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CERTAIN SELF-HOMOTOPY EQUIVALENCES
ON WEDGE PRODUCTS OF MOORE SPACES

HO WON CHOI AND KEE YOUNG LEE

For a based 1-connected finite CW-complex X , let E(X) denote the group
of homotopy classes of self-homotopy equivalences on X , and Edim+r

] (X) the
subgroup of E(X) of homotopy classes of self-homotopy equivalences on X
that induce the identity homomorphism on the homotopy groups of X in
dimensions ≤ dim X + r . For two given Moore spaces M1 = M(Zq, n+ 1)

and M2 = M(Zp, n) with n ≥ 5, we investigate the subsets of [M1, M2]

and [M2, M1] consisting of homotopy classes of maps that induce the trivial
homomorphism between the homotopy groups of M1 and those of M2 in di-
mensions ≤ dim X+ r . Using the results of this investigation, we completely
determine the subgroups Edim+r

]

(
M(Zq, n+1)∨M(Z p, n)

)
, where p and q

are positive integers, for n ≥ 5 and r = 0, 1.

1. Introduction

If X and Y are based topological spaces, let [X, Y ] denote the set of homotopy
classes of based maps from X to Y , let E(X) denote the subset of [X, X ] that consists
of homotopy classes of self-homotopy equivalences of X and let Edim+r

] (X) denote
the set of homotopy classes of self-homotopy equivalences that induce the identity
on the homotopy groups of X in dimensions at most dim X + r . Then, E(X) is a
group with a group operation given by the composition of homotopy classes, and
Edim+r
] (X) is a subgroup of E(X). The group E(X) and certain natural subgroups

including Edim+r
] (X) are fundamental objects in homotopy theory and have been

studied extensively. For a survey of the known results and applications of E(X),
see [Arkowitz 1990].

When G is an abelian group, we let M(G, n) denote the Moore space, that is,
the space with G as a single nonvanishing homology group at n-level. Also, in this
case, M(G, n) is a simply connected space. We note that if n ≥ 3, then M(G, n) is
characterized by

H̃i (M(G, n))∼=
{

G if i = n,
0 if i 6= n.
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Let C(G, n) denote the co-Moore space of type (G, n) defined by

H̃ i (C(G, n))∼=
{

G if i = n,
0 if i 6= n.

If G is a finitely generated abelian group and G = F ⊕ T , where F is a free
abelian group of rank r and T is a finite group, then M(G, n)=M(F, n)∨M(T, n)
and C(G, n)= M(F, n)∨M(T, n− 1) for n ≥ 3.

Arkowitz and Maruyama [1998] showed that Edim
] (M(G, n))∼=⊕(r+s)s Z2 and

Edim+1
] (M(G, n))= 1 for n > 3, where r is the rank of G and s is the number of

2-torsion summands in G. Moreover, they completely determined Edim
] (C(G, n))

for n ≥ 3 by means of 2×2 matrices, where G is a finitely generated abelian group.
Jeong [2010] computed the groups Edim

] (Y ) for Y = M(Z p, n+ 1)∨M(Z p, n),
n ≥ 5 as follows:

Edim
] (Y )∼=


Z p if p is odd,
Z2⊕ Z2 if p ≡ 2 (mod 4),
Z2⊕ Z2⊕ Z2 if p ≡ 0 (mod 4).

In this paper we study the self-homotopy equivalences on the wedge product
X=M(Zq , n+1)∨M(Z p, n) for n≥5, where p and q are positive integers. For two
given Moore spaces M1=M(Zq , n+1) and M2=M(Z p, n), we compute [M1,M2]

and [M2,M1] and find their generators. Moreover, we investigate the subset of
[M1,M2] or [M2,M1] that consists of elements whose induced homomorphisms
are trivial between the homotopy groups of M1 and those of M2 in dimensions at
most dim X + r with r = 0, 1. Using these results, we completely determine the
groups Edim+r

] (X) for r = 0, 1. As a result, we obtain Table 1 and the following:

Edim+1
] (X)∼=



1 if q is odd or p is odd (d = 1),
Zd if q is odd or p is odd (d 6= 1),
Zd/2⊕ Z2 if p ≡ 0 (mod 4) and (p, 24)= 4 or 12 (d 6= 1),
Zd/2 if p ≡ 0 (mod 4) and (p, 24)= 8 or 24 (d 6= 1),
Zd/2 if q ≡ 2, p ≡ 2 (mod 4),
Zd/2⊕ Z2 if q ≡ 0, p ≡ 2 (mod 4),

where d is the greatest common divisor of p and q .
The space X is neither a Moore space nor a co-Moore space but is characterized

by finite homology groups and cohomology groups. That is,

H̃i (X)∼=


Z p if i = n,
Zq if i = n+ 1,
0 otherwise,
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q is odd
d = 1 d 6= 1

q ≡ 2 (mod 4) q ≡ 0 (mod 4)

p is odd (d = 1) 1 · Z2 Z2

p is odd (d 6= 1) · Zd Z2⊕Zd Z2⊕Zd

p ≡ 2 (mod 4) 1 Zd Z2⊕Zd/2⊕Z2 Z2⊕Zd/2⊕Z4

p ≡ 0 (mod 4) 1 Zd Z2⊕Zd/2⊕Z2⊕Z2 Z2⊕Zd/2⊕Z2⊕Z2

Table 1. Isomorphism class of the groups Edim
] (X).

and

H̃ i (X, π)∼=


Hom(Z p, π) if i = n,
Ext(Z p, π)⊕Hom(Zq , π) if i = n+ 1,
Ext(Zq , π) if i = n+ 2,
0 otherwise.

From this perspective, X is an interesting space for studying self-homotopy
equivalences.

Throughout this paper, all topological spaces are based and have the based
homotopy type of a finite l-connected CW-complex. All maps and homotopies
will preserve base points. For the spaces X and Y , we denote by [X, Y ] the set
of homotopy classes of maps from X to Y . We do not distinguish between the
notation of a map X→ Y and that of its homotopy class in [X, Y ]. If a group G
is generated by a set {a1, . . . , an}, then we denote the group by G{a1, . . . , a2} or
G = 〈a1, . . . , an〉.

2. Preliminaries

Let X be a space. Then, we denote by SX the suspension of X and by Sn X the
iterated suspension defined by Sn X = S(Sn−1 X). Let f : A→ B be a map and
let C f = B ∪ f C A be the mapping cone of f . Then, we have a Puppe sequence
[1958] for f ,

A
f // B i // C f

π // S A
S f // SB Si // SC f

Sπ // S2 A
S2 f // S2 B // · · · ,

such that the following sequence is exact for any space X :

· · · // [SC f , X ] Sπ∗ // [SB, X ]
S f ∗ // [S A, X ] π

∗

// [C f , X ] i∗ // [B, X ]
f ∗ // [A, X ],

where Sn f is a suspension map induced by f .
If A is m-connected and B is n-connected, then we have the following exact

sequence for any CW-complex Y with dimension at most m+ n as a dual sequence
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of the above sequence [Blakers and Massey 1952]:

[Y, A]
f∗ // [Y, B]

i∗ // [Y,C f ]
π∗ // [Y, S A]

S f∗ // [Y, SB] // · · · .

Both sequences will be called the exact sequences associated with the cofibration

B→ C f → S A.

Proposition 2.1 [Arkowitz and Maruyama 1998]. If X is (k− 1)-connected, Y is
(l− 1)-connected, k, l ≥ 2 and dim P ≤ k+ l− 1, then the projections X ∨Y → X
and X ∨ Y → Y induce a bijection

[P, X ∨ Y ] → [P, X ]⊕ [P, Y ].

