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THE D-TOPOLOGY FOR DIFFEOLOGICAL SPACES

J. DANIEL CHRISTENSEN, GORDON SINNAMON AND ENXIN WU

Diffeological spaces are generalizations of smooth manifolds which include
singular spaces and function spaces. For each diffeological space, Iglesias-
Zemmour introduced a natural topology called the D-topology. However,
the D-topology has not yet been studied seriously in the existing literature.
In this paper, we develop the basic theory of the D-topology for diffeological
spaces. We explain that the topological spaces that arise as the D-topology
of a diffeological space are exactly the 1-generated spaces and give results
and examples which help to determine when a space is 1-generated. Our
most substantial results show how the D-topology on the function space
C∞(M, N) between smooth manifolds compares to other well-known topol-
ogies.
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1. Introduction

Smooth manifolds are some of the most important objects in mathematics. They
contain a wealth of geometric information, such as tangent spaces, tangent bundles,
differential forms, de Rham cohomology, etc., and this information can be put to
great use in proving theorems and making calculations. However, the category of
smooth manifolds and smooth maps is not closed under many useful constructions,
such as subspaces, quotients, function spaces, etc. On the other hand, various
convenient categories of topological spaces are closed under these constructions,
but the geometric information is missing. Can we have the best of both worlds?
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Since the 1970s, the category of smooth manifolds has been enlarged in several
different ways to a well-behaved category as described above, and these approaches
are nicely summarized and compared in [Stacey 2011]. In this paper, we work with
diffeological spaces, which were introduced by J. Souriau [1980; 1984], and in
particular we study the natural topology that any diffeological space has.

A diffeological space is a set X along with a specified set of maps U → X for
each open set U in Rn and each n ∈ N, satisfying a presheaf condition, a sheaf
condition, and a nontriviality condition (see Definition 2.1). Given a diffeological
space X , the D-topology on X is the largest topology making all of the specified
maps U → X continuous. In this paper, we make the first detailed study of the
D-topology. Our results include theorems giving properties and characterizations
of the D-topology as well as many examples which show the behavior that can
occur and which rule out some natural conjectures.

Our interest in these topics comes from several directions. First, it is known that
the topological spaces which arise as the D-topology of diffeological spaces are
precisely the 1-generated spaces [Shimakawa et al. 2010], which were introduced
by Jeff Smith as a possible convenient category for homotopy theory and were
studied in [Dugger 2003; Fajstrup and Rosický 2008]. Some of our results help
to further understand which spaces are 1-generated, and we include illustrative
examples.

Second, for any diffeological spaces X and Y , the set C∞(X, Y ) of smooth
maps from X to Y is itself a diffeological space in a natural way and thus can be
endowed with the D-topology. Since the topology arises completely canonically, it
is instructive to compare it with other topologies that arise in geometry and analysis
when X and Y are taken to be smooth manifolds. A large part of this paper is devoted
to this comparison, and again we give both theorems and illustrative examples.

Finally, this paper arose from work on the homotopy theory of diffeological
spaces [Christensen and Wu 2014] and can be viewed as the topological groundwork
for this project. It is for this reason that we need to focus on an approach that
produces a well-behaved category, rather than working with a theory of infinite-
dimensional manifolds, such as the one thoroughly developed in the book [Kriegl
and Michor 1997]. We will, however, make use of results from that book, as many
of the underlying ideas are related.

Here is an outline of the paper, with a summary of the main results:
In Section 2, we review some basics of diffeological spaces. For example, we

recall that the category of diffeological spaces is complete, cocomplete and cartesian
closed, and that it contains the category of smooth manifolds as a full subcategory.
Moreover, like smooth manifolds, every diffeological space is formed by gluing
together open subsets of Rn , with the difference that n can vary and that the gluings
are not necessarily via diffeomorphisms.
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In Section 3, we study the D-topology of a diffeological space, which was intro-
duced by Iglesias-Zemmour in [1985]. We show that the D-topology is determined
by the smooth curves (Theorem 3.7), while diffeologies are not (Example 3.8). We
recall a result of [Shimakawa et al. 2010] which says that the topological spaces
arising as the D-topology of a diffeological space are exactly the 1-generated
spaces (Proposition 3.10). We give a necessary condition and a sufficient condition
for a space to be 1-generated (Propositions 3.4 and 3.11) and show that neither is
necessary and sufficient (Proposition 3.12 and Example 3.14). We can associate
two topologies to a subset of a diffeological space. We discuss some conditions
under which the two topologies coincide (Lemmas 3.17 and 3.18, Proposition 3.21,
and Corollary 4.15).

Section 4 contains our most substantial results. We compare the D-topology
on function spaces between smooth manifolds with other well-known topologies.
The results are (1) the D-topology is almost always strictly finer than the compact-
open topology (Proposition 4.2 and Example 4.5); (2) the D-topology is always
finer than the weak topology (Proposition 4.4) and always coarser than the strong
topology (Theorem 4.13); (3) we give a full characterization of the D-topology as
the smallest 1-generated topology containing the weak topology (Theorem 4.7);
(4) as a consequence, we show that the weak topology is equal to the D-topology
if and only if the weak topology is locally path-connected (Corollary 4.9); (5) in
particular, when the codomain is Rn or the domain is compact, the D-topology
coincides with the weak topology (Corollary 4.10 and Corollary 4.14), but not
always (Example 4.6).

All smooth manifolds in this paper are assumed to be Hausdorff, finite-dimen-
sional, second-countable and without boundary.

2. Background on diffeological spaces

Here is some background on diffeological spaces. While we often cite early sources,
almost all of the material in this section is in the book [Iglesias-Zemmour 2013],
which we recommend as a good reference.

Definition 2.1 [Souriau 1984]. A diffeological space is a set X together with a
specified set DX of maps U → X (called plots) for each open set U in Rn and for
each n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm :

(1) (Covering) Every constant map U → X is a plot.

(2) (Smooth compatibility) If U → X is a plot and V → U is smooth, then the
composition V →U → X is also a plot.

(3) (Sheaf condition) If U =
⋃

i Ui is an open cover and U→ X is a set map such
that each restriction Ui → X is a plot, then U → X is a plot.
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We usually use the underlying set X to denote the diffeological space (X,DX ).

Definition 2.2 [Souriau 1984]. Let X and Y be two diffeological spaces, and let
f : X→ Y be a set map. We say that f is smooth if for every plot p :U→ X of X ,
the composition f ◦ p is a plot of Y .

The collection of all diffeological spaces with smooth maps forms a category,
which we denote Diff. Given two diffeological spaces X and Y , we write C∞(X, Y )
for the set of all smooth maps from X to Y . An isomorphism in Diff will be called
a diffeomorphism.

Every smooth manifold M is canonically a diffeological space with the same
underlying set and plots taken to be all smooth maps U → M in the usual sense.
We call this the standard diffeology on M . By using charts, it is easy to see that
smooth maps in the usual sense between smooth manifolds coincide with smooth
maps between them with the standard diffeology. This gives the following standard
result, which can be found, for example, in [Iglesias-Zemmour 2013, Section 4.3].

Theorem 2.3. There is a fully faithful functor from the category of smooth manifolds
to Diff.

From now on, unless we say otherwise, every smooth manifold considered as a
diffeological space is equipped with the standard diffeology.

