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We work out some formulas for nonlinear Euler sums involving multiple
zeta values. As applications of these formulas, we give new closed form
sums of several nonlinear Euler series, we present sums for powers of the
digamma function and deduce the Landen identities for the polylogarithms
by finite combinatorial identities.
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1. Introduction

In a letter from Goldbach to Euler, Goldbach proposed to investigate infinite series
of the form

∞∑
n=1

1
na

n∑
k=1

1
kb .

See for the historical details. In 1742 and 1743 Euler presented a number of closed
form expression for such sums and their variations. The most fundamental one is
the following [Borwein and Bradley 2006]:

(1)
∞∑

n=1

1
n2

n−1∑
k=1

1
k
=

∞∑
n=1

1
n3 = 8

∞∑
n=1

(−1)n

n2

n−1∑
k=1

1
k
.
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The sum in the middle is a zeta function value and in the present day we consider
the value of this series as a “fundamental constant”, which cannot be traced back to
“more fundamental” ones.

In the past two hundred years it had been apparent that the above sums and their
generalizations — nowadays they are called Euler sums — often can be traced back
to zeta function values. To treat these sums, we adopt the modern notations and
notions. The multiple polylogarithm is defined by

(2) ζ(s1, s2, . . . , sm; z)=
∑

0<nm<···<n1

zn1

ns1
1 ns2

2 · · · n
sm
m
,

with the appropriate restriction on the powers to get a convergent series. In particular,

ζ(s; 1)= ζ(s)=
∞∑

n=1

1
ns (<(s) > 1)

is the classical Riemann zeta function [Andrews et al. 1999]. Typically z is set to 1
or −1, in which cases we are dealing with a multiple zeta function or alternating
multiple zeta function, respectively. We remark that in the literature there exists a
more general version of the above multiple zeta function, called the colored multiple
zeta function [Bigotte et al. 2002]. It is defined as

ζ(s1, s2, . . . , sm; σ1, σ2, . . . , σm)=
∑

0<nm<···<n1

σ
n1
1 σ

n2
2 · · · σ

nm
m

ns1
1 ns2

2 · · · n
sm
m
.

The sum
m∑

i=1

si

is the weight of the zeta function, while m is the depth. A brief survey on multiple
polylogarithms can be found in [Bowman and Bradley 2001].

The finite sums inside the sums are called generalized harmonic numbers and
are denoted by Hn,r (or H (r)

n , but we use the former, because our expressions will
involve powers):

Hn,r =

n∑
k=1

1
kr (n ≥ 1, r ≥ 1),

with the convention H0,r = 0 for all r = 1, 2, . . . . The numbers Hn,1 =: Hn are
called harmonic numbers.

With these, the above relations under (1) can be written in the short form

ζ(2, 1) :=
∞∑

n=1

Hn−1

n2 = ζ(3)= 8ζ(2, 1;−1).
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For Euler’s original proof, see [Euler 1776]. These relations were rediscovered
many times, as the references [Briggs et al. 1955; Bruckman 1982; Farnum and
Tissier 1999; Klamkin and Steinberg 1952] show.

We mention that the general expression in terms of zeta values of the sum
∞∑

n=1

Hn

na

was known already to Euler, who found that

(3)
∞∑

n=1

Hn

na =

(
1+ a

2

)
ζ(a+ 1)− 1

2

a−2∑
k=1

ζ(k+ 1)ζ(a− k) (a ≥ 2).

Naturally, then, researchers after Euler have turned to generalizations and alter-
ations of these sums. In the next section we present some existing directions, then
we show in which direction we proceed.

2. Existing results and research directions

2.1. Alternating Euler sums. In the past and present, the alternating Euler sums
and their modifications and generalizations have attracted the attention of a large
number of mathematicians. For example, the alternating Euler sums, like

∞∑
n=1

1
na

n∑
k=1

(−1)k

kr ,

are investigated in [Bailey et al. 1994; de Doelder 1991; Li 2011; Sitaramachan-
dra Rao 1987], to name a few. We mention one sum from [Li 2011, Proposition 3.2]:

∞∑
n=1

1
n2

n∑
k=1

(−1)k+1

k
=

3
2
ζ(2) log 2− ζ(3).

In [Sitaramachandra Rao 1987] one can find an exhaustive bibliography on alter-
nating Euler sums. It turns out that these sums are reducible to zeta values in many
cases, see [Flajolet and Salvy 1998, Theorem 7.1].

2.2. Analytic extension of Euler sums. T. Apostol and T. H. Vu [1984] started to
investigate Euler sums as functions of the power of n:

h(s)=
∞∑

n=1

Hn

ns .

They showed that this function can be continued to the whole s-plane as a mero-
morphic function with a second-order pole at s = 1, and simple poles at s = 0 and
at the negative odd integers.
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In the same paper this result was extended to the function

h(s, z)=
∞∑

n=1

Hn,z

ns .

These results were further specified and extended by Boyadzhiev [2008; 2009] to

u(s)=
∞∑

n=1

(−1)n+1

ns Hn,

v(s)=
∞∑

n=1

(−1)n+1

ns

(
1−

1
2
+

1
3
+ · · ·+

(−1)n+1

n

)
,

w(s)=
∞∑

n=1

1
ns

(
1−

1
2
+

1
3
+ · · ·+

(−1)n+1

n

)
.

2.3. Nonlinear Euler sums up to now. Another direction of investigation is the
nonlinear case. In this case one considers sums like

(4)
∞∑

n=1

Hn,r1 Hn,r2 · · · Hn,rp

na .