Proposition 2.1 is a consequence of [Spanier 1966, p. 405] since the inclusion
X ∨ Y → X × Y is a (k+ l − 1)-equivalence.

Next, we consider abelian groups G1 and G2 and Moore spaces M1=M(G1, n1)

and M2 = M(G2, n2). Let X = M1∨M2. We denote by i j : M j→ X the inclusion
and by p j : X→ M j the projection, where j = 1, 2. If f : X→ X , then we define
f jk : Mk→ M j by f jk = p j f ik for j, k = 1, 2.

If f : X → Y is a map, then f]n : πn(X)→ πn(Y ) denotes the induced homo-
morphism in dimension n.

Proposition 2.2 [Arkowitz and Maruyama 1998]. The function θ that assigns to
each f ∈ [X, X ] the 2× 2 matrix

θ( f )=
(

f11 f12

f21 f22

)
,

where f jk ∈ [Mk,M j ], is a bijection. In addition:

(1) θ( f +g)= θ( f )+θ(g), so θ is an isomorphism [X, X ]→
⊕

j,k=1,2[Mk,M j ].

(2) θ( f g) = θ( f )θ(g), where f g denotes composition in [X, X ] and θ( f )θ(g)
denotes matrix multiplication.

(3) If αr : πr (M1)⊕ πr (M2)→ πr (M1 ∨ M2) is the homomorphism induced by
the inclusions and βr : πr (M1∨M2)→ πr (M1)⊕πr (M2) the homomorphism
induced by the projections respectively, then

βr f]rαr (x, y)=
(

f11 ]r (x)+ f12 ]r (y), f21 ]r (x)+ f22 ]r (y)
)

for x ∈ πr (M1) and y ∈ πr (M2).

Proposition 2.3 [Araki and Toda 1965]. (1) πn(M(Zq , n))∼= Zq for all q.

(2) πn+1(M(Zq , n))∼=
{

0 if q is odd,
Z2 if q is even.
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(3) πn+2(M(Zq , n))∼=


0 if q is odd,
Z4 if q ≡ 2 (mod 4),
Z2⊕ Z2 if q ≡ 0 (mod 4).

(4) πn+3(M(Zq , n))∼=
{

Z(q,24) if q is odd,
Z(q,24)⊕ Z2 if q is even.

The generators of [Sn+i , Sn
] can be summarized thus [Toda 1962]:

i < 0 i = 0 i = 1 i = 2 i = 3 i = 4, 5

[Sn+i , Sn
] 0 Z Z2 Z2 Z24 0

Generator ι η η2 ν 0

Proposition 2.4 [Araki and Toda 1965].

(1) [M(Zq , n), Sn
] ∼=

{
0 if q is odd,
Z2 if q is even.

(2) [M(Zq , n+ 1), Sn
] ∼=


0 if q is odd,
Z4 if q ≡ 2 (mod 4),
Z2⊕ Z2 if q ≡ 0 (mod 4).

Proposition 2.5 [Arkowitz and Maruyama 1998]. For the Moore space X =
M(G, n):

(1) Edim
] (X) ∼= ⊕(r+s)s Z2, where r is the rank of G and s is the number of 2-

torsion summands in G.

(2) Edim+1
] (X)∼= 1 if n > 3.

Proposition 2.6 (universal coefficient theorem for homotopy groups with coeffi-
cients [Hilton 1965]). There is an exact sequence

0→ Ext(G, πn+1(X))→ πn(G; X)→ Hom(G, πn(X))→ 0,

where πn(G; X), the n-th homotopy group of X with coefficients in G, is given by
πn(G; X)= [M(G, n), X ], where M(G, n) is a Moore space.

3. Generators of the sets of homotopy classes on Moore spaces

In this section, we find generators of homotopy groups of Moore spaces and the
sets of homotopy classes between two Moore spaces. Let

M1 = M(Zq , n+ 1)= Sn+1
∪q en+2 and M2 = M(Z p, n)= Sn

∪p en+1,

with p, q ≥ 1. Then, there are two mapping cone sequences

Sn+1
qι1 // Sn+1 i1 // Sn+1

∪q en+2 π1 // Sn+2
qι1 // Sn+2
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and

Sn
pι2 // Sn i2 // Sn

∪p en+1 π2 // Sn+1
pι2 // Sn+1,

where pι2 and qι1 are maps with degree p and q respectively.

Remark 3.1. We find generators of πm(M(Zr , n)), for n ≤ m ≤ n+ 2.
Recall that πn(M(Zr , n))∼= Zr . From the mapping cone sequence

Sn rι // Sn i // M(Zr , n) π // Sn+1 rι // Sn+1,

we obtain the long exact sequence

πn(Sn)
rι] // πn(Sn)

i] // πn(M(Zr , n))
π] // πn(Sn+1)

rι] // πn(Sn+1).

By the results in [Toda 1962], we have the sequence

Z{ι}
rι] // Z{ι}

i] // πn(M(Zr , n)) // 0,

so i] is surjective. Thus, πn(M(Zr , n)) ∼= Z{ι}/ Im(rι]). Let i](ι) = i . Then, we
can take i as a generator of πn(M(Zr , n)).

Next, we find a generator of πn+1(M(Zr , n)). There are two cases according to
the parity of the positive integer r . If r is odd, then πn+1(M(Zr , n)) is trivial. If r
is even, then we can take i](η) as a generator of πn+1(M(Zr , n)), where η is the
generator of πn+1(Sn).

Finally, we find a generator of πn+2(M(Zr , n)). Consider the exact sequence

πn+2(Sn)
rι] // πn+2(Sn)

i] // πn+2(M(Zr , n))
π] // πn+2(Sn+1)

rι] // πn+2(Sn+1).

Then by the results in [Toda 1962], we have the exact sequence

Z2{η
2
}

rι] // Z2{η
2
}

i] // πn+2(M(Zr , n))
π] // Z2{η}

qι] // Z2{η}.

Since r is an even number, we obtain the exact sequence

0 // Z2{η
2
}

i] // πn+2(M(Zr , n))
π] // Z2{η} // 0.

If r ≡2 (mod 4), then πn+2(M(Zr , n))∼= Z4{η} such that i](η2)=2η and π](η)=η.
On the other hand, if r ≡ 0 (mod 4), then πn+2(M(Zr , n))∼= Z2⊕ Z2{η1, η2} such
that i](η2)= η1 and π](η2)= η.

By Remark 3.1, it follows that

πn+1(M1)∼= Zq{i1}, πn(M2)∼= Z p{i2},

πn+2(M1)∼= Z2{i1](η)}, πn+1(M2)∼= Z2{i2](η)}.

Moreover, πn+2(M2)∼= Z4{η} or πn+2(M2)∼= Z2⊕ Z2{η1, η2}.
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Lemma 3.2. Let p and q be positive integers and (p, q) be the greatest common
divisor of p and q. Consequently, if (p, q)= d 6= 1, then [M2,M1] ∼= Zd{π

∗

2 (i1)}

and if (p, q)= 1, then [M2,M1] ∼= 0.

Proof. Consider the mapping cone sequence of M2,

Sn
pι2
// Sn

i2
// Sn
∪p en+1

π2
// Sn+1

pι2
// Sn+1.

This sequence induces the following exact sequence:

πn+1(M1)

pι2∗
// πn+1(M1)

π2∗
// [M2,M1]

i2∗
// πn(M1)

pι2∗
// πn(M1).