Proposition 2.4 [Iglesias-Zemmour 1985]. Given a set X , let D be the set of all
diffeologies on X ordered by inclusion. Then D is a complete lattice.

This follows from the fact that D is closed under arbitrary (small) intersection.
The largest element in D is called the indiscrete diffeology on X , which consists of
all set maps U → X , and the smallest element in D is called the discrete diffeology
on X , which consists of all locally constant maps U → X .

The smallest diffeology on X containing a set of maps A = {Ui → X}i∈I is
called the diffeology generated by A. It consists of all maps f : V → X such that
there exists an open cover {V j } of V with the property that f restricted to each
V j is either constant or factors through some element Ui → X in A via a smooth
map V j →Ui . The standard diffeology on a smooth manifold is generated by any
smooth atlas on the manifold. For every diffeological space X , DX is generated by⋃

n∈N C∞(Rn, X).
Generalizing the previous paragraph, let A= { f j : X j → X} j∈J be a set of func-

tions from some diffeological spaces to a fixed set X . Then there exists a smallest
diffeology on X making all f j smooth, and we call it the final diffeology defined by
A. For a diffeological space X with an equivalence relation ∼, the final diffeology
defined by the quotient map {X � X/∼} is called the quotient diffeology. Similarly,
let B={gk :Y→Yk}k∈K be a set of functions from a fixed set Y to some diffeological
spaces. Then there exists a largest diffeology on Y making all gk smooth, and we
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call it the initial diffeology defined by B. For a diffeological space X and a subset
A of X , the initial diffeology defined by the inclusion map {A ↪→ X} is called the
subset diffeology. More generally, we have the following well-known result:

Theorem 2.5. The category Diff is both complete and cocomplete.

This is proved in [Baez and Hoffnung 2011] but can be found implicitly in
earlier work. We give a brief sketch here. The forgetful functor Diff→ Set to
the category of sets preserves both limits and colimits since it has both left and
right adjoints, given by the discrete and indiscrete diffeologies. The diffeology on
the (co)limit is the initial (final) diffeology defined by the natural maps. In more
detail, let F : J →Diff be a functor from a small category J and write F for the
composite J→Diff→Set. Then U→ lim F is a plot if and only if the composite
U → lim F→ F( j) is a plot of F( j) for each j ∈ Obj(J ). It is not hard to check
directly that lim F with this diffeology is lim F . Similarly, p :U → colim F is a
plot if and only if there is an open cover {Ui } of U such that the restriction p|Ui

factors as Ui → F( j)→ colim F for some j ∈ Obj(J ), with the first map a plot
of F( j). It is not hard to check directly that colim F with this diffeology is colim F .

The category of diffeological spaces also enjoys another convenient property:

Theorem 2.6 [Iglesias-Zemmour 1985]. The category Diff is cartesian closed.

Given two diffeological spaces X and Y , the set of maps

{U → C∞(X, Y ) |U × X→ Y is smooth}

forms a diffeology on C∞(X, Y ). We call it the functional diffeology on C∞(X, Y ),
and we always equip hom-sets with the functional diffeology. Furthermore, for
each diffeological space Y , −× Y :Diff 
Diff : C∞(Y,−) is an adjoint pair.

A smooth manifold of dimension n is formed by gluing together some open
subsets of Rn via diffeomorphisms. A diffeological space is also formed by gluing
together open subsets of Rn (with the standard diffeology) via smooth maps, possibly
for all n ∈ N. To make this precise, we introduce the following concept:

Let DS be the category with objects all open subsets of Rn for all n ∈ N and
morphisms the smooth maps between them. Given a diffeological space X , we
define DS/X to be the category with objects all plots of X and morphisms the
commutative triangles

U

p
��

f // V

q
��

X

with p, q plots of X and f a smooth map. We call DS/X the category of plots
of X . It is equipped with a forgetful functor F : DS/X → Diff sending a plot
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U→ X to U regarded as a diffeological space and sending the morphism displayed
above to f . We can use F to show that any diffeological space X can be built out
of Euclidean spaces.

Proposition 2.7. The colimit of the functor F : DS/X→Diff is X.

Proof. Clearly there is a natural cocone F→ X sending the above commutative
triangle to itself. For each diffeological space Y and cocone g : F→ Y , we define
a set map h : X → Y by sending x ∈ X to g(x)(R0), where by abuse of notation
the second x denotes the plot R0

→ X with image x ∈ X . Note that h induces a
(unique) cocone map since h(p(u))= g(p(u))= g(p)◦u for each plot p :U→ X
and each u ∈U , which also implies the smoothness of h. �

The result is essentially the same as [Iglesias-Zemmour 2013, Exercise 33].
Given a diffeological space X , the category DS/X can be used to define geo-

metric structures on X . See [Iglesias-Zemmour 2013; Souriau 1985; Laubinger
2006] for a discussion of differential forms and the de Rham cohomology of a
diffeological space, and see [Hector 1995; Laubinger 2006] for tangent spaces and
tangent bundles.

3. The D-topology

We can associate to every diffeological space the following interesting topology:

Definition 3.1 [Iglesias-Zemmour 1985; 2013, Chapter 2]. Given a diffeological
space X , the final topology induced by its plots, where each domain is equipped
with the standard topology, is called the D-topology on X .

In more detail, if (X,D) is a diffeological space, then a subset A of X is open in
the D-topology of X if and only if p−1(A) is open for each p ∈D. We call such
subsets D-open. If D is generated by a subset D′, then A is D-open if and only if
p−1(A) is open for each p ∈ D′.

A smooth map X → X ′ is continuous when X and X ′ are equipped with the
D-topology, and so this defines a functor D : Diff → Top to the category of
topological spaces.

Example 3.2. (1) The D-topology on a smooth manifold with the standard diffeol-
ogy coincides with the usual topology on the manifold.

(2) The D-topology on a discrete diffeological space is discrete, and the D-
topology on an indiscrete diffeological space is indiscrete.

Every topological space Y has a natural diffeology, called the continuous diffeol-
ogy, whose plots U → Y are the continuous maps. This was defined in [Donato
1984, Section 2.8]. A continuous map Y→Y ′ between topological spaces is smooth
when Y and Y ′ are equipped with the continuous diffeology, and so this defines a
functor C : Top→Diff.
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Proposition 3.3. The functors D : Diff 
 Top : C are adjoint, and we have
C ◦ D ◦C = C and D ◦C ◦ D = D.

Proof. The adjointness is [Shimakawa et al. 2010, Proposition 3.1], and the rest is
easy. �

Proposition 3.4 [Hector 1995; Laubinger 2006]. For each diffeological space, the
D-topology is locally path-connected.

However, not every locally path-connected space comes from a diffeological
space; see Example 3.14.

3.1. The D-topology is determined by smooth curves.

Definition 3.5. We say that a sequence xm in Rn converges fast to x in Rn if for
each k ∈ N the sequence mk(xm − x) is bounded.

Note that every convergent sequence has a subsequence which converges fast.

Lemma 3.6 (Special Curve Lemma [Kriegl and Michor 1997, p. 18]). Let xm be a
sequence which converges fast to x in Rn . Then there is a smooth curve c : R→ Rn

such that c(t) = x for t ≤ 0, c(t) = x1 for t ≥ 1, c(1/m) = xm for each m ∈ Z+,
and c maps [1/(m+ 1), 1/m] to the line segment joining xm+1 and xm .

