:

[Y, A]
f∗ // [Y, B]

i∗ // [Y,C f ]
π∗ // [Y, S A]

S f∗ // [Y, SB] // · · · .

Both sequences will be called the exact sequences associated with the cofibration

B→ C f → S A.

Proposition 2.1 [Arkowitz and Maruyama 1998]. If X is (k− 1)-connected, Y is
(l− 1)-connected, k, l ≥ 2 and dim P ≤ k+ l− 1, then the projections X ∨Y → X
and X ∨ Y → Y induce a bijection

[P, X ∨ Y ] → [P, X ]⊕ [P, Y ].

Proposition 2.1 is a consequence of [Spanier 1966, p. 405] since the inclusion
X ∨ Y → X × Y is a (k+ l − 1)-equivalence.

Next, we consider abelian groups G1 and G2 and Moore spaces M1=M(G1, n1)

and M2 = M(G2, n2). Let X = M1∨M2. We denote by i j : M j→ X the inclusion
and by p j : X→ M j the projection, where j = 1, 2. If f : X→ X , then we define
f jk : Mk→ M j by f jk = p j f ik for j, k = 1, 2.

If f : X → Y is a map, then f]n : πn(X)→ πn(Y ) denotes the induced homo-
morphism in dimension n.

Proposition 2.2 [Arkowitz and Maruyama 1998]. The function θ that assigns to
each f ∈ [X, X ] the 2× 2 matrix

θ( f )=
(

f11 f12

f21 f22

)
,

where f jk ∈ [Mk,M j ], is a bijection. In addition:

(1) θ( f +g)= θ( f )+θ(g), so θ is an isomorphism [X, X ]→
⊕

j,k=1,2[Mk,M j ].

(2) θ( f g) = θ( f )θ(g), where f g denotes composition in [X, X ] and θ( f )θ(g)
denotes matrix multiplication.

(3) If αr : πr (M1)⊕ πr (M2)→ πr (M1 ∨ M2) is the homomorphism induced by
the inclusions and βr : πr (M1∨M2)→ πr (M1)⊕πr (M2) the homomorphism
induced by the projections respectively, then

βr f]rαr (x, y)=
(

f11 ]r (x)+ f12 ]r (y), f21 ]r (x)+ f22 ]r (y)
)

for x ∈ πr (M1) and y ∈ πr (M2).

Proposition 2.3 [Araki and Toda 1965]. (1) πn(M(Zq , n))∼= Zq for all q.

(2) πn+1(M(Zq , n))∼=
{

0 if q is odd,
Z2 if q is even.
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(3) πn+2(M(Zq , n))∼=


0 if q is odd,
Z4 if q ≡ 2 (mod 4),
Z2⊕ Z2 if q ≡ 0 (mod 4).

(4) πn+3(M(Zq , n))∼=
{

Z(q,24) if q is odd,
Z(q,24)⊕ Z2 if q is even.

The generators of [Sn+i , Sn
] can be summarized thus [Toda 1962]:

i < 0 i = 0 i = 1 i = 2 i = 3 i = 4, 5

[Sn+i , Sn
] 0 Z Z2 Z2 Z24 0

Generator ι η η2 ν 0

Proposition 2.4 [Araki and Toda 1965].

(1) [M(Zq , n), Sn
] ∼=

{
0 if q is odd,
Z2 if q is even.

(2) [M(Zq , n+ 1), Sn
] ∼=


0 if q is odd,
Z4 if q ≡ 2 (mod 4),
Z2⊕ Z2 if q ≡ 0 (mod 4).

Proposition 2.5 [Arkowitz and Maruyama 1998]. For the Moore space X =
M(G, n):

(1) Edim
] (X) ∼= ⊕(r+s)s Z2, where r is the rank of G and s is the number of 2-

torsion summands in G.

(2) Edim+1
] (X)∼= 1 if n > 3.

Proposition 2.6 (universal coefficient theorem for homotopy groups with coeffi-
cients [Hilton 1965]). There is an exact sequence

0→ Ext(G, πn+1(X))→ πn(G; X)→ Hom(G, πn(X))→ 0,

where πn(G; X), the n-th homotopy group of X with coefficients in G, is given by
πn(G; X)= [M(G, n), X ], where M(G, n) is a Moore space.

3. Generators of the sets of homotopy classes on Moore spaces

In this section, we find generators of homotopy groups of Moore spaces and the
sets of homotopy classes between two Moore spaces. Let

M1 = M(Zq , n+ 1)= Sn+1
∪q en+2 and M2 = M(Z p, n)= Sn

∪p en+1,

with p, q ≥ 1. Then, there are two mapping cone sequences

Sn+1
qι1 // Sn+1 i1 // Sn+1

∪q en+2 π1 // Sn+2
qι1 // Sn+2
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and

Sn
pι2 // Sn i2 // Sn

∪p en+1 π2 // Sn+1
pι2 // Sn+1,

where pι2 and qι1 are maps with degree p and q respectively.

Remark 3.1. We find generators of πm(M(Zr , n)), for n ≤ m ≤ n+ 2.
Recall that πn(M(Zr , n))∼= Zr . From the mapping cone sequence

Sn rι // Sn i // M(Zr , n) π // Sn+1 rι // Sn+1,

we obtain the long exact sequence

πn(Sn)
rι] // πn(Sn)

i] // πn(M(Zr , n))
π] // πn(Sn+1)

rι] // πn(Sn+1).

By the results in [Toda 1962], we have the sequence

Z{ι}
rι] // Z{ι}

i] // πn(M(Zr , n)) // 0,

so i] is surjective. Thus, πn(M(Zr , n)) ∼= Z{ι}/ Im(rι]). Let i](ι) = i . Then, we
can take i as a generator of πn(M(Zr , n)).

Next, we find a generator of πn+1(M(Zr , n)). There are two cases according to
the parity of the positive integer r . If r is odd, then πn+1(M(Zr , n)) is trivial. If r
is even, then we can take i](η) as a generator of πn+1(M(Zr , n)), where η is the
generator of πn+1(Sn).

Finally, we find a generator of πn+2(M(Zr , n)). Consider the exact sequence

πn+2(Sn)
rι] // πn+2(Sn)

i] // πn+2(M(Zr , n))
π] // πn+2(Sn+1)

rι] // πn+2(Sn+1).

Then by the results in [Toda 1962], we have the exact sequence

Z2{η
2
}

rι] // Z2{η
2
}

i] // πn+2(M(Zr , n))
π] // Z2{η}

qι] // Z2{η}.

Since r is an even number, we obtain the exact sequence

0 // Z2{η
2
}

i] // πn+2(M(Zr , n))
π] // Z2{η} // 0.

If r ≡2 (mod 4), then πn+2(M(Zr , n))∼= Z4{η} such that i](η2)=2η and π](η)=η.
On the other hand, if r ≡ 0 (mod 4), then πn+2(M(Zr , n))∼= Z2⊕ Z2{η1, η2} such
that i](η2)= η1 and π](η2)= η.

By Remark 3.1, it follows that

πn+1(M1)∼= Zq{i1}, πn(M2)∼= Z p{i2},

πn+2(M1)∼= Z2{i1](η)}, πn+1(M2)∼= Z2{i2](η)}.

Moreover, πn+2(M2)∼= Z4{η} or πn+2(M2)∼= Z2⊕ Z2{η1, η2}.
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Lemma 3.2. Let p and q be positive integers and (p, q) be the greatest common
divisor of p and q. Consequently, if (p, q)= d 6= 1, then [M2,M1] ∼= Zd{π

∗

2 (i1)}

and if (p, q)= 1, then [M2,M1] ∼= 0.

Proof. Consider the mapping cone sequence of M2,

Sn
pι2
// Sn

i2
// Sn
∪p en+1

π2
// Sn+1

pι2
// Sn+1.

This sequence induces the following exact sequence:

πn+1(M1)

pι2∗
// πn+1(M1)

π2∗
// [M2,M1]

i2∗
// πn(M1)

pι2∗
// πn(M1).

Since πn+1(M1)∼= Zq{i1} and πn(M1)∼= 0, the exact sequence above becomes

Zq{i1}

p∗ι2
// Zq{i1}

π∗2
// [M2,M1] // 0.

If (p, q)= 1, the first p∗ι2 is an isomorphism, so [M2,M1] ∼= 0. Let (p, q)= d 6= 1.
Then, since π∗2 is surjective and p∗ι2(i1)= pi1, we have

[M2,M1] = imπ∗2
∼= Zq{i1}/ im p∗ι2

∼= Zd{π
∗

2 (i1)}. �

Lemma 3.3. If p or q is odd, then [M1,M2] ∼= 0.

Proof. Consider the mapping cone sequence of M1,

Sn+1
qι1 // Sn+1 i1 // Sn+1

∪q en+2 π1 // Sn+2
qι1 // Sn+2.

Then, we have the exact sequence

πn+2(M2)
q∗ι1 // πn+2(M2)

π∗1 // [M1,M2]
i∗1 // πn+1(M2)

q∗ι1 // πn+1(M2).

Let p≡2 (mod 4) and let q be odd. Then, since πn+1(M2)∼= Z2 and πn+2(M2)∼= Z4,
we have the sequence

Z4

q∗ι1 // Z4
π∗1 // [M1,M2]

i∗1 // Z2

q∗ι1 // Z2.

Furthermore, since (q, 4)= 1 and (q, 2)= 1, each q∗ι1 is an isomorphism. Thus we
have the exact sequence

0→ [M1,M2] → 0.

Therefore, [M1,M2] ∼= 0.
In the case where p ≡ 0 (mod 4) and q is odd, we can give a similar proof.
Next, let p be odd. Since πn+1(M2) and πn+2(M2) are trivial groups, so is
[M1,M2] by exactness. �
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Let p and q be even. From the exact sequences associated with the cofibrations
Sn+1
→ M1→ Sn+2 and Sn

→ M2→ Sn+1, we have the following commutative
diagram with exact rows and columns:

[Sn+2,Sn
]

pι2∗
��

q∗ι1 // [Sn+2,Sn
]

pι2∗
��

π∗1 // [M1,Sn
]

pι2∗
��

i∗1 // [Sn+1,Sn
]

pι2∗
��

q∗ι1 // [Sn+1,Sn
]

pι2∗
��

[Sn+2,Sn
]

i2∗
��

q∗ι1 // [Sn+2,Sn
]

i2∗
��

π∗1 // [M1,Sn
]

i2∗

��

i∗1 // [Sn+1,Sn
]

i2∗
��

q∗ι1 // [Sn+1,Sn
]

i2∗
��

[Sn+2,M2]

π2∗
��

q∗ι1 // [Sn+2,M2]

π2∗
��

π∗1 // [M1,M2]

π2∗
��

i∗1 // [Sn+1,M2]

π2∗
��

q∗ι1 // [Sn+1,M2]

π2∗
��

[Sn+2,Sn+1
]

pι2∗
��

q∗ι1 // [Sn+2,Sn+1
]

pι2∗
��

π∗1 // [M1,Sn+1
]

pι2∗
��

i∗1 // [Sn+1,Sn+1
]

pι2∗
��

q∗ι1 // [Sn+1,Sn+1
]

pι2∗
��

[Sn+2,Sn+1
]

q∗ι1 // [Sn+2,Sn+1
]
π∗1 // [M1,Sn+1

]
i∗1 // [Sn+1,Sn+1

]

q∗ι1 // [Sn+1,Sn+1
]

Lemma 3.4. Let (p, q) 6= 1. Then, if either p ≡ 0 (mod 4) and q ≡ 2 (mod 4) or
p ≡ 2 (mod 4) and q ≡ 0 (mod 4), we have [M1,M2] ∼= Z4⊕ Z2.

Proof. Suppose that p ≡ 0 (mod 4) and q ≡ 2 (mod 4). With the results in [Araki
and Toda 1965], we obtain the following diagram from the above diagram:

0

��
Z4

i2∗
��

0 // Z2⊕ Z2
π∗1 // [M1,M2]

π2∗

��

i∗1 // Z2 // 0

Z2

��
0

Thus, [M1,M2] is isomorphic to one of three groups: Z8, Z4⊕ Z2 or Z2⊕ Z2⊕ Z2.
Since i2∗ is injective, [M1,M2] has an element of order 4. However, Z2⊕ Z2⊕ Z2

does not have an element of order 4. Since π∗1 is injective, [M1,M2] has a subgroup
which is not cyclic. It follows that [M1,M2] 6= Z8. Therefore, [M1,M2] ∼= Z4⊕ Z2.
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Now, let p ≡ 2 (mod 4) and q ≡ 0 (mod 4). With the results in [Araki and Toda
1965], we obtain the following diagram from the above commutative diagram:

0

��
Z2⊕ Z2

i2∗
��

0 // Z4
π∗1 // [M1,M2]

π2∗
��

i∗1 // Z2 // 0

Z2

��
0

Thus, [M1,M2] is isomorphic to one of the three groups: Z8, Z4⊕Z2 or Z2⊕Z2⊕Z2.
Since π∗1 is injective, [M1,M2] has an element of order 4. However, Z2⊕ Z2⊕ Z2

does not have an element of order 4. Since i2∗ is injective, [M1,M2] has a subgroup
which is not cyclic. It follows that [M1,M2] 6= Z8. Thus, [M1,M2] ∼= Z4⊕ Z2. �

By Lemma 3.4, [M1,M2]∼= Z4⊕Z2. However, [M1,M2] has different generators
under different conditions. Here we determine the generators.

If p ≡ 0 (mod 4) and q ≡ 2 (mod 4), then [M1,M2] ∼= Z4 ⊕ Z2{α, π
∗

1 (η2)},
where π∗1 (η1)= 2α and i∗1 (α)= i2](η).

If p≡ 2 (mod 4) and q≡ 0 (mod 4), then [M1,M2]∼= Z4⊕Z2{π
∗

1 (η), β}, where
i∗1 (β)= i2](η).

For a given homomorphism h : G1 → G2, we have from Proposition 2.6 the
commutative diagram

0 // Ext(G2, πn+1(X))

h
]

��

// πn(G2; X)

h∗

��

// Hom(G2, πn(X))

h]
��

// 0

0 // Ext(G1, πn+1(X)) // πn(G1; X) // Hom(G1, πn(X)) // 0

where h̄] and h] are induced by h and h∗ is associated with h. This shows that the
nonuniqueness of h∗ is substantially limited. The measure of choice is bounded by
the group

Hom
(
Hom(G2, πn(X)),Ext(G1, πn+1(X))

)
.

Lemma 3.5. If (p, q)= d 6= 1, we have

[M1,M2] ∼=

{
Z2⊕ Z2 if p ≡ 2 and q ≡ 2 (mod 4),
Z2⊕ Z2⊕ Z2 if p ≡ 0 and q ≡ 0 (mod 4).
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Proof. Suppose that p≡ 2 (mod 4) and q ≡ 2 (mod 4). By the universal coefficient
theorem for homotopy groups with coefficients, we have the short exact sequence

0→ Ext(Zq , Z4)→ [M1,M2] → Hom(Zq , Z2)→ 0.

Since Ext(Zq , Z4) ∼= Z(q,4) ∼= Z2 and Hom(Zq , Z2) = Z(q,2) = Z2, this sequence
becomes

0→ Z2→ [M1,M2] → Z2→ 0.

Let M3=M(Z p, n+1). By the universal coefficient theorem for homotopy with
coefficients, we have the sequence

0→ Ext(Z p, Z4)→ [M3,M2] → Hom(Z p, Z2)→ 0.

Similarly, this sequence becomes

0→ Z2→ [M3,M2] → Z2→ 0.

We may assume that q ≥ p. Let q = kd and p = ld, where (k, l) = 1. Then
both k and l are odd. We define h : Zq → Z p by h(1̄) = l̄ with s̄ = s + r Z ∈ Zr .
Then, im(h) is congruent to Zd in Z p and h is a nontrivial homomorphism since
(q, p)= d 6= 1. Thus, we have the commutative diagram

0 // Z2

h̄]
��

// [M3,M2]

h∗

��

// Z2

h]
��

// 0

0 // Z2 // [M1,M2] // Z2 // 0

where h̄] :Ext(Z p, Z4)→Ext(Zq , Z4) and h] :Hom(Z p, Z2)→Hom(Zq , Z2) are
induced by h.

To show that h] :Hom(Z p, Z2)→Hom(Zq , Z2) is an isomorphism, it is sufficient
to show that h] is nontrivial. Let α be an nonzero element in Hom(Z p, Z2) such
that α(1̄) = 1̄. Since h](α) = α ◦ h ∈ Hom(Zq , Z2) and α ◦ h(1̄) = α(l̄) = l̄ = 1̄,
where l is odd, it follows that h](α) is a nontrivial homomorphism.

Next, we show that h̄] :Ext(Z p, Z4)→Ext(Zq , Z4) is an isomorphism. Consider
the resolutions of Zq and Z p. Then we have following commutative diagram:

0 // Z

h1

��

q // Z

h2

��

β // Zq

h
��

// 0

0 // Z
p // Z

β ′ // Z p // 0

See [Gray 1975, Lemma 25.3]. Now, we give precise definitions of the maps
h1, h2 and h]. Since l̄ = h(1̄) = h ◦ β(1) = β ′(h2(1)), we have h2 given by
h2(1) = l. Moreover, we can obtain h1 using h2. Since p ◦ h1 = h2 ◦ q, we have
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ph1(1)=h2(q)=qh2(1)=dkl= pk. Thus, h1 is given by h1(1)=k. If we consider
the three homomorphisms h], h]1 and h]2 induced by h, h1 and h2 respectively, we
have the following commutative diagram:

0 // Hom(Zq , Z4)
β∗ // Hom(Z , Z4)

q∗ // Hom(Z , Z4)

0 // Hom(Z p, Z4)

h]
OO

β ′∗ // Hom(Z , Z4)

h]2

OO

p∗ // Hom(Z , Z4)

h]1 ∼=

OO

Next, we show that h]1 is an isomorphism. We choose a generator α of Hom(Z , Z4)

such that α(1) = 1̄. Then h]1(α)(1) = (α ◦ h1)(1) = α(k) 6= 0 (mod 2) since k is
odd. Therefore, h]1(α) is a generator of Hom(Z , Z4). Thus, h]1 is an isomorphism.

By using h]1, we determine the homomorphism h̄] : Ext(Z p, Z4)→ Ext(Zq , Z4).
Since q ≡ p ≡ 2 (mod 4) and

Ext(Z p, Z4)=Hom(Z , Z4)/ im(p∗) and Ext(Zq , Z4)=Hom(Z , Z4)/ im(q∗),

we have

Ext(Z p, Z4)= 〈α+{2α}〉 and Ext(Zq , Z4)= 〈α+{2α}〉.

By well-known facts of homological algebra, h̄] : Ext(Z p, Z4)→ Ext(Zq , Z4)

is given by h̄](α+{2α})= α ◦ h1+{2α} 6= 0. Therefore, h̄] is nontrivial. Thus, h̄]

is an isomorphism.
By the five lemma, h∗ : [M1,M2] → [M3,M2] is an isomorphism. From [Araki

and Toda 1965], we have [M3,M2] ∼= Z2⊕ Z2. Therefore, [M1,M2] ∼= Z2⊕ Z2.
Next, we suppose that q ≡ 0 and p ≡ 0 (mod 4).
From [Araki and Toda 1965] and the commutative diagram above Lemma 3.4,

we obtain the following commutative diagram:

0

��

0

��
0 // Z2

π∗1 //

i2∗
��

Z2⊕ Z2

i2∗
��

i∗1 // Z2 //

i2∗
��

r
oo 0

0 // Z2⊕ Z2
π∗1 // [M1,M2]

π2∗

��

i∗1 // Z2 //

θ

OO

0

Z2

��
0
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Since the second row is a split exact sequence, there exists r : [Sn+1, Sn
]→[M1, Sn

]

such that i∗1◦r= id[Sn+1,Sn]. Moreover, since the third i2∗ is an isomorphism, there ex-
ists θ : [Sn+1,M2]→[Sn+1, Sn

] such that θ◦i2∗= id[Sn+1,Sn] and i2∗◦θ = id[Sn+1,M2].
We define the map k : [Sn+1,M2]→ [M1,M2] by k = i2∗ ◦ r ◦ θ . Then, we have

i∗1 ◦ k = i∗1 ◦ i2∗ ◦ r ◦ θ

= i2∗ ◦ i∗1 ◦ r ◦ θ

= i2∗ ◦ id[Sn+1,Sn] ◦ θ

= i2∗ ◦ θ = id[Sn+1,M2].

Therefore, the third row is a split exact sequence. Hence,

[M1,M2] ∼= Z2⊕ Z2⊕ Z2. �

Now, we determine the generators of [M1,M2] when either p ≡ 2 (mod 4) and
q ≡ 2 (mod 4) or p ≡ 0 (mod 4) and q ≡ 0 (mod 4).

Let p ≡ 2 (mod 4) and q ≡ 2 (mod 4). By using the Puppe exact sequence, we
have the following exact sequence:

πn+2(M2)
q∗ι1 // πn+2(M2)

π∗1 // [M1,M2]
i∗1 // πn+1(M2)

p∗ι1 // πn+1(M2).

By exactness, we obtain the exact sequence

0 // Z2
π∗1 // [M1,M2]

i∗1 // Z2 // 0.

Thus, [M1,M2] ∼= Z2⊕ Z2{π
∗

1 (η), β}, where i∗1 (β)= i2](η).
Next, we let p ≡ 0 (mod 4) and q ≡ 0 (mod 4). By a similar method we obtain
[M1,M2] ∼= Z2⊕ Z2⊕ Z2 {π

∗

1 (η1), π
∗

1 (η2), α}, where i∗1 (α)= i2](η).

Remark 3.6. Here we determine the generators of πn+3(M(Zq , n)). By using the
mapping cone sequence of the Moore space

Sn qι // Sn i // M(Zq , n) π // Sn+1 qι // Sn+1,

we obtain a long exact sequence

πn+3(Sn)
qι] // πn+3(Sn)

i] // πn+3(M(Zq , n))
π] // πn+3(Sn+1)

qι] // πn+3(Sn+1).

From the work by Toda [1962], we have

Z24{ν}
qι] // Z24{ν}

i] // πn+3(M(Zq , n))
π] // Z2{η

2
}

qι] // Z2{η
2
}.

Thus, if q is odd, then πn+3(M(Zq , n)) ∼= Z(q,24){i](ν)}, and if q is even, then
πn+3(M(Zq , n))∼= Z(q,24)⊕ Z2{i](ν), η2} where π](η2)= η2.
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Based on Remarks 3.1 and 3.6, we obtain for M1 the table

q odd q ≡ 2 (mod 4) q ≡ 0 (mod 4)

πn+3(M1) 0 Z4 Z2⊕ Z2

Generator η̂ η3, η4

Relation i1](η
2)= 2η̂, π1](η̂)= η i1](η

2)= η3, π1](η4)= η

while for M2 we obtain

p odd p ≡ 2 (mod 4) p ≡ 0 (mod 4)

πn+3(M2) Z(p,24) Z(p,24)⊕ Z2 Z(p,24)⊕ Z2

Generator i2](ν) i2](ν), η2 i2](ν), η2

Relation π2](η2)= η2 π2](η2)= η2

By Lemmas 3.4 and 3.5, we have the following table, where π∗1 (η1) = 2α,
i∗1 (α)= i2](η) and i∗1 (β)= i2](η):

[M1,M2] Generator

either q odd or p odd 0
q ≡ 2, p ≡ 0 (mod 4) Z4⊕ Z2 α, π∗1 (η2)

q ≡ 0, p ≡ 2 (mod 4) Z4⊕ Z2 π∗1 (η), β

q ≡ p ≡ 2 (mod 4) Z2⊕ Z2 π∗1 (η), β

q ≡ p ≡ 0 (mod 4) Z2⊕ Z2⊕ Z2 π∗1 (η1), π
∗

1 (η2), α

4. Computation of Edim+r
] (M(Zq, n+ 1)∨M(Z p, n)) for r = 0, 1

In this section, we compute Edim+r
] (M1 ∨ M2), where M1 = M(Zq , n + 1) =

Sn+1
∪q en+2 and M2 = M(Z p, n) = Sn

∪p en+1 with p, q ≥ 1. In [Jeong 2010],
these groups were computed in the case of p = q. However, we compute those
groups in the general case, that is, p 6= q and r = 0, 1. Throughout this section
we assume that X = M1∨M2. Note that πn+k(M1∨M2)∼= πn+k(M1)⊕πn+k(M2)

for k ≤ n by Proposition 2.1. Moreover, from Proposition 2.2, we can identify
f ∈ [X, X ] with the 2× 2 matrix

θ( f )=
(

f11 f12

f21 f22

)
,

where f11 ∈ [M1,M1], f12 ∈ [M2,M1], f21 ∈ [M1,M2], and f22 ∈ [M1,M1].

Lemma 4.1. Let f ∈ [X, X ] be given by

f =
(

f11 f12

f21 f22

)
.
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Then f ∈ E(X) if and only if f11 ∈ E(M1) and f22 ∈ E(M2). Additionally, if
f ∈ Edim

] (X), then f22 = 1.

Proof. Let us denote by h∗n : Hn(U )→ Hn(V ) the induced homomorphism on
the homology group from h : U → V . Then, f ∈ E(X) if and only if f∗ is an
isomorphism if and only if f11∗n+1 and f22∗n are isomorphisms if and only if
f11 ∈ E(M1) and f22 ∈ E(M2). For the proof of the second statement, see [Jeong
2010, Lemma 3.3]. �

Let us denote by g]s :πs(U )→πs(V ) the homomorphism induced by g :U→ V .
It is clear from Lemma 4.1 that if f ∈ E(X), then f](n+k) : πn+k(X)→ πn+k(X) is
given by

f](n+k) =

(
f11](n+k) f12](n+k)

f21](n+k) f22](n+k)

)
,

where f11](n+k) and f22](n+k) are isomorphisms and k ≤ n.

Lemma 4.2. If f ∈ E(X) and either q is odd or p is odd, then f12]k = 0 for
k = 1, 2, . . . , n+ 2.

Proof. Since M1 is n-connected, we have πk(M1)= 0 for k = 1, 2, . . . , n. Thus it
is sufficient to show that f12]k = 0 for k = n+ 1, n+ 2.

If p is odd, then πn+1(M2) and πn+2(M2) are trivial groups. Thus, f12](n+1) =

f12](n+2) = 0.
Suppose that q is odd, p is even and (p, q)=d 6=1. Then, πn+1(M2)∼= Z2{i2](η)}.

Since [M2,M1] ∼= Zd{π
∗

2 (i1)}, we have f12]n+1 = tπ∗2 (i1)] for some integer t such
that 1≤ t ≤ d. Thus, we have

f12](n+1)(i2](η))= tπ∗2 (i1)(i2](η))= t (i1 ◦π2 ◦ i2 ◦ η)= 0

because π2 ◦ i2 is homotopic to a constant map. Hence, f12](n+1) = 0. If d = 1,
[M2,M1] = 0 and it is trivial.

For k = n+ 2, we are done since πn+2(M1)= 0. �

Here we introduce certain generators and elements of [M1,M1] and Edim+r
] (M1)

for r =−1, 0, 1 as described in [Jeong 2010].

Remark 4.3. Let M1 = M(Zq , n + 1) be a Moore space with q is even. By
Proposition 2.5, Edim

] (M1)∼= Z2 and Edim+1
] (M1)= 1. In this remark, we describe

the generator of Edim
] (M1) explicitly.

Consider the mapping cone sequence

Sn+1
qι1 // Sn+1 i1 // Sn+1

∪q en+2 π1 // Sn+2
qι1 // Sn+2 .

Then, we have the following exact sequence:

πn+2(M1)
q∗ι1 // πn+2(M1)

π∗1 // [M1,M1]
i∗1 // πn+1(M1)

q∗ι1 // πn+1(M1) .
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Since πn+2(M1)∼= Z2{i1η} and πn+1(M1)∼= Zq{1}, we have the short exact sequence

0 // Z2{i1η}
π∗1 // [M1,M1]

i∗1 // Zq{1} // 0 .

By [Araki and Toda 1965, Theorem 4.1],

[M1,M1] ∼=

{
Z2q{1} if q ≡ 2 (mod 4),
Zq ⊕ Z2{1, i1 ◦ η ◦π1} if q ≡ 0 (mod 4),

and

π∗1 (i1 ◦ η)= i1 ◦ η ◦π1 ∈ [M1,M1].

Let i1 ◦η◦π1 = ε. Then, ε has order 2 and 1+ε ∈ [M1,M1]. Since n ≥ 5, we have
that 1+ ε is a suspension map. Thus,

(1+ ε) ◦ (1+ ε)' 1 ◦ (1+ ε)+ ε ◦ (1+ ε)= 1+ ε+ ε+ ε ◦ ε = 1+ 2ε+ ε2.

If q ≡ 2 (mod 4), then i1 ◦ η ◦π1 = q1 and ε2
= i1 ◦ η ◦π1 ◦ i1 ◦ η ◦π1. Since

π1 ◦ i1= 0 and ε has order 2, we have 2ε = 0 and ε2
= 0. Thus, (1+ε)◦ (1+ε)' 1

and 1+ ε ∈ E(M1).
Since each α ∈ πn+r (M1) is a suspension map, for r = 1, 2, 3, we have

(1+ ε)](α)= α+ ε ◦α.

Since πn+1(M1) ∼= Zq{i1} and ε](i1) = i1 ◦ η ◦ π1 ◦ i1 = 0, we have 1+ ε ∈
Edim−1
] (M1).

Since πn+2(M1) ∼= Z2{i1](η)} and ε](i1](η)) = i1 ◦ η ◦π1 ◦ i1 ◦ η = 0, we have
1+ ε ∈ Edim

] (M1).
Since πn+3(M1)∼= Z4{η̂} and

ε](η̂)= i1 ◦ η ◦π1 ◦ η̂ = i1 ◦ η ◦ η = i1 ◦ η
2
= 2η̂ 6= 0,

we have 1+ ε /∈ Edim+1
] (M1).

We obtain similar results in the case of q ≡ 0 (mod 4).

Theorem 4.4. If X = M1 ∨M2 and (p, q)= 1, then

Edim
] (X)∼=

{
1 if q is odd,
Z2 if q is even and p is odd.

Proof. Let (q, p)= 1. Then, either q or p is odd. By Lemmas 3.2 and 3.3, we have
[M2,M1] = 0 and [M1,M2] = 0.

If q is odd, then Edim
] (M1) = 1 and Edim

] (M2) = 1 by Proposition 2.5 and
Lemma 4.1. Therefore Edim

] (X)= 1.
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If p is odd and q is even, then Edim
] (M1) ∼= Z2{1+ ε} and Edim

] (M2) = 1 by
Proposition 2.5, Lemma 4.1, and Remark 4.3. Thus, we have

Edim
] (X)∼=

{(
1+ ε 0

0 1

) ∣∣∣∣ ε ∈ Z2 {i1ηπ1}

}
,

where η is the generator of πn+2(Sn+1). �

Theorem 4.5. If X = M1 ∨M2 and (p, q)= d 6= 1, then

Edim
] (X)∼=

{
Zd if q is odd,
Z2⊕ Zd if q is even and p is odd.

Proof. By Lemmas 3.2 and 3.3, we have [M2,M1] ∼= Zd{π
∗

2 (i1)} and [M1,M2] = 0.
Moreover, f12]k = 0 for k = 1, 2, . . . , n+ 2 by Lemma 4.2.

Thus, if q is odd, then we have

Edim
] (X)∼=

{(
1 f12

0 1

) ∣∣∣∣ f12 ∈ Zd {π
∗

2 (i1)}

}
,

but if q is even and p is odd, then we have

Edim
] (X)∼=

{(
1+ ε f12

0 1

) ∣∣∣∣ f12 ∈ Zd {π
∗

2 (i1)}, ε ∈ Z2 {i1ηπ1}

}
. �

Let f12 be an element of [M2,M1]∼= Zd{π
∗

2 (i1)}, Then f12= sπ∗2 (i1) for 1≤ s ≤ d .

Lemma 4.6. For f =
( f11

f21

f12
f22

)
∈ E(X), let p and q be even. Then, f12]k = 0 for

k = 1, 2, . . . , n+ 1.

Proof. Since M1 is n-connected, πk(M1) = 0 for k = 1, 2, . . . , n. Thus, it is
sufficient to show that f12](n+1) = 0. Since [M2,M1] ∼= Zd{π

∗

2 (i1)} by Lemma 3.2
and f12 belongs to [M2,M1], we have f12= sπ∗2 (i1) for some 1≤ s ≤ d . Moreover,
πn+1(M2)∼= Z2{i2](η)} by Remark 3.1. Thus, we have

f12](n+1)(i2](η))= sπ∗2 (i1)(i2](η))= s(i1 ◦π2 ◦ i2 ◦ η)= 0

since π2 ◦ i2 is homotopic to the constant map. �

Lemma 4.7. Let p and q be even and f12 = sπ∗2 (i1) be an element of [M2,M1] ∼=

Zd{π
∗

2 (i1)} for 1 ≤ s ≤ d. Then, f12](n+2) 6= 0 if s is odd, and f12](n+2) = 0 if s
is even.

Proof. First, we note that πn+2(M1)∼= Z2{i]1(η)}.
Suppose that p ≡ 0 (mod 4). Since πn+2(M2)∼= Z2⊕ Z2{η1, η2}, we have

π∗2 (i1)= π
∗

2 (i1)(η1)= π
∗

2 (i1)(i2](η
2))= i1 ◦π2 ◦ i2 ◦ η

2
= 0

and
π∗2 (i1)(η2)= i1 ◦π2 ◦ η2 = i1 ◦ η 6= 0.



SELF-HOMOTOPY EQUIVALENCES ON WEDGE PRODUCTS OF MOORE SPACES 51

Thus, f12](n+2)(η1)= 0 for all f12. Moreover, if s = 2l for some 1≤ l ≤ d/2, then

sπ∗2 (i1)(η2)= si1 ◦π2 ◦ η2 = 2li1 ◦ η = 0.

Therefore, each element in 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism
on πn+2(M2). However, if s = 2l + 1 for some 0≤ l < d/2− 1, then

sπ∗2 (i1)(η2)= si1 ◦π2 ◦ η2 = (2l + 1)i1 ◦ η = i1 ◦ η 6= 0.

Thus, if f12 does not belong to 〈2π∗2 (i1)〉 ∼= Zd/2, then f12](n+2) 6= 0.
Suppose that p ≡ 2 (mod 4). Since πn+2(M2)∼= Z4{η}, we have

π∗2 (i1)](η)= i1 ◦π2 ◦ η = i1 ◦ η = i1](η) 6= 0.

If s = 2k for some 1≤ l ≤ d/2, then

sπ∗2 (i1)](η)= si1 ◦π2 ◦ η = si1 ◦ η = 2li1](η)= 0.

Thus, each element in 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on n+2.
However, if s = 2l + 1 for some 0≤ l ≤ d/2− 1, then

sπ∗2 (i1)](η)= si1 ◦π2 ◦ η = si1 ◦ η = (2l + 1)i1](η)= i1](η) 6= 0.

Thus if f12 does not belong to 〈2π∗2 (i1)〉 ∼= Zd/2, then f12](n+2) 6= 0. �

Theorem 4.8. Let p and q be even and let X = M1 ∨M2. Then if (p, q)= d 6= 1,
we have

Edim
] (X)∼=


Z2⊕ Zd/2⊕ Z2⊕ Z2 if q ≡ 2, p ≡ 0 (mod 4),
Z2⊕ Zd/2⊕ Z4 if q ≡ 0, p ≡ 2 (mod 4),
Z2⊕ Zd/2⊕ Z2 if q ≡ 2, p ≡ 2 (mod 4),
Z2⊕ Zd/2⊕ Z2⊕ Z2 if q ≡ 0, p ≡ 0 (mod 4).

Proof. By Proposition 2.5, Edim
] (M1)∼= Z2 and Edim

] (M2)= 1. By Lemma 4.6, for
each f =

( f11
f21

f12
f22

)
∈E(X), we have f12]k = 0 for k= 1, 2, . . . , n+1. By Lemma 4.7,

each element in 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on πn+2(M2).
Furthermore, if f12 does not belong to 〈2π∗2 (i1)〉 ∼= Zd/2, then f12](n+2) 6= 0. Thus,
it is sufficient to investigate f21]n, f21](n+1) and f21](n+2).

Case 1. Let q ≡ 2 (mod 4) and p ≡ 0 (mod 4). From Lemma 3.4, we obtain
[M1,M2] ∼= Z4⊕ Z2{α, π

∗

1 (η2)}, where π∗1 (η1)= 2α and i∗1 (α)= i2](η).
Since M1 is n-connected, πn(M1)= 0. Thus, f21]n = 0.
Since πn+1(M1)∼= Zq{i1}, we have π∗1 (η2)](i1)= η2 ◦π1 ◦ i1 = 0.
Conversely, since πn+1(M2) ∼= Z2{i2](η)} and α](i1) = α ◦ i1 = i2](η) 6= 0,

we have (2α)] = 0 and (3α)] 6= 0. Moreover, since πn+2(M1) ∼= Z2{i1](η)}, we
have π∗1 (η2)](i1](η)) = η2 ◦ π1 ◦ i1 ◦ η = 0. Hence,

( 1
f21

0
1

)
belongs to Edim

] (X) if
f21 ∈ Z2⊕ Z2{2α, π∗1 (η2)}.
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Therefore,

Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈2α〉⊕ 〈π∗1 (η2)〉

}
,

where ε ∈ 〈i1ηπ1〉.

Case 2. Let q ≡ 0 (mod 4) and p ≡ 2 (mod 4). From Lemma 3.4, we obtain
[M1,M2] ∼= Z4⊕ Z2{π

∗

1 (η), β}, where i∗1 (β)= i2](η).
Since πn(M1)= 0, we have f21]n = 0. However, since πn+1(M1)∼= Zq{i1} and

πn+1(M2)∼= Z2{i2](η)}, we have π∗1 (η)](i1)= η◦π1 ◦ i1 = 0, but β](i1)= β ◦ i1 =

i2](η) 6= 0.
For the generator π∗1 (η) of [M1,M2] ∼= Z4 ⊕ Z2{π

∗

1 (η), β} and the generator
i1](η) of πn+2(M1)∼= Z2{i1](η)}, we have π∗1 (η)](i1](η))= η ◦π1 ◦ i1](η)= 0.

Hence,
( 1

f21

0
1

)
belongs to Edim

] (X) if f21 ∈ 〈π
∗

1 (η)〉.
Therefore,

Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈π
∗

1 (η)〉

}
,

where ε ∈ 〈i1ηπ1〉.

Case 3. Let q ≡ 2 (mod 4) and p ≡ 2 (mod 4). From Lemma 3.5, we obtain
[M1,M2] ∼= Z2⊕ Z2{π

∗

1 (η), β}, where i∗1 (β)= i2](η).
First, we recall that f21]n = 0 since πn(M1)= 0.
Since πn+1(M1) ∼= Zq{i1} and πn+1(M2) ∼= Z2{i2](η)}, we have π∗1 (η)](i1) =

η ◦ π1 ◦ i1 = 0, but β](i1) = β ◦ i1 = i2](η) 6= 0. Moreover, since πn+2(M1) ∼=

Z2{i1](η)}, we have π∗1 (η)](i1](η))= η ◦π1 ◦ i1 ◦ η = 0.
Hence, if f21 ∈ 〈π

∗

1 (η)〉, then
( 1

f21

0
1

)
belongs to Edim

] (X). However, if f21 ∈ 〈β〉,
this cannot be the case. Therefore,

Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈π
∗

1 (η)〉

}
,

where ε ∈ 〈i1ηπ1〉.

Case 4. Let q ≡ 0 (mod 4) and p ≡ 0 (mod 4). From Lemma 3.5, we obtain
[M1,M2] ∼= Z2⊕ Z2⊕ Z2{π

∗

1 (η1), π
∗

1 (η2), α}, where i∗1 (α)= i2](η). First, we note
that f21]n = 0 since πn(M1)= 0.

Since πn+1(M1)∼= Zq{i1} and πn+1(M2)∼= Z2{i2](η)}, we have π∗1 (η1)](i1)=

η1 ◦π1 ◦ i1 = 0 and π∗1 (η2)](i1)= η2 ◦π1 ◦ i1 = 0, but α](i1)= α ◦ i1 = i2](η) 6= 0.
Also, since πn+2(M1)∼= Z2{i1](η)}, we have π∗1 (η1)](i1](η))= η1 ◦π1 ◦ i1](η)= 0
and π∗1 (η2)](i1](η))= η2 ◦π1 ◦ i1](η)= 0.

Hence, if f21 ∈ 〈π
∗

1 (η1)〉⊕ 〈π
∗

1 (η2)〉, then
( 1

f21

0
1

)
belongs to Edim

] (X). However,
if f21 ∈ 〈α〉, this cannot be the case. Therefore,
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Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ π
∗

1 (〈η1〉⊕ 〈η2〉)

}
,

where ε ∈ 〈i1ηπ1〉. �

From Theorems 4.4–4.8, we obtain Table 1 (see page 37).

Theorem 4.9. Let X = M1 ∨M2, n ≥ 5 and (q, p)= d. Then we have

Edim+1
] (X)∼=



1 if q is odd or p is odd (d = 1),
Zd if q is odd or p is odd (d 6= 1),
Zd/2⊕ Z2 if p ≡ 0 (mod 4) and (p, 24)= 4 or 12(d 6= 1),
Zd/2 if p ≡ 0 (mod 4) and (p, 24)= 8 or 24(d 6= 1),
Zd/2 if q ≡ 2, p ≡ 2 (mod 4),
Zd/2⊕ Z2 if q ≡ 0, p ≡ 2 (mod 4).

Proof. By virtue of Remark 4.3, Theorem 4.4 and the fact that Edim+1
] (X)⊆Edim

] (X),
we have Edim+1

] (X)= 1 if (p, q)= 1.
By Proposition 2.5, we have Edim+1

] (M1) = 1. Thus, it is sufficient to identify
f12](n+3) and f21](n+3). First, we note that [M2,M1] ∼= Zd{π

∗

2 (i1)} by Lemma 3.2.

Case 1. Suppose that q is odd or p is odd and (p, q)= d 6= 1. Since [M1,M2] = 0
by Lemma 3.3, we only investigate f12](n+3).

If q is odd, f12](n+3) = 0 since πn+3(M1) = 0. If q is even and p is odd,
πn+3(M2)∼= Z(p,24){i2](ν)}. Since

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0,

we have f12](n+3) = 0 for each f12 ∈ [M2,M1]. Therefore,

Edim+1
] (X)∼=

{(
1 f12

0 1

) ∣∣∣∣ f12 ∈ 〈π
∗

2 (i1)〉

}
.

Case 2. Suppose that q ≡ 2 (mod 4) and p ≡ 0 (mod 4). First, we note that

πn+3(M2)∼= Z(p,24)⊕ Z2 {i2](ν), η2}

and that πn+3(M1) ∼= Z4{η̂} by Proposition 2.3. Let f12 = sπ∗2 (i1). If s = 2l for
some 1≤ l ≤ d/2, then

sπ∗2 (i1)](η2)= 2lπ∗2 (i1)](η2)= 4lη̂ = 0

since
π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0

and
π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1](η

2)= 2η̂ 6= 0 ∈ πn+3(M1)∼= Z4.
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Further, if s = 2l + 1 for some 0≤ l ≤ d/2− 1, then

sπ∗2 (i1)](η2)= (2l + 1)π∗2 (i1)](η2)= 4lη̂+ 2η̂ = 2η̂ 6= 0.

Thus, each f12 ∈ 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on πn+3(M2).
However, if f12 does not belong to 〈2π∗2 (i1)〉, then f12](n+3) 6= 0.

Let us investigate f21](n+3). Note that [M1,M2] ∼= Z4 ⊕ Z2{α, π
∗

1 (η2)} and
πn+3(M1)∼= Z4{η̂} with π∗1 (η1)= 2α, i∗1 (α)= i2](η), i1](η

2)= 2η̂ and π1](η̂)= η.
Since π2](η2 ◦ η)= η

2, we have

π∗1 (η2)](η̂)= η2 ◦π1 ◦ η̂ = η2 ◦ η 6= 0.

Moreover, since η3
= 4ν [Toda 1962, (5.5)], we have

2α](η̂)= 2α ◦ η̂ = η1 ◦π1 ◦ η̂ = η1 ◦ η = i1](η
2) ◦ η = i2 ◦ η

3
= 4i2](ν).

Therefore, α](η̂) = 2i2](ν). Since (p, 24) is a multiple of 4, we have α](η̂) =
2i2](ν) 6= 0 and 3α](η̂)= 6i2](ν) 6= 0.

Since ν is 2-primary, if (p, 24) = 4 or (p, 24) = 12, then 2α](η̂) = 0, and if
(p, 24)= 8 or (p, 24)= 24, then 2α](η̂) 6= 0. Thus, each f21 ∈ 〈2α〉 induces the
trivial homomorphism on πn+3(M1) provided that (p, 24)= 4 or (p, 24)= 12.

Therefore, if (p, 24)= 4 or (p, 24)= 12, we have

Edim+1
] (X)∼=

{(
1 f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈2α〉
}
,

and if (p, 24)= 8 or 24, we have

Edim+1
] (X)∼=

{(
1 f12

1 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉

}
.

Case 3. Suppose that q ≡ 0 (mod 4) and p ≡ 2 (mod 4). We note that

πn+3(M2)∼= Z(p,24)⊕ Z2{i2](ν), η2},

πn+3(M1)∼= Z2⊕ Z2{η3, η4}

and [M1,M2] ∼= Z4 ⊕ Z2{π
∗

1 (η), β}. First, we investigate f12](n+3). Let f12 =

sπ∗2 (i1) ∈ [M2,M1] ∼= Zd{π
∗

2 (i1)}. Then, we have

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0
and

π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1 ◦ η
2
6= 0.

If s = 2l for some 1 ≤ l ≤ d/2, then 2lπ∗2 (i1)](η2) = 2li1 ◦ η
2
= 0, because

i1 ◦ η
2
= η3 ∈ πn+3(M1). However, if s = 2l + 1 for some 0 ≤ l ≤ d/2− 1, then

(2l + 1)π∗2 (i1)](η2)= (2k+ 1)i1 ◦ η
2
= i1 ◦ η

2
6= 0.

Thus, any f12∈〈2π∗2 (i1)〉∼= Zd/2 induces the trivial homomorphism on πn+3(M2).
However, for f12 /∈ 〈2π∗2 (i1)〉, we have f12]n+3 6= 0.
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Next, we investigate f21](n+3). Because [M1,M2] ∼= Z4 ⊕ Z2{π
∗

1 (η), β} and
β](n+2) 6= 0, we check only the generators π∗1 (η). For η3, we have

π∗1 (η)](η3)= η ◦π1 ◦ η3 = η ◦π1 ◦ i1](η
2)= 0.

For η4, we have
π∗1 (η)](η4)= η ◦π1 ◦ η4 = η ◦ η 6= 0

since π2](η ◦ η)= η
2
6= 0.

However, 2π∗1 (η)](η4)= η ◦π1 ◦ 2η4 = 0.
Thus, every f21 ∈ 〈2π∗1 (η)〉 induces the trivial homomorphism on n+ 3.
Therefore, we have

Edim+1
] (X)∼=

{(
1 f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈2π∗1 (η)〉
}
.

Case 4. Suppose that q ≡ 2 (mod 4) and p ≡ 2 (mod 4). Note that πn+3(M2) ∼=

Z(p,24)⊕ Z2{i2](ν), η2} and πn+3(M1)∼= Z4{η̂}. First, we investigate f12](n+3). For
the generator π∗2 (i1) of [M2,M1], we have

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0

and
π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1 ◦ η

2
= 2η̂ 6= 0.

Let f12 = sπ∗2 (i1). If s = 2l for 1 ≤ l ≤ d/2, then sπ∗2 (i1)](η2)= 4lη̂ = 0, and if
s = 2l + 1 for 0≤ l ≤ d/2− 1, then sπ∗2 (i1)](η2)= (4l + 2)η̂ = 2η̂ 6= 0.

Thus, each f12 ∈ 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on n+ 3.
However, for f12 6∈ 〈2π∗2 (i1)〉, we have f12](n+3) 6= 0.

Next, we investigate f21](n+3). Note that [M1,M2] ∼= Z2⊕ Z2{π
∗

1 (η), β}. Since
β]n+2 6= 0, we consider only the generator π∗1 (η).

Since π2](η◦η)=π2◦η◦η= η
2
6= 0, we have π∗1 (η)](η̂)= η◦π1◦ η̂= η◦η 6= 0.

Therefore, no f21 induces a trivial homomorphism.
Thus, we have

Edim+1
] (X)∼=

{(
1 f12

1 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉

}
.

Case 5. Suppose that q ≡ 0 (mod 4) and p ≡ 0 (mod 4). Note that πn+3(M2) ∼=

Z(p,24)⊕ Z2{i2](ν), η2} and πn+3(M1)∼= Z2⊕ Z2{η3, η4}.
First, we investigate f12](n+3). For the generator π∗2 (i1) of [M2,M1], we have

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0

and
π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1 ◦ η

2
6= 0.
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Let f12 = sπ∗2 (i1). If s = 2l for 1≤ l ≤ d/2, then

sπ∗2 (i1)](η2)= 2li1 ◦ η
2
= l2η3 = 0.

However, if s = 2l + 1 for 0≤ l ≤ d/2− 1, then

sπ∗2 (i1)](η2)= (2l + 1)i1 ◦ η
2
= η3 6= 0.

Thus, each f12 ∈ 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on n + 3.
However, for f12 6∈ 〈2π∗2 (i1)〉, we have f12](n+3) 6= 0.

Next, we consider f21](n+3). Note that

[M1,M2] ∼= Z2⊕ Z2⊕ Z2 { π
∗

1 (η1), π
∗

1 (η2), α}.

Since α](n+2) = 0, we consider only the generators π∗1 (η1) and π∗1 (η2). For π∗1 (η1),
we have

π∗1 (η1)](η3)= η1 ◦π1 ◦ η3 = η1 ◦π1 ◦ i1η
2
= 0

and
π∗1 (η1)](η4)= η1 ◦π1 ◦ η4 = η1 ◦ η = i2](η

2) ◦ η = 4i2](ν).

Thus, if (p, 24) = 4 or (p, 24) = 12, then π∗1 (η1)](η4) = 4i1](ν) = 0, and if
(p, 24)= 8 or (p, 24)= 24, then π∗1 (η1)](η4)= 4i1](ν) 6= 0.

Since π2](η2 ◦ η)= η
2, we have π∗1 (η2)](η4)= η2 ◦π1 ◦ η4 = η2 ◦ η 6= 0.

Therefore, if (p, 24)= 4 or (p, 24)= 12, we have

Edim+1
] (X)∼=

{(
1 f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈π
∗

2 (η1)〉

}
,

and if (p, 24)= 8 or (p, 24)= 24, we have

Edim+1
] (X)∼=

{(
1 f12

1 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉

}
. �
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MODULAR TRANSFORMATIONS INVOLVING THE
MORDELL INTEGRAL IN RAMANUJAN’S LOST NOTEBOOK

YOUN-SEO CHOI

For my teacher Bruce C. Berndt on his 75th birthday.

In his “lost notebook” (p. 202 of the 1988 edition), S. Ramanujan recorded
modular transformations involving the Mordell integral, q-hypergeometric
series, and generalized Lambert series. He gave no proofs; here we prove
these formulas and use them to derive modular transformations of third-
order mock theta functions. Mordell’s formula, the properties of q-hyper-
geometric series and Appell–Lerch sums play central roles in the proofs.