Since πn+1(M1)∼= Zq{i1} and πn(M1)∼= 0, the exact sequence above becomes

Zq{i1}

p∗ι2
// Zq{i1}

π∗2
// [M2,M1] // 0.

If (p, q)= 1, the first p∗ι2 is an isomorphism, so [M2,M1] ∼= 0. Let (p, q)= d 6= 1.
Then, since π∗2 is surjective and p∗ι2(i1)= pi1, we have

[M2,M1] = imπ∗2
∼= Zq{i1}/ im p∗ι2

∼= Zd{π
∗

2 (i1)}. �

Lemma 3.3. If p or q is odd, then [M1,M2] ∼= 0.

Proof. Consider the mapping cone sequence of M1,

Sn+1
qι1 // Sn+1 i1 // Sn+1

∪q en+2 π1 // Sn+2
qι1 // Sn+2.

Then, we have the exact sequence

πn+2(M2)
q∗ι1 // πn+2(M2)

π∗1 // [M1,M2]
i∗1 // πn+1(M2)

q∗ι1 // πn+1(M2).

Let p≡2 (mod 4) and let q be odd. Then, since πn+1(M2)∼= Z2 and πn+2(M2)∼= Z4,
we have the sequence

Z4

q∗ι1 // Z4
π∗1 // [M1,M2]

i∗1 // Z2

q∗ι1 // Z2.

Furthermore, since (q, 4)= 1 and (q, 2)= 1, each q∗ι1 is an isomorphism. Thus we
have the exact sequence

0→ [M1,M2] → 0.

Therefore, [M1,M2] ∼= 0.
In the case where p ≡ 0 (mod 4) and q is odd, we can give a similar proof.
Next, let p be odd. Since πn+1(M2) and πn+2(M2) are trivial groups, so is
[M1,M2] by exactness. �
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Let p and q be even. From the exact sequences associated with the cofibrations
Sn+1
→ M1→ Sn+2 and Sn

→ M2→ Sn+1, we have the following commutative
diagram with exact rows and columns:

[Sn+2,Sn
]

pι2∗
��

q∗ι1 // [Sn+2,Sn
]

pι2∗
��

π∗1 // [M1,Sn
]

pι2∗
��

i∗1 // [Sn+1,Sn
]

pι2∗
��

q∗ι1 // [Sn+1,Sn
]

pι2∗
��

[Sn+2,Sn
]

i2∗
��

q∗ι1 // [Sn+2,Sn
]

i2∗
��

π∗1 // [M1,Sn
]

i2∗

��

i∗1 // [Sn+1,Sn
]

i2∗
��

q∗ι1 // [Sn+1,Sn
]

i2∗
��

[Sn+2,M2]

π2∗
��

q∗ι1 // [Sn+2,M2]

π2∗
��

π∗1 // [M1,M2]

π2∗
��

i∗1 // [Sn+1,M2]

π2∗
��

q∗ι1 // [Sn+1,M2]

π2∗
��

[Sn+2,Sn+1
]

pι2∗
��

q∗ι1 // [Sn+2,Sn+1
]

pι2∗
��

π∗1 // [M1,Sn+1
]

pι2∗
��

i∗1 // [Sn+1,Sn+1
]

pι2∗
��

q∗ι1 // [Sn+1,Sn+1
]

pι2∗
��

[Sn+2,Sn+1
]

q∗ι1 // [Sn+2,Sn+1
]
π∗1 // [M1,Sn+1

]
i∗1 // [Sn+1,Sn+1

]

q∗ι1 // [Sn+1,Sn+1
]

Lemma 3.4. Let (p, q) 6= 1. Then, if either p ≡ 0 (mod 4) and q ≡ 2 (mod 4) or
p ≡ 2 (mod 4) and q ≡ 0 (mod 4), we have [M1,M2] ∼= Z4⊕ Z2.

Proof. Suppose that p ≡ 0 (mod 4) and q ≡ 2 (mod 4). With the results in [Araki
and Toda 1965], we obtain the following diagram from the above diagram:

0

��
Z4

i2∗
��

0 // Z2⊕ Z2
π∗1 // [M1,M2]

π2∗

��

i∗1 // Z2 // 0

Z2

��
0

Thus, [M1,M2] is isomorphic to one of three groups: Z8, Z4⊕ Z2 or Z2⊕ Z2⊕ Z2.
Since i2∗ is injective, [M1,M2] has an element of order 4. However, Z2⊕ Z2⊕ Z2

does not have an element of order 4. Since π∗1 is injective, [M1,M2] has a subgroup
which is not cyclic. It follows that [M1,M2] 6= Z8. Therefore, [M1,M2] ∼= Z4⊕ Z2.
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Now, let p ≡ 2 (mod 4) and q ≡ 0 (mod 4). With the results in [Araki and Toda
1965], we obtain the following diagram from the above commutative diagram:

0

��
Z2⊕ Z2

i2∗
��

0 // Z4
π∗1 // [M1,M2]

π2∗
��

i∗1 // Z2 // 0

Z2

��
0

Thus, [M1,M2] is isomorphic to one of the three groups: Z8, Z4⊕Z2 or Z2⊕Z2⊕Z2.
Since π∗1 is injective, [M1,M2] has an element of order 4. However, Z2⊕ Z2⊕ Z2

does not have an element of order 4. Since i2∗ is injective, [M1,M2] has a subgroup
which is not cyclic. It follows that [M1,M2] 6= Z8. Thus, [M1,M2] ∼= Z4⊕ Z2. �

By Lemma 3.4, [M1,M2]∼= Z4⊕Z2. However, [M1,M2] has different generators
under different conditions. Here we determine the generators.

If p ≡ 0 (mod 4) and q ≡ 2 (mod 4), then [M1,M2] ∼= Z4 ⊕ Z2{α, π
∗

1 (η2)},
where π∗1 (η1)= 2α and i∗1 (α)= i2](η).

If p≡ 2 (mod 4) and q≡ 0 (mod 4), then [M1,M2]∼= Z4⊕Z2{π
∗

1 (η), β}, where
i∗1 (β)= i2](η).

For a given homomorphism h : G1 → G2, we have from Proposition 2.6 the
commutative diagram

0 // Ext(G2, πn+1(X))

h
]

��

// πn(G2; X)

h∗

��

// Hom(G2, πn(X))

h]
��

// 0

0 // Ext(G1, πn+1(X)) // πn(G1; X) // Hom(G1, πn(X)) // 0

where h̄] and h] are induced by h and h∗ is associated with h. This shows that the
nonuniqueness of h∗ is substantially limited. The measure of choice is bounded by
the group

Hom
(
Hom(G2, πn(X)),Ext(G1, πn+1(X))

)
.

Lemma 3.5. If (p, q)= d 6= 1, we have

[M1,M2] ∼=

{
Z2⊕ Z2 if p ≡ 2 and q ≡ 2 (mod 4),
Z2⊕ Z2⊕ Z2 if p ≡ 0 and q ≡ 0 (mod 4).
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Proof. Suppose that p≡ 2 (mod 4) and q ≡ 2 (mod 4). By the universal coefficient
theorem for homotopy groups with coefficients, we have the short exact sequence

0→ Ext(Zq , Z4)→ [M1,M2] → Hom(Zq , Z2)→ 0.

Since Ext(Zq , Z4) ∼= Z(q,4) ∼= Z2 and Hom(Zq , Z2) = Z(q,2) = Z2, this sequence
becomes

0→ Z2→ [M1,M2] → Z2→ 0.