These are called nonlinear Euler sums. In this case just sporadic results are known;
one can find some of them in the references [Borwein and Borwein 1995; Chu 1997;
de Doelder 1991; Shen 1995; Sofo and Hassani 2012]. Moreover, V. Adamchik
[1997] investigated the relation between such nonlinear Euler sums and several
sums on the Stirling numbers of the fist kind. D. F. Connon [2008a; 2008b; 2008c;
2008d; 2008e; 2008f; 2008g; 2008h] has found a large number of connections
between specific nonlinear Euler sums and the Riemann and Hurwitz zeta functions.
To mention two beautiful results, we cite an expression for ζ(4) and ζ(5) [Connon
2008c, formulas (4.3.45f) and (4.3.57b)]:

ζ(4)= 1
6

∞∑
n=1

H 2
n + Hn,2

n2 , ζ(5)= 1
24

∞∑
n=1

2Hn,3+ 3Hn Hn,2+ H 3
n

n2 .

To present some additional examples from the literature, we cite two sums from
[Borwein and Borwein 1995]:

∞∑
n=1

H 2
n

n2 =
17
4
ζ(4),

∞∑
n=1

Hn Hn+1

(n+ 1)2
= 3ζ(4)= π

4

30
,
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and from [Flajolet and Salvy 1998]:
∞∑

n=1

H 3
n

n4 =
231
16
ζ(7)− 51

4
ζ(3)ζ(4)+ 2ζ(2)ζ(5),

∞∑
n=1

H 4
n

(n+ 1)3
=

185
8
ζ(7)− 43

2
ζ(3)ζ(4)+ 5ζ(2)ζ(5).

That all of these sums can be expressed as multiple zeta values is not known. The
only available result concerns quadratic sums:

Theorem 1 [Flajolet and Salvy 1998, p. 25, Theorem 4.2]. If p1+ p2+ q is even,
and p1 > 1, p2 > 1, q > 1, the quadratic sums

∞∑
n=1

Hn,p1 Hn,p2

nq

are reducible to linear sums.

The theorem exactly gives the reduction, but the formulas are rather complicated
to cite.

Finally, we cite a nice example of a nonlinear alternating sum from [Borwein
and Borwein 1995]:
∞∑

n=1

1
n2

(
1− 1

2
+· · ·+

(−1)n+1

n

)2

=−
13
8
ζ(4)+ 5

2
ζ(2) log2 2+ 1

12
log4 2+2 Li4

( 1
2

)
.

Here

(5) Lik(z)=
∞∑

n=1

zn

nk = ζ(k; z)

is a special multiple zeta function, called the polylogarithm. (The special value
Li4
( 1

2

)
, like ζ(3), does not seem to be evaluable in terms of more fundamental

constants.)
No general reduction formula is known for nonlinear alternating sums, but

computer-based calculations are available in several cases; see [Bailey et al. 1994].
An exhaustive and up-to-date bibliography on Euler sums and their generaliza-

tions can be found at http://www.usna.edu/Users/math/meh/biblio.html .

3. New nonlinear Euler sum formulas

Now we turn to our own results.
In this section we demonstrate how we can trace back some specific quadratic

Euler sums to linear ones. To express these sums in a convenient form, we use the

http://www.usna.edu/Users/math/meh/biblio.html
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concept of E. A. Ulanskii, who defined the nonstrict multiple polylogarithm [2003]
as follows:

Le(s1,...,sm)(z)=
∑

1≤nm≤···≤n1

zn1

ns1
1 ns2

2 · · · n
sm
m
.

As it can be seen, this definition differs from the multiple polylogarithm function
in the nonstrictness of the relations. We shall always set the parameter z to 1, and
we refer to the function

Le(s1,...,sm)(1)=: Le(s1, . . . , sm)

as the nonstrict multiple zeta function. Ulanskii did not deal with the specific values
of these sums but with the functional relations among them. For example, he proved
the following theorem, which will be extremely useful for us.

Theorem 2. The nonstrict multiple polylogarithm function can be written as a sum
of multiple polylogarithms as

Le(s1,...,sm)(z)=
∑
ρ

ζ(ρ; z),

where ρ runs through all sets of the form (s1∗· · ·∗sm), the symbol ∗ standing either
for + or the comma; the total number of such sets is 2m−1. Moreover, ζ is defined
under (2).

For further reference we specify this theorem with m = 2 and m = 3, with z = 1
(in which form these relations has appeared in [Hoffman 1992]):

Le(s1,s2)= ζ(s1,s2)+ ζ(s1+ s2),(6)

Le(s1,s2,s3)= ζ(s1,s2,s3)+ ζ(s1+ s2+ s3)+ ζ(s1,s2+ s3)+ ζ(s1+ s2,s3).(7)

Finally, we introduce the notations

H(a, b)=
∞∑

n=1

Hn,b

na ,

H(a, b, c)=
∞∑

n=1

Hn,b Hn,c

na ,

H(a, b, c, d)=
∞∑

n=1

Hn,b Hn,c Hn,d

na .

We can call these sums ordinary (or first-order), quadratic (or second-order) and
cubic Euler sums, respectively.
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3.1. Quadratic sums: the homogeneous case. We now show how we can trace
back H(a, b, b) to nonstrict multiple zeta function — and so, by Theorem 2, to
multiple zeta values — and H(a, b). Since there are extensive tables for multiple
zeta values and many results for H(a, b), we can calculate sums like

H(a, b, b)=
∞∑

n=1

H 2
n,b

na

with a relatively small effort.

Theorem 3. For homogeneous quadratic Euler sums we have the reduction

H(a, b, b)= 2 Le(a, b, b)− H(a, 2b),

or, if we write out the definitions,

∞∑
n=1

H 2
n,b

na = 2 Le(a, b, b)−
∞∑

n=1

Hn,2b

na .

Proof. Let us write out the sums:

H(a, b, b)=
∞∑

n=1

H 2
n,b

na =

∞∑
n=1

1
na

n∑
m=1

1
mb

n∑
k=1

1
kb .

On the other hand,

Le(a, b, b)=
∞∑

n=1

1
na

n∑
m=1

1
mb

m∑
k=1

1
kb .