1. Introduction

For a complex number q with jqj< 1, we define the notation

.aI q/1 WD

1Y
mD0

.1� aqm/ and .aI q/n WD
.aI q/1

.aqnI q/1
for any integer n:

L. J. Mordell [1920; 1933] studied the integralZ 1
�1

eat2Cbt

ect C d
dt;

where<.a/< 0. This integral appeared in the work of L. Kronecker [1889a; 1889b]
and B. Riemann (as described by C. L. Siegel [1932]). However, Mordell was the
first to analyze its behavior relative to modular transformations, so we refer to it as
the Mordell integral. In [Mordell 1920] he derived the formula

(1)
Z 1
�1

e�i� t2�2�xt

e2� t � e2�i�
dt

D e��i.�2�C2�xC2�/F Œ.xC ��/=�;�1=��C i�F.xC ��; �/

��11.xC ��; �/
:
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where, for =.�/ > 0 and setting q D e� i� ,

iF.x; �/ WD
1P

mD�1

.�1/mqm2CmC1=4e.2mC1/� ix

1C q2mC1
;

i�11.x; �/ WD
1P

mD�1
.�1/mqm2CmC1=4e.2mC1/�ix :

To get (1), he mainly used functional equations satisfied by the functions F.x; �/

and �11.x; �/.
S. Ramanujan studied definite integrals and recorded modular transformations in-

volving the Mordell integral. In his lost notebook [1988, p. 9], he stated two modular
transformations involving Mordell integrals and his tenth-order mock theta functions
�.q/WD

P1
nD0 qn.nC1/=2=.qI q2/nC1 and .q/WD

P1
nD0 q.nC1/.nC2/=2=.qI q2/nC1:Z 1

0

e��nx2

cosh 2�xp
5
C

1C
p

5
4

dxC
1
p

n
e
�
5n .�e�

�
n /

D

r
5C
p

5

2
e�

�n
5 �.�e��n/�

p
5C1

2
p

n
e�

�
5n�.�e

�
n /;Z 1

0

e��nx2

cosh 2�xp
5
C

1�
p

5
4

dxC
1
p

n
e
�
5n .�e�

�
n /

D�

r
5�
p

5

2
e
�n
5 �.�e��n/C

p
5�1

2
p

n
e�

�
5n�.�e

�
n /:

In [Choi 2002], we proved these equations. In the lost notebook Ramanujan [1988,
p. 202] also wrote (without proofs) two equations involving a Mordell integral,
hypergeometric series and generalized Lambert series. Namely, for q1 D e�

�
3n and

q D e�3�n,

2
p

3

Z 1
0

e�
�nx2

3 cos� tx

e
2�x

3 C1Ce�
2�x

3

dx D q
1

18

1P
mD1

q
.2m�1/2

6

.�e� tq
1
3 I q

2
3 /m.�e�� tq

1
3 I q

2
3 /m

C
e�

3�t2

4n q
1
2

1
p

n

1P
mD1

q
3
2
.2m�1/2

1

.�e
�i t

n q3
1
I q6

1
/m.�e�

�i t
n q3

1
I q6

1
/m

D
q�

1
36

.q
2
3 I q

2
3 /1

�
1P

mD1

.�1/mC1q
.2m�1/2

4

�
1

1Ce� tq
2m�1

3

C
1

1Ce�� tq
2m�1

3

� 1

�

C
e�

3�t2

4n

n

1P
mD1

.�1/mC1q
9
4
.2m�1/2

1

�
1

1Ce
�i t

n q
3.2m�1/
1

C
1

1Ce�
�i t

n q
3.2m�1/
1

�1

��
:
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We prove these equations in this paper. Proving these identities is equivalent to
proving the following two theorems.

Theorem 1. For a positive number n, set qDe�3�n and q1De�
�
3n . For a number t

such that <. t
n
/˙ 2

3
62 Z and <. t

n
/˙ 4

3
62 Z, we have

2
p

3

Z 1
0

e�
�nx2

3 cos� tx

e
2�x

3 C 1C e�
2�x

3

dx D q
1

18

1P
mD1

q
.2m�1/2

6

.�e� tq
1
3 I q

2
3 /m.�e�� tq

1
3 I q

2
3 /m

C
e�

3�t2

4n q
1
2

1
p

n

1P
mD1

q
3
2
.2m�1/2

1

.�e
�i t

n q3
1
I q6

1
/m.�e�

�i t
n q3

1
I q6

1
/m
:

Theorem 2. For a positive number n, set q D e�3�n and q1 D e�
�
3n . We have

q
1

18

1P
mD1

q
.2m�1/2

6

.�e� tq
1
3 I q

2
3 /m.�e�� tq

1
3 I q

2
3 /m

C
e�

3�t2

4n q
1
2

1
p

n

1P
mD1

q
3
2
.2m�1/2

1

.�e
�i t

n q3
1
I q6

1
/m.�e�

�i t
n q3

1
I q6

1
/m

D
q�

1
36

.q
2
3 I q

2
3 /1

�
1P

mD1

.�1/mC1q
.2m�1/2
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G. E. Andrews [1981] also studied modular transformations consisting of the
Mordell integral and the three functions
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q2n2Cn
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:

These functions are related to the classical theta functions #2.0; q/ and #4.0; q/,
and the first two of them appear in Ramanujan’s lost notebook.

In [Choi 2011], we made the definition

f .˛; zI q/ WD
1P

mD0

qm2�3m˛mz2m

.�zI q/m.�
˛z
q
I q/m

:

If we let ˛D zD q, we see that f .q; qI q/ is one of Ramanujan’s famous third-order
mock theta functions, f .q/, from his letter [Berndt and Rankin 1995]. We can
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rewrite the right-hand side of the equation in Theorem 1 in terms of f .˛; zI q/,
namely,
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Ramanujan’s equations involve the hypergeometric series
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These are special cases of the function

(2) g3.z; q/ WD
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qm.m�1/

.zI q/m.z�1qI q/m
:

Andrews and F. G. Garvan [1989] called attention to what they called the “mock
theta conjectures”, which roughly say that Ramanujan’s fifth-order mock theta
functions are not, in fact, theta functions. These were proved by D. Hickerson
[1988]; though he did not use the function (2) in the proof, he remarked that he
could express the conjectures in terms of it. Since then g3 and a couple of other
so-called universal mock theta functions have acquired a central role in the study
of mock theta functions; see the survey by B. Gordon and R. McIntosh [2012] for
discussion.

The function g3 also satisfies certain modular transformations [Gordon and
McIntosh 2012]. For q D e�˛, q1 D e��

2=˛, and

h3.e
2� ir ; q/ WD

4 sin2 �r

.qI q/1
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;

one of the modular transformations satisfied by g3 is

q
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2
˛x
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With the function g3.z; q/, we can rewrite the right-hand side of Ramanujan’s first
equation (page 60) as
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Ramanujan listed four third-order mock theta functions f .q/, �.q/,  .q/, and
�.q/ in his last letter to G. H. Hardy [Berndt and Rankin 1995]. G. N. Watson
[1936] later added three further third-order mock theta functions !.q/, �.q/ and
�.q/, and derived modular transformations for the seven third-order mock theta
functions using Cauchy’s theorem. One of the modular transformations is

q�
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24f .q/D 2

r
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˛
q

4
3

1
!.q2

1/C 4

r
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Z 1
0
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2
˛x2 sinh˛x

sinh 3
2
˛x

dx

where q D e�˛ and q1 D��
2=˛. Gordon and McIntosh [2003; 2012] introduced

two more third-order mock theta functions �.q/ and �.q/ and their modular trans-
formations.

In his thesis, S. Zwegers [2002] studied the normalized Appell–Lerch sum which
is defined by

�.u; vI �/D
1

f .�e2�iv;�e2�i��2�iv/
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.�1/me�im.mC1/�C2� imv

1� e2� im�C2�iu

where u; v 62 Z� CZ and � 2 H. He showed the symmetry property, the elliptic
transformation properties, and the modular transformation properties satisfied by
the normalized Appell–Lerch sum. One of the modular transformation properties
contains the Mordell integral, namely,
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With these properties, Zwegers explained that �.u; vI �/ behaves nearly like a
Jacobi form of weight 1=2 in two variables.

Recently, B. Chern and R. C. Rhoades [2012] proved the modular transformation
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:

They employed the results in Zwegers’ thesis [2002] to prove this equation. By
results in [Garvan 1988], we can rewrite zR in terms of g3:



64 YOUN-SEO CHOI

zR.zI �/
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In their paper, Chern and Rhoades [2012] also discussed and proved two more
identities involving the Mordell integral and partial theta functions. In this paper,
Ramanujan’s theta function f .a; b/ is used instead of the Jacobi theta functions.
The definition of Ramanujan’s theta functions is, for jabj< 1,

f .a; b/ WD
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mD�1
am.mC1/=2bm.m�1/=2:

By the Jacobi triple product identity, this equals .�aI ab/1.�bI ab/1.abI ab/1.
In Section 2, we introduce Lemmas 1 and 2. The identities in these lemmas

include generalized Lambert series which are the Appell–Lerch sums. The trans-
formation for the Appell–Lerch sum in [Zwegers 2002] plays a central role in the
proofs of Lemmas 1 and 2. In Section 3, we prove Theorem 1 twice with distinct
methods. We first prove Theorem 1 by using Lemmas 1 and 2, Mordell’s formula,
the modular transformation for a theta function �11, and the evaluations of the
contour integrals. Secondly, we prove Theorem 1 by proving
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:

To prove the equation above, we discuss the elliptic transformation properties of
g.zI �/, evaluate the contour integrals, and employ Liouville’s theorem. In Section 4,
we prove Theorem 2 by using Equation (6) and some results in the first proof of
Theorem 1. In Section 5, with Theorem 1, we derive modular transformations for
third-order mock theta functions which are similar to the modular transformations
for tenth-order mock theta functions in the lost notebook [1988, p. 9].

2. Lemmas

To prove Theorems 1 and 2, we require the following lemmas.
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Lemma 1. For a complex number q with jqj< 1, we have
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Proof. Garvan [1988] showed that, for jqj< jzj< jqj�1 and z ¤ 1,
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Hickerson [1988, p. 649] remarked that
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Combining the two results above, we have
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We also see this equation in [Gordon and McIntosh 2012, p. 104]. Now, replacing
q and z by q2=3 and �tq1=3, respectively, (6) becomes
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In [Choi 2004, p. 378], the author showed that
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which was also recorded by Ramanujan [1988, p. 59] in the lost notebook without
proofs. Using (8) with z replaced by �t3q, the Jacobi triple product identity and a
straightforward calculation show that
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The two sums on the right side of the equation above are Appell–Lerch sums. In
his thesis, Zwegers [2002] showed that the normalized Appell–Lerch sum satisfies
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where q D e2�i� ; hD e2�i� ; t D e2�iu and z D e2�iz0, such that �; u; z0 62 Z and
u; �; uC z0; �C z0 62 Z� CZ. Hence, employing the Jacobi triple product identity,
using (7) and (9), applying (10) with q; t; h, and z replaced by q2; �q; t�3q4=3;

and t3, respectively, then again with q, t , h, and z replaced by q2, �q, t3q4=3, and
t�3, respectively, and employing the fact that f .q7=3; q�1=3/D q1=3f .q1=3; q5=3/,
we obtain Lemma 1 after a slight rearrangement. �
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3 . For a complex number q with jqj< 1, we have
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Proof. We first consider the left side of (11). Employing the Jacobi triple product
identity, we easily verify that
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Then, using (10) with q; h; t , and z replaced by q2; !2t�1; �q, and t , respectively,
applying the equations above, and rearranging terms, we obtain
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A straightforward calculation and the Jacobi triple product identity lead us to
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Using (12), again using (12) with t replaced by t�1, and applying (13), we obtain
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We now consider
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An elementary calculation shows that .1C!/=.1�!/D i=
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Therefore, applying (6) with q and z replaced by q6 and �tq3, respectively, (16),
and (8) with z replaced by �tq, we deduce that (15) equals
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In conclusion, by combining (14) and (17) we have derived Lemma 2. �

3. The proofs of the first identity

First proof of Theorem 1. By a simple calculation and integration by substitution,
we obtain
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For a sufficiently large positive number d , we consider the integralZ
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we find that the sum of these integrals tends to 0 as d tends to1. Thus, letting
d !1 we verify that
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e2�.yCi t
2n
/
C e

�i
3

dy:

We can also establish similar results for the other three integrals in (18) for<. t
n
/>0.

We then apply these results to (18) and collect the sums to obtain

�
P

0�k<< t
2n
� 2

3

e�2� t�3� tkq�
4
9
�k2� 4

3
k
�

P
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2n
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3
<k��1

e2� tC3� tkq�
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�k2� 4

3
k

C
P

0�k<< t
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� 1

3

e�� t�3� tkq�
1
9
�k2� 2

3
k
C

P
�< t

2n
� 1

3
<k��1

e� tC3� tkq�
1
9
�k2� 2

3
k :

Replacing k by �k � 1 in the second and fourth sums above, we find that the four
sums above cancel. Thus, for <. t

n
/ > 0,

(19)
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0
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3 cos� tx

e
2�x

3 C 1C e�
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p
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e�3�ny2
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e�3�ny2
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�
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e�3�ny2
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C e�
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C
e�3�ny2
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C e�

�i
3

�
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�
:

For <. t
n
/ < 0, a similar process also brings us to (19). Also, for <. t

n
/ D 0, we

directly derive (19) from (18). Therefore, for any positive number n and any
number t such that <. t

n
/˙ 1

3
62 Z and <. t

n
/˙ 2

3
62 Z, we obtain (19).

Next we must evaluate the integrals on the right side of (19). We need the
modular transformation formula for �11

(20) �11

�
x

�
;�

1

�

�
D�i

p
�i� e�ix2=� �11.x; �/:

Additionally, F.x; �/ and �11 satisfy the transformation formulas

�11.x; �/D��11.xC 1; �/D��11.�x; �/D�e�i.2xC�/�11.xC �; �/;

F.x; �/D�F.xC 1; �/D�F.xC �; �/C �11.x; �/ D�F.�xC �; �/

D F.�x; �/C �11.x; �/:

We employ these formulas to evaluate the four integrals on the right-hand side of
(19). Recall that q1 D e�

�
3n and q D e�3�n. We first consider the first integral on
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the right side of (19). Replacing �; x, and � by 3in; 0, and 2
3
�

t
2n

, respectively, in
Mordell’s formula (1), we find thatZ 1
�1

e�3�ny2

e2�.yCi t
2n
/
� e

4�i
3

dy D e�
�i t

n

Z 1
�1

e�3�ny2

e2�y � e2�i. 2
3
� t
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/
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D e
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�2� t� 4�i

3 q�
4
9
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3
�

t
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;� 1
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/� 3nF.2in� i 3t

2
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3in�11.2in� i 3t
2
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:

We are able to establish a similar result for each of the remaining three integrals.
From (20), we deduce that

�11

�
2in� 3

2
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�
D

i
p
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e

4
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4n �11

�
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�
1

3
�

t

2n
;�

1

3in

�
:

Using the evaluations of the four integrals, employing the above modular transfor-
mations for �11 and the formulas satisfied by �11 and F , simplifying terms, and
employing the definitions of �11 and F , we obtain

(21)
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:

We are now ready to complete the proof. Use Lemma 1 with t replaced by e� t

and employ Lemma 2 with q and t replaced by q1 and e
�i t

n , respectively. After
some elementary manipulations, we find that the sum of the new left-hand sides of
Lemma 1 and (11) equals
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(22)
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and the sum of the new right-hand sides of Lemma 1 and (11) equals
(23)
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Next we prove that (23) is identically equal to zero. Using the definition of �11,
the Jacobi triple product identity, and the transformation formula (20) for �11, we
deduce the following formula for Ramanujan’s theta function f :

f .�e2�i.xC�/;�e�2�ix/D
i

p
�i�

e��i.xC �
4
Cx2�x

�
C 1

4�
/f .�e2�i x�1

� ;�e�2�i x
� /:
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Set � D 3in, and recall that q1 D e�
�
3n and q D e�3�n to obtain
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Since limx!0.1�e�
2�
3n

x/=.1�e�2� ix/D�i=.3n/, dividing both sides of (24) by
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Applying (24) twice with x D 1
2
�

3
2
i n� 3

2
i t and x D�i n, respectively, (25), and

the fact that i
p
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3 D 3, and employing the Jacobi triple product identity,

we obtain
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2
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Employing (26)–(31) and using the fact that e
�i
3 D
p

3i=.1�!2/, we conclude
that
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As a result, combining (26) and (32), we know that (23) equals 0. Thus, (22)
equals 0. Therefore, comparing (21) and (22), we have proved Theorem 1. �

Second proof of Theorem 1. We now consider the equation
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Comparing the definitions of g and g3, we find that
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Applying these results to (33), we easily verify that proving (33) is equivalent to
proving the equation in Theorem 1. So, we prove (33) instead of Theorem 1.
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We first discuss the right-hand side of (33). From the definition of g.zI �/, we
see that g.zI �/ is a meromorphic function of z with simple poles in .1

2
CZ/� C

1
2
C Z. By a direct calculation, we can determine that its residue at �1

2
� � 1

2

is �q1=3=.2� i.qI q/1/: We will find two functional equations for the function
g.zI �/. By the definition of g.zI �/, we easily get
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In particular,
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Let G.zI �/ denote the right-hand side of (33). Then, using the functional equations
(34) and (35), we get
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Thus,
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Again, using the functional equations (34) and (35), we obtain
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So,
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Therefore, G.zI �/ satisfies the functional equations (36) and (37). Recall that
the residue of the function g.zI �/ at �1
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is q1=3=.2� i.qI q/1/. Using these results and the two functional equations

satisfied by G.zI �/, we easily verify that G.zI �/ is a holomorphic function of z.
Now we discuss the left-hand side of (33). Let H.zI �/ denote the left-hand side

of (33). Then, by the definition of H.zI �/, we get

H.zC 1I �/�H.zI �/D
1
p

3

Z 1
�1

e
�i�x2

3
�2�zx.e�2�x � 1/

e
2�x

3 C 1C e�
2�x

3

dx

D
e
�i.3zC2/2

3�

p
3

Z 1
�1

e
�i�

3
fxC i

�
.3zC2/g2 dx

�
e
�i.3zC1/2

3�

p
3

Z 1
�1

e
�i�

3
fxC i

�
.3zC1/g2 dx:

Recall that � D i n. If z is a real number then we easily show that each of two
integrals equals

p
3i=� . Assume that z is a complex number such that =.z/¤ 0.

We consider the first integral on the right-hand side of the equation above.Z 1
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For a positive number t , we consider the integralZ



e
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taken around the rectangle 
 whose vertices are at the points˙t and˙tC i
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By Cauchy’s residue theorem, we easily get that the integral above equals 0. We
first evaluate Z �tC i
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Let z D aC bi where a and b are real and b ¤ 0. We only need to consider three
cases: .3aC 2/=nD 0; .3aC 2/=n > 0, and .3aC 2/=n < 0. If .3aC 2/=nD 0,
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Thus,
R �tC i
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After a simple calculation, we obtain
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�

�
:

Next, we discuss e�3� i��6�izH.zC � I �/�H.zI �/. After simple calculations
and integration by substitution, we get

e�3�i��6�izH.zC � I �/�H.zI �/

D
1
p

3

Z 1C3i

�1C3i

e
�i�x2

3
�2�zx

e
2�x

3 C 1C e�
2�x

3

dx�
1
p

3

Z 1
�1

e
�i�x2

3
�2�zx

e
2�x

3 C 1C e�
2�x

3

dx:

For a positive number s, we consider the integralZ
ı

e
�i�x2

3
�2�zx

e
2�x

3 C 1C e�
2�x

3

dx

taken around the rectangle ı whose vertices are at the points ˙s and ˙sC 3i . By
Cauchy’s residue theorem, after some elementary algebra, we find that the integral
above equals

p
3e�

�i�
3
�2�iz.1� e��i��2�iz/. We first evaluateZ sC3i

s

e
�i�x2

3
�2�zx

e
2�x

3 C 1C e�
2�x

3

dx:

We again recall that � D i n. Since, for any y such that 0< y < 3,ˇ̌̌̌
ˇ e

�i�.sCyi/2

3
�2�z.sCyi/

e
2�.sCyi/

3 C 1C e�
2�.sCyi/

3

ˇ̌̌̌
ˇ
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tends to 0 as s tends to1, we easily find that the integral above tends to 0 as s

tends to1. Similarly, we deduce thatZ �sC3i

�s

e
�i�x2

3
�2�zx

e
2�x

3 C 1C e�
2�x

3

dx

tends to 0 as s tends to1. Therefore, we obtain

e�3�i��6� izH.zC � I �/�H.zI �/D e�
�i�

3
�2�iz.1� e��i��2�iz/:

After some elementary algebra and elementary manipulation, we find that H.zI �/

also satisfies the same functional equations as G.zI �/ and is a holomorphic function
of z.

Let F.zI �/ WDH.zI �/�G.zI �/. Then, by the functional equations satisfied by
H and G, we obtain

F.zC 1I �/D F.zI �/ and F.zC � I �/D e3�i�C6� izF.zI �/:

Let T be a set of complex numbers such that for any t 2 T , 0 � <.t/ � 1 and
0 � =.t/ � n. Since T is a compact set, F.zI �/ is bounded on T . For any
t 0 2 C nT , there are two integers k and l and a complex number t such that t 2 T

and t 0 D t C k� C l . Thus, using repeatedly the functional equations satisfied by
F.zI �/,

F.t 0/D F.t C k� C l/D F.t C k�/D e�3�nk2C6�itkF.t/:

Hence,

(38) jF.t 0/j D e�3�nk2�6�k=t
jF.t/j � e�3�nf.jkj�1/2�1g

jF.t/j:

So, we are able to say that F is bounded on C. Therefore, by Liouville’s theorem,
F.zI �/ is a constant. In (38), F tends to 0 as k tends to 1. This implies that
F.zI �/D 0. Finally, we have proved (33). �

4. The proof of the second identity

Proof of Theorem 2. Employing (6) with a moderate modification, we derive

1P
mD1

q
2m.m�1/

3

.�e� tq
1
3 I q

2
3 /m.�e�� tq

1
3 I q

2
3 /m
D

1

.q
2
3 I q

2
3 /1

1P
mD�1

.�1/mqm.mC1/

1C q
2
3

mC 1
3 e� t

;

(39)

1P
mD1

q
6m.m�1/
1

.�e
�i t

n q3
1
I q6

1
/m.�e�

�i t
n q3

1
I q6

1
/m
D

1

.q6
1
I q6

1
/1

1P
mD�1

.�1/mq9m2C9m
1

1C q6mC3
1

e
�i t

n

:

(40)
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By a straightforward calculation, we easily find that
(41)
1P

mD�1

.�1/mqm.mC1/

1C q
2
3

mC 1
3 e� t

D

1P
mD1

.�1/mC1qm.m�1/

1C q
2
3

m� 1
3 e� t

C

1P
mD1

.�1/mqm.m�1/

1C q�
2
3

mC 1
3 e� t

D

1P
mD1

.�1/mC1qm.m�1/

1C q
2
3

m� 1
3 e� t

C

1P
mD1

.�1/mqm.m�1/.q
2
3

m� 1
3 e�� t C 1� 1/

1C q
2
3

m� 1
3 e�� t

D

1P
mD1

.�1/mC1qm.m�1/

1C q
2
3

m� 1
3 e� t

C

1P
mD1

.�1/mC1qm.m�1/

1C q
2
3

m� 1
3 e�� t

�

1P
mD1

.�1/mC1qm.m�1/:

Similarly, we obtain

(42)
1P

mD�1

.�1/mq9m2C9m
1

1C q6mC3
1

e
�i t

n

D

1P
mD1

.�1/mC1q9m2�9m
1

1C q6m�3
1

e
�i t

n

C

1P
mD1

.�1/mC1q9m2�9m
1

1C q6m�3
1

e�
�i t

n

�

1P
mD1

.�1/mC1q9m2�9m
1 :

We previously derived that

.q
2
3 I q

2
3 /1 D

i.1�!/
p

3n
q�

1
36 q

1
4

1
e�

�i
3 .q6

1 I q
6
1/1 and i.1�!/e�

�i
3 D
p

3:

Thus, using these, we obtain

(43)
q�

1
36

.q
2
3 I q

2
3 /1

q
9
4

1

n
D

q2
1

p
n .q6

1
I q6

1
/1
:

Combining equations (39)–(43) completes the proof. �

5. Modular transformations derived from Ramanujan’s identity

In this section, we derive modular transformations for third-order mock theta
functions from Theorem 1.

Ramanujan’s third-order mock theta functions are defined by

f .q/D
1P

mD0

qm2

.�qI q/2m
; �.q/D

1P
mD0

qm2

.�q2I q2/m
;  .q/D

1P
mD1

qm2

.qI q2/m
;

�.q/D
1P

mD0

qm2

.�!qI q/m.�!2I q/m
:
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Watson’s third-order mock theta functions are defined by

!.q/D
1P

mD1

q2m.m�1/

.qI q2/2m
; �.q/D

1P
mD1

qm.m�1/

.�qI q2/m
;

�.q/D
1P

mD1

q2m.m�1/

.!qI q2/m.!2qI q2/m
:

Gordon and McIntosh’s third-order mock theta functions are defined by

�.q/D 1C 2
1P

mD1

q6m.m�1/

.qI q6/m.q5I q6/m
; �.q/D

1P
mD1

q3m.m�1/

.�qI q3/m.�q2I q3/m
:

To apply Theorem 1 directly to these functions, we first need new representations
for Ramanujan’s mock theta functions. With his formula for basic hypergeometric
series, Watson [1936] gave new representations for �.q/ and  .q/, namely,

�.q/D
1

.qI q/1

�
1C 2

1P
mD1

.�1/m.1C qm/qm.3mC1/=2

1C q2m

�
;(44)

 .q/D
1

.q4I q4/1

1P
mD�1

.�1/mq6m.mC1/C1

1� q4mC1
:(45)

Then, using the definition of f .q/ and applying (5) with z replaced by �1, we
deduce that

f .q/D 2� 2
1P

mD1

qm.m�1/

.�1I q/m.�qI q/m
:

Using the definition of �.q/ and applying (5) with z replaced by i and �i , respec-
tively, we obtain

�.q/D .1� i/

�
1C i

1P
mD1

qm.m�1/

.i I q/m.�iqI q/m

�
D .1C i/

�
1� i

1P
mD1

qm.m�1/

.�i I q/m.iqI q/m

�
:

Using (45) and applying (6) with q and z replaced by q4 and q, respectively, we
deduce that

 .q/D q
1P

mD1

q4m.m�1/

.qI q4/m.q3I q4/m
:

Using the definition of �.q/ and applying (5) with z replaced by �! and �!2,
respectively, we have
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�.q/D .1C!/

�
1�!

1P
mD1

qm.m�1/

.�!I q/m.�!2qI q/m

�
D .1C!2/

�
1�!2

1P
mD1

qm.m�1/

.�!2I q/m.�!qI q/m

�
:

We are now ready to derive modular transformations from Theorem 1. We
record here the ones which are derived directly from Theorem 1 and expressed in
terms of Mordell integrals and third-order mock theta functions. Similar modular
transformations can be found in [Gordon and McIntosh 2012].

Using Theorem 1 with t replaced by n� i
2

and nC i
2

, respectively, we obtain

2
p

3

Z 1
0

e�
�nx2

3 cos�.n� i
2
/x

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9

�
�.q

2
3 /

1C i
C i

�
�

p
2q

1
4 q
� 1

16

1

.1C i/
p

n
 .q

3
2

1
/;

2
p

3

Z 1
0

e�
�nx2

3 cos�.nC i
2
/x

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9

�
�.q

2
3 /

1� i
� i

�
�

p
2q

1
4 q
� 1

16

1

.1� i/
p

n
 .q

3
2

1
/:

Adding the two results above and calculating straightforwardly, we have

(46)
4
p

3

Z 1
0

e�
�nx2

3 cos�nx cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9�.q

2
3 /�

r
2

n
q

1
4 q
� 1

16

1
 .q

3
2

1
/:

Using Theorem 1 with t replaced by n
2
� i and �n

2
� i , respectively, we obtain

2
p

3

Z 1
0

e�
�nx2

3 cos�.n
2
� i/x

e
2�x

3 C 1C e�
2�x

3

dx

D q
1

18 .q
1
6 /�

q
1

16 q
� 1

4

1
p

2n
�.q6

1/C
q

1
16 q
� 1

4

1
e�i=4

p
n

;

2
p

3

Z 1
0

e�
�nx2

3 cos�.n
2
C i/x

e
2�x

3 C 1C e�
2�x

3

dx

D q
1

18 .q
1
6 /�

q
1

16 q
� 1

4

1
p

2n
�.q6

1/C
q

1
16 q
� 1

4

1
e�� i=4

p
n

:

Adding the two results above and calculating straightforwardly, we find that

(47)
2
p

3

Z 1
0

e�
�nx2

3 cos �nx
2

cosh�x

e
2�x

3 C 1C e�
2�x

3

dxD q
1

18 .q
1
6 /�

q
1

16 q
� 1

4

1
p

2n
.�.q6

1/�1/:
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Using Theorem 1 with t replaced by nC 2
3
i and �nC 2

3
i , respectively, we obtain

2
p

3

Z 1
0

e�
�nx2

3 cos�.nC 2
3
i/x

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9 .!2

C�.q
1
3 //�

q
1
4 q1

2
p

n
.�.q1/� 1/;

2
p

3

Z 1
0

e�
�nx2

3 cos�.n� 2
3
i/x

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9 .!C�.q

1
3 //�

q
1
4 q1

2
p

n
.�.q1/� 1/:

Adding the two results above and calculating straightforwardly, we find that

4
p

3

Z 1
0

e�
�nx2

3 cos�nx cosh 2�x
3

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9 .2�.q

1
3 /� 1/�

q
1
4 q1
p

n
.�.q1/� 1/:

Using Theorem 1 with t replaced by n, n
2

, i , 0, i
2

, � i
3

, 2i
3

, and n
3

, respectively,
we obtain,

2
p

3

Z 1
0

e�
�nx2

3 cos�nx

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9

�
1� 1

2
f .q/

�
C

q
1
4 q2

1
p

n
!.q3

1/;

2
p

3

Z 1
0

e�
�nx2

3 cos �nx
2

e
2�x

3 C 1C e�
2�x

3

dx D�q
1

18 .�q
1
6 /C

q
1

16 q2
1

p
n
�.q6

1/(48)

2
p

3

Z 1
0

e�
�nx2

3 cosh�x

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9!.q

1
3 /C

q
� 1

4

1
p

n

�
1� 1

2
f .q6

1/
�
;

2
p

3

Z 1
0

e�
�nx2

3

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9!.�q

1
3 /C

q2
1
p

n
!.�q3

1/;(49)

2
p

3

Z 1
0

e�
�nx2

3 cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9�.q

2
3 /�

q
� 1

16

1
p

n
 .�q

3
2

1
/;(50)

2
p

3

Z 1
0

e�
�nx2

3 cosh �x
3

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9�.q

1
3 /C

q
7
4

1
p

n
�.q2

1/;

2
p

3

Z 1
0

e�
�nx2

3 cosh 2�x
3

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9�.�q

1
3 /C

q1

2
p

n
.�.�q1/� 1/;

2
p

3

Z 1
0

e�
�nx2

3 cos �nx
3

e
2�x

3 C 1C e�
2�x

3

dx D q
2
9�.q

2
9 /C

q
1

36 q2
1

p
n
�.q3

1/:

Here, using (46)–(50), we give evaluations for specific Mordell integrals and
new representations for Ramanujan’s third-order mock theta functions �,  , and !.
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Replacing n by 1
2

in (46), we obtain

(51)
4
p

3

Z 1
0

e�
�x2

6 cos �x
2

cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dx D e�
�
3

˚
�.e��/� 2q .e��/

	
:

Replacing n by 2 in (47) and multiplying 2 to both sides of (47), we find

(52)
4
p

3

Z 1
0

e�
2�x2

3 cos�x cosh�x

e
2�x

3 C 1C e�
2�x

3

dx D e�
�
3

˚
2q .e��/��.e��/C 1

	
:

Adding (51) and (52), we obtain

4
p

3

�Z 1
0

e�
�x2

6 cos �x
2

cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dxC

Z 1
0

e�
2�x2

3 cos�x cosh�x

e
2�x

3 C 1C e�
2�x

3

dx

�
De�

�
3 :

Replacing n by 2 in (48) and replacing n by 1
2

in (50), we obtain

2
p

3

Z 1
0

e�
2�x2

3 cos�x

e
2�x

3 C 1C e�
2�x

3

dx D�e�
�
3  .�e��/C

e�
17
24
�

p
2
�.e��/(53)

2
p

3

Z 1
0

e�
�x2

6 cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dx D e�
�
3 �.e��/�

p
2e

�
24 .�e��/:(54)

Comparing (53) and (54), we haveZ 1
0

e�
2�x2

3 cos�x

e
2�x

3 C 1C e�
2�x

3

dx D
e�

3
8
�

p
2

Z 1
0

e�
�x2

6 cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dx:

Ramanujan [1988] recorded

(55) �.q/C 2 .q/D
.�qI �q/1

.qI �q/21
;

which was proved by Watson [1936]. The right-hand side of (55) can be expressed in
terms of theta functions. Using (51), (52), and (55), we obtain new representations
for � and  which are

�.e��/D
2
p

3
e
�
3

Z 1
0

e�
�x2

6 cos �x
2

cosh �x
2

e
2�x

3 C 1C e�
2�x

3

dxC
1

2

.�e�� I �e��/1

.e�� I �e��/21

 .e��/D�
1
p

3
e
�
3

Z 1
0

e�
2�x2

3 cos�x cosh�x

e
2�x

3 C 1C e�
2�x

3

dxC
1

4

.�e�� I �e��/1

.e�� I �e��/21
:

Replacing n by 1 in (49), we obtain a new representation for !, namely,

!.�e��/D
1
p

3
e

2�
3

Z 1
0

e�
�x2

3

e
2�x

3 C 1C e�
2�x

3

dx:
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THE D-TOPOLOGY FOR DIFFEOLOGICAL SPACES

J. DANIEL CHRISTENSEN, GORDON SINNAMON AND ENXIN WU

Diffeological spaces are generalizations of smooth manifolds which include
singular spaces and function spaces. For each diffeological space, Iglesias-
Zemmour introduced a natural topology called the D-topology. However,
the D-topology has not yet been studied seriously in the existing literature.
In this paper, we develop the basic theory of the D-topology for diffeological
spaces. We explain that the topological spaces that arise as the D-topology
of a diffeological space are exactly the 1-generated spaces and give results
and examples which help to determine when a space is 1-generated. Our
most substantial results show how the D-topology on the function space
C∞(M, N) between smooth manifolds compares to other well-known topol-
ogies.
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1. Introduction

Smooth manifolds are some of the most important objects in mathematics. They
contain a wealth of geometric information, such as tangent spaces, tangent bundles,
differential forms, de Rham cohomology, etc., and this information can be put to
great use in proving theorems and making calculations. However, the category of
smooth manifolds and smooth maps is not closed under many useful constructions,
such as subspaces, quotients, function spaces, etc. On the other hand, various
convenient categories of topological spaces are closed under these constructions,
but the geometric information is missing. Can we have the best of both worlds?
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Since the 1970s, the category of smooth manifolds has been enlarged in several
different ways to a well-behaved category as described above, and these approaches
are nicely summarized and compared in [Stacey 2011]. In this paper, we work with
diffeological spaces, which were introduced by J. Souriau [1980; 1984], and in
particular we study the natural topology that any diffeological space has.

A diffeological space is a set X along with a specified set of maps U → X for
each open set U in Rn and each n ∈ N, satisfying a presheaf condition, a sheaf
condition, and a nontriviality condition (see Definition 2.1). Given a diffeological
space X , the D-topology on X is the largest topology making all of the specified
maps U → X continuous. In this paper, we make the first detailed study of the
D-topology. Our results include theorems giving properties and characterizations
of the D-topology as well as many examples which show the behavior that can
occur and which rule out some natural conjectures.

Our interest in these topics comes from several directions. First, it is known that
the topological spaces which arise as the D-topology of diffeological spaces are
precisely the 1-generated spaces [Shimakawa et al. 2010], which were introduced
by Jeff Smith as a possible convenient category for homotopy theory and were
studied in [Dugger 2003; Fajstrup and Rosický 2008]. Some of our results help
to further understand which spaces are 1-generated, and we include illustrative
examples.

Second, for any diffeological spaces X and Y , the set C∞(X, Y ) of smooth
maps from X to Y is itself a diffeological space in a natural way and thus can be
endowed with the D-topology. Since the topology arises completely canonically, it
is instructive to compare it with other topologies that arise in geometry and analysis
when X and Y are taken to be smooth manifolds. A large part of this paper is devoted
to this comparison, and again we give both theorems and illustrative examples.

Finally, this paper arose from work on the homotopy theory of diffeological
spaces [Christensen and Wu 2014] and can be viewed as the topological groundwork
for this project. It is for this reason that we need to focus on an approach that
produces a well-behaved category, rather than working with a theory of infinite-
dimensional manifolds, such as the one thoroughly developed in the book [Kriegl
and Michor 1997]. We will, however, make use of results from that book, as many
of the underlying ideas are related.

Here is an outline of the paper, with a summary of the main results:
In Section 2, we review some basics of diffeological spaces. For example, we

recall that the category of diffeological spaces is complete, cocomplete and cartesian
closed, and that it contains the category of smooth manifolds as a full subcategory.
Moreover, like smooth manifolds, every diffeological space is formed by gluing
together open subsets of Rn , with the difference that n can vary and that the gluings
are not necessarily via diffeomorphisms.
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In Section 3, we study the D-topology of a diffeological space, which was intro-
duced by Iglesias-Zemmour in [1985]. We show that the D-topology is determined
by the smooth curves (Theorem 3.7), while diffeologies are not (Example 3.8). We
recall a result of [Shimakawa et al. 2010] which says that the topological spaces
arising as the D-topology of a diffeological space are exactly the 1-generated
spaces (Proposition 3.10). We give a necessary condition and a sufficient condition
for a space to be 1-generated (Propositions 3.4 and 3.11) and show that neither is
necessary and sufficient (Proposition 3.12 and Example 3.14). We can associate
two topologies to a subset of a diffeological space. We discuss some conditions
under which the two topologies coincide (Lemmas 3.17 and 3.18, Proposition 3.21,
and Corollary 4.15).

Section 4 contains our most substantial results. We compare the D-topology
on function spaces between smooth manifolds with other well-known topologies.
The results are (1) the D-topology is almost always strictly finer than the compact-
open topology (Proposition 4.2 and Example 4.5); (2) the D-topology is always
finer than the weak topology (Proposition 4.4) and always coarser than the strong
topology (Theorem 4.13); (3) we give a full characterization of the D-topology as
the smallest 1-generated topology containing the weak topology (Theorem 4.7);
(4) as a consequence, we show that the weak topology is equal to the D-topology
if and only if the weak topology is locally path-connected (Corollary 4.9); (5) in
particular, when the codomain is Rn or the domain is compact, the D-topology
coincides with the weak topology (Corollary 4.10 and Corollary 4.14), but not
always (Example 4.6).

All smooth manifolds in this paper are assumed to be Hausdorff, finite-dimen-
sional, second-countable and without boundary.

2. Background on diffeological spaces

Here is some background on diffeological spaces. While we often cite early sources,
almost all of the material in this section is in the book [Iglesias-Zemmour 2013],
which we recommend as a good reference.

Definition 2.1 [Souriau 1984]. A diffeological space is a set X together with a
specified set DX of maps U → X (called plots) for each open set U in Rn and for
each n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm :

(1) (Covering) Every constant map U → X is a plot.

(2) (Smooth compatibility) If U → X is a plot and V → U is smooth, then the
composition V →U → X is also a plot.

(3) (Sheaf condition) If U =
⋃

i Ui is an open cover and U→ X is a set map such
that each restriction Ui → X is a plot, then U → X is a plot.
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We usually use the underlying set X to denote the diffeological space (X,DX ).

Definition 2.2 [Souriau 1984]. Let X and Y be two diffeological spaces, and let
f : X→ Y be a set map. We say that f is smooth if for every plot p :U→ X of X ,
the composition f ◦ p is a plot of Y .

The collection of all diffeological spaces with smooth maps forms a category,
which we denote Diff. Given two diffeological spaces X and Y , we write C∞(X, Y )
for the set of all smooth maps from X to Y . An isomorphism in Diff will be called
a diffeomorphism.

Every smooth manifold M is canonically a diffeological space with the same
underlying set and plots taken to be all smooth maps U → M in the usual sense.
We call this the standard diffeology on M . By using charts, it is easy to see that
smooth maps in the usual sense between smooth manifolds coincide with smooth
maps between them with the standard diffeology. This gives the following standard
result, which can be found, for example, in [Iglesias-Zemmour 2013, Section 4.3].

Theorem 2.3. There is a fully faithful functor from the category of smooth manifolds
to Diff.

From now on, unless we say otherwise, every smooth manifold considered as a
diffeological space is equipped with the standard diffeology.

Proposition 2.4 [Iglesias-Zemmour 1985]. Given a set X , let D be the set of all
diffeologies on X ordered by inclusion. Then D is a complete lattice.

This follows from the fact that D is closed under arbitrary (small) intersection.
The largest element in D is called the indiscrete diffeology on X , which consists of
all set maps U → X , and the smallest element in D is called the discrete diffeology
on X , which consists of all locally constant maps U → X .

The smallest diffeology on X containing a set of maps A = {Ui → X}i∈I is
called the diffeology generated by A. It consists of all maps f : V → X such that
there exists an open cover {V j } of V with the property that f restricted to each
V j is either constant or factors through some element Ui → X in A via a smooth
map V j →Ui . The standard diffeology on a smooth manifold is generated by any
smooth atlas on the manifold. For every diffeological space X , DX is generated by⋃

n∈N C∞(Rn, X).
Generalizing the previous paragraph, let A= { f j : X j → X} j∈J be a set of func-

tions from some diffeological spaces to a fixed set X . Then there exists a smallest
diffeology on X making all f j smooth, and we call it the final diffeology defined by
A. For a diffeological space X with an equivalence relation ∼, the final diffeology
defined by the quotient map {X � X/∼} is called the quotient diffeology. Similarly,
let B={gk :Y→Yk}k∈K be a set of functions from a fixed set Y to some diffeological
spaces. Then there exists a largest diffeology on Y making all gk smooth, and we
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call it the initial diffeology defined by B. For a diffeological space X and a subset
A of X , the initial diffeology defined by the inclusion map {A ↪→ X} is called the
subset diffeology. More generally, we have the following well-known result:

Theorem 2.5. The category Diff is both complete and cocomplete.

This is proved in [Baez and Hoffnung 2011] but can be found implicitly in
earlier work. We give a brief sketch here. The forgetful functor Diff→ Set to
the category of sets preserves both limits and colimits since it has both left and
right adjoints, given by the discrete and indiscrete diffeologies. The diffeology on
the (co)limit is the initial (final) diffeology defined by the natural maps. In more
detail, let F : J →Diff be a functor from a small category J and write F for the
composite J→Diff→Set. Then U→ lim F is a plot if and only if the composite
U → lim F→ F( j) is a plot of F( j) for each j ∈ Obj(J ). It is not hard to check
directly that lim F with this diffeology is lim F . Similarly, p :U → colim F is a
plot if and only if there is an open cover {Ui } of U such that the restriction p|Ui

factors as Ui → F( j)→ colim F for some j ∈ Obj(J ), with the first map a plot
of F( j). It is not hard to check directly that colim F with this diffeology is colim F .

The category of diffeological spaces also enjoys another convenient property:

Theorem 2.6 [Iglesias-Zemmour 1985]. The category Diff is cartesian closed.

Given two diffeological spaces X and Y , the set of maps

{U → C∞(X, Y ) |U × X→ Y is smooth}

forms a diffeology on C∞(X, Y ). We call it the functional diffeology on C∞(X, Y ),
and we always equip hom-sets with the functional diffeology. Furthermore, for
each diffeological space Y , −× Y :Diff 
Diff : C∞(Y,−) is an adjoint pair.

A smooth manifold of dimension n is formed by gluing together some open
subsets of Rn via diffeomorphisms. A diffeological space is also formed by gluing
together open subsets of Rn (with the standard diffeology) via smooth maps, possibly
for all n ∈ N. To make this precise, we introduce the following concept:

Let DS be the category with objects all open subsets of Rn for all n ∈ N and
morphisms the smooth maps between them. Given a diffeological space X , we
define DS/X to be the category with objects all plots of X and morphisms the
commutative triangles

U

p
��

f // V

q
��

X

with p, q plots of X and f a smooth map. We call DS/X the category of plots
of X . It is equipped with a forgetful functor F : DS/X → Diff sending a plot
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U→ X to U regarded as a diffeological space and sending the morphism displayed
above to f . We can use F to show that any diffeological space X can be built out
of Euclidean spaces.

Proposition 2.7. The colimit of the functor F : DS/X→Diff is X.

Proof. Clearly there is a natural cocone F→ X sending the above commutative
triangle to itself. For each diffeological space Y and cocone g : F→ Y , we define
a set map h : X → Y by sending x ∈ X to g(x)(R0), where by abuse of notation
the second x denotes the plot R0

→ X with image x ∈ X . Note that h induces a
(unique) cocone map since h(p(u))= g(p(u))= g(p)◦u for each plot p :U→ X
and each u ∈U , which also implies the smoothness of h. �

The result is essentially the same as [Iglesias-Zemmour 2013, Exercise 33].
Given a diffeological space X , the category DS/X can be used to define geo-

metric structures on X . See [Iglesias-Zemmour 2013; Souriau 1985; Laubinger
2006] for a discussion of differential forms and the de Rham cohomology of a
diffeological space, and see [Hector 1995; Laubinger 2006] for tangent spaces and
tangent bundles.

3. The D-topology

We can associate to every diffeological space the following interesting topology:

Definition 3.1 [Iglesias-Zemmour 1985; 2013, Chapter 2]. Given a diffeological
space X , the final topology induced by its plots, where each domain is equipped
with the standard topology, is called the D-topology on X .

In more detail, if (X,D) is a diffeological space, then a subset A of X is open in
the D-topology of X if and only if p−1(A) is open for each p ∈D. We call such
subsets D-open. If D is generated by a subset D′, then A is D-open if and only if
p−1(A) is open for each p ∈ D′.

A smooth map X → X ′ is continuous when X and X ′ are equipped with the
D-topology, and so this defines a functor D : Diff → Top to the category of
topological spaces.

Example 3.2. (1) The D-topology on a smooth manifold with the standard diffeol-
ogy coincides with the usual topology on the manifold.

(2) The D-topology on a discrete diffeological space is discrete, and the D-
topology on an indiscrete diffeological space is indiscrete.

Every topological space Y has a natural diffeology, called the continuous diffeol-
ogy, whose plots U → Y are the continuous maps. This was defined in [Donato
1984, Section 2.8]. A continuous map Y→Y ′ between topological spaces is smooth
when Y and Y ′ are equipped with the continuous diffeology, and so this defines a
functor C : Top→Diff.
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Proposition 3.3. The functors D : Diff 
 Top : C are adjoint, and we have
C ◦ D ◦C = C and D ◦C ◦ D = D.

Proof. The adjointness is [Shimakawa et al. 2010, Proposition 3.1], and the rest is
easy. �

Proposition 3.4 [Hector 1995; Laubinger 2006]. For each diffeological space, the
D-topology is locally path-connected.

However, not every locally path-connected space comes from a diffeological
space; see Example 3.14.

3.1. The D-topology is determined by smooth curves.

Definition 3.5. We say that a sequence xm in Rn converges fast to x in Rn if for
each k ∈ N the sequence mk(xm − x) is bounded.

Note that every convergent sequence has a subsequence which converges fast.

Lemma 3.6 (Special Curve Lemma [Kriegl and Michor 1997, p. 18]). Let xm be a
sequence which converges fast to x in Rn . Then there is a smooth curve c : R→ Rn

such that c(t) = x for t ≤ 0, c(t) = x1 for t ≥ 1, c(1/m) = xm for each m ∈ Z+,
and c maps [1/(m+ 1), 1/m] to the line segment joining xm+1 and xm .

Theorem 3.7. The D-topology on a diffeological space X is determined by the set
C∞(R, X), in the sense that a subset A of X is D-open if and only if p−1(A) is
open for every p ∈ C∞(R, X).

Proof. (⇒) This follows from the definition of the D-topology.

(⇐) Suppose that p−1(A) is open for every p ∈ C∞(R, X). Consider a plot
q : U → X , and let x ∈ q−1(A). Suppose that {xm} converges fast to x . By the
Special Curve Lemma, there is a smooth curve c :R→U such that c(1/m)= xm for
each m and c(0)= x . Since c−1(q−1(A)) is open, xm is in q−1(A) for m sufficiently
large. So q−1(A) is open in U . �

Example 3.8. Let X be R2 with the standard diffeology, and let Y be the set R2 with
the diffeology generated by C∞(R,R2). Then D(X) is homeomorphic to D(Y )
since C∞(R, X)=C∞(R, Y ), but X and Y are not diffeomorphic since the identity
map R2

→R2 does not locally factor through curves. In other words, the D-topology
is determined by smooth curves, but the diffeology is not.

In this example, Y has the smallest diffeology such that C∞(R,R2) consists of
the usual smooth curves. In contrast, by Boman’s theorem [Kriegl and Michor 1997,
Corollary 3.14], X has the largest diffeology such that C∞(R,R2) consists of the
usual smooth curves. That is, p :U → X is a plot if and only if for every smooth
function c : R→U , the composite p ◦ c is in C∞(R, X).
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3.2. Relationship with 1-generated topological spaces. Write1n for the standard
n-simplex in Top.

Definition 3.9. A topological space X is called 1-generated if the following
condition holds: A ⊆ X is open if and only if f −1(A) is open in 1n for each
continuous map f :1n

→ X and each n ∈ N.

It is not hard to show that being 1-generated is the same as being R-generated
or [0, 1]-generated; that is, one can determine the open sets of a 1-generated space
using just the continuous maps R→ X or [0, 1] → X . This follows from the
existence of a surjective continuous map R→ 1n that exhibits 1n as a quotient
of R. Note the similarity to Theorem 3.7. More on 1-generated topological spaces
can be found in [Dugger 2003; Fajstrup and Rosický 2008].

Proposition 3.10 [Shimakawa et al. 2010]. The spaces in the image of the functor D
are exactly the 1-generated topological spaces.

Since the argument is easy, we include a proof.

Proof. Let X be a diffeological space, and consider A ⊆ D(X). Suppose f −1(A)
is open in R for all continuous f : R→ D(X). Then f −1(A) is open in R for all
smooth f : R→ X . Thus A is open in D(X), and so D(X) is 1-generated.

Suppose that Y is 1-generated. By adjointness, the identity map D(C(Y ))→ Y
is continuous. We claim that it is a homeomorphism, and so Y is in the image of D.
Indeed, suppose A⊆ D(C(Y )) is open. That is, f −1(A) is open in R for all smooth
f : R→ C(Y ). That is, f −1(A) is open in R for all continuous f : R→ Y . Then,
since Y is 1-generated, A is open in Y . �

Because of this, it will be helpful to better understand which topological spaces
are 1-generated.

Proposition 3.11. Every locally path-connected first-countable topological space
is 1-generated.

Proof. Let (X, τ ) be a locally path-connected first-countable topological space.
Then for each x ∈ X , there exists a neighborhood basis {Ai }

∞

i=1 of x such that

(1) each Ai is path-connected; and

(2) Ai+1 ⊆ Ai .

This is because for a neighborhood basis {Bi }
∞

i=1 of x , we can define A1 to be the
path-component of B1 containing x and Ai to be the path-component of Ai−1 ∩ Bi

containing x for i ≥ 2. Since X is locally path-connected, each Ai is open.
Now let τ ′ be the final topology on X for all continuous maps 1n

→ (X, τ ) for
all n ∈N. Clearly τ ⊆ τ ′. Suppose A is not in τ . This means that there exists x ∈ A
such that for each U ∈ τ which is a neighborhood of x , there exists xU ∈ U \ A.
Let {Ai }

∞

i=1 be a neighborhood basis for x with the above two properties, and
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write xn ∈ An \ A accordingly. Define f : [0, 1] → X by letting f |[1/(i+1),1/ i] be a
continuous path connecting xi+1 to xi in Ai , and f (0)= x . It is easy to see that f
is continuous for (X, τ ), but f −1(A) is not open in [0, 1]. So A is not in τ ′. �

It follows from Propositions 3.4 and 3.10 that every 1-generated space is locally
path-connected. However, not every 1-generated space is first-countable.

Proposition 3.12. Let X be a set with the complement-finite topology. We write
card(X) for its cardinality. Then

(1) X is 1-generated if card(X) < card(N) or card(X)≥ card(R);

(2) X is not 1-generated if card(X)= card(N).

Note that X is not first-countable when card(X) ≥ card(R). This provides a
counterexample to the converse of Proposition 3.11.

Proof. (1) If X is a finite set, then the complement-finite topology is the discrete
topology. Hence X is 1-generated.

Assume card(X)≥ card(R), and let B be a nonclosed subset of X , that is, B 6= X
and card(B) ≥ card(N). We must construct a continuous map f : R→ X such
that f −1(B) is not closed in R. Note that in this case, every injection R→ X is
continuous.

Take an injection f̃ : {1/n}n∈Z+ → B. We can extend this to an injection
f : R→ X with f (0) ∈ X \ B. This map is what we are looking for.

(2) If card(X) = card(N), then every continuous map [0, 1] → X is constant.
Otherwise, since every point in X is closed, [0, 1] would be a disjoint union of at
least two and at most countably many nonempty closed subsets, which contradicts
a theorem of Sierpiński (see, e.g., [van Mill 2001, A.10.6] or the slick argument
posted by Gowers [2010]). Since X is not discrete, it is not 1-generated. �

Remark 3.13. Assume the continuum hypothesis. Then the above proposition says
that a set X with the complement-finite topology is 1-generated if and only if X is
not an infinite countable set.