Let M3=M(Z p, n+1). By the universal coefficient theorem for homotopy with
coefficients, we have the sequence

0→ Ext(Z p, Z4)→ [M3,M2] → Hom(Z p, Z2)→ 0.

Similarly, this sequence becomes

0→ Z2→ [M3,M2] → Z2→ 0.

We may assume that q ≥ p. Let q = kd and p = ld, where (k, l) = 1. Then
both k and l are odd. We define h : Zq → Z p by h(1̄) = l̄ with s̄ = s + r Z ∈ Zr .
Then, im(h) is congruent to Zd in Z p and h is a nontrivial homomorphism since
(q, p)= d 6= 1. Thus, we have the commutative diagram

0 // Z2

h̄]
��

// [M3,M2]

h∗

��

// Z2

h]
��

// 0

0 // Z2 // [M1,M2] // Z2 // 0

where h̄] :Ext(Z p, Z4)→Ext(Zq , Z4) and h] :Hom(Z p, Z2)→Hom(Zq , Z2) are
induced by h.

To show that h] :Hom(Z p, Z2)→Hom(Zq , Z2) is an isomorphism, it is sufficient
to show that h] is nontrivial. Let α be an nonzero element in Hom(Z p, Z2) such
that α(1̄) = 1̄. Since h](α) = α ◦ h ∈ Hom(Zq , Z2) and α ◦ h(1̄) = α(l̄) = l̄ = 1̄,
where l is odd, it follows that h](α) is a nontrivial homomorphism.

Next, we show that h̄] :Ext(Z p, Z4)→Ext(Zq , Z4) is an isomorphism. Consider
the resolutions of Zq and Z p. Then we have following commutative diagram:

0 // Z

h1

��

q // Z

h2

��

β // Zq

h
��

// 0

0 // Z
p // Z

β ′ // Z p // 0

See [Gray 1975, Lemma 25.3]. Now, we give precise definitions of the maps
h1, h2 and h]. Since l̄ = h(1̄) = h ◦ β(1) = β ′(h2(1)), we have h2 given by
h2(1) = l. Moreover, we can obtain h1 using h2. Since p ◦ h1 = h2 ◦ q, we have
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ph1(1)=h2(q)=qh2(1)=dkl= pk. Thus, h1 is given by h1(1)=k. If we consider
the three homomorphisms h], h]1 and h]2 induced by h, h1 and h2 respectively, we
have the following commutative diagram:

0 // Hom(Zq , Z4)
β∗ // Hom(Z , Z4)

q∗ // Hom(Z , Z4)

0 // Hom(Z p, Z4)

h]
OO

β ′∗ // Hom(Z , Z4)

h]2

OO

p∗ // Hom(Z , Z4)

h]1 ∼=

OO

Next, we show that h]1 is an isomorphism. We choose a generator α of Hom(Z , Z4)

such that α(1) = 1̄. Then h]1(α)(1) = (α ◦ h1)(1) = α(k) 6= 0 (mod 2) since k is
odd. Therefore, h]1(α) is a generator of Hom(Z , Z4). Thus, h]1 is an isomorphism.

By using h]1, we determine the homomorphism h̄] : Ext(Z p, Z4)→ Ext(Zq , Z4).
Since q ≡ p ≡ 2 (mod 4) and

Ext(Z p, Z4)=Hom(Z , Z4)/ im(p∗) and Ext(Zq , Z4)=Hom(Z , Z4)/ im(q∗),

we have

Ext(Z p, Z4)= 〈α+{2α}〉 and Ext(Zq , Z4)= 〈α+{2α}〉.

By well-known facts of homological algebra, h̄] : Ext(Z p, Z4)→ Ext(Zq , Z4)

is given by h̄](α+{2α})= α ◦ h1+{2α} 6= 0. Therefore, h̄] is nontrivial. Thus, h̄]

is an isomorphism.
By the five lemma, h∗ : [M1,M2] → [M3,M2] is an isomorphism. From [Araki

and Toda 1965], we have [M3,M2] ∼= Z2⊕ Z2. Therefore, [M1,M2] ∼= Z2⊕ Z2.
Next, we suppose that q ≡ 0 and p ≡ 0 (mod 4).
From [Araki and Toda 1965] and the commutative diagram above Lemma 3.4,

we obtain the following commutative diagram:

0

��

0

��
0 // Z2

π∗1 //

i2∗
��

Z2⊕ Z2

i2∗
��

i∗1 // Z2 //

i2∗
��

r
oo 0

0 // Z2⊕ Z2
π∗1 // [M1,M2]

π2∗

��

i∗1 // Z2 //

θ

OO

0

Z2

��
0
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Since the second row is a split exact sequence, there exists r : [Sn+1, Sn
]→[M1, Sn

]

such that i∗1◦r= id[Sn+1,Sn]. Moreover, since the third i2∗ is an isomorphism, there ex-
ists θ : [Sn+1,M2]→[Sn+1, Sn

] such that θ◦i2∗= id[Sn+1,Sn] and i2∗◦θ = id[Sn+1,M2].
We define the map k : [Sn+1,M2]→ [M1,M2] by k = i2∗ ◦ r ◦ θ . Then, we have

i∗1 ◦ k = i∗1 ◦ i2∗ ◦ r ◦ θ

= i2∗ ◦ i∗1 ◦ r ◦ θ

= i2∗ ◦ id[Sn+1,Sn] ◦ θ

= i2∗ ◦ θ = id[Sn+1,M2].

Therefore, the third row is a split exact sequence. Hence,

[M1,M2] ∼= Z2⊕ Z2⊕ Z2. �

Now, we determine the generators of [M1,M2] when either p ≡ 2 (mod 4) and
q ≡ 2 (mod 4) or p ≡ 0 (mod 4) and q ≡ 0 (mod 4).

Let p ≡ 2 (mod 4) and q ≡ 2 (mod 4). By using the Puppe exact sequence, we
have the following exact sequence:

πn+2(M2)
q∗ι1 // πn+2(M2)

π∗1 // [M1,M2]
i∗1 // πn+1(M2)

p∗ι1 // πn+1(M2).

By exactness, we obtain the exact sequence

0 // Z2
π∗1 // [M1,M2]

i∗1 // Z2 // 0.

Thus, [M1,M2] ∼= Z2⊕ Z2{π
∗

1 (η), β}, where i∗1 (β)= i2](η).
Next, we let p ≡ 0 (mod 4) and q ≡ 0 (mod 4). By a similar method we obtain
[M1,M2] ∼= Z2⊕ Z2⊕ Z2 {π

∗

1 (η1), π
∗

1 (η2), α}, where i∗1 (α)= i2](η).

Remark 3.6. Here we determine the generators of πn+3(M(Zq , n)). By using the
mapping cone sequence of the Moore space

Sn qι // Sn i // M(Zq , n) π // Sn+1 qι // Sn+1,

we obtain a long exact sequence

πn+3(Sn)
qι] // πn+3(Sn)

i] // πn+3(M(Zq , n))
π] // πn+3(Sn+1)

qι] // πn+3(Sn+1).

From the work by Toda [1962], we have

Z24{ν}
qι] // Z24{ν}

i] // πn+3(M(Zq , n))
π] // Z2{η

2
}

qι] // Z2{η
2
}.