Geometrically, the sum H(a, b, b) runs through a two dimensional square with
integer coordinates. On the other hand, Le(a, b, b) runs through the lower triangle
of this square, including the diagonal. By symmetry of the terms of the sums,
the lattice points of this square are equal if we mirror them with respect to the
main diagonal of the square. Therefore the sum H(a, b, b) equals twice Le(a, b, b)
minus the diagonal, which is counted twice. At the diagonal the inner sums equal

n∑
m=1

1
m2b .

Summing on the index n, we have our relation. �

Employing the above theorem, in the next subsection we provide a concrete
example. This example is chosen to be very typical. It uses almost all the usual
tricks which lead to the zeta expression of an Euler sum.
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3.2. The homogeneous quadratic sums H(2, 2, 2), H(2, 1, 1) and H(3, 1, 1).
According to the theorem of Flajolet and Salvy (in this paper Theorem 1), the sum

∞∑
n=1

H 2
n,2

n2

reduces to zeta values. Without using the evaluations of Flajolet and Salvy, we
employ our above theorem. This implies the next representation.

Theorem 4.
∞∑

n=1

H 2
n,2

n2 =
19
24
ζ(6)+ ζ 2(3).

Proof. The sum in the left-hand side equals

H(2, 2, 2)= 2 Le(2, 2, 2)− H(2, 4).

Our goal is to reduce the expression on the right to Riemann zeta values. By (7),

Le(2, 2, 2)= ζ(6)+ ζ(4, 2)+ ζ(2, 4)+ ζ(2, 2, 2).

All the values ζ(4, 2), ζ(2, 4) and ζ(2, 2, 2) can be found in [Li 2011]:

ζ(4, 2)= ζ 2(3)− 4
3
ζ(6), ζ(2, 4)=−ζ 2(3)+ 25

12
ζ(6), ζ(2, 2, 2)= 3

16
ζ(6).

Altogether,

Le(2, 2, 2)=
31
16
ζ(6)=

31
15120

π6.

Now we deal with the sum H(2, 4). We could not find in the literature directly this
sum, but in [Flajolet and Salvy 1998, p. 16, formula (b)] we can find that

H(4, 2)= ζ 2(3)− 1
3
ζ(6).

We now apply the reflection formula [Boyadzhiev 2002; Flajolet and Salvy 1998]

H(a, b)+ H(b, a)= ζ(a)ζ(b)+ ζ(a+ b)

to obtain

H(2, 4)= ζ(2)ζ(4)+ ζ(6)− H(b, a)= 37
12
ζ(6)− ζ 2(3).

(Here we used the fact that ζ(2)ζ(4)= 7
4ζ(6).) Hence

H(2, 2, 2)= 2 · 31
16
ζ(6)−

(37
12
ζ(6)− ζ 2(3)

)
=

19
24
ζ(6)+ ζ 2(3).

This is what we wanted to prove. �
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Connon [2007] gave an “elementary” evaluation for the sum H(2, 1, 1), which
was evaluated earlier by de Doelder [1991]. Their result is

H(2, 1, 1)=
∞∑

n=1

H 2
n

n2 =
17
4
ζ(4).

Once we have Theorem 3, the evaluation of this sum reduces to looking for the
appropriate values of the multiple zeta. These values can be found in [Borwein and
Girgensohn 1996], hence our method gives a third (and the easiest) proof.

In the same paper Connon notes that he could not evaluate the sum H(3, 1, 1).
Our method and the multiple zeta values from the paper [Borwein and Girgensohn
1996] give immediately that

H(3, 1, 1)=
∞∑

n=1

H 2
n

n3 =
7
2
ζ(5)− ζ(2)ζ(3).

However, Mathematica can evaluate this sum automatically.
Connon gave an integral representation for H(q, 1, 1) for integer q > 1:

∞∑
n=1

H 2
n

nq =

∫ 1

0

∫ 1

0

Liq−2
(
(1− t)(1− u)

)
log t log u

(1− t)(1− u)
du dt.

By the results above for q = 3 and knowing that Li1(x)=− log(1− x), we get the
closed form of the following integral:

(8)
∫ 1

0

∫ 1

0

log
(
1− (1− t)(1− u)

)
log t log u

(1− t)(1− u)
du dt = ζ(2)ζ(3)− 7

2
ζ(5).

3.3. Quadratic sums: the inhomogeneous case. Another kind of approach helps
us to evaluate inhomogeneous quadratic sums, i.e., sums of the form

∞∑
n=1

Hn,b Hn,c

na .

Namely, the next theorem is true.

Theorem 5. Inhomogeneous quadratic Euler sums can be expressed by the nonstrict
multiple zeta function as

H(a, b, c)= Le(a, b, c)+Le(a, c, b)−Le(a, b+ c).

If c = b this formula reduces to the formula presented in Theorem 3.
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Proof. H( a, b, c)=
∞∑

n=1

Hn,b Hn,c

na =

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( n∑
k=1

1
kc

)

=

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( m∑
k=1

1
kc

)
+

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( n∑
k=m+1

1
kc

)
.

The first sum is nothing but Le(a, b, c), while the second can be rearranged as

∞∑
n=1

1
na

( n∑
m=1

1
mb

)( n∑
k=m+1

1
kc

)
=

∞∑
n=1

1
na

( n∑
k=2

1
kc

)( k−1∑
m=1

1
mb

)
.

Since the sum over m is empty if k = 1, we can start the sum over k from 1. Hence,
at this point, we have that

H(a, b, c)= Le( a, b, c)+
∞∑

n=1

1
na

( n∑
k=1

1
kc

)( k−1∑
m=1

1
mb

)
.

The latter sum almost equals Le(a, c, b), but here the sum on m runs up to k− 1
instead of k. We can resolve this as follows:

∞∑
n=1

1
na

( n∑
k=1

1
kc

)( k−1∑
m=1

1
mb

)
=

∞∑
n=1

1
na

( n∑
k=1

1
kc

)( k∑
m=1

1
mb

)
−

∞∑
n=1

1
na

( n∑
k=1

1
kc+b

)
.