Theorem 3.7. The D-topology on a diffeological space X is determined by the set
C∞(R, X), in the sense that a subset A of X is D-open if and only if p−1(A) is
open for every p ∈ C∞(R, X).

Proof. (⇒) This follows from the definition of the D-topology.

(⇐) Suppose that p−1(A) is open for every p ∈ C∞(R, X). Consider a plot
q : U → X , and let x ∈ q−1(A). Suppose that {xm} converges fast to x . By the
Special Curve Lemma, there is a smooth curve c :R→U such that c(1/m)= xm for
each m and c(0)= x . Since c−1(q−1(A)) is open, xm is in q−1(A) for m sufficiently
large. So q−1(A) is open in U . �

Example 3.8. Let X be R2 with the standard diffeology, and let Y be the set R2 with
the diffeology generated by C∞(R,R2). Then D(X) is homeomorphic to D(Y )
since C∞(R, X)=C∞(R, Y ), but X and Y are not diffeomorphic since the identity
map R2

→R2 does not locally factor through curves. In other words, the D-topology
is determined by smooth curves, but the diffeology is not.

In this example, Y has the smallest diffeology such that C∞(R,R2) consists of
the usual smooth curves. In contrast, by Boman’s theorem [Kriegl and Michor 1997,
Corollary 3.14], X has the largest diffeology such that C∞(R,R2) consists of the
usual smooth curves. That is, p :U → X is a plot if and only if for every smooth
function c : R→U , the composite p ◦ c is in C∞(R, X).
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3.2. Relationship with 1-generated topological spaces. Write1n for the standard
n-simplex in Top.

Definition 3.9. A topological space X is called 1-generated if the following
condition holds: A ⊆ X is open if and only if f −1(A) is open in 1n for each
continuous map f :1n

→ X and each n ∈ N.

It is not hard to show that being 1-generated is the same as being R-generated
or [0, 1]-generated; that is, one can determine the open sets of a 1-generated space
using just the continuous maps R→ X or [0, 1] → X . This follows from the
existence of a surjective continuous map R→ 1n that exhibits 1n as a quotient
of R. Note the similarity to Theorem 3.7. More on 1-generated topological spaces
can be found in [Dugger 2003; Fajstrup and Rosický 2008].

Proposition 3.10 [Shimakawa et al. 2010]. The spaces in the image of the functor D
are exactly the 1-generated topological spaces.

Since the argument is easy, we include a proof.

Proof. Let X be a diffeological space, and consider A ⊆ D(X). Suppose f −1(A)
is open in R for all continuous f : R→ D(X). Then f −1(A) is open in R for all
smooth f : R→ X . Thus A is open in D(X), and so D(X) is 1-generated.

Suppose that Y is 1-generated. By adjointness, the identity map D(C(Y ))→ Y
is continuous. We claim that it is a homeomorphism, and so Y is in the image of D.
Indeed, suppose A⊆ D(C(Y )) is open. That is, f −1(A) is open in R for all smooth
f : R→ C(Y ). That is, f −1(A) is open in R for all continuous f : R→ Y . Then,
since Y is 1-generated, A is open in Y . �

Because of this, it will be helpful to better understand which topological spaces
are 1-generated.

Proposition 3.11. Every locally path-connected first-countable topological space
is 1-generated.

Proof. Let (X, τ ) be a locally path-connected first-countable topological space.
Then for each x ∈ X , there exists a neighborhood basis {Ai }

∞

i=1 of x such that

(1) each Ai is path-connected; and

(2) Ai+1 ⊆ Ai .

This is because for a neighborhood basis {Bi }
∞

i=1 of x , we can define A1 to be the
path-component of B1 containing x and Ai to be the path-component of Ai−1 ∩ Bi

containing x for i ≥ 2. Since X is locally path-connected, each Ai is open.
Now let τ ′ be the final topology on X for all continuous maps 1n

→ (X, τ ) for
all n ∈N. Clearly τ ⊆ τ ′. Suppose A is not in τ . This means that there exists x ∈ A
such that for each U ∈ τ which is a neighborhood of x , there exists xU ∈ U \ A.
Let {Ai }

∞

i=1 be a neighborhood basis for x with the above two properties, and
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write xn ∈ An \ A accordingly. Define f : [0, 1] → X by letting f |[1/(i+1),1/ i] be a
continuous path connecting xi+1 to xi in Ai , and f (0)= x . It is easy to see that f
is continuous for (X, τ ), but f −1(A) is not open in [0, 1]. So A is not in τ ′. �

It follows from Propositions 3.4 and 3.10 that every 1-generated space is locally
path-connected. However, not every 1-generated space is first-countable.

Proposition 3.12. Let X be a set with the complement-finite topology. We write
card(X) for its cardinality. Then

(1) X is 1-generated if card(X) < card(N) or card(X)≥ card(R);

(2) X is not 1-generated if card(X)= card(N).

Note that X is not first-countable when card(X) ≥ card(R). This provides a
counterexample to the converse of Proposition 3.11.

Proof. (1) If X is a finite set, then the complement-finite topology is the discrete
topology. Hence X is 1-generated.

Assume card(X)≥ card(R), and let B be a nonclosed subset of X , that is, B 6= X
and card(B) ≥ card(N). We must construct a continuous map f : R→ X such
that f −1(B) is not closed in R. Note that in this case, every injection R→ X is
continuous.

Take an injection f̃ : {1/n}n∈Z+ → B. We can extend this to an injection
f : R→ X with f (0) ∈ X \ B. This map is what we are looking for.

(2) If card(X) = card(N), then every continuous map [0, 1] → X is constant.
Otherwise, since every point in X is closed, [0, 1] would be a disjoint union of at
least two and at most countably many nonempty closed subsets, which contradicts
a theorem of Sierpiński (see, e.g., [van Mill 2001, A.10.6] or the slick argument
posted by Gowers [2010]). Since X is not discrete, it is not 1-generated. �

Remark 3.13. Assume the continuum hypothesis. Then the above proposition says
that a set X with the complement-finite topology is 1-generated if and only if X is
not an infinite countable set.

Here is an example showing that not every locally path-connected topological
space is the D-topology of a diffeological space:

Example 3.14. As a set, let X be the disjoint union of copies of the closed unit
interval indexed by the set J of countable ordinals. We write elements in X as xa

with x ∈ [0, 1] and a ∈ J . Let Y be the quotient set X/∼, where the only nontrivial
relations are 1a ∼ 1b for all a, b ∈ J . Since we will only work with Y , we denote
the elements of Y in the same way as those of X . The topology on Y is generated
by the following basis:
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(1) the open interval (xa, ya) for each 0≤ x < y ≤ 1 and a ∈ J ;

(2) the set Ua,x :=
(⋃

a≤b∈J [0b, 1b]
)
∪
(⋃

c<a(xc, 1c]
)

for each a∈ J and x ∈[0, 1).

One can show that Y is locally path-connected (but not first-countable). However,
Y is not 1-generated. Indeed, let A =

⋃
a∈J (0a, 1a]. Then A is not open in Y . For

every continuous map f :1n
→ X , we claim that f −1(A) is open in1n . Otherwise,

there exists u ∈ f −1(A) such that no open neighborhood of u is contained in f −1(A).
Since the intervals (xa, ya) are open, we must have f (u)= 1a , the common point.
Choose a sequence (ui ) converging to u such that each ui is not in f −1(A). Then
f (ui )= 0bi for some countable ordinals bi . Let b be a countable ordinal larger than
each bi . Then Ub,0 is an open set containing f (u) but none of the f (ui ), so f (ui )

is not convergent to f (u)= 1a , which contradicts the continuity of f .