Here is an example showing that not every locally path-connected topological
space is the D-topology of a diffeological space:

Example 3.14. As a set, let X be the disjoint union of copies of the closed unit
interval indexed by the set J of countable ordinals. We write elements in X as xa

with x ∈ [0, 1] and a ∈ J . Let Y be the quotient set X/∼, where the only nontrivial
relations are 1a ∼ 1b for all a, b ∈ J . Since we will only work with Y , we denote
the elements of Y in the same way as those of X . The topology on Y is generated
by the following basis:
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(1) the open interval (xa, ya) for each 0≤ x < y ≤ 1 and a ∈ J ;

(2) the set Ua,x :=
(⋃

a≤b∈J [0b, 1b]
)
∪
(⋃

c<a(xc, 1c]
)

for each a∈ J and x ∈[0, 1).

One can show that Y is locally path-connected (but not first-countable). However,
Y is not 1-generated. Indeed, let A =

⋃
a∈J (0a, 1a]. Then A is not open in Y . For

every continuous map f :1n
→ X , we claim that f −1(A) is open in1n . Otherwise,

there exists u ∈ f −1(A) such that no open neighborhood of u is contained in f −1(A).
Since the intervals (xa, ya) are open, we must have f (u)= 1a , the common point.
Choose a sequence (ui ) converging to u such that each ui is not in f −1(A). Then
f (ui )= 0bi for some countable ordinals bi . Let b be a countable ordinal larger than
each bi . Then Ub,0 is an open set containing f (u) but none of the f (ui ), so f (ui )

is not convergent to f (u)= 1a , which contradicts the continuity of f .

3.3. Two topologies related to a subset of a diffeological space. Let X be a diffe-
ological space, and let Y be a quotient set of X . Then we can give Y two topologies:

(1) the D-topology of the quotient diffeology on Y ;

(2) the quotient topology of the D-topology on X .

Since D :Diff→ Top is a left adjoint, these two topologies are the same.
Similarly, let X be a diffeological space, and let A be a subset of X . Then we

can give A two topologies:

(1) τ1(A): the D-topology of the subset diffeology on A;

(2) τ2(A): the subtopology of the D-topology on X .

However, these two topologies are not always the same. In general, we can only
conclude that τ2(A)⊆ τ1(A).

Example 3.15. (1) Let A be a subset of R. Then τ1(A) is discrete if and only if A is
totally disconnected under the subtopology of R. In particular, if A=Q, then τ1(Q)

is the discrete topology, which is strictly finer than the subtopology τ2(Q).

(2) Let f : R→ R be a continuous and nowhere differentiable function, and let
A = {(x, f (x)) | x ∈ R} be its graph, equipped with the subset diffeology of R2.
Then τ1(A) is the discrete topology, which is strictly finer than the subtopology
of R2. Here is the proof. Let g : R→ R2 be a smooth map whose image is in A,
and define y, z : R→ R by g(t) = (y(t), z(t)). Assume that y′(a) 6= 0 for some
a ∈ R. Then by the inverse function theorem, y : R→ R is a local diffeomorphism
around a. Since Im(g) ⊆ A, we have z = f ◦ y, which implies that f = z ◦ y−1

around y(a), contradicting nowhere-differentiability of f . Therefore, any plot of
the form R→ A is constant. By Theorem 3.7, τ1(A) is discrete. On the other hand,
the subtopology τ2(A) is homeomorphic to the usual topology on R.
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Definition 3.16 [Iglesias-Zemmour 2013, 2.14]. When τ1(A) = τ2(A), we say
that A is an embedded subset of X .

We are interested in conditions under which this holds.

Lemma 3.17. Let A be a convex subset of Rn . Then A is an embedded subset
of Rn .

Proof. Following the idea of the proof of [Kriegl and Michor 1997, Lemma 24.6(3)],
let B ⊆ A be closed in the τ1(A)-topology, and let B be the closure of B in A for
the τ2(A)-topology. Note that the τ2(A)-topology is the same as the subtopology
of Rn . Hence, for any b ∈ B, we can find a sequence bn in B which converges fast
to b. Since A is convex, the Special Curve Lemma (Lemma 3.6) says that there
is a smooth curve c : R→ A such that c(0)= b and c(1/n)= bn for each n ∈ Z+.
Therefore, b ∈ B by the definition of the D-topology. �

Lemma 3.18. If A is a D-open subset of a diffeological space X , then A is an
embedded subset of X.

Proof. Let B be in τ1(A). To show that B is in τ2(A), it suffices to show that B is
D-open in X . Let p :U → X be an arbitrary plot of X . Since A is D-open in X ,
p−1(A) is an open subset of U . Hence, the composition of p−1(A) ↪→U → X is
also a plot for X , which factors through the inclusion map A ↪→ X . Since B ∈ τ1(A),
(p|p−1(A))

−1(B) is open in p−1(A), which implies that p−1(B) is open in U . Thus
B is D-open in X , as required. �

Example 3.19. GL(n,R) is D-open in M(n,R)∼=Rn2
, so it is an embedded subset.

Also see Corollary 4.15 for another example. Note that Lemma 3.18 is not true
if we change D-open to D-closed.

Example 3.20. Let A = {1/n}n∈Z+ ∪ {0} ⊂ R. Then A is D-closed in R. It is easy
to check that τ1(A) is discrete and is strictly finer than τ2(A).

Proposition 3.21. Let X be a diffeological space and let A be a subset of X. If
there exists a D-open neighborhood C of A in X together with a smooth retraction
r : C→ A, then A is embedded in X. (Here both C and A are equipped with the
subset diffeologies from X.)

Proof. Let B ∈ τ1(A). Then r−1(B) ∈ τ1(C)= τ2(C) is D-open in X . Therefore,
B = A∩ r−1(B) ∈ τ2(A). �

Example 3.22. Given a smooth manifold M of dimension n > 0, by the strong
Whitney embedding theorem, there is a smooth embedding M ↪→ R2n . If we
view M as a subset of R2n , then it is an embedded subset, since there is an open
tubular neighborhood U of M in R2n together with a smooth retraction U → M .
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4. The D-topology on function spaces

Let M and N be smooth manifolds. Recall that the set C∞(M, N ) of smooth maps
from M to N has a functional diffeology described just after Theorem 2.6. In
this section, we consider the topological space obtained by taking the D-topology
associated to this diffeology, and we compare it to other well-known topologies on
this set: the compact-open topology, the weak topology, and the strong topology.

Here is a review of these three topologies and their relationship. The books
[Hirsch 1976; Kriegl and Michor 1997; Michor 1980] are good references for the
weak and strong topologies.

The compact-open topology on C∞(M, N ) has a subbasis which consists of the
sets A(K ,W )= { f ∈ C∞(M, N ) | f (K )⊆W }, where K is a nonempty compact
subset of M and W is an open subset of N . (This makes sense for any diffeological
spaces M and N , where K is then required to be compact in D(M) and W to be
open in D(N ).)

We now describe a subbasis for the weak topology on C∞(M, N ). For r ∈ N,
(U, φ) a chart of M , (V, ψ) a chart of N , K ⊆ U compact, f ∈ C∞(M, N )
with f (K ) ⊆ V , and ε > 0, we define the set N r ( f, (U, φ), (V, ψ), K , ε) to be
{g ∈C∞(M, N ) | g(K )⊆V and ‖Di (ψ ◦ f ◦φ−1)(x)−Di (ψ ◦g◦φ−1)(x)‖<ε for
each x ∈ φ(K ) and each multi-index i with |i | ≤ r}. These sets form a subbasis for
the weak topology. Here i = (i1, . . . , im) is a multi-index in Nm with m = dim(M),
|i | = i1+ · · ·+ im , and Di is the differential operator ∂ |i |/(∂x i1

1 · · · ∂x im
m ).

A subbasis for the strong topology on C∞(M, N ) is similar, but it allows con-
straints using multiple charts. More precisely, if N r ( f, (Ui , φi ), (Vi , ψi ), Ki , εi ) is
a family of subbasic sets for the weak topology such that the collection {Ui } is locally
finite, then the intersection of this family is a subbasic set for the strong topology.
In fact, one can show that these intersections form a base for the strong topology.

Each of these is at least as fine as the previous one, that is,

compact-open topology⊆ weak topology⊆ strong topology.

The first inclusion is proved in Lemma A.2, and the second is clear. The compact-
open topology and the weak topology coincide if and only if M or N is zero-
dimensional (see Example 4.5). Moreover, the weak topology and the strong
topology coincide if the domain M is compact and are different if M is noncompact
and N has positive dimension (see [Hirsch 1976, pp. 35–36]).

Now we start our comparison of the D-topology with these topologies. The
following lemma is needed for the subsequent proposition.

Lemma 4.1. Let X and Y be two diffeological spaces such that D(X) is locally
compact Hausdorff. Then the natural bijection D(X × Y )→ D(X)× D(Y ) is a
homeomorphism.
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Note that when X is a smooth manifold, D(X) is locally compact Hausdorff.

Proof. First observe that the natural bijection D(U × V )→ D(U )× D(V ) is a
homeomorphism for U and V open subsets of Euclidean spaces, since in this case the
D-topology is the usual topology. The functors D :Diff→Top, Z×−:Diff→Diff
for any diffeological space Z and W ×− : Top→ Top for any locally compact
Hausdorff space W all preserve colimits since they are left adjoints. Thus the claim
follows from Proposition 2.7, using that D(X) is locally compact Hausdorff, as is
each D(U ) for U an open subset of some Euclidean space. �

For general X and Y , one can show using a similar argument that the D-topology
on D(X × Y ) corresponds under the bijection above to the smallest 1-generated
topology containing the product topology on D(X)× D(Y ).

Proposition 4.2. For diffeological spaces X and Y , the D-topology on C∞(X, Y )
contains the compact-open topology.

This result is a stepping stone to proving the stronger statement that the
D-topology contains the weak topology.

Proof. Recall that the compact-open topology has a subbasis which consists of the
sets A(K ,W )= { f ∈ C∞(X, Y ) | f (K )⊆ W }, where K is a nonempty compact
subset of D(X) and W is an open subset of D(Y ). We will show that each A(K ,W )

is D-open. Let φ :U→C∞(X, Y ) be a plot of C∞(X, Y ). Since the corresponding
map φ̄ : U × X → Y is smooth, φ̄−1(W ) is open in D(U × X). So for each
u ∈ φ−1(A(K ,W )), {u} × K is in the open set φ̄−1(W ). Note that the natural
map D(U × X)→ D(U )× D(X) is a homeomorphism by Lemma 4.1. By the
compactness of K and the definition of the product topology, V ×K ⊆ φ̄−1(W ) for
some open neighborhood V of u in U , which implies that φ−1(A(K ,W )) is open
in U . Thus A(K ,W ) is open in the D-topology. �

We will see in Example 4.5 that the D-topology is almost always strictly finer
than the compact-open topology.

The next lemma will be used to show that the D-topology contains the weak
topology for function spaces between smooth manifolds.

Lemma 4.3. Let U be an open subset in Rn and let i be a multi-index in Nn . Then
Di
: C∞(U,R)→ C∞(U,R) is smooth.

Proof. Let φ : V → C∞(U,R) be a plot with dim(V ) = m. This means that
the associated map φ̄ : V × U → R defined by φ̄(v, u) = φ(v)(u) is smooth.
Write j for the multi-index (0m, i) ∈ Nm+n , with 0m a sequence of m zeros. Then
D j (φ̄) : V ×U→R is smooth. Since D j (φ̄)(v, u)= Di (φ(v))(u), Di

◦φ is a plot,
which implies the smoothness of Di . �
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Note that the smoothness of Di does not imply its continuity in general. It is an
easy exercise that for |i |> 0 and n > 0, Di is not continuous in the compact-open
topology but is continuous in both the weak and strong topologies.

Now we can compare the D-topology with the weak topology for function spaces
between smooth manifolds.

Proposition 4.4. Let M and N be smooth manifolds. Then the D-topology on
C∞(M, N ) contains the weak topology.

Proof. Recall that the weak topology on C∞(M, N ) has the sets

N r ( f, (U, φ), (V, ψ), K , ε),

described at the beginning of Section 4, as a subbasis.
Let p :W → C∞(M, N ) be a plot, that is,

p̄ :W ×M→ N given by p̄(w, x)= p(w)(x)

is smooth. If w ∈ p−1(N r ( f, (U, φ), (V, ψ), K , ε)), then by Proposition 4.2,
Lemma 4.3, and the facts that φ and ψ are diffeomorphisms, only finitely many
differentials are considered, K is compact and V is open, it is not hard to see that
there exists an open neighborhood W ′ of w in W such that

W ′ ⊆ p−1(N r ( f, (U, φ), (V, ψ), K , ε)
)
.

Therefore, N r ( f, (U, φ), (V, ψ), K , ε) is D-open. �

Since the weak topology is almost always strictly finer than the compact-open
topology, so is the D-topology.

Example 4.5. The D-topology on C∞(R,R) is strictly finer than the compact-open
topology. To prove this, consider U = N 1(0̂, (R, id), (R, id), [−1, 1], 1), where 0̂ is
the zero function. This is open in the weak topology and thus is open in the
D-topology. We claim that no open neighborhood of 0̂ in the compact-open topology
of C∞(R,R) is contained in U . Otherwise, we may assume 0̂∈ A(K , (−ε, ε))⊆U
for some ε > 0 and some compact K , since if 0̂ ∈ A(K1,W1)∩ · · · ∩ A(Km,Wm),
then 0 ∈Wi for each i and

0̂ ∈ A(K1 ∪ · · · ∪ Km,W1 ∩ · · · ∩Wm)⊆ A(K1,W1)∩ · · · ∩ A(Km,Wm).

Then clearly f :R→R defined by f (x)= (ε/2) sin(2x/ε) is in A(K , (−ε, ε)) for
any K . But f is not in U since f ′(0)= 1.

Using a similar argument, with bump functions, one can show that when M
and N are smooth manifolds of dimension at least 1, then the weak topology is
strictly finer than the compact-open topology. Thus the D-topology is strictly finer
than the compact-open topology in this situation.
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In general, the weak topology is different from the D-topology on C∞(M, N ).

Example 4.6. (1) Let N and {0, 1} be equipped with the discrete diffeologies.
Let f : N → {0, 1} be the constant function sending everything to 0, and let
fn :N→{0, 1} be defined by f −1

n (0)= {0, 1, . . . , n}. Note that fn converges to f
in the weak topology for the following reason. Since each element in the subbasis
of the weak topology depends only on the values of the function and its derivatives
on a compact subset of N, any of them containing f must contain all fn for n large
enough.

On the other hand, we claim that for each n there does not exist a continuous path
F : [0, 1] → C∞(N, {0, 1}) with F(0) = fn and F(1) = f , where the codomain
is given the weak topology. Since the weak topology contains the compact-open
topology, such an F gives rise to a continuous function [0, 1]×N→{0, 1}, that is,
a homotopy from D( fn) to D( f ). Since these maps are clearly not homotopic, no
such F exists.

Thus the weak topology is not locally path-connected. It follows from Proposition
3.4 that the weak topology is different from the D-topology on C∞(N, {0, 1}).

The above argument in fact shows that every continuous path in C∞(N, {0, 1})
with respect to a topology containing the compact-open topology is constant. In
particular, this holds for the D-topology, and since the D-topology is 1-generated,
it must be discrete.

(2) Let X be a countable disjoint union of copies of S1; that is, X =
∐

i∈N X i with
each X i = S1. Then the weak topology on C∞(X, S1) is not locally path-connected,
by a similar argument with f : X → S1 defined by f |X i = id : X i → S1 and
fn : X→ S1 defined by

fn|X i =

{
id if i = 0, 1, . . . , n,
− id otherwise.

(3) The weak topology on C∞(R2
\ ({0}×Z), S1) is not locally path-connected, by

a similar argument with f : R2
\ ({0}×Z)→ S1 defined by

f (x, y)=
1− e2π(x+iy)

|1− e2π(x+iy)|
,

and fn : R
2
\ ({0}×Z)→ S1 defined by

fn(x, y)= f (x, φn(y)),

where φn :R→R is a strictly increasing smooth function with φn(t)= t for |t | ≤ n
and |φn(t)|< n+ 1 for all t .

These examples all show that the weak topology is not locally path-connected,
and, in particular, that it is not 1-generated. The D-topology is a 1-generated
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topology containing the weak topology, and the following theorem says that, given
this, it is as close to the weak topology as possible.

Theorem 4.7. For M and N smooth manifolds, the D-topology on C∞(M, N ) is
the smallest 1-generated topology containing the weak topology.

Proof. First note that by Proposition 4.4, the D-topology contains the weak topology,
and by Proposition 3.10, the D-topology is 1-generated. So we must prove that the
D-topology on C∞(M, N ) is contained in every 1-generated topology containing
the weak topology.

So let τ be a1-generated topology containing the weak topology and assume that
A ⊆ C∞(M, N ) is not open in τ . Since τ is 1-generated, there is a τ -continuous
map p : R→ C∞(M, N ) such that p−1(A) is not open in R. Since τ contains the
weak topology, p is weakly continuous. By composing with a translation in R, we
can assume that 0 is a noninterior point of p−1(A). Thus we can find a sequence tr
of real numbers converging to 0 so that p(tr ) 6∈ A for each r . By Theorem A.5,
there is a smooth curve q : R→ C∞(M, N ) such that q(2− j ) = p(tr j ) 6∈ A for
each j and q(0)= p(0). This shows that A is not open in the D-topology. �

Since every 1-generated space is locally path-connected (see Propositions 3.4
and 3.10), the previous result is in fact a special case of the next result.

Theorem 4.8. Let M and N be smooth manifolds. Then the D-topology on
C∞(M, N ) is the smallest locally path-connected topology containing the weak
topology.

Proof. Suppose τ is a locally path-connected topology that contains the weak
topology, A is not τ -open, and f ∈ A is not τ -interior to A. Since the weak topology
on C∞(M, N ) is first-countable, there is a countable weak neighborhood basis
(Wr )

∞

r=1 of f . Contained in each Wr there is a path-connected τ -neighborhood Tr

of f . For each r , choose an fr ∈ Tr \ A and a τ -continuous (and therefore weakly
continuous) path from f to fr lying entirely in Tr ⊆Wr . We can concatenate these
paths to produce a weakly continuous path p such that p(0)= f and p(2−r )= fr .
By Theorem A.5, there is a smooth curve q : R→ C∞(M, N ) such that q(0)= f
and q(2− j )= fr j . Then q−1(A) contains 0 but not 2− j for any j , so A is not open
in the D-topology. �

As a corollary, we have the following necessary and sufficient condition for the
weak topology to be equal to the D-topology.

Corollary 4.9. Let M and N be smooth manifolds. Then the weak topology on
C∞(M, N ) coincides with the D-topology if and only if the weak topology is locally
path-connected.

Proof. This follows from Theorem 4.8 (or from Theorem 4.7, using that the weak
topology is second-countable [Hirsch 1976, pp. 35–36]). �



THE D-TOPOLOGY FOR DIFFEOLOGICAL SPACES 103

This allows us to give a situation in which the D-topology and the weak topology
coincide. (See also Corollary 4.14.)

Corollary 4.10. For M a smooth manifold, the weak topology on C∞(M,Rn)

coincides with the D-topology.

Proof. By Lemma A.3, the weak topology on C∞(M,Rn) has a basis of convex
sets. A linear path is smooth and hence weakly continuous, so it follows that this
topology is locally path-connected. �

Our next goal is to show that the D-topology is contained in the strong topology.
We first need some preliminary results.

Lemma 4.11. Let M be a smooth manifold and let N be an open subset of Rd .
Then the D-topology on C∞(M, N ) is contained in any topology that contains the
weak topology and has a basis of convex sets.

Here we say that a subset of C∞(M, N ) is convex if it is convex when regarded
as a subset of the real vector space C∞(M,Rd).

Proof. A convex set isn’t necessarily path-connected, since linear paths may not
be continuous. Thus Theorem 4.8 doesn’t apply directly. However, in the proof of
Theorem 4.8, all that is used is that the subsets Tr are path-connected in the weak
topology. Since linear paths are smooth, they are weakly continuous, and so the
proof goes through. �

Lemma 4.12. Let M be a smooth manifold and let N be an open subset of Rd .
Then C∞(M, N ) is an open subspace of C∞(M,Rd) when both are equipped with
the strong topology.

Proof. We first prove that the strong topology on C∞(M, N ) is the subspace topol-
ogy of the strong topology on C∞(M,Rd). Since the inclusion map N→Rd induces
a continuous map in the strong topologies (see [Hirsch 1976, Exercise 10(b), p. 65]),
the intersection of a strong open set in C∞(M,Rd) with C∞(M, N ) is open in
C∞(M, N ). On the other hand, the data for each weak subbasic set A in C∞(M, N )
defines a weak subbasic set in C∞(M,Rd) whose intersection with C∞(M, N )
is A. Since the strong subbasic sets are certain intersections of the weak subbasic
sets, our claim follows.

Now we show that C∞(M, N ) is an open subset of C∞(M,Rd), following the
argument in Lemma A.2. For f ∈ C∞(M, N ), choose charts for M and N and
compact sets Ki ⊆ M as described in Lemma A.1(b). Then

f ∈
∞⋂

i=1

N 0( f, (Ui , φi ), (N , id), Ki , 1)⊆ C∞(M, N ),

where each N 0( f, (Ui , φi ), (N , id), Ki , 1) is understood to be a subbasic set for
C∞(M,Rd). So C∞(M, N ) is open in the strong topology. �
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Theorem 4.13. Let M and N be smooth manifolds. Then the D-topology on
C∞(M, N ) is contained in the strong topology.

Proof. Choose an embedding N ↪→Rd , and let U be an open tubular neighborhood
of N in Rd , so that the inclusion i : N → U has a smooth retract r : U → N .
Since i and r induce continuous maps in both the strong topology (see [Hirsch
1976, Exercise 10, p. 65]) and the D-topology (an easy argument), C∞(M, N ) is
a subspace of C∞(M,U ) when both are equipped with either of these topologies.
So if these topologies agree on C∞(M,U ), then they agree on C∞(M, N ). Thus
it suffices to prove the result when N is open in Rd . Assume that this is the case.

We first prove that the strong topology on C∞(M,Rd) has a basis of convex
sets. If A :=

⋂
i N r ( f, (Ui , φi ), (Vi , ψi ), Ki , εi ) is a basic open set of the strong

topology, as described at the beginning of Section 4, and if g ∈ A, then by the proof
of Lemma A.3,

g ∈
⋂

i

N r (g, (Ui , φi ), (R
d , id), Ki , ε

′′′

i )⊆ A,

which shows that A is covered by convex strong open sets.
By Lemma 4.12, C∞(M, N ) is open in C∞(M,Rd), so it too has a basis of

convex sets. Thus, by Lemma 4.11, the D-topology on C∞(M, N ) is contained in
the strong topology. �

Corollary 4.14. Let M and N be smooth manifolds with M compact. Then the
D-topology on C∞(M, N ) coincides with the weak topology.

Proof. The D-topology is trapped between the weak topology (Proposition 4.4) and
the strong topology (Theorem 4.13), and these coincide when M is compact. �

Here is one application of our results:

Corollary 4.15. Let M be a smooth compact manifold, and let Diff(M) be the set
of all diffeomorphisms from M to itself with the subset diffeology of C∞(M,M).
Then Diff(M) is D-open in C∞(M,M). Hence, Diff(M) is an embedded subset of
C∞(M,M) (see Definition 3.16).

Proof. As mentioned in Corollary 4.14, when M is compact, the weak, strong and
D-topologies on C∞(M,M) all coincide. The first claim is then the restatement of
[Hirsch 1976, Theorem 2.1.7], and the second part follows from Lemma 3.18. �

Similarly, many results in [Hirsch 1976, Chapter 2] can be translated into results
for the D-topology.

When M is noncompact and N has positive dimension, the weak topology is dif-
ferent from the strong topology [Hirsch 1976, pp. 35–36]. Since the weak topology
and the D-topology coincide for C∞(M,Rn), it follows that the D-topology and
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the strong topology are different for C∞(M,Rn) when M is noncompact. We can
make this explicit in the next example.

Example 4.16. It is not hard to show that the strong topology on C∞(R,R) has a
basis {Bk

δ ( f ) | k ∈ N, δ : R→ R+ continuous, f ∈ C∞(R,R)}, where

Bk
δ ( f )=

{
g ∈ C∞(R,R)

∣∣∣ k∑
i=0

( f (i)(x)− g(i)(x))2 < δ(x) for each x ∈ R

}
.

On the other hand, the D-topology agrees with the weak topology on C∞(R,R),
so it has a basis {B̃k

ε ( f ) | k ∈ N, ε ∈ R+, f ∈ C∞(R,R)}, where

B̃k
ε ( f )=

{
g ∈ C∞(R,R)

∣∣∣ k∑
i=0

( f (i)(x)− g(i)(x))2 < ε for each x in [−k, k]
}
.

It follows that the strong topology is strictly finer than the D-topology on C∞(R,R).

On the other hand, it can be the case that the D-topology is different from the
weak topology but agrees with the strong topology. For example, this happens in
case (1) of Example 4.6, where it is easy to see that the strong topology is also
discrete.

Remark 4.17. The book [Kriegl and Michor 1997] also studies function spaces
between smooth manifolds, but uses a different smooth structure on the function
space to ensure that the resulting object has the desired local models. By Lemma 42.5
of that book, their smooth structure has fewer smooth curves than the diffeology
studied here, and as a result the natural topology discussed in their Remark 42.2 is
larger than the D-topology. In fact, according to that remark, it is larger than the
strong topology (which they call the WO∞-topology).

Appendix: The weak topology on function spaces

In this appendix, our goal is to prove a theorem about the weak topology on function
spaces which is analogous to the Special Curve Lemma (Lemma 3.6). This is
Theorem A.5. Before proving the theorem, we collect together and prove some basic
results about the weak topology on function spaces and state the following lemma.

Lemma A.1. Let M and N be smooth manifolds.

(a) There exist a locally finite countable atlas {(Ui , φi )}i∈N of M and a compact
set Ki ⊆Ui , for each i , such that M =

⋃
i K̊i , where K̊i denotes the interior

of Ki .

(b) For any smooth map f : M → N , there exist {(Ui , φi , Ki )}i∈N as in (a) and
a countable atlas {(Vi , ψi )}i∈N of N such that f (Ki )⊆ Vi for each i .
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Recall that for M and N smooth manifolds, the weak topology on C∞(M, N )
has as subbasic neighborhoods the sets N r ( f, (U, φ), (V, ψ), K , ε) described at
the beginning of Section 4.

Lemma A.2. Let M and N be smooth manifolds. Then the weak topology on
C∞(M, N ) contains the compact-open topology.

Proof. Consider A(K ,W ) = {g ∈ C∞(M, N ) | g(K ) ⊆ W }, where K ⊆ M is
compact and W ⊆ N is open. Let f ∈ A(K ,W ). Choose charts for M and N and
compact sets Ki as described in Lemma A.1(b). Choose j so that K ⊆

⋃ j
i=1 Ki .

Then

f ∈
j⋂

i=1

N 0( f, (Ui , φi ), (Vi ∩ V, ψi ), Ki ∩ K , 1)⊆ A(K ,W ),

so A(K ,W ) is open in the weak topology. �

Lemma A.3. Let M be a smooth manifold. The sets N r ( f, (U, φ), (Rd , id), K , ε),
where r ∈ N, f ∈ C∞(M,Rd), (U, φ) is a chart of M , K ⊆ U is compact and
ε > 0, form a subbasis for the weak topology on C∞(M,Rd). In particular, the
weak topology on C∞(M,Rd) has a basis of convex sets.

Proof. Consider a subbasic set A := N r ( f, (U, φ), (V, ψ), K , ε) containing a
function g. First observe that g ∈ A′ := N r (g, (U, φ), (V, ψ), K , ε′) ⊆ A for
some ε′, since these sets are determined by comparing finitely many norms on a
compact set. One can then show that A′′ := N r (g, (U, φ), (V, id), K , ε′′)⊆ A′ for
some ε′′, using bounds on the derivatives of ψ on g(K ). Finally, we claim that
A′′′ := N r (g, (U, φ), (Rd , id), K , ε′′′)⊆ A′′ for some ε′′′. To see this, cover g(K )
by finitely many open balls B1, . . . , Bn such that 2B` ⊆ V for each `, and let ε′′′ be
the minimum of the radii and ε′′. Then if h ∈ A′′′ and x ∈ K , we have g(x) ∈ B`
for some ` and |g(x)− h(x)|< ε′′′, so h(x) ∈ 2B` ⊆ V . �

For N open in Rd , we will implicitly use that the inclusion map induces a
continuous map C∞(M, N )⊆ C∞(M,Rd) in the weak topologies, which follows
from the fact that the weak topology is functorial in the second variable (see [Hirsch
1976, Exercise 10(a), p. 64]). (In fact, the weak topology and the subspace topology
on C∞(M, N ) agree, but we won’t need this.) Although C∞(M, N ) need not be
an open subset of C∞(M,Rd), it has the following weaker property.

Lemma A.4. Let M be a smooth manifold and let N be an open subset of Rd .
If f is in C∞(M, N ) and K is a compact subset of M , then there is a convex basic
weak C∞(M,Rd)-neighborhood of f whose elements map K into N.
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Proof. The set {g ∈C∞(M,Rd) | g(K )⊆ N } is open in the compact-open topology
on C∞(M,Rd) and so is open in the weak topology by Lemma A.2. By Lemma A.3,
the weak topology on C∞(M,Rd) has a basis of convex sets. Thus any f :M→ N
has such a convex basic set as a weak neighborhood. �

Theorem A.5. Let M and N be smooth manifolds. Suppose p : R→ C∞(M, N )
is weakly continuous and tr is a sequence of real numbers converging to zero.
Then there is a subsequence tr j and a smooth curve q : R→ C∞(M, N ) such that
q(2− j )= p(tr j ) for each j and q(0)= p(0).

Proof. We first reduce to the case where N is open in Rd . As in Theorem 4.13,
choose an embedding N ↪→ Rd , and let U be an open tubular neighborhood of N
in Rd , so that the inclusion i : N→U has a smooth retract r :U→ N . By [Hirsch
1976, Exercise 10(a), p. 64], the map R→C∞(M,U ) sending t to i ◦ p(t) is weakly
continuous, so if the theorem holds for C∞(M,U ), then there is a smooth curve
q : R→ C∞(M,U ) such that q(2− j ) = i ◦ p(tr j ) for each j and q(0) = i ◦ p(0).
Then the map sending t to r ◦ q(t) is smooth, r ◦ q(2− j )= p(tr j ) for each j , and
r ◦ q(0)= p(0), so we are done. Thus we may assume that N is open in Rd .

If tr is eventually constant, we may take q to be a constant function, so suppose
it is not. Choose charts (Uk, φk)

∞

k=1 for M and compact sets Kk ⊆Uk as described
in Lemma A.1(a). Let f = p(0). For j = 1, 2, . . . , the sets,

A j =

j⋂
k=1

N j( f, (Uk, φk), (R
d , id), Kk, 2−( j+1)2)

are weak C∞(M,Rd)-neighborhoods of f , so we may choose a strictly monotone
subsequence tr j such that p(tr j ) ∈ A j for each j . Set f j = p(tr j ). Now compose p
with a continuous function taking 2− j to tr j for each j to obtain a weakly continuous
function p0 that satisfies p0(2− j )= f j for j = 1, 2, . . . and p0(0)= f .

Fix k. By Lemma A.4, for each t ∈ [0, 1], there is a convex neighborhood
of p0(t) whose elements map Kk into N . By compactness, there is a δk > 0 such
that any subinterval of [0, 1] of length at most 2δk is mapped by p0 into one of
these neighborhoods. Thus, for each t , any convex combination of elements in
p([t−δk, t+δk]∩[0, 1]) maps Kk into N . Let τ0, τ1, . . . be the strictly decreasing
sequence obtained by ordering the set {1, 1/2, 1/4, . . . } ∪ {δk, 2δk, . . . , b1/δkcδk}.
Note that τ0 = 1 and τ j−1− τ j ≤ δk for j = 1, 2, . . . .

Fix a nondecreasing µ ∈ C∞(R, [0, 1]) such that µ = 0 in a neighborhood of
(−∞, 0] and µ= 1 in a neighborhood of [1,∞). Let

M` = 1+ 2 max
`′≤`

max
t∈[0,1]

|µ(`
′)(t)|.

Define qk :R→C∞(M,Rd) by qk(t)= p0(0) for t ≤ 0, qk(t)= p0(1) for t ≥ 1,
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and

qk(t)= p0(τ j )+µ

(
t − τ j

τ j−1− τ j

)
(p0(τ j−1)− p0(τ j ))

for τ j ≤ t ≤ τ j−1, j = 1, 2, . . . . Note that for each t ∈ (0, 1], qk(t) is a convex
combination of elements of p0([t − δk, t + δk] ∩ [0, 1]). Clearly, qk is constant on
(−∞, 0] and constant on [1,∞). The choice of µ ensures that it is constant in
a neighborhood of τ j−1 for each j and smooth on (τ j , τ j−1). Thus, qk is smooth
on (R \ {0})× M . To see that it is also smooth at t = 0, fix a positive integer κ ,
set F = f ◦ φ−1

κ , F j = f j ◦ φ
−1
κ for each j , and Q(t, s) = qk(t)(φ−1

κ (s))− F(s).
It will suffice to show that all partial derivatives of Q exist and equal zero on
S := {0}×φκ(K̊κ). Certainly Q = 0 there, and if D is any composition of partial
differentiation operators such that DQ vanishes on S, then the partial derivative
of DQ with respect to any of s1, . . . , sm also vanishes there. To complete the
induction, it is enough to show that the partial derivative of DQ with respect to t
also vanishes on S.

Where Q is C∞, the order of mixed partials is unimportant, so DQ = D`
t Di

s Q
off S for some ` ≥ 0 and some multi-index i . Choose J so that 2−J < δk . Then
2−J , 2−J−1, 2−J−2, . . . is a tail of the sequence τ0, τ1, . . . . So if j > J and
2− j
≤ t ≤ 21− j , then

qk(t)= f j +µ(2 j t − 1)( f j−1− f j ),

and, for s ∈ φκ(Uκ),

(D`
t Di

s Q)(t, s)=
{
(Di

s(F j−F))(s)+µ(2 j t−1)(Di
s(F j−1−F j ))(s) if `= 0,

µ(`)(2 j t−1)2`j (Di
s(F j−1−F j ))(s) if `≥ 1.

If j >max(J, κ, |i |, `+ 2), then

f j ∈ A j ⊆ N j( f, (Uκ , φκ), (R
d , id), Kκ , 2−( j+1)2),

and
f j−1 ∈ A j−1 ⊆ N j−1( f, (Uκ , φκ), (R

d , id), Kκ , 2− j2)
,

so
|Di

s(F j − F)| ≤ 2−( j+1)2
≤ 2− j2

and |Di
s(F j−1− F)| ≤ 2− j2

on φκ(Kκ). Thus, for any s ∈ φk(K̊κ),

|(DQ)(t, s)− (DQ)(0, s)| = |(D`
t Di

s Q)(t, s)| ≤M`2`j 2− j2
≤M`t2,

where we have used that ` < j − 2 in the last inequality. Since j can be arbitrarily
large, this inequality holds for all sufficiently small t , so the partial derivative of DQ
with respect to t (from the right) exists and equals zero. The partial derivative
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from the left is trivially zero. This completes the induction and the proof that qk is
smooth.

Before allowing k to vary, observe that qk(τ j ) = p0(τ j ) for each j , and in
particular, qk(2− j )= p0(2− j )= f j for each j .

Let (νk)
∞

k=1 be a smooth partition of unity on M with νk supported in K̊k and
define q by q(t)(x)=

∑
∞

k=1 νk(x)qk(t)(x). Then q :R→C∞(M,Rd) is a smooth
curve such that q(2− j ) = f j = p(tr j ) for each j , and of course q(0) = p(0). It
remains to show that q(t) takes values in N for each t ∈ R. Let x ∈ M . There
are finitely many k such that νk(x) 6= 0; among them, choose k ′ so that δk′ is as
large as possible. Then, for any t and any k such that νk(x) 6= 0, qk(t) is a convex
combination of elements of p0([t − δk′, t + δk′] ∩ [0, 1]). Thus,

∑
∞

k=1 νk(x)qk(t) is
also a convex combination of elements of p0([t−δk′, t+δk′]∩[0, 1]), and therefore
maps Kk′ to N . But νk′(x) 6= 0, so x ∈ Kk′ . Hence,

∑
∞

k=1 νk(x)qk(t)(x)∈ N , that is,
q(t)(x) ∈ N . We conclude that q : R→ C∞(M, N ). This completes the proof. �
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ON THE ATKIN POLYNOMIALS

AHMAD EL-GUINDY AND MOURAD E. H. ISMAIL

We identify the Atkin polynomials in terms of associated Jacobi polynomi-
als. Our identification then takes advantage of the theory of orthogonal
polynomials and their asymptotics to establish many new properties of the
Atkin polynomials. This shows that corecursive polynomials may lead to
interesting sets of orthogonal polynomials.

1. Introduction

In unpublished work, Oliver Atkin introduced a family of orthogonal polynomials
with fascinating number-theoretic properties: They are the unique family of monic
orthogonal polynomials corresponding to a unique scalar product on the space
of polynomials in the modular j-invariant for which all Hecke operators are self-
adjoint. Furthermore, their reductions modulo a prime p≥5 are also very significant
in the theory of elliptic curves, as they match the supersingular polynomial at p
whenever the degrees agree. For all the number-theoretic definitions, as well as
beautiful proofs of these and other facts about the Atkin polynomials, we refer
the reader to the excellent [Kaneko and Zagier 1998], where Atkin’s results were
popularized, simplified, and expanded upon.

The Atkin polynomials are generated by the recurrence relation

(1-1) An+1(x)=
[

x−24
144n2

−29
(2n+1)(2n−1)

]
An(x)

−36
(12n−13)(12n−7)(12n−5)(12n+1)

n(n−1)(2n−1)2
An−1(x), n > 1,

through the initial conditions

(1-2) A0(x)= 1, A1(x)= x−720, A2(x)= x2
−1640x+269280.
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The polynomials {An(x)} are orthogonal with respect to an absolutely continuous
measure supported on [0, 1728] (see Section 7).

In this paper we show that the Atkin polynomials are related to the associ-
ated Jacobi polynomials of Wimp [1987] and of Ismail and Masson [1991]. This
identification leads to many new properties of the polynomials {An(x)}.

It is worth pointing out that the way the Atkin polynomials are defined, that
is, defining P0(x), P1(x) and P2(x), then using a recurrence relation to generate
the rest, is not unusual in the literature on orthogonal polynomials. The idea is
to start with two monic polynomials, Pk(x) and Pk+1(x), of degrees k and k+1,
respectively, with real, simple and interlacing zeros. Then use the division algorithm
to generate the monic polynomials Pn(x), 0≤ n < k; we are guaranteed to have a
sequence of monic orthogonal polynomials {Pj (x) : 0≤ j ≤ k+1}. Now use any
three-term recurrence relation of the form

(1-3) Pn+1(x)= (x−αn)Pn(x)+βn Pn−1(x),

where αn ∈R and βn >0 for n> k, to generate the polynomials {Pn(x)} for n> k+1.
The construction above is referred to as “Wendroff’s Theorem” in the orthogonal
polynomial literature. The interested reader may consult [Ismail 2009] or [Chihara
1978] for the precise statement and the detailed proof of Wendroff’s theorem. This
is also related to the concept of corecursive polynomials [Chihara 1978].

In Section 2, we recall some preliminary facts about associated Jacobi polynomi-
als and orthogonal polynomials in general. In Section 3, we obtain a representation
of (a scaled version of) the Atkin polynomials as a linear combination of the
associated Jacobi polynomials of Wimp [1987] and of Ismail and Masson [1991].
Building on that, we provide an explicit representation of the coefficients of the
Atkin polynomials in Section 4, a representation in terms of certain hypergeometric
functions and an asymptotic expansion in Section 5, and a generating function
identity in Section 6. Lastly, in Section 7 we give an explicit description of the
weight function in terms of certain 2 F1 functions.

We shall follow the standard notation for hypergeometric functions and orthog-
onal polynomials as in [Andrews et al. 1999; Ismail 2009; Luke 1969; Rainville
1960; Szegő 1975]. In particular we use F

(a,b
c

∣∣ z
)

to mean to mean 2 F1
(a,b

c

∣∣ z
)
.

2. Preliminaries

Let {λn} and {µn} be the birth and death rates of a birth and death process; that
is, λn > 0 and µn+1 > 0 for all n ≥ 0, with µ0 ≥ 0. Such a process generates a
sequence of orthogonal polynomials through a three-term recurrence relation

(2-1) −x Qn(x)= λn Qn+1(x)−(λn+µn)Qn(x)+µn Qn−1(x), n > 0,
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with the initial conditions

(2-2) Q0(x)= 1, Q1(x)= (λ0+µ0−x)/λ0.

The corresponding monic polynomials satisfy

(2-3) x Q̃n(x)= Q̃n+1+(λn+µn)Q̃n(x)−λn−1µn Q̃n−1(x),

with Q̃0(x) = 1, Q̃1(x) = x −λ0−µ0. When µ0 6= 0 there is a second natural
birth and death process with birth rates {λn} and death rates {µ̃n} with µ̃n = µn

for n > 0 but µ̃0 = 0 [Ismail et al. 1988]. The latter birth and death generate a
second family of orthogonal polynomials satisfying (2-1) but with initial conditions
Q0(x)= 1, Q1(x)= (λ0−x)/λ0. This observation is due to Ismail, Letessier and
Valent [Ismail et al. 1988].

The associated polynomials of {Qn(x)} correspond to the birth and death rates
{λn+c} and death rates {µn+c}, when such rates are well defined. Since we consider
c≥ 0, usually µc > 0. Thus we usually have two families of associated polynomials.
One is defined when µc is defined from the pattern of µn . When µc 6= 0, a second
family arises if µn+c, when n = 0 is interpreted as zero.

Recall that the Jacobi polynomials {P (α,β)n (x)} can be defined by the three-term
recurrence relation

(2-4) 2(n+1)(n+α+β+1)(α+β+2n)P (α,β)n+1 (x)

= (α+β+2n+1)
[
(α2
−β2)+x(α+β+2n+2)(α+β+2n)

]
P (α,β)n (x)

−2(α+n)(β+n)(α+β+2n+2)P (α,β)n−1 (x),

for n ≥ 0, with P (α,β)
−1 (x)= 0, P (α,β)0 (x)= 1. We now set

(2-5) V (α,β)
n (x)=

n! (α+β+1)n
(α+β+1)2n

P (α,β)n (2x−1)

=
n!

(n+α+β+1)n
P (α,β)n (2x−1).

One can easily verify that the polynomials {V (α,β)
n (x)} are monic birth and death

process polynomials Q̃n , with rates

(2-6)
λn =

(n+β+1)(n+α+β+1)
(2n+α+β+1)(2n+α+β+2)

,

µn =
n(n+α)

(2n+α+β)(2n+α+β+1)
.

Wimp [1987] considered the recurrence relation obtained by formally replacing n
by n+c in (2-4), and he showed that the new relation has two linearly independent
solutions P (α,β)n (x; c) and P (α,β)n−1 (x; c+1). Ismail and Masson [1991] identified
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the birth and death rates corresponding to that three-term recurrence relation and
provided two linearly independent solutions P (α,β)n (x; c) and P

(α,β)
n (x; c). They

then used the notation

(2-7) R(α,β)n (x; c)= P (α,β)n (2x−1; c), R(α,β)
n (x; c)= P(α,β)

n (2x−1; c).

We shall use the notation

(2-8)
V (α,β)

n (x; c)=
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

R(α.β)n (x; c),

V(α,β)
n (x; c)=

(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

R(α.β)
n (x; c).

To lighten our notation, we shall occasionally omit the parameters when the context
is clear. We consider the birth and death rates

(2-9)
λn =

(n+c+β+1)(n+c+α+β+1)
(2n+2c+α+β+1)(2n+2c+α+β+2)

, n ≥ 0,

µn =
(n+c)(n+c+α)

(2n+2c+α+β)(2n+2c+α+β+1)
, n > 0,

with

(2-10) µ0 :=


c(c+α)

(2c+α+β)(2c+α+β+1)
for V,

0 for V.

3. The Atkin polynomials

In order to compare the Atkin polynomials with other results in the literature we
need to renormalize them. Let

(3-1) An(1728y)= (1728)nAn(y).

The polynomials An are now generated by the recurrence

(3-2) An+1(x)

=

[
x−

2
(
n2
−

29
144

)
4n2−1

]
An(x)−

(
n− 13

12

)(
n− 7

12

)(
n− 5

12

)(
n+ 1

12

)
2n(2n−1)2(2n−2)

An−1(x)

for n > 1. The initial conditions are

(3-3) A0(x)= 1, A1(x)= x− 5
12 , A2(x)= x2

−
205
216 x+ 935

10368 .

Kaneko and Zagier [1998] wrote the recurrence relation (1-1) in the monic form (2-3).
Indeed their (19), when written in terms of the An , corresponds to (2-3) with

(3-4) λn =

(
n− 1

12

)(
n+ 5

12

)
2n(2n+1)

, µn =

(
n− 5

12

)(
n+ 1

12

)
2n(2n−1)

.
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From (2-8), we see that V (α,β)
n (x; c) and V

(α,β)
n (x; c) satisfy the second-order

difference equation

(3-5) Tn+1(x)=
(

x+
α2
−β2
− (2n+2c+α+β)(2n+2c+α+β+2)

2(2n+2c+α+β)(2n+2c+α+β+2)

)
Tn(x)

−
(n+ c)(n+ c+α)(n+ c+β)(n+ c+α+β)

(2n+2c+α+β−1)(2n+2c+α+β)2(2n+2c+α+β+1)
Tn−1(x)

for n ≥ 1, with the initial conditions V0 = V0 = 1 and

(3-6)
V (α,β)

1 (x; c)= x−(λ0+µ0),

V
(α,β)

1 (x; c)= x−λ0,

where λn and µn are defined as in (2-9)–(2-10). On the other hand, we see that the
sequence {An+1(x)}∞n=−1 is a solution of the second-order difference equation

(3-7) Tn+1(x)=
(

x−
7+36(2n+1)(2n+3)

72(2n+1)(2n+3)

)
Tn(x)

−

(
n− 1

12

)(
n+ 5

12

)(
n+ 7

12

)(
n+ 13

12

)
(2n)(2n+1)2(2n+2)

Tn−1(x)

for n ≥ 1. It is not hard to check that (3-7) is identical to (3-5) in exactly four cases,
namely,

(α, β, c) ∈ S :=
{(
−

1
2 ,−

2
3 ,

13
12

)
,
(1

2 ,−
2
3 ,

7
12

)
,
(
−

1
2 ,

2
3 ,

5
12

)
,
( 1

2 ,
2
3 ,−

1
12

)}
.

Theorem 3.1. For n ≥ 0 and (α, β, c) ∈ S, we have the following representations
for An+1(x):

An+1(x)=
(
x− 5

12

)
V (α,β)

n (x; c)− 91
384 V (α,β)

n−1 (x; c+1),(3-8)

An+1(x)= (x−8)V (−1/2,2/3)
n

(
x; 5

12

)
+

91
12 V(−1/2,2/3)

n
(
x; 5

12

)
,(3-9)

An+1(x)= xV (1/2,−2/3)
n

(
x; 7

12

)
−

5
12 V(1/2,−2/3)

n
(
x; 7

12

)
.(3-10)

Proof. It is straightforward to check that for any (α, β, c) ∈ S,

{V (α,β)
n (x; c),V(α,β)

n (x; c)}

is a basis of solutions of (3-7), and the same is true for

{V (α,β)
n (x; c), V (α,β)

n−1 (x; c+1)}.

The results follow by simple linear algebra on the equations corresponding to n = 0
and n = 1. �
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We note that V (α,β)
n (x; c) is the same for the four triples in S, whereas we have

two possibilities for V
(α,β)
n (x; c), depending on whether β = 2

3 or β = −2
3 . For

convenience we explicitly write down the first few of these polynomials:

V (α,β)

0 (x; c)= 1,

V (α,β)

1 (x; c)= x− 115
216 ,

V (α,β)

2 (x; c)= x2
−

187
180 x+ 11621

55296 ;

(3-11)

V (α,β)

−1 (x; c+1)= 0,

V (α,β)

0 (x; c+1)= 1,

V (α,β)

1 (x; c+1)= x− 547
1080 ;

(3-12)

V
(1/2,−2/3)
0

(
x; 7

12

)
= V

(−1/2,−2/3)
0

(
x; 13

12

)
= 1,

V
(1/2,−2/3)
1

(
x; 7

12

)
= V

(−1/2,−2/3)
1

(
x; 13

12

)
= x− 187

864 ,

V
(1/2,−2/3)
2

(
x; 7

12

)
= V

(−1/2,−2/3)
2

(
x; 13

12

)
= x2
−

347
480 x+ 124729

2488320 ;

(3-13)

V
(1/2,2/3)
0

(
x; −1

12

)
= V

(−1/2,2/3)
0

(
x; 5

12

)
= 1,

V
(1/2,2/3)
1

(
x; −1

12

)
= V

(−1/2,2/3)
1

(
x; 5

12

)
= x− 475

864 ,

V
(1/2,2/3)
2

(
x; −1

12

)
= V

(−1/2,2/3)
2

(
x; 5

12

)
= x2
−

169
160 x+ 108965

497664 .

(3-14)

One can check the first few cases of Theorem 3.1 using the equalities

(3-15)

A1(x)= x− 5
12 ,

A2(x)= x2
−

205
216 x+ 935

10368 ,

A3(x)= x3
−

131
90 x2
+

28277
55296 x− 124729

5971968 .

4. Explicit representations

Wimp [1987, p. 987] gave an explicit formula for R(α,β)n (x; c). When translated in
terms of the Vn polynomials it becomes

(4-1) V (α,β)
n (x; c)= (−1)n

(c+1)n(β+c+1)n
(α+β+2c+n+1)n n!

×

n∑
k=0

(−n)k(n+2c+α+β+1)k
(c+1)k(c+β+1)k

xk

×4 F3

(
k−n, n+k+α+β+2c+1, c+β, c

k+β+c+1, k+c+1, α+β+2c

∣∣∣∣ 1
)
.
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On the other hand, Ismail and Masson [1991, Theorem 3.3] gave a similar formula
for R

(α,β)
n (x; c), which leads to

(4-2) V(α,β)
n (x; c)

= (−1)n
(c+1)n(β+c+1)n

(α+β+2c+n+1)n n!

×

n∑
k=0

(−n)k(n+2c+α+β+1)k
(c+1)k(c+β+1)k

xk

×4 F3

(
k−n, n+k+α+β+2c+1, c+β+1, c

k+β+c+1, k+c+1, α+β+2c+1

∣∣∣∣ 1
)
.

The following theorem establishes an analogous representation of An+1(x):

Theorem 4.1. For n ≥ 0, we have

(4-3) An+1(x)=( 19
12

)
n

( 11
12

)
n

(n+2)n(−n)n

×

[
3 F2

(
−n, n+2, 7

12
19
12 , 2

∣∣∣∣ 1
)

+

n∑
k=0

(−n)k(n+2)k(19
12

)
k

( 11
12

)
k

xk+1
{

6
5 4 F3

(
k−n, n+k+2, 11

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ 1
)

−
1
5 4 F3

(
k−n, n+k+2, −1

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ 1
)}]

.

Proof. From (3-10) we have

An+1(x)= xV (1/2,−2/3)
n

(
x; 7

12

)
−

5
12 V(1/2,−2/3)

n
(
x; 7

12

)
, n ≥ 0;

we see that the coefficient of xk+1 in An+1(x) is given by

(4-4) (−1)n
( 19

12

)
n

(11
12

)
n

(n+2)n n!
(−n)k(n+2)k( 19

12

)
k

( 11
12

)
k

×

[
4 F3

(
k−n, n+k+2, −1

12 ,
7

12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ 1
)

−
5

12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) 4 F3

(
k+1−n, n+k+3, 11

12 ,
7
12

k+1+ 11
12 , k+1+ 19

12 , 2

∣∣∣∣ 1
)]
.
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The coefficient of ym in

4 F3

(
k−n, n+k+2, −1

12 ,
7
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)

−
5y
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) 4 F3

(
k+1−n, n+k+3, 11

12 ,
7

12

k+1+ 11
12 , k+1+ 19

12 , 2

∣∣∣∣ y
)

is

(k−n)m(n+k+2)m
(
−1
12

)
m

( 7
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

−
5m
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+11

12

) (k−n+1)m−1(n+k+3)m−1
( 11

12

)
m−1

( 7
12

)
m−1(

k+1+ 11
12

)
m−1

(
k+1+19

12

)
m−1(2)m−1(m)!