The right-hand side equals Le(a, c, b)− Le(a, c+ b). Substituting this into the
ultimate expression of H(a, b, c), we are done. �

3.4. Two nonhomogeneous quadratic sums: H(2, 1, 2) and H(2, 2, 3). By us-
ing the theorem of the last subsection, we evaluate the next inhomogeneous quadratic
sums.

Theorem 6. We have
∞∑

n=1

Hn Hn,2

n2 = ζ(2)ζ(3)+ ζ(5),

∞∑
n=1

Hn,2 Hn,3

n2 =
131
16
ζ(7)− 5

2
ζ(2)ζ(5)− 3

2
ζ(3)ζ(4).

Note that the theorem of Flajolet and Salvy does not apply to these sums.

Proof. These proofs are again instructive. First,

(9)
∞∑

n=1

Hn Hn,2

n2 = H(2, 1, 2)= Le(2, 1, 2)+Le(2, 2, 1)−Le(2, 3).
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Moreover, according to (7),

Le(2, 1, 2)= ζ(5)+ ζ(3, 2)+ ζ(2, 3)+ ζ(2, 1, 2).

In [Borwein and Girgensohn 1996] we find that

ζ(2, 1, 2)= 9
2
ζ(5)− 2ζ(2)ζ(3), ζ(3, 2)=−11

2
ζ(5)+ 3ζ(2)ζ(3).

We could not find the value of ζ(2, 3) directly, but it can be easily deduced by a
result of Boyadzhiev [2002]. Namely,

ζ(2, 3)=
∞∑

n=1

Hn−1,3

n2 =

∞∑
n=1

Hn,3

n2 − ζ(5).

The zeta expression of the harmonic sum on the right — and even a more general
form — is worked out by Boyadzhiev in the same paper:

∞∑
n=1

Hn,3

n2 =
11
2
ζ(5)− 2ζ(2)ζ(3).

(In general, he found that

∞∑
n=1

Hn,3

n p = ζ(3)ζ(p)+
(

1+
p3
+ 5p
12

)
ζ(p+3)− 1

4

p−1∑
k=1

k(k+1)ζ(k+2)ζ(p−k+1)

−
1
4

p(p+ 1)H(p+ 2, 1)− 1
2
[H(p+ 1, 2)+ ζ(p+ 1)ζ(2)],

if p is even.)
So

(10) ζ(2, 3)= 9
2
ζ(5)− 2ζ(2)ζ(3).

Altogether, we get that

Le(2, 1, 2)= 9
2
ζ(5)− ζ(2)ζ(3).

We also need the value of Le(2, 2, 1). Again, employing (7),

Le(2, 2, 1)= ζ(5)+ ζ(4, 1)+ ζ(2, 3)+ ζ(2, 2, 1).

Using the tables in [Borwein and Girgensohn 1996], we find that

ζ(4, 1)= 2ζ(5)− ζ(2)ζ(3), ζ(2, 2, 1)=−11
2
ζ(5)+ 3ζ(2)ζ(3).

Applying to (10) the value of ζ(2, 3) calculated above, we get the simple zeta value
of Le(2, 2, 1):

Le(2, 2, 1)= 2ζ(5).
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The last undetermined zeta value in (9) does not cause any problem:

Le(2, 3)= ζ(5)+ ζ(2, 3)= ζ(5)+ 9
2
ζ(5)− 2ζ(2)ζ(3)= 11

2
ζ(5)− 2ζ(2)ζ(3).

Collecting the nonstrict zeta values in (9) for H(2, 1, 2), we find that they really
sum to ζ(5)+ ζ(2)ζ(3).

Now we turn to the second nonlinear Euler sum H(2, 2, 3). It equals

(11) Le(2, 2, 3)+Le(2, 3, 2)−Le(2, 5).

We follow the same pattern as above:

Le(2, 2, 3)= ζ(7)+ ζ(4, 3)+ ζ(2, 5)+ ζ(2, 2, 3).

The zeta expressions of ζ(4, 3) and ζ(2, 5) can be calculated from the results in
[Bailey et al. 1994], under the notations σh(3, 4) and σh(5, 2), respectively. They
equal

ζ(4, 3)= 17ζ(7)− 10ζ(2)ζ(5),(12)

ζ(2, 5)= 10ζ(7)− 2ζ(3)ζ(4)− 4ζ(2)ζ(5).(13)

(In fact, the next expressions are deduced in [Bailey et al. 1994] and by the same
authors in [Borwein et al. 1995]:

(14) ζ(m, n)= 1
2

((m+n
m

)
− 1

)
ζ(m+ n)+ ζ(m)ζ(n)

−

m+n∑
j=1

((2 j−2
m−1

)
+

(2 j−2
n−1

))
ζ(2 j − 1)ζ(m+ n− 2 j + 1)

if m is odd and n is even, while

ζ(m, n)=−1
2

((m+n
m

)
+ 1

)
ζ(m+ n)

+

m+n∑
j=1

((2 j−2
m−1

)
+

(2 j−2
n−1

))
ζ(2 j − 1)ζ(m+ n− 2 j + 1)

if m is even and n is odd.)
The value of ζ(2, 2, 3) is listed in [Borwein and Girgensohn 1996]:

ζ(2, 2, 3)=−291
16
ζ(7)− 3

2
ζ(3)ζ(4)+ 12ζ(2)ζ(5).

Hence

(15) Le(2, 2, 3)= 157
16
ζ(7)− 2ζ(2)ζ(5)− 7

2
ζ(3)ζ(4).
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The calculation of Le(2, 3, 2) needs a bit less work, because

Le(2, 3, 2)= ζ(7)+ ζ(5, 2)+ ζ(2, 5)+ ζ(2, 3, 2),

and we can apply the reflection formula [Wan 2012]

ζ(a, b)+ ζ(b, a)= ζ(a)ζ(b)− ζ(a+ b).