Thus, if q is odd, then πn+3(M(Zq , n)) ∼= Z(q,24){i](ν)}, and if q is even, then
πn+3(M(Zq , n))∼= Z(q,24)⊕ Z2{i](ν), η2} where π](η2)= η2.
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Based on Remarks 3.1 and 3.6, we obtain for M1 the table

q odd q ≡ 2 (mod 4) q ≡ 0 (mod 4)

πn+3(M1) 0 Z4 Z2⊕ Z2

Generator η̂ η3, η4

Relation i1](η
2)= 2η̂, π1](η̂)= η i1](η

2)= η3, π1](η4)= η

while for M2 we obtain

p odd p ≡ 2 (mod 4) p ≡ 0 (mod 4)

πn+3(M2) Z(p,24) Z(p,24)⊕ Z2 Z(p,24)⊕ Z2

Generator i2](ν) i2](ν), η2 i2](ν), η2

Relation π2](η2)= η2 π2](η2)= η2

By Lemmas 3.4 and 3.5, we have the following table, where π∗1 (η1) = 2α,
i∗1 (α)= i2](η) and i∗1 (β)= i2](η):

[M1,M2] Generator

either q odd or p odd 0
q ≡ 2, p ≡ 0 (mod 4) Z4⊕ Z2 α, π∗1 (η2)

q ≡ 0, p ≡ 2 (mod 4) Z4⊕ Z2 π∗1 (η), β

q ≡ p ≡ 2 (mod 4) Z2⊕ Z2 π∗1 (η), β

q ≡ p ≡ 0 (mod 4) Z2⊕ Z2⊕ Z2 π∗1 (η1), π
∗

1 (η2), α

4. Computation of Edim+r
] (M(Zq, n+ 1)∨M(Z p, n)) for r = 0, 1

In this section, we compute Edim+r
] (M1 ∨ M2), where M1 = M(Zq , n + 1) =

Sn+1
∪q en+2 and M2 = M(Z p, n) = Sn

∪p en+1 with p, q ≥ 1. In [Jeong 2010],
these groups were computed in the case of p = q. However, we compute those
groups in the general case, that is, p 6= q and r = 0, 1. Throughout this section
we assume that X = M1∨M2. Note that πn+k(M1∨M2)∼= πn+k(M1)⊕πn+k(M2)

for k ≤ n by Proposition 2.1. Moreover, from Proposition 2.2, we can identify
f ∈ [X, X ] with the 2× 2 matrix

θ( f )=
(

f11 f12

f21 f22

)
,

where f11 ∈ [M1,M1], f12 ∈ [M2,M1], f21 ∈ [M1,M2], and f22 ∈ [M1,M1].

Lemma 4.1. Let f ∈ [X, X ] be given by

f =
(

f11 f12

f21 f22

)
.
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Then f ∈ E(X) if and only if f11 ∈ E(M1) and f22 ∈ E(M2). Additionally, if
f ∈ Edim

] (X), then f22 = 1.

Proof. Let us denote by h∗n : Hn(U )→ Hn(V ) the induced homomorphism on
the homology group from h : U → V . Then, f ∈ E(X) if and only if f∗ is an
isomorphism if and only if f11∗n+1 and f22∗n are isomorphisms if and only if
f11 ∈ E(M1) and f22 ∈ E(M2). For the proof of the second statement, see [Jeong
2010, Lemma 3.3]. �

Let us denote by g]s :πs(U )→πs(V ) the homomorphism induced by g :U→ V .
It is clear from Lemma 4.1 that if f ∈ E(X), then f](n+k) : πn+k(X)→ πn+k(X) is
given by

f](n+k) =

(
f11](n+k) f12](n+k)

f21](n+k) f22](n+k)

)
,

where f11](n+k) and f22](n+k) are isomorphisms and k ≤ n.

Lemma 4.2. If f ∈ E(X) and either q is odd or p is odd, then f12]k = 0 for
k = 1, 2, . . . , n+ 2.

Proof. Since M1 is n-connected, we have πk(M1)= 0 for k = 1, 2, . . . , n. Thus it
is sufficient to show that f12]k = 0 for k = n+ 1, n+ 2.

If p is odd, then πn+1(M2) and πn+2(M2) are trivial groups. Thus, f12](n+1) =

f12](n+2) = 0.
Suppose that q is odd, p is even and (p, q)=d 6=1. Then, πn+1(M2)∼= Z2{i2](η)}.

Since [M2,M1] ∼= Zd{π
∗

2 (i1)}, we have f12]n+1 = tπ∗2 (i1)] for some integer t such
that 1≤ t ≤ d . Thus, we have

f12](n+1)(i2](η))= tπ∗2 (i1)(i2](η))= t (i1 ◦π2 ◦ i2 ◦ η)= 0

because π2 ◦ i2 is homotopic to a constant map. Hence, f12](n+1) = 0. If d = 1,
[M2,M1] = 0 and it is trivial.

For k = n+ 2, we are done since πn+2(M1)= 0. �

Here we introduce certain generators and elements of [M1,M1] and Edim+r
] (M1)

for r =−1, 0, 1 as described in [Jeong 2010].

Remark 4.3. Let M1 = M(Zq , n + 1) be a Moore space with q is even. By
Proposition 2.5, Edim

] (M1)∼= Z2 and Edim+1
] (M1)= 1. In this remark, we describe

the generator of Edim
] (M1) explicitly.

Consider the mapping cone sequence

Sn+1
qι1 // Sn+1 i1 // Sn+1

∪q en+2 π1 // Sn+2
qι1 // Sn+2 .

Then, we have the following exact sequence:

πn+2(M1)
q∗ι1 // πn+2(M1)

π∗1 // [M1,M1]
i∗1 // πn+1(M1)

q∗ι1 // πn+1(M1) .
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Since πn+2(M1)∼= Z2{i1η} and πn+1(M1)∼= Zq{1}, we have the short exact sequence

0 // Z2{i1η}
π∗1 // [M1,M1]

i∗1 // Zq{1} // 0 .

By [Araki and Toda 1965, Theorem 4.1],

[M1,M1] ∼=

{
Z2q{1} if q ≡ 2 (mod 4),
Zq ⊕ Z2{1, i1 ◦ η ◦π1} if q ≡ 0 (mod 4),

and

π∗1 (i1 ◦ η)= i1 ◦ η ◦π1 ∈ [M1,M1].

Let i1 ◦η◦π1 = ε. Then, ε has order 2 and 1+ε ∈ [M1,M1]. Since n ≥ 5, we have
that 1+ ε is a suspension map. Thus,

(1+ ε) ◦ (1+ ε)' 1 ◦ (1+ ε)+ ε ◦ (1+ ε)= 1+ ε+ ε+ ε ◦ ε = 1+ 2ε+ ε2.

If q ≡ 2 (mod 4), then i1 ◦ η ◦π1 = q1 and ε2
= i1 ◦ η ◦π1 ◦ i1 ◦ η ◦π1. Since

π1 ◦ i1= 0 and ε has order 2, we have 2ε = 0 and ε2
= 0. Thus, (1+ε)◦ (1+ε)' 1

and 1+ ε ∈ E(M1).
Since each α ∈ πn+r (M1) is a suspension map, for r = 1, 2, 3, we have

(1+ ε)](α)= α+ ε ◦α.

Since πn+1(M1) ∼= Zq{i1} and ε](i1) = i1 ◦ η ◦ π1 ◦ i1 = 0, we have 1+ ε ∈
Edim−1
] (M1).