.

Using the identity (z)m = z(z+1)m−1, we get that this coefficient is

(4-5)
(k−n)m(n+k+2)m

(
−1
12

)
m

( 7
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

(
1+

(
−5
12

)
(−12m)( 7

12+m−1
) )

=
(k−n)m(n+k+2)m

(
−1
12

)
m

(
−5
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

(
1− 72

5 m
)

=
1
5

(k−n)m(n+k+2)m
(
−5
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

(
6
( 11

12

)
m−

(
−1
12

)
m

)
.

In the last equality, we used(
−1
12

)
m

(
m− 5

72

)
=
(
−1
12

)
m

[(
m− 1

12

)
+

1
72

]
=−

1
12

( 11
12

)
m+

1
72

(
−1
12

)
m .

It now follows that

(4-6)
[

4 F3

(
k−n, n+k+2, −1

12 ,
7
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)

−
5y
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) 4 F3

(
k+1−n, n+k+3, 11

12 ,
7
12

k+1+ 11
12 , k+1+ 19

12 , 2

∣∣∣∣ y
)]

=
6
5 4 F3

(
k−n, n+k+2, 11

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)

−
1
5 4 F3

(
k−n, n+k+2, −1

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)
.

The result now follows by substituting (4-6) with y = 1 into (4-4) . �
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Remark 4.2. There is another explicit representation of a somewhat different form
than (4-3) for the Atkin polynomials. Indeed, it follows from Theorem 4(ii) in
[Kaneko and Zagier 1998] that

(4-7) An(x)=
n∑

i=0

i∑
m=0

(−1)m
(
−1
12

i−m

)(
−5
12

i−m

)(
n+ 1

12
m

)(
n− 7

12
m

)(
2n−1

m

)−1

xn−i .

5. Asymptotics

Wimp [1987, Proof of Theorem 1] showed that the functions un and yn (un and vn

in his notation) defined by

(5-1)
u(α,β)n (x; c)= (−1)n

0(n+β+c+1)
0(n+c+1)

F
(
−n−c, n+α+β+c+1

1+β

∣∣∣∣ x
)
,

y(α,β)n (x; c)= (−1)n
0(n+α+c+1)

0(n+α+β+c+1)
F
(
−n−β−c, n+α+c+1

1−β

∣∣∣∣ x
)
,

satisfy the same recurrence relation satisfied by Rn and Rn , and thus the latter
can be represented as linear combinations of the former. We shall slightly modify
these functions so as to replace the gamma factors by rising factorials (thus getting
rational rather than transcendental coefficients when the parameters are rational) as
follows. Set

(5-2)
U (α,β)

n (x; c)=
0(c+1)

0(β+c+1)
u(α,β)n (x; c),

Y (α,β)n (x; c)=
0(α+β+c+1)
0(α+c+1)

y(α,β)n (x; c).

Thus we have

(5-3)
U (α,β)

n (x; c)= (−1)n
(β+c+1)n
(c+1)n

F
(
−n−c, n+α+β+c+1

1+β

∣∣∣∣ x
)
,

Y (α,β)n (x; c)= (−1)n
(α+c+1)n

(α+β+c+1)n
F
(
−n−β−c, n+α+c+1

1−β

∣∣∣∣ x
)
.

Note that since the factors multiplied by un and yn in (5-2) are independent of n,
Un and Yn satisfy the same recurrence as Rn and Rn . Indeed, after a simple Kummer
transformation, Formula (28) on p. 988 of [Wimp 1987] can be written as

(5-4) Rn =
(β+c)(α+β+c)
β(α+β+2c)

F
(

c, 1−(α+β+c)
1−β

∣∣∣∣ x
)

Un

−
c(α+c)

β(α+β+2c)
F
(
β+c, 1−(α+c)

1+β

∣∣∣∣ x
)

Yn.
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Similarly, Theorem 3.10 of [Ismail and Masson 1991] leads to

(5-5) Rn = F
(

c,−(α+β+c)
−β

∣∣∣∣ x
)

Un

−
c(α+c)
β(β+1)

x F
(

1+β+c, 1−(α+c)
2+β

∣∣∣∣ x
)

Yn.

The following theorem provides the analogous representation for the Atkin polyno-
mials:

Theorem 5.1. Let Un and Yn be as in (5-3), and set

(5-6)
Ũ (α,β)

n (x; c)=
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

U (α,β)
n (x; c),

Ỹ (α,β)n (x; c)=
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

Y (α,β)n (x; c).

Then we have

(5-7) An+1(x)= C(x)Ũ (1/2,−2/3)
n

(
x; 7

12

)
+D(x)Ỹ (1/2,−2/3)

n
(
x; 7

12

)
, n ≥ 0,

with C(x) and D(x) given by

(5-8)

C(x) := −1
60

(
24F

(
−5
12 ,
−5
12

−1
3

∣∣∣∣ x
)
+F

(
−5
12 ,
−5
12

2
3

∣∣∣∣ x
))
,

D(x) := 91
384

x
(

4F
(
−1
12 ,
−1
12

1
3

∣∣∣∣ x
)
−5F

( 11
12 ,
−1
12

4
3

∣∣∣∣ x
))
.

Proof. From (5-4) and (5-5), we see that

(5-9) x R(1/2,−2/3)
n

(
x; 7

12

)
−

5
12 R(1/2,−2/3)

n
(
x; 7

12

)
=

5
12

U (1/2,−2/3)
n

(
x; 7

12

)( (−1
12

)(
−

2
3

) x F
( 7

12 ,
7

12
5
3

∣∣∣∣ x
)
−F

( 7
12 ,
−5
12

2
3

∣∣∣∣ x
))

−xY (1/2,−2/3)
n

(
x; 7

12

)(( 7
12

)( 13
12

)(
−

2
3

) F
(
−1
12 ,
−1
12

1
3

∣∣∣∣ x
)

−
5
12

( 7
12

)(13
12

)(
−

2
3

)(1
3

)F
( 11

12 ,
−1
12

4
3

∣∣∣∣ x
))
.

Expanding the hypergeometric series in powers of x , we get, after some computation,
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(5-10) x R(1/2,−2/3)
n

(
x; 7

12

)
−

5
12 R(1/2,−2/3)

n
(
x; 7

12

)
=
−1
60

(
24F

(
−5
12 ,
−5
12

−1
3

∣∣∣∣ x
)
+F

(
−5
12 ,
−5
12

2
3

∣∣∣∣ x
))

U (1/2,−2/3)
n

(
x;

7
12

)
+

91
384

x
(

4F
(
−1
12 ,
−1
12

1
3

∣∣∣∣ x
)
−5F

( 11
12 ,
−1
12

4
3

∣∣∣∣ x
))

Y (1/2,−2/3)
n

(
x;

7
12

)
,

and the result follows from (3-10). �

Theorem 5.1 enables us to obtain an asymptotic formula for the Atkin polynomials:

Theorem 5.2. Let C(x) and D(x) be as in (5-8). For fixed θ ∈ (0, π/2), the
following asymptotic formula holds as n→∞:

(5-11) An+1(sin2 θ)

∼
(−1)n

22n+1(cos θ)(sin θ)
7
6

C(sin2 θ)
0
( 1

3

)
(sin θ)

2
3

0
( 11

12

)
0
( 17

12

) cos
[

2(n−1)θ+
π

12

]

+D(sin2 θ)
0
( 5

3

)
0
( 13

12

)
0
( 19

12

) cos
[

2(n−1)θ−
7π
12

]
Proof. We start by recalling the following asymptotic formula, due to Watson, [Luke
1969, (8), p. 237] (all of our asymptotic formulas will be as n→∞).

(5-12) F
(

b−n, n+a
d

∣∣∣∣ sin2 θ

)
∼
0(d)n−d+ 1

2
√
π

(cos θ)d−a−b− 1
2

(sin θ)d−
1
2

cos
[

2nθ+(a−b)θ−
π

2

(
d−

1
2

)]
for fixed θ ∈ (0, π). Note that Stirling’s formula can be written as

(5-13) 0(n+a)∼
√

2π nn+a− 1
2 e−n as n→∞,

from which we deduce
0(n+a)
0(n+b)

∼ na−b.

Hence

un(sin2 θ)∼
(−1)n0(1+β)(cos θ)−α−

1
2

√
πn(sin θ)β+

1
2

cos
[

2nθ−(α+β+2c+1)θ−
π

2

(
β+

1
2

)]
,

yn(sin2 θ)∼
(−1)n0(1−β)(cos θ)−α−

1
2

√
πn(sin θ)−β+

1
2

cos
[

2nθ−(α+β+2c+1)θ+
π

2

(
β−

1
2

)]
.
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Also, from (5-13) we get

(5-14)
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

=
0(α+β+2c+1)

0(c+1)0(α+β+c+1)
0(n+c+1)0(n+α+β+c+1)

0(2n+α+β+2c+1)

∼
0(α+β+2c+1)

0(c+1)0(α+β+c+1)
√
πn
( 1

2

)2n+α+β+2c
.

Substituting (α, β, c)=
( 1

2 ,
−2
3 ,

7
12

)
, we see that

(5-15)

Ũn(sin2 θ)∼
(−1)n0

( 1
3

)
(sin θ)1/6

22n+1 cos θ0
(11

12

)
0
( 17

12

) cos
[

2(n−1)θ+
π

12

]
,

Ỹn(sin2 θ)∼
(−1)n0

( 5
3

)
(sin θ)−7/6

22n+1 cos θ0
(13

12

)
0
( 19

12

) cos
[

2(n−1)θ−
7π
12

]
,

and the result follows from (5-7) and (5-8). �

6. Generating functions

We start by recalling a remarkable identity of Flensted-Jensen and Koornwinder
[1973]. The interested reader could also consult [Wimp 1987] for more details on
various other authors who presented variants of this identity as well as other proofs.

Lemma 6.1. Let t, x, a, b, d be complex numbers with x /∈ [1,∞) and

(6-1) |t |<
1

|
√

x+
√

x−1|2
.

Then

(6-2)
∞∑

n=0

(d+a)n(b)n
(a+b+1)n

F
(
−n−a, n+b

d

∣∣∣∣ x
)
(−t)n

n!

=

(
z2−t
z2+t

)a+d( 2
z2−t

)b

F
(
−a, b

d

∣∣∣∣ t+z1

2t

)
F
(

a+d, a+1
a+b+1

∣∣∣∣ 2t
t+z2

)
,

where z1 = 1−
√
(1+t)2−4xt and z2 = 1+

√
(1+t)2−4xt.

To simplify notation we shall write, for t 6= 0,

(6-3)
δ =

t+z1

2t
=
(1+t)−

√
(1+t)2−4xt
2t

,

ε =
t+z2

2t
=
(1+t)+

√
(1+t)2−4xt
2t

.
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We clearly have

(6-4) t (y−δ)(y−ε)= t y2
−(1+t)y+x .

Obviously z2+t = 2tε, and we also have z2−t = 2t (ε−1). Furthermore we have
δε = x/t . Thus we can rewrite (6-2) for x 6= 0 as

(6-5)
∞∑

n=0

(d+a)n(b)n
(a+b+1)n

F
(
−n−a, n+b

d

∣∣∣∣ x
)
(−t)n

n!

=
(x−tδ)a+d−bδb

xa+d F
(
−a, b

d

∣∣∣∣ δ)F
(

a+d, a+1
a+b+1

∣∣∣∣ t
x
δ

)
.

The following proposition provides a generating function for Un and Yn:

Proposition 6.2. Let Un and Yn be as in (5-2). Let t and x be such that x /∈ [1,∞)
is nonzero and |t (

√
x+
√

x−1)2|< 1, and set δ as in (6-3). Then:

∞∑
n=0

(α+β+c+1)n(c+1)n
(α+β+2c+2)n

Un(x)
tn

n!

=
δα+β+c+1

xβ+c+1(x−tδ)α
F
(
−c, α+β+c+1

1+β

∣∣∣∣ δ)F
(
β+c+1, c+1
α+β+2c+2

∣∣∣∣ tδ
x

)
,

(6-6)

∞∑
n=0

(α+β+c+1)n(c+1)n
(α+β+2c+2)n

Yn(x)
tn

n!

=
δα+c+1

xc+1(x−tδ)α
F
(
−β−c, α+c+1

1−β

∣∣∣∣ δ)F
(

c+1, β+c+1
α+β+2c+2

∣∣∣∣ tδ
x

)
.

(6-7)

Proof. From (5-1), we see that

(6-8)
0(c+1)

0(β+c+1)
(α+β+c+1)n(c+1)n
(α+β+2c+2)n

un

=
(c+β+1)n(α+β+c+1)n

(α+β+2c+2)n
F
(
−n−c, n+α+β+c+1

1+β

∣∣∣∣ x
)

and

(6-9)
0(α+β+c+1)
0(α+c+1)

(α+β+c+1)n(c+1)n
(α+β+2c+2)n

yn

=
(c+1)n(α+c+1)n
(α+β+2c+2)n

F
(
−n−β−c, n+α+c+1

1−β

∣∣∣∣ x
)
.

The identities (6-6) and (6-7) follow from applying (6-5) with the choices (a, b, d)=
(c, α+β+c+1, β+1) and (a, b, d)= (β+c, α+c+1, 1−β), respectively. �
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Remark 6.3. The result in Proposition 6.2 is essentially due to Wimp. However,
we take this opportunity to correct a misprint in the statement of Theorem 5 in
[Wimp 1987]: In the first line of page 999, the parameter “γ +c+β” should be
replaced by “γ + c−β” (in our notation, the later is α+ c+1 while the former
would be α+c+1+2β, which indeed doesn’t ever seem to figure in the theory).

We next obtain a generating function identity for the Atkin polynomials scaled
by a rather unexpected appearance of the Catalan numbers. The right-hand side of
the generating series has four summands; each is up to a relatively simple multiple
a product of three hypergeometric functions in the variables x , δ and 1/ε = tδ/x .

Theorem 6.4. Let C(x) and D(x) be as in (5-8), and δ as in (6-3). Furthermore,
let
{
Cn = 1/(n+1)

(2n
n

)}
n denote the sequence of Catalan numbers.

(1) For 0< x < 1 and |t |< 1, we have

(6-10)
∞∑

n=0

Cn+1An+1(x)tn
=

δ17/12

x11/12
√

x−tδ
F
( 11

12 ,
19
12

3

∣∣∣∣ tδ
x

)

×

[
C(x)F

(
−7
12 ,

17
12

1
3

∣∣∣∣ δ)+D(x)
( x
δ

)2/3
F
( 1

12 ,
25
12

5
3

∣∣∣∣ δ)].
(2) For |t |< 1, we have

(6-11)
∞∑

n=0

Cn+1An+1(0)(−t)n = −5
12 F

( 11
12 ,

17
12

3

∣∣∣∣ t
)
,

and consequently for n ≥ 0, we have

(6-12) An+1(0)= (−1)n
(
−5
12

)(11
12

)
n

( 17
12

)
n

(2n+1)!
.

Proof. Note that for 0≤ x < 1, we have

|
√

x+
√

x−1|2 = |
√

x+i
√

1−x |2 = 1,

so (6-1) indeed translates into |t |< 1. Now, using (5-6), we see that

(6-13)
(α+β+c+1)n(c+1)n
(α+β+2c+2)n

Un =
(α+β+2c+1)2n

(α+β+2c+2)n
Ũn

= (α+β+2c+1)
(α+β+2c+1+n)n
(α+β+2c+1+n)

Ũn,

with a similar identity for Yn , and (6-10) now follows from (5-7) and Proposition 6.2
by substituting (α, β, c)=

( 1
2 ,
−2
3 ,

7
12

)
.

When x = 0 and |t |< 1, then, in the notation of (6-2), we have t+z1 = 0 and
z2+ t = 2(1+ t), and hence z2− t = 2. Furthermore, we have C(0) = −5

12 and
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D(0)= 0. It thus follows from (6-2) and (5-7) that

(6-14) 2
∞∑

n=0

(2n+1
n

)
An+1(0)

tn

2+n
=

−5
12(1+t)11/12 F

( 11
12 ,

19
12

3

∣∣∣∣ t
1+t

)
.

Replacing t with (−t) and applying the Pfaff–Kummer transformation [Erdélyi
et al. 1953, Formula (2) on p. 105], we obtain (6-11), from which (6-12) follows by
comparing coefficients and simplifying. �

Remark 6.5. Formula (6-12) can also be obtained directly from the defining recur-
sion of the Atkin polynomials, as in Proposition 6 of [Kaneko and Zagier 1998]. In
that same proposition, and again using only the defining recurrence (1-1), Kaneko
and Zagier also obtain a formula equivalent to

(6-15) An+1(1)=
7
12

( 11
12

)
n

( 19
12

)
n

(2n+1)!
.

Taking a hint from (6-11), it is straightforward to prove directly from (6-15) that
for |t |< 1, we have

(6-16)
∞∑

n=0

Cn+1An+1(1)tn
=

7
12

F
( 11

12 ,
19
12

3

∣∣∣∣ t
)
.

Alternatively, one can prove (6-16) in a manner similar to (6-11), bearing in mind
that we have C(1)= D(1)= 0, whereas Ũ (1/2,−2/3)

n
(
x; 7

12

)
and Ṽ (1/2,−2/3)

n
(
x; 7

12

)
have simple poles at x = 1, and thus their product is to be interpreted in the limit
x→ 1− as the derivative of the former multiplied by the residue of the latter.

7. The weight function for the Atkin polynomials

Kaneko and Zagier [1998] gave the weight function for the Atkin polynomials
An( j) on [0, 1728] as

(7-1) w( j)=
6
π
θ ′( j),

where θ : [0, 1728]→ [π/3, π/2] is the inverse of the monotone increasing function
θ 7→ j (eiθ ), where j (τ ) is the usual modular j -invariant from the theory of modular
forms. In this section we derive an explicit description of the weight function in
terms of hypergeometric series. Formula (25) on p. 20 of [Erdélyi et al. 1953] states
that an inverse for the scaled j-invariant given by

J (z)=
j (z)

1728
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is obtainable by the formula

(7-2) z = e2π i/3 F−λeiπ/3 J 1/3 F∗

F−λe−iπ/3 J 1/3 F∗
,

where

(7-3)

F(J )= 2 F1

( 1
12 ,

1
12

2
3

∣∣∣∣ J
)
,

F∗(J )= 2 F1

( 5
12 ,

5
12

4
3

∣∣∣∣ J
)
,

λ=
0
( 2

3

)
0
( 5

12

)
0
( 11

12

)
0
( 4

3

)
0
( 1

12

)
0
( 7

12

) = (2−√3)
0
( 2

3

)
02
( 11

12

)
0
( 4

3

)
02
( 7

12

) .
We must note that this is one inverse of many as J is invariant under modular
transformations. This particular formula gives, easily, that z(0)= e2π i/3. In order
to use the same intervals as in [Kaneko and Zagier 1998], we consider another
inverse, corresponding to applying z 7→ −1/z, thus obtaining

(7-4) z(J )= eπ i/3 F−λe−iπ/3 J 1/3 F∗

F−λeiπ/3 J 1/3 F∗
.

It is straightforward to verify that using (7-4), we get z(0)= eπ i/3 and z(1)= eπ i/2.
For 0≤ J ≤ 1, F and F∗ are computed in terms of the converging hypergeometric
series and hence are real. Thus in the ratio

F(J )−λe−iπ/3 J 1/3 F∗(J )
F(J )−λeiπ/3 J 1/3 F∗(J )

the denominator is the complex conjugate of the numerator. Hence the ratio has
absolute value equal to 1, and is of the form eiρ . We will show below that 0≤ρ≤π/6.
Thus an explicit description of the function θ( j) : [0, 1728] → [π/3, π/2] is given
by θ( j)= φ( j/1728), where φ(J ) : [0, 1] → [π/3, π/2] is defined by

φ(J )=
π

3
−i log

(
F(J )−λe−iπ/3 J 1/3 F∗(J )
F(J )−λeiπ/3 J 1/3 F∗(J )

)
=
π

3
+ρ(J ),

and we have

(7-5) φ′(J )=−i
F(J )−λeiπ/3 J 1/3 F∗(J )

F(J )−λe−iπ/3 J 1/3 F∗(J )

(
F(J )−λe−iπ/3 J 1/3 F∗(J )
F(J )−λeiπ/3 J 1/3 F∗(J )

)′
=−i

W (J )
|F(J )−λe−iπ/3 J 1/3 F∗(J )|2

,

where W (J ) is given explicitly by
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(7-6) W (J )

=
(
F(J )−λeiπ/3J 1/3 F∗(J )

)(
F ′(J )−λe−iπ/3J 1/3(F∗)′(J )− λ

3 e−iπ/3J−2/3 F∗(J )
)

−
(
F(J )−λe−iπ/3J 1/3 F∗(J )

)(
F ′(J )−λeiπ/3J 1/3(F∗)′(J )− λ

3 eiπ/3J−2/3 F∗(J )
)

=
λ
3 J−2/3i

√
3
(
F(J )F∗(J )+3J F(J )(F∗)′(J )−3J F ′(J )F∗(J )

)
.

We also note that W is the Wronskian of two linearly independent solutions for the
equation

z(1−z)
d2u
dz2 +(c−(1+a+b)z)

du
dz
−abu = 0,

where here a = b = 1
12 and c = 2

3 . It follows that W itself satisfies the equation

(7-7) z(1−z)
dW
dz
= ((a+b+1)z−c)W.

On the open interval (0, 1), (7-7) has solution

(7-8) W (J )= B J−2/3(1− J )−1/2.

To determine the constant B we compare the coefficient of J−2/3 in (7-8) and (7-6)
to get

B =
iλ
√

3
.

Hence

(7-9) φ′(J )=
λ
√

3

J−2/3(1− J )−1/2

|F(J )−λe−iπ/3 J 1/3 F∗(J )|2
.

The fact that the derivative is positive for 0≤ J ≤1 implies that φ(J ) is monotone in-
creasing, and hence that it is bounded between φ(0) and φ(1), as we claimed above.

Note that

(7-10) w( j)=
6
π
θ ′( j)=

6
1728π

φ′
(

j
1728

)
=

6λ

1728π
√

3

12(122 j−2/3)((1728− j)−1/2123/2)∣∣12F
( j

1728

)
−λe−iπ/3 j1/3 F∗

( j
1728

)∣∣2 .
We have thus proved the following theorem:

Theorem 7.1. Let λ be as in (7-3). Then the normalized weight function for the
Atkin polynomials An( j) on the interval [0, 1728] is given by

(7-11) w( j)=
144λ
π

j−2/3(1728− j)−1/2∣∣∣∣12F
( 1

12 ,
1

12
2
3

∣∣∣∣ j
1728

)
−λe−iπ/3 j1/3 F

( 5
12 ,

5
12

4
3

∣∣∣∣ j
1728

)∣∣∣∣2
.
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EVOLVING CONVEX CURVES TO CONSTANT-WIDTH ONES
BY A PERIMETER-PRESERVING FLOW

LAIYUAN GAO AND SHENGLIANG PAN

This paper deals with a curve evolution problem which, if the curvature
of the initial convex curve satisfies a certain pinching condition, keeps the
convexity and preserves the perimeter, while increasing the enclosed area of
the evolving curve, and which leads to a limiting curve of constant width.
In particular, under this flow the limiting curve is a circle if and only if the
initial convex curve is centrosymmetric.

1. Introduction

Denote by S1 the unit circle centered at the origin of the Euclidean plane R2.
Let X0.'/, ' 2 S1, be a closed C1 curve in the plane. A curve evolution problem
is usually defined as�

.@X=@t/.'; t/D ˇ.'; t/N.'; t/; .'; t/ 2 S1 � .0; T /;

X.'; 0/DX0.'/; ' 2 S1;

where X.'; t/ D .x.'; t/; y.'; t// is the position vector of the evolving curve,
N.'; t/ its unit normal vector field and ˇ.'; t/ some geometric quantity depending
on the evolving curve. Such problems arise in many fields, such as image processing
[Cao 2003], phase transitions [Gurtin 1993], etc. In fact, the above evolution problem
has been studied extensively, for example, for the popular curve-shortening flow
[Gage 1984; Gage and Hamilton 1986; Grayson 1987], the area-preserving flows
[Gage 1986; Mao et al. 2013; Ma and Cheng 2014], the perimeter-preserving flows
[Pan and Yang 2008; Ma and Zhu 2012] and in other related research [Angenent
1991; Chow and Tsai 1996; Andrews 1998; Urbas 1999; Chao et al. 2013]. One
can find more background material in the book [Chou and Zhu 2001].

Let � be the tangential angle, i.e., the oriented angle from the positive x-axis to
the unit tangential vector of the curve. If the initial curve X0 is strictly convex then
it can be parameterized by � . In this paper, we will focus on the following curve
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evolution problem in the plane R2:

(1-1)
�
.@X=@t/.�; t/D .w.�; t/� �.�; t//N.�; t/; .�; t/ 2 S1 � .0; T /;

X.�; 0/DX0.�/; � 2 S1;

where w.�; t/ is the width of the evolving curve and �.�; t/ is �.�; t/C�.�C�; t/;
here �.�; t/ is the radius of curvature of the curve. Using the Minkowski support
function of a convex curve (see [Hsiung 1981; Schneider 1993; Groemer 1996]),
one can easily see that w.�; t/��.�; t/D�.@2w=@�2/.�; t/, and thus it is obvious
that constant-width curves are invariant (i.e., stable) under this flow.

The following theorem is the main result of our paper.

Main Theorem. LetX0.�/ be a strictly convex smooth curve in the plane R2 which
evolves according to the flow (1-1). Denote by �0.�/ the radius of curvature of
X0.�/ and set

M Dmaxf�0.�/ j � 2 S1g; mDminf�0.�/ j � 2 S1g:

If the pinching condition

(1-2) M < 3m

holds for X0.�/, i.e., 1
3
< m=M � 1, then (1-1) has a global solution X.�; t/ for

.�; t/ 2 S1 � Œ0;1/. As time passes, the flow keeps the convexity, preserves the
perimeter while increasing the enclosed area of the evolving curve, and makes
the curve more and more circular. As the time t goes to infinity, the curve X. � ; t /
evolves smoothly to a curve of constant width L0=� , where L0 is the perimeter of
the initial convex curve X0.�/. In particular, the limiting curve is a circle if and
only if the initial curve is centrosymmetric.

If a smooth simple closed curve evolves under the curve shortening flow then
it converges to a round point (see [Gage 1984; Gage and Hamilton 1986; Grayson
1987]). In the cases of nonlocal flows for convex curves, the limiting curves are finite
circles (see [Gage 1986; Jiang and Pan 2008; Pan and Zhang 2010; Ma and Cheng
2014]). Forming a striking contrast to these researches, although in the present case
the evolving curve keeps its convexity and becomes more and more circular, the
limiting curve of the flow is only of constant width rather than being a circle.

This paper is organized as follows. In Section 2, we will compute the evolution
equations of the commonly used geometric quantities, and reduce the nonlinear
problem (1-1) to the Cauchy problem

(1-3)

8̂̂̂<̂
ˆ̂:
.@�=@t/.�; t/D .@2�=@�2/.�; t/;

.@�=@t/.�; t/D 2.@2�=@�2/.�; t/;

�.�; 0/D �0.�/;

�.�; 0/D �0.�/;
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where � is the tangential angle and .�; t/ is in S1�Œ0; T /. In Section 3, we will show
that the Cauchy problem (1-3) has a bounded positive solution in S1 � Œ0;C1/,
provided that condition (1-2) holds. We will prove that the evolving curve maintains
its convexity and is of the same length as the initial convex curve. As time tends
to infinity, the asymptotic behavior of the evolving curve will be considered. In
Section 4 we will give several examples.

2. Some preparations

In this section, we will first calculate the evolution equations of the commonly used
geometric quantities, and then give the equivalence between the curve evolution
problem (1-1) and the Cauchy problem (1-3). Now, we suppose that there exists a
family of convex curves X.'; t/ evolving according to (1-1).

To make the tangential angle � a variable independent of time t , let us consider
the following flow instead of (1-1):

(2-1)
�
.@ zX=@t/.�; t/D ˛.�; t/T .�; t/C .w.�; t/� �.�; t//N.�; t/;

zX.�; 0/DX0.�/;

where ˛ D ˛.�; t/ is to be determined. Set ˇ.�; t/D w.�; t/� �.�; t/. By [Chou
and Zhu 2001, Proposition 1.1, p. 6], the solution of (2-1), zX. � ; t /, differs from
the solution of (1-1), X. � ; t /, only by altering the parametrization. Therefore, we
just need to calculate the evolution equations of � and � under the flow (2-1).

Let s be the arc length of the curve zX. � ; t /. The metric of the curve is given by
g.'; t/D k@ zX=@'k. From the Frenet formulae it follows that

@g

@t
D
1

g

�
@

@t

@ zX

@'
;
@ zX
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�
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@N

@t
D

�
@N

@t
; T

�
T C

�
@N

@t
;N

�
N D�

�
N;
@T

@t

�
T C 0D�

�
˛�C

@ˇ

@s

�
T:

Since the Frenet frame can be expressed via the tangential � as T D .cos �; sin �/,
N D .� sin �; cos �/, one can obtain the Frenet formulae

(2-2)
@T

@�
DN;

@N

@�
D�T:

The definition of curvature � implies that @�=@s D � or @s=@� D �. Noticing that�
˛�C

@ˇ

@s

�
N D

@T

@t
D
@

@t
.cos �; sin �/D .� sin �; cos �/

@�

@t
D
@�

@t
N;

one obtains that

(2-3)
@�

@t
D ˛�C

@ˇ

@s
:

From (2-3), if we set ˛D�.1=�/.@ˇ=@s/D�@ˇ=@� , then the tangential angle �
is independent of t and so are T and N . The evolution equation of the Minkowski
support function p of the evolving curve is given by

@p

@t
D�

@

@t
hX;N i D �

�
@X

@t
;N

�
C 0D�ˇ D ��w:

Since

(2-4)

@p

@�
D�

�
@X

@�
;N

�
�

�
X;
@N

@�

�
D hX; T i;

@2p

@�2
D

@

@�
hX; T i D

�
@X

@s

@s

@�
; T

�
ChX;N i D ��p;

one gets

�D
@2p

@�2
Cp

and
�.�; t/D �.�; t/C �.� C�; t/

D p.�; t/C
@2p

@�2
.�; t/Cp.� C�; t/C

@2p

@�2
.� C�; t/

D
@2w

@�2
.�; t/Cw.�; t/:

From the evolution equation of the support function p and from the definition of
width, w.�; t/ WD p.�; t/Cp.� C�; t/, we have

@w

@t
D 2�� 2w D 2

@2w

@�2
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and

(2-5)
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D
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�
�.�; t/C �.� C�; t/

�
D 2

@2�

@�2
:

Now, we can conclude that if there is a family of convex curves X. � ; t / evolving
according to the flow (2-1), then the Cauchy problem (1-3) is solvable for some
T > 0. The following theorem can tell us that the contrary also holds.

Theorem 2.1. The curve evolution problem (1-1) is equivalent to the Cauchy prob-
lem (1-3) for some T >0, if the initial curveX.'; 0/DX0.'/ is smooth and strictly
convex.

Proof. We just need to prove that if the Cauchy problem (1-3) has a solution �.�; t/
for some T > 0 then the evolution problem (2-1) is solvable for .�; t/ 2 S1� Œ0; T /.
Define a family of curves zX.�; t/D . Qx.�; t/; Qy.�; t//C .C1.t/; C2.t// by setting

Qx.�; t/D

Z �

0

�.�; t/ cos� d�; Qy.�; t/D

Z �

0

�.�; t/ sin� d�:

C1.t/D

Z t

0

�@�
@�
.0; �/�

@w

@�
.0; �/

�
d�; C2.t/D

Z t

0

.w.0; �/� �.0; �// d�:

Direct computation gives us
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0
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D
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Z �

0

�
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�
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�
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�
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@�
.0; t/�

@w

@�
.0; t/

�
C .��w/ sin �:

And similarly, one can get

@ Qy

@t
D

�
@�

@�
�
@w

@�

�
sin � C .�.0; t/�w.0; t//C .w� �/ cos �:
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So the curve zX.�; t/ satisfies

@ zX

@t
D�

@

@�
.w� �/T C .w� �/N;

where fT;N g is the Frenet frame of the curve zX , which implies that the flow (2-1)
has a solution since we have chosen ˛ D �.1=�/.@ˇ=@s/ D �@ˇ=@� . Therefore
the original problem (1-2) is also solvable on S1 � Œ0; T /. �

3. Global existence and convergence of the flow

Because we can reduce the curve evolution problem (1-1) to a Cauchy problem
(1-3) for small t , the local existence of the flow (1-1) is a direct corollary of the
classical theory of heat equations. In this section, we will first prove that problem
(1-1) has a unique, convex and smooth solution curve X.'; t/ on S1 � Œ0;C1/;
i.e., the Cauchy problem (1-3) has a positive and smooth solution .�. � ; t /; �. � ; t //
for t � 0, provided that the pinching condition (1-2) holds for the initial curve. Then
we will show that the curve X. � ; t / evolves to a constant-width curve smoothly.

Lemma 3.1. The Cauchy problem (1-3) has a global solution �. � ; t / for t � 0. If
the pinching condition (1-2) holds, then there exist two positive constants C1 and
C2 such that

(3-1) C1 � �.�; t/� C2

for .�; t/ 2 S1 � Œ0;C1/.

Proof. The local and global existence of solutions for the Cauchy problem (1-3)
is a direct corollary of the classical theory for heat equations. Suppose (1-3)
has a positive solution �.�; t/ on S1 � Œ0; T / for some T > 0. Since @�=@t D
2@2�=@�2 and �.�; 0/D �0.�/ is a positive smooth function, we know that �.�; t/
is defined on S1� Œ0;C1/ and is smooth. Furthermore, by the maximum principle,
n� �.�; t/�N , where n WDminf�0.�/ j � 2 S1g, N WDmaxf�0.�/ j � 2 S1g. By
the evolution equation of � and Writinger’s inequality, we have

d
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d� D�4

Z 2�

0

�
@kC1�

@�kC1
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d� � �16
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�
@k�

@�k
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where k is a positive integer. And thusZ 2�

0

�
@k�

@�k

�2
d� �

�Z 2�

0

�
@k�0

@�k

�2
d�

�
e�16t :

Hence, by Sobolev’s inequality, one gets

(3-2) max
�2Œ0;2��

ˇ̌̌̌
@k�

@�k

ˇ̌̌̌
� C.k/e�8t ;
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where

C.k/D
1
p
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�Z 2�
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�
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C
p
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�Z 2�
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�1
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:

Notice that @�=@t D @2�=@�2 � C.2/e�8t ; i.e.,

�.�; t/� �0.�/CC.2/
1
8
.1� e�8t /�M C 1

8
C.2/;

where M Dmaxf�0.�/ j � 2 S1g. Letting C2 DM C 1
8
C.2/ gives us

(3-3) �.�; t/� C2:

From (1-3), we get @�=@t D @2�=@�2 D 1
2
@�=@t , which yields

(3-4) �D �0C
1
2
.�� �0/:

By the maximum principle, we know that �.�; t/ � minf�0.�/ j � 2 S1g > 0. If
�0.�/ attains its minimum n at �n, then one has

�.�; t/D �0.�/C
1
2
.�.�; t/� �0.�//

� �0.�/C
1
2
.n� �0.�/� �0.� C�//

D
1
2

�
�0.�/C �0.�n/C �0.�nC�/� �0.� C�/

�
�
1
2
.3m�M/ > 0:

Namely, there exists a positive constant C1 D 1
2
.3m�M/ such that

(3-5) �.�; t/� C1:

Combining (3-3) and (3-5), we complete the proof of (3-1). �

Corollary 3.2. If the pinching condition (1-2) holds for the strictly convex initial
curve X0.'/, then the problem (1-1) has a unique global solution X.'; t/ on
S1 � Œ0;C1/ and X. � ; t / is a strictly convex curve for all t > 0.

Lemma 3.3. Under the condition of Corollary 3.2, the convex evolving curve
converges to a constant-width curve smoothly.

Proof. By the evolution equation of w and the closing condition of the evolving
curve, we have almost the same estimate for w as that for �:

(3-6) max
�2Œ0;2��

ˇ̌̌̌
@kw

@�k

ˇ̌̌̌
� C.X0; k/e

�8t ;

where C.X0; k/ is a positive constant depending only on the initial data X0 and k.
By the Arzelà–Ascoli theorem, there exists a subsequence fw.�; ti /g convergent
as ti goes to infinity. Since limt!1 j@w=@� j D 0, limti!1w.�; ti / equals some
constant.
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Noticing that
R 2�
0 w.�; t/ d� D 2L0, we obtain that limti!1w.�; ti /D L0=� .

Since this equality holds for any convergent subsequence of fw.�; t/g, we can claim
that fw.�; t/g is convergent:

(3-7) lim
t!1

w.�; t/D
L0

�
:

Similarly, we also have

(3-8) lim
t!1

�.�; t/D
L0

�
:

From (3-4) it follows that

(3-9) lim
t!1

�.�; t/D
L0

2�
C
1

2
.�0.�/� �0.� C�//:

Since M < 3m (condition (1-2)), one gets

(3-10) lim
t!1

�.�; t/�mC 1
2
.m�M/ > 0:

By (3-6) and (3-10), the limit of the evolving curve is convex and is of constant
width. By (3-4) and (3-9), we have

�.�; t/� lim
t!1

�.�; t/D
1

2

�
�.�; t/�

L0

�

�
:

Thus that the evolving curve converges smoothly is a corollary of (3-2). �

Lemma 3.4. Under the condition of Corollary 3.2, the flow (1-1) keeps the perime-
ter of the evolving curve X and increases the enclosed area.

Proof. LetL.t/ be the perimeter of the evolving curveX. � ; t / andA.t/ the enclosed
area. The variational formulae of L.t/ and A.t/ in [Gage 1986] give us

(3-11)
dL

dt
D�

Z L

0

ˇ� ds;
dA

dt
D�

Z L

0

ˇ ds:

Under the flow (1-1), the perimeter evolves according to

(3-12)
dL

dt
D�

Z 2�

0

.w.�; t/� �.�; t// d� D

Z 2�

0

@2w

@�2
.�; t/ d� D 0;
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which implies that the flow (1-1) keeps the perimeter of the evolving curve. By
Gage’s variational formulae (3-11), the enclosed area evolves according to

dA

dt
D�

Z 2�

0

.w.�; t/� �.�; t//�.�; t/ d� D

Z 2�

0

@2w

@�2
.�; t/�.�; t/ d�

D

Z �

0
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@�2
.�; t/�.�; t/ d� C

Z 2�

�
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@�2
.�; t/�.�; t/ d�

D

Z �

0

@2w

@�2
.�; t/�.�; t/ d� C

Z �

0

@2w

@�2
.�C�; t/�.�C�; t/ d�

D

Z �

0

@2w

@�2
.�; t/.�.�; t/C �.� C�; t// d�

D

Z �

0

@2w

@�2
.�; t/

�
@2w

@�2
.�; t/Cw.�; t/

�
d�

D

Z �

0

�
@2w

@�2
.�; t/

�2
d� �

Z �

0

�
@w

@�
.�; t/

�2
d�;

where the fact that w.�; t/ is a periodic function with period � with respect to �
is used. Now, the Wirtinger inequality implies dA=dt � 0. Namely, flow (1-1)
increases the area enclosed by the evolving curve. �

From the previous lemma, it follows that

d

dt
.L2� 4�A/� 0;

which tells us that the isoperimetric deficit of the evolving curve is decreasing and
thus the curve becomes more and more circular during the evolution process.

Generally speaking, the pinching condition (1-2) can not be omitted, because we
have a lot of convex curves such that the right-hand side of (3-9) is negative for
some � . However, an example in the next section shows that the pinching inequality
(1-2) is just a sufficient condition to guarantee the global existence of convex curve
X. � ; t /. We do not know how to weaken this condition.

Next, we will follow the idea from [Lin and Tsai 2009] to study the geometric
behavior of the flow (1-1) (using Fourier series). Now suppose that (1-1) has a
global solution on S1 � Œ0;C1/ and that each evolving curve is strictly convex.

The Fourier expansion of the support function p.�; t/ of the evolving curve can
be written as

p.�; t/D
L0

2�
C

1X
kD1

Œak.t/ cos.k�/C bk.t/ sin.k�/�;
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where � is the tangential angle. By the definitions of width and radius of curvature,
we have

�.�; t/D
@2p

@�2
.�; t/Cp.�; t/D

L0

2�
C

1X
kD1

Œak.t/ cos.k�/Cbk.t/ sin.k�/�.1�k2/;

w.�; t/D p.�; t/Cp.�C�; t/D
L0

�
C2

1X
kD1

Œa2k.t/ cos.2k�/Cb2k.t/ sin.2k�/�:

Since @w=@t D 2.@2w=@�2/, we have, by comparing the coefficients of both sides,

(3-13) w.�; t/D
L0

�
C 2

1X
kD1

Œa2k.0/ cos.2k�/C b2k.0/ sin.2k�/�e�8k
2t :

Therefore,

�.�; t/D
@2w

@�2
.�; t/Cw.�; t/

D
L0

�
C 2

1X
kD1

Œa2k.0/ cos.2k�/C b2k.0/ sin.2k�/�.1� 4k2/e�8k
2t ;

and thus

�.�; t/D
L0

2�
C

1X
kD1

Œa2k�1.0/ cos..2k�1/�/Cb2k�1.0/ sin..2k�1/�/�.4k�4k2/

C

1X
kD1

Œa2k.0/ cos.2k�/C b2k.0/ sin.2k�/�.1� 4k2/e�8k
2t :

As we know, @p=@t D ��w D @2w=@�2 D 1
2
.@w=@t/. Integrating this yields

(3-14) p.�; t/D
L0

2�
C

1X
kD1

Œa2k�1.0/ cos..2k�1/�/Cb2k�1.0/ sin..2k�1/�/�

C

1X
kD1

Œa2k.0/ cos.2k�/C b2k.0/ sin.2k�/�e�8k
2t :

The formula above is useful because we can use (2-4) and the definition of the
support function to draw the graph of the evolving curve X D .x; y/ according to
the following parametrization of convex curves (see [Green and Osher 1999]):

X D hX; T iT ChX;N iN D
@p

@�
T �pN

D

�
p sin � C

@p

@�
cos �; �p cos � C

@p

@�
sin �

�
:
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At the end of this section, we prove the last part of the Main Theorem.

Lemma 3.5. If the initial curve X0 is centrosymmetric, then the flow (1-1) has a
global solution on S1 � Œ0;1/ and the limiting curve is a circle, and vice versa.

Proof. If the initial curve X0 is centrosymmetric and the symmetric center is the
origin of the plane, then the support function and the radius of curvature of X0
satisfy

p0.�/D p0.� C�/; �0.�/D �0.� C�/:

By the evolution equations of � and � (see (2-5)), @=@t
�
�.�; t/� 1

2
�.�; t/

�
D 0:

Thus we get

�.�; t/� 1
2
�.�; t/D �0.�/�

1
2
�0.�/D �0.�/�

1
2

�
�0.�/C �0.� C�/

�
D 0:

The maximum principle tells us that 0 < 1
2
n� �.�; t/� 1

2
N (n;N are defined in

the proof of Lemma 3.1). Since 1
2
�.�; t/ converges to L0=2� , �.�; t/ also tends to

L0=2� as t !1. Therefore, the limiting curve is a circle.
If the flow (1-1) has a global solution on S1 � Œ0;1/ and the limiting curve is a

circle, then (3-14) implies that a2k�1.0/Db2k�1.0/D0 for kD1; 2; : : : . Therefore

p0.�/D p0.� C�/:

Namely, X0 is centrosymmetric with respect to the origin. �

Now, combining Corollary 3.2 and Lemmas 3.3–3.5, we complete the proof of
the Main Theorem.

4. Examples

In this section, we will illustrate several examples. We have said that the pinching
condition (1-2) cannot be omitted in the Main Theorem. In the following, a convex
curve is given to show that (3-9) is negative for some � . Define a function on S1 by

p0.�/D 10� cos.2�/C cos.3�/C 1
8

cos.5�/ for � 2 Œ0; 2��:

We can construct a closed curve X0.�/D .x.�/; y.�// by setting

x D p0 sin � C
dp0

d�
cos �; y D�p0 cos � C

dp0

d�
sin �:

The support function of X0.�/ is p0.�/, and we claim that X0 is convex, since we
can find that the minimum of the radius of curvature

�0.�/D
d2p0

d�2
Cp0 D 10C 3 cos.2�/� 8 cos.3�/� 3 cos.5�/
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Figure 1. �0.�/.

0 1 2 3 4 5 6 7
−5
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rh
o
2

Figure 2. �1.�/.

is 1:4409 : : : , with the help of Matlab 7.8.0. However, the minimum of

�1.�/ WD
L0

2�
C
1

2
.�0.�/� �0.� C�//D 10� 8 cos.3�/� 3 cos.5�/

is �1. Figures 1 and 2 are the images of functions �0.�/ and �1.�/, respectively.
A part of the “limiting curve” is given in Figure 3, in which singularities and
self-intersections may occur near x D 0.

If we set the support function of a convex curve X0 to be

p0.�/D 19C 2 cos.2�/C cos.3�/; for � 2 Œ0; 2��;

then the radius of curvature is

�0.�/D 19� 6 cos.2�/� 8 cos.3�/;
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Figure 3. A portion of the limiting curve, with singularities and
self-intersection near x D 0.
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Figure 4. Convergence to a curve of constant width 38.

with minimum equal to 5 and maximum equal to 30:6366 : : : , again using Matlab.
Although this convex curve does not satisfy the pinching condition of the Main The-
orem, numerical experiment shows that, under the flow (1-1), it keeps its convexity
(�min.t/� 5, for every t 2 Œ0;1/) and converges to a curve of constant width 38.
Figure 4 describes the evolution process.

Our last example is a centrosymmetric convex curve X0 with support function

p0.�/D 15C 3 cos.2�/; for � 2 Œ0; 2��:

If X0 evolves according to the flow (1-1) then the family of evolving curves con-
verges to a circle. The evolution process is demonstrated in Figure 5.
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Figure 5. Convergence to a circle.
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HILBERT SERIES OF CERTAIN JET SCHEMES
OF DETERMINANTAL VARIETIES

SUDHIR R. GHORPADE, BOYAN JONOV AND B. A. SETHURAMAN

We consider the affine variety Zm,n
2,2 of first-order jets over Zm,n

2 , where Zm,n
2

is the classical determinantal variety given by the vanishing of all 2 × 2
minors of a generic m×n matrix. When 2 < m≤ n, this jet scheme Zm,n

2,2 has
two irreducible components: a trivial component, isomorphic to an affine
space, and a nontrivial component that is the closure of the jets supported
over the smooth locus of Zm,n

2 . This second component is referred to as the
principal component of Zm,n

2,2 ; it is, in fact, a cone and can also be regarded as
a projective subvariety of P2mn−1. We prove that the degree of the principal
component of Zm,n

2,2 is the square of the degree of Zm,n
2 and, more generally,

the Hilbert series of the principal component of Zm,n
2,2 is the square of the

Hilbert series of Zm,n
2 . As an application, we compute the a-invariant of

the principal component of Zm,n
2,2 and show that the principal component of

Zm,n
2,2 is Gorenstein if and only if m = n.

1. Introduction

Let F be an algebraically closed field and m, n, r be integers with 1≤ r ≤ m ≤ n.
Let Zm,n

r denote the affine variety in Amn
F defined by the vanishing of all r × r

minors of an m × n matrix whose entries are independent indeterminates over F.
Equivalently Zm,n

r is the locus of m × n matrices over F of rank < r . This is a
classical and well-studied object and a number of its properties are known. For
example, we know that Zm,n

r is irreducible, rational, arithmetically Cohen–Macaulay
and projectively normal. Moreover the multiplicity of Zm,n

r (at its vertex, since Zm,n
r

is evidently a cone) or, equivalently, the degree of the corresponding projective
subvariety of Pmn−1

F is given by the following elegant formula (see [Abhyankar 1988,
Remarks 20.18 and 20.19] or [Ghorpade 1994, Corollary 6.2]; see also [Herzog
and Trung 1992] for an alternative proof and [Arbarello et al. 1985, Chapter 2, §4]
or [Ghorpade and Krattenthaler 2004, p. 352] for an alternative approach and a
different formula):

MSC2010: primary 14M12; secondary 05E40.
Keywords: jet schemes, Hilbert series, determinantal varieties.
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(1) e(Zm,n
r )= det

1≤i, j≤r−1

((m+n−i− j
m−i

))
.

More generally, the Hilbert series of Zm,n
r (or, more precisely, of the corresponding

projective subvariety of Pmn−1
F ) is also known and is explicitly given by

(2)

∑
k≥0 hk tk

(1− t)d
,

where d = (r − 1)(m+ n− r + 1) is the dimension of Zm,n
r (as an affine variety),

and the coefficients hk are given by sums of binomial determinants as follows:

hk =
∑

k1+···+kr−1=k

det
1≤i, j≤r−1

((m−i
ki

)( n− j
ki+i− j

))
.

For a proof of this formula, we refer to [Ghorpade 1996] (see also [Galligo 1985]
and [Conca and Herzog 1994]). Using this, or otherwise (see [Svanes 1974]), it
can be shown that Zm,n

r is Gorenstein if and only if m = n. Moreover one can also
show that the a-invariant of the (homogeneous) coordinate ring of Zm,n

r (which,
by definition, is the least degree of a generator of its graded canonical module) is
n(1− r); see, e.g., [Gräbe 1988] or [Ghorpade 1996, Theorem 4].

We now turn to jet schemes, which have been of much recent interest due in large
part to Nash’s suggestion [1995] that jet schemes should give information about
singularities of the base; see, e.g., [Mustaţă 2001; 2002; Ein and Mustaţă 2009].
If Z is a scheme of finite type over F and k a positive integer, then a (k − 1)-jet
on Z is a morphism Spec F[t]/(tk)→ Z. The set of (k − 1)-jets on Z forms a
scheme of finite type over F, denoted Jk−1(Z) and called the (k− 1)-th jet scheme
of Z. A little more concretely, suppose Z is the affine scheme Spec S/I defined
by the ideal I = 〈 f1, . . . , fs〉 in the polynomial ring S = F[X1, . . . , X N ]. Consider
independent indeterminates t and X (`)

i (i = 1, . . . , N and `= 0, . . . , k− 1) over F

and the corresponding polynomial ring S(k) in the Nk variables X (`)
i . For each

j = 1, . . . , s, the polynomial

f j
(
X (0)

1 + t X (1)
1 + · · ·+ tk−1 X (k−1)

1 , . . . , X (0)
N + t X (1)

N + · · ·+ tk−1 X (k−1)
N

)
is of the form

f (0)j + t f (1)j + · · ·+ tk−1 f (k−1)
j modulo 〈tk

〉

for unique f (`)j ∈ S(k) (0≤ ` < k). Then Jk−1(Z) is the affine scheme Spec S(k)/I ′,
where I ′ is the ideal generated by all f (`)j , 1 ≤ j ≤ s, 0 ≤ ` < k, (Often in the
literature, authors conflate the algebraic set in ANk consisting of the zeros of the
polynomials f (`)j with Jk−1(Z) itself. This is generally harmless, especially when
considering topological properties such as components, since the points of this



HILBERT SERIES OF CERTAIN JET SCHEMES OF DETERMINANTAL VARIETIES 149

algebraic set correspond bijectively with the set of closed points of Jk−1(Z) as F is
algebraically closed, and the set of closed points of an affine scheme is dense in the
scheme. See [Liu 2002, Chapter 2, Remark 3.49], for instance.)