We have that
ζ(5, 2)+ ζ(2, 5)= ζ(2)ζ(5)− ζ(7),

and so
Le(2, 3, 2)= ζ(2)ζ(5)+ ζ(2, 3, 2).

The value
ζ(2, 3, 2)= 75

8
ζ(7)− 11

2
ζ(2)ζ(5)

can be found in [Borwein and Girgensohn 1996]. Hence

(16) Le(2, 3, 2)= 75
8
ζ(7)− 9

2
ζ(2)ζ(5).

Only Le(2, 5) is missing in (11).

(17) Le(2, 5)= ζ(7)+ ζ(2, 5)= 11ζ(7)− 4ζ(2)ζ(5)− 2ζ(4)ζ(3),

as we can see from (13).
Substituting (15), (16), and (17) into (11), we have the second sum in Theorem 6.

�

3.5. Homogeneous cubic sums. The geometric approach we applied in Section 3.1
to homogeneous quadratic sums can be generalized to homogeneous cubic sums as
well.

Theorem 7. The homogeneous cubic Euler sums can be reduced to multiple zeta
values of depth 3 and 4, and to Euler sums of order one and two. Namely,

H(a, b, b, b)= 6ζ(a, b, b, b)+ 6ζ(a+ b, b, b)+ 3H(a, b, 2b)− 2H(a, 3b).

Proof. The sum

H(a, b, b, b)=
∞∑

n=1

1
na

n∑
m=1

1
mb

n∑
k=1

1
kb

n∑
l=1

1
lb

can be considered as a sum on the infinite cubic lattice with positive integer co-
ordinates. We subtract from this the second-order sums on the principal planes
m = k, k = l and m = l. Since we have subtracted the main diagonal m = k = l
three times, we can add it two times. Then, by symmetry, we have six times the
sum in the “lower” part of the cube, with (integer) coordinates m = 1, 2, . . . , n,
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k = 1, . . . ,m−1 and l = 1, . . . , k−1. Again, by symmetry, the second-order sums
on the principal planes m = k, k = l and m = l are identical and equal H(a, b, 2b);
and the main diagonal m = k = l corresponds to the sum H(a, 3b). Hence, we have
the relation

H(a, b, b, b)− 3H(a, b, 2b)+ 2H(a, 3b)
6

=

∞∑
n=1

1
na

n∑
m=1

1
mb

m−1∑
k=1

1
kb

k−1∑
l=1

1
lb .

The sum on the right-hand side can be easily rewritten as a multiple zeta expression,
if we separate the terms m = 1, 2, . . . , n− 1 and m = n:

∞∑
n=1

1
na

n∑
m=1

1
mb

m−1∑
k=1

1
kb

k−1∑
l=1

1
lb = ζ(a, b, b, b)+ ζ(a+ b, b, b).

Substituting this into the above relation and rearranging we have our theorem. �

3.6. The inhomogeneous quadratic sum H(4, 1, 2). We apply the theorem of the
above section to prove the next identity.

Theorem 8.
∞∑

n=1

Hn Hn,2

n4 =
3
4
ζ(3)ζ(4)+ 2ζ(2)ζ(5)− 51

16
ζ(7).

Note that here the reduction theorem of Flajolet and Salvy does not apply.

Proof. We specialize Theorem 7 to a = 4 and b = 1. Then

(18) H(4, 1, 1, 1)= 6ζ(4, 1, 1, 1)+ 6ζ(5, 1, 1)+ 3H(4, 1, 2)− 2H(4, 3).

The sum on the left-hand side equals

(19) H(4, 1, 1, 1)=
∞∑

n=1

H 3
n

n4 =
231
16
ζ(7)− 51

4
ζ(3)ζ(4)+ 2ζ(2)ζ(5),

as one can find in [Flajolet and Salvy 1998, p. 16]. Moreover, an important
simplification can be done on the right-hand side, since

(20) ζ(4, 1, 1, 1)= ζ(5, 1, 1).

This is an observation of J. Borwein, D. Bradley and D. Broadhurst, see the
paragraph after formula (30) in [1997]. The general version that they proved is the
following:

ζ(m+ 2, {1}n)= ζ(n+ 2, {1}m),

where {1}n means that we repeat the argument n times. Identity (20) comes if we
substitute m = 2 and n = 3. Other examples are

ζ(2, {1}n)= ζ(n+ 2), ζ(3, {1}n)= ζ(n+ 2, 1),
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and so on.
The value of ζ(5, 1, 1) can be found in [Borwein and Girgensohn 1996]:

ζ(5, 1, 1)=−5
4
ζ(3)ζ(4)+ 5ζ(7)− 2ζ(5)ζ(2).

Thus, with respect to (18) and (19) we have the temporary result

231
16
ζ(7)− 51

4
ζ(3)ζ(4)+ 2ζ(2)ζ(5)

=−15ζ(3)ζ(4)+ 60ζ(7)− 24ζ(5)ζ(2)+ 3H(4, 1, 2)− 2H(4, 3),

which can be rearranged:

(21) 3H(4, 1, 2)=−729
16
ζ(7)+ 9

4
ζ(3)ζ(4)+ 26ζ(2)ζ(5)+ 2H(4, 3).

The sum H(4, 3) can be deduced from the formula of Bailey, Borwein, and Girgen-
sohn (14):

H(4, 3)=
∞∑

n=1

Hn,3

n4 =

∞∑
n=0

Hn+1,3

(n+ 1)4
=

∞∑
n=0

Hn,3+ 1/(n+ 1)3

(n+ 1)4
= ζ(4, 3)+ ζ(7).

By using (12),
H(4, 3)= 18ζ(7)− 10ζ(2)ζ(5).