Since πn+2(M1) ∼= Z2{i1](η)} and ε](i1](η)) = i1 ◦ η ◦π1 ◦ i1 ◦ η = 0, we have
1+ ε ∈ Edim

] (M1).
Since πn+3(M1)∼= Z4{η̂} and

ε](η̂)= i1 ◦ η ◦π1 ◦ η̂ = i1 ◦ η ◦ η = i1 ◦ η
2
= 2η̂ 6= 0,

we have 1+ ε /∈ Edim+1
] (M1).

We obtain similar results in the case of q ≡ 0 (mod 4).

Theorem 4.4. If X = M1 ∨M2 and (p, q)= 1, then

Edim
] (X)∼=

{
1 if q is odd,
Z2 if q is even and p is odd.

Proof. Let (q, p)= 1. Then, either q or p is odd. By Lemmas 3.2 and 3.3, we have
[M2,M1] = 0 and [M1,M2] = 0.

If q is odd, then Edim
] (M1) = 1 and Edim

] (M2) = 1 by Proposition 2.5 and
Lemma 4.1. Therefore Edim

] (X)= 1.
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If p is odd and q is even, then Edim
] (M1) ∼= Z2{1+ ε} and Edim

] (M2) = 1 by
Proposition 2.5, Lemma 4.1, and Remark 4.3. Thus, we have

Edim
] (X)∼=

{(
1+ ε 0

0 1

) ∣∣∣∣ ε ∈ Z2 {i1ηπ1}

}
,

where η is the generator of πn+2(Sn+1). �

Theorem 4.5. If X = M1 ∨M2 and (p, q)= d 6= 1, then

Edim
] (X)∼=

{
Zd if q is odd,
Z2⊕ Zd if q is even and p is odd.

Proof. By Lemmas 3.2 and 3.3, we have [M2,M1] ∼= Zd{π
∗

2 (i1)} and [M1,M2] = 0.
Moreover, f12]k = 0 for k = 1, 2, . . . , n+ 2 by Lemma 4.2.

Thus, if q is odd, then we have

Edim
] (X)∼=

{(
1 f12

0 1

) ∣∣∣∣ f12 ∈ Zd {π
∗

2 (i1)}

}
,

but if q is even and p is odd, then we have

Edim
] (X)∼=

{(
1+ ε f12

0 1

) ∣∣∣∣ f12 ∈ Zd {π
∗

2 (i1)}, ε ∈ Z2 {i1ηπ1}

}
. �

Let f12 be an element of [M2,M1]∼= Zd{π
∗

2 (i1)}, Then f12= sπ∗2 (i1) for 1≤ s ≤ d .

Lemma 4.6. For f =
( f11

f21

f12
f22

)
∈ E(X), let p and q be even. Then, f12]k = 0 for

k = 1, 2, . . . , n+ 1.

Proof. Since M1 is n-connected, πk(M1) = 0 for k = 1, 2, . . . , n. Thus, it is
sufficient to show that f12](n+1) = 0. Since [M2,M1] ∼= Zd{π

∗

2 (i1)} by Lemma 3.2
and f12 belongs to [M2,M1], we have f12= sπ∗2 (i1) for some 1≤ s ≤ d . Moreover,
πn+1(M2)∼= Z2{i2](η)} by Remark 3.1. Thus, we have

f12](n+1)(i2](η))= sπ∗2 (i1)(i2](η))= s(i1 ◦π2 ◦ i2 ◦ η)= 0

since π2 ◦ i2 is homotopic to the constant map. �

Lemma 4.7. Let p and q be even and f12 = sπ∗2 (i1) be an element of [M2,M1] ∼=

Zd{π
∗

2 (i1)} for 1 ≤ s ≤ d. Then, f12](n+2) 6= 0 if s is odd, and f12](n+2) = 0 if s
is even.

Proof. First, we note that πn+2(M1)∼= Z2{i]1(η)}.
Suppose that p ≡ 0 (mod 4). Since πn+2(M2)∼= Z2⊕ Z2{η1, η2}, we have

π∗2 (i1)= π
∗

2 (i1)(η1)= π
∗

2 (i1)(i2](η
2))= i1 ◦π2 ◦ i2 ◦ η

2
= 0

and
π∗2 (i1)(η2)= i1 ◦π2 ◦ η2 = i1 ◦ η 6= 0.
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Thus, f12](n+2)(η1)= 0 for all f12. Moreover, if s = 2l for some 1≤ l ≤ d/2, then

sπ∗2 (i1)(η2)= si1 ◦π2 ◦ η2 = 2li1 ◦ η = 0.

Therefore, each element in 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism
on πn+2(M2). However, if s = 2l + 1 for some 0≤ l < d/2− 1, then

sπ∗2 (i1)(η2)= si1 ◦π2 ◦ η2 = (2l + 1)i1 ◦ η = i1 ◦ η 6= 0.

Thus, if f12 does not belong to 〈2π∗2 (i1)〉 ∼= Zd/2, then f12](n+2) 6= 0.
Suppose that p ≡ 2 (mod 4). Since πn+2(M2)∼= Z4{η}, we have

π∗2 (i1)](η)= i1 ◦π2 ◦ η = i1 ◦ η = i1](η) 6= 0.

If s = 2k for some 1≤ l ≤ d/2, then

sπ∗2 (i1)](η)= si1 ◦π2 ◦ η = si1 ◦ η = 2li1](η)= 0.

Thus, each element in 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on n+2.
However, if s = 2l + 1 for some 0≤ l ≤ d/2− 1, then

sπ∗2 (i1)](η)= si1 ◦π2 ◦ η = si1 ◦ η = (2l + 1)i1](η)= i1](η) 6= 0.

Thus if f12 does not belong to 〈2π∗2 (i1)〉 ∼= Zd/2, then f12](n+2) 6= 0. �

Theorem 4.8. Let p and q be even and let X = M1 ∨M2. Then if (p, q)= d 6= 1,
we have

Edim
] (X)∼=


Z2⊕ Zd/2⊕ Z2⊕ Z2 if q ≡ 2, p ≡ 0 (mod 4),
Z2⊕ Zd/2⊕ Z4 if q ≡ 0, p ≡ 2 (mod 4),
Z2⊕ Zd/2⊕ Z2 if q ≡ 2, p ≡ 2 (mod 4),
Z2⊕ Zd/2⊕ Z2⊕ Z2 if q ≡ 0, p ≡ 0 (mod 4).

Proof. By Proposition 2.5, Edim
] (M1)∼= Z2 and Edim

] (M2)= 1. By Lemma 4.6, for
each f =

( f11
f21

f12
f22

)
∈E(X), we have f12]k = 0 for k= 1, 2, . . . , n+1. By Lemma 4.7,

each element in 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on πn+2(M2).
Furthermore, if f12 does not belong to 〈2π∗2 (i1)〉 ∼= Zd/2, then f12](n+2) 6= 0. Thus,
it is sufficient to investigate f21]n, f21](n+1) and f21](n+2).

Case 1. Let q ≡ 2 (mod 4) and p ≡ 0 (mod 4). From Lemma 3.4, we obtain
[M1,M2] ∼= Z4⊕ Z2{α, π

∗

1 (η2)}, where π∗1 (η1)= 2α and i∗1 (α)= i2](η).
Since M1 is n-connected, πn(M1)= 0. Thus, f21]n = 0.
Since πn+1(M1)∼= Zq{i1}, we have π∗1 (η2)](i1)= η2 ◦π1 ◦ i1 = 0.
Conversely, since πn+1(M2) ∼= Z2{i2](η)} and α](i1) = α ◦ i1 = i2](η) 6= 0,

we have (2α)] = 0 and (3α)] 6= 0. Moreover, since πn+2(M1) ∼= Z2{i1](η)}, we
have π∗1 (η2)](i1](η)) = η2 ◦ π1 ◦ i1 ◦ η = 0. Hence,

( 1
f21

0
1

)
belongs to Edim

] (X) if
f21 ∈ Z2⊕ Z2{2α, π∗1 (η2)}.
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Therefore,

Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈2α〉⊕ 〈π∗1 (η2)〉

}
,

where ε ∈ 〈i1ηπ1〉.