When Z is smooth of dimension d , the jet scheme Jk−1(Z) is known to be smooth
of dimension kd. In general, Jk−1(Z) can have multiple irreducible components,
and these include a principal component that corresponds to the closure of the set
of jets supported over the smooth points of the base scheme Z. These components
are usually quite complicated and interesting. In fact, very little seems to be known
about the structure of these components and their numerical invariants such as mul-
tiplicities. For example, even when Z is a monomial scheme such as the one given
by X1 X2 · · · Xe = 0, where e≤ N , determining the irreducible components and the
multiplicity of Jk−1(Z) appears to require some effort; see, e.g., [Goward and Smith
2006] and [Yuen 2007b]. Irreducible components of jet schemes of toric surfaces are
discussed in [Mourtada 2011], while the irreducibility of jet schemes of the commut-
ing matrix pairs scheme is discussed in [Sethuraman and Šivic 2009]. In a more re-
cent work [Bruschek et al. 2011], the Hilbert series of arc spaces (that are, in a sense,
limits of k-th jet schemes as k→∞) of seemingly simple objects such as the double
line y2

= 0 are shown to have connections with the Rogers–Ramanujan identities.
Now determinantal varieties such as Zm,n

r above are natural examples of singular
algebraic varieties, and it is not surprising that the study of their jet schemes has
been of considerable interest. This was done first by Košir and Sethuraman [2005a;
2005b] (see also [Yuen 2007a]). To describe the related results, henceforth we
fix positive integers r, k,m, n with r ≤ m ≤ n, and let Zm,n

r,k denote the (k− 1)-th
jet scheme on Zm,n

r . It was shown in [Košir and Sethuraman 2005a] that Zm,n
r,k

is irreducible of codimension k(n − m + 1) when r = m, and if r < m, then
it can have ≥ 1 + bk/2c irreducible components with equality when r = 2 or
k = 2. A more unified result was obtained in [Docampo 2013], showing that
Zm,n

r,k has exactly k + 1 − dk/re irreducible components. At any rate, the best
understood case with multiple components is Zm,n

2,2 , where 2 < m ≤ n. In this
case Zm,n

2,2 = Z0 ∪ Z1, where Z1 is isomorphic to Amn while Z0 is the principal
component which is the closure of the jets supported over the smooth points of
the base variety Zm,n

2 . Here it will be convenient to consider 2mn indeterminates,
denoted xi, j , yi, j for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and the corresponding polynomial
ring R = F[xi, j , yi, j : 1 ≤ i ≤ m, 1 ≤ j ≤ n]. Also let I = Im,n

2,2 and I0 denote,
respectively, the ideals of R corresponding to the jet scheme Zm,n

2,2 and its principal
component Z0. In [Košir and Sethuraman 2005b], it was shown that both I and I0

are homogeneous radical ideals of R (so that I0 is prime), and moreover their
Gröbner bases were explicitly determined. The leading term ideal LT(I0) of I0

with respect to this Gröbner basis is generated by squarefree monomials and hence
R/LT(I0) is the Stanley–Reisner ring of a simplicial complex 10. Jonov [2011]
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subsequently studied this simplicial complex. He showed that 10 is shellable and
thus deduced that R/I0 is Cohen–Macaulay. (This last result was independently
obtained in [Smith and Weyman 2007] as well, using a geometric technique for
computing syzygies.) Jonov also found a formula for the multiplicity of R/I0,
namely,

(3) e(R/I0)=

m∑
i=1

n∑
j=1

(i, j)6=(m,n)

(m+n−i− j
m−i

)
det


( i+n−2

i−1

) (m+ j−2
m−1

)
( i+n−3

i−2

) (m+ j−3
m−2

)
 .

Equation (3) above is the starting point of the present paper. We first show that
the right side of this equation simplifies remarkably to yield the pretty result

e(R/I0)=
(m+n−2

m−1

)2

= e(Zm,n
2 )2.

(this was already alluded to in [Jonov 2011, Remark 2.8]). Next we proceed to
determine the Hilbert series of R/I0 or of the principal component Z0. We use the
well-known connections between the Hilbert series of R/I0, that of R/LT(I0) and
the shelling of the facets of the simplicial complex 10 obtained in [Jonov 2011].
With some effort we are led to an initial formula for the Hilbert series of R/I0, which
is enormously complicated and involves multiple sums of products of binomials
in the same vein as the right side of (3). But we persist with the combinatorics
and are eventually rewarded with the main result of this paper. Namely, just like
the multiplicity, the Hilbert series of R/I0 is precisely the square of the Hilbert
series of the base determinantal variety Zm,n

2 . As a corollary of this, we are able
to determine the a-invariant of R/I0 and the Hilbert series of its graded canonical
module. Moreover we show that, as in the case of classical determinantal varieties,
Z0 is Gorenstein if and only if m = n.

The proofs given here are completely elementary but highly combinatorial and
rather intricate. Heuristically it appears to us that up to some flat deformation (such
as the Gröbner deformation of I0 to LT(I0), which preserves the Hilbert series),
the coordinate ring of the principal component (suitably deformed) should look like
the tensor product of the coordinate ring of the base (similarly deformed) with itself.
(This would reflect the fact that, at the smooth points, the base variety locally looks
like its tangent space.) It would follow then that the Hilbert series of the principal
component is the square of that of Zm,n

2 . We emphasize that this is only heuristics
(with all of its ever-present dangers); nevertheless we suspect that analogous results
relating the Hilbert series of the principal component to that of the base scheme
should hold more generally for all Zm,n

r,k , and possibly also for jet schemes over a
wider class of affine base schemes. We do not know how to prove this, and leave it
open for investigation.
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2. Binomials and lattice paths

In this section we collect some preliminaries concerning binomial coefficients,
alterations of summations, and lattice paths. These will be useful in the sequel.

2.1. Binomials. To begin with, let us recall that the binomial coefficient
(s

a

)
is

defined for any integer parameters s, a (and with the standard convention that the
empty product is taken as 1) as follows:( s

a

)
=

{s(s− 1) · · · (s− a+ 1)
a!

if a ≥ 0,

0 if a < 0.

In fact, this definition makes sense not only for any s ∈ Z but also for s in any
overring of Z and in particular, s can be an indeterminate over Q in which case

(s
a

)
is a polynomial in s of degree a, provided a ≥ 0. Now let s, a ∈ Z. Note that

(4)
( s

a

)
= 0 ⇐⇒ either a < 0 or a > s ≥ 0.

One has to be careful with the validity of some of the familiar identities; for example,

(5)
( s

a

)
=

( s
s−a

)
⇐⇒ either s ≥ 0 or s < a < 0,

whereas some standard identities such as the Pascal triangle identity or its alternative
equivalent version below are valid for arbitrary integer parameters:

(6)
( s

a−1

)
+

( s
a

)
=

( s+1
a

)
and

( s+a
a

)
+

( s+a
a+1

)
=

( s+a+1
a+1

)
.

The equivalence of the two identities above follows from the simple fact below,
which is also valid for arbitrary integer parameters:

(7)
( s+a

a

)
= (−1)a

(
−s−1

a

)
, that is,

( s
a

)
= (−1)a

( a−s−1
a

)
.

We now record some basic facts, which are often used in later sections. Proofs are
easy and are briefly outlined for the sake of completeness.

Lemma 1. For any e, s, t ∈ Z with s ≤ t , we have∑
s<d≤t

( d
e

)
=

( t+1
e+1

)
−

( s+1
e+1

)
.

Proof. Induct on t − s, using the first identity in (6) to rewrite
( t+1

e+1

)
. �

The following result is a version of the so-called Chu–Vandermonde identity.
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Lemma 2. For any s, t, α, β ∈ Z, we have

(8)
∑
j∈Z

( s
α+ j

)( t
β− j

)
=

( s+t
α+β

)
and

(9)
∑
j∈Z

( s+α+ j
α+ j

)( t+β− j
β− j

)
=

( s+t+α+β+1
α+β

)
,

where, in view of (4), the summation on the left in (8) as well as in (9) is essentially
finite in the sense that all except finitely many summands are zero.

Proof. Let X be an indeterminate over Q. Use the binomial theorem, namely,

(1+ X)d =
∞∑

i=0

( d
i

)
X i ,

which is valid in the formal power series ring Q[[X ]] for any d ∈Z, and compare the
coefficients of Xα+β on the two sides of the identity (1+ X)s(1+ X)t = (1+ X)s+t

to obtain (8). Now (8) and (7) imply (9). �

2.2. Alterations of summations. As in (8) and (9) above, we will often deal with
summations that are essentially finite, by which we mean that the parameters in the
sum range over an infinite set, but the summand is zero for all except finitely many
values of parameters, and so the summation is, in fact, finite. It is, however, very
useful that the parameters range freely over a seemingly infinite set so that useful
alterations such as the ones listed below can be readily made. These are too obvious
to be stated as lemmas and proved formally. But for ease of reference, we record
below some elementary transformations of essentially finite summations. In what
follows, f :Z2

→Q will denote a rational-valued function of two integer parameters
with the property that the support of f , namely, the set {(s1, s2)∈Z2

: f (s1, s2) 6= 0}
is finite or more generally, it is diagonally finite, that is, for each k ∈ Z, the set
{(s1, s2) ∈ Z2

: s1+ s2 = k and f (s1, s2) 6= 0} is finite. In this case, for any ν ∈ Z

and any α, β ∈ Z such that α+β = ν, we have

(10)
∑

s1+s2=k−ν

f (s1, s2)=
∑

t1+t2=k

f (t1−α, t2−β),

where writing s1+ s2 = k− ν below the first summation indicates that the sum is
over all (s1, s2) ∈ Z2 satisfying s1+ s2 = k− ν. A similar meaning applies for the
second summation and in fact, for all such summations appearing in the sequel.
Since the “diagonal condition” t1+ t2 = k is symmetric, we also have

(11)
∑

t1+t2=k

f (t1, t2)=
∑

t1+t2=k

f (t2, t1).
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Figure 1. A lattice path from A = (1, 1) to E = (4, 5).

Thus, for example, using (10) and (11), we find∑
t1+t2=k

f (t1, t2)=
∑

t1+t2=k

f (t2+ 1, t1− 1)=
∑

t1+t2=k

f (t1+ 1, t2− 1).

2.3. Lattice paths. Let A= (a, a′) and E= (e, e′) be points in the integer lattice Z2.
By a lattice path from A to E we mean a finite sequence L = (P0, P1, . . . , Pt) of
points in Z2 with P0 = A, Pt = E and

Pi − Pi−1 = (1, 0) or (0, 1) for i = 1, . . . , t.

The lattice path L can and will be identified with its point set {Pj : 0 ≤ j ≤ t};
indeed L is obtained by simply arranging the elements of this set in a lexicographic
order. The point A = P0 is called the initial point of L while E = Pt is called the
end point of L . We say that a point Pj is a NE-turn of the lattice path L if 0< j < t
and Pj − Pj−1 = (0, 1) while Pj+1− Pj = (1, 0). Note that a lattice path is also
determined by its NE turns.

In more intuitive terms, a lattice path consists of vertical or horizontal steps of
length 1, and a NE-turn is simply a northeast turn. For example, a lattice path from
A = (1, 1) to E = (4, 5) may be depicted as in Figure 1, and it may be noted that
the points (1, 2) and (2, 4) are its NE turns.

If we let P(A→ E) denote the set of lattice paths from A= (a, a′) to E = (e, e′)
and, for any k ∈ Z, let Pk(A→ E) denote the subset of P(A→ E) consisting of
lattice paths with exactly k NE turns, then it is easily seen that

(12)
|P(A→ E)| =

( e−a+e′−a′
e−a

)
,

|Pk(A→ E)| =
( e−a

k

)( e′−a′
k

)
,

where as usual, for a finite set P, we denote by |P| the cardinality of P. Given
any two d-tuples A = (A1, . . . , Ad) and E = (E1, . . . , Ed) of points in Z2, by
a lattice path from A to E we mean a d-tuple L = (L1, . . . , Ld), where Lr is a
lattice path from Ar to Er , for 1 ≤ r ≤ d. We call L to be nonintersecting if no
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two of the paths L1, . . . , Ld have a point in common. We say that L has k NE
turns if the total number of NE turns in the d paths L1, . . . , Ld is k. The set of
nonintersecting lattice paths from A= (A1, . . . , Ad) to E= (E1, . . . , Ed) will be
denoted by P(A1→ E1, . . . , Ad → Ed) or simply by P(A→ E), and its subset
consisting of nonintersecting lattice paths with exactly k NE turns will be denoted
by Pk(A1→ E1, . . . , Ad → Ed) or simply by Pk(A→ E).

Proposition 3. Let d be a positive integer and let Ar = (ar , a′r ) and Er = (er , e′r ),
r = 1, . . . , d, be points in Z2. Also let A= (A1, . . . , Ad) and E= (E1, . . . , Ed).

(i) Suppose

a1 ≤ · · · ≤ ad , e1 ≤ · · · ≤ ed and a′1 ≥ · · · ≥ a′d , e′1 ≥ · · · ≥ e′d .

Then the number of nonintersecting lattice paths from A to E is equal to

(13) det
(( e j−ai+e′j−a′i

e j−ai

)
1≤i, j≤d

)
(ii) Let k ∈ Z and suppose

a1 ≤ · · · ≤ ad , e1 < · · ·< ed and a′1 > · · ·> a′d , e′1 ≥ · · · ≥ e′d .

Then the number of nonintersecting lattice paths from A to E with exactly k
NE turns is equal to

(14)
∑

k1+···+kd=k

det
(( e j−ai+i− j

ki+i− j

)( e′j−a′i−i+ j
ki

)
1≤i, j≤d

)
Part (i) of the above proposition is due to Gessel and Viennot [1985, Theorem 1],

although some of the ideas can be traced back to Chaundy [1932], Karlin and
McGregor [1959], and Lindström [1973]. The statement here is a little more
general than that of [Gessel and Viennot 1985], and a proof can be found, for
example, in [Ghorpade 2001, §3] or [Krattenthaler 1995b, §2.2]. Part (ii) was
proved independently by Modak [1992], Krattenthaler [1995a] and Kulkarni [1996]
(see also [Ghorpade 1996]), although the hypothesis in [Modak 1992] and [Kulkarni
1996] on the coordinates of the initial and the end points is slightly more restrictive
than in (ii) above where we follow [Krattenthaler 1995a, Theorem 1]. The following
consequence is frequently used in Section 4.

Corollary 4. For any a, b, c, d, s ∈ Z with a < c and b ≥ d, the cardinality of
Ps((1, 2)→ (a, b), (1, 1)→ (c, d)) is given by∑

s1+s2=s

( a−1
s1

)( b−2
s1

)( c−1
s2

)( d−1
s2

)
−

( a
s2+1

)( b−2
s2

)( c−2
s1−1

)( d−1
s1

)
.

Proof. This is just a special case of part (ii) of Proposition 3. �
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3. Multiplicity

As in the Introduction, we fix in the remainder of this paper an algebraically closed
field F and integers m, n with 2< m ≤ n. Also let xi, j , yi, j , 1≤ i ≤ m, 1≤ j ≤ n,
be independent indeterminates over F. Denote by Vx the set

{xi, j : 1≤ i ≤ m and 1≤ j ≤ n}

of the “x-variables”, and by Vy a similar set of the “y-variables”. Let V = Vx ∪ Vy

and let R = F[V ] be the corresponding polynomial ring in 2mn variables; also let
Rx = F[Vx ] and Ry = F[Vy] be the corresponding polynomial rings in mn variables.
By the support of a monomial F in R, denoted supp(F), we mean the subset of V
consisting of the variables appearing in F . Clearly a monomial F in R can be
uniquely written as

(15) F = Fx Fy, where Fx , Fy are monomials with Fx ∈ Rx and Fy ∈ Ry,

and moreover F is squarefree if and only if both Fx and Fy are squarefree. Note
that squarefree monomials can be identified with their supports, and in particular,
faces of a simplicial complex 1 with vertex set V can be viewed as squarefree
monomials in R. With this in view, we may not distinguish between a squarefree
monomial and its support, and we may sometimes write xi, j ∈G rather than xi, j |G
when G is a squarefree monomial in R and xi, j is a variable appearing in it. A
monomial G in Rx will be called a lattice path monomial in Rx if there is a positive
integer t and variables xi1, j1, . . . , xit , jt in Vx such that

(16) G =
t∏

s=1

xis , js with (is − is−1, js − js−1)= (1, 0) or (0, 1) for 1< s ≤ t.

In this case G is called a lattice path monomial from xi1, j1 to xit , jt , and we will refer
to xi1, j1 as the leader of G and denote it by µ(G). Note that µ(G)= xi1, j1 depends
only on G (and not on the given ordering of the variables appearing in it) since
(i1, j1) is lexicographically the least among the pairs (i, j) for which xi, j ∈ supp(G).
A variable xis , js in supp(G) will be called an ES-turn of G if 1< s < t , is = is−1,
and js = js+1. Analogously a variable xis , js in supp(G) will be called a SE-turn
of G if 1< s < t , js = js−1, and is = is+1. Moreover we will call a variable xis , js
in supp(G) the midpoint of a segment in G if 1< s < t and either is−1 = is = is+1

(horizontal segment) or js−1 = js = js+1 (vertical segment). It may be noted that a
variable xis , js with 1< s < t is either an ES-turn or a SE-turn or the midpoint of a
segment in G.

Evidently lattice path monomials in Rx correspond to lattice paths in the sense
of Section 2.3 if we turn the m×n rectangular matrix (xi, j ) left by 90◦ and identify
the variable xi, j with the lattice point (i, j). In this way leaders correspond to initial
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xi,j

xm,n

yi,n

ym,j

Figure 2. Lattice path monomials Fx and Fy = FU
y FL

y in Proposition 5.

points while ES turns correspond to NE turns. Lattice path monomials in Ry together
with their leaders, ES turns, SE turns, and midpoints of segments are similarly
defined (and similarly identified with lattice paths in the sense of Section 2.3).

We have noted in the introduction that a Gröbner basis (with respect to reverse
lexicographic order on monomials with the 2mn variables arranged suitably) of the
ideal I of the variety Zm,n

2,2 of first-order jets over Zm,n
2 , as well as of the ideal I0

of the principal component Z0 of Zm,n
2,2 , was determined in [Košir and Sethuraman

2005b]. As a consequence, one can write down the generators of the leading
term ideal of I0 (see [Jonov 2011, Proposition 1.1]), say LT(I0), and deduce that
R/LT(I0) is the Stanley–Reisner ring of a simplicial complex 10 with V as its set
of vertices. A precise description of the facets of 10 was given by Jonov [2011,
§2], and we recall it below.

Proposition 5. A squarefree monomial F , decomposed as in (15) above, is a facet
of 10 if and only if there is a unique (i, j) ∈ Z2, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, such
that (i, j) 6= (m, n) and Fx is a lattice path monomial from xi, j to xm,n , whereas
Fy = FU

y FL
y , where FU

y is a lattice path monomial from y1,1 to yi,n , FL
y is a lattice

path monomial from y2,1 to ym, j , and the supports of FU
y and FL

y are disjoint.

The lattice path monomials Fx and Fy = FU
y FL

y are illustrated in Figure 2 by the
corresponding “paths” in rectangular matrices.

Using Proposition 5 together with the first identity in (12) and part (i) of
Proposition 3, Jonov showed that the simplicial complex 10 is pure (i.e., all its
facets have the same dimension) and deduced the dimension and the formula stated
in the introduction for the multiplicity of the coordinate ring R/I0 of Z0.

Corollary 6. The (Krull) dimension of R/I0 is 2(m+ n− 1) and the multiplicity
of R/I0 is given by (3).

Now here is the pretty result about the multiplicity that was alluded to in the
introduction, namely, that the formula (3) admits a remarkable simplification.
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Theorem 7. The multiplicity of R/I0 is given by

(17) e(R/I0)=
(m+n−2

m−1

)2

.

Proof. For 1≤ i ≤ m and 1≤ j ≤ n, let 1i, j denote the 2× 2 determinant in (3).
Observe that if (i, j)= (m, n), then 1i, j = 0. Thus, by expanding this determinant
and rearranging the summands, we can write

e(R/I0)=

m∑
i=1

( i+n−2
i−1

) n∑
j=1

Si, j −

m∑
i=1

( i+n−3
i−2

) n∑
j=1

Ti, j ,

where, for 1≤ i ≤ m and 1≤ j ≤ n, we have put

Si, j =

(m+n−i− j
m−i

)(m+ j−3
m−2

)
and Ti, j =

(m+n−i− j
m−i

)(m+ j−2
m−1

)
.

Rewriting Si, j using (5) and then noting that the resulting product is zero if j < 1
or j > n, thanks to (4), we see from Equation (9) in Lemma 2 that

n∑
j=1

Si, j =
∑

j

(m+n−i− j
n− j

)(m+ j−3
j−1

)
=

( 2m+n−i−2
n−1

)
,

for each i = 1, . . . ,m. In a similar manner,
n∑

j=1

Ti, j =
∑

j

(m+n−i− j
n− j

)(m+ j−2
j−1

)
=

( 2m+n−i−1
n−1

)
,

for each i = 1, . . . ,m. It follows that e(R/I0) is given by the telescoping sum

e(R/I0)=

m∑
i=1

(ai − ai−1), where ai :=

( i+n−2
i−1

)( 2m+n−i−2
n−1

)
,

for 0 ≤ i ≤ m. Since a0 = 0 and am =

(m+n−2
m−1

)2
, we obtain the desired result.

�

It may be noted that in view of (1) and (17), the multiplicity of the principal
component Z0 is precisely the square of the multiplicity of the base variety Zm,n

2 .

4. Hilbert series

Let us begin by recalling that a shelling of a pure simplicial complex 1 is a linear
ordering F1, . . . , Fe of its facets such that for all positive integers i, j , with j < i ≤ e,
there exist some v ∈ Fi \ F j and some positive integer k < i such that Fi \ Fk = {v}.
Given such a shelling and any t ∈ {1, . . . , e}, we let

c(Ft)= {v ∈ Ft : there exists s < t such that Ft \ Fs = {v}}.
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Elements of c(Ft) will be referred to as the corners of Ft . It may be noted that
c(Ft) is nonempty if and only if t > 1. Recall also that a simplicial complex 1 is
said to be shellable if it is pure and it has a shelling. The following result is well
known (see [Bruns and Conca 2003, Theorem 6.3]).

Proposition 8. Let 1 be a shellable simplicial complex and let R1 denote its
Stanley–Reisner ring. Then:

(i) R1 is Cohen–Macaulay and its (Krull) dimension dim R1 is 1+ dim1.

(ii) Suppose d = dim R1 and F1, . . . , Fe is a shelling of 1. Then the Hilbert
series of R1 is given by∑

j≥0 h j z j

(1− z)d
, where h j =

∣∣{t ∈ {1, . . . , e} : |c(Ft)| = j}
∣∣ for j ≥ 0.

Jonov [2011] showed that the simplicial complex 10 mentioned in the previous
section is shellable and concluded using part (i) of Proposition 8 that the coordinate
ring of R/I0 of the principal component Z0 of Zm,n

2,2 is Cohen–Macaulay. We shall
now proceed to use part (ii) of Proposition 8 to determine the Hilbert series of R/I0.
We will use the notation and terminology introduced at the beginning of Section 3.
Further we introduce the following “antilexicographic” linear order on Vx , that is,
on the x-variables. For any xa,b, xc,d ∈ Vx , define

xa,b ≺ xc,d ⇐⇒ either a > c or a = c and b > d.

Given a lattice path monomial G as in (16), the spread of G, denoted sp(G), is the
set of variables that are on or below the corresponding lattice path; more precisely,

sp(G)= {xa,b : is ≤ a ≤ m and 1≤ b ≤ js for some s = 1, . . . , t}.

The notion of spread is defined for lattice path monomials in Ry in exactly the same
manner. It may be observed that if G, H are lattice path monomials (both in Rx or
both in Ry), then the condition sp(G)⊆ sp(H) means, roughly speaking, that H is
to the right of G; moreover, if µ(G) = µ(H) and sp(G) = sp(H), then we must
have G = H .

Notice that the lattice path monomials FU
y and FL

y of Proposition 5 have the
property that sp(FL

y )⊆ sp(FU
y ).

Following [Jonov 2011], we now define a partial order on the facets of 10.

Definition 9. For any facets P, Q of 10 with decompositions P = Px PU
y PL

y and
Q = Qx QU

y QL
y as in Proposition 5, define P < Q if one of the following four

conditions hold: (i) µ(Px) ≺ µ(Qx), (ii) µ(Px) = µ(Qx) and sp(Px) ( sp(Qx),
(iii) Px = Qx and sp(PU

y )( sp(QU
y ), (iv) Px = Qx , PU

y = QU
y and sp(PL

y )( sp(QL
y).

The next result is a consequence of [Jonov 2011, Theorem 3.2] and its proof.
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Proposition 10. The relation < in Definition 9 defines a partial order and any
extension of it to a total order on the facets of 10 gives a shelling of 10.

The terminology of ES turns can be extended from lattice path monomials to
facets of10 as follows. For any facet F of10 having a decomposition F= Fx FU

y F l
y

as in Proposition 5, by an ES-turn of F we shall mean an ES-turn of either Fx or FL
y

or FU
y . It turns out that the corners of a facet of 10 are essentially its ES turns or

the leader of its x-component. There are, however, some subtleties involved and a
precise relation is given below.

Lemma 11. Let F be a facet of 10 and F = Fx FU
y FL

y be its decomposition as in
Proposition 5. Also let v ∈ V be a vertex of 10. Then:

(i) If v ∈ c(F), then either v = µ(Fx) or v is an ES-turn of F. In particular,
xm,n 6∈ c(F) and ym,n 6∈ c(F).

(ii) If µ(Fx) = xi, j , with (i, j) 6= (m, n − 1), then µ(Fx) ∈ c(F). Moreover
xm,n−1 6∈ c(F).

(iii) If v is an ES-turn of Fx , then v ∈ c(F).

(iv) If v is an ES-turn of FU
y or of FL

y , then v ∈ c(F), except when v is an ES-turn
of FU

y such that v= y1,2 or when v is an ES-turn of FU
y such that v= ym−1, j+1

and µ(Fx)= xm, j for some j < n.

Proof. (i) Let P = Px PU
y PL

y be a facet of 10 such that F \ P = {v} and F > P .
The latter implies that one of the four possibilities in Definition 9 must arise. First
suppose µ(Px)≺µ(Fx). Then µ(Fx) is a vertex of F that is smaller than µ(Px) in
the standard lexicographic order, and hence µ(Fx) 6∈ Px ; consequently v = µ(Fx),
and we are done. Now suppose µ(Px)=µ(Fx) and sp(Px)( sp(Fx). Then Px 6= Fx

and hence Fx \ Px = {v}. Note that since µ(Fx) and xm,n are in Px , the vertex v is
an ES-turn, SE-turn, or the midpoint of a segment of Fx . In case it is the midpoint
of a segment of Fx , the other two vertices in that segment must be in Px , and
since Px is a lattice path monomial, we see that v ∈ Px , which is a contradiction.
Also if v = xk,l (say) is a SE-turn of Fx , then xk−1,l and xk,l+1 must be in Fx and
hence in Px . But then Px must contain xk−1,l+1, which is a contradiction since
xk−1,l+1 6∈ sp(Fx). It follows that v is an ES-turn of Fx . Next suppose Px = Fx

and sp(PU
y ) ( sp(FU

y ). Then FU
y \ PU

y = {v}. Since µ(Px) = µ(Fx), in view of
Proposition 5, we see that the initial and the terminal variables of PU

y and FU
y

coincide, and so v is neither of these. Arguing as in the preceding case, we can rule
out the possibilities that v is a SE-turn or the midpoint of a segment of FU

y . Hence
v is an ES-turn of FU

y . In a similar manner, we see that if Px = Fx , PU
y = FU

y and
sp(PL

y )( sp(FL
y ), then v is a ES-turn of FL

y . Thus (i) is proved.

(ii) Let µ(Fx)= xi, j with (i, j) 6= (m, n−1). Then either xi, j+1 ∈ Fx or xi+1, j ∈ Fx .
First suppose xi, j+1 ∈ Fx . We define a new facet P as follows. Let Px = Fx \ {xi, j }



160 SUDHIR R. GHORPADE, BOYAN JONOV AND B. A. SETHURAMAN

and PL
y = FL

y ∪{ym, j+1}. To define PU
y , we take PU

y = FU
y in the case ym, j+1 /∈ FU

y .
If ym, j+1 ∈ FU

y , then this must mean that i =m, and hence j < n−1. We therefore
define PU

y = (F
U
y \ {ym, j+1})∪ {ym−1, j+2}. Observe that P = Px PU

y PL
y is a facet

of 10 and since µ(Px) ≺ µ(Fx), we have P < F . It follows that µ(Fx) ∈ c(F).
Next suppose xi+1, j ∈ Fx . We first assume that (i, j) 6= (m − 1, n). Now define
a new facet P as follows. First we let Px = Fx \ {xi, j }. If yi+1,n /∈ FL

y , then we
let PU

y = FU
y ∪ {yi+1,n} and PL

y = FL
y . If yi+1,n ∈ FL

y , then j must equal n. If now
i ≤ m − 2, then we let PL

y = (F
L
y \ {yi+1,n}) ∪ {yi+2,n−1}. We are left with the

special case i =m−1, j = n. Here we let Px = {xm,n−1, xm,n}, PU
y = FU

y ∪{ym,n},
and PL

y = FL
y \ {ym,n}. In all three cases, it is easy to verify that P = Px PU

y PL
y is

a facet of 10 such that F \ P = {xi, j } and P < F . Consequently µ(Fx) ∈ c(F).
Finally we show that xm,n−1 /∈ c(F). Assume, on the contrary, that there is a facet
P of 10 such that F \ P = {xm,n−1}. By (i) above, µ(F)= xm,n−1 because there
can be no ES-turn at xm,n−1. In view of Proposition 5, P must contain at least one
variable other than xm,n , and since xm,n−1 6∈ P , it follows that xm−1,n ∈ P . This
forces µ(Fx)≺ µ(Px), which violates the fact that P < F . Thus (ii) is proved.

(iii) Let v = xk,l be an ES-turn of Fx . Define Px = Fx \ {xk,l} ∪ {xk+1,l−1} and
Py = Fy . It is clear that P = Px Py is a facet of10 such that P < F and F \P ={v}.
This proves (iii).

(iv) First suppose v = yk,l is an ES-turn of FL
y . Then k < m and l > 1. Define

Px = Fx , PU
y = FU

y , and PL
y = FL

y \ {yk,l} ∪ {yk+1,l−1}. It is easy to see that
P = Px PU

y PL
y is facet of 10 such that P < F and F \ P = {v}. Next suppose

v = yk,l is an ES-turn of FU
y . Then once again k < m and l > 1. In case yk+1,l−1

is not in FL
y , we define Px = Fx , PL

y = FL
y , and PU

y = FU
y \ {yk,l} ∪ {yk+1,l−1},

whereas in case yk+1,l−1 is in FL
y and also k <m−1 and l > 2, we define Px = Fx ,

PU
y = FU

y \{yk,l}∪{yk+1,l−1}, and PL
y = FL

y \{yk+1,l−1}∪{yk+2,l−2}. We verify that
in both the cases, P = Px PU

y PL
y is a facet of 10 such that P < F and F \ P = {v}.

When l = 2, it is easy to see that v = yk,2 can be an ES-turn of FU
y only when

k = 1 lest FU
y and FL

y intersect at yk,1. We now show that y1,2 is not a corner of F .
Suppose that P = Px PU

y PL
y is a facet of 10 such that F \ P = {v}, v = y1,2 and

F > P . By Proposition 5, PU
y must start at y1,1 and PL

y must start at y2,1. For PU
y

to avoid v = y1,2, it must be the case that PU
y contains y2,1. But this contradicts the

fact that PU
y and PL

y do not intersect.
We are left with the situation where k = m− 1 and v = yk,l is an ES-turn of FU

y
and moreover ym,l−1 ∈ FL

y . Now since FU
y has an ES-turn at ym−1,l , we see that

l > 1 and both ym−1,l−1 and ym,l are in FU
y . In particular, ym,l 6∈ FL

y and since
ym,l−1 ∈ FL

y , in view of Proposition 5, it follows that FL
y ends at ym,l−1, while FU

y
ends at ym,n and also that µ(Fx)= xm,l−1. Now if there were a facet P = Px PU

y PL
y

of 10 such that F \ P = {v} and F > P , then Px = Fx and PL
y = FL

y , whereas
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FU
y \ PU

y = {ym−1,l}. But then PU
y is a lattice path monomial that contains both

ym−1,l−1 and ym,l and does not contain ym−1,l ; so it must contain ym,l−1. This is
a contradiction since ym,l−1 ∈ FL

y = PL
y and the monomials PU

y and PL
y have no

variable in common. This completes the proof. �

For any integers i, j, k with k ≥ 0, 1≤ i ≤ m and 1≤ j ≤ n, we define Ck
i, j to

be the number of facets F = Fx Fy of 10 such that µ(Fx)= xi, j and F has exactly
k ES turns that are in c(F). We state a useful consequence of Lemma 11:

Corollary 12. The Hilbert series of the coordinate ring R/I0 of the principal
component Z0 of Zm,n

2,2 is given by

(18)

∑
k≥0 hkzk

(1− z)2(m+n−1) ,

where h0 = 1, and for k ≥ 1,

(19) hk = Ck
m,n−1+

∑
(i, j) 6=(m,n−1)
(i, j) 6=(m,n)

Ck−1
i, j ,

where the last sum is over all pairs (i, j) of integers satisfying 1 ≤ i ≤ m and
1≤ j ≤ n, with (i, j) 6= (m, n− 1) and (i, j) 6= (m, n).

Proof. It is well-known that the (Krull) dimension as well as the Hilbert series
of R/I0 coincides with that of R/LT(I0) (see, e.g., [Bruns and Conca 2003, §3]),
where LT(I0) denotes the leading term ideal of I0 as in [Košir and Sethuraman
2005b] and [Jonov 2011, Proposition 1.1]. Now 10 is precisely the simplicial
complex such that R/LT(I0) is the Stanley–Reisner ring of 10. Thus it follows
from Corollary 6 and part (ii) of Proposition 8 that the Hilbert series of R/I0 is
given by (18), where h0 = 1, and for k ≥ 1,

hk =
∣∣{F : F a facet of 10 with |c(F)| = k}

∣∣.
Partitioning the facets F = Fx Fy in the above set in accordance with the values
of µ(Fx) and noting from Proposition 5 that µ(Fx) 6= (m, n), and then applying
Lemma 11, we obtain the desired result. �

We have seen in Section 3 that lattice path monomials can be related to lattice
paths in the sense of Section 2.3 if we rotate to the left by 90◦ and identify the
variable xi, j with the point (i, j) of Z2. Also recall that for any (a, a′), (e, e′) ∈ Z2

and s ∈ Z, we denote by Ps((a, a′)→ (e, e′)) the set of lattice paths from (a, a′) to
(e, e′) with s NE turns. Likewise if (ai , a′i ), (ei , e′i )∈Z2 for i = 1, 2 and s ∈Z, then
by Ps((a1, a′1)→ (e1, e′1), (a2, a′2)→ (e2, e′2)) we denote the set of pairs (L1, L2)

of nonintersecting lattice paths such that L i is from (ai , a′i ) to (ei , e′i ) for i = 1, 2,
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(i,j)

(m,n)

(m,j)

(i,n)

Figure 3. Lattice paths L and (L1, L2) corresponding to Fx and (FU
y , FL

y ).

and the paths L1 and L2 together have exactly s NE turns. Evidently these sets are
empty (and hence of cardinality 0) when s < 0.

Lemma 13. Let s, i, j ∈ Z with s ≥ 0, 1≤ i ≤ m and 1≤ j ≤ n.

(i) If i 6= m, then

C s
i, j =

∑
s1+s2=s

∣∣Ps1((i, j)→ (m, n))
∣∣ ∣∣Ps2((1, 2)→ (i, n), (1, 1)→ (m, j))

∣∣,
where the sum is over pairs (s1, s2) of nonnegative integers with s1+ s2 = s.

(ii) If 1< j < n− 1, then

C s
m, j =

m−1∑
p=1

n−1∑
q= j+1

∣∣Ps−1((1, 2)→ (p, q), (1, 1)→ (m, j))
∣∣

+

m−2∑
p=1

∣∣Ps−1((1, 2)→ (p, j), (1, 1)→ (m, j))
∣∣

+
∣∣Ps((1, 2)→ (m− 1, j), (1, 1)→ (m, j))

∣∣.
(iii) C s

m,1 =

( n−2
s

)(m−1
s

)
and

C s
m,n−1 =

m−2∑
p=1

∣∣Ps−1((1, 2)→ (p, n− 1), (1, 1)→ (m, n− 1))
∣∣

+
∣∣Ps((1, 2)→ (m− 1, n− 1), (1, 1)→ (m, n− 1))

∣∣.
Proof. Let i, j ∈ Z with 1 ≤ i ≤ m, 1 ≤ j ≤ n, and (i, j) 6= (m, n). By a 90◦

rotation to the left, we see from Proposition 5 that the facets F = Fx Fy of 10

with µ(Fx) = xi, j are in one-to-one correspondence with the triples (L , L∗1, L∗2)
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of lattice paths, where L is from (i, j) to (m, n), while L∗1 is from (1, 1) to (i, n)
and L∗2 is from (2, 1) to (m, j), and moreover L∗1, L∗2 are nonintersecting. We will
now modify L∗1, L∗2 slightly keeping in mind the hypothesis in Corollary 4. To this
end, first note that (1, 2) ∈ L∗1 since 2< m ≤ n. Thus if we let L1 := L∗1 \ {(1, 1)}
and L2 := L∗2 ∪ {(1, 1)}, then (L∗1, L∗2) and (L1, L2) are pairs of nonintersecting
lattice paths that determine each other and have exactly the same NE turns, except
that if L∗1 had a NE turn at (1, 2), then L1 will not have a NE turn at (1, 2). Note
though that, by Lemma 11 (iv), y1,2 is not a corner of any facet, and this switch
will therefore not affect the count of corners. Consequently the facets F = Fx Fy of
10 with µ(Fx)= xi, j are in one-to-one correspondence with

P((i, j)→ (m, n))×P((1, 2)→ (i, n), (1, 1)→ (m, j)).

The lattice paths L and (L1, L2) corresponding to the components Fx and (FU
y , FL

y )

of the facet F = Fx Fy are illustrated in Figure 3; these may be compared with
Figure 2 that depicts the lattice path monomials Fx and Fy = FU

y FL
y .

(i) Suppose i 6=m. Then, from Lemma 11, we see that, for every facet F = Fx Fy

of10 withµ(Fx)= xi, j , all the ES turns of Fx , FU
y or FL

y that are in c(F) correspond
to the NE turns of the corresponding lattice paths L , L1 or L2. From this, we readily
obtain the formula in (i).

(ii) Suppose i = m and 1< j < n− 1. Then for a facet F = Fx Fy of 10 with
µ(Fx)= xm, j , the lattice path L corresponding to Fx is from (m, j) to (m, n) and
evidently this has no NE turns. Consider in P((1, 2)→ (i, n), (1, 1)→ (m, j))
the pair (L1, L2) corresponding to (FU

y , FL
y ). Suppose the last NE-turn of L1 is at

(p, q + 1). Note that if q < j , then we must have (m, j) ∈ L1, which contradicts
the fact that L1, L2 are nonintersecting. Thus 1 ≤ p ≤ m − 1 and j ≤ q < n.
Moreover if q = j , then by part (iv) of Lemma 11, we see that either p ≤ m− 2
or the NE-turn (p, q + 1) is not in c(F). It follows that L1 can be replaced by its
truncation L̃1, which is a lattice path from (1, 2) to (p, q) such that L̃1 and L2 are
nonintersecting. Moreover the number of NE turns of L̃1 in c(F) are exactly one
less than the number of NE turns of L1 in c(F), except when (p, q)= (m− 1, j)
in which case they are the same. Thus by varying (p, q) over an appropriate range,
we obtain the formula in (ii).

(iii) If (i, j)= (m, 1) and F = Fx Fy is a facet of 10 with µ(Fx)= xm,1, then the
path L corresponding to Fx as well as the path L2 corresponding to FL

y have no NE
turns. Moreover every NE-turn of the path L1 ∈P((1, 2)→ (m, n)) corresponding
to FU

y is necessarily in c(F), thanks to Lemma 11. Thus, in view of (12), we
see that C s

m,1 =
(n−2

s

)(m−1
s

)
. Finally if (i, j) = (m, n− 1), then arguing as in (ii)

above, we see that for a facet F = Fx Fy of 10 with µ(Fx) = xm,n−1, the lattice
path L corresponding to Fx has no NE turns and the last NE-turn of the lattice
path L1 corresponding to FU

y must be (p, n) for some p= 1, . . . ,m−1. Moreover
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by Lemma 11, this turn is counted as a corner (i.e., x p,n ∈ c(F)) if and only if
p < m− 1. Thus upon replacing L1 by its truncation up to (p, n− 1), we obtain
the desired formula for C s

m,n−1 in (iii). �

We can already use the results obtained thus far to write down an explicit formula
for the Hilbert series of the graded ring R/I0 corresponding to Z0. Indeed it suffices
to combine Corollary 12, Lemma 13, and Corollary 4. However the resulting formula
is much too complicated and we will instead use results in Section 2 for simplifying
various terms in (19) so as to eventually arrive at an elegant formula for (18).

Lemma 14. Let k be a positive integer. Then Ck
m,n−1 is equal to∑

t1+t2=k

(m−2
t1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
−

(m−1
t2+1

)( n−2
t2

)(m−2
t1−1

)( n−2
t1

)
.

Proof. For s ∈ Z, let f (s) :=
(m−1

s

)( n−2
s

)
and g(s) :=

(m−2
s−1

)( n−2
s

)
. By

Corollary 4,

(20)
m−2∑
p=1

∣∣Pk−1((1, 2)→ (p, n− 1), (1, 1)→ (m, n− 1))
∣∣

=

m−2∑
p=1

∑
s1+s2=k−1

( p−1
s1

)( n−3
s1

)
f (s2)−

( p
s2+1

)( n−3
s2

)
g(s1)

=

∑
s1+s2=k−1

( m−3∑
p′=0

( p′
s1

))( n−3
s1

)
f (s2)−

( m−2∑
p=1

( p
s2+1

))( n−3
s2

)
g(s1)

=

∑
s1+s2=k−1

(m−2
s1+1

)( n−3
s1

)
f (s2)−

(m−1
s2+2

)( n−3
s2

)
g(s1)

=

∑
t1+t2=k

(m−2
t1

)( n−3
t1−1

)
f (t2)−

(m−1
t2+1

)( n−3
t2−1

)
g(t1),

where the penultimate equality follows from Lemma 1 since
( 0

s1+1

)
= 0=

( 1
s2+2

)
for

s1, s2 ≥ 0, and also since
(n−3

s1

)
f (s2) = 0 =

(n−3
s2

)
g(s1) if s1 < 0 or s2 < 0, while

the last equality follows by altering the summations (twice!) as in (10). On the
other hand, by Corollary 4,

∣∣Pk((1, 2)→ (m− 1, n− 1), (1, 1)→ (m, n− 1))
∣∣ is

equal to

(21)
∑

t1+t2=k

(m−2
t1

)( n−3
t1

)
f (t2)−

(m−1
t2+1

)( n−3
t2

)
g(t1).

Now combining (20) and (21), using (6), and then using part (iii) of Lemma 13, we
obtain the desired result. �
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Lemma 15. Let k be a positive integer. Then
m−1∑
i=1

n∑
j=1

Ck−1
i, j is equal to

∑
t1+t2=k

(m
t2

)( n
t1+1

)(m−1
t1

)( n−2
t2−1

)
−

(m−1
t1

)( n
t2

)(m−1
t2−1

)( n−2
t1

)
.

Proof. Using (12) and part (i) of Lemma 13, we see that
m−1∑
i=1

n∑
j=1

Ck−1
i, j equals

m−1∑
i=1

n∑
j=1

∑
k1+k2=k−1

(m−i
k1

)( n− j
k1

)∣∣Pk2((1, 2)→ (i, n), (1, 1)→ (m, j))
∣∣.

Applying Corollary 4 and then suitably interchanging summations and noting that
the summands below are zero if k1 < 0 or s1 < 0 or s2 < 0, this can be written as

(22)
∑

k1+s1+s2=k−1
k1,s1,s2≥0

M1 N1

(m−1
s2

)( n−2
s1

)
−M2 N2

(m−2
s1−1

)( n−2
s2

)
,

where, for any given k1, s1, s2 ≥ 0, we have temporarily put

M1 =

m−1∑
i=1

(m−i
k1

)( i−1
s1

)
, N1 =

n∑
j=1

( n− j
k1

)( j−1
s2

)
=

( n
k1+s2+1

)
,

M2 =

m−1∑
i=1

(m−i
k1

)( i
s2+1

)
, N2 =

n∑
j=1

( n− j
k1

)( j−1
s1

)
=

( n
k1+s1+1

)
,

and where the simplified expressions for N1, N2 follow by rewriting each of the
summands in N1 and N2 using (5), invoking (4) (noting that k1, s1, s2 ≥ 0), and
then applying (9) for suitable values of s, t , α and β. A similar simplification is
possible in M1 and M2 if we add and subtract the term corresponding to i =m, and
in view of (4), this is only necessary if k1 = 0. Thus

M1 =

( m
k1+s1+1

)
− δ0,k1

(m−1
s1

)
and M2 =

( m+1
k1+s2+2

)
− δ0,k1

( m
s2+1

)
,

where δ is the Kronecker delta. Substituting the simplified values of M1, N1,M2, N2

in (22), and letting

A(s1, s2) :=
(m−1

s2

)( n−2
s1

)
, B(s1, s2) :=

(m−2
s1−1

)( n−2
s2

)
for s1, s2 ∈ Z, we see that (22) is of the form E3+ S3, where

E3 =
∑

k1+s1+s2=k−1
k1,s1,s2≥0

( m
k−s2

)( n
k−s1

)
A(s1, s2)−

( m+1
k−s1+1

)( n
k−s2

)
B(s1, s2),

and S3 is the part where the Kronecker delta is nonzero:
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S3 =
∑

s1+s2=k−1

( m
s2+1

)( n
s1+1

)
B(s1, s2)−

(m−1
s1

)( n
s2+1

)
A(s1, s2).

Altering the summation as in (10), we see that S3 can be written as

(23)
∑

t1+t2=k

(m
t2

)( n
t1+1

)(m−2
t1−1

)( n−2
t2−1

)
−

(m−1
t1

)( n
t2

)(m−1
t2−1

)( n−2
t1

)
.

On the other hand, in view of (4) and (11), we can write

E3 =

k−1∑
`=0

∑
s1+s2=`

( m
k−s1

)( n
k−s2

)
A(s2, s1)−

( m+1
k−s1+1

)( n
k−s2

)
B(s1, s2).

By (6), we have ( m+1
k−s1+1

)
=

( m
k−s1

)
+

( m
k−(s1−1)

)
.

Using this to split the second summand in E3 into two parts and combining one of
the parts with the first summand in E3 and then applying (6) once again, we see
that

E3 =

k−1∑
`=0

∑
s1+s2=`

f (s1, s2)− f (s1− 1, s2),

where

f (s1, s2) :=
( m

k−s1

)( n
k−s2

)(m−2
s1

)( n−2
s2

)
for s1, s2 ∈ Z. Now in view of (10), we find that E3 is given by the telescoping sum

E3 =

k−1∑
`=0

F`− F`−1, where F` :=
∑

s1+s2=`

f (s1, s2) for ` ∈ Z.

From the definition of f , we see that F−1 = 0, and thus E3 = Fk−1, that is,

E3 =
∑

s1+s2=k−1

( m
k−s1

)( n
k−s2

)(m−2
s1

)( n−2
s2

)
.

Now we can replace k − s1, k − s2 by s2 + 1, s1 + 1, respectively, in the above
summand, and then alter the summation using (10) to obtain

(24) E3 =
∑

t1+t2=k

(m
t2

)( n
t1+1

)(m−2
t1

)( n−2
t2−1

)
.

Finally, by adding (24) and (23) termwise and using (6), we obtain the desired
formula for E3+ S3, i.e., for

∑m−1
i=1

∑n
j=1 Ck−1

i, j . �
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Lemma 16. Let k be a positive integer. Then
n−2∑
j=1

Ck−1
m, j is equal to

∑
t1+t2=k

(m−1
t1

)( n−2
t1

)(m−1
t2−1

)( n−2
t2

)
−

( m
t2+1

)( n−2
t2

)(m−2
t1−2

)( n−2
t1

)
.

Proof. The desired result is easily verified when n ≤ 3 and so we assume that n > 3.
For j, s ∈ Z, let

f j (s) :=
(m−1

s

)( j−1
s

)
, g j (s) :=

(m−2
s−1

)( j−1
s

)
.

In view of parts (iii) and (ii) of Lemma 13 together with (4) and Corollary 4, we
see that

(25) Ck−1
m,1 =

( n−2
k−1

)(m−1
k−1

)
and

n−2∑
j=2

Ck−1
m, j = S4+ S5+ S6,

where

S4 =

n−2∑
j=2

m−1∑
p=1

n−1∑
q= j+1

∑
s1+s2=k−2

s1,s2≥0

( p−1
s1

)( q−2
s1

)
f j (s2)−

( p
s2+1

)( q−2
s2

)
g j (s1),

S5 =

n−2∑
j=2

m−2∑
p=1

∑
s1+s2=k−2

s1,s2≥0

( p−1
s1

)( j−2
s1

)
f j (s2)−

( p
s2+1

)( j−2
s2

)
g j (s1),

S6 =

n−2∑
j=2

∑
s1+s2=k−1

(m−2
s1

)( j−2
s1

)
f j (s2)−

(m−1
s2+1

)( j−2
s2

)
g j (s1).

Interchanging s1 and s2 in the second summand for S6 as in (11), we can write

(26) S6 =
∑

s1+s2=k−1

λ(s1, s2)

((m−2
s1

)(m−1
s2

)
−

(m−1
s1+1

)(m−2
s2−1

))
,

where, for s1, s2 ∈ Z, we let

λ(s1, s2) :=

n−2∑
j=2

( j−2
s1

)( j−1
s2

)
.

Next, by Lemma 1,

m−2∑
p=1

( p−1
s1

)
=

(m−2
s1+1

)
and

m−2∑
p=1

( p
s2+1

)
=

(m−1
s2+2

)
for s1, s2 ≥ 0.

Consequently, by interchanging summations and rearranging terms, we find
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S5 =

n−2∑
j=2

∑
s1+s2=k−2

s1,s2≥0

(m−2
s1+1

)( j−2
s1

)
f j (s2)−

(m−1
s2+2

)( j−2
s2

)
g j (s1)(27)

=

∑
s1+s2=k−2

λ(s1, s2)

((m−2
s1+1

)(m−1
s2

)
−

(m−1
s1+2

)(m−2
s2−1

))

=

∑
s1+s2=k−1

λ(s1− 1, s2)

((m−2
s1

)(m−1
s2

)
−

(m−1
s1+1

)(m−2
s2−1

))
,

where the penultimate equality follows from (4) and (11) by interchanging s1 and s2

in the second summand of the preceding formula, while the last equality follows
from (10). Now, using (6), we easily see that

λ(s1− 1, s2)+ λ(s1, s2)= ν(s1, s2) for any s1, s2 ∈ Z,

where

ν(s1, s2) :=

n−2∑
j=2

( j−1
s1

)( j−1
s2

)
.

Hence we can combine (27) and (26) to obtain

(28) S5+ S6 =
∑

s1+s2=k−1

ν(s1, s2)

((m−2
s1

)(m−1
s2

)
−

(m−1
s1+1

)(m−2
s2−1

))
.

It remains to consider S4 or rather Ck−1
m,1 + S4. This is a little more complicated, but

it can be handled using arguments similar to those in the proof of Lemma 15 as
follows. First, by interchanging summations and using Lemma 1, we find

S4 =

n−2∑
j=2

∑
s1+s2=k−2

s1,s2≥0

(m−1
s1+1

)
θ(s1) f j (s2)−

( m
s2+2

)
θ(s2)g j (s1),

where, for s ∈ Z, we have let

θ(s) :=
( n−2

s+1

)
−

( j−1
s+1

)
.

Now observe that if s1 < 0 or s2 < 0, then θ(s1) f j (s2) = 0 = θ(s2)g j (s1). Thus
we may drop the condition s1, s2 ≥ 0 in the above expression for S4, and then alter
each of the two summations over (s1, s2) using (10) to write

S4 =

n−2∑
j=2

∑
s1+s2=k−1

(m−1
s1

)
θ(s1− 1) f j (s2)−

( m
s2+1

)
θ(s2− 1)g j (s1).

Next we collate the terms involving j and bring the summation over j inside, and
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note that, by Lemma 1,
n−2∑
j=2

( j−1
s

)
=

( n−2
s+1

)
− δ0,s for any s ≥ 0. This yields

S4 =
∑

s1+s2=k−1

(m−1
s1

)( n−2
s1

)(m−1
s2

)(( n−2
s2+1

)
− δ0,s2

)
−

( m
s2+1

)( n−2
s2

)(m−2
s1−1

)(( n−2
s1+1

)
− δ0,s1

)
−

(m−1
s1

)(m−1
s2

)
ν(s1, s2)+

( m
s2+1

)(m−2
s1−1

)
ν(s1, s2).

Since
(m−2

s1−1

)
= 0 when s1= 0, the only contribution of the terms involving Kronecker

delta is when s2 = 0, and it is −
(m−1

k−1

)(n−2
k−1

)
, that is, precisely −Ck−1

m,1 . It follows
that Ck−1

m,1 + S4 = S∗4 + E4, where

S∗4=
∑

s1+s2=k−1

(m−1
s1

)(n−2
s1

)(m−1
s2

)( n−2
s2+1

)
−

( m
s2+1

)(n−2
s2

)(m−2
s1−1

)( n−2
s1+1

)
and

E4 =
∑

s1+s2=k−1

ν(s1, s2)

(( m
s2+1

)(m−2
s1−1

)
−

(m−1
s1

)(m−1
s2

))
(29)

=

∑
s1+s2=k−1

ν(s1, s2)

(( m
s1+1

)(m−2
s2−1

)
−

(m−1
s1

)(m−1
s2

))
,

where the last equality follows by interchanging s1 and s2, while noting that ν is
symmetric in s1, s2.