Substituting this into (21), we are done. �

4. Generating functions of nonlinear Euler sums

Up to this point, we were interested in closed form expression for quadratic and
cubic Euler sums. In several cases, using polylogarithms and several tricks, we
can involve a free parameter z in these sums and express them with known special
functions. To be more concrete, we can find the generating functions for H 2

n and
H 3

n as well. We shall deduce the formulas in the next theorem.

Theorem 9. For any |z|< 1 the ordinary generating functions of H 2
n and H 3

n are

∞∑
n=1

H 2
n zn
=

1
1− z

(
Li2(z)+ log2(1− z)

)
,(22)

∞∑
n=1

H 3
n zn
=

1
1− z

(
−
π2

2
log(1− x)− log3(1− z)+ 3

2
log2(1− z) log z(23)

+ 3 Li3(1− z)+Li3(z)− 3ζ(3)
)
.

The first relation is easy to prove and is not new; one can find it, for example, in
[Mező 2013]. For the sake of completeness, we give its proof. To our knowledge,
the second formula is new.
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Proof. Note that H 2
n−1 =

(
Hn −

1
n

)2
= H 2

n +
1
n2 − 2

Hn

n
, whence

(24)
∞∑

n=1

H 2
n−1zn

=

∞∑
n=1

H 2
n zn
+

∞∑
n=1

zn

n2 − 2
∞∑

n=1

Hn

n
zn.

The second sum is Li2(z) (see definition (5)), while the last sum equals

(25)
∞∑

n=1

Hn

n
zn
= Li2(z)+ 1

2 log2(1− z),

by [Borwein and Borwein 1995]. If we temporarily introduce the function

f (z)=
∞∑

n=1

H 2
n zn,

then (24) and (25) imply that

z f (z)= f (z)+Li2(z)− 2
(
Li2(z)+ 1

2 log2(1− z)
)
;

hence

f (z)=
∞∑

n=1

H 2
n zn
=

Li2(z)+ log2(1− z)
1− z

.

Let us prove the second formula. Our initial point is almost the same as above:

H 3
n =

(
Hn−1+

1
n

)3
= H 3

n−1+ 3H 2
n−1

1
n
+ 3Hn−1

1
n2 +

1
n3 .

This time we set

f (z)=
∞∑

n=1

H 3
n zn.

Then

(26) f (z)= z f (z)+ 3
∞∑

n=0

H 2
n

n+ 1
zn+1
+ 3

∞∑
n=0

Hn

(n+ 1)2
zn+1
+Li3(z).

To calculate the first sum, we utilize the first formula of the theorem:

(27)
∞∑

n=0

H 2
n

n+ 1
zn+1
=

∫ z

0

(
Li2(x)+ log2(1− x)

1− x

)
dx

=−
π2

3
log(1− z)− 1

3
log3(1− z)+ log2(1− z) log z

+ log(1− z)Li2(z)+ 2 Li3(1− z)− 2ζ(3).

This can be seen directly by differentiation. The integration constant 2ζ(3) comes
if we substitute z = 0.
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Now we deal with the second sum on the right-hand side of (26).

(28)
∞∑

n=1

Hn

(n+ 1)2
zn+1

=

∫ z

0

∞∑
n=1

Hn

n+ 1
xn dx =

∫ z

0

log2(1− x)
2x

dx

=
1
2

log2(1− z) log z+ log(1− z)Li2(1− z)−Li3(1− z)+ ζ(3).

Taking the derivative of the right-hand side, this can be justified. The integration
constant comes if we substitute z = 0.

Substituting (27) and (28) into (26) and utilizing [Lewin 1991, formula (1.5)]

Li2(z)+Li2(1− z)= ζ(2)− log z log(1− z)

to simplify, we have proven Theorem 9. �

It is interesting that S. Ramanujan dealt with a similar function as in (28), but in
the denominator there is (n+ 1)3 in place of (n+ 1)2 in his function:

h(z)=
∞∑

n=1

Hn

(n+ 1)3
zn+1.

He could not provide a closed form for this function but he showed that it can be
analytically continued to the whole complex plane in z and proved some functional
equations for h. Details can be found in [Berndt 1985, p. 253]. Such generating
functions also appear in a beautiful paper of Guillera and Sondow [2008].

4.1. Some series as consequences of Theorem 9. We note an interesting alternat-
ing nonlinear sum as a corollary of formula (27) in the proof of Theorem 9:

∞∑
n=1

(−1)n+1 H 2
n

n+ 1
=
π2

12
log 2− 1

3
log3 2− 1

4
ζ(3).

The proof can be done by substituting z =−1 into (27) and handling the occurring
imaginary values. One of them is log(−1), the other one is Li3(2). By a formula
of Lewin’s book [1981, (6.7), p. 154],

Li3(2)= Li3
( 1

2

)
+
π2

3
log 2− 1

6
log3 2− 1

2
iπ log2 2.

Since log(−1)= iπ in the principal branch, the imaginary parts cancel — as they
must — and then we can finish the proof using the special values

Li2(−1)=−
π2

12
, Li3

( 1
2

)
=

1
24
(
4 log3(2)+ 21ζ(3)− 2π2 log 2

)
.



218 ISTVÁN MEZŐ

Another consequence of the calculations in (28) is the classic result of Euler,
which is nothing but (1):

∞∑
n=1

Hn

(n+ 1)2
= ζ(3).

To prove this we let z tend to 1 from the left. (Taking the limit is not straightforward,
we have to check the Taylor series around 1 to see that we have the right to do this.
Finally we see that all the terms cancel, and just the constant term ζ(3) remains.)

Nice sums of infinite series involving the square and third power of the digamma
function are consequences of Theorem 9. This function is the logarithmic derivative
of the Euler 0 function and can be defined by the sum [Gradshteyn and Ryzhik
2007]

ψ(x)=−γ +
∞∑

n=0

( 1
n+1

−
1

n+x

)
(x ∈ R \ {0,−1,−2, . . .}).