Case 2. Let q ≡ 0 (mod 4) and p ≡ 2 (mod 4). From Lemma 3.4, we obtain
[M1,M2] ∼= Z4⊕ Z2{π

∗

1 (η), β}, where i∗1 (β)= i2](η).
Since πn(M1)= 0, we have f21]n = 0. However, since πn+1(M1)∼= Zq{i1} and

πn+1(M2)∼= Z2{i2](η)}, we have π∗1 (η)](i1)= η◦π1 ◦ i1 = 0, but β](i1)= β ◦ i1 =

i2](η) 6= 0.
For the generator π∗1 (η) of [M1,M2] ∼= Z4 ⊕ Z2{π

∗

1 (η), β} and the generator
i1](η) of πn+2(M1)∼= Z2{i1](η)}, we have π∗1 (η)](i1](η))= η ◦π1 ◦ i1](η)= 0.

Hence,
( 1

f21

0
1

)
belongs to Edim

] (X) if f21 ∈ 〈π
∗

1 (η)〉.
Therefore,

Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈π
∗

1 (η)〉

}
,

where ε ∈ 〈i1ηπ1〉.

Case 3. Let q ≡ 2 (mod 4) and p ≡ 2 (mod 4). From Lemma 3.5, we obtain
[M1,M2] ∼= Z2⊕ Z2{π

∗

1 (η), β}, where i∗1 (β)= i2](η).
First, we recall that f21]n = 0 since πn(M1)= 0.
Since πn+1(M1) ∼= Zq{i1} and πn+1(M2) ∼= Z2{i2](η)}, we have π∗1 (η)](i1) =

η ◦ π1 ◦ i1 = 0, but β](i1) = β ◦ i1 = i2](η) 6= 0. Moreover, since πn+2(M1) ∼=

Z2{i1](η)}, we have π∗1 (η)](i1](η))= η ◦π1 ◦ i1 ◦ η = 0.
Hence, if f21 ∈ 〈π

∗

1 (η)〉, then
( 1

f21

0
1

)
belongs to Edim

] (X). However, if f21 ∈ 〈β〉,
this cannot be the case. Therefore,

Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈π
∗

1 (η)〉

}
,

where ε ∈ 〈i1ηπ1〉.

Case 4. Let q ≡ 0 (mod 4) and p ≡ 0 (mod 4). From Lemma 3.5, we obtain
[M1,M2] ∼= Z2⊕ Z2⊕ Z2{π

∗

1 (η1), π
∗

1 (η2), α}, where i∗1 (α)= i2](η). First, we note
that f21]n = 0 since πn(M1)= 0.

Since πn+1(M1)∼= Zq{i1} and πn+1(M2)∼= Z2{i2](η)}, we have π∗1 (η1)](i1)=

η1 ◦π1 ◦ i1 = 0 and π∗1 (η2)](i1)= η2 ◦π1 ◦ i1 = 0, but α](i1)= α ◦ i1 = i2](η) 6= 0.
Also, since πn+2(M1)∼= Z2{i1](η)}, we have π∗1 (η1)](i1](η))= η1 ◦π1 ◦ i1](η)= 0
and π∗1 (η2)](i1](η))= η2 ◦π1 ◦ i1](η)= 0.

Hence, if f21 ∈ 〈π
∗

1 (η1)〉⊕ 〈π
∗

1 (η2)〉, then
( 1

f21

0
1

)
belongs to Edim

] (X). However,
if f21 ∈ 〈α〉, this cannot be the case. Therefore,
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Edim
] (X)∼=

{(
1+ ε f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ π
∗

1 (〈η1〉⊕ 〈η2〉)

}
,

where ε ∈ 〈i1ηπ1〉. �

From Theorems 4.4–4.8, we obtain Table 1 (see page 37).

Theorem 4.9. Let X = M1 ∨M2, n ≥ 5 and (q, p)= d. Then we have

Edim+1
] (X)∼=



1 if q is odd or p is odd (d = 1),
Zd if q is odd or p is odd (d 6= 1),
Zd/2⊕ Z2 if p ≡ 0 (mod 4) and (p, 24)= 4 or 12(d 6= 1),
Zd/2 if p ≡ 0 (mod 4) and (p, 24)= 8 or 24(d 6= 1),
Zd/2 if q ≡ 2, p ≡ 2 (mod 4),
Zd/2⊕ Z2 if q ≡ 0, p ≡ 2 (mod 4).

Proof. By virtue of Remark 4.3, Theorem 4.4 and the fact that Edim+1
] (X)⊆Edim

] (X),
we have Edim+1

] (X)= 1 if (p, q)= 1.
By Proposition 2.5, we have Edim+1

] (M1) = 1. Thus, it is sufficient to identify
f12](n+3) and f21](n+3). First, we note that [M2,M1] ∼= Zd{π

∗

2 (i1)} by Lemma 3.2.

Case 1. Suppose that q is odd or p is odd and (p, q)= d 6= 1. Since [M1,M2] = 0
by Lemma 3.3, we only investigate f12](n+3).

If q is odd, f12](n+3) = 0 since πn+3(M1) = 0. If q is even and p is odd,
πn+3(M2)∼= Z(p,24){i2](ν)}. Since

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0,

we have f12](n+3) = 0 for each f12 ∈ [M2,M1]. Therefore,

Edim+1
] (X)∼=

{(
1 f12

0 1

) ∣∣∣∣ f12 ∈ 〈π
∗

2 (i1)〉

}
.

Case 2. Suppose that q ≡ 2 (mod 4) and p ≡ 0 (mod 4). First, we note that

πn+3(M2)∼= Z(p,24)⊕ Z2 {i2](ν), η2}

and that πn+3(M1) ∼= Z4{η̂} by Proposition 2.3. Let f12 = sπ∗2 (i1). If s = 2l for
some 1≤ l ≤ d/2, then

sπ∗2 (i1)](η2)= 2lπ∗2 (i1)](η2)= 4lη̂ = 0

since
π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0

and
π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1](η

2)= 2η̂ 6= 0 ∈ πn+3(M1)∼= Z4.
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Further, if s = 2l + 1 for some 0≤ l ≤ d/2− 1, then

sπ∗2 (i1)](η2)= (2l + 1)π∗2 (i1)](η2)= 4lη̂+ 2η̂ = 2η̂ 6= 0.

Thus, each f12 ∈ 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on πn+3(M2).
However, if f12 does not belong to 〈2π∗2 (i1)〉, then f12](n+3) 6= 0.

Let us investigate f21](n+3). Note that [M1,M2] ∼= Z4 ⊕ Z2{α, π
∗

1 (η2)} and
πn+3(M1)∼= Z4{η̂} with π∗1 (η1)= 2α, i∗1 (α)= i2](η), i1](η

2)= 2η̂ and π1](η̂)= η.
Since π2](η2 ◦ η)= η

2, we have

π∗1 (η2)](η̂)= η2 ◦π1 ◦ η̂ = η2 ◦ η 6= 0.