Now combining (28) and (29), and then, making an easy calculation using (6),
we see that

E4+ S5+ S6 =
∑

s1+s2=k−1

ν(s1, s2)

((m−1
s1

)(m−2
s2−1

)
−

(m−2
s1−1

)(m−1
s2

))
= 0,

where the last equality follows by interchanging s1 and s2 in one of the summations
above. Thus

∑n−2
j=1 Ck−1

m, j = S∗4 . Finally, using (10), we readily see that S∗4 is precisely
the desired formula in the statement of the lemma. �

Corollary 17. Let k be a positive integer. Then Ck
m,n−1+

n−2∑
j=1

Ck−1
m, j is equal to

∑
t1+t2=k

(m−1
t1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
−

(m−1
t2+1

)( n−2
t2

)(m−1
t1−1

)( n−2
t1

)
.

Proof. Consider the formula for
n−2∑
j=1

Ck−1
m, j given by Lemma 16. This is a difference
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of two summations over (t1, t2) ∈ Z2 with t1 + t2 = k. Alter the first of these
summations by interchanging t1 and t2, while putting

( m
t2+1

)
=
(m−1

t2

)
+
(m−1

t2+1

)
in the

second summation to split it into two summations. Then, using (6), we readily see
that the formula for

∑n−2
j=1 Ck−1

m, j becomes∑
t1+t2=k

(m−2
t1−1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
−

(m−1
t2+1

)( n−2
t2

)(m−2
t1−2

)( n−2
t1

)
.

This can be added termwise, using (6) once again, with the formula for Ck
m,n−1

given by Lemma 14, to obtain the desired result. �

We are now ready for our main theorem.

Theorem 18. The Hilbert series of R/I0 is given by

(30)
(∑m−1

e=0
(m−1

e

)(n−1
e

)
ze

(1− z)m+n−1

)2

.

Proof. First note that (30) is of the form (1− z)−2(m+n−1)
2m−2∑
k=0

h∗k zk , where

(31) h∗k =
∑

t1+t2=k

(m−1
t1

)( n−1
t1

)(m−1
t2

)( n−1
t2

)
for k ∈ Z.

On the other hand, by Corollary 12, we see that the Hilbert series of R/I0 is given
by (1− z)−2(m+n−1)∑

k≥0 hkzk , where h0 = 1, and

(32) hk =

(
Ck

m,n−1+

n−2∑
j=1

Ck−1
m, j

)
+

m−1∑
i=1

n∑
j=1

Ck−1
i, j for k ≥ 1.

It is clear that h∗0 = 1= h0 and so it suffices to show that h∗k = hk for all k ≥ 1. In
view of Corollary 17 and Lemma 15, this is equivalent to showing that∑
t1+t2=k

P1(t1, t2)− P2(t1, t2)+ P3(t1, t2)− P4(t1, t2)− P(t1, t2)= 0 for k ≥ 1,

where Pi (t1, t2) for i = 1, . . . , 4, and P(t1, t2) are the relevant summands, namely,

P1(t1, t2) :=
(m−1

t1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
,

P2(t1, t2) :=
(m−1

t2+1

)( n−2
t2

)(m−1
t1−1

)( n−2
t1

)
,

P3(t1, t2) :=
(m

t2

)( n
t1+1

)(m−1
t1

)( n−2
t2−1

)
,

P4(t1, t2) :=
(m−1

t1

)( n
t2

)(m−1
t2−1

)( n−2
t1

)
,
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and

P(t1, t2) :=
(m−1

t1

)( n−1
t1

)(m−1
t2

)( n−1
t2

)
for t1, t2 ∈ Z. To this end, we will make an extensive use of alterations as in (10)
and (11); more specifically, the fact that∑
t1+t2=k

f (t1, t2)=
∑

t1+t2=k

f (t2, t1)=
∑

t1+t2=k

f (t1+1, t2−1)=
∑

t1+t2=k

f (t2+1, t1−1)

for any f :Z2
→Q with finite support and any k ∈Z. Now fix any positive integer k

and any (t1, t2) ∈ Z2 with t1+ t2 = k. Observe that

P3(t1− 1, t2+ 1)− P4(t2, t1)=
(m−1

t2+1

)( n
t1

)(m−1
t1−1

)( n−2
t2

)
.

Using (6) twice, we may substitute
( n−2

t1

)
+

( n−2
t1−1

)
+

( n−1
t1−1

)
for

( n
t1

)
in the

right-hand side of the above identity to obtain

−P2(t1, t2)+ P3(t1− 1, t2+ 1)− P4(t2, t1)= Q1(t1, t2)+ Q2(t1, t2),

where

Q1(t1, t2) :=
(m−1

t2+1

)( n−2
t1−1

)(m−1
t1−1

)( n−2
t2

)
,

Q2(t1, t2) :=
(m−1

t2+1

)( n−1
t1−1

)(m−1
t1−1

)( n−2
t2

)
.

Finally observe that P1(t1, t2)+ Q1(t1+ 1, t2− 1)+ Q2(t2+ 1, t1− 1)= P(t1, t2).
This yields the desired result. �

It may be noted that in view of (2) and (30), the Hilbert series of the principal
component Z0 is precisely the square of the Hilbert series of the base variety Zm,n

2 ,
and, as such, Theorem 7 could be deduced as a consequence of Theorem 18.

As an application of Theorem 18, we will now compute the a-invariant of the
coordinate ring R/I0 of the principal component Z0 of Zm,n

2,2 and determine when
Z0 is Gorenstein. Recall that if A is a finitely generated, positively graded Cohen–
Macaulay algebra over a field, then A admits a graded canonical module ωA and the
a-invariant of A is defined as the negative of the least degree of a generator of ωA.
If the Hilbert series of A is given by HA(z) = h(z)/(1− z)d , where d = dim A
and h(z) ∈Q[z] with h(1) 6= 0, then the a-invariant of A is the order of the pole
of HA(z) at infinity, which is −(d − deg h(z)). Moreover the Hilbert series of ωA

is given by HωA(z) = (−1)d HA(z−1). As a general reference for these notions
and results, one may consult [Bruns and Herzog 1993], especially Sections 3.6
and 4.4. The following result is an analogue of a theorem of Gräbe [1988] (see also
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[Ghorpade 1996, Theorem 4]) for classical determinantal varieties which says that
if 1≤ r ≤m ≤ n, then the a-invariant of (the coordinate ring of) Zm,n

r is −(r −1)n.

Corollary 19. The a-invariant of R/I0 is equal to −2n and the Hilbert series of
the graded canonical module of R/I0 is given by

(33)
(∑m−1

e=0
(m−1

e

)(n−1
e

)
zm+n−e−1

(1− z)m+n−1

)2

.

Proof. We know from [Jonov 2011, Theorem 1.2] that A= R/I0 is Cohen–Macaulay
and it is obviously a finitely generated, positively graded F-algebra. Moreover, by
Theorem 18, the Hilbert series of A is given by h0(z)/(1− z)2(m+n−1), where

h0(z)=
( m−1∑

e=0

(m−1
e

)(n−1
e

)
ze
)2

.

Since 2 ≤ m ≤ n, we see that h0(z) is a polynomial in z of degree 2(m − 1),
with leading coefficient

(n−1
m−1

)
2, and all other coefficients nonnegative integers; in

particular, h0(1) 6= 0. Hence the a-invariant of A = R/I0 is

2(m− 1)− 2(m+ n− 1)=−2n,

and also that the Hilbert series of ωA is given by (33). �

The following result is an analogue of a theorem of Svanes [1974] (see also
[Conca and Herzog 1994]) for classical determinantal varieties which says that for
any r ≥ 1, (the coordinate ring of) Zm,n

r is Gorenstein if and only if m = n.

Corollary 20. The coordinate ring R/I0 of Z0 is Gorenstein if and only if m = n.

Proof. By [Jonov 2011, Theorem 1.2] and [Košir and Sethuraman 2005b, Proposi-
tion 3.3], A= R/I0 is a Cohen–Macaulay domain. Hence from a well-known result
of Stanley [1978, Theorem 4.4] (see also [Bruns and Herzog 1993, Corollary 4.4.6]),
we see that A is Gorenstein if and only if HA(z)= (−1)d za HA(z−1) for some a ∈Z.
Moreover, in this case, the integer a is necessarily the a-invariant of A. Thus, from
Corollary 19, we see that R/I0 is Gorenstein if and only if( m−1∑

e=0

(m−1
e

)( n−1
e

)
ze
)2

=

( m−1∑
e=0

(m−1
e

)( n−1
e

)
zm−1−e

)2

.

Since both the polynomials inside the square brackets on the two sides of the above
equality have positive leading coefficients, it follows that R/I0 is Gorenstein if and
only if

(n−1
e

)
=
( n−1

m−1−e

)
for all e = 0, 1, . . . ,m− 1. Since 1< m− 1≤ n− 1, the

latter clearly holds if and only if m = n. �
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ON A LIU–YAU TYPE INEQUALITY FOR SURFACES

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL AND SIMON RAULOT

Let � be a compact mean-convex domain with smooth boundary † WD @�,
in an initial data set .M 3; g; K /, which has no apparent horizon in its inte-
rior. If † is spacelike in a spacetime .E4; gE/ with spacelike mean curvature
vector H such that † admits an isometric and isospin immersion into R3

with mean curvature H0, thenZ
†

jHjd† �

Z
†

H 2
0

jHj
d†:

If equality occurs, we prove that there exists a local isometric immersion
of � in R3;1 (the Minkowski spacetime) with second fundamental form
given by K . We also examine, under weaker conditions, the case where the
spacetime is the .nC2/-dimensional Minkowski space RnC1;1 and establish
a stronger rigidity result.

1. Introduction

Let .E4;gE/ be a spacetime satisfying the Einstein field equations; that is, .E4;gE/

is a 4-dimensional time-oriented Lorentzian manifold such that

RicE�
1
2
REgE D T;

where RE (respectively, RicE) denotes the scalar curvature (respectively, the Ricci
curvature) of (E;gE/, and T is the energy-momentum tensor which describes the
matter content of the ambient spacetime. We also assume that .E4;gE/ satisfies the
dominant energy condition; that is, its energy-momentum tensor T has the property
that, for every future-directed causal vector � 2 �.T E/, the vector field dual to the
one-form �T.�; � / is a future-directed causal vector of T E.

Let M 3 be an immersed spacelike hypersurface of .E4;gE/ with induced Rie-
mannian metric g. Assume that T is the future-directed timelike normal vec-
tor to M and denote by K the associated second fundamental form defined by
K.X;Y /D gE.r

E
X

T;Y / for all X;Y 2 �.TM/. Here rE denotes the Levi-Civita
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connection of the spacetime. Then the Gauss, Codazzi and Einstein equations
provide constraint equations on M , given by�

�D 1
2

�
R� jKj2

M
C .trM .K//2

�
;

J D�ı.K� trM .K/g/;

where R is the scalar curvature of .M 3;g/, jKj2 and tr.K/ denote the squared
norm and the trace of K with respect to g, and ı is the divergence on M . Here �
and J are the energy and momentum density of the matter fields, and are given by

�D T.T;T / and Ji D T.ei ;T /

for 1� i � 3, where fe1; e2; e3g is a local basis of the spatial tangent space of M .
The dominant energy condition for the spacetime implies that �� jJ j as functions
on M . A triplet .M 3;g;K/ which satisfies the dominant energy condition is called
an initial data set.

Now we consider a codimension-two spacelike orientable surface †2 in the
spacetime E4. We will represent by H the mean curvature vector field on †2,
defined as

HD tr II;

where II is the second fundamental form of this immersion. Since the normal
space at each point of †2 is a Lorentzian plane, it can be spanned by two future-
directed null normal vector fields NC and N�, normalized in such a way that
hNC;N�i D �

1
2

. We denote by �C and �� the components of H with respect
to NC and N�. They are the so-called future-directed null expansions of H, and
measure the area growth when †2 varies in the corresponding directions. It is clear
that

jHj2 D��C��:

If �C and �� are both negative, the surface will be called a trapped surface. A
surface with �C D 0 or �� D 0 is called an apparent horizon (or a marginally
trapped surface). Note that if †2 is trapped or marginally trapped, then the mean
curvature vector H is a causal vector at each point. This is why the mean curvature
field H being spacelike everywhere is equivalent to † being an untrapped surface.

In the case that †2 spans a spacelike hypersurface in the spacetime, that is, when
there exists a spacelike hypersurface �3 immersed in E4 such that @�3 D†2, the
normal null vector fields NC and N� may be ordered in such a way that they project
onto directions tangent to �3 which are, respectively, outer and inner normal at
each point of †2. In other words, if N is the inner normal unit vector field on †2

tangent to �3 and T is the future-directed timelike normal to �3 in E4, we put

NC D
1
2
.T �N / and N� D

1
2
.T CN /:
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The second fundamental form of †2 in E4 is given in terms of the Lorentzian basis
of the normal bundle the hypersurface � by

II.X;Y /D g.AX;Y /N Cg.BX;Y /T

for all X;Y 2 �.T†/, where AX WD �rX N denotes the shape operator of †2

in �3 and r is the Levi-Civita connection of the Riemannian metric g on M . The
mean curvature vector field H of † in E can be reexpressed by

HD �CN�C ��NC DHN C tr† .K/T;

where H D tr A is the mean curvature of †2 in �3 and tr† .K/ is the trace on †2

of the shape operator K of �3 in E4. The norm of H can be also reexpressed as

(1) jHj2 DH 2
� tr† .K/

2
D��C��;

where �˙ D tr† .K/ ˙ H are the future-directed null expansions of H. The
spacelike surfaces with �C < 0 (respectively, �� < 0) are referred to as outer
(respectively, inner) trapped surfaces. It is easy to see that untrapped submanifolds,
that is, codimension-two spacelike submanifolds of a spacetime with spacelike
mean curvature vector field, naturally divide into two disjoint classes:

Lemma 1. Let†2 be a compact spacelike codimension-two submanifold embedded
in a spacetime E4. Suppose that its mean curvature vector field H is spacelike and
that †2 is the boundary of a spacelike hypersurface �3 in E4. Then �3 is either
mean-convex or mean-concave.

Proof. It suffices to take into account that if .�C; ��/ are the future-directed null
expansions of the mean curvature vector field H associated to the embedding of †2

in the domain �3, we have, from (1),

0< jHj2 D��C�� and �C� �� D 2H;

where H is the inner mean curvature function of †2 in �3. The first of these two
equalities implies that �C and �� have opposite signs everywhere on †2. Then,
from the second one, we have that either H > 0 or H < 0 on the whole of †2. �

Note that this fact obviously holds for higher-dimensional initial data sets. In
the following, an untrapped surface (respectively, a codimension-two untrapped
submanifold) which bounds a compact, connected and mean-convex spacelike
hypersurface will be referred to as an outer untrapped surface (respectively, an
outer untrapped submanifold). It is worth noting that round spheres in Euclidean
slices are untrapped surfaces. The same occurs in general for large radial spheres
in asymptotically flat spacelike hypersurfaces.

We now give the precise statement of our main result:
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Theorem 2. Let� be a compact domain with an outer untrapped boundary surface
† WD @� in an initial data set .M 3;g;K/. If � has no apparent horizon in its
interior, then for all ' 2 �.=S†/,

(2)
Z

†

�
1

jHj
j =D'j2�

jHj

4
j'j2

�
d†� 0;

where =S† is the extrinsic spinor bundle on † and =D is the extrinsic Dirac operator
(see Section 2). Moreover, if equality occurs, then there exists a local isometric
immersion of � in R3;1 with K as second fundamental form.

As a direct application, we prove the following result:

Theorem 3. Under the conditions of Theorem 2, assume furthermore that† admits
an isometric and isospin immersion into R3 with mean curvature H0. Then

(3)
Z

†

jHj d†�

Z
†

H 2
0

jHj
d†:

Moreover, if equality occurs, then † is connected and there exists a local isometric
immersion of � in R3;1 with second fundamental form given by K and mean
curvature vector of † satisfying jHj DH0.

If we consider the case of codimension-two outer untrapped submanifolds in the
.nC2/-dimensional Minkowski spacetime RnC1;1, we prove that we can remove the
assumption on the nonexistence of apparent horizons (see Theorem 14). Moreover,
in this situation, we completely characterize the equality case. Namely:

Theorem 4. Let † be a codimension-two outer untrapped submanifold in RnC1;1.
If † admits an isometric and isospin immersion into RnC1 with mean curvature H0,
then inequality (3) holds and equality is achieved if and only if † lies in a hyperplane
in RnC1;1 and † is connected.

Remark 5. In Theorems 3 and 4, we assumed that the boundary hypersurface of
a compact domain in a certain spin manifold admits an isospin immersion into
a Euclidean space. In general, an .n C 1/-dimensional spin manifold induces
a spin structure on each of its orientable immersed hypersurfaces through their
corresponding immersions (see Section 2.2 below). Two distinct immersions of
an orientable manifold †n into two (possibly different) .nC 1/-dimensional spin
manifolds are said to be isospin when the spin structures induced on †n from the
corresponding ambient manifolds coincide (up to an equivalence). Recall that spin
structures on †n are parametrized by the cohomology group H 1.†n;Z2/. Thus,
for example, if †n is a simply connected manifold, any two immersions of †n in
two arbitrary .nC 1/-dimensional spin manifolds must be isospin. Consequently if
the surface † in Theorem 3 has genus zero or the hypersurface † in Theorem 4 is



ON A LIU–YAU TYPE INEQUALITY FOR SURFACES 181

simply connected, we only need to suppose that they are mean-convex in their initial
data sets and that they can be immersed as hypersurfaces in a Euclidean space.

Also it is clear that when the two immersions defined on †n lie in the same
ambient space and are regularly homotopic, the associated induced spin structures
are equivalent. In fact, two immersions are said to be regularly homotopic (isotopic,
according to Pinkall [1985] and others) if we may pass continuously from one to
the other through a family of immersions. Consequently they determine the same
class in H 1.†n;Z2/. Indeed in the case nD 2, two spin structures induced from
the spin structure of the 3-dimensional spin ambient space through two different
embeddings are equivalent if and only if they are regularly homotopic (besides the
previous reference, see [Hass and Hughes 1985, pp. 104–105] and [Benedetti and
Silhol 1995, p. 656]).

Then take any compact mean-convex surface † embedded in R3. This surface
bounds a compact domain in three-dimensional Euclidean space which is a totally
geodesic initial data set in the Minkowski space R3;1. If we slightly deform this
surface, the positivity of the mean curvature is preserved by continuity, and, from
the arguments above, the same holds for the induced spin structure. So there are
examples of mean-convex boundaries in initial data sets of spacetimes admitting
isospin immersions in Euclidean spaces. Many of them are nonconvex. In fact,
take† to be, for instance, a right cylinder with two half-spheres closing its extremes
(after smoothing) or a torus of revolution thin enough (if we want to have some
point with negative Gauss curvature).

Note that if † is not convex, we cannot use the Weyl theorem and so we do not
know whether it is possible to immerse† isometrically in Euclidean space R3. This
is why in this case, Theorems 3 and 4 should be viewed as comparison theorems for
the mean curvatures of two immersions in the spirit of a classical result by Herglotz.
Indeed, Herglotz [1943] gave a succinct proof of Cohn-Vossen’s rigidity result for
convex surfaces based on an integral inequality involving the second fundamental
forms of two embeddings (see, e.g., [Montiel and Ros 1997, Section 7.4]). Our
Theorem 3 provides an inequality of this type which could be a first step in enlarging
the Cohn-Vossen theorem to include Euclidean mean-convex compact surfaces.

In this direction, one can easily see that Theorem 4 implies that the integral
of the mean curvature is preserved through bendings of compact mean-convex
hypersurfaces embedded in a Euclidean space. This was first proved by Almgren
and Rivin [1998] (see also [Rivin and Schlenker 1999]).

Recall that Liu and Yau [2006] (see also [Liu and Yau 2003]) proved the following
positivity result: Let .�3;g;K/ be an initial data set for the Einstein equation.
Suppose that the boundary @� has finitely many components †i , 1� i � l , each
of which has positive Gauss curvature and spacelike mean curvature vector in the
spacetime. Then for all i ,
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(4)
Z

†i

jHj d†�

Z
†i

H0 d†:

Moreover, if equality occurs for some i 2 f1; : : : ; lg, then @� is connected and the
spacetime is flat along �.

The proof of this result relies on a generalized version of the positive mass
theorem and on the resolution of the Jang equation. One of the key ingredients in
the proof is provided by the Weyl embedding theorem [1916], which asserts that
the condition that † embeds isometrically as a strictly convex hypersurface in R3 is
equivalent to † having positive Gauss curvature. Note that by the Cauchy–Schwarz
inequality, inequality (4) implies (3).

More recently, Eichmair, Miao and Wang [Eichmair et al. 2012] generalized
inequality (4) for time-symmetric initial data under weaker convexity assumptions
for the embedding of † in R3. We point out that, in contrast to Liu and Yau’s result,
we do not assume that the immersion is a strictly convex embedding. In particular,
the mean curvature H0 is not assumed to be positive.

2. The Riemannian setting

2.1. Preliminaries on spin manifolds. Let .M;g/ be an .nC1/-dimensional Rie-
mannian spin manifold, which we will suppose from now on to be connected, and
denote by r the Levi-Civita connection on its tangent bundle TM. We choose a spin
structure on M and consider the corresponding spinor bundle SM , a rank-2.nC1/=2

complex vector bundle. Denote by 
 the Clifford multiplication

(5) 
 W C`.M / �! End.SM /;

which is a fiber-preserving algebra morphism. Then SM becomes a bundle of
complex left modules over the Clifford bundle C`.M / over the manifold M .
When .nC 1/ is even, the spinor bundle splits into the direct sum of the positive
and negative chiral subbundles:

(6) SM D SMC
˚SM�;

where SM˙ are defined to be the ˙1-eigenspaces of the endomorphism 
 .!nC1/,
with !nC1 D i .nC2/=2e1e2 � � � enC1 the complex volume form.

On the spinor bundle SM , one has (see [Lawson and Michelsohn 1989]) a natural
Hermitian metric, denoted by h � ; � i, and the spinorial Levi-Civita connection r
acting on spinor fields. It is well-known that the Hermitian scalar product, the
Levi-Civita connection r and the Clifford multiplication (5) satisfy, for any spinor
fields  ; ' 2�.SM / and any tangent vector fields X;Y 2�.TM/, the compatibility
conditions
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h
 .X / ; 
 .X /'i D jX j2h ; 'i;(7)

X h ; 'i D hrX ; 'iC h ;rX 'i;(8)

rX

�

 .Y / 

�
D 
 .rX Y / C 
 .Y /rX :(9)

Since r!nC1 D 0, for nC 1 even, the decomposition (6) is orthogonal and r
preserves this decomposition.

The Dirac operator D on SM is the first-order elliptic differential operator
locally given by

D D

nC1X
iD1


 .ei/rei
;

where fe1; : : : ; enC1g is a local orthonormal frame of TM. When .nC 1/ is even,
the Dirac operator interchanges positive and negative spinor fields; that is,

D W �.SM˙/ 7�! �.SM�/:

2.2. Hypersurfaces and induced structures. In this section, we compare the res-
trictions =S† of the spinor bundle SM of a spin manifold M to an orientable
hypersurface † immersed into M , and its Dirac-type operator =D to the intrinsic
spinor bundle S† of the induced spin structure on † and its fundamental Dirac
operator D†. A fundamental case will be when the hypersurface † is just the
boundary @M of a manifold M . These facts are in general well-known (see, for
example, [Bureš 1993; Trautman 1995; Bär 1998; Baum et al. 1990; Hijazi et al.
2001a; 2001b; 2002; Hijazi and Montiel 2014]). For completeness, we introduce
the notation and key facts.

Denote by =r the Levi-Civita connection associated with the induced Riemannian
metric on †. The Gauss formula says that

(10) =rX Y DrX Y �g.AX;Y /N;

where X;Y are vector fields tangent to the hypersurface †, the vector field N is a
global unit field normal to †, and A stands for the shape operator corresponding
to N ; that is,

(11) rX N D�AX for all X 2 �.T†/:

We have that the restriction
=S† WD SM j†

is a left module over C`.†/ for the induced Clifford multiplication

=
 W C`.†/ �! End.=S†/
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given by

(12) =
 .X / D 
 .X /
 .N / 

for every  2 �.=S†/ and X 2 �.T†/. (Note that a spinor field on the ambient
manifold M and its restriction to the hypersurface † will be denoted by the same
symbol.) Consider the Hermitian metric h � ; � i on =S† induced from that of SM .
This metric immediately satisfies the compatibility condition (7) if one considers
the Riemannian metric on † induced from M and the Clifford multiplication =

defined in (12). Now the Gauss formula (10) implies that the spin connection =r
on =S† is given by the spinorial Gauss formula

(13) =rX DrX �
1
2 =
 .AX / DrX �

1
2

 .AX /
 .N / 

for every  2 �.=S†/ and X 2 �.T†/. Note that the compatibility conditions (7),
(8) and (9) are satisfied by .=S†; =
 ; h � ; � i; =r/.

Denote by =D W �.=S†/! �.=S†/ the Dirac operator associated with the Dirac
bundle =S† over the hypersurface. It is a well-known fact that =D is a first-order
elliptic differential operator which is formally L2-selfadjoint. By (13), for any
spinor field  2 �.SM /,

=D D

nX
jD1

=
 .ej / =rej
 D 1

2
H � 
 .N /

nX
jD1


 .ej /rej
 ;

where fe1; : : : ; eng is a local orthonormal frame of T† and H D tr A is the mean
curvature of † corresponding to the orientation N . Using (13) and (11), it is
straightforward to see that the skew-commutativity rule

(14) =D.
 .N / /D�
 .N / =D 

holds for any spinor field  2 �.=S†/. It is important to point out that, from this
fact, the spectrum of =D is always symmetric with respect to zero, while this is the
case for the Dirac operator D† of the intrinsic spinor bundle only when n is even.
Indeed, in this case, we have an isomorphism of Dirac bundles

.=S†; =
 ; =D/� .S†; 
†;D†/;

and the decomposition =S†D =S†C˚ =S†�, given by

=S†˙ WD f 2 =S† j i
 .N / D˙ g;

corresponds to the chiral decomposition of the spinor bundle S†. Hence =D inter-
changes =S†C and =S†�.

When n is odd the spectrum of D† is not necessarily symmetric. In fact, in
this case, the spectrum of =D is just the symmetrization of the spectrum of D†.
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This is why the decomposition of SM into positive and negative chiral spinors
induces an orthogonal and =
 ; =D-invariant decomposition =S†D =S†C˚ =S†�, with
=S†˙ WD .SM˙/j†, in such a way that

.=S†˙; =
 ; =Dj=S†˙
/� .S†;˙
†;˙D†/:

Also, 
 .N / interchanges the decomposition, and both maps 
 .N / W =S†˙! =S†�
are isomorphisms.

Consequently, studying the spectrum of the induced operator =D is equivalent to
studying the spectrum of the Dirac operator D† of the Riemannian spin structure
induced on the hypersurface †.

2.3. A spinorial Reilly-type inequality for manifolds with boundary. Here, we
prove a spinorial Reilly-type inequality (see [Liu and Yau 2003] and [Raulot 2013]).

Recall that on a compact .nC1/-dimensional Riemannian spin manifold M with
boundary †D @M , for any spinor field  2�.SM /, the fundamental Schrödinger–
Lichnerowicz formula is given by:

(15)
Z

†

�
h =D ; i �

H

2
j j2

�
d†D

Z
M

�
1
4
Rj j2Cjr j2� jD j2

�
dM;

where R is the scalar curvature of M . Note that the assumption R � 0 is quite
natural and has been used intensively to get, in particular, lower bounds on both D

and =D. However, in our situation (see Section 3.1), we have a weaker assumption
on the scalar curvature. More precisely, we assume that there exists a smooth vector
field X 2 �.TM/ such that

(16) R� 2jX j2C 2ı.X /;

where jX j2 D g.X;X / and ı is the divergence of X D

nX
jD1

X j ej 2 �.TM/, locally
given by

ı.X /D�

nC1X
iD1

ei.X
i/:

Then we prove an adapted Reilly-type inequality. Namely:

Proposition 6. Let M a compact Riemannian spin manifold with boundary † such
that there exists a smooth vector field X 2 �.TM/ satisfying (16). Then

(17)
Z

†

˝
=D � 1

2
.H Cg.X;N // ;  

˛
d†�

Z
M

�
1
2
jr j2� jD j2

�
dM:

Moreover, equality occurs if and only if the spinor field  satisfies

(18) rY  D�g.X;Y / 

for all Y 2 �.TM/.
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Proof. First note that, since

ı.j j2X /D�X.j j2/Cj j2ı.X /;

the Stokes formula givesZ
M

R

4
j j2 dM D

Z
M

�
R

4
�

1

2
ı.X /

�
j j2 dM C

1

2

Z
M

ı.X /j j2 dM

D
1

4

Z
M

.R� 2ı.X //j j2 dM C
1

2

Z
M

X.j j2/ dM

C
1

2

Z
†

g.X;N /j j2 d†:

Inserting this identity in (15) leads toZ
†

˝
=D � 1

2
.H Cg.X;N //;  

˛
d†

D

Z
M

�
1
4
.R� 2ı.X //j j2C 1

2
X.j j2/

�
dM C

Z
M

.jr j2� jD j2/ dM

and, using (16), we conclude that

(19)
Z

†

˝
=D � 1

2
.H Cg.X;N //;  

˛
d†

�

Z
M

�
1
2
jX j2j j2C 1

2
X.j j2/

�
dM C

Z
M

.jr j2� jD j2/ dM:

If we let zrY  WD rY  Cg.X;Y / , it is straightforward to compute

j zr j2 D jr j2CjX j2j j2C 2 RehrX ; i;

and since 2 RehrX ; i DX.j j2/, we get

1
2
X.j j2/� �1

2
jr j2� 1

2
jX j2j j2;

with equality if and only if zr D 0. Combining this last inequality with (19)
finishes the proof. �

2.4. A local boundary elliptic condition for the Dirac operator. As before, † is
the boundary of an .nC 1/-dimensional Riemannian spin compact manifold M .
We define two pointwise projections

P˙ W =S† �! =S†

on the induced Dirac bundle over the hypersurface by

(20) P˙ D
1
2
.Id=S†˙i
 .N //:
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It is a well-known fact that these two orthogonal projections P˙ acting on the
spin bundle =S† provide local elliptic boundary conditions for the Dirac operator D

of M . The ellipticity of these boundary conditions and that of the Dirac operator D

allow us to solve boundary value problems for D on M by prescribing, on the
boundary †, the corresponding P˙-projections of the solutions. Namely, we have:

Proposition 7 [Hijazi and Montiel 2014]. Let M be a compact Riemannian spin
manifold with boundary a hypersurface †. If ' 2 �.=S†/ is a smooth spinor field
of the induced Dirac bundle, then the boundary value problem�

D D 0 on M;

P˙. j†/D P˙' on †

for the Dirac operator has a unique smooth solution  2 �.SM /.

For a more general discussion on boundary conditions for the Dirac operator, we
refer to [Booß-Bavnbek and Wojciechowski 1993], [Ballmann and Bär 2012] or
[Bartnik and Chruściel 2005].

2.5. A holographic principle for the existence of parallel spinors. It is by now
standard (see [Hijazi et al. 2001b; 2002]) to make use of (15) for a compact
Riemannian spin manifold M with nonnegative scalar curvature R, together with
the solution of an appropriate boundary value problem for the Dirac operator D

of M , in order to establish a certain integral inequality for the induced Dirac
operator =D of the boundary hypersurface @M D †. Raulot [2013] uses such
arguments for compact manifolds whose scalar curvature satisfies (16). In this
section, we generalize the holographic principle for the existence of parallel spinors
proved in [Hijazi and Montiel 2014] in the context studied in [Raulot 2013].

First we need to recall the following fact:

Lemma 8 [Hijazi et al. 2002]. For any smooth spinor field  2 �.=S†/,Z
†

h =D ; i d†D 2

Z
†

h =DPC ;P� i d†:

The proof simply relies on the self-adjointness of the Dirac operator =D and on
the identities

(21) =DP˙ D P� =D;

which are obtained using (14) and (20).

Proposition 9. Let M be a compact Riemannian spin manifold with scalar curva-
ture satisfying (16) such that

F WDH Cg.X;N / > 0:
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For any ' 2 �.=S†/, one has

(22) 0�

Z
†

�
1

F
j =DPC'j

2
�

F

4
jPC'j

2

�
d†:

Moreover equality holds if and only if there exists a parallel spinor field 2�.SM /

such that PC D PC' along the boundary hypersurface † and the vector field X

vanishes identically on M .

Proof. Take any spinor field ' 2 �.=S†/ of the induced spinor bundle on the
hypersurface and consider the boundary value problem�

D D 0 on M;

PC D PC' on †

for the Dirac operator D and the boundary condition PC. The existence and
uniqueness of a smooth solution  2 �.SM / for this boundary problem is ensured
by Proposition 7. This solution  , inserted in inequality (17), translates to

(23) 0�
1

2

Z
M

jr j2 dM �

Z
†

�
h =D ; i �

F

2
j j2

�
d†:

Note that if equality is achieved, then  is a parallel spinor field satisfying (18).
Since such a spinor field has no zeros, the vector field X vanishes identically on
the whole of M . Inequality (23) combined with Lemma 8, together with the fact
that the decomposition

 D PC CP� 

is pointwise orthogonal, imply

(24) 0�

Z
†

�
2h =DPC ;P� i �

F

2
jPC j

2
�

F

2
jP� j

2

�
d†:

Since the function F is assumed to be positive on †, it follows that

0�

ˇ̌̌̌r
2

F
=DPC �

r
F

2
P� 

ˇ̌̌̌2
D

2

F
j =DPC j

2
C

F

2
jP� j

2
� 2h =DPC ;P� i:

In other words,

2h =DPC ;P� i �
F

2
jP� j

2
�

2

F
j =DPC j

2;

which, when combined with inequality (24), implies inequality (22). Now, if
equality holds, we already noticed that the spinor field  must be parallel with
PC D PC' and X � 0.

Conversely, if we assume that there is a parallel spinor field  on M and X � 0,
then we are in the situation covered in [Hijazi and Montiel 2014]. �
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With this, we are ready to state the main result of this section:

Theorem 10. Let M be a compact Riemannian spin .nC1/-dimensional manifold,
and X 2 �.TM/ such that

R� 2jX j2C 2ı.X / and F WDH Cg.X;N / > 0:

Then, for any spinor field ' 2 �.=S†/, one has

(25) 0�

Z
†

�
1

F
j =D'j2�

F

4
j'j2

�
d†:

Equality holds if and only if there exist two parallel spinor fields‰C; ‰� 2�.SM /

such that PC‰
C D PC' and P�‰

� D P�' on the boundary and X � 0.

Proof. From the symmetry between the two boundary conditions PC and P� for
the Dirac operator on M (see Proposition 7 and Lemma 8), one can repeat the
proof of Proposition 9 to get the inequality corresponding to (22) where the positive
projection PC is replaced by the negative one P�. Hence, for any spinor field
' 2 �.=S†/, we also have

(26) 0�

Z
†

�
1

F
j =DP�'j

2
�

F

4
jP�'j

2

�
d†:

Taking into account the relation (21) and the pointwise orthogonality of the projec-
tions P˙, the sum of the two inequalities (22) and (26) yields (25). The equality
case is a consequence of Proposition 9. �
Remark 11. Note that, as observed in [Hijazi and Montiel 2014], equality in (25)
does not imply that the two parallel spinors in Theorem 10 coincide.

We should also mention that inequality (25) has a nice interpretation in terms
of the first eigenvalue of the boundary Dirac operator =DF associated with the
conformal metric gF D F2g. More precisely:

Corollary 12. Let .M nC1;g/ be an .nC 1/-dimensional compact connected Rie-
mannian spin manifold satisfying the assumptions of Theorem 10. Then the first
nonnegative eigenvalue �1. =DF / of the Dirac operator corresponding to the confor-
mal metric gF D F2g satisfies

�1. =DF /�
1
2
;

and equality holds if and only if M admits a nontrivial parallel spinor (and
X � 0). In this case, the eigenspace corresponding to �1. =DF / D

1
2

consists of
restrictions to† of parallel spinor fields on M multiplied by the function F�.n�1/=2.
Furthermore the boundary hypersurface † has to be connected.

The proof is omitted since it is similar to [Hijazi and Montiel 2014, Theorem 1].
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2.6. A discussion on quasilocal masses. In this section, we consider a 3-dimen-
sional compact connected Riemannian manifold .M 3;g/ with nonnegative scalar
curvature, whose boundary †2 has positive mean curvature H . Note that since M

is a 3-dimensional manifold, it is necessarily spin. Moreover we also assume that
there exists an immersion �0 of the surface † in R3 with mean curvature H0.

One of the fundamental results in classical general relativity is certainly the proof
of the positivity of the total energy by Schoen and Yau [1981] and Witten [1981].
This led to the more ambitious claim of associating energy to extended, but finite,
spacetime domains, that is, at the quasilocal level. Obviously the quasilocal data
could provide a more detailed characterization of the states of the gravitational
field than the global ones, so they are interesting in their own right. For a complete
review of these topics, we refer to [Szabados 2004]. It is currently required that a
quasilocal mass satisfies natural properties, among which are:

(I) Nonnegativity: M.†/� 0.

(II) Rigidity: M.†/D 0 if and only if † is in the Minkowski spacetime.

(III) Monotonicity: If †1 D @M1 and †2 D @M2 such that M1 � M2, then
M.†1/�M.†2/.

(IV) ADM limit: If .†k/ is a sequence of surfaces that exhaust an asymptotically
flat manifold .N 3;g/, then

lim
k!1

M.†k/DmADM.g/;

where mADM.g/ is the ADM mass of .N;g/.

(V) Black hole limit: If † is a horizon in an asymptotically flat manifold .N 3;g/,
then

M.†/D

r
A

16�
;

where A is the area of †.

Brown and York [1993] proposed the following definition for the quasilocal mass
of a surface † (now called the Brown–York mass):

mBY .†/ WD
1

8�

Z
†

.H0�H / d†:

The nonnegativity of mBY .†/ is proved in [Shi and Tam 2002] under additional
assumptions. Indeed they impose that �0 is a strictly convex isometric embedding,
which by the Weyl embedding theorem [1916] is equivalent to the fact that † has
positive Gauss curvature. Moreover, in this situation, the embedding �0 is unique
up to an isometry of R3.
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Recently Lam [2011] proposed in his thesis the definition

mL.†/ WD
1

16�

Z
†

1

H0

.H 2
0 �H 2/ d†:

He proves that mL.†/ has several interesting properties for certain surfaces in
complete asymptotically flat Riemannian manifolds that are the graphs of smooth
functions over R3 (see the same work for a precise description). More precisely, it
satisfies Properties (I), (III), (IV) and (V). Moreover, using the Cauchy–Schwarz
inequality, it is straightforward to check that mBY .†/�mL.†/.

From [Hijazi and Montiel 2014], we can define a quasilocal mass similar to the
Brown–York and Lam masses, and prove its nonnegativity in the more general
context described in the beginning of this section. Indeed, if we let

m.†/ WD
1

16�

Z
†

1

H
.H 2

0 �H 2/ d†;

then, from the immersion �0, there exists a spinor field ‰0 2 �.=S†/ satisfying the
Dirac equation

=D‰0 D
H0

2
‰0 and j‰0j D 1:

It is obtained by taking the restriction to † of a parallel spinor field on R3. Now
taking ‰0 in inequality (25) with X � 0 and F DH gives m.†/� 0. Moreover,
from the same reference, m.†/D 0 if and only if M is a Euclidean domain and
the embedding of † in M and its immersion in R3 are congruent. In other words,
properties (I) and (II) are satisfied.

Note that if we assume that† has positive Gauss curvature (which is a stronger as-
sumption) then using the Cauchy–Schwarz inequality implies that m.†/�mBY .†/,
and the nonnegativity of m.†/ follows from the nonnegativity of the Brown–York
mass. On the other hand, it is also proved in [Hijazi and Montiel 2014, Proof of
Corollary 10] that (IV) holds. However it is clear from the definition that the
mass m.†/ is not defined for minimal surfaces (and so for apparent horizons).
Moreover the monotonicity property (III) is not satisfied in general. Take for example
the 3-dimensional Schwarzschild manifold .N 3;g/D .R3 n f0g;u4geucl/, where
u WD 1CM=2r , M > 0, and geucl is the Euclidean metric. For a sphere S2

r in N 3,
its isometric image in R3 is S2

ru2 . Thus H0 D 2=ru2 and since the Schwarzschild
metric is conformal to the Euclidean metric,

H D u�2

�
2

r
C

4

u

@u

@r

�
:
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A direct computation gives

m.S2
r /DM

r CM=2

r �M=2
;

and so m.S2
r / is monotonically decreasing to the ADM mass M as r goes to

infinity.

3. Spacelike surfaces in initial data sets

3.1. The Jang equation. In this section, we recall some well-known facts about
the Jang equation (for more details, we refer to [Schoen and Yau 1981], [Yau 2001]
or [Andersson et al. 2011]). This equation first was used by Jang [1978] in his
attempt to prove the positive mass theorem using the inverse mean curvature flow.
However, as shown by Schoen and Yau [1981], this equation can be used to reduce
the proof of the general positive mass theorem to the case of time-symmetric initial
data sets (that is, Kij D 0/ previously obtained by the same authors [1979]. More
recently, Liu and Yau [2003; 2006] defined a quasilocal mass, generalizing the
Brown–York quasilocal mass, and proved its positivity using the Jang equation.
Other similar applications of the Jang equation can be found in, for example, [Wang
and Yau 2007; 2009].

The problem can be stated as follows: Let .M 3;g;K/ be an initial data set for
the Einstein equation and consider the four-dimensional manifold M �R equipped
with the Riemannian metric h � ; � i WD g˚ dt2. The problem is to find a smooth
function u WM ! R such that the hypersurface yM of M �R obtained by taking
the graph of u over M satisfies the equation

H yM
D tr yM .K/;

where H yM
denotes the mean curvature of yM in .M � R; h � ; � i/ and tr yM . � / is

the trace on yM with respect to the induced metric. This geometric problem is
equivalent to solving the nonlinear second-order elliptic equation

(27)
3X

i;jD1

�
gij
�

uiuj

1Cjruj2

��
.r2u/ijp
1Cjruj2

�Kij

�
D 0;

where r (respectively, r2) denotes the Levi-Civita connection (respectively, the
Hessian) of the metric g, ui D gij uj and uj D ej .u/. Note that the metric induced
by h � ; � i on yM is

Ogij D gij Cuiuj

and can be viewed as a deformation of the metric g on M . In the following,
we adopt the convention that M and yM denote, respectively, the Riemannian
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manifolds .M;g/ and .M; Og/. Analogously, ifr denotes the Levi-Civita connection
for M , then yr denotes that on yM and so on. Since we assume that the initial data
set .M 3;g;K/ comes from a spacetime satisfying the dominant energy condition,
we have that the relation

(28) 0� 2.�� jJ j/� yR� 2jX j2
Og
� 2yı.X /

holds on yM , where

(29) X D ! � yr log.f /;

! is the tangent part of the vector field dual to �K. � ; y�/, f D �h@t ; y�i and y�
denotes the unit normal vector field to yM in M � R. All the quantities Kij , �
and J are defined on M �R by parallel transport along the R-factor. Moreover
equality occurs in (28) if and only if � D jJ j and the second fundamental form
of yM in M �R is K.

It is important to note here that in Theorem 2 we assume that there is no apparent
horizon in the interior of� so that there exists a global solution of the Jang equation
which does not blow up.

3.2. Proof of Theorem 2. From [Yau 2001], and since we assumed that � has no
apparent horizon in its interior, there exists a smooth solution u on � of the Jang
equation (27), defined with the Dirichlet boundary condition

uj† � 0:

This boundary condition ensures that the metrics Og and g coincide on the boundary†
so that the Dirac operators =D acting on =S† and y=D on y=S† also coincide. Moreover,
from a calculation in the same work,

yH � Og.X; yN /D f �1H � � jruj tr†.K/;

where yN denotes the unit outward normal vector field of † in y� and � 2 f˙1g.
From this equality and since f D�h@t ; y�i D 1=

p
1Cjruj2, we easily see that

(30) F WD yH � Og.X; yN /� jHj D

q
H 2� tr†.K/2:

Since we assume that † has a spacelike mean curvature vector H, this implies
that the function F is positive on †. From the discussion of Section 3.1, we also
have that the resulting Riemannian manifold y� satisfies the condition (16) because
of (28), the vector field X being defined here by (29). Clearly all the assumptions
of Theorem 10 are fulfilled and we deduce that for all ' 2 �.=S†/,

0�

Z
†

�
1

F
j =D'j2�

F

4
j'j2

�
d†;



194 OUSSAMA HIJAZI, SEBASTIÁN MONTIEL AND SIMON RAULOT

which by inequality (30) implies inequality (2).
Now assume that equality is achieved. Once again we apply Theorem 10, and

then y� has at least a parallel spinor field ˆ. In particular, y� is Ricci-flat, and since
it is a 3-dimensional domain, it is flat. Moreover, if we have equality in (28), then
the second fundamental form of y� in M �R is Kij . So we can choose a coordinate
system yx D .yx1; yx2; yx3/ in a neighborhood U of a point p 2� such that Ogij D ıij .
In this chart,

gij D ıij �
@u

@yxi

@u

@yxj
;

and this shows that if .yx1; yx2; yx3; t/ denotes coordinates in the Minkowski spacetime,
the graph of u over U isometrically embeds in R3;1 with second fundamental form
given by Kij . Then it is clear that � locally embeds in the Minkowski spacetime
with K as second fundamental form as asserted. �

As a first consequence, we have the estimate proved by Raulot [2013] for the
first eigenvalue of the Dirac operator on †.

Corollary 13. Under the same conditions of Theorem 2, the first eigenvalue �1.D†/

of the Dirac operator satisfies

�1.D†/
2
�

1
4

inf
†
jHj2:

Moreover, if equality occurs, then † is connected and there exists a local isometric
embedding of � as a spacelike hypersurface in R3;1 with K as second fundamental
form.

Proof. The inequality on �1.D†/ follows directly by taking ' D ˆ 2 �.=S†/

in (2), where ˆ is an eigenspinor for the Dirac operator =D associated with the
eigenvalue �1. =D/ (which equals �1.D†/). On the other hand, the second part of
the equality case follows directly from Theorem 2. For the connectedness of †, it
is enough to remark that, from [Hijazi et al. 2001a], the eigenspace associated to
�1. =D/ corresponds to the restriction to† of the space of parallel spinor fields on the
domain y� obtained by solving the Jang equation. Then, assuming that† has several
connected components, we fix one of them, say†0, and define a spinor field on† by

ẑ D

�
ˆ0 on †0;

0 on †�†0;

whereˆ0 is an eigenspinor for the extrinsic Dirac operator =D associated to the eigen-
value �1. =D/. It is then straightforward to check that ẑ is also an eigenspinor associ-
ated to �1. =D/ so that it comes from the restriction of a parallel spinor on y�. However,
since such a spinor field has constant norm, it is impossible unless† is connected. �
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Proof of Theorem 3. In order to establish inequality (3) it is sufficient to apply
inequality (2) to the restriction to † of a parallel spinor field on R3. From the
equality case of Theorem 2, we deduce that � locally embeds in the Minkowski
spacetime with K as a second fundamental form. On the other hand, we have
equality in (30) so that yH D jHj, and then equality in (3) now readsZ

†

�
yH �

H 2
0

yH

�
d†D 0:

We conclude by applying the rigidity part of [Hijazi and Montiel 2014, Theorem 3]
to the compact Ricci-flat manifold y� to deduce that † is connected and jHj DH0.

�

3.3. Codimension-two outer untrapped submanifolds in the Minkowski space-
time. In this section, we prove that inequality (2) holds in the case of codimension-
two outer untrapped submanifolds of the Minkowski spacetime without any as-
sumption on the existence of apparent horizon. More precisely, we prove:

Theorem 14. Let †n be a codimension-two outer untrapped submanifold of the
.nC 2/-dimensional Minkowski spacetime .RnC1;1; h � ; � i/. Then inequality (2)
holds. Moreover equality holds if and only if † lies in a hyperplane of RnC1;1.

Proof. First we note that by assumption † factorizes through a compact and
connected spacelike hypersurface � of RnC1;1. This factorization provides us a
Lorentzian orthonormal reference fT;N g for the normal plane of † in RnC1;1,
and, since † is the boundary of a mean-convex domain � and has spacelike mean
curvature vector, we deduce that the corresponding future-directed null expansions
satisfy �C > 0 and �� < 0. On the other hand, from the work of Bartnik and
Simon [1982] and a straightforward generalization in [Miao et al. 2010, Lemma 4.1],
the submanifold † spans a compact, smoothly immersed, maximal hypersurface �0

in RnC1;1. This means that † factorizes through another spacelike hypersurface �0

of RnC1;1. The new factorization provides us a different Lorentzian orthonormal
reference fT 0;N 0g for the normal plane of † in RnC1;1. In fact, it is obvious that
there must be a function f 2 C1.†/ such that

T 0 D .coshf /T � .sinhf /N and N 0 D�.sinhf /T C .coshf /N:

It is clear that this new reference determines a new pair of null vectors T 0˙N 0

and a new future-directed null expansion of H

(31) � 0C D ef �C and � 0� D e�f ��;

which satisfies � 0C > 0 and � 0� < 0. In particular, we get that 2H 0 D � 0C� �
0
� > 0.

Moreover, since �0 is maximal, we have tr.K0/D 0, and the Gauss formula gives
R0 D jK0j2 � 0. Here R0 is the scalar curvature of �0 equipped with the metric
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induced by the Minkowski spacetime, and K0 is the associated second fundamental
form. On the other hand, since † has a spacelike mean curvature vector, we deduce

(32) 0< jHj D
q
�� 0C�

0
� D

q
H
02� tr†.K0/2 �H

0

;

so we conclude that �0 is such that R0 � 0 and H 0 > 0. Now we can apply
Theorem 10 to �0 with X � 0, and then for all ' 2 �.=S†/,

(33) 0�

Z
†

�
1

H 0
j =D'j2�

1

4
H 0j'j2

�
d†:

Inequality (2) follows using inequality (32). Assume now that equality is achieved.
From the equality case of (33), we deduce that�0 has at least a parallel spinor so that
�0 is Ricci-flat. In particular, it has zero scalar curvature, and since R0D jK0j2D 0,
�0 has to be totally geodesic in RnC1;1, hence † lies in a hyperplane of RnC1;1.
Conversely, if † is a codimension-two submanifold with spacelike mean curvature
vector which lies in a hyperplane RnC1;1, then its second fundamental form K is
zero since a hyperplane PnC1 is totally geodesic. In particular, the squared norm
of the mean curvature vector of † satisfies

(34) jHj2 DH 2
� tr†.K/

2
DH 2;

where H is the mean curvature of † in the hyperplane P . Note that jHj> 0 since
H > 0. Consider now a parallel spinor field ˆ0 on RnC1;1. The spinorial Gauss
formula from the totally geodesic immersion of the hyperplane PnC1 in RnC1;1

and then the one from †n into PnC1 tell us that ˆ0 satisfies

=rYˆ0 D�
1
2 =
 .AY /ˆ0

for all Y 2 �.T†/, where A is the Weingarten map of †n in PnC1. Taking the
trace of this identity gives

=Dˆ0 D
1
2
Hˆ0 D

1
2
jHjˆ0;

where the last equality comes from (34). It is now straightforward to check that
equality holds in (2) for ' Dˆ0. �

Note that Theorem 4 is obtained as a direct application of the previous result.
As an application we obtain the n-dimensional counterpart of Corollary 13 in the
Minkowski spacetime with an optimal rigidity statement:

Corollary 15. Let†n be a codimension-two outer untrapped submanifold in RnC1;1.
Then

j�1.D†/j �
1
2

inf
†
jHj:
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Moreover equality occurs if and only if † is a totally umbilical round sphere in a
spacelike hyperplane of RnC1;1.

Proof. It is enough to apply the previous theorem to an eigenspinor for =D associated
with the eigenvalue �1. =D/, and we directly have the result. From Theorem 14,
† lies in a totally geodesic spacelike hyperplane PnC1 with constant positive mean
curvature H . Then the Alexandrov theorem allows to conclude that † is a totally
umbilical sphere in PnC1. The converse is clear by taking the restriction of a
parallel spinor of the Minkowski space to † via the totally geodesic immersion of
RnC1 in RnC1;1. �
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NONLINEAR EULER SUMS

ISTVÁN MEZŐ

We work out some formulas for nonlinear Euler sums involving multiple
zeta values. As applications of these formulas, we give new closed form
sums of several nonlinear Euler series, we present sums for powers of the
digamma function and deduce the Landen identities for the polylogarithms
by finite combinatorial identities.
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1. Introduction

In a letter from Goldbach to Euler, Goldbach proposed to investigate infinite series
of the form

∞∑
n=1

1
na

n∑
k=1

1
kb .

See for the historical details. In 1742 and 1743 Euler presented a number of closed
form expression for such sums and their variations. The most fundamental one is
the following [Borwein and Bradley 2006]:

(1)
∞∑

n=1

1
n2

n−1∑
k=1

1
k
=

∞∑
n=1

1
n3 = 8

∞∑
n=1

(−1)n

n2

n−1∑
k=1

1
k
.
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The sum in the middle is a zeta function value and in the present day we consider
the value of this series as a “fundamental constant”, which cannot be traced back to
“more fundamental” ones.

In the past two hundred years it had been apparent that the above sums and their
generalizations — nowadays they are called Euler sums — often can be traced back
to zeta function values. To treat these sums, we adopt the modern notations and
notions. The multiple polylogarithm is defined by

(2) ζ(s1, s2, . . . , sm; z)=
∑

0<nm<···<n1

zn1

ns1
1 ns2

2 · · · n
sm
m
,

with the appropriate restriction on the powers to get a convergent series. In particular,

ζ(s; 1)= ζ(s)=
∞∑

n=1

1
ns (<(s) > 1)

is the classical Riemann zeta function [Andrews et al. 1999]. Typically z is set to 1
or −1, in which cases we are dealing with a multiple zeta function or alternating
multiple zeta function, respectively. We remark that in the literature there exists a
more general version of the above multiple zeta function, called the colored multiple
zeta function [Bigotte et al. 2002]. It is defined as

ζ(s1, s2, . . . , sm; σ1, σ2, . . . , σm)=
∑

0<nm<···<n1

σ
n1
1 σ

n2
2 · · · σ

nm
m

ns1
1 ns2

2 · · · n
sm
m
.

The sum
m∑

i=1

si

is the weight of the zeta function, while m is the depth. A brief survey on multiple
polylogarithms can be found in [Bowman and Bradley 2001].

The finite sums inside the sums are called generalized harmonic numbers and
are denoted by Hn,r (or H (r)

n , but we use the former, because our expressions will
involve powers):

Hn,r =

n∑
k=1

1
kr (n ≥ 1, r ≥ 1),

with the convention H0,r = 0 for all r = 1, 2, . . . . The numbers Hn,1 =: Hn are
called harmonic numbers.

With these, the above relations under (1) can be written in the short form

ζ(2, 1) :=
∞∑

n=1

Hn−1

n2 = ζ(3)= 8ζ(2, 1;−1).
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For Euler’s original proof, see [Euler 1776]. These relations were rediscovered
many times, as the references [Briggs et al. 1955; Bruckman 1982; Farnum and
Tissier 1999; Klamkin and Steinberg 1952] show.

We mention that the general expression in terms of zeta values of the sum
∞∑

n=1

Hn

na

was known already to Euler, who found that

(3)
∞∑

n=1

Hn

na =

(
1+ a

2

)
ζ(a+ 1)− 1

2

a−2∑
k=1

ζ(k+ 1)ζ(a− k) (a ≥ 2).

Naturally, then, researchers after Euler have turned to generalizations and alter-
ations of these sums. In the next section we present some existing directions, then
we show in which direction we proceed.

2. Existing results and research directions

2.1. Alternating Euler sums. In the past and present, the alternating Euler sums
and their modifications and generalizations have attracted the attention of a large
number of mathematicians. For example, the alternating Euler sums, like

∞∑
n=1

1
na

n∑
k=1

(−1)k

kr ,

are investigated in [Bailey et al. 1994; de Doelder 1991; Li 2011; Sitaramachan-
dra Rao 1987], to name a few. We mention one sum from [Li 2011, Proposition 3.2]:

∞∑
n=1

1
n2

n∑
k=1

(−1)k+1

k
=

3
2
ζ(2) log 2− ζ(3).

In [Sitaramachandra Rao 1987] one can find an exhaustive bibliography on alter-
nating Euler sums. It turns out that these sums are reducible to zeta values in many
cases, see [Flajolet and Salvy 1998, Theorem 7.1].

2.2. Analytic extension of Euler sums. T. Apostol and T. H. Vu [1984] started to
investigate Euler sums as functions of the power of n:

h(s)=
∞∑

n=1

Hn

ns .

They showed that this function can be continued to the whole s-plane as a mero-
morphic function with a second-order pole at s = 1, and simple poles at s = 0 and
at the negative odd integers.
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In the same paper this result was extended to the function

h(s, z)=
∞∑

n=1

Hn,z

ns .

These results were further specified and extended by Boyadzhiev [2008; 2009] to

u(s)=
∞∑

n=1

(−1)n+1

ns Hn,

v(s)=
∞∑

n=1

(−1)n+1

ns

(
1−

1
2
+

1
3
+ · · ·+

(−1)n+1

n

)
,

w(s)=
∞∑

n=1

1
ns

(
1−

1
2
+

1
3
+ · · ·+

(−1)n+1

n

)
.

2.3. Nonlinear Euler sums up to now. Another direction of investigation is the
nonlinear case. In this case one considers sums like

(4)
∞∑

n=1

Hn,r1 Hn,r2 · · · Hn,rp

na .

These are called nonlinear Euler sums. In this case just sporadic results are known;
one can find some of them in the references [Borwein and Borwein 1995; Chu 1997;
de Doelder 1991; Shen 1995; Sofo and Hassani 2012]. Moreover, V. Adamchik
[1997] investigated the relation between such nonlinear Euler sums and several
sums on the Stirling numbers of the fist kind. D. F. Connon [2008a; 2008b; 2008c;
2008d; 2008e; 2008f; 2008g; 2008h] has found a large number of connections
between specific nonlinear Euler sums and the Riemann and Hurwitz zeta functions.
To mention two beautiful results, we cite an expression for ζ(4) and ζ(5) [Connon
2008c, formulas (4.3.45f) and (4.3.57b)]:

ζ(4)= 1
6

∞∑
n=1

H 2
n + Hn,2

n2 , ζ(5)= 1
24

∞∑
n=1

2Hn,3+ 3Hn Hn,2+ H 3
n

n2 .

To present some additional examples from the literature, we cite two sums from
[Borwein and Borwein 1995]:

∞∑
n=1

H 2
n

n2 =
17
4
ζ(4),

∞∑
n=1

Hn Hn+1

(n+ 1)2
= 3ζ(4)= π

4

30
,
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and from [Flajolet and Salvy 1998]:
∞∑

n=1

H 3
n

n4 =
231
16
ζ(7)− 51

4
ζ(3)ζ(4)+ 2ζ(2)ζ(5),

∞∑
n=1

H 4
n

(n+ 1)3
=

185
8
ζ(7)− 43

2
ζ(3)ζ(4)+ 5ζ(2)ζ(5).

That all of these sums can be expressed as multiple zeta values is not known. The
only available result concerns quadratic sums:

Theorem 1 [Flajolet and Salvy 1998, p. 25, Theorem 4.2]. If p1+ p2+ q is even,
and p1 > 1, p2 > 1, q > 1, the quadratic sums

∞∑
n=1

Hn,p1 Hn,p2

nq

are reducible to linear sums.

The theorem exactly gives the reduction, but the formulas are rather complicated
to cite.

Finally, we cite a nice example of a nonlinear alternating sum from [Borwein
and Borwein 1995]:
∞∑

n=1

1
n2

(
1− 1

2
+· · ·+

(−1)n+1

n

)2

=−
13
8
ζ(4)+ 5

2
ζ(2) log2 2+ 1

12
log4 2+2 Li4

( 1
2

)
.

Here

(5) Lik(z)=
∞∑

n=1

zn

nk = ζ(k; z)

is a special multiple zeta function, called the polylogarithm. (The special value
Li4
( 1

2

)
, like ζ(3), does not seem to be evaluable in terms of more fundamental

constants.)
No general reduction formula is known for nonlinear alternating sums, but

computer-based calculations are available in several cases; see [Bailey et al. 1994].
An exhaustive and up-to-date bibliography on Euler sums and their generaliza-

tions can be found at http://www.usna.edu/Users/math/meh/biblio.html .

3. New nonlinear Euler sum formulas

Now we turn to our own results.
In this section we demonstrate how we can trace back some specific quadratic

Euler sums to linear ones. To express these sums in a convenient form, we use the

http://www.usna.edu/Users/math/meh/biblio.html
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concept of E. A. Ulanskii, who defined the nonstrict multiple polylogarithm [2003]
as follows:

Le(s1,...,sm)(z)=
∑

1≤nm≤···≤n1

zn1

ns1
1 ns2

2 · · · n
sm
m
.

As it can be seen, this definition differs from the multiple polylogarithm function
in the nonstrictness of the relations. We shall always set the parameter z to 1, and
we refer to the function

Le(s1,...,sm)(1)=: Le(s1, . . . , sm)

as the nonstrict multiple zeta function. Ulanskii did not deal with the specific values
of these sums but with the functional relations among them. For example, he proved
the following theorem, which will be extremely useful for us.

Theorem 2. The nonstrict multiple polylogarithm function can be written as a sum
of multiple polylogarithms as

Le(s1,...,sm)(z)=
∑
ρ

ζ(ρ; z),

where ρ runs through all sets of the form (s1∗· · ·∗sm), the symbol ∗ standing either
for + or the comma; the total number of such sets is 2m−1. Moreover, ζ is defined
under (2).

For further reference we specify this theorem with m = 2 and m = 3, with z = 1
(in which form these relations has appeared in [Hoffman 1992]):

Le(s1,s2)= ζ(s1,s2)+ ζ(s1+ s2),(6)

Le(s1,s2,s3)= ζ(s1,s2,s3)+ ζ(s1+ s2+ s3)+ ζ(s1,s2+ s3)+ ζ(s1+ s2,s3).(7)

Finally, we introduce the notations

H(a, b)=
∞∑

n=1

Hn,b

na ,

H(a, b, c)=
∞∑

n=1

Hn,b Hn,c

na ,

H(a, b, c, d)=
∞∑

n=1

Hn,b Hn,c Hn,d

na .

We can call these sums ordinary (or first-order), quadratic (or second-order) and
cubic Euler sums, respectively.
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3.1. Quadratic sums: the homogeneous case. We now show how we can trace
back H(a, b, b) to nonstrict multiple zeta function — and so, by Theorem 2, to
multiple zeta values — and H(a, b). Since there are extensive tables for multiple
zeta values and many results for H(a, b), we can calculate sums like

H(a, b, b)=
∞∑

n=1

H 2
n,b

na

with a relatively small effort.

Theorem 3. For homogeneous quadratic Euler sums we have the reduction

H(a, b, b)= 2 Le(a, b, b)− H(a, 2b),

or, if we write out the definitions,

∞∑
n=1

H 2
n,b

na = 2 Le(a, b, b)−
∞∑

n=1

Hn,2b

na .

Proof. Let us write out the sums:

H(a, b, b)=
∞∑

n=1

H 2
n,b

na =

∞∑
n=1

1
na

n∑
m=1

1
mb

n∑
k=1

1
kb .

On the other hand,

Le(a, b, b)=
∞∑

n=1

1
na

n∑
m=1

1
mb

m∑
k=1

1
kb .

Geometrically, the sum H(a, b, b) runs through a two dimensional square with
integer coordinates. On the other hand, Le(a, b, b) runs through the lower triangle
of this square, including the diagonal. By symmetry of the terms of the sums,
the lattice points of this square are equal if we mirror them with respect to the
main diagonal of the square. Therefore the sum H(a, b, b) equals twice Le(a, b, b)
minus the diagonal, which is counted twice. At the diagonal the inner sums equal

n∑
m=1

1
m2b .

Summing on the index n, we have our relation. �

Employing the above theorem, in the next subsection we provide a concrete
example. This example is chosen to be very typical. It uses almost all the usual
tricks which lead to the zeta expression of an Euler sum.
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3.2. The homogeneous quadratic sums H(2, 2, 2), H(2, 1, 1) and H(3, 1, 1).
According to the theorem of Flajolet and Salvy (in this paper Theorem 1), the sum

∞∑
n=1

H 2
n,2

n2

reduces to zeta values. Without using the evaluations of Flajolet and Salvy, we
employ our above theorem. This implies the next representation.

Theorem 4.
∞∑

n=1

H 2
n,2

n2 =
19
24
ζ(6)+ ζ 2(3).

Proof. The sum in the left-hand side equals

H(2, 2, 2)= 2 Le(2, 2, 2)− H(2, 4).

Our goal is to reduce the expression on the right to Riemann zeta values. By (7),

Le(2, 2, 2)= ζ(6)+ ζ(4, 2)+ ζ(2, 4)+ ζ(2, 2, 2).

All the values ζ(4, 2), ζ(2, 4) and ζ(2, 2, 2) can be found in [Li 2011]:

ζ(4, 2)= ζ 2(3)− 4
3
ζ(6), ζ(2, 4)=−ζ 2(3)+ 25

12
ζ(6), ζ(2, 2, 2)= 3

16
ζ(6).

Altogether,

Le(2, 2, 2)=
31
16
ζ(6)=

31
15120

π6.

Now we deal with the sum H(2, 4). We could not find in the literature directly this
sum, but in [Flajolet and Salvy 1998, p. 16, formula (b)] we can find that

H(4, 2)= ζ 2(3)− 1
3
ζ(6).

We now apply the reflection formula [Boyadzhiev 2002; Flajolet and Salvy 1998]

H(a, b)+ H(b, a)= ζ(a)ζ(b)+ ζ(a+ b)

to obtain

H(2, 4)= ζ(2)ζ(4)+ ζ(6)− H(b, a)= 37
12
ζ(6)− ζ 2(3).

(Here we used the fact that ζ(2)ζ(4)= 7
4ζ(6).) Hence

H(2, 2, 2)= 2 · 31
16
ζ(6)−

(37
12
ζ(6)− ζ 2(3)

)
=

19
24
ζ(6)+ ζ 2(3).

This is what we wanted to prove. �
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Connon [2007] gave an “elementary” evaluation for the sum H(2, 1, 1), which
was evaluated earlier by de Doelder [1991]. Their result is

H(2, 1, 1)=
∞∑

n=1

H 2
n

n2 =
17
4
ζ(4).

Once we have Theorem 3, the evaluation of this sum reduces to looking for the
appropriate values of the multiple zeta. These values can be found in [Borwein and
Girgensohn 1996], hence our method gives a third (and the easiest) proof.

In the same paper Connon notes that he could not evaluate the sum H(3, 1, 1).
Our method and the multiple zeta values from the paper [Borwein and Girgensohn
1996] give immediately that

H(3, 1, 1)=
∞∑

n=1

H 2
n

n3 =
7
2
ζ(5)− ζ(2)ζ(3).

However, Mathematica can evaluate this sum automatically.
Connon gave an integral representation for H(q, 1, 1) for integer q > 1:

∞∑
n=1

H 2
n

nq =

∫ 1

0

∫ 1

0

Liq−2
(
(1− t)(1− u)

)
log t log u

(1− t)(1− u)
du dt.

By the results above for q = 3 and knowing that Li1(x)=− log(1− x), we get the
closed form of the following integral:

(8)
∫ 1

0

∫ 1

0

log
(
1− (1− t)(1− u)

)
log t log u

(1− t)(1− u)
du dt = ζ(2)ζ(3)− 7

2
ζ(5).

3.3. Quadratic sums: the inhomogeneous case. Another kind of approach helps
us to evaluate inhomogeneous quadratic sums, i.e., sums of the form

∞∑
n=1

Hn,b Hn,c

na .

Namely, the next theorem is true.

Theorem 5. Inhomogeneous quadratic Euler sums can be expressed by the nonstrict
multiple zeta function as

H(a, b, c)= Le(a, b, c)+Le(a, c, b)−Le(a, b+ c).

If c = b this formula reduces to the formula presented in Theorem 3.
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Proof. H( a, b, c)=
∞∑

n=1

Hn,b Hn,c

na =

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( n∑
k=1

1
kc

)

=

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( m∑
k=1

1
kc

)
+

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( n∑
k=m+1

1
kc

)
.

The first sum is nothing but Le(a, b, c), while the second can be rearranged as

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( n∑
k=m+1

1
kc

)
=

∞∑
n=1

1
na

( n∑
k=2

1
kc

)( k−1∑
m=1

1
mb

)
.

Since the sum over m is empty if k = 1, we can start the sum over k from 1. Hence,
at this point, we have that

H(a, b, c)= Le( a, b, c)+
∞∑

n=1

1
na

( n∑
k=1

1
kc

)( k−1∑
m=1

1
mb

)
.

The latter sum almost equals Le(a, c, b), but here the sum on m runs up to k− 1
instead of k. We can resolve this as follows:

∞∑
n=1

1
na

( n∑
k=1

1
kc

)( k−1∑
m=1

1
mb

)
=

∞∑
n=1

1
na

( n∑
k=1

1
kc

)( k∑
m=1

1
mb

)
−

∞∑
n=1

1
na

( n∑
k=1

1
kc+b

)
.

The right-hand side equals Le(a, c, b)− Le(a, c+ b). Substituting this into the
ultimate expression of H(a, b, c), we are done. �

3.4. Two nonhomogeneous quadratic sums: H(2, 1, 2) and H(2, 2, 3). By us-
ing the theorem of the last subsection, we evaluate the next inhomogeneous quadratic
sums.

Theorem 6. We have
∞∑

n=1

Hn Hn,2

n2 = ζ(2)ζ(3)+ ζ(5),

∞∑
n=1

Hn,2 Hn,3

n2 =
131
16
ζ(7)− 5

2
ζ(2)ζ(5)− 3

2
ζ(3)ζ(4).

Note that the theorem of Flajolet and Salvy does not apply to these sums.

Proof. These proofs are again instructive. First,

(9)
∞∑

n=1

Hn Hn,2

n2 = H(2, 1, 2)= Le(2, 1, 2)+Le(2, 2, 1)−Le(2, 3).
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Moreover, according to (7),

Le(2, 1, 2)= ζ(5)+ ζ(3, 2)+ ζ(2, 3)+ ζ(2, 1, 2).

In [Borwein and Girgensohn 1996] we find that

ζ(2, 1, 2)= 9
2
ζ(5)− 2ζ(2)ζ(3), ζ(3, 2)=−11

2
ζ(5)+ 3ζ(2)ζ(3).

We could not find the value of ζ(2, 3) directly, but it can be easily deduced by a
result of Boyadzhiev [2002]. Namely,

ζ(2, 3)=
∞∑

n=1

Hn−1,3

n2 =

∞∑
n=1

Hn,3

n2 − ζ(5).

The zeta expression of the harmonic sum on the right — and even a more general
form — is worked out by Boyadzhiev in the same paper:

∞∑
n=1

Hn,3

n2 =
11
2
ζ(5)− 2ζ(2)ζ(3).

(In general, he found that

∞∑
n=1

Hn,3

n p = ζ(3)ζ(p)+
(

1+
p3
+ 5p
12

)
ζ(p+3)− 1

4

p−1∑
k=1

k(k+1)ζ(k+2)ζ(p−k+1)

−
1
4

p(p+ 1)H(p+ 2, 1)− 1
2
[H(p+ 1, 2)+ ζ(p+ 1)ζ(2)],

if p is even.)
So

(10) ζ(2, 3)= 9
2
ζ(5)− 2ζ(2)ζ(3).

Altogether, we get that

Le(2, 1, 2)= 9
2
ζ(5)− ζ(2)ζ(3).

We also need the value of Le(2, 2, 1). Again, employing (7),

Le(2, 2, 1)= ζ(5)+ ζ(4, 1)+ ζ(2, 3)+ ζ(2, 2, 1).

Using the tables in [Borwein and Girgensohn 1996], we find that

ζ(4, 1)= 2ζ(5)− ζ(2)ζ(3), ζ(2, 2, 1)=−11
2
ζ(5)+ 3ζ(2)ζ(3).

Applying to (10) the value of ζ(2, 3) calculated above, we get the simple zeta value
of Le(2, 2, 1):

Le(2, 2, 1)= 2ζ(5).
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The last undetermined zeta value in (9) does not cause any problem:

Le(2, 3)= ζ(5)+ ζ(2, 3)= ζ(5)+ 9
2
ζ(5)− 2ζ(2)ζ(3)= 11

2
ζ(5)− 2ζ(2)ζ(3).

Collecting the nonstrict zeta values in (9) for H(2, 1, 2), we find that they really
sum to ζ(5)+ ζ(2)ζ(3).

Now we turn to the second nonlinear Euler sum H(2, 2, 3). It equals

(11) Le(2, 2, 3)+Le(2, 3, 2)−Le(2, 5).

We follow the same pattern as above:

Le(2, 2, 3)= ζ(7)+ ζ(4, 3)+ ζ(2, 5)+ ζ(2, 2, 3).

The zeta expressions of ζ(4, 3) and ζ(2, 5) can be calculated from the results in
[Bailey et al. 1994], under the notations σh(3, 4) and σh(5, 2), respectively. They
equal

ζ(4, 3)= 17ζ(7)− 10ζ(2)ζ(5),(12)

ζ(2, 5)= 10ζ(7)− 2ζ(3)ζ(4)− 4ζ(2)ζ(5).(13)

(In fact, the next expressions are deduced in [Bailey et al. 1994] and by the same
authors in [Borwein et al. 1995]:

(14) ζ(m, n)= 1
2

((m+n
m

)
− 1

)
ζ(m+ n)+ ζ(m)ζ(n)

−

m+n∑
j=1

((2 j−2
m−1

)
+

(2 j−2
n−1

))
ζ(2 j − 1)ζ(m+ n− 2 j + 1)

if m is odd and n is even, while

ζ(m, n)=−1
2

((m+n
m

)
+ 1

)
ζ(m+ n)

+

m+n∑
j=1

((2 j−2
m−1

)
+

(2 j−2
n−1

))
ζ(2 j − 1)ζ(m+ n− 2 j + 1)

if m is even and n is odd.)
The value of ζ(2, 2, 3) is listed in [Borwein and Girgensohn 1996]:

ζ(2, 2, 3)=−291
16
ζ(7)− 3

2
ζ(3)ζ(4)+ 12ζ(2)ζ(5).

Hence

(15) Le(2, 2, 3)= 157
16
ζ(7)− 2ζ(2)ζ(5)− 7

2
ζ(3)ζ(4).
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The calculation of Le(2, 3, 2) needs a bit less work, because

Le(2, 3, 2)= ζ(7)+ ζ(5, 2)+ ζ(2, 5)+ ζ(2, 3, 2),

and we can apply the reflection formula [Wan 2012]

ζ(a, b)+ ζ(b, a)= ζ(a)ζ(b)− ζ(a+ b).

We have that
ζ(5, 2)+ ζ(2, 5)= ζ(2)ζ(5)− ζ(7),

and so
Le(2, 3, 2)= ζ(2)ζ(5)+ ζ(2, 3, 2).

The value
ζ(2, 3, 2)= 75

8
ζ(7)− 11

2
ζ(2)ζ(5)

can be found in [Borwein and Girgensohn 1996]. Hence

(16) Le(2, 3, 2)= 75
8
ζ(7)− 9

2
ζ(2)ζ(5).

Only Le(2, 5) is missing in (11).

(17) Le(2, 5)= ζ(7)+ ζ(2, 5)= 11ζ(7)− 4ζ(2)ζ(5)− 2ζ(4)ζ(3),

as we can see from (13).
Substituting (15), (16), and (17) into (11), we have the second sum in Theorem 6.

�

3.5. Homogeneous cubic sums. The geometric approach we applied in Section 3.1
to homogeneous quadratic sums can be generalized to homogeneous cubic sums as
well.

Theorem 7. The homogeneous cubic Euler sums can be reduced to multiple zeta
values of depth 3 and 4, and to Euler sums of order one and two. Namely,

H(a, b, b, b)= 6ζ(a, b, b, b)+ 6ζ(a+ b, b, b)+ 3H(a, b, 2b)− 2H(a, 3b).

Proof. The sum

H(a, b, b, b)=
∞∑

n=1

1
na

n∑
m=1

1
mb

n∑
k=1

1
kb

n∑
l=1

1
lb

can be considered as a sum on the infinite cubic lattice with positive integer co-
ordinates. We subtract from this the second-order sums on the principal planes
m = k, k = l and m = l. Since we have subtracted the main diagonal m = k = l
three times, we can add it two times. Then, by symmetry, we have six times the
sum in the “lower” part of the cube, with (integer) coordinates m = 1, 2, . . . , n,
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k = 1, . . . ,m−1 and l = 1, . . . , k−1. Again, by symmetry, the second-order sums
on the principal planes m = k, k = l and m = l are identical and equal H(a, b, 2b);
and the main diagonal m = k = l corresponds to the sum H(a, 3b). Hence, we have
the relation

H(a, b, b, b)− 3H(a, b, 2b)+ 2H(a, 3b)
6

=

∞∑
n=1

1
na

n∑
m=1

1
mb

m−1∑
k=1

1
kb

k−1∑
l=1

1
lb .

The sum on the right-hand side can be easily rewritten as a multiple zeta expression,
if we separate the terms m = 1, 2, . . . , n− 1 and m = n:

∞∑
n=1

1
na

n∑
m=1

1
mb

m−1∑
k=1

1
kb

k−1∑
l=1

1
lb = ζ(a, b, b, b)+ ζ(a+ b, b, b).

Substituting this into the above relation and rearranging we have our theorem. �

3.6. The inhomogeneous quadratic sum H(4, 1, 2). We apply the theorem of the
above section to prove the next identity.

Theorem 8.
∞∑

n=1

Hn Hn,2

n4 =
3
4
ζ(3)ζ(4)+ 2ζ(2)ζ(5)− 51

16
ζ(7).

Note that here the reduction theorem of Flajolet and Salvy does not apply.

Proof. We specialize Theorem 7 to a = 4 and b = 1. Then

(18) H(4, 1, 1, 1)= 6ζ(4, 1, 1, 1)+ 6ζ(5, 1, 1)+ 3H(4, 1, 2)− 2H(4, 3).

The sum on the left-hand side equals

(19) H(4, 1, 1, 1)=
∞∑

n=1

H 3
n

n4 =
231
16
ζ(7)− 51

4
ζ(3)ζ(4)+ 2ζ(2)ζ(5),

as one can find in [Flajolet and Salvy 1998, p. 16]. Moreover, an important
simplification can be done on the right-hand side, since

(20) ζ(4, 1, 1, 1)= ζ(5, 1, 1).

This is an observation of J. Borwein, D. Bradley and D. Broadhurst, see the
paragraph after formula (30) in [1997]. The general version that they proved is the
following:

ζ(m+ 2, {1}n)= ζ(n+ 2, {1}m),

where {1}n means that we repeat the argument n times. Identity (20) comes if we
substitute m = 2 and n = 3. Other examples are

ζ(2, {1}n)= ζ(n+ 2), ζ(3, {1}n)= ζ(n+ 2, 1),
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and so on.
The value of ζ(5, 1, 1) can be found in [Borwein and Girgensohn 1996]:

ζ(5, 1, 1)=−5
4
ζ(3)ζ(4)+ 5ζ(7)− 2ζ(5)ζ(2).

Thus, with respect to (18) and (19) we have the temporary result

231
16
ζ(7)− 51

4
ζ(3)ζ(4)+ 2ζ(2)ζ(5)

=−15ζ(3)ζ(4)+ 60ζ(7)− 24ζ(5)ζ(2)+ 3H(4, 1, 2)− 2H(4, 3),

which can be rearranged:

(21) 3H(4, 1, 2)=−729
16
ζ(7)+ 9

4
ζ(3)ζ(4)+ 26ζ(2)ζ(5)+ 2H(4, 3).

The sum H(4, 3) can be deduced from the formula of Bailey, Borwein, and Girgen-
sohn (14):

H(4, 3)=
∞∑

n=1

Hn,3

n4 =

∞∑
n=0

Hn+1,3

(n+ 1)4
=

∞∑
n=0

Hn,3+ 1/(n+ 1)3

(n+ 1)4
= ζ(4, 3)+ ζ(7).

By using (12),
H(4, 3)= 18ζ(7)− 10ζ(2)ζ(5).

Substituting this into (21), we are done. �

4. Generating functions of nonlinear Euler sums

Up to this point, we were interested in closed form expression for quadratic and
cubic Euler sums. In several cases, using polylogarithms and several tricks, we
can involve a free parameter z in these sums and express them with known special
functions. To be more concrete, we can find the generating functions for H 2

n and
H 3

n as well. We shall deduce the formulas in the next theorem.

Theorem 9. For any |z|< 1 the ordinary generating functions of H 2
n and H 3

n are

∞∑
n=1

H 2
n zn
=

1
1− z

(
Li2(z)+ log2(1− z)

)
,(22)

∞∑
n=1

H 3
n zn
=

1
1− z

(
−
π2

2
log(1− x)− log3(1− z)+ 3

2
log2(1− z) log z(23)

+ 3 Li3(1− z)+Li3(z)− 3ζ(3)
)
.

The first relation is easy to prove and is not new; one can find it, for example, in
[Mező 2013]. For the sake of completeness, we give its proof. To our knowledge,
the second formula is new.
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Proof. Note that H 2
n−1 =

(
Hn −

1
n

)2
= H 2

n +
1
n2 − 2

Hn

n
, whence

(24)
∞∑

n=1

H 2
n−1zn

=

∞∑
n=1

H 2
n zn
+

∞∑
n=1

zn

n2 − 2
∞∑

n=1

Hn

n
zn.

The second sum is Li2(z) (see definition (5)), while the last sum equals

(25)
∞∑

n=1

Hn

n
zn
= Li2(z)+ 1

2 log2(1− z),

by [Borwein and Borwein 1995]. If we temporarily introduce the function

f (z)=
∞∑

n=1

H 2
n zn,

then (24) and (25) imply that

z f (z)= f (z)+Li2(z)− 2
(
Li2(z)+ 1

2 log2(1− z)
)
;

hence

f (z)=
∞∑

n=1

H 2
n zn
=

Li2(z)+ log2(1− z)
1− z

.

Let us prove the second formula. Our initial point is almost the same as above:

H 3
n =

(
Hn−1+

1
n

)3
= H 3

n−1+ 3H 2
n−1

1
n
+ 3Hn−1

1
n2 +

1
n3 .

This time we set

f (z)=
∞∑

n=1

H 3
n zn.

Then

(26) f (z)= z f (z)+ 3
∞∑

n=0

H 2
n

n+ 1
zn+1
+ 3

∞∑
n=0

Hn

(n+ 1)2
zn+1
+Li3(z).

To calculate the first sum, we utilize the first formula of the theorem:

(27)
∞∑

n=0

H 2
n

n+ 1
zn+1
=

∫ z

0

(
Li2(x)+ log2(1− x)

1− x

)
dx

=−
π2

3
log(1− z)− 1

3
log3(1− z)+ log2(1− z) log z

+ log(1− z)Li2(z)+ 2 Li3(1− z)− 2ζ(3).

This can be seen directly by differentiation. The integration constant 2ζ(3) comes
if we substitute z = 0.
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Now we deal with the second sum on the right-hand side of (26).

(28)
∞∑

n=1

Hn

(n+ 1)2
zn+1

=

∫ z

0

∞∑
n=1

Hn

n+ 1
xn dx =

∫ z

0

log2(1− x)
2x

dx

=
1
2

log2(1− z) log z+ log(1− z)Li2(1− z)−Li3(1− z)+ ζ(3).

Taking the derivative of the right-hand side, this can be justified. The integration
constant comes if we substitute z = 0.

Substituting (27) and (28) into (26) and utilizing [Lewin 1991, formula (1.5)]

Li2(z)+Li2(1− z)= ζ(2)− log z log(1− z)

to simplify, we have proven Theorem 9. �

It is interesting that S. Ramanujan dealt with a similar function as in (28), but in
the denominator there is (n+ 1)3 in place of (n+ 1)2 in his function:

h(z)=
∞∑

n=1

Hn

(n+ 1)3
zn+1.

He could not provide a closed form for this function but he showed that it can be
analytically continued to the whole complex plane in z and proved some functional
equations for h. Details can be found in [Berndt 1985, p. 253]. Such generating
functions also appear in a beautiful paper of Guillera and Sondow [2008].

4.1. Some series as consequences of Theorem 9. We note an interesting alternat-
ing nonlinear sum as a corollary of formula (27) in the proof of Theorem 9:

∞∑
n=1

(−1)n+1 H 2
n

n+ 1
=
π2

12
log 2− 1

3
log3 2− 1

4
ζ(3).

The proof can be done by substituting z =−1 into (27) and handling the occurring
imaginary values. One of them is log(−1), the other one is Li3(2). By a formula
of Lewin’s book [1981, (6.7), p. 154],

Li3(2)= Li3
( 1

2

)
+
π2

3
log 2− 1

6
log3 2− 1

2
iπ log2 2.

Since log(−1)= iπ in the principal branch, the imaginary parts cancel — as they
must — and then we can finish the proof using the special values

Li2(−1)=−
π2

12
, Li3

( 1
2

)
=

1
24
(
4 log3(2)+ 21ζ(3)− 2π2 log 2

)
.
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Another consequence of the calculations in (28) is the classic result of Euler,
which is nothing but (1):

∞∑
n=1

Hn

(n+ 1)2
= ζ(3).

To prove this we let z tend to 1 from the left. (Taking the limit is not straightforward,
we have to check the Taylor series around 1 to see that we have the right to do this.
Finally we see that all the terms cancel, and just the constant term ζ(3) remains.)

Nice sums of infinite series involving the square and third power of the digamma
function are consequences of Theorem 9. This function is the logarithmic derivative
of the Euler 0 function and can be defined by the sum [Gradshteyn and Ryzhik
2007]

ψ(x)=−γ +
∞∑

n=0

( 1
n+1

−
1

n+x

)
(x ∈ R \ {0,−1,−2, . . .}).

Here γ =− lim
n→∞

(
log n−

n∑
k=1

1
k

)
≈ 0.577215664901533 is the Euler–Mascheroni

constant.
The derivatives of the digamma function ψ ′, ψ ′′, . . . are called trigamma, tetra-

gamma functions, etc. In general, these derivatives are called polygamma functions
and denoted by ψn (ψ0 = ψ , ψ1 = ψ

′, . . . ). Since

(29) ψk(n)= (−1)k+1k! (ζ(k+ 1)− Hn−1,k+1),

it is straightforward to see that the polygamma functions have the generating
functions
∞∑

n=1

ψk(n)zn
=

z
1− z

(−1)kk! (Lik+1(z)− ζ(k+ 1)) (|z|< 1, k = 1, 2, . . . ).

If k = 0, we have that
∞∑

n=1

ψ(n)zn
=

z
z− 1

(γ + log(1− z)).

From the general representation (29) it follows that at a positive integer n the
digamma function equals

(30) ψ(n)= Hn−1− γ.

We have infinite series for the second and third power of the digamma function:

∞∑
n=1

ψ2(n+ 1)
2n = γ 2

− 4γ log 2+ log2 2+ ζ(2),
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∞∑
n=1

ψ3(n+ 1)
2n =

π2

3
log 2+ 1

3
log3 2+ ζ(3)− π

2

2
γ − 3γ log2 2+ 6γ 2 log 2− γ 3.

It is interesting that the second formula includes all the most frequently appearing
constants: π , γ , e, ζ(3), and log 2.

We shall prove just the second identity, because the first one is similar but simpler.
Using Theorem 9, we can see that

∞∑
n=1

H 3
n

2n =
π2

3
log 2+ 1

3
log3 2+ ζ(3)

and
∞∑

n=1

H 2
n

2n = ζ(2)+ log2 2= π
2

6
+ log2 2.

From the generating function

∞∑
n=1

Hnzn
=−

log(1− z)
1− z

,

it is obvious that
∞∑

n=1

Hn

2n = log 4.

Since

ψ3(n+ 1)= H 3
n − 3γ H 2

n + 3γ 2 Hn − γ
3,

the result follows after dividing by 2n and summing over n.

5. The Landen functional equations of the dilogarithm
and trilogarithm functions

As an application of generating functions of the above nonlinear Euler sums we give
proofs for the functional equations of the dilogarithm and trilogarithm functions.
The proof relies on finite identities and on a result of Euler with respect to binomial
transforms.

More concretely, we shall reprove the functional equation of the dilogarithm
function:

(31) Li2
( x

1+ x

)
=−

1
2

log2(1+ x)−Li2(−x).

This is called Landen’s equation [Lewin 1981, (1.12), p. 5].
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We also show a new proof of the Landen functional equation for the trilogarithm:

(32) Li3
( x

1+ x

)
= ζ(3)+ ζ(2) log(1+ x)− 1

2 log2(1+ x) log(−x)

+
1
6 log3(1+ x)−Li3(−x)+Li3(1+ x).

This is proved in [Lewin 1981, p. 155].
We remark that these equations are also presented in [Lewin 1991] on p. 2, but

there is a typo there: in equation (1.13) in place of the coefficient 1
6 there is 1

2 ,
which is incorrect.

The known proofs are analytic. We present proofs which are based on finite
combinatorial identities. Moreover, we show a reason why there probably does not
exist a functional equation of Landen type for higher-order polylogarithms.

Closed-form expressions for Li2
( 1

2

)
and Li3

( 1
2

)
are also known [Lewin 1991,

pages 1 and 2]:

Li2
( 1

2

)
=
π2

12
−

1
2

log2 2, Li3
( 1

2

)
=

7
8
ζ(3)− π

2

12
log 2− 1

6
log3 2.

But there is no such formula for Li4
( 1

2

)
; see the remark after equation (7.92) in

[Lewin 1981, p. 211].
We try to get closer to the constant Li4

( 1
2

)
and we show that

(33) Li4
( 1

2

)
=
π4

180
+
π2

48
log2 2− 1

24
log4 2− 7

16
log(2)ζ(3)+ 1

2

∞∑
n=1

(−1)n+1 Hn Hn,2

n
.

The last sum on the right does not seem to be reducible to known constants. When
we tried to reduce it, we found that in its expression Li4

( 1
2

)
appears, so we would

get a 0= 0-type identity upon substituting this into (33).
The new proofs of the Landen identities are based on the representations of the

generalized harmonic numbers:

Hn,2 =

n∑
k=1

(n
k

)
(−1)k+1 Hk

k
,(34)

Hn,3 =
1
2

n∑
k=1

(n
k

)(−1)k+1

k
(H 2

k + Hk,2),(35)

Hn,4 =
1
6

n∑
k=1

(n
k

)(−1)k+1

k
(H 3

k + 3Hn Hn,2+ 2Hn,3),(36)

for all n ≥ 1. (It is interesting that in the last sum, the term H 3
k + 3Hn Hn,2+ 2Hn,3

appears in [Adamchik 1997; Connon 2008a]. To see how to derive identities like
this, we refer to [Connon 2008c].)
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To prove (31) and (32) we need an identity, due to Euler, giving the generating
function of a sequence’s binomial transform. Recall that for an arbitrary real
sequence an , the binomial transform of an is the sequence bn defined by

bn =

n∑
k=0

(n
k

)
ak, or, equivalently, an =

n∑
k=0

(n
k

)
(−1)n−kbk .

If an has the generating function a(x), that is,
∞∑

n=0
anxn

= a(x), then bn has the
generating function

∞∑
n=0

bnxn
=

1
1− x

a
( x

1− x

)
.

For more information on binomial transforms and Euler’s result, see [Dumont
1981; Mező and Dil 2009; Seidel 1877].

5.1. The Landen equation for the dilogarithm. It is straightforward to see that
∞∑

n=1

Hn,k xn
=

Lik(x)
1− x

,

and from (34) we also know that Hn,2 is the inverse binomial transform of −Hn/n.
Hence

Li2(x)
1− x

=
1

1− x
a
( x

1− x

)
,

where a(x) is the generating function of Hn/n. The denominator 1+ x cancels,
and we apply the substitution x→ x/(1+ x) to get

Li2
( x

1+ x

)
= a(x).

Finally, to prove (31) we realize that

a(x)=−
∞∑

n=1

(−1)n

n
Hnxn

=−

∞∑
n=1

(−1)n

n

(
Hn−1+

1
n

)
xn

=−

∞∑
n=1

(−1)n

n
Hn−1xn

−

∞∑
n=1

(−1)n

n2 xn.

The last two sums equal respectively 1
2 log2(1+ x) and Li2(−x) (in the latter case

by definition). These prove (31).

5.2. The Landen equation for the trilogarithm. Identity (35) shows that

(37) Li3
( x

1+ x

)
=−

1
2

∞∑
n=1

(−1)n

n
H 2

n xn
−

1
2

∞∑
n=1

(−1)n

n
Hn,2xn.
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Let us deal with the first sum. We prove that

(38)
∞∑

n=1

H 2
n

n
xn
= Li3(x)+ 2Li2(1− x) log(1− x)+Li2(x) log(1− x)

−
1
3 log3(1− x)+ 2 log x log2(1− x)− 1

3π
2 log(1− x)

for all |x |< 1.
Applying (22), we have that

∞∑
n=1

H 2
n

n
xn
=

∫ x

0

Li2(y)
y(1− y)

dy+
∫ x

0

log2(y)
y(1− y)

dy.

These integrands have primitive functions:

(39)
∫ x

0

Li2(y)
y(1− y)

dy = 2Li3(1− x)+Li3(x)+Li2(x) log(1− x)

+ log x log2(1− x)− 1
3π

2 log(1− x)− 2ζ(3),

and

(40)
∫ x

0

log2(y)
y(1− y)

dy =−2Li3(1− x)+ 2Li2(1− x) log(1− x)

−
1
3 log3(1− x)+ log x log2(1− x)+ 2ζ(3),

as can be seen by differentiation. (The integration constants come if we substitute
x = 0.) These two integrals together give (38).

Similarly,

(41)
∞∑

n=1

Hn,2

n
xn
=

∫ x

0

Li2(y)
y(1− y)

dy.

This integral is the same as (39).
Collecting the results under (38) and (41) (considering (39)) and putting them

into (37), we get the Landen equation for the trilogarithm, after a simplification.

5.3. The Landen equation for the tetralogarithm and higher-order polylogs. Let
us go to the tetralogarithm Li4(x). Identity (36) immediately gives

Li4
( x

1+ x

)
=

1
6

∞∑
n=1

(−1)n+1

n

(
H 3

n + 3Hn Hn,2+ 2Hn,3
)
xn.

This shows why finding a functional equation of Landen type for Li4(x) is not
hopeful: the product Hn Hn,2 does not seem to have a generating function expressible
by standard functions for all |x |< 1. This is probably true for higher-order polylog-
arithms as well, because those harmonic number expressions probably contain H 4

n
and other powers and products of generalized harmonic numbers.
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We note that Theorem 1 of [Ulanskii 2003] does provide a general Landen
functional equation for these polylogarithms. However, that equation uses multiple
zeta functions, which probably cannot be reduced to polylogarithms and ordinary
logarithms.

6. Collected sums

We close the paper collecting the calculated sums.

∞∑
n=1

H 2
n

n2 =
17
4
ζ(4),

∞∑
n=1

H 2
n

n3 =
7
2
ζ(5)− ζ(2)ζ(3),

∞∑
n=1

H 2
n,2

n2 =
19
24
ζ(6)+ ζ 2(3),

∞∑
n=1

Hn Hn,2

n2 = ζ(2)ζ(3)+ ζ(5),

∞∑
n=1

Hn,2 Hn,3

n2 =
131
16
ζ(7)− 5

2
ζ(2)ζ(5)− 3

2
ζ(3)ζ(4),

∞∑
n=1

Hn Hn,2

n4 =
3
4
ζ(3)ζ(4)+ 2ζ(2)ζ(5)− 51

16
ζ(7),

∞∑
n=1

(−1)n+1 H 2
n

n+ 1
=
π2

12
log 2− 1

3
log3 2− 1

4
ζ(3),

∞∑
n=1

H 3
n

2n =
π2

3
log 2+ 1

3
log3(2)+ ζ(3),

∞∑
n=1

H 2
n

2n = ζ(2)+ log2 2.

We also present some other sums without proof. The methods of Sections 4
and 5 can help get these as well.

∞∑
n=1

(−1)n+1

n
H 3

n =
1

144
(
π4
+ 18π2 log2 2− 36 log4 2+ 162 log(2)ζ(3)

)
,

∞∑
n=1

(−1)n+1

n
Hn,3 =

19
1440

π4
−

3
4

log(2)ζ(3),

∞∑
n=1

(−1)n

n
Hn−1 Hn−1,2 =

7
8

log(2)ζ(3)− 1
4

log2(2)ζ(2)− 1
8
ζ 2(2),

∞∑
n=1

(−1)n

n
Hn Hn,2 = ζ(4)−

1
12

log4 2− 2 Li4
( 1

2

)
+
π2

24
log2 2− 7

8
log(2)ζ(3).
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To conclude, we record the amusing identity of sums
∞∑

n=1

Hn,2
(−1)n

n!
=
π2

6e
−

∞∑
n=0

1
(n+ 1)2

!n
n!
.

Here !n is the subfactorial of n (the number of permutations on n elements that don’t
fix any of them) and e = exp(1). The reader can look for a proof as a challenge.
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BOUNDARY LIMITS FOR FRACTIONAL POISSON
a-EXTENSIONS OF L p BOUNDARY FUNCTIONS IN A CONE

LEI QIAO AND TAO ZHAO

If one replaces the Poisson kernel of a cone by the Poisson a-kernel, then
normalized Poisson integrals with respect to the stationary Schrödinger
operator converge along approach regions wider than the ordinary non-
tangential cones. In this paper we present new and simplified proofs of
these results. We also generalize the result by Mizuta and Shimomura to
the smooth cones.

1. Introduction and main results

Let R and R+ be the set of all real numbers and the set of all positive real numbers,
respectively. We denote by Rn (n ≥ 2) the n-dimensional Euclidean space. A point
in Rn is denoted by P = (X, xn), X = (x1, x2, . . . , xn−1). The Euclidean distance of
two points P and Q in Rn is denoted by |P− Q|. Also |P−O|, with O the origin
of Rn , is simply denoted by |P|. The boundary, the closure and the complement of
a set S in Rn are denoted by ∂S, S and Sc, respectively.

We introduce a system of spherical coordinates (r,2), 2= (θ1, θ2, . . . , θn−1),
in Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, xn) by

x1 = r
(n−1∏

j=1

sin θ j

)
, xn = r cos θ1,

for n ≥ 2, and for n ≥ 3,

xn−m+1 = r
(m−1∏

j=1

sin θ j

)
cos θm (2≤ m ≤ n− 1),

where 0 ≤ r < +∞, −π/2 ≤ θn−1 < 3π/2, and if n ≥ 3, then 0 ≤ θ j ≤ π

(1≤ j ≤ n− 2).

This work was supported by the National Natural Science Foundation of China (grants U1304102 and
11301140.)
MSC2010: 31B05, 31B10.
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The unit sphere and the upper unit half-sphere are denoted by Sn−1 and Sn−1
+ ,

respectively. For simplicity, a point (1,2) on Sn−1 and the set {2; (1,2) ∈�}, for
a set�⊂ Sn−1, are often identified with2 and�, respectively. For two sets4⊂R+

and �⊂ Sn−1, the set {(r,2) ∈ Rn
; r ∈4, (1,2) ∈�} in Rn is simply denoted by

4×�. In particular, the half-space R+× Sn−1
+ = {(X, xn) ∈ Rn

; xn > 0} will be
denoted by Tn .

By Cn(�), we denote the set R+ ×� in Rn with the domain � on Sn−1. We
call it a cone. Then Tn is a special cone obtained by putting �= Sn−1

+ . We denote
the sets I ×� and I × ∂�, with I an interval on R, by Cn(�; I ) and Sn(�; I ). By
Sn(�), we denote Sn(�; (0,+∞)), which is ∂Cn(�)−{O}.

For positive functions h1 and h2, we say that h1 . h2 if h1 ≤ Mh2 for some
constant M > 0. If h1 . h2 and h2 . h1, we say that h1 ≈ h2.

This article is devoted to the stationary Schrödinger operator

SSEa =−1+ a(P)I,

where 1 is the Laplace operator and I is the identity operator. We assume hereafter
that the potential a(P) is a nonnegative, locally integrable function in Cn(�),
namely, 0≤ a ∈ Lb

loc(Cn(�)), with b > n/2 if n ≥ 4, and with b = 2 if n = 2 or 3.
We denote this class of potentials by A.

If a ∈ A, then the operator SSEa can be extended in the usual way from the
space C∞0 (Cn(�)) to an essentially self-adjoint operator on L2(Cn(�)) (see [Reed
and Simon 1979, Chapter 13]). We shall denote the extended operator by SSEa as
well. The latter has Green function Ga

�(P, Q) vanishing almost everywhere at the
boundary and possessing all the analytic properties. For |P−Q|→ 0, we normalize
it such that cnGa

�(P, Q)≈− log |P−Q|when n=2, or cnGa
�(P, Q)≈|P−Q|2−n

when n ≥ 3. Here c2 = 2π , cn = (n− 2)sn when n ≥ 3, and sn is the surface area
2πn/2(0(n/2))−1 of Sn−1. The Green function Ga

�(P, Q) is positive on Cn(�)

and its inner normal derivative ∂Ga
�(P, Q)/∂nQ ≥ 0. We denote this derivative by

PIa
�(P, Q), which is called the Poisson a-kernel with respect to Cn(�). Then the

Poisson a-integral PIa
� f (P) (P ∈ Cn(�)) is defined by

PIa
� f (P)=

∫
Sn(�)

PIa
�(P, Q) f (Q) dσQ,

where
PIa
�(P, Q)=

∂

∂nQ
Ga
�(P, Q),

f ∈ L p(∂Cn(�)) (1≤ p <∞) and dσQ is the surface area element on Sn(�).

Remark 1 [Yoshida 1991]. Let �= Sn−1
+ and a = 0. Then

G0
Sn−1
+

(P, Q)=
{

log |P − Q∗| − log |P − Q| n = 2,
|P − Q|2−n

− |P − Q∗|2−n n ≥ 3,
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where Q∗ = (Y,−yn); that is, Q∗ is the mirror image of Q = (Y, yn) with respect
to ∂Tn . Hence, for the two points P = (X, xn)∈ Tn and Q= (Y, yn)∈ ∂Tn , we have

PI0
Sn−1
+

(P, Q)=
{

2|P − Q|−2xn n = 2,
2(n− 2)|P − Q|−nxn n ≥ 3.

Let � be a domain on Sn−1 with smooth boundary. Consider the Dirichlet
problem

(3n + λ)ϕ = 0 on �,

ϕ = 0 on ∂�,

where 3n is the spherical part of the Laplace operator

1n =
n− 1

r
∂

∂r
+
∂2

∂r2 +
3n

r2 .

We denote the least positive eigenvalue of this boundary value problem by λ and the
normalized positive eigenfunction corresponding to λ by ϕ(2);

∫
�
ϕ2(2) dσ2 = 1,

where dσ2 is the surface area on Sn−1.
To simplify our consideration in the following, we shall assume that if n≥ 3, then

� is a C2,α-domain (0<α < 1) on Sn−1 surrounded by a finite number of mutually
disjoint closed hypersurfaces (e.g., see [Gilbarg and Trudinger 1977, pp. 88–89]
for the definition of C2,α-domain). Then by modifying Miranda’s method [1970,
pp. 7–8], we can prove the inequality (see [Yoshida 1991, p. 373])

(1-1) ϕ(2)≈ dist(2, ∂�) (2 ∈�).

For any (1,2) ∈�, we have (see [Courant and Hilbert 1953])

ϕ(2)≈ dist
(
(1,2), ∂Cn(�)

)
,

which yields that

(1-2) δ(P)≈ rϕ(2),

where δ(P)= dist(P, ∂Cn(�)) and P = (r,2) ∈ Cn(�).
Solutions of the ordinary differential equation

(1-3) −Q′′(r)−
n− 1

r
Q′(r)+

(
λ

r2 + a(r)
)

Q(r)= 0, 0< r <∞,

with a parameter λ play an essential role in these questions. It is known (see, for
example, [Verzhbinskii and Maz’ya 1971]) that if the potential a belongs to A,
then (1-3) has a fundamental system of positive solutions {V,W } such that V is
nondecreasing with

0≤ V (0+)≤ V (r)↗∞ as r→+∞,
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and W is monotonically decreasing with

+∞=W (0+) > W (r)↘ 0 as r→+∞.

We will also consider the class B, consisting of the potentials a∈A such that there
exists a finite limit limr→∞ r2a(r)= k ∈ [0,∞) and moreover r−1

|r2a(r)− k| ∈
L(1,∞). If a ∈B, then the (sub)superfunctions are continuous (see [Simon 1982]).

In the rest of paper, we assume that a ∈B and we shall suppress this assumption
for simplicity.

Denote

ι±k =
2− n±

√
(n− 2)2+ 4(k+ λ)

2
;

then the solutions to (1-3) have the asymptotics (see [Hartman 1964])

(1-4) V (r)≈ r ι
+

k , W (r)≈ r ι
−

k , as r→∞.

Let u(r,2) be a function on Cn(�). For any given r ∈ R+, the integral∫
�

u(r,2)ϕ(2) d S1,

is denoted by Nu(r), when it exists. The finite or infinite limit

lim
r→∞

V−1(r)Nu(r)

is denoted by Uu , when it exists.
We fix an open, nonempty and bounded set G⊂∂Cn(�). In Cn(�), we normalize

the extension, with respect to G, by

Pa
� f (P)=

PIa
� f (P)

PIa
� χG(P)

.

Let
0(ζ )= {P = (r,2) ∈ Cn(�) : |(r,2)− ζ |. δ(P)}

be a nontangential cone in Cn(�) with vertex ζ ∈ ∂Cn(�).
We define

ℵp( f, l, P)=
(

1
ln−1

∫
B(P,l)

| f (Q)|p dσQ

)1/p

and
E

p
f (G)= {P ∈ G : ℵp( f − f (P), l, P)→ 0 as l→ 0}.

Note that if f ∈ L p(∂Cn(�)), then |G\Ep
f (G)| = 0 (almost every point is a

Lebesgue point).
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In the proof we need inequalities between the Green function Ga
�(P, Q) and

that of the Laplacian, hereafter denoted by G�(P, Q). It is well known that, for
any potential a(P)≥ 0,

(1-5) Ga
�(P, Q)≤ G�(P, Q).

The inverse inequality is much more elaborate. Cranston, Fabes and Zhao (see
[Cranston et al. 1988]; the case n = 2 is implicitly contained in [Cranston 1989])
have proved

(1-6) Ga
�(P, Q)≥ M(�)G�(P, Q),

where M(�)=M(�, a(P)) is a positive constant and does not depend on points P
and Q in Cn(�). If a = 0, then obviously M(�)≡ 1.

So we have

Ga
�(P, Q)≈ G�(P, Q),

from (1-5) and (1-6), which yields that

(1-7) PIa
�(P, Q)≈ PI�(P, Q).

Now we state our results, which are due to Qiao [2012] in the case a = 0 by the
remark. For related results in the half-space and the unit disc, we refer readers to
[Mizuta and Shimomura 2003, Theorem 3; Sjögren 1984; 1997; Rönning 1997;
Brundin 1999].

Theorem 2. Let 1 ≤ p < ∞ and f ∈ L p(∂Cn(�)). Then, for any ζ ∈ E
p
f (G)

(in particular, for a.e. ζ ∈G), one has that Pa
� f (P)→ f (ζ ) as P→ ζ along 0(ζ ).

2. Some lemmas

Lemma 1. For any P = (r,2) ∈ Cn(�) and any Q = (t,8) ∈ Sn(�) satisfying
0< t/r ≤ 4

5 (resp. 0< r/t ≤ 4
5),

PIa
�(P, Q)≈ t−1V (t)W (r)ϕ(2)(2-1)

(resp. PIa
�(P, Q)≈ V (r)t−1W (t)ϕ(2)).(2-2)

For any P = (r,2) ∈ Cn(�) and any Q = (t,8) ∈ Sn(�; (4r/5, 5r/4)),

(2-3) PIa
�(P, Q)≈

rϕ(2)
|P − Q|n

,

Proof. These immediately follow from [A. Escassut and Yang 2008, Chapter 11], [Es-
sén and Lewis 1973, Lemma 2], [Azarin 1969, Lemma 4 and Remark] and (1-7). �
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Lemma 2. PIa
� 1(P)= O(1) as P→ ζ ∈ G.

Proof. Write

PIa
� 1(P)=

∫
E1

+

∫
E2

+

∫
E3

=U1(P)+U2(P)+U3(P),

where

E1 = Sn
(
�;
(
0, 4

5r
])
, E2 = Sn

(
�;
[ 5

4r,∞
))
, E3 = Sn

(
�;
( 4

5r, 5
4r
))
.

By (1-4), (2-1) and (2-2), we have the estimates

U1(P)≈W (r)ϕ(2)
∫

E1

t ι
+

k −1 dσQ ≈−
sn

ι−k
W
(5

4

)
ϕ(2),(2-4)

U2(P)≈
sn

ι+k
V
(4

5

)
ϕ(2).(2-5)

Next we shall estimate U3(P). Take a sufficiently small positive number k such
that

Sn
(
�;
(4

5r, 5
4r
))
⊂

⋃
P=(r,2)∈3(k)

B
(
P, 1

2r
)
,

where

3(k)=
{

P = (r,2) ∈ Cn(�) : inf
z∈∂�
|(1,2)− (1, z)|< k, 0< r <∞

}
.

Since P→ ζ ∈ G, we only consider the case P ∈3(k). Now, put

Hi (P)=
{

Q ∈ E3 : 2i−1δ(P)≤ |P − Q|< 2iδ(P)
}
.

Since Sn(�)∩{Q ∈Rn
: |P−Q|< δ(P)} =∅, we have by (1-5) and (2-3) that

U3(P)≈
i(P)∑
i=1

∫
Hi (P)

rϕ(2)
|P − Q|n

dσQ,

where i(P) is a positive integer satisfying 2i(P)−1δ(P)≤ r/2< 2i(P)δ(P).
By (1-2) we have∫

Hi (P)

rϕ(2)
|P − Q|n

dσQ ≈ rϕ(2)
∫

Hi (P)

1
δ(P)

dσQ =
rϕ(2)
δ(P)

sn

2i(P) ≈
sn

2i(P) ,

for i = 1, 2, . . . , i(P).
So

(2-6) U3(P)≈ O(1).

Combining (2-4)–(2-6), Lemma 2 is proved. �
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Lemma 3. PIa
� χG(P)= PIa

� 1(P)+ O(1) as P→ ζ ∈ G.

Proof. In fact, we only need to prove

(2-7) U4(P)=
∫

Sn(�)−G
PIa
�(P, Q) dσQ . O(1).

Write

U4(P)=
∫
(Sn(�)−G)∩E1

+

∫
(Sn(�)−G)∩E2

+

∫
(Sn(�)−G)∩E3

=U5(P)+U6(P)+U7(P).
Obviously

U5(P).U1(P)≈ O(1),(2-8)

U6(P).U2(P)≈ O(1).(2-9)

Further, we have by (2-3) that

(2-10) U7(P)≈ rϕ(2)
∫
(Sn(�)−G)∩E3

1
|P − Q|n

dσQ

.
sn

d
|ζ |ϕ(2) (P→ ζ ∈ G),

where d = infQ∈∂Cn(�)−G |Q− ζ |.
Combining (2-8)–(2-10), (2-7) holds, which gives the conclusion. �

3. Proof of the theorem

As P→ ζ ∈ G,
PIa
� χG(P)= O(1) 6= 0,

from Lemmas 2 and 3.
Now let f ∈ L p(∂Cn(�)) and ζ ∈ E

p
f (G) be given. We may, without loss of

generality, assume that f (ζ )= 0. Furthermore we assume that P = (r,2) ∈ 0(ζ ).
Let s = |(r,2)− ζ |. We write

PIa
� f (P)=

∫
E1

+

∫
E2

+

∫
E3∩B(ζ,2s)

+

∫
E3∩Bc(ζ,2s)

= V1 f (P)+ V2 f (P)+ V3 f (P)+ V4 f (P).

By using Hölder’s inequality, (1-4), (2-1) and (2-2), we have the estimates

|V1 f (P)|.W (r)ϕ(2)
∫

E1

tα−1 f (Q) dσQ . r (1−n)/p
‖ f ‖p,

|V2 f (P)|. r (1−n)/p
‖ f ‖p.
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Similar to the estimate of U3(P) in Lemma 2, we only consider the following
inequality by (1-2):∫

Hi (P)

rϕ(2)
|P − Q|n

dσQ ≈ rϕ(2)
∫

Hi (P)

1
(2i−1δ(P))n

dσQ

. r ι
+

0 ϕ(2)

∫
E2

t ι
−

0 −1
| f (Q)| dσQ . r (1−n)/p

‖ f ‖p,

for i = 0, 1, 2, . . . , i(P), which is similar to the estimate of V2 f (P).
So

|V3 f (P)|. r (1−n)/p
‖ f ‖p.

Notice that |P − Q|> 1
2 |ζ − Q| in the case Q ∈ E3 ∩ Bc(ζ, 2s). By (1-2) and

(2-3), we have

|V4 f (P)|. δ(P)
∫

E3∩Bc(ζ,2s)

| f (Q)|
|P − Q|n

dσQ

. δ(P)
∞∑

i=1

∫
E3∩(B(ζ,2i+1s)\B(ζ,2i s))

| f (Q)|
|ζ − Q|n

dσQ

. δ(P)
∞∑

i=1

(
1

2i s
)n
∫

E3∩B(ζ,2i+1s)
| f (Q)| dσQ

. δ(P)
∞∑

i=1

ℵ1( f, 2i+1s, ζ ). δ(P)
∞∑

i=1

∫ 2i+2s

2i+1s

ℵ1( f, l, ζ )
l

dl

. δ(P)
∫
∞

s

ℵ1( f, l, ζ )
l

dl . δ(P)
∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl.

Thus it follows that

|P� f (P)|.
1

O(1)

[
|V1 f (P)| + |V2 f (P)| + |V3 f (P)| + |V4 f (P)|

]
. r (1−n)/p

‖ f ‖p + δ(P)
∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl.

Using the fact that s . δ(P). rϕ(2), we get

|P� f (P)|. ℵ1( f, 2s, ζ )+ δ(P)
∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl.

It is clear that ∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl

is a convergent integral, since
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ℵ1( f, l, ζ )
l

. s−1−nsn/q
‖ f ‖p . s−1−n/p

‖ f ‖p,

from Hölder’s inequality.
Now, as δ(P)→ 0, we also have s → 0. Since f (ζ ) = 0 and since we have

assumed that ζ ∈ E
p
f (G) (and thus that ζ ∈ E1

f (G)), it follows that Pa
� f (P)→

0= f (ζ ) as P = (r,2)→ ζ along 0(ζ ). This concludes the proof.
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JACOBI–TRUDI DETERMINANTS
AND CHARACTERS OF MINIMAL AFFINIZATIONS

STEVEN V SAM

In their study of characters of minimal affinizations of representations of
orthogonal and symplectic Lie algebras, Chari and Greenstein conjectured
that certain Jacobi–Trudi determinants satisfy an alternating sum formula.
In this note, we prove their conjecture and slightly more. The proof relies
on some symmetries of the ring of symmetric functions discovered by Koike
and Terada. Using results of Hernandez, Mukhin and Young, and Naoi, this
implies that the characters of minimal affinizations in types B, C, and D are
given by a Jacobi–Trudi determinant.

Introduction

In [Chari and Greenstein 2011] (henceforth abbreviated [CG]), the authors study
a class of modules over the current algebra g⊗C[t], where g is either a special
orthogonal or symplectic Lie algebra (over the complex numbers). These modules
are related to the minimal affinizations, a class of irreducible representations for
the quantum loop algebra Uq(g⊗C[t, t−1

]). We refer the reader to [CG, §3] for
background and references. A character formula, which is similar to a Jacobi–Trudi
determinant, for these modules is conjectured in [CG, Conjecture 1.13]. This is
inspired by [Nakai and Nakanishi 2006], which conjectures that the characters of
minimal affinizations are given by such determinants (see also [Nakai and Nakanishi
2007a; 2007b] for related work).

The aim of this note is to prove [CG, Conjecture 1.13] (see Theorem 1.1). We will
give a uniform proof for all types. The conjecture reduces to a combinatorial state-
ment about characters of g, so we will not need to discuss current or loop algebras
any further. In fact, we will prove an extension of the combinatorial statement which
removes a restriction on the highest weights considered. Furthermore, using results
of Hernandez, Mukhin and Young, and Naoi, this gives a character formula for
minimal affinizations of representations of g in types B, C, and D (see Remark 1.3).

The method of proof involves passing to a suitable limit (with respect to the rank
of the Lie algebra) to take advantage of additional symmetries. This suggests that
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Keywords: minimal affinizations, classical Lie algebras, symmetric functions.

237

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.272-1
http://dx.doi.org/10.2140/pjm.2014.272.237


238 STEVEN V SAM

there should be a connection to the categories Rep(O) and Rep(Sp) studied in [Sam
and Snowden 2013, §4] and a suitable categorification of the involutions iO and
iSp used in Section 3 (which were introduced in [Koike and Terada 1987]), but we
have been unable to find one so far.

1. Notation

We need some basic terminology of partitions [Macdonald 1995, §I.1]. A partition λ
is a sequence of integers (λ1, . . . , λr ) with λ1 ≥ · · · ≥ λr ≥ 0. We set |λ| =

∑
i λi

and `(λ)=max{i | λi 6= 0}. We write µ⊆ λ if µi ≤ λi for all i and also say that
λ contains µ. The notation ab means the sequence (a, a, . . . , a) where a appears
b times. We use λ† to denote the transpose partition of λ, i.e., λ†

i = #{ j | λ j ≥ i}
(in terms of Young diagrams, we are flipping across the diagonal). Let Sλ denote
the corresponding Schur functor [Fulton and Harris 1991, §6.1]; for the purposes
of this note, Sλ is a functor from the category of complex vector spaces to itself.
Special cases are symmetric powers Sk = Symk and exterior powers S(1k) =

∧k .
We use sλ to denote the Schur function indexed by λ [Macdonald 1995, §I.3] (it is
the character of Sλ). The product of two Schur functions is a linear combination of
Schur functions:

sµsν =
∑
λ

cλµ,νsλ.

The cλµ,ν are the Littlewood–Richardson coefficients [Macdonald 1995, §I.9]. If
cλµ,ν 6= 0, then |λ| = |µ| + |ν| and also µ⊆ λ and ν ⊆ λ.

Let G be a complex classical group of type Bn , Cn , or Dn+1, i.e., G is either
O2n+1(C), Sp2n(C), or O2n+2(C), respectively. Let g be the Lie algebra of G. Let
rank(g) be the rank of g; i.e., it is n in the cases of type B and C, and it is n+ 1
in the case of type D. We use these groups rather than their Lie algebras to avoid
having to make technical remarks later. For the representations considered in [CG],
this choice will not be important. We number the nodes of the Dynkin diagram
according to Bourbaki notation:

Bn :
1 2

. . .
n− 2 n− 1 n

⇒

Cn :
1 2

. . .
n− 2 n− 1 n

⇐

Dn+1 :
1 2

. . .
n− 2 n− 1 n

n+ 1
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Let ωi be the fundamental weights, and let λ be a dominant integral weight which is
a linear combination of ω1, . . . , ωn−1 (so in particular, we avoid the spin represen-
tations in the orthogonal case). We will use a basis e1, . . . , erank(g) for the weight
lattice of G (see [Fulton and Harris 1991, §16.1, §18.1] for details; there the basis
is denoted L1, . . . , L rank(g)). Given λ= a1ω1+ · · ·+ an−1ωn−1, we associate to it
the partition

(a1+ · · ·+ an−1, a2+ · · ·+ an−1, . . . , an−1).

So in particular, the notation λi = ai + · · · + an−1 is defined. Then we have
λ=λ1e1+· · ·+λn−1en−1. Let Vλ be the corresponding highest weight representation
of G. We will denote V = V1, the vector representation. We sometimes use the
notation V O

λ or V Sp
λ to emphasize that we are dealing with the orthogonal or

symplectic case, respectively.
In general, all finite-dimensional irreducible representations Vλ of G can be

indexed by partitions λ (see [Fulton and Harris 1991, §17.3, §19.5] or [Sam and
Snowden 2013, §4.1]). We may assume that `(λ) ≤ rank(g) as long as we are
ambivalent about the presence of the sign representation in the orthogonal group
case. (The reason we do not use the special orthogonal group is because some
irreducible representations of the even orthogonal group are not irreducible when
restricted to the special orthogonal group, and so the latter group does not behave
as well from the perspective of stability.)

Now we rephrase the definitions in [CG, §1.13] in this notation. First, we have
iλ = `(λ). In the orthogonal case, 9λ = {ei + e j | 1 ≤ i < j ≤ `(λ)}, and in the
symplectic case, 9λ = {ei + e j | 1≤ i ≤ j ≤ `(λ)}. Define the set

0(λ,9λ)=

{
(µ, s)

∣∣∣ λ= µ+∑
β∈9λ

nββ, nβ ∈ Z≥0,
∑
β∈9λ

nβ = s
}
.

By the definitions of9λ, we see that (µ, s)∈0(λ,9λ) implies that s= (|λ|−|µ|)/2.
Define hk = char(V O

k ) in the orthogonal case and hk =
∑

0≤r≤k/2 char(V Sp
k−2r )

in the symplectic case. In both cases, define the Jacobi–Trudi determinant

Hλ = det(hλi−i+ j ).

For (ν, s) ∈ 0(λ,9λ), define

Cλ
ν,s = dim homG(Vν,

∧s
(g)⊗ Vλ)

(see [CG, §2.7], but there it is c instead of C ; we use c for Littlewood–Richardson
coefficients).

All of the above definitions make sense for any partition λ with `(λ)≤ rank(g).
To make this clear, we spell out the conversion between partitions and weights now.
Let r = rank(g) and let λ= (λ1, . . . , λr ) be a partition.
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• If G = Sp2r (C), then Vλ is irreducible with highest weight

r−1∑
i=1

(λi − λi+1)ωi + λrωr .

• If G = O2r+1(C), then Vλ is irreducible with highest weight

r−1∑
i=1

(λi − λi+1)ωi + 2λrωr .

• If G = O2r (C), then there are two cases. In both cases, Vλ is an irreducible
representation of O2r (C), but we distinguish between what happens when we
pass to the Lie algebra so2r (C).

– If λr = 0, then Vλ is an irreducible representation of so2r (C) with highest
weight

r−2∑
i=1

(λi − λi+1)ωi + λr−1(ωr−1+ωr ).

– If λr > 0, then as a representation of so2r (C), Vλ is the direct sum of
irreducible representations with highest weights

r−2∑
i=1

(λi − λi+1)ωi + (λr−1− λr )ωr−1+ (λr−1+ λr )ωr

and

r−2∑
i=1

(λi − λi+1)ωi + (λr−1+ λr )ωr−1+ (λr−1− λr )ωr .

In the orthogonal case, let dλν be the multiplicity of V Sp
ν in Sλ(V Sp): here V Sp is

the vector representation for Sp(2n) with n ≥ `(λ) and Sλ(V Sp) is considered as
a representation of Sp(2n). By [Koike and Terada 1987, Proposition 1.5.3], this
multiplicity is independent of n as long as n ≥ `(λ), and we have

dλν =
∑
η

cλ
ν,(2η)† .

Similarly, in the symplectic case, let dλν be the multiplicity of V O
ν in Sλ(V O)

(note that we are using branching rules for the other group in both cases). Then
we have

dλν =
∑
η

cλν,2η.
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When `(λ)≤ n− 1, the following main result proves [CG, Conjecture 1.13].

Theorem 1.1. Let λ be a partition with `(λ)≤ rank(g). Then

(1.2)
∑

(ν,s)∈0(λ,9λ)

(−1)sCλ
ν,s Hν = char(Vλ).

Also Hλ =
∑

ν dλν char(Vν).

Remark 1.3. Under the restriction `(λ)≤ n− 1, Chari and Greenstein constructed
the module P(λ, 0)0(λ,9λ) in [CG], and Theorem 1.1 together with [CG, Theorem 2]
shows that its character is Hλ. In types B and C, Naoi [2013, Remark 4.7] shows
that these modules are the “graded limits” of the minimal affinizations of the
corresponding simple modules Vλ of g. A similar result is obtained for a special class
of highest weights in type D in [Naoi 2014]. In particular, the characters (considered
as representations of g) of both modules are the same. So the character of the
minimal affinization is also Hλ. In type B, this follows from [Hernandez 2007] (see
[Naoi 2013, Remark 4.7]) or from [Mukhin and Young 2012, Corollary 7.6]. �

2. Some identities

Let Q−1 be the set of partitions with the following inductive definition. The
empty partition belongs to Q−1. A nonempty partition µ belongs to Q−1 if and
only if the number of rows in µ is one more than the number of columns, i.e.,
`(µ)=µ1+1, and the partition obtained by deleting the first row and column of µ,
i.e., (µ2− 1, . . . , µ`(µ)− 1), belongs to Q−1. The first few partitions in Q−1 are 0,
(1, 1), (2, 1, 1), (2, 2, 2). Define Q1 = {λ | λ

†
∈ Q−1}. We record this definition as

the following formula:

Q†
1 = Q−1.(2.1)

The significance of these sets are the following decompositions (see [Macdonald
1995, I.A.7, Examples 4, 5]):∧i

(Sym2(E))=
⊕
µ∈Q1
|µ|=2i

Sµ(E),(2.2)

∧i(∧2
(E)

)
=

⊕
µ∈Q−1
|µ|=2i

Sµ(E).(2.3)

We need two of Littlewood’s identities [Koike and Terada 1987, Proposition 1.5.3]:

char(V O
λ )=

∑
µ∈Q1

(−1)|µ|/2
∑
ν

cλµ,νsν,(2.4)

char(V Sp
λ )=

∑
µ∈Q−1

(−1)|µ|/2
∑
ν

cλµ,νsν .(2.5)
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Lemma 2.6. Fix (ν, s) ∈ 0(λ,9λ), where `(λ) ≤ rank(g) and s = (|λ| − |ν|)/2.
Then Cλ

ν,s =
∑

µ∈Q−1
cλµ,ν in the orthogonal case (for the symplectic case, use Q1

instead of Q−1).
Conversely, if this sum is nonzero, then (ν, s) ∈ 0(λ,9λ) for s = (|λ| − |ν|)/2.

Proof. In the orthogonal case, we have g= V1,1 =
∧2
(V ). So we need to calculate

the multiplicity of Vν in
∧s(∧2

(V )
)
⊗Vλ, where s = (|λ|−|ν|)/2. By (2.3), we get∧s(∧2

(V )
)
=

⊕
µ∈Q−1
|µ|=2s

Sµ(V ).

(In the symplectic case we instead have g= V2 = Sym2(V ), so all of the following
statements will hold if we replace Q−1 with Q1.) We claim that the multiplicity
of Vν in Sµ(V )⊗ Vλ is the Littlewood–Richardson coefficient cλµ,ν .

If `(µ)≤ rank(g), then as a representation of the orthogonal group (also in the
symplectic case), Sµ(V ) is the sum of Vµ and other Vα, where |α| < |µ| up to
twisting Vα with a sign character (this follows from the explicit formula in [Koike
and Terada 1987, Proposition 2.5.1]). Also, if Vν appears in Vα ⊗ Vλ, then we
must have |ν| ≥ |λ| − |α| by a basic argument with weights. This implies that the
multiplicity of Vν in Sµ(V )⊗ Vλ is the same as the multiplicity of Vν in Vµ⊗ Vλ
under our hypothesis that |ν| + |µ| = |λ|. Furthermore, the multiplicity in this case
is the Littlewood–Richardson coefficient cλµ,ν [ibid., Proposition 2.5.2].

If `(µ) > rank(g), then the multiplicity of Vν in Sµ(V )⊗ Vλ is 0 since all Vα
in Sµ(V ) satisfy |α|< |µ|. Also, cλµ,ν = 0 since µ 6⊆ λ. This proves the claim and
the second sentence of the lemma.

Now we handle the last sentence of the lemma. So suppose that cλµ,ν 6= 0 for
some µ ∈ Q−1. Set s = (|λ| − |ν|)/2= |µ|/2. The weights of Sµ(V )⊂

∧s
(g) are

linear combinations of s roots of g. In particular, λ is the sum of ν and s roots
α1, . . . , αs of g. The possible roots of g are ei±e j and±ei . Since |ν+ei−e j | = |ν|

and |ν ± ei | = |ν| ± 1, the s roots α1, . . . , αs must all be of the form ei + e j , so
(ν, s) ∈ 0(λ,9λ). �

3. Proof of main theorem

Lemma 3.1. Pick X ∈ {B,C,D}. Fix a partition λ with `(λ)≤ n. Then (1.2) is true
for the representation Vλ for Xn if and only if it is true for the representation Vλ
for Xm for any m ≥ n.

Proof. By [Koike and Terada 1987, Corollary 2.5.3], the tensor product decomposi-
tion Vλ⊗ Vµ is independent of m if m ≥ `(λ)+ `(µ), and in this case, the tensor
product decomposes as a sum of Vα with `(α)≤ `(λ)+ `(µ). The definition of Hλ

involves multiplying at most `(λ)≤m characters, all indexed by one-row partitions,
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so its definition is independent of m. Certainly the set 0(λ,9λ) does not depend
on m if m ≥ `(λ). So it remains to show that the coefficients Cλ

ν,s are independent
of m, but this follows from Lemma 2.6. �

In particular, we may assume that n = ∞. In this limit, we can use some
additional symmetries of the character ring 3 of g. Then 3 is the ring of symmetric
functions, but is equipped with a new basis which was studied in [ibid.]. Write
s[λ] = char(Vλ). We use sSp

[λ] or sO
[λ] if we need to emphasize the group. Then

the s[λ], as λ ranges over all partitions, forms a basis for this character ring. The
idea is to use (2.4) or (2.5) to exhibit the change of basis between s[λ] and the usual
Schur functions sµ = char(Sµ(V )). There is an involution (which is an algebra
automorphism), denoted iO in the orthogonal case and iSp in the symplectic case,
that sends s[λ] to s[λ†] [ibid., Theorem 2.3.4]. Also, we recall that the linear map
ω : sλ 7→ sλ† is an algebra automorphism [Macdonald 1995, §I.3]. We need the
following identity [Koike and Terada 1987, Theorem 2.3.2]:

(3.2) ω(sSp
[λ])= sO

[λ†]
.

Lemma 3.3. The involution iO or iSp sends Hν to the Schur function sν† .

Proof. In the orthogonal case, iO(hk) = s[1k ] = char
(∧k V

)
= s1k , and in the

symplectic case,

iSp(hk)=
∑

0≤r≤k/2

s[1k−2r ] = char
(∧k V

)
= s1k

by basic properties of the decomposition of exterior powers under the action of
the symplectic group. Since iO and iSp are algebra homomorphisms, we see that
Hν = det(hνi−i+ j ) gets sent to det(s1νi−i+ j ), which is the Schur function sν† by the
Jacobi–Trudi formula [Macdonald 1995, §I.3, equation (3.5)]. �

Now we focus on the orthogonal case (the symplectic case is almost identical).
By (2.4),

s[λ] =
∑
µ∈Q1

(−1)|µ|/2
∑
ν

cλµ,νsν .

Since cλµ,ν = cλ
†

µ†,ν† (use that sµsν =
∑

λ cλµ,νsλ [Macdonald 1995, §I.9] and the
involution ω defined above), and Q†

1 = Q−1 (2.1), we can rewrite this as

s[λ†] =

∑
µ∈Q−1

(−1)|µ|/2
∑
ν

cλµ,νsν† .

In particular, the coefficient of sν† is
∑

µ∈Q−1
(−1)(|λ|−|ν|)/2cλµ,ν . By Lemma 2.6,

we get
s[λ†] =

∑
(ν,s)∈0(λ,9λ)

(−1)sCλ
ν,ssν† .
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Finally, apply the involution iO to this equation and use Lemma 3.3 to get (1.2).
The last part of the theorem follows directly from Lemma 3.3 and (3.2).
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NORMAL FAMILIES OF HOLOMORPHIC MAPPINGS INTO
COMPLEX PROJECTIVE SPACE CONCERNING

SHARED HYPERPLANES

LIU YANG, CAIYUN FANG AND XUECHENG PANG

We prove new criteria for normality for holomorphic mappings into the
complex projective space using the generalized Zalcman lemma. This im-
proves previous results in one complex variable. An example is included to
complement our theory.

1. Introduction

Recall that a family F of meromorphic functions on a plane domain D⊂C is normal
on D if every sequence in F contains a subsequence that converges uniformly on D
(with respect to the spherical metric) to a meromorphic function or to∞.

The following Picard-type theorem is a consequence of the second main theorem
of value distribution theory.

Theorem A [Bergweiler 2006, pp. 78–80] . Let f be a meromorphic function on
the complex plane C. If there exist three mutually distinct points a1, a2 and a3 on
the Riemann sphere such that f (z)−a j (for j = 1, 2, 3) has no zero on the complex
plane then f (z) is a constant.

A heuristic principle, bearing Bloch’s name and playing an important role in the
theory of normal families, says that if the only meromorphic function with a certain
property are constant, then a family of meromorphic functions in a plane domain
possessing this property is likely to be normal [Bergweiler 2006, pp. 78–80]. For
example, the Montel-type theorem associated with Theorem A is true:

Theorem B [Bergweiler 2006, pp. 78–80]. Let F be a family of meromorphic
functions on a plane domain D. Suppose that there exist three mutually distinct
points a1, a2 and a3 on the Riemann sphere such that f (z)− a j (for j = 1, 2, 3)
has no zero on D for each f ∈ F. Then F is a normal family on D.

We say that two meromorphic functions f and g on a domain D share the value
a (a =∞ is allowed) if f −1(a)= g−1(a) as sets (ignoring multiplicities). There
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are many results concerning this notion in value distribution theory, such as R.
Nevanlinna’s famous theorem [1926] that two meromorphic functions on the com-
plex plane sharing five distinct values coincide identically. (The number 5 cannot
be reduced, as the pair ez, e−z , with shared values 0, 1,−1,∞, demonstrates; but
Nevanlinna [1926] also showed that if four values are shared and the multiplicities
with which these each of these values is taken are the same for the two functions,
the two functions differ only by a Möbius transformation. The condition that the
multiplicities are the same cannot be relaxed; see [Gundersen 1979].)

More generally, the maximum modulus principle and Montel’s theorem yield
this extension of Theorem B:

Theorem C. Let F be a family of meromorphic functions on a plane domain D.
Suppose that there exist three mutually distinct points a1, a2 and a3 on the Riemann
sphere such that for each f, g ∈ F, f and g share a j (for j = 1, 2, 3) on D. Then
F is normal on D.

The following question arises naturally from Theorem C. Suppose two families of
meromorphic functions share some values a j . If one is normal, is the other normal?
Recently the problem was solved by Pang and Liu, who showed that if two families
of meromorphic functions share four values, the normality of one family implies the
normality of the other. They also gave a counterexample to show that the number 4
is sharp.

Theorem D [Liu et al. 2013]. Let F and G be two families of meromorphic functions
on a plane domain D. Suppose that there exist four mutually distinct points a1, a2, a3

and a4 on the Riemann sphere such that for each f ∈ F, there exists g ∈ G such
that f and g share a j for j = 1, . . . , 4 on D. If G is normal on D, then F is also
normal on D.

The classical Zalcman lemma plays a central role in normal family theory of one
complex variable. On the other hand, the study of normal families for holomorphic
mappings was initiated by H. Wu in his well-known paper in Acta Math [1967].
Much attention has been given to find the correct generalization of Zalcman’s result
to several complex variables. In this paper we prove some new normality criteria
for holomorphic mappings from plane domains into Ps(C) using the generalized
Zalcman lemma. An example will be included to complement our theory.

2. Basic notions and main results

Basic notions. We start with relevant definitions. For details see [Mai et al. 2005;
Shabat 1985, pp. 99–106; Ru 2001, pp. 99–102].

Let Ps(C) be a complex s-dimensional projective space and ρ :Cs+1
\{0}→Ps(C)

be the standard projective mapping. A subset H of Ps(C) is called a hyperplane if
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there is a s-dimensional linear subspace H̃ of Cs+1 such that

ρ(H̃ −{0})= H.

For a fixed system of homogeneous coordinates Z =[Z0 : Z1 : · · · : Zs], a hyperplane
H of Ps(C) can be written as

H =
{
[Z0 : Z1 : · · · : Zs] ∈ Ps(C) | 〈Z , α〉 = 0

}
,

where
〈Z , α〉 := a0 Z0+ · · ·+ as Zs

and α = (a0, . . . , as) ∈ Cs+1 is a nonzero vector. We write it as

H = {〈Z , α〉 = 0}

for convenience. In particular, we can take α ∈ B, where B is the set of Euclidean
unit vectors in Cs+1.

Let H1, . . . , Hs+1 be hyperplanes in Ps(C). Let α j = (a j0, . . . , a js)∈ B be such
that

H j = {〈Z , α j 〉 = 0}

for j = 1, . . . , s+ 1. Define

D(H1, . . . , Hs+1) := |det(αT
1 , . . . , α

T
s+1)|

which only depends on H j but does not depend on the choice of α j ∈ B.

Definition 2.1. Let H1, . . . , Hq , with q ≥ s+ 1, be hyperplanes in Ps(C). Define

D(H1, . . . , Hq) :=
∏

1≤ j1<···< js+1≤q

|det(αT
j1, . . . , α

T
js+1
)|.

We say the hyperplane family H1, . . . , Hq , q ≥ s+1, in Ps(C) is in general position
if D(H1, . . . , Hq) > 0.

Let M and N be connected Hermitian manifolds of dimension m and s with
Hermitian metrics hM and hN , respectively. The space C(M; N ) of continuous
mappings between M and N endowed with the compact-open topology is second
countable so that a metric can be furnished in C(M; N ) which induces the compact-
open topology.

Remark 2.2. A sequence { fn} in C(M; N ) converges to f in C(M; N ) in this
topology if and only if { fn} converges to f uniformly on compact subset of M .

The space H(M; N ) of holomorphic mappings from M into N is a closed
subspace of C(M; N ).
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Definition 2.3. A family F ⊂ H(M; N ) is called normal on M if any sequence
in F contains a subsequence which is relatively compact in H(M; N ), that is, if
any sequence { fn} ⊂ F contains a subsequence which converges to f ∈H(M; N )
uniformly on every compact subset of M .

Throughout this paper, we consider the special case where M is a plane domain
and N is a complex projective space.

Let f : D→ Ps(C) be a holomorphic map and U be an open set in D. Any
holomorphic mapping f̃ : U → Cs+1 such that ρ ◦ f̃ (z) ≡ f (z) in U is called
a representation of f on U . For a fixed system of homogeneous coordinates
[Z0 : Z1 : · · · : Zs] we set

Vi =
{
[Z0 : Z1 : · · · : Zs] | Zi 6= 0

}
, for i = 0, . . . , s.

Then every a ∈ D has a neighborhood U of a such that f (U )⊂ Vi for some i , and
f has a representation

f̃ = ( f0, . . . , fi−1, 1, fi+1, . . . , fs)

on U with holomorphic functions f0, . . . , fi−1, fi+1, . . . , fs .

Definition 2.4. For an open subset U of D we call a representation f̃ = ( f0, . . . , fs)

a reduced representation of f on U if f0, . . . , fs are holomorphic functions on U
and have no common zero.

Remark 2.5. Every holomorphic map of D into Ps(C) has a reduced representation
on some neighborhood of each point in D. Moreover, let f̃ = ( f0, . . . , fs) be a
reduced representation of f . For an arbitrary nowhere zero holomorphic function
h, ( f0h, . . . , fsh) is also a reduced representation of f . Conversely, for every
reduced representation (g0, . . . , gs) of f , each gi can be written as gi = h fi for
some nowhere zero holomorphic function h.

Remark 2.6. Every f ∈H(D;Ps(C)) has a reduced representation on the totality
of D [Fujimoto 1974].

We now give the definition of sharing hyperplanes, which extends the definition
of sharing values. Take f ∈H(D;Ps(C)). Let H = {〈Z , α〉 = 0} be a hyperplane
in Ps(C), where α = (a0, . . . , as) ∈ Cs+1

−{0}. Let f̃ = ( f0, . . . , fs) be a reduced
representation of f . We consider the holomorphic function on D

〈 f̃ (z), H〉 := a0 f0+ · · ·+ as fs .

Definition 2.7. Suppose f, g are in H(D;Ps(C)) and H is a hyperplane in Ps(C).
If there exist some (thus all) reduced representations of f and g respectively such
that 〈 f̃ (z), H〉 and 〈 g̃(z), H〉 share 0 on D, we say that f and g share H on D.
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By Remark 2.5, 〈 f̃ (z), H〉= 0 is indeed independent of the choice of the reduced
representation of f . Therefore sharing hyperplanes is well defined.

We will use the notation 〈 f (z), H〉 when some properties are independent of the
choice of the reduced representation of f . For example, we can say that 〈 f (z), H〉
has finite zeros on D.

H. Fujimoto [1974] gave the relation between m-convergence and quasiregularity.
In the case of holomorphic maps, we have the following properties. Suppose
{ fn} ⊂H(D;Ps(C)); then { fn} converges uniformly on compact subsets of D to a
holomorphic mapping f of D into Ps(C) if and only if, for any a ∈ D, each fn has
a reduced representation

f̃n = ( fn0, fn1, . . . , fns)

on some fixed neighborhood U of a in D such that { fni } converges uniformly on
compact subsets of U to a holomorphic function fi on U , i = 0, 1, . . . , s, with the
property that

f̃ = ( f0, f1, . . . , fs)

is a reduced representation of f on U .

Main results. Here we shall improve both Theorem C and Theorem D and obtain
the following results.

Theorem 2.8. Suppose F ⊂ H(D;Ps(C)). Let H1, . . . , Hq , with q ≥ 2s + 1, be
hyperplanes in Ps(C) located in general position. Suppose that for each f, g ∈ F,
f and g share H j on D, for j = 1, . . . , q. Then F is normal on D.

Corollary 2.9. Suppose F ⊂ H(D;Ps(C)). Let H1, . . . , Hq , with q ≥ 2s + 1, be
hyperplanes in Ps(C) located in general position. Suppose that for each f ∈ F,
f omits H j on D, for j = 1, . . . , q. Then F is normal on D.

Proof. Each H j ( j = 1, . . . , q) is a shared value of all f ∈ F, since f −1(H j )=∅.
Thus, the family F satisfies the assumptions of Theorem 2.8. �

Theorem 2.10. Suppose F,G ⊂ H(D;Ps(C)). Let q ≥ 3s + 1 be a integer, and
suppose the following three conditions are satisfied:

(i) For each f ∈ F, there exist g ∈ G and q hyperplanes H1, f , . . . , Hq, f (which
may depend on f ) such that f and g share H j, f on D, for j = 1, . . . , q.

(ii) inf{D(H1, f , . . . , Hq, f ) : f ∈ F}> 0.

(iii) G is normal on D.

Then F is a normal family on D.

By Theorem 2.10 we immediately have the following corollary.
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Corollary 2.11. Suppose F,G⊂H(D;Ps(C)). Let H1, . . . , Hq , with q ≥ 3s+ 1,
be hyperplanes in Ps(C) located in general position. Suppose that for each f ∈ F

there exists g ∈ G such that f and g share H j on D, j = 1, . . . , q. If G is normal
on D, then F is also normal on D.

The following example shows that the number 3s+ 1 in Theorem 2.10 is sharp
when s = 2.

Example 1. Let 1 be the unit disk. Let F= { fn(z)}, where

fn(z)=
[√
−1 cos nz : sin nz : sin nz

]
.

We denote by zn,1, zn,2, . . . , zn,kn the zeros of sin nz in 1. Let G = {gn(z)},
where

gn(z)=
[

1 :
∏

1≤i≤kn

z− zn,i

1− z̄n,i z
:

∏
1≤i≤kn

z− zn,i

1− z̄n,i z

]
.

Let
H1 = {[Z0 : Z1 : Z2] | 3Z0+ Z1+ 2Z2 = 0},

H2 = {[Z0 : Z1 : Z2] | −5Z0+ Z1+ 4Z2 = 0},

H3 = {[Z0 : Z1 : Z2] | 7Z0+ Z1+ 6Z2 = 0},

H4 = {[Z0 : Z1 : Z2] | −9Z0+ Z1+ 8Z2 = 0},

H5 = {[Z0 : Z1 : Z2] | Z2 = 0},

H6 = {[Z0 : Z1 : Z2] | Z1 = 0}.

Then these hyperplanes are in general position.
One can verify that fn and gn share H j on 1 for j = 1, . . . , 6. Clearly, G

is normal on 1. However, F fails to be normal on any neighborhood of 0 by
Lemma 3.2 in next section.

3. Some lemmas

The following is the general version of the Zalcman lemma.

Lemma 3.1 [Thai et al. 2003]. Let F be a family of holomorphic mappings of a
domain � in Cm into Ps(C). The family F is not normal on � if and only if there
exist sequences { fn} ⊂ F, {zn} ⊂ � with zn → z0 ∈ �, and {ρn} with ρn > 0 and
ρn→ 0 such that

hn(ξ) := fn(zn + ρnξ)

converges uniformly on compact subsets of C to a nonconstant holomorphic map-
ping h of C into Ps(C).
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Lemma 3.2 [Osserman and Ru 1997]. Let M be a Riemann surface, and fn : M→
Ps(C) be a sequence of holomorphic maps converging uniformly on every compact
subset of M to a holomorphic map f : M→ Ps(C). Given a, b ∈ Ps(C∗), let fa,b

be the meromorphic function defined by

fa,b =
〈 f̃ , α〉

〈 f̃ , β〉
,

where f̃ is a reduced representation of f on U , and α, β ∈ (Cs+1)∗ are such that
a = ρ(α), b = ρ(β). Assume that β( f̃ ) 6≡ 0 on some U. Let p ∈ M be such that
β( f̃ )(p) 6= 0, and Up be a neighborhood of p such that β( f̃ )(z) 6= 0 for z ∈ Up.
Then { fna,b} converges uniformly on Up to the meromorphic function fa,b.

Let µ > 0 be an integer. The holomorphic map f ∈H(C;Ps(C)) is said to be
ramified over a hyperplane H = {〈Z , α〉 = 0} with multiplicity at least µ if all zeros
of 〈 f (z), α〉 = 0 have orders at least µ, where f̃ is a local reduced representation
of f (it is easy to check that this definition is independent of the choice of reduced
representation). If either the image of f completely omits H or f (C) ⊆ H , we
shall say that f is ramified over H with multiplicity∞.

Nochka [1983] improved the result of Green [1977] and proved H. Cartan’s
conjecture.

Lemma 3.3 [Nochka 1983]. Suppose that q(≥ 2s + 1) hyperplanes H1, . . . , Hq

are given in general position in Ps(C), along with q positive integers m1, . . . ,mq

(some of them may be∞). If

q∑
j=1

(
1− s

m j

)
> s+ 1,

then there does not exist a nonconstant holomorphic mapping f : C→ Ps(C) such
that f intersects H j with multiplicity at least m j , j = 1, . . . , q.

Lemma 3.4 (first main theorem [Fujimoto 1993, Corollary 3.1.16]). Let f : C→
Ps(C) be a holomorphic map. Let H be a hyperplane in Ps(C). If f (C)* H, then

T f (r)= m f (r, H)+ N f (r, H)+ O(1).

The second main theorem about linearly degenerated case is also required.

Lemma 3.5 (degenerate second main theorem [Ru 2001, Theorem A3.4.4]). Let
f = [ f0 : · · · : fs] : C→ Ps(C) be a holomorphic map whose image is contained in
some k-dimensional subspace but not in any subspace of dimension lower than k.
Let H1, . . . , Hq be hyperplanes in general position. Assume that f (C) * H j , for
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j = 1, . . . , q. Then the inequality

q∑
j=1

m f (r, H j )+
n+ 1
k+ 1

N (R f , r)≤ (2n− k+ 1)T f (r)+ O(log T f (r))

holds for all r outside a set E with finite Lebesgue measure. Here N (R f , r) is the
ramification term.

Lemma 3.6 [Fujimoto 1974]. Let f ∈H(C;Ps(C)). The map f is rational, namely,
f is representable as f = [ f0 : · · · : fs] with polynomial fi , i = 0, . . . , s, if and
only if

lim
r→∞

T f (r)
log r

<∞.

Lemma 3.7. Let f ∈ H(C;Ps(C)), and H1, . . . , H2s+1 be hyperplanes in Ps(C)

located in general position. If for each hyperplane H j , j = 1, . . . , 2s + 1, either
f (C)⊂ H j or 〈 f (z), H j 〉 has finite zeros in C (no zero point is allowed), then the
map f is rational.

Proof. Let f̃ = ( f0, . . . , fs) be a reduced representation of f on C. We set the
rank of the vector group { f0, . . . , fs} to be k + 1, with 0 ≤ k ≤ s. Thus, f (C) is
contained in some k-dimensional subspace of Ps(C) but not in any subspace of
dimension lower than k.

Let I be a subset of {1, . . . , 2s+ 1} such that i is in I if and only if f (C)⊂ Hi ,
and let

X I =
⋂
i∈I

Hi .

We can identify X I with a projective space of dimension s− k1, where k1 = #I . So
0≤ k1 ≤ s− k. According to the definition, the restrictions of

H∗j := H j

⋂
X I , j 6∈ I

are hyperplanes which are still in general position in X I = Ps−k1(C).
Applying Lemma 3.5 to f = [ f0 : · · · : fs] : C→ Ps−k1(C) and the hyperplanes

H∗j , j 6∈ I , and using the first main theorem about holomorphic curves, it follows
that the inequality

(2s− k1+ 1)T f (r)≤
∑
j 6∈I

N f (r, H∗j )+ (2(s− k1)− k+ 1)T f (r)+ O(log T f (r))

holds for all r outside a set with finite Lebesgue measure. Since 〈 f (z), H∗j 〉 has
finite zeros in C, this yields the inequality

(k1+ k)T f (r)≤ O(log T f (r))+ O(log r).
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If k = k1 = 0, the rank of the vector group { f0, . . . , fs} is 1, which means that
f is a constant map.

If k1+ k > 0. Together with Lemma 3.6, the above inequality implies that f is
rational. Hence, the lemma is proved. �

4. Proofs of the theorems

Proof of Theorem 2.8. Fix g ∈ F. Suppose that F is not normal on some point
z0 ∈ D. Suppose there are k hyperplanes H jl , l = 1, . . . , k, such that

g(z0) ∈

k⋂
l=1

H jl .

Then k ≤ s. For otherwise k ≥ s+ 1, and because H1, . . . , Hq , q ≥ 2s+ 1, are
hyperplanes in Ps(C) located in general position, it follows that g = [0 : 0 : · · · : 0].
This is a contradiction. Therefore, k ≤ s. Without loss of generality, we assume
that there exists a neighborhood U (z0)⊂ D such that for l = 1, . . . , k1,

g(U (z0))⊂ Hl,

for µ= k1+ 1, . . . , k,
g(U (z0))∩ Hµ = {g(z0)},

and for ν = k+ 1, . . . , 2s+ 1,

g(D(z0))∩ Hν = φ.

In other words, these hyperplanes are divided into three groups.
Observing that normality is a local property, we may suppose that U (z0) is the

unit disk1, and z0= 0. Then by Lemma 3.1 there exist points zn with zn→ z0 ∈ D,
positive numbers ρn with ρn→ 0, and functions fn ∈ F such that

hn(ξ) := fn(zn + ρnξ)

converges uniformly on compact subsets of C to a nonconstant holomorphic map-
ping h of C into Ps(C). Here ξ ∈ C satisfies zn + ρnξ ∈1.

We consider two cases.
If zn/ρn→∞, then for each ξ ∈ C, zn + ρnξ 6= z0 when n is large enough. It

follows that for i = k1+ 1, . . . , 2s+ 1,

〈 fn(zn + ρnξ), Hi 〉 6= 0.

The Hurwitz theorem implies that for i = k1 + 1, . . . , 2s + 1, 〈h(ξ), Hi 〉 6= 0 or
〈h(ξ), Hi 〉 ≡ 0. Thus, 〈h(ξ), H j 〉 6= 0 or 〈h(ξ), H j 〉 ≡ 0 for j = 1, . . . , 2s+ 1. By
Lemma 3.3, h is a constant holomorphic mapping. This contradicts the claim that
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h is a nonconstant holomorphic mapping.
If zn/ρn 6→ ∞, taking a subsequence and renumbering, we may assume that

zn/ρn→ c, c ∈ C. Then

fn(ρnξ)= hn

(
ξ −

zn

ρn

)
converges uniformly on compact subsets of C to a nonconstant holomorphic mapping
h(ξ − c). Since for each hyperplane H j , j = 1, . . . , 2s + 1, either h(C) ⊂ H j

or 〈h(ξ − c)(z), H j 〉 has finite zeros in C, h(ξ − c) is rational by Lemma 3.7.
Since h(ξ − c) is a holomorphic mapping, there exist some constants cν , with
ν = k+ 1, . . . , 2s+ 1, such that

〈h(ξ − c)(z), Hν〉 ≡ cν .

Note that 2s− k+ 1≥ s+ 1, and {H j } are in general position. Hence we see that
h(ξ − c) is a constant map. Again, this a contradiction. And hence the family F is
normal on D. �

Proof of Theorem 2.10. If F is not normal on D, then by Lemma 3.1, there exist
points zn→ z0 ∈ D, positive numbers ρn→ 0 and functions fn ∈ F, such that

hn(ξ) := fn(zn + ρnξ),

where ξ ∈ C satisfies zn + ρnξ ∈ D, converges uniformly on compact subsets of C

to a nonconstant holomorphic mapping h of C into Ps(C).
By condition (i), there exist q hyperplane sequences {H j, fn }

∞

n=1 and {gn} ⊂ G

such that for z ∈ D, j = 1, . . . , q ,

〈gn(z), H j, fn 〉 = 0

whenever
〈 fn(z), H j, fn 〉 = 0, z ∈ D.

For j = 1, . . . , q, take {α jn}
∞

n=1 ⊂ B satisfying

H j, fn = {〈Z , α jn〉 = 0}.

Since B is a compact subset of Cs+1, there exist α j = (a j0, . . . , a js) ∈ B for
j = 1, . . . , q , and subsequences which (to avoid complication in notation) we again
call {α jn} satisfying that α jn→ α j as n→∞. Let

H j = {〈Z , α j 〉 = 0}

be hyperplanes of Ps(C), j = 1, . . . , q. From condition (i), it follows that

D(H1, . . . , Hq)≥ lim inf
n→∞

D(H1, fn , . . . , Hq, fn ) > 0.

Thus, the hyperplanes H j , j = 1, . . . , q , are located in general position.
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Claim. There exist at most 2s hyperplanes such that for each hyperplane H,
either the image of h completely omits H or h(C)⊂ H. If not, Lemma 3.3 shows
that h is a constant holomorphic mapping, which is a contradiction. So there exist
at least s + 1 hyperplanes of H j , j = 1, . . . , q, such that for i = 1, . . . , s + 1,
h(C)∩ Hi 6= φ and h(C)* Hi .

For a fixed i ∈ {1, . . . , s + 1}, suppose that ξi ∈ h(C) ∩ Hi . Choose a small
neighborhood U (ξi ) of ξi such that h(C)∩ Hi = {ξi }. Hence 〈 h̃(ξi ), H〉 = 0 and
〈 h̃(ξi ), H〉 6≡ 0, where h̃ is a local reduced representation. Since hn converges
uniformly to h on U (ξi ), hn has a local reduced representation h̃n = (hn0, . . . , hns)

such that h̃n uniformly converges to a reduced representation h̃ = (h0, . . . , hs)

of h on U (ξi ). Obviously, hnk converges uniformly to hk on U (ξi ) for each k =
0, . . . , s. Therefore 〈 h̃n(ξ), αin〉 converges uniformly to 〈 h̃(ξ), αi 〉 on U (ξi ). By
the Hurwitz theorem, there exist ξin → ξi such that 〈 h̃n(ξin), αin〉 = 0, that is,
〈 f̃n(zn + ρnξin), αin〉 = 0.

On the other hand, applying condition (iii), we can find subsequences of {gn}

(again denoted by themselves) such that gn converges uniformly to g on D, where
g is a holomorphic mapping of D into Ps(C). As we noted earlier, gn has a local
reduced representation g̃n = (gn0, . . . , gns) such that g̃n uniformly converges to a
reduced representation g̃ = (g0, . . . , gs) of g on U (z0). It follows that

〈 g̃n(zn + ρnξin), αin〉 = 0.

As n→∞, we have
〈 g̃(z0), αi 〉 = 0.

So there exist s+ 1 hyperplanes Hi , i = 1, . . . , s+ 1, which intersect at one point
ρ(g̃(z0)). This contradicts the claim that the hyperplanes H j , j = 1, . . . , q, are
located in general position. This finishes the proof. �
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