Here γ =− lim
n→∞

(
log n−

n∑
k=1

1
k

)
≈ 0.577215664901533 is the Euler–Mascheroni

constant.
The derivatives of the digamma function ψ ′, ψ ′′, . . . are called trigamma, tetra-

gamma functions, etc. In general, these derivatives are called polygamma functions
and denoted by ψn (ψ0 = ψ , ψ1 = ψ

′, . . . ). Since

(29) ψk(n)= (−1)k+1k! (ζ(k+ 1)− Hn−1,k+1),

it is straightforward to see that the polygamma functions have the generating
functions
∞∑

n=1

ψk(n)zn
=

z
1− z

(−1)kk! (Lik+1(z)− ζ(k+ 1)) (|z|< 1, k = 1, 2, . . . ).

If k = 0, we have that
∞∑

n=1

ψ(n)zn
=

z
z− 1

(γ + log(1− z)).

From the general representation (29) it follows that at a positive integer n the
digamma function equals

(30) ψ(n)= Hn−1− γ.

We have infinite series for the second and third power of the digamma function:

∞∑
n=1

ψ2(n+ 1)
2n = γ 2

− 4γ log 2+ log2 2+ ζ(2),
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∞∑
n=1

ψ3(n+ 1)
2n =

π2

3
log 2+ 1

3
log3 2+ ζ(3)− π

2

2
γ − 3γ log2 2+ 6γ 2 log 2− γ 3.

It is interesting that the second formula includes all the most frequently appearing
constants: π , γ , e, ζ(3), and log 2.

We shall prove just the second identity, because the first one is similar but simpler.
Using Theorem 9, we can see that

∞∑
n=1

H 3
n

2n =
π2

3
log 2+ 1

3
log3 2+ ζ(3)

and
∞∑

n=1

H 2
n

2n = ζ(2)+ log2 2= π
2

6
+ log2 2.

From the generating function

∞∑
n=1

Hnzn
=−

log(1− z)
1− z

,

it is obvious that
∞∑

n=1

Hn

2n = log 4.

Since

ψ3(n+ 1)= H 3
n − 3γ H 2

n + 3γ 2 Hn − γ
3,

the result follows after dividing by 2n and summing over n.

5. The Landen functional equations of the dilogarithm
and trilogarithm functions

As an application of generating functions of the above nonlinear Euler sums we give
proofs for the functional equations of the dilogarithm and trilogarithm functions.
The proof relies on finite identities and on a result of Euler with respect to binomial
transforms.

More concretely, we shall reprove the functional equation of the dilogarithm
function:

(31) Li2
( x

1+ x

)
=−

1
2

log2(1+ x)−Li2(−x).

This is called Landen’s equation [Lewin 1981, (1.12), p. 5].
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We also show a new proof of the Landen functional equation for the trilogarithm:

(32) Li3
( x

1+ x

)
= ζ(3)+ ζ(2) log(1+ x)− 1

2 log2(1+ x) log(−x)

+
1
6 log3(1+ x)−Li3(−x)+Li3(1+ x).

This is proved in [Lewin 1981, p. 155].
We remark that these equations are also presented in [Lewin 1991] on p. 2, but

there is a typo there: in equation (1.13) in place of the coefficient 1
6 there is 1

2 ,
which is incorrect.

The known proofs are analytic. We present proofs which are based on finite
combinatorial identities. Moreover, we show a reason why there probably does not
exist a functional equation of Landen type for higher-order polylogarithms.

Closed-form expressions for Li2
( 1

2

)
and Li3

( 1
2

)
are also known [Lewin 1991,

pages 1 and 2]:

Li2
( 1

2

)
=
π2

12
−

1
2

log2 2, Li3
( 1

2

)
=

7
8
ζ(3)− π

2

12
log 2− 1

6
log3 2.

But there is no such formula for Li4
(1

2

)
; see the remark after equation (7.92) in

[Lewin 1981, p. 211].
We try to get closer to the constant Li4

( 1
2

)
and we show that

(33) Li4
( 1

2

)
=
π4

180
+
π2

48
log2 2− 1

24
log4 2− 7

16
log(2)ζ(3)+ 1

2

∞∑
n=1

(−1)n+1 Hn Hn,2

n
.

The last sum on the right does not seem to be reducible to known constants. When
we tried to reduce it, we found that in its expression Li4

(1
2

)
appears, so we would

get a 0= 0-type identity upon substituting this into (33).
The new proofs of the Landen identities are based on the representations of the

generalized harmonic numbers:

Hn,2 =

n∑
k=1

(n
k

)
(−1)k+1 Hk

k
,(34)

Hn,3 =
1
2

n∑
k=1

(n
k

)(−1)k+1

k
(H 2

k + Hk,2),(35)

Hn,4 =
1
6

n∑
k=1

(n
k

)(−1)k+1

k
(H 3

k + 3Hn Hn,2+ 2Hn,3),(36)

for all n ≥ 1. (It is interesting that in the last sum, the term H 3
k + 3Hn Hn,2+ 2Hn,3

appears in [Adamchik 1997; Connon 2008a]. To see how to derive identities like
this, we refer to [Connon 2008c].)
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To prove (31) and (32) we need an identity, due to Euler, giving the generating
function of a sequence’s binomial transform. Recall that for an arbitrary real
sequence an , the binomial transform of an is the sequence bn defined by

bn =

n∑
k=0

(n
k

)
ak, or, equivalently, an =

n∑
k=0

(n
k

)
(−1)n−kbk .

If an has the generating function a(x), that is,
∞∑

n=0
anxn

= a(x), then bn has the
generating function

∞∑
n=0

bnxn
=

1
1− x

a
( x

1− x

)
.

For more information on binomial transforms and Euler’s result, see [Dumont
1981; Mező and Dil 2009; Seidel 1877].