Moreover, since η3
= 4ν [Toda 1962, (5.5)], we have

2α](η̂)= 2α ◦ η̂ = η1 ◦π1 ◦ η̂ = η1 ◦ η = i1](η
2) ◦ η = i2 ◦ η

3
= 4i2](ν).

Therefore, α](η̂) = 2i2](ν). Since (p, 24) is a multiple of 4, we have α](η̂) =
2i2](ν) 6= 0 and 3α](η̂)= 6i2](ν) 6= 0.

Since ν is 2-primary, if (p, 24) = 4 or (p, 24) = 12, then 2α](η̂) = 0, and if
(p, 24)= 8 or (p, 24)= 24, then 2α](η̂) 6= 0. Thus, each f21 ∈ 〈2α〉 induces the
trivial homomorphism on πn+3(M1) provided that (p, 24)= 4 or (p, 24)= 12.

Therefore, if (p, 24)= 4 or (p, 24)= 12, we have

Edim+1
] (X)∼=

{(
1 f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈2α〉
}
,

and if (p, 24)= 8 or 24, we have

Edim+1
] (X)∼=

{(
1 f12

1 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉

}
.

Case 3. Suppose that q ≡ 0 (mod 4) and p ≡ 2 (mod 4). We note that

πn+3(M2)∼= Z(p,24)⊕ Z2{i2](ν), η2},

πn+3(M1)∼= Z2⊕ Z2{η3, η4}

and [M1,M2] ∼= Z4 ⊕ Z2{π
∗

1 (η), β}. First, we investigate f12](n+3). Let f12 =

sπ∗2 (i1) ∈ [M2,M1] ∼= Zd{π
∗

2 (i1)}. Then, we have

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0
and

π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1 ◦ η
2
6= 0.

If s = 2l for some 1 ≤ l ≤ d/2, then 2lπ∗2 (i1)](η2) = 2li1 ◦ η
2
= 0, because

i1 ◦ η
2
= η3 ∈ πn+3(M1). However, if s = 2l + 1 for some 0 ≤ l ≤ d/2− 1, then

(2l + 1)π∗2 (i1)](η2)= (2k+ 1)i1 ◦ η
2
= i1 ◦ η

2
6= 0.

Thus, any f12∈〈2π∗2 (i1)〉∼= Zd/2 induces the trivial homomorphism on πn+3(M2).
However, for f12 /∈ 〈2π∗2 (i1)〉, we have f12]n+3 6= 0.
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Next, we investigate f21](n+3). Because [M1,M2] ∼= Z4 ⊕ Z2{π
∗

1 (η), β} and
β](n+2) 6= 0, we check only the generators π∗1 (η). For η3, we have

π∗1 (η)](η3)= η ◦π1 ◦ η3 = η ◦π1 ◦ i1](η
2)= 0.

For η4, we have
π∗1 (η)](η4)= η ◦π1 ◦ η4 = η ◦ η 6= 0

since π2](η ◦ η)= η
2
6= 0.

However, 2π∗1 (η)](η4)= η ◦π1 ◦ 2η4 = 0.
Thus, every f21 ∈ 〈2π∗1 (η)〉 induces the trivial homomorphism on n+ 3.
Therefore, we have

Edim+1
] (X)∼=

{(
1 f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈2π∗1 (η)〉
}
.

Case 4. Suppose that q ≡ 2 (mod 4) and p ≡ 2 (mod 4). Note that πn+3(M2) ∼=

Z(p,24)⊕ Z2{i2](ν), η2} and πn+3(M1)∼= Z4{η̂}. First, we investigate f12](n+3). For
the generator π∗2 (i1) of [M2,M1], we have

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0

and
π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1 ◦ η

2
= 2η̂ 6= 0.

Let f12 = sπ∗2 (i1). If s = 2l for 1 ≤ l ≤ d/2, then sπ∗2 (i1)](η2)= 4lη̂ = 0, and if
s = 2l + 1 for 0≤ l ≤ d/2− 1, then sπ∗2 (i1)](η2)= (4l + 2)η̂ = 2η̂ 6= 0.

Thus, each f12 ∈ 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on n+ 3.
However, for f12 6∈ 〈2π∗2 (i1)〉, we have f12](n+3) 6= 0.

Next, we investigate f21](n+3). Note that [M1,M2] ∼= Z2⊕ Z2{π
∗

1 (η), β}. Since
β]n+2 6= 0, we consider only the generator π∗1 (η).

Since π2](η◦η)=π2◦η◦η= η
2
6= 0, we have π∗1 (η)](η̂)= η◦π1◦ η̂= η◦η 6= 0.

Therefore, no f21 induces a trivial homomorphism.
Thus, we have

Edim+1
] (X)∼=

{(
1 f12

1 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉

}
.

Case 5. Suppose that q ≡ 0 (mod 4) and p ≡ 0 (mod 4). Note that πn+3(M2) ∼=

Z(p,24)⊕ Z2{i2](ν), η2} and πn+3(M1)∼= Z2⊕ Z2{η3, η4}.
First, we investigate f12](n+3). For the generator π∗2 (i1) of [M2,M1], we have

π∗2 (i1)](i2](ν))= i1 ◦π2 ◦ i2 ◦ ν = 0

and
π∗2 (i1)](η2)= i1 ◦π2 ◦ η2 = i1 ◦ η

2
6= 0.
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Let f12 = sπ∗2 (i1). If s = 2l for 1≤ l ≤ d/2, then

sπ∗2 (i1)](η2)= 2li1 ◦ η
2
= l2η3 = 0.

However, if s = 2l + 1 for 0≤ l ≤ d/2− 1, then

sπ∗2 (i1)](η2)= (2l + 1)i1 ◦ η
2
= η3 6= 0.

Thus, each f12 ∈ 〈2π∗2 (i1)〉 ∼= Zd/2 induces the trivial homomorphism on n + 3.
However, for f12 6∈ 〈2π∗2 (i1)〉, we have f12](n+3) 6= 0.

Next, we consider f21](n+3). Note that

[M1,M2] ∼= Z2⊕ Z2⊕ Z2 { π
∗

1 (η1), π
∗

1 (η2), α}.

Since α](n+2) = 0, we consider only the generators π∗1 (η1) and π∗1 (η2). For π∗1 (η1),
we have

π∗1 (η1)](η3)= η1 ◦π1 ◦ η3 = η1 ◦π1 ◦ i1η
2
= 0

and
π∗1 (η1)](η4)= η1 ◦π1 ◦ η4 = η1 ◦ η = i2](η

2) ◦ η = 4i2](ν).

Thus, if (p, 24) = 4 or (p, 24) = 12, then π∗1 (η1)](η4) = 4i1](ν) = 0, and if
(p, 24)= 8 or (p, 24)= 24, then π∗1 (η1)](η4)= 4i1](ν) 6= 0.

Since π2](η2 ◦ η)= η
2, we have π∗1 (η2)](η4)= η2 ◦π1 ◦ η4 = η2 ◦ η 6= 0.

Therefore, if (p, 24)= 4 or (p, 24)= 12, we have

Edim+1
] (X)∼=

{(
1 f12

f21 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉, f21 ∈ 〈π
∗

2 (η1)〉

}
,

and if (p, 24)= 8 or (p, 24)= 24, we have

Edim+1
] (X)∼=

{(
1 f12

1 1

) ∣∣∣∣ f12 ∈ 〈2π∗2 (i1)〉

}
. �
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