3.3. Two topologies related to a subset of a diffeological space. Let X be a diffe-
ological space, and let Y be a quotient set of X . Then we can give Y two topologies:

(1) the D-topology of the quotient diffeology on Y ;

(2) the quotient topology of the D-topology on X .

Since D :Diff→ Top is a left adjoint, these two topologies are the same.
Similarly, let X be a diffeological space, and let A be a subset of X . Then we

can give A two topologies:

(1) τ1(A): the D-topology of the subset diffeology on A;

(2) τ2(A): the subtopology of the D-topology on X .

However, these two topologies are not always the same. In general, we can only
conclude that τ2(A)⊆ τ1(A).

Example 3.15. (1) Let A be a subset of R. Then τ1(A) is discrete if and only if A is
totally disconnected under the subtopology of R. In particular, if A=Q, then τ1(Q)

is the discrete topology, which is strictly finer than the subtopology τ2(Q).

(2) Let f : R→ R be a continuous and nowhere differentiable function, and let
A = {(x, f (x)) | x ∈ R} be its graph, equipped with the subset diffeology of R2.
Then τ1(A) is the discrete topology, which is strictly finer than the subtopology
of R2. Here is the proof. Let g : R→ R2 be a smooth map whose image is in A,
and define y, z : R→ R by g(t) = (y(t), z(t)). Assume that y′(a) 6= 0 for some
a ∈ R. Then by the inverse function theorem, y : R→ R is a local diffeomorphism
around a. Since Im(g) ⊆ A, we have z = f ◦ y, which implies that f = z ◦ y−1

around y(a), contradicting nowhere-differentiability of f . Therefore, any plot of
the form R→ A is constant. By Theorem 3.7, τ1(A) is discrete. On the other hand,
the subtopology τ2(A) is homeomorphic to the usual topology on R.
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Definition 3.16 [Iglesias-Zemmour 2013, 2.14]. When τ1(A) = τ2(A), we say
that A is an embedded subset of X .

We are interested in conditions under which this holds.

Lemma 3.17. Let A be a convex subset of Rn . Then A is an embedded subset
of Rn .

Proof. Following the idea of the proof of [Kriegl and Michor 1997, Lemma 24.6(3)],
let B ⊆ A be closed in the τ1(A)-topology, and let B be the closure of B in A for
the τ2(A)-topology. Note that the τ2(A)-topology is the same as the subtopology
of Rn . Hence, for any b ∈ B, we can find a sequence bn in B which converges fast
to b. Since A is convex, the Special Curve Lemma (Lemma 3.6) says that there
is a smooth curve c : R→ A such that c(0)= b and c(1/n)= bn for each n ∈ Z+.
Therefore, b ∈ B by the definition of the D-topology. �

Lemma 3.18. If A is a D-open subset of a diffeological space X , then A is an
embedded subset of X.

Proof. Let B be in τ1(A). To show that B is in τ2(A), it suffices to show that B is
D-open in X . Let p :U → X be an arbitrary plot of X . Since A is D-open in X ,
p−1(A) is an open subset of U . Hence, the composition of p−1(A) ↪→U → X is
also a plot for X , which factors through the inclusion map A ↪→ X . Since B ∈ τ1(A),
(p|p−1(A))

−1(B) is open in p−1(A), which implies that p−1(B) is open in U . Thus
B is D-open in X , as required. �

Example 3.19. GL(n,R) is D-open in M(n,R)∼=Rn2
, so it is an embedded subset.

Also see Corollary 4.15 for another example. Note that Lemma 3.18 is not true
if we change D-open to D-closed.

Example 3.20. Let A = {1/n}n∈Z+ ∪ {0} ⊂ R. Then A is D-closed in R. It is easy
to check that τ1(A) is discrete and is strictly finer than τ2(A).

Proposition 3.21. Let X be a diffeological space and let A be a subset of X. If
there exists a D-open neighborhood C of A in X together with a smooth retraction
r : C→ A, then A is embedded in X. (Here both C and A are equipped with the
subset diffeologies from X.)

Proof. Let B ∈ τ1(A). Then r−1(B) ∈ τ1(C)= τ2(C) is D-open in X . Therefore,
B = A∩ r−1(B) ∈ τ2(A). �

Example 3.22. Given a smooth manifold M of dimension n > 0, by the strong
Whitney embedding theorem, there is a smooth embedding M ↪→ R2n . If we
view M as a subset of R2n , then it is an embedded subset, since there is an open
tubular neighborhood U of M in R2n together with a smooth retraction U → M .



98 J. DANIEL CHRISTENSEN, GORDON SINNAMON AND ENXIN WU

4. The D-topology on function spaces

Let M and N be smooth manifolds. Recall that the set C∞(M, N ) of smooth maps
from M to N has a functional diffeology described just after Theorem 2.6. In
this section, we consider the topological space obtained by taking the D-topology
associated to this diffeology, and we compare it to other well-known topologies on
this set: the compact-open topology, the weak topology, and the strong topology.

Here is a review of these three topologies and their relationship. The books
[Hirsch 1976; Kriegl and Michor 1997; Michor 1980] are good references for the
weak and strong topologies.

The compact-open topology on C∞(M, N ) has a subbasis which consists of the
sets A(K ,W )= { f ∈ C∞(M, N ) | f (K )⊆W }, where K is a nonempty compact
subset of M and W is an open subset of N . (This makes sense for any diffeological
spaces M and N , where K is then required to be compact in D(M) and W to be
open in D(N ).)

We now describe a subbasis for the weak topology on C∞(M, N ). For r ∈ N,
(U, φ) a chart of M , (V, ψ) a chart of N , K ⊆ U compact, f ∈ C∞(M, N )
with f (K ) ⊆ V , and ε > 0, we define the set N r ( f, (U, φ), (V, ψ), K , ε) to be
{g ∈C∞(M, N ) | g(K )⊆V and ‖Di (ψ ◦ f ◦φ−1)(x)−Di (ψ ◦g◦φ−1)(x)‖<ε for
each x ∈ φ(K ) and each multi-index i with |i | ≤ r}. These sets form a subbasis for
the weak topology. Here i = (i1, . . . , im) is a multi-index in Nm with m = dim(M),
|i | = i1+ · · ·+ im , and Di is the differential operator ∂ |i |/(∂x i1

1 · · · ∂x im
m ).

A subbasis for the strong topology on C∞(M, N ) is similar, but it allows con-
straints using multiple charts. More precisely, if N r ( f, (Ui , φi ), (Vi , ψi ), Ki , εi ) is
a family of subbasic sets for the weak topology such that the collection {Ui } is locally
finite, then the intersection of this family is a subbasic set for the strong topology.
In fact, one can show that these intersections form a base for the strong topology.

Each of these is at least as fine as the previous one, that is,

compact-open topology⊆ weak topology⊆ strong topology.

The first inclusion is proved in Lemma A.2, and the second is clear. The compact-
open topology and the weak topology coincide if and only if M or N is zero-
dimensional (see Example 4.5). Moreover, the weak topology and the strong
topology coincide if the domain M is compact and are different if M is noncompact
and N has positive dimension (see [Hirsch 1976, pp. 35–36]).

Now we start our comparison of the D-topology with these topologies. The
following lemma is needed for the subsequent proposition.

Lemma 4.1. Let X and Y be two diffeological spaces such that D(X) is locally
compact Hausdorff. Then the natural bijection D(X × Y )→ D(X)× D(Y ) is a
homeomorphism.



THE D-TOPOLOGY FOR DIFFEOLOGICAL SPACES 99

Note that when X is a smooth manifold, D(X) is locally compact Hausdorff.

Proof. First observe that the natural bijection D(U × V )→ D(U )× D(V ) is a
homeomorphism for U and V open subsets of Euclidean spaces, since in this case the
D-topology is the usual topology. The functors D :Diff→Top, Z×−:Diff→Diff
for any diffeological space Z and W ×− : Top→ Top for any locally compact
Hausdorff space W all preserve colimits since they are left adjoints. Thus the claim
follows from Proposition 2.7, using that D(X) is locally compact Hausdorff, as is
each D(U ) for U an open subset of some Euclidean space. �

For general X and Y , one can show using a similar argument that the D-topology
on D(X × Y ) corresponds under the bijection above to the smallest 1-generated
topology containing the product topology on D(X)× D(Y ).

Proposition 4.2. For diffeological spaces X and Y , the D-topology on C∞(X, Y )
contains the compact-open topology.

This result is a stepping stone to proving the stronger statement that the
D-topology contains the weak topology.

Proof. Recall that the compact-open topology has a subbasis which consists of the
sets A(K ,W )= { f ∈ C∞(X, Y ) | f (K )⊆ W }, where K is a nonempty compact
subset of D(X) and W is an open subset of D(Y ). We will show that each A(K ,W )

is D-open. Let φ :U→C∞(X, Y ) be a plot of C∞(X, Y ). Since the corresponding
map φ̄ : U × X → Y is smooth, φ̄−1(W ) is open in D(U × X). So for each
u ∈ φ−1(A(K ,W )), {u} × K is in the open set φ̄−1(W ). Note that the natural
map D(U × X)→ D(U )× D(X) is a homeomorphism by Lemma 4.1. By the
compactness of K and the definition of the product topology, V ×K ⊆ φ̄−1(W ) for
some open neighborhood V of u in U , which implies that φ−1(A(K ,W )) is open
in U . Thus A(K ,W ) is open in the D-topology. �

We will see in Example 4.5 that the D-topology is almost always strictly finer
than the compact-open topology.

The next lemma will be used to show that the D-topology contains the weak
topology for function spaces between smooth manifolds.

Lemma 4.3. Let U be an open subset in Rn and let i be a multi-index in Nn . Then
Di
: C∞(U,R)→ C∞(U,R) is smooth.

Proof. Let φ : V → C∞(U,R) be a plot with dim(V ) = m. This means that
the associated map φ̄ : V × U → R defined by φ̄(v, u) = φ(v)(u) is smooth.
Write j for the multi-index (0m, i) ∈ Nm+n , with 0m a sequence of m zeros. Then
D j (φ̄) : V ×U→R is smooth. Since D j (φ̄)(v, u)= Di (φ(v))(u), Di

◦φ is a plot,
which implies the smoothness of Di . �
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Note that the smoothness of Di does not imply its continuity in general. It is an
easy exercise that for |i |> 0 and n > 0, Di is not continuous in the compact-open
topology but is continuous in both the weak and strong topologies.

Now we can compare the D-topology with the weak topology for function spaces
between smooth manifolds.

Proposition 4.4. Let M and N be smooth manifolds. Then the D-topology on
C∞(M, N ) contains the weak topology.

Proof. Recall that the weak topology on C∞(M, N ) has the sets

N r ( f, (U, φ), (V, ψ), K , ε),

described at the beginning of Section 4, as a subbasis.
Let p :W → C∞(M, N ) be a plot, that is,

p̄ :W ×M→ N given by p̄(w, x)= p(w)(x)

is smooth. If w ∈ p−1(N r ( f, (U, φ), (V, ψ), K , ε)), then by Proposition 4.2,
Lemma 4.3, and the facts that φ and ψ are diffeomorphisms, only finitely many
differentials are considered, K is compact and V is open, it is not hard to see that
there exists an open neighborhood W ′ of w in W such that

W ′ ⊆ p−1(N r ( f, (U, φ), (V, ψ), K , ε)
)
.

Therefore, N r ( f, (U, φ), (V, ψ), K , ε) is D-open. �

Since the weak topology is almost always strictly finer than the compact-open
topology, so is the D-topology.

Example 4.5. The D-topology on C∞(R,R) is strictly finer than the compact-open
topology. To prove this, consider U = N 1(0̂, (R, id), (R, id), [−1, 1], 1), where 0̂ is
the zero function. This is open in the weak topology and thus is open in the
D-topology. We claim that no open neighborhood of 0̂ in the compact-open topology
of C∞(R,R) is contained in U . Otherwise, we may assume 0̂∈ A(K , (−ε, ε))⊆U
for some ε > 0 and some compact K , since if 0̂ ∈ A(K1,W1)∩ · · · ∩ A(Km,Wm),
then 0 ∈Wi for each i and

0̂ ∈ A(K1 ∪ · · · ∪ Km,W1 ∩ · · · ∩Wm)⊆ A(K1,W1)∩ · · · ∩ A(Km,Wm).

Then clearly f :R→R defined by f (x)= (ε/2) sin(2x/ε) is in A(K , (−ε, ε)) for
any K . But f is not in U since f ′(0)= 1.

Using a similar argument, with bump functions, one can show that when M
and N are smooth manifolds of dimension at least 1, then the weak topology is
strictly finer than the compact-open topology. Thus the D-topology is strictly finer
than the compact-open topology in this situation.



THE D-TOPOLOGY FOR DIFFEOLOGICAL SPACES 101

In general, the weak topology is different from the D-topology on C∞(M, N ).

Example 4.6. (1) Let N and {0, 1} be equipped with the discrete diffeologies.
Let f : N → {0, 1} be the constant function sending everything to 0, and let
fn :N→{0, 1} be defined by f −1

n (0)= {0, 1, . . . , n}. Note that fn converges to f
in the weak topology for the following reason. Since each element in the subbasis
of the weak topology depends only on the values of the function and its derivatives
on a compact subset of N, any of them containing f must contain all fn for n large
enough.

On the other hand, we claim that for each n there does not exist a continuous path
F : [0, 1] → C∞(N, {0, 1}) with F(0) = fn and F(1) = f , where the codomain
is given the weak topology. Since the weak topology contains the compact-open
topology, such an F gives rise to a continuous function [0, 1]×N→{0, 1}, that is,
a homotopy from D( fn) to D( f ). Since these maps are clearly not homotopic, no
such F exists.

Thus the weak topology is not locally path-connected. It follows from Proposition
3.4 that the weak topology is different from the D-topology on C∞(N, {0, 1}).

The above argument in fact shows that every continuous path in C∞(N, {0, 1})
with respect to a topology containing the compact-open topology is constant. In
particular, this holds for the D-topology, and since the D-topology is 1-generated,
it must be discrete.

(2) Let X be a countable disjoint union of copies of S1; that is, X =
∐

i∈N X i with
each X i = S1. Then the weak topology on C∞(X, S1) is not locally path-connected,
by a similar argument with f : X → S1 defined by f |X i = id : X i → S1 and
fn : X→ S1 defined by

fn|X i =

{
id if i = 0, 1, . . . , n,
− id otherwise.

(3) The weak topology on C∞(R2
\ ({0}×Z), S1) is not locally path-connected, by

a similar argument with f : R2
\ ({0}×Z)→ S1 defined by

f (x, y)=
1− e2π(x+iy)

|1− e2π(x+iy)|
,

and fn : R
2
\ ({0}×Z)→ S1 defined by

fn(x, y)= f (x, φn(y)),

where φn :R→R is a strictly increasing smooth function with φn(t)= t for |t | ≤ n
and |φn(t)|< n+ 1 for all t .

These examples all show that the weak topology is not locally path-connected,
and, in particular, that it is not 1-generated. The D-topology is a 1-generated
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topology containing the weak topology, and the following theorem says that, given
this, it is as close to the weak topology as possible.

Theorem 4.7. For M and N smooth manifolds, the D-topology on C∞(M, N ) is
the smallest 1-generated topology containing the weak topology.

Proof. First note that by Proposition 4.4, the D-topology contains the weak topology,
and by Proposition 3.10, the D-topology is 1-generated. So we must prove that the
D-topology on C∞(M, N ) is contained in every 1-generated topology containing
the weak topology.

So let τ be a1-generated topology containing the weak topology and assume that
A ⊆ C∞(M, N ) is not open in τ . Since τ is 1-generated, there is a τ -continuous
map p : R→ C∞(M, N ) such that p−1(A) is not open in R. Since τ contains the
weak topology, p is weakly continuous. By composing with a translation in R, we
can assume that 0 is a noninterior point of p−1(A). Thus we can find a sequence tr
of real numbers converging to 0 so that p(tr ) 6∈ A for each r . By Theorem A.5,
there is a smooth curve q : R→ C∞(M, N ) such that q(2− j ) = p(tr j ) 6∈ A for
each j and q(0)= p(0). This shows that A is not open in the D-topology. �

Since every 1-generated space is locally path-connected (see Propositions 3.4
and 3.10), the previous result is in fact a special case of the next result.

Theorem 4.8. Let M and N be smooth manifolds. Then the D-topology on
C∞(M, N ) is the smallest locally path-connected topology containing the weak
topology.

Proof. Suppose τ is a locally path-connected topology that contains the weak
topology, A is not τ -open, and f ∈ A is not τ -interior to A. Since the weak topology
on C∞(M, N ) is first-countable, there is a countable weak neighborhood basis
(Wr )

∞

r=1 of f . Contained in each Wr there is a path-connected τ -neighborhood Tr

of f . For each r , choose an fr ∈ Tr \ A and a τ -continuous (and therefore weakly
continuous) path from f to fr lying entirely in Tr ⊆Wr . We can concatenate these
paths to produce a weakly continuous path p such that p(0)= f and p(2−r )= fr .
By Theorem A.5, there is a smooth curve q : R→ C∞(M, N ) such that q(0)= f
and q(2− j )= fr j . Then q−1(A) contains 0 but not 2− j for any j , so A is not open
in the D-topology. �

As a corollary, we have the following necessary and sufficient condition for the
weak topology to be equal to the D-topology.

Corollary 4.9. Let M and N be smooth manifolds. Then the weak topology on
C∞(M, N ) coincides with the D-topology if and only if the weak topology is locally
path-connected.

Proof. This follows from Theorem 4.8 (or from Theorem 4.7, using that the weak
topology is second-countable [Hirsch 1976, pp. 35–36]). �
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This allows us to give a situation in which the D-topology and the weak topology
coincide. (See also Corollary 4.14.)

Corollary 4.10. For M a smooth manifold, the weak topology on C∞(M,Rn)

coincides with the D-topology.

Proof. By Lemma A.3, the weak topology on C∞(M,Rn) has a basis of convex
sets. A linear path is smooth and hence weakly continuous, so it follows that this
topology is locally path-connected. �

Our next goal is to show that the D-topology is contained in the strong topology.
We first need some preliminary results.

Lemma 4.11. Let M be a smooth manifold and let N be an open subset of Rd .
Then the D-topology on C∞(M, N ) is contained in any topology that contains the
weak topology and has a basis of convex sets.

Here we say that a subset of C∞(M, N ) is convex if it is convex when regarded
as a subset of the real vector space C∞(M,Rd).

Proof. A convex set isn’t necessarily path-connected, since linear paths may not
be continuous. Thus Theorem 4.8 doesn’t apply directly. However, in the proof of
Theorem 4.8, all that is used is that the subsets Tr are path-connected in the weak
topology. Since linear paths are smooth, they are weakly continuous, and so the
proof goes through. �

Lemma 4.12. Let M be a smooth manifold and let N be an open subset of Rd .
Then C∞(M, N ) is an open subspace of C∞(M,Rd) when both are equipped with
the strong topology.

Proof. We first prove that the strong topology on C∞(M, N ) is the subspace topol-
ogy of the strong topology on C∞(M,Rd). Since the inclusion map N→Rd induces
a continuous map in the strong topologies (see [Hirsch 1976, Exercise 10(b), p. 65]),
the intersection of a strong open set in C∞(M,Rd) with C∞(M, N ) is open in
C∞(M, N ). On the other hand, the data for each weak subbasic set A in C∞(M, N )
defines a weak subbasic set in C∞(M,Rd) whose intersection with C∞(M, N )
is A. Since the strong subbasic sets are certain intersections of the weak subbasic
sets, our claim follows.

Now we show that C∞(M, N ) is an open subset of C∞(M,Rd), following the
argument in Lemma A.2. For f ∈ C∞(M, N ), choose charts for M and N and
compact sets Ki ⊆ M as described in Lemma A.1(b). Then

f ∈
∞⋂

i=1

N 0( f, (Ui , φi ), (N , id), Ki , 1)⊆ C∞(M, N ),

where each N 0( f, (Ui , φi ), (N , id), Ki , 1) is understood to be a subbasic set for
C∞(M,Rd). So C∞(M, N ) is open in the strong topology. �
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Theorem 4.13. Let M and N be smooth manifolds. Then the D-topology on
C∞(M, N ) is contained in the strong topology.

Proof. Choose an embedding N ↪→Rd , and let U be an open tubular neighborhood
of N in Rd , so that the inclusion i : N → U has a smooth retract r : U → N .
Since i and r induce continuous maps in both the strong topology (see [Hirsch
1976, Exercise 10, p. 65]) and the D-topology (an easy argument), C∞(M, N ) is
a subspace of C∞(M,U ) when both are equipped with either of these topologies.
So if these topologies agree on C∞(M,U ), then they agree on C∞(M, N ). Thus
it suffices to prove the result when N is open in Rd . Assume that this is the case.

We first prove that the strong topology on C∞(M,Rd) has a basis of convex
sets. If A :=

⋂
i N r ( f, (Ui , φi ), (Vi , ψi ), Ki , εi ) is a basic open set of the strong

topology, as described at the beginning of Section 4, and if g ∈ A, then by the proof
of Lemma A.3,

g ∈
⋂

i

N r (g, (Ui , φi ), (R
d , id), Ki , ε

′′′

i )⊆ A,

which shows that A is covered by convex strong open sets.
By Lemma 4.12, C∞(M, N ) is open in C∞(M,Rd), so it too has a basis of

convex sets. Thus, by Lemma 4.11, the D-topology on C∞(M, N ) is contained in
the strong topology. �

Corollary 4.14. Let M and N be smooth manifolds with M compact. Then the
D-topology on C∞(M, N ) coincides with the weak topology.

Proof. The D-topology is trapped between the weak topology (Proposition 4.4) and
the strong topology (Theorem 4.13), and these coincide when M is compact. �

Here is one application of our results:

Corollary 4.15. Let M be a smooth compact manifold, and let Diff(M) be the set
of all diffeomorphisms from M to itself with the subset diffeology of C∞(M,M).
Then Diff(M) is D-open in C∞(M,M). Hence, Diff(M) is an embedded subset of
C∞(M,M) (see Definition 3.16).

Proof. As mentioned in Corollary 4.14, when M is compact, the weak, strong and
D-topologies on C∞(M,M) all coincide. The first claim is then the restatement of
[Hirsch 1976, Theorem 2.1.7], and the second part follows from Lemma 3.18. �

Similarly, many results in [Hirsch 1976, Chapter 2] can be translated into results
for the D-topology.

When M is noncompact and N has positive dimension, the weak topology is dif-
ferent from the strong topology [Hirsch 1976, pp. 35–36]. Since the weak topology
and the D-topology coincide for C∞(M,Rn), it follows that the D-topology and
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the strong topology are different for C∞(M,Rn) when M is noncompact. We can
make this explicit in the next example.

Example 4.16. It is not hard to show that the strong topology on C∞(R,R) has a
basis {Bk

δ ( f ) | k ∈ N, δ : R→ R+ continuous, f ∈ C∞(R,R)}, where

Bk
δ ( f )=

{
g ∈ C∞(R,R)

∣∣∣ k∑
i=0

( f (i)(x)− g(i)(x))2 < δ(x) for each x ∈ R

}
.

On the other hand, the D-topology agrees with the weak topology on C∞(R,R),
so it has a basis {B̃k

ε ( f ) | k ∈ N, ε ∈ R+, f ∈ C∞(R,R)}, where

B̃k
ε ( f )=

{
g ∈ C∞(R,R)

∣∣∣ k∑
i=0

( f (i)(x)− g(i)(x))2 < ε for each x in [−k, k]
}
.

It follows that the strong topology is strictly finer than the D-topology on C∞(R,R).

On the other hand, it can be the case that the D-topology is different from the
weak topology but agrees with the strong topology. For example, this happens in
case (1) of Example 4.6, where it is easy to see that the strong topology is also
discrete.

Remark 4.17. The book [Kriegl and Michor 1997] also studies function spaces
between smooth manifolds, but uses a different smooth structure on the function
space to ensure that the resulting object has the desired local models. By Lemma 42.5
of that book, their smooth structure has fewer smooth curves than the diffeology
studied here, and as a result the natural topology discussed in their Remark 42.2 is
larger than the D-topology. In fact, according to that remark, it is larger than the
strong topology (which they call the WO∞-topology).

Appendix: The weak topology on function spaces

In this appendix, our goal is to prove a theorem about the weak topology on function
spaces which is analogous to the Special Curve Lemma (Lemma 3.6). This is
Theorem A.5. Before proving the theorem, we collect together and prove some basic
results about the weak topology on function spaces and state the following lemma.

Lemma A.1. Let M and N be smooth manifolds.

(a) There exist a locally finite countable atlas {(Ui , φi )}i∈N of M and a compact
set Ki ⊆Ui , for each i , such that M =

⋃
i K̊i , where K̊i denotes the interior

of Ki .

(b) For any smooth map f : M → N , there exist {(Ui , φi , Ki )}i∈N as in (a) and
a countable atlas {(Vi , ψi )}i∈N of N such that f (Ki )⊆ Vi for each i .
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Recall that for M and N smooth manifolds, the weak topology on C∞(M, N )
has as subbasic neighborhoods the sets N r ( f, (U, φ), (V, ψ), K , ε) described at
the beginning of Section 4.

Lemma A.2. Let M and N be smooth manifolds. Then the weak topology on
C∞(M, N ) contains the compact-open topology.

Proof. Consider A(K ,W ) = {g ∈ C∞(M, N ) | g(K ) ⊆ W }, where K ⊆ M is
compact and W ⊆ N is open. Let f ∈ A(K ,W ). Choose charts for M and N and
compact sets Ki as described in Lemma A.1(b). Choose j so that K ⊆

⋃ j
i=1 Ki .

Then

f ∈
j⋂

i=1

N 0( f, (Ui , φi ), (Vi ∩ V, ψi ), Ki ∩ K , 1)⊆ A(K ,W ),

so A(K ,W ) is open in the weak topology. �

Lemma A.3. Let M be a smooth manifold. The sets N r ( f, (U, φ), (Rd , id), K , ε),
where r ∈ N, f ∈ C∞(M,Rd), (U, φ) is a chart of M , K ⊆ U is compact and
ε > 0, form a subbasis for the weak topology on C∞(M,Rd). In particular, the
weak topology on C∞(M,Rd) has a basis of convex sets.

Proof. Consider a subbasic set A := N r ( f, (U, φ), (V, ψ), K , ε) containing a
function g. First observe that g ∈ A′ := N r (g, (U, φ), (V, ψ), K , ε′) ⊆ A for
some ε′, since these sets are determined by comparing finitely many norms on a
compact set. One can then show that A′′ := N r (g, (U, φ), (V, id), K , ε′′)⊆ A′ for
some ε′′, using bounds on the derivatives of ψ on g(K ). Finally, we claim that
A′′′ := N r (g, (U, φ), (Rd , id), K , ε′′′)⊆ A′′ for some ε′′′. To see this, cover g(K )
by finitely many open balls B1, . . . , Bn such that 2B` ⊆ V for each `, and let ε′′′ be
the minimum of the radii and ε′′. Then if h ∈ A′′′ and x ∈ K , we have g(x) ∈ B`
for some ` and |g(x)− h(x)|< ε′′′, so h(x) ∈ 2B` ⊆ V . �

For N open in Rd , we will implicitly use that the inclusion map induces a
continuous map C∞(M, N )⊆ C∞(M,Rd) in the weak topologies, which follows
from the fact that the weak topology is functorial in the second variable (see [Hirsch
1976, Exercise 10(a), p. 64]). (In fact, the weak topology and the subspace topology
on C∞(M, N ) agree, but we won’t need this.) Although C∞(M, N ) need not be
an open subset of C∞(M,Rd), it has the following weaker property.

Lemma A.4. Let M be a smooth manifold and let N be an open subset of Rd .
If f is in C∞(M, N ) and K is a compact subset of M , then there is a convex basic
weak C∞(M,Rd)-neighborhood of f whose elements map K into N.
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Proof. The set {g ∈C∞(M,Rd) | g(K )⊆ N } is open in the compact-open topology
on C∞(M,Rd) and so is open in the weak topology by Lemma A.2. By Lemma A.3,
the weak topology on C∞(M,Rd) has a basis of convex sets. Thus any f :M→ N
has such a convex basic set as a weak neighborhood. �

Theorem A.5. Let M and N be smooth manifolds. Suppose p : R→ C∞(M, N )
is weakly continuous and tr is a sequence of real numbers converging to zero.
Then there is a subsequence tr j and a smooth curve q : R→ C∞(M, N ) such that
q(2− j )= p(tr j ) for each j and q(0)= p(0).

Proof. We first reduce to the case where N is open in Rd . As in Theorem 4.13,
choose an embedding N ↪→ Rd , and let U be an open tubular neighborhood of N
in Rd , so that the inclusion i : N→U has a smooth retract r :U→ N . By [Hirsch
1976, Exercise 10(a), p. 64], the map R→C∞(M,U ) sending t to i ◦ p(t) is weakly
continuous, so if the theorem holds for C∞(M,U ), then there is a smooth curve
q : R→ C∞(M,U ) such that q(2− j ) = i ◦ p(tr j ) for each j and q(0) = i ◦ p(0).
Then the map sending t to r ◦ q(t) is smooth, r ◦ q(2− j )= p(tr j ) for each j , and
r ◦ q(0)= p(0), so we are done. Thus we may assume that N is open in Rd .

If tr is eventually constant, we may take q to be a constant function, so suppose
it is not. Choose charts (Uk, φk)

∞

k=1 for M and compact sets Kk ⊆Uk as described
in Lemma A.1(a). Let f = p(0). For j = 1, 2, . . . , the sets,

A j =

j⋂
k=1

N j( f, (Uk, φk), (R
d , id), Kk, 2−( j+1)2)

are weak C∞(M,Rd)-neighborhoods of f , so we may choose a strictly monotone
subsequence tr j such that p(tr j ) ∈ A j for each j . Set f j = p(tr j ). Now compose p
with a continuous function taking 2− j to tr j for each j to obtain a weakly continuous
function p0 that satisfies p0(2− j )= f j for j = 1, 2, . . . and p0(0)= f .

Fix k. By Lemma A.4, for each t ∈ [0, 1], there is a convex neighborhood
of p0(t) whose elements map Kk into N . By compactness, there is a δk > 0 such
that any subinterval of [0, 1] of length at most 2δk is mapped by p0 into one of
these neighborhoods. Thus, for each t , any convex combination of elements in
p([t−δk, t+δk]∩[0, 1]) maps Kk into N . Let τ0, τ1, . . . be the strictly decreasing
sequence obtained by ordering the set {1, 1/2, 1/4, . . . } ∪ {δk, 2δk, . . . , b1/δkcδk}.
Note that τ0 = 1 and τ j−1− τ j ≤ δk for j = 1, 2, . . . .

Fix a nondecreasing µ ∈ C∞(R, [0, 1]) such that µ = 0 in a neighborhood of
(−∞, 0] and µ= 1 in a neighborhood of [1,∞). Let

M` = 1+ 2 max
`′≤`

max
t∈[0,1]

|µ(`
′)(t)|.

Define qk :R→C∞(M,Rd) by qk(t)= p0(0) for t ≤ 0, qk(t)= p0(1) for t ≥ 1,
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and

qk(t)= p0(τ j )+µ

(
t − τ j

τ j−1− τ j

)
(p0(τ j−1)− p0(τ j ))

for τ j ≤ t ≤ τ j−1, j = 1, 2, . . . . Note that for each t ∈ (0, 1], qk(t) is a convex
combination of elements of p0([t − δk, t + δk] ∩ [0, 1]). Clearly, qk is constant on
(−∞, 0] and constant on [1,∞). The choice of µ ensures that it is constant in
a neighborhood of τ j−1 for each j and smooth on (τ j , τ j−1). Thus, qk is smooth
on (R \ {0})× M . To see that it is also smooth at t = 0, fix a positive integer κ ,
set F = f ◦ φ−1

κ , F j = f j ◦ φ
−1
κ for each j , and Q(t, s) = qk(t)(φ−1

κ (s))− F(s).
It will suffice to show that all partial derivatives of Q exist and equal zero on
S := {0}×φκ(K̊κ). Certainly Q = 0 there, and if D is any composition of partial
differentiation operators such that DQ vanishes on S, then the partial derivative
of DQ with respect to any of s1, . . . , sm also vanishes there. To complete the
induction, it is enough to show that the partial derivative of DQ with respect to t
also vanishes on S.

Where Q is C∞, the order of mixed partials is unimportant, so DQ = D`
t Di

s Q
off S for some ` ≥ 0 and some multi-index i . Choose J so that 2−J < δk . Then
2−J , 2−J−1, 2−J−2, . . . is a tail of the sequence τ0, τ1, . . . . So if j > J and
2− j
≤ t ≤ 21− j , then

qk(t)= f j +µ(2 j t − 1)( f j−1− f j ),

and, for s ∈ φκ(Uκ),

(D`
t Di

s Q)(t, s)=
{
(Di

s(F j−F))(s)+µ(2 j t−1)(Di
s(F j−1−F j ))(s) if `= 0,

µ(`)(2 j t−1)2`j (Di
s(F j−1−F j ))(s) if `≥ 1.

If j >max(J, κ, |i |, `+ 2), then

f j ∈ A j ⊆ N j( f, (Uκ , φκ), (R
d , id), Kκ , 2−( j+1)2),

and
f j−1 ∈ A j−1 ⊆ N j−1( f, (Uκ , φκ), (R

d , id), Kκ , 2− j2)
,

so
|Di

s(F j − F)| ≤ 2−( j+1)2
≤ 2− j2

and |Di
s(F j−1− F)| ≤ 2− j2

on φκ(Kκ). Thus, for any s ∈ φk(K̊κ),

|(DQ)(t, s)− (DQ)(0, s)| = |(D`
t Di

s Q)(t, s)| ≤M`2`j 2− j2
≤M`t2,

where we have used that ` < j − 2 in the last inequality. Since j can be arbitrarily
large, this inequality holds for all sufficiently small t , so the partial derivative of DQ
with respect to t (from the right) exists and equals zero. The partial derivative



THE D-TOPOLOGY FOR DIFFEOLOGICAL SPACES 109

from the left is trivially zero. This completes the induction and the proof that qk is
smooth.

Before allowing k to vary, observe that qk(τ j ) = p0(τ j ) for each j , and in
particular, qk(2− j )= p0(2− j )= f j for each j .

Let (νk)
∞

k=1 be a smooth partition of unity on M with νk supported in K̊k and
define q by q(t)(x)=

∑
∞

k=1 νk(x)qk(t)(x). Then q :R→C∞(M,Rd) is a smooth
curve such that q(2− j ) = f j = p(tr j ) for each j , and of course q(0) = p(0). It
remains to show that q(t) takes values in N for each t ∈ R. Let x ∈ M . There
are finitely many k such that νk(x) 6= 0; among them, choose k ′ so that δk′ is as
large as possible. Then, for any t and any k such that νk(x) 6= 0, qk(t) is a convex
combination of elements of p0([t − δk′, t + δk′] ∩ [0, 1]). Thus,

∑
∞

k=1 νk(x)qk(t) is
also a convex combination of elements of p0([t−δk′, t+δk′]∩[0, 1]), and therefore
maps Kk′ to N . But νk′(x) 6= 0, so x ∈ Kk′ . Hence,

∑
∞

k=1 νk(x)qk(t)(x)∈ N , that is,
q(t)(x) ∈ N . We conclude that q : R→ C∞(M, N ). This completes the proof. �
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