5.1. The Landen equation for the dilogarithm. It is straightforward to see that
∞∑

n=1

Hn,k xn
=

Lik(x)
1− x

,

and from (34) we also know that Hn,2 is the inverse binomial transform of −Hn/n.
Hence

Li2(x)
1− x

=
1

1− x
a
( x

1− x

)
,

where a(x) is the generating function of Hn/n. The denominator 1+ x cancels,
and we apply the substitution x→ x/(1+ x) to get

Li2
( x

1+ x

)
= a(x).

Finally, to prove (31) we realize that

a(x)=−
∞∑

n=1

(−1)n

n
Hnxn

=−

∞∑
n=1

(−1)n

n

(
Hn−1+

1
n

)
xn

=−

∞∑
n=1

(−1)n

n
Hn−1xn

−

∞∑
n=1

(−1)n

n2 xn.

The last two sums equal respectively 1
2 log2(1+ x) and Li2(−x) (in the latter case

by definition). These prove (31).

5.2. The Landen equation for the trilogarithm. Identity (35) shows that

(37) Li3
( x

1+ x

)
=−

1
2

∞∑
n=1

(−1)n

n
H 2

n xn
−

1
2

∞∑
n=1

(−1)n

n
Hn,2xn.
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Let us deal with the first sum. We prove that

(38)
∞∑

n=1

H 2
n

n
xn
= Li3(x)+ 2Li2(1− x) log(1− x)+Li2(x) log(1− x)

−
1
3 log3(1− x)+ 2 log x log2(1− x)− 1

3π
2 log(1− x)

for all |x |< 1.
Applying (22), we have that

∞∑
n=1

H 2
n

n
xn
=

∫ x

0

Li2(y)
y(1− y)

dy+
∫ x

0

log2(y)
y(1− y)

dy.

These integrands have primitive functions:

(39)
∫ x

0

Li2(y)
y(1− y)

dy = 2Li3(1− x)+Li3(x)+Li2(x) log(1− x)

+ log x log2(1− x)− 1
3π

2 log(1− x)− 2ζ(3),

and

(40)
∫ x

0

log2(y)
y(1− y)

dy =−2Li3(1− x)+ 2Li2(1− x) log(1− x)

−
1
3 log3(1− x)+ log x log2(1− x)+ 2ζ(3),

as can be seen by differentiation. (The integration constants come if we substitute
x = 0.) These two integrals together give (38).

Similarly,

(41)
∞∑

n=1

Hn,2

n
xn
=

∫ x

0

Li2(y)
y(1− y)

dy.

This integral is the same as (39).
Collecting the results under (38) and (41) (considering (39)) and putting them

into (37), we get the Landen equation for the trilogarithm, after a simplification.

5.3. The Landen equation for the tetralogarithm and higher-order polylogs. Let
us go to the tetralogarithm Li4(x). Identity (36) immediately gives

Li4
( x

1+ x

)
=

1
6

∞∑
n=1

(−1)n+1

n

(
H 3

n + 3Hn Hn,2+ 2Hn,3
)
xn.

This shows why finding a functional equation of Landen type for Li4(x) is not
hopeful: the product Hn Hn,2 does not seem to have a generating function expressible
by standard functions for all |x |< 1. This is probably true for higher-order polylog-
arithms as well, because those harmonic number expressions probably contain H 4

n
and other powers and products of generalized harmonic numbers.
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We note that Theorem 1 of [Ulanskii 2003] does provide a general Landen
functional equation for these polylogarithms. However, that equation uses multiple
zeta functions, which probably cannot be reduced to polylogarithms and ordinary
logarithms.

6. Collected sums

We close the paper collecting the calculated sums.

∞∑
n=1

H 2
n

n2 =
17
4
ζ(4),

∞∑
n=1

H 2
n

n3 =
7
2
ζ(5)− ζ(2)ζ(3),

∞∑
n=1

H 2
n,2

n2 =
19
24
ζ(6)+ ζ 2(3),

∞∑
n=1

Hn Hn,2

n2 = ζ(2)ζ(3)+ ζ(5),

∞∑
n=1

Hn,2 Hn,3

n2 =
131
16
ζ(7)− 5

2
ζ(2)ζ(5)− 3

2
ζ(3)ζ(4),

∞∑
n=1

Hn Hn,2

n4 =
3
4
ζ(3)ζ(4)+ 2ζ(2)ζ(5)− 51

16
ζ(7),

∞∑
n=1

(−1)n+1 H 2
n

n+ 1
=
π2

12
log 2− 1

3
log3 2− 1

4
ζ(3),

∞∑
n=1

H 3
n

2n =
π2

3
log 2+ 1

3
log3(2)+ ζ(3),

∞∑
n=1

H 2
n

2n = ζ(2)+ log2 2.

We also present some other sums without proof. The methods of Sections 4
and 5 can help get these as well.

∞∑
n=1

(−1)n+1

n
H 3

n =
1

144
(
π4
+ 18π2 log2 2− 36 log4 2+ 162 log(2)ζ(3)

)
,

∞∑
n=1

(−1)n+1

n
Hn,3 =

19
1440

π4
−

3
4

log(2)ζ(3),

∞∑
n=1

(−1)n

n
Hn−1 Hn−1,2 =

7
8

log(2)ζ(3)− 1
4

log2(2)ζ(2)− 1
8
ζ 2(2),

∞∑
n=1

(−1)n

n
Hn Hn,2 = ζ(4)−

1
12

log4 2− 2 Li4
( 1

2

)
+
π2

24
log2 2− 7

8
log(2)ζ(3).
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To conclude, we record the amusing identity of sums
∞∑

n=1

Hn,2
(−1)n

n!
=
π2

6e
−

∞∑
n=0

1
(n+ 1)2

!n
n!
.

Here !n is the subfactorial of n (the number of permutations on n elements that don’t
fix any of them) and e = exp(1). The reader can look for a proof as a challenge